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Background. Cell-cell communication is essential in tissue patterning. In early amphibian development, mesoderm is formed
in the blastula-stage embryo through inductive interactions in which vegetal cells act on overlying equatorial cells. Members of
the TGF-b family such as activin B, Vg1, derrière and Xenopus nodal-related proteins (Xnrs) are candidate mesoderm inducing
factors, with further activity to induce endoderm of the vegetal region. TGF-b-like ligands, including BMP, are also responsible
for patterning of germ layers. In addition, FGF signaling is essential for mesoderm formation whereas FGF signal inhibition has
been implicated in endoderm induction. Clearly, several signaling pathways are coordinated to produce an appropriate
developmental output; although intracellular crosstalk is known to integrate multiple pathways, relatively little is known
about extracellular coordination. Methodology/Principal Findings. Here, we show that Xenopus Tsukushi (X-TSK), a member
of the secreted small leucine rich repeat proteoglycan (SLRP) family, is expressed in ectoderm, endoderm, and the organizer
during early development. We have previously reported that X-TSK binds to and inhibits BMP signaling in cooperation with
chordin. We now demonstrate two novel interactions: X-TSK binds to and inhibits signaling by FGF8b, in addition to binding to
and enhancement of Xnr2 signaling. This signal integration by X-TSK at the extracellular level has an important role in germ
layer formation and patterning. Vegetally localized X-TSK potentiates endoderm formation through coordination of BMP, FGF
and Xnr2 signaling. In contrast, X-TSK inhibition of FGF-MAPK signaling blocks ventrolateral mesoderm formation, while BMP
inhibition enhances organizer formation. These actions of X-TSK are reliant upon its expression in endoderm and dorsal
mesoderm, with relative exclusion from ventrolateral mesoderm, in a pattern shaped by FGF signals. Conclusions/

Significance. Based on our observations, we propose a novel mechanism by which X-TSK refines the field of positional
information by integration of multiple pathways in the extracellular space.
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INTRODUCTION
During blastula stages of amphibian development, the embryo is

organized into three distinct germ layers: ectoderm, mesoderm

and endoderm, precursors of skin, connective tissue and gut

respectively. Mesoderm is formed through inductive interactions

by which cells of the vegetal region act upon overlying equatorial

cells (Reviewed in [1]), an event relying upon pre-localized

maternal determinants. Moreover, these overlying cells receive

differential signals from specific vegetal areas, resulting in initial

ventral-dorsal patterning of the embryo [2]. The vegetal cells

themselves are destined to become endoderm, in a process that has

not been as intensively studied, in comparison to mesoderm

formation. Formation of the endoderm begins during early

blastulation, where gene expression specific to this germ layer is

reinforced by late blastula stages [3] and interestingly, the process

of endoderm formation involves signals shared with the events of

mesoderm induction and patterning.

Cell-cell communication is essential in germ layer formation

and patterning. Studies on mesoderm formation have identified

several mesoderm-inducing factors; Activin B [4], Vg1 [5],

Derrière [6] and Xenopus nodal-related proteins (Xnrs), [7,8]

members of the activin-like branch of the Transforming Growth

Factor-b (TGF-b) family of signaling molecules. These proteins act

as morphogens and demonstrate activity to induce dorsal

mesoderm formation at higher concentrations [9,10]. A second,

larger branch of the TGF-b family comprising of Bone

Morphogenetic Proteins (BMPs) function to ventralize mesoderm,

highlighting the importance of TGF-b signaling in both mesoderm

formation and its subsequent pattering (Reviewed in [11]).

Interestingly, activin-like TGF-b signals are also essential

components in the mechanism of endoderm induction. Vegetally

localized T-box transcription factor (VegT) is essential for

initiation of endoderm formation by activating expression of

TGF-b-related Xnr family members and Derrière, in addition to

endoderm-specific transcription factor Sox17 [12–17]. This occurs

at the early blastula stage and functions to achieve a high level of

activin-like TGF-b signaling within presumptive endoderm

[13,18]. Sox17 expression activated early by VegT later relies

upon Xnr signals for maintenance of its expression [19], and by

late blastula stages, expression of endoderm specific transcription

factors of the Mix and GATA families is induced (reviewed in [3]).

Upon gastrulation, mesodermal and endodermal cell populations
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become distinct [20], yet is not known how a clear border is made

between these segregated cell populations when common signaling

pathways are employed for their formation and maintenance.

It is clear that morphogen gradients form part of the mechanism

responsible for differential gene expression in the Xenopus embryo

[21]. Additional signaling pathways may be accessory to

differentiation between germ layers. For example, intact FGF

signaling is essential for mesoderm induction [22,23], which is

integrated with activin-like signaling [24,25]. In contrast to this,

FGF signal inhibition has been implicated in endoderm formation

[26]. Similarly, active BMP signaling is involved in ventral

mesoderm formation, whereas BMP inhibition is linked to

endoderm formation [26,27]. These germ-layer specific signal

requirements are clarified in Figure 1, illustrating the point that in

order to achieve precise germ layer specification, multiple

signaling pathways initiated by extracellular molecules must be

coordinated to produce an appropriate output. Intracellular cross-

talk has been intensively studied in the context of signal

integration; for example, activation of MAP kinase, downstream

of FGF signaling, inhibits BMP through phosphorylation of the

Smad1 linker domain [28]. There is now increasing evidence that

individual extracellular regulators interact with multiple morpho-

gens, such as Cerberus (Wnt, Xnrs, BMP), Coco (Wnt, Xnrs,

BMP) and Follistatin (Activin, BMP) [29–32], suggesting that

extracellular regulators play an important role in integration of

multiple pathways.

We have previously reported that a short-range secreted

protein, Tsukushi (TSK), interacts with and modulates activities

of TGF-b family members, BMP and chick Vg1, in addition to the

Notch ligand, Delta [33–35]. We aimed to study multiple signal

regulation in early development, coordinated at the extracellular

level by an individual type of molecule. In this study, we show that

Xenopus Tsukushi (X-TSK) plays an important role in multiple

signal integration, through binding and modulation of BMP, FGF

and Xnr2. Zygotic X-TSK expression is activated in endoderm and

the dorsal blastopore lip, with relative exclusion from ventrolateral

marginal zone. Functional analysis shows that X-TSK potentiates

endoderm formation whilst inhibiting ventrolateral mesoderm

formation, through activation of Xnr2 signaling combined with

inhibition of FGF and BMP signaling. Indeed, through FGF-

dependent localized expression of X-TSK and coordinated

regulation of three distinct signaling pathways, TSK contributes

to germ layer formation and patterning in Xenopus development.

RESULTS

X-TSK is expressed in ectoderm, dorsal mesoderm

and endoderm
We previously demonstrated that TSK functions in primitive

streak and Hensen’s node formation through modulation of BMP

and Vg1 in chick [33]. In Xenopus embryos, Chick TSK (C-TSK)

induces dorsal mesoderm formation, site of the organizer, most

likely through BMP inhibition. Although we have previously

shown a role for TSK in neural crest formation in Xenopus through

BMP and Notch signal modulation [34], we have yet to detail any

possible multiple signal interactions during earlier stages of

amphibian development.

In order to learn more about TSK function in early Xenopus

development, X-TSK mRNA expression was examined spatially

and temporally by in situ hybridization and RT-PCR. Whole

mount in situ hybridization showed that X-TSK is localized to the

animal hemisphere during late blastula and gastrula stages, as

identified by purple staining (Figure 2A). At stage 10, X-TSK

expression is also detected around the dorsal blastopore lip,

relative to lower expression in the ventrolateral marginal zone.

Furthermore, punctate staining within the fully formed blastopore

is evident from stage 10.5, suggesting localization of X-TSK to the

endoderm. Staining is not observed with sense X-TSK probe,

confirming that X-TSK staining is specific.

As probe cannot penetrate into deep endodermal tissue by

whole mount in situ hybridization, due to large size of the embryo

and high yolk content [36], embryos were first sectioned, followed

by in situ hybridization to examine TSK expression within the

Figure 1. Signaling involved in Xenopus germ layer formation. (A)
Selected signaling pathways involved in Xenopus mesoderm and
endoderm formation. Activation of pathways indicated by ‘+++’,
inhibition of pathways indicated by ‘222‘. Ectoderm = red, meso-
derm = green, endoderm = blue. FGF signal activity is required for
mesoderm formation in addition to activity of activin-like signaling
(represented here by Xnr2). FGF and BMP signal inhibition with Xnr2
signal activation is involved in endoderm induction mechanisms. (B)
Selected signaling pathways involved in Xenopus mesoderm patterning.
Active BMP signaling produces mesoderm with ventral character,
whereas inhibition of BMP signaling produces mesoderm of dorsal
character. Also, Xnr2 expressed in the dorsal region has activity to
induce dorsal mesoderm.
doi:10.1371/journal.pone.0001004.g001
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vegetal region. Figure 2B demonstrates that X-TSK mRNA is

expressed in the pre mid-blastula transition (MBT, stage 7)

embryo. This maternal expression is localized to the animal

hemisphere, in addition to a small amount of vegetal expression in

the blastocoel floor. At stage 10.5, zygotic expression of X-TSK is

detected throughout the vegetal region and the dorsal blastopore

lip, overlapping with expression of the endoderm-specific marker

Sox17a [37] and with the organizer marker Goosecoid (Gsc), in the

dorsal marginal zone [38] (Figure 2D). In contrast to this,

expression is diminished in the area where the pan-mesoderm

marker, brachyury (Xbra), is expressed [39] (Figure 2D). Later in

gastrulation (stage 13), X-TSK is strongly expressed in the

endodermal derived region and precaudal plate under the

neuroectoderm (Figure 2B). In order to demonstrate the specificity

of staining for X-TSK expression, in situ hybridization with sense

probe was again performed, resulting in minimal staining as shown

in Figure 2B.

Temporally, X-TSK expression levels peak during germ layer

formation and early gastrulation, as demonstrated by semi-

quantitative RT-PCR in whole embryos (Figure 2C). These data

showing the specific expression of X-TSK in ectoderm, endoderm

and dorsal mesoderm during early stages of Xenopus development

suggest a function for X-TSK in germ layer formation and

patterning.

Figure 2. X-TSK expression in Xenopus. (A) Whole mount in situ hybridization of X-TSK in Xenopus gastrula stage embryos, including sense control.
Purple staining indicates X-TSK expression. Orientations and stages as indicated. X-TSK is expressed in dorsal marginal zone (DMZ) and ectoderm from
stage 10, and endoderm from stage 10.5. (B) In situ hybridization of X-TSK in sectioned Xenopus embryos, including sense control. Orientation: animal
top, vegetal bottom, dorsal right, stages as indicated. X-TSK is expressed maternally (stage 7) in the animal region, with light staining in the vegetal
region. From stage 10.5, X-TSK expression is detected throughout the endoderm. (C) Expression levels of X-TSK (upper panel) measured by RT-PCR
from egg to stage 41, including ODC expression (middle panel) and -RT control (lower panel). WOC = Water Only Control. X-TSK is expressed at
highest levels during germ layer formation and gastrulation. (D) Comparative expression of Sox17a (marking endoderm), Gsc (dorsal mesoderm), and
Xbra (pan-mesoderm) in sectioned stage 10 embryos. (E) Schematic of X-TSK expression (grey) in ectoderm, dorsal mesoderm and endoderm.
doi:10.1371/journal.pone.0001004.g002
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Loss-of-function: X-TSK is a component of endoderm

formation and mesoderm patterning
In order to determine the importance of X-TSK in Xenopus germ

layer formation and patterning we depleted X-TSK with antisense

morpholino oligonucleotide (XMO) targeted to prospective

endoderm or mesoderm. We have previously shown that this

MO specifically depletes X-TSK protein levels [34,40], where

morphants were analyzed from stage 15, and exhibited a reduction

in neural tissue formation, although earlier stages have not

previously been analyzed.

As we found X-TSK to be expressed throughout the vegetal

region from gastrula stages, with a small amount of expression in

the pre-gastrula embryo, we targeted XMO to prospective

endoderm, followed by in situ hybridization analysis of endoderm

markers Sox17a and GATA4 [37,41]. In addition to performing

this analysis in the whole embryo, we again subjected sectioned

embryos to in situ hybridization in order to access the deep

endodermal tissue. XMO was co-injected with b-Galactosidase

RNA to facilitate identification of the targeted area, as observed

from the region of light blue staining. As part of these loss-of-

function approaches, we also injected control MO (CMO) to rule

out non-specific effects of MO on development. Sox17a and

GATA4 are expressed throughout the vegetal region of gastrula-

stage embryos, with punctate staining of GATA4 observed as

highlighted in the zoomed panel (Figure 3A). Expression of both

Sox17a and GATA4 are visibly diminished upon X-TSK depletion

with 20 ng XMO in 41% and 48% of embryos respectively

(Figure 3A and Table 1). Punctate GATA4 staining is reduced in

the presence of XMO, which has enabled quantification of loss-of-

function by counting what we have termed as GATA4 positive foci.

Figure 3A shows the resulting graphical representation of this

quantification, presented as percentages relative to staining in

uninjected embryos. GATA4 staining is reduced to only 50%

relative to uninjected and CMO injected embryos (p,0.001). In

order to confirm specificity of loss-of-function, rescue experiments

were performed using human-TSK, unaffected by the XMO that

overlaps with the initiation site of X-TSK. Co-injection of 20 ng

XMO with 1 ng H-TSK mRNA almost completely rescues X-TSK

MO mediated inhibition of endoderm marker expression, Sox17a
and GATA4 (Figure 3A and Table 1) and partially restores

numbers of GATA4 positive foci (p,0.001, Figure 3A). Moreover,

expression of 50 pg Xnr2, a known endoderm inducer [7] similarly

restores expression of endoderm markers (p,0.001, Figure 3A).

Interestingly, overexpression of H-TSK and Xnr2 increase levels

of GATA4 positive foci. Loss of endoderm upon X-TSK depletion

is also clearly demonstrated in later stages where gut development

is perturbed, with the gut becoming significantly thinner (21%

reduction of measured gut width in comparison to uninjected

embryos (p,0.001, Figure 3C). These observations in combina-

tion with specific expression of X-TSK in the endoderm indicate

that X-TSK is a component of Xenopus endoderm formation.

We continued by targeting XMO to a further X-TSK expressing

region, the dorsal mesoderm, site of the organizer. Expression of

the organizer gene Gsc is diminished upon X-TSK depletion in

52% of embryos, in agreement with TSK function as a BMP

antagonist (Figure 3B). In order to analyze general mesoderm

formation, we examined the effect of XMO on expression of the

muscle marker MyoD, localized to ventrolateral mesoderm, and

later in somites [42]. XMO was targeted to one side of the

embryo, as marked by b-Gal staining (Figure 3B), thus acting as an

internal control by which the proportion of uninjected vs. injected

MyoD expression areas was measured using the Image J program.

Figure 3B demonstrates a 30% expansion (p,0.001) in the area of

MyoD expression, relative to the uninjected side, upon X-TSK

depletion. We also analyzed expression of pan-mesoderm marker

Xbra, in X-TSK depleted mesoderm. We found that Xbra

expression is upregulated in XMO injected DMZ, as measured

by RT-PCR (shown later). These effects in general mesoderm are

subtle, perhaps due to redundancy with other SLRP family

members, such as biglycan [43] or requirement of a positive factor

to induce mesoderm. Nevertheless, this data does demonstrate

a role for X-TSK in mesoderm formation and dorsal-ventral

mesoderm patterning.

X-TSK overexpression expands endoderm and

dorsal mesoderm whilst inhibiting ventrolateral

mesoderm formation
To support loss-of-function data, expression of germ layer markers

was analyzed following overexpression of X-TSK in lateral

marginal zone, an area of relatively low X-TSK expression, again

with b-Galactosidase to identify the targeted area. Figure 4A

shows that embryos injected with 1 ng X-TSK mRNA demonstrate

substantial expansion of endoderm markers Sox17a (32% of

embryos injected) and GATA4 (37% of embryos injected), into the

marginal zone. Although this phenotype is not penetrant, it is

observed consistently. This data is also supported in loss-of-

function rescues performed above where H-TSK expression

increases numbers of GATA4 foci in sectioned embryos by 31%

(Figure 3A).

In contrast to this, pan-mesoderm Xbra expression was inhibited

in 70% of embryos injected with 1 ng X-TSK (Figure 4A). Later

in development, these embryos also demonstrate visibly reduced

MyoD expression in 33% of embryos. More detailed analysis

demonstrates an 18% reduction in area of MyoD expression on the

injected side (p,0.001) (Figure 4B). This is also supported by the

observation that gastrula-stage MyoD expression is inhibited by

TSK overexpression (data not shown). In contrast to this, X-TSK

overexpression in dorsal marginal zone (DMZ) clearly expands Gsc

expression of the organizer in 43% of injected embryos (Figure 4A).

Both loss- and gain-of-function analyses indicate that X-TSK acts

as a component of endoderm and dorsal mesoderm formation, in

addition to negative regulation of ventrolateral mesoderm.

Specifically, X-TSK appears to function in Xenopus germ layer

formation to induce endoderm and dorsal mesoderm, whilst

inhibiting ventrolateral mesoderm formation. This hypothesis is

supported by the observation that X-TSK is expressed within

endoderm and dorsal mesoderm relative to much lower expression

within ventrolateral mesoderm.

X-TSK function in germ layer formation and

patterning is not exclusively mediated by BMP

inhibition
It was previously reported that TSK inhibits BMP in cooperation

with chordin [40], thus raising the possibility that X-TSK

functions in germ layer formation and patterning through this

mechanism. To test this possibility, germ layer marker expression

was analyzed in embryos where BMP signaling was compromised;

embryos were injected with 250 pg truncated BMP receptor (tBR)

[44] or 125 pg chordin (Chd) with b-Galactosidase as a targeting

marker to the lateral or dorsal marginal zone (Figure 5A). Injection

of tBR or Chd into ventral marginal zone (VMZ) at these doses

induces secondary axes in 85–100% of embryos (data not shown)

and expands expression of organizer marker Gsc in all embryos

analyzed when targeted to the DMZ (Figure 5A). This is expected,

as previously reported [44,45] and demonstrates that BMP is

X-TSK in Multiple Signaling
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Figure 3. Loss of X-TSK function. (A) In situ hybridization of endoderm markers, Sox17a (upper row), and GATA4 (lower row) in sectioned early
gastrula (stage 10) embryos, purple staining indicates expression. Orientation: animal top, vegetal bottom. All embryos injected with 500 pg b-
Galactosidase (b-Gal) to identify targeted area (blue staining), with 20 ng control morpholino (CMO) or 20 ng X-TSK morpholino (XMO). Endoderm
marker staining is reduced in XMO injected embryos, as indicated by general loss of purple staining (Sox17a) and loss of punctate staining (GATA4),
detailed in the zoomed panel. Rescues were performed with 1 ng H-TSK, or 50 pg Xnr2, restoring endoderm marker expression. Detailed analysis of
GATA4 staining in sectioned embryos. Numbers of GATA4 foci were counted, as represented graphically, relative to uninjected control. XMO injection
reduces GATA4 foci by 50% (p = ,0.001), partially rescued by 1 ng H-TSK and 50 pg Xnr2 to over 80% relative to control (p = ,0.001). (B) Whole
mount in situ hybridization of dorsal mesoderm marker, Gsc in stage 10.5 embryos (dorsal orientation) and MyoD in stage 16 (anterior top, posterior
bottom) in embryos injected with 500 pg b-Gal, with 20 ng CMO or 20 ng XMO. Gsc expression is reduced in XMO injected embryos, whereas MyoD
expression is expanded by 30% (relative to control, p = ,0.001) on the injected side, as identified by blue b-Gal staining. (C) Gut morphology in stage
40 embryos injected with 20 ng CMO or 20 ng XMO. Gut width is reduced by 21% in XMO injected embryos, relative to uninjected embryos
(p = ,0.001).
doi:10.1371/journal.pone.0001004.g003
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indeed effectively inhibited at these doses. X-TSK similarly

expands Gsc expression, and this combined with previous

knowledge that BMP signals are inhibited by TSK strongly

suggests BMP inhibition as the mechanism involved. To confirm

this hypothesis, we co-overexpressed X-TSK in DMZ with the

constitutively active BMP receptor caALK3 [46]. Indeed, X-TSK

mediated expansion of Gsc expression is blocked by hyperactive

BMP signaling from caALK3 (Figure 5B), confirming that X-TSK

expands the organizer region through BMP inhibition. In contrast

to this, expression of tBR within the lateral marginal zone expands

Xbra expression, with no expansion of Sox17a (Figure 5A). Chd

injection did not affect expression of Xbra or Sox17a (Figure 5A). In

addition to this, X-TSK mediated inhibition of Xbra expression is

not blocked by activation of BMP signaling by caALK3 (data not

shown). These observations strongly indicate that X-TSK does not

affect endoderm or ventrolateral mesoderm formation through

inhibition of BMP signaling alone, suggesting that other pathways

function within this context.

X-TSK inhibits FGF-MAPK and BMP/Smad1 signaling

whilst enhancing activin-like/Smad2 Signaling
Since inhibition of BMP signaling alone is unable to explain X-

TSK function in germ layer formation, we considered the

potential roles of other major signaling pathways involved in

early embryogenesis. MAPK, Smad1 and Smad2, downstream of

FGF, BMP and activin-like signaling respectively [47] were

analysed by Western blotting in X-TSK overexpressing explants.

At this point, we did not consider Notch signaling, the function of

which is currently complex in germ layer formation, and will be

discussed later. As shown in Figure 5C, X-TSK inhibits Smad1

phosphorylation in animal explants in a dose dependent manner,

in accordance with its function as a BMP inhibitor. Interestingly,

from a lower dose range, X-TSK strongly inhibits phosphorylation

of MAPK in animal explants. For analysis of Smad2, X-TSK was

overexpressed in DMZ as activin-like ligands are present in this

region, in contrast to the animal cap. Figure 5C shows that X-

TSK activates Smad2 phosphorylation in DMZ. To address the

possibility that X-TSK regulates these pathways through in-

hibition of BMP signaling, tBR and Chd injected explants were also

analyzed (Figure 5D), resulting in expected inhibition of Smad1

phosphorlylation in animal explants. tBR activates MAPK

phosphorylation in animal explants as reported previously [48],

whilst having no effect on Smad2 phosphorylation in DMZ, as

shown in figure 5D. Chd does not inhibit MAPK phosphorylation

in animal explants, which is also supported by the observation that

Xbra expression, requiring intact FGF-MAPK signaling [22], is not

affected upon Chd overexpression. These results demonstrate that

the action of X-TSK upon MAPK and Smad2 is not mediated

through BMP antagonism, and suggests potential mechanisms

underlying X-TSK function in germ layer formation and

patterning, which we have examined in further detail.

X-TSK blocks ventrolateral mesoderm formation

through binding and inhibition of FGF8b
A dominant negative FGF receptor (XFD) blocks mesoderm

formation, demonstrating that intact FGF-MAPK signaling is

required for mesoderm formation in Xenopus [22,49]. However,

Smad2 activation is known to enhance formation of mesoderm [50],

ruling activin-like signaling out as a candidate in this context since X-

TSK enhances Smad2 phosphorylation although inhibits general

mesoderm formation. Therefore, we examined FGF-MAPK

signaling as a mechanism for X-TSK mediated ventrolateral

mesoderm inhibition. Figure 6A shows that MAPK phosphorylation

is activated upon X-TSK depletion. Furthermore, upregulation of

Xbra expression observed in X-TSK morphants is blocked by FGF

inhibition with the dominant negative FGF receptor, XFD

(Figure 6B). This demonstrates a role for endogenous X-TSK in

inhibition of FGF signaling in the mesoderm.

We subsequently focused upon the point of X-TSK interaction

within the FGF-MAPK pathway. We analysed the effect of V-ras,

which functions as a constitutively active component of FGF-

MAPK signaling, downstream of the FGF receptor [51]. Co-

expression of V-ras with X-TSK and b-Galactosidase as a tracer

completely blocks inhibition of Xbra expression by X-TSK and

restores MAPK phosphorylation, as analyzed by Western blotting

(Figure 6C–E), suggesting that X-TSK inhibits ventrolateral

mesoderm formation through inhibition of FGF-MAPK signaling,

upstream of Ras. Moreover, Figure 6G shows that MAPK

activation by the potent mesoderm inducer FGF8b [52] is strongly

inhibited by X-TSK. In support of this receptor-ligand level

interaction, an inducible FGF receptor (iFGFR), which works as

a constitutively active FGF receptor in the presence of dimerisa-

tion activator, AP20187 [53], rescues X-TSK mediated MAPK

inhibition (Figure 6F).

These observations suggest that X-TSK inhibits FGF-MAPK

activity at the extracellular level. FGF8b appeared as a good

candidate in the mechanism of X-TSK mediated FGF-MAPK

inhibition, hence ventrolateral mesoderm inhibition, thus we

analyzed interaction between these proteins in a pulldown assay.

Indeed FGF8b-FLAG is pulled down in complex with X-TSK-

Myc-His in a reaction with nickel beads (Figure 6H). This

interaction is specific, as FGF8b-FLAG in isolation is unable to

bind nickel beads. In addition to this, the interaction with X-TSK

is through FGF8b itself and not the FLAG epitope, as we have

previously shown that X-TSK does not interact with activin-

FLAG, or noggin-FLAG in the equivalent pulldown assay [40]. In

Table 1. X-TSK Loss-of-Function
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Normal Diminished Expanded

Sox17a

500 pg b-Gal 53 (100%) 0 0

20 ng CMO 44 (100%) 0 0

20 ng XMO 33 (59%) 23 (41%) 0

20 ng XMO+1ng H-TSK 26 (90%) 3 (10%) 0

20 ng XMO+50 ng Xnr2 29 (93.5%) 2 (6.5%) 0

GATA4

500 pg b-Gal 28 (100%) 0 0

20 ng CMO 31 (100%) 0 0

20 ng XMO 16 (52%) 15 (48%) 0

20 ng XMO+1ng H-TSK 27 (90%) 3 (10%) 0

20 ng XMO+50 ng Xnr2 23 (82%) 5 (18%) 0

Gsc

500 pg b-Gal 88 (98%) 1 1

20 ng CMO 59 (97%) 2 0

20 ng XMO 28 (48%) 30 (52%) 0

MyoD

500 pg b-Gal 54 (100%) 0 0

20 ng CMO 43 (98%) 1 0

20 ng XMO 50 (77%) 0 15 (23%)

doi:10.1371/journal.pone.0001004.t001..
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combination, this evidence demonstrates that X-TSK inhibits

ventrolateral mesoderm formation though binding and inhibition

of FGF8b. The next part of the study focused upon the mechanism

underlying endoderm induction by X-TSK.

X-TSK induces endoderm through binding and

enhancing activity of Xnr2
Data so far has shown that X-TSK functions as an endoderm

inducer in Xenopus. Nodal, a member of the TGF-b superfamily, is

known to induce endoderm at high concentrations through

activation of Smad2 [54]. A total of six nodal related genes have

been identified in Xenopus (Xnr1-Xnr6) [7,8,55,56]. With the

exception of Xnr3, they all demonstrate conserved functions upon

overexpression, although their spatial and temporal expression

varies. Of these Xnr family members, Xnr2 expression overlaps

most closely with X-TSK expression [7]. As shown in Figure 5C,

X-TSK activates Smad2 phosphorylation. These observations

suggested Xnr2-Smad2 signaling as a candidate mechanism for X-

TSK mediated endoderm induction. Therefore, we analyzed the

role of Xnr2 in the context of X-TSK function.

We questioned whether X-TSK requires intact Xnr signaling

for endoderm induction. Using a truncated Cerberus mutant

(CerS) that specifically inhibits Xnr signaling in Xenopus [8] we

studied the effect of Xnr inhibition upon X-TSK mediated

induction of endoderm by in situ hybridization. Introduction of

CerS inhibits expression of endoderm marker Sox17a in all

embryos analyzed. In the presence of CerS, X-TSK mediated

endoderm formation is completely blocked (Figure 7A and 7B).

Furthermore, 50 ng Xnr2, co-injected with XMO, visibly restores

expression of Sox17a and GATA4, and GATA4 positive foci

diminished upon loss of X-TSK function (Figure 3A). These data

strongly indicate that intact Xnr signaling is required for X-TSK

mediated endoderm induction.

Our previous observations that TSK binds to TGF-b superfam-

ily members [35,40] suggests that X-TSK may regulate Xnr

activity through binding to Xnr proteins. As shown in Figure 7C,

mature Xnr2-Myc is pulled down in complex with X-TSK-Myc-

His in a reaction with nickel beads. This interaction is specific, as

Xnr2-Myc in isolation is unable to bind the nickel beads.

Moreover, the interaction with X-TSK is through Xnr2 itself

and not the Myc epitope, as we have previously shown that X-

TSK does not interact with ADMP-Myc, or Follistatin-Myc in

equivalent pulldown assays [40]. As shown in Figure 7D, X-TSK

enhances Xnr2 mediated Smad2 phosphorylation in animal cap

explants; this is further supported by co-overexpression of X-TSK

and Xnr2 in whole embryos, where dorsal mesoderm and

endoderm formation is enhanced, as marked by Gsc, Sox17a and

GATA4 respectively (Figure 8A). This data, along with rescue of X-

TSK loss-of-function by Xnr2, demonstrates that X-TSK binds to

and enhances Xnr2, where intact Xnr signaling is required for the

function of X-TSK in endoderm induction.

Overexpression of Xnr2 in Xenopus embryos strongly activates

expression of pan-mesoderm marker Xbra, in addition to

expansion of dorsal marker Gsc, and endoderm markers Sox17a
and GATA4 (Figure 8A). However, in these cases, Xnr2 induces

both endoderm and mesoderm markers without forming a clear

border between them. Also the induction of Xbra in particular is

detected far beyond Xnr2 expressing cells, as identified by b-

Galactosidase staining. Very interestingly, co-overexpression of

Xnr2 and X-TSK induces Xbra expression only outside the

targeted region. Expression of Xbra within injected cells is almost

completely inhibited whilst endoderm marker expression is

enhanced. These observations indicate that X-TSK exerts its

Figure 4. Gain of X-TSK function. (A) Whole mount in situ hybridization
of germ layer markers in embryos injected with 500 pg b-Gal and 1 ng
X-TSK, with percentage occurrence of demonstrated phenotype and ‘n’
numbers indicated below images. Xbra (pan-mesoderm) expression is
inhibited and Sox17a and GATA4 (endoderm) expression is expanded,
stage 10.5, lateral orientation. Gsc (dorsal mesoderm) expression is
expanded, stage 10.5, dorsal orientation. MyoD expression is inhibited
on the injected side, as identified by blue b-Gal staining, stage 16,
anterior top, posterior bottom. (B) Graphical representation of MyoD
expression in (A). MyoD expression is reduced by 20% on the injected
side (p = ,0.001).
doi:10.1371/journal.pone.0001004.g004
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Figure 5. Mechanism of X-TSK function: signal analysis. (A) Whole mount in situ hybridization of germ layer markers in embryos injected with
500 pg b-Gal with 250 pg truncated BMP receptor (tBR) or 125 pg Chordin (Chd), with percentage occurance of demonstrated phenotype and ‘n’
numbers. Xbra and Sox17a phenotypes differ in comparison to X-TSK overexpression, whereas Gsc expression is commonly expanded. (B) Whole
mount in situ hybridization of Gsc in embryos injected with 500 pg b-Gal with 1 ng X-TSK, 500 pg caALK3 and X-TSK with caALK3, dorsal orientation.
caALK3 blocks X-TSK mediated expansion of Gsc expression. (C) Western blotting of MAPK and Smad1 phosphorylation in animal caps and Smad2
phosphorylation in DMZ explants, with total MAPK, Smad2 and Smad1 controls in explants injected with X-TSK (125 pg-1 ng) (D) 125 pg Chd or
250 pg tBR. X-TSK inhibits MAPK and BMP phosphorylation in animal caps whilst activating Smad2 phosphorylation in DMZ. Chd and tBR similarly
inhibit BMP phosphorylation, but contrast with X-TSK in MAPK and Smad2 phosphorylation status.
doi:10.1371/journal.pone.0001004.g005
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Figure 6. X-TSK inhibition and binding of FGF8b. (A) Western blotting of MAPK phosphorylation in animal caps injected with 20–40 ng CMO and
20–40 ng XMO. Depletion of X-TSK with XMO activates MAPK phosphorylation. (B) Semi-quantitative RT-PCR of Xbra expression in DMZ injected with
20 ng CMO, 20 ng XMO, 500 pg XFD and 500 pg XFD with 20 ng XMO. WE = Whole embryo, WOC = Water only control. Inhibition of FGF signals with
XFD blocks Xbra expression activated upon depletion of X-TSK with XMO. (C) Whole mount in situ hybridization of Xbra in stage 10.5 embryos, lateral
orientation. Embryos injected with 500 pg b-Gal with 1 ng X-TSK, 50 pg V-ras and X-TSK with V-ras. V-ras blocks X-TSK mediated inhibition of Xbra
expression in 100% of embryos analyzed (p = ,0.01), represented graphically in (D). (E) Western blotting of MAPK phosphorylation in animal caps
injected with X-TSK and V-ras. V-ras blocks X-TSK mediated inhibition of MAPK phosphorylation. (F) Western blotting of MAPK phosphorylation in
animal caps injected with X-TSK and iFGFR, in the presence or absence of chemical dimerisation agent, AP20187. Induced dimerisation blocks the
activity of X-TSK to inhibit MAPK phosphorylation. (G) Western blotting of MAPK phosphorylation in animal caps injected with X-TSK and FGF8b.
X-TSK inhibits MAPK phosphorylation activated by FGF8b. (H) Western blotting of nickel bead pulldown of FGF8b-FLAG in complex with X-TSK-Myc-
His. Top panel: detection of FGF8b-FLAG in complex with X-TSK-Myc-His (third lane). Second panel: detection of X-TSK-Myc-His pulled down. Third
and bottom panels: detection of FGF8b-FLAG and X-TSK-Myc-His input into the pulldown reaction.
doi:10.1371/journal.pone.0001004.g006

X-TSK in Multiple Signaling

PLoS ONE | www.plosone.org 9 October 2007 | Issue 10 | e1004



effects at short-range, while Xnr2 functions over a long range [10].

This idea of X-TSK acting at short range is also supported by our

previous observations; TSK is secreted from cultured cells and has

no membrane spanning domain or GPI anchoring signal [33], and

X-TSK fused with CD2, a membrane linker, showed an identical

activity to wild type X-TSK in neural crest development [34].

Figure 7. X-TSK requires intact Xnr signaling for endoderm induction; X-TSK binds to and enhances Xnr2 Signaling. (A) Whole mount in situ
hybridization of Sox17a in embryos injected with 500 pg b-Gal with 1 ng X-TSK, 500 pg CerS and 500 pg CerS with 1 ng X-TSK, lateral orientation. (B)
Introduction of CerS blocks X-TSK expansion of Sox17a in 100% of embryos analyzed (p = ,0.001). (C) Western blotting of nickel bead pulldown of
Xnr2-Myc in complex with X-TSK-Myc-His. Top panel: detection of Xnr2-Myc in complex with X-TSK-Myc-His (third lane). Second panel: detection of X-
TSK-Myc-His pulled down. Third and bottom panels: detection of Xnr2-Myc and X-TSK-Myc-His input into the pulldown reaction. (D) Western blotting
of Smad2 phosphorylation in animal caps injected with 1 ng X-TSK, 5 pg and 50 pg Xnr2. X-TSK enhances Smad2 phosphorylation, particularly
evident with 5 pg Xnr2.
doi:10.1371/journal.pone.0001004.g007

X-TSK in Multiple Signaling

PLoS ONE | www.plosone.org 10 October 2007 | Issue 10 | e1004



Combinatorial regulation of BMP, FGF and Xnr

signaling by X-TSK potentiates endoderm formation
We have shown that X-TSK binds to and modulates the activity of

BMP, FGF8b and Xnr2 in a concentration dependent manner.

Although we have demonstrated that X-TSK regulation of Xnr2 is

required for endoderm formation, a previous study with chordin

and dominant negative FGFR (XFD) has shown that BMP and

FGF inhibition also participate in endoderm formation [26]. Thus,

we examined the effect of BMP and FGF-MAPK activation upon

X-TSK mediated endoderm formation (Figure 9A and 9B). FGF-

MAPK activation by V-ras partially blocks X-TSK mediated

endoderm formation (reduced to 15% from 32%, p,0.05). In

addition to this, BMP activation by caALK3 also partially blocks

X-TSK mediated endoderm formation (reduced to 12% from

32%, p,0.01). This demonstrates that X-TSK activates endo-

derm formation through extracellular coordination of three

pathways: Xnr2, FGF-MAPK and BMP.

To confirm the importance of multiple signal integration, we

analyzed the combined effects of BMP and FGF signal inhibition

with Xnr2 signal activation upon endoderm induction. Expression

of truncated BMP receptor (tBR) in lateral marginal zone did not

expand expression of endoderm marker GATA4 (Figure 9C),

whereas expression of dominant negative FGF receptor (XFD) or

Xnr2 produces only a light, diffuse expansion of GATA4 expression.

However, combinations of XFD-tBR, XFD-Xnr2 and tBR-Xnr2

produced a stronger activation of GATA4 expression. Interestingly,

combination of tBR, XFD, and Xnr2 produced a much stronger

activation of GATA4 expression, indicating that inhibition of both

FGF and BMP signaling pathways in combination with Xnr

activation is important for endoderm formation, supporting the

observed multiple signal regulation by X-TSK.

Zygotic expression of TSK is regulated by FGF-MAPK

signaling
Our data indicates that germ layer formation and patterning is

influenced by expression of X-TSK, suggesting the importance of

TSK transcriptional regulation. As shown in Figure 2, X-TSK

possesses a dynamic and unique expression pattern during early

embryogenesis. Zygotic transcription of X-TSK is initiated in the

dorsal region, followed by expression in the endoderm, with

exclusion from ventrolateral mesoderm. This region of exclusion

corresponds to an area of high FGF activity [57]. Therefore, the

effect of FGF-MAPK activity upon zygotic X-TSK expression was

studied by semi-quantitative RT-PCR. As shown in Figure 10A,

activation of FGF-MAPK signaling with V-ras or constitutively

active FGF receptor (caFGFR) inhibits X-TSK expression, whilst

its inhibition with XFD activates X-TSK expression. These findings

suggest that X-TSK expression is shaped by FGF signaling, where

a feedback loop may be formed by which X-TSK inhibits FGF

signaling at the extracellular level.

DISCUSSION
In this paper, we describe three major functions of X-TSK:

activation of endoderm formation, inhibition of ventrolateral

mesoderm formation, and expansion of dorsal mesoderm. These

functions are mediated by multiple signal integration; inhibition of

FGF-MAPK and BMP signaling, with enhancement of Xnr2

signaling by X-TSK, regulated in the extracellular space through

protein-protein interactions.

TSK in mesoderm formation and patterning
We have shown previously that in chick, TSK functions as an

organizer inducer [33]. In Xenopus, X-TSK is expressed in the dorsal

blastopore lip where Spemann’s organizer is located. Functional

analysis presented in this current study shows that X-TSK has

activity to expand the region expressing the organizer gene Gsc,

mediated through BMP inhibition. In addition to this, we have

previously shown that X-TSK directly induces neural tissue in

animal caps and expands the neural region in whole embryos

[33,34]. These observations indicate that X-TSK is working as

Figure 8. X-TSK changes local response to Xnr2. (A) Whole mount in
situ hybridization of Xbra, Gsc (dorsal orientation) Sox17a and GATA4 in
embryos injected with 500 pg b-Gal with 50 pg Xnr2, and 50 pg Xnr2
with 1ng X-TSK and 500 pg X-TSK, lateral orientation. Xbra expression is
not detected in Xnr2-X-TSK expressing cells, as identified by b-Gal
staining. Xnr2 mediated expansion of Gsc expression is enhanced by X-
TSK. Expression of endoderm markers Sox17a and GATA4 expanded by
Xnr2 is enhanced by X-TSK, suggesting that X-TSK changes local cellular
response to Xnr2.
doi:10.1371/journal.pone.0001004.g008
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Figure 9. BMP and FGF signal activation blocks X-TSK mediated endoderm induction: triple signal regulation. (A) Whole mount in situ
hybridization of Sox17a in embryos injected with 500 pg b-Gal with 1 ng X-TSK, 500 pg caALK3, 50 pg V-ras and 500 pg caALK3, 50 pg V-ras with
1 ng X-TSK, lateral orientation. (B) Graphic representation of quantity of embryos demonstrating expanded Sox17a expression. Introduction of
caALK3 and V-ras partially blocks X-TSK expansion of Sox17a (p = 0.01 and 0.05 respectively). (C) Whole mount in situ hybridization of GATA4 in
embryos injected with 500 pg b-Gal with combinations of 1 ng XFD, 500 pg tBR, and 50 pg Xnr2, lateral orientation. Demonstrated phenotype
frequencies with n-numbers in white text. A triple combination of 1 ng XFD, 500 pg tBR, and 50 pg Xnr2 produces the strongest expansion of GATA4
expression.
doi:10.1371/journal.pone.0001004.g009
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a component of the organizer. However, X-TSK has two additional

functions that differentiate it from other organizer molecules:

induction of endoderm and inhibition of ventrolateral mesoderm.

X-TSK is excluded from ventrolateral mesoderm, mediated by FGF

signaling. Overexpression of X-TSK within the marginal zone

inhibits expression of ventrolateral mesoderm markers, mediated

through inhibition of FGF8b in the extracellular space by X-TSK.

It is known that pan-mesoderm markers such as Xbra require

intact FGF signaling for their expression [22], whilst expression of

dorsal organizer markers such as Gsc is not dependent on FGF

signal status [23]. Therefore, it is possible to activate organizer

formation whilst FGF signals are inhibited, although in vivo signal

analysis in Xenopus embryogenesis showed that MAPK is activated

in the organizer [57]. Since X-TSK inhibits FGF-MAPK and is

expressed within the organizer, it is likely there may be

a mechanism in place to interfere with or reduce X-TSK

inhibition of FGF-MAPK in this region.

The role of X-TSK in endoderm induction
In this study, we have demonstrated that X-TSK is a component

of endoderm induction in Xenopus. Zygotic expression of X-TSK is

activated in endoderm, overlapping spatially and temporally with

Xnr2 expression [7]. Our functional analysis has shown that X-TSK

physically interacts with Xnr2, and enhances Smad2 activity

downstream of Xnr2. In addition to this, X-TSK has two more

activities: binding and inhibition of FGF8b, in addition to previously

reported BMP binding and inhibition. It is known that strong

activation of nodal signaling plays a major role in endoderm

induction in all vertebrates [58]. In combination with this, FGF and

BMP inhibition also function to positively contribute to endoderm

induction [26]. Our experiments using Xnr2, tBR, and XFD clearly

show that coordination of the three pathways has much stronger

endoderm inductive activity relative to manipulation of individual or

dual signaling pathway components. We have demonstrated that X-

TSK is a key coordinator of these multiple pathways outside the cell

through regulation of an extracellular signaling network. In terms of

the intracellular pathways involved in endoderm induction down-

stream of X-TSK activity; it is known that transcription factors such

as Sox17, Mixer, Mix1, and Bix2/milk have dual activities that

inhibit mesoderm formation and activate endoderm formation

[15,20,59]. It is likely that such transcription factors are activated

downstream of signaling coordinated by X-TSK, further refining

germ layer specific gene expression.

It is important to note that X-TSK overexpression in animal

caps produces only a weak induction of Sox17a as measured by in

Figure 10. Transcriptional regulation of X-TSK and model of X-TSK function in germ layer formation and patterning. (A) Semi-quantitative RT-PCR
of X-TSK expression in animal caps injected with 1 ng XFD, 50 pg V-ras or 50 pg caFGFR. WE = Whole embryo, WOC = Water only control. Inhibition of
FGF signals with XFD enhances TSK expression, whereas activation of FGF signals with V-ras or caFGFR reduces TSK expression levels. (B) Model of TSK
function in Xenopus germ layer formation and patterning: dorsal-ventral mesoderm patterning. X-TSK in dorsal mesoderm (red) inhibits BMP signaling
to promote dorsal mesoderm formation, as marked by Gsc expression. This is possibly also enhanced through activation of Xnr2 signals by TSK. MAPK
activation inhibits X-TSK expression in ventrolateral mesoderm, where X-TSK inhibits expression of ventrolateral mesoderm markers such as Xbra,
through inhibition of FGF signaling. This network of signaling may contribute to clear patterning of the mesoderm. (C) Model of TSK function in
endoderm formation. X-TSK coordinates inhibition of FGF and BMP signals with activation of Xnr2 signaling to induce endoderm formation (green),
as marked by Sox17a. Again, X-TSK inhibits expression of ventrolateral mesoderm (blue) markers such as Xbra, through inhibition of FGF signaling and
may contribute to the distinction between endoderm and mesoderm specific gene expression.
doi:10.1371/journal.pone.0001004.g010
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situ hybridization and RT-PCR (data not shown). This induction

may be weak as FGF signals are activated upon dissection, in

addition to the important point that activin-like ligands are not

present in the animal region. Moreover, the demonstrated

induction of endoderm markers upon X-TSK overexpression is

consistent, although not penetrant. This may be due to the fact

that many natural mechanisms are in place to prevent induction of

endoderm within the marginal zone.

There are significant differences in mesoderm and endoderm

formation between different organisms, although recently, con-

served molecular mechanisms have been elucidated [60]. This

raises the possibility that TSK may have a conserved function

between species. In support of this, we have demonstrated similar

roles for TSK in organizer formation in chick and Xenopus. In

chick, TSK is expressed in the posterior marginal zone and Koller’s

sickle, followed by expression in the extending primitive streak and

Hensen’s node; whilst in zebrafish, TSK is expressed in the

blastoderm margin [33], structures composed of both mesoderm

and endoderm precursors. Furthermore, in the case of chick, nodal

is expressed in Koller’s sickle [60], suggesting that TSK may work

with nodal to regulate specification of mesoderm and endoderm.

More evidence of conservation of mechanism across species can be

found in zebrafish. Here we have shown that coordinated

modulation of BMP, FGF and Xnr pathways is important in

Xenopus endoderm formaton; this is also true for the zebrafish

where combined BMP, FGF and nodal signaling have been shown

to regulate endoderm formation and segregation of endoderm and

mesoderm precursors [61]. Future studies into the potential

conservation of TSK function between species may prove to be

interesting and may also provide more information on conserva-

tion of signaling involved.

Integration of multiple signaling pathways
Temporal and spatial regulation of multiple signaling pathways is

essential for tightly controlled regulation of development. Secreted

soluble growth factors and their inhibitors have fundamental roles

in signal regulation; however, studies about coordination of these

pathways are largely restricted to intracellular cross talk [62], yet

several extracellular regulators such as follistatin and cerberus are

known to interact with multiple signaling pathways. Our analyses

have demonstrated that X-TSK binds to and regulates FGF8b,

BMP and Xnr2 at the extracellular level, in a concentration

dependent manner to function in germ layer formation and

patterning. Our previous work suggests that TSK function is not

restricted to endoderm and mesoderm; in ectoderm, X-TSK

regulates BMP activity, which contributes to a decision between

epithelial and neural tissues. In addition to this, X-TSK regulates

Delta-Notch signaling during neural crest formation [34].

Currently, the function of Notch in mesoderm formation is

complex, where some evidence suggests that activation of Notch

contributes to mesoderm inhibition whilst endoderm is induced.

Conversely, it has been found that activation of Notch signaling

delays loss of mesodermal competence [63,64]. Although we

cannot rule out participation of the Notch pathway, which may

prove to be interesting in future studies, we did not study Notch

signaling in the context of TSK mediated germ layer formation

and patterning due to these complexities. The potential partici-

pation of Vg1 must also be considered in future studies, as TSK

activates Vg1 in chick development [35]. In Xenopus, it had been

thought that Vg1 was not processed until a second allele was

identified [65], although no effect on endoderm has been reported

in loss-of-function studies. Therefore, Xnr2 remained a more

attractive candidate in TSK functional mechanism in the

endoderm and dorsal mesoderm. Although we have shown here

that intact Xnr2 signaling is indeed required for TSK function,

future work with Vg1 will be interesting. Even so, we have clearly

demonstrated the involvement of FGF, BMP and Xnr pathways.

Our analysis shows the importance of extracellular cross talk of

these pathways and suggests that extracellular coordination of

multiple signaling pathways may have important roles in cell

signaling. This is supported by the potential involvement of

additional signaling pathways, including Notch and Vg1.

Signal coordination in germ layer formation
Morphogens such as activin-like proteins have been shown create

distinct fates depending on their concentrations [66]. It has been

reported that cellular response to activin depends on the absolute

number of receptors occupied by activin [67], indicating that

regulation of morphogen diffusion is critical to create an appropriate

concentration gradient. This importance of diffusion control has

been demonstrated recently; Drosophila mutants toutvelu and dally,

which have defects in the synthesis of extracellular heparan sulfate

proteoglycans, demonstate defective Wingless morphogen diffusion

[68]. Members of the SLRP family are proteoglycans [69] and thus

may regulate morphogen gradients in a similar way.

Here we propose a model for TSK function in Xenopus germ

layer formation and patterning. With the combination of X-TSK

and Xnr2, there is no overlap between endoderm markers and

pan-mesoderm marker Xbra. Thus it is tempting to speculate that

TSK may contribute to segregation between endoderm and

mesoderm specific gene expression by a combination of four

factors. Firstly, Xnr2 and X-TSK have distinct functional ranges

with Xnr2 working as a long-range morphogen [70], whilst X-

TSK works at short-range [34]. Secondly, Xnr2 and X-TSK

regulate distinct sets of signaling pathways. Thirdly, X-TSK

functions with several factors to synergistically potentiate or inhibit

the activities of these proteins. This interaction may change the

effective concentration or diffusion of proteins. Thus, in the case of

co-overexpression, X-TSK in proximity to cells expressing the two

proteins creates a competent area; here X-TSK makes a complex

with Xnr2 and potentiates signaling whilst inhibiting FGF-MAPK

and BMP signaling. This coordinated regulation may produce

clear regions of gene expression.

We need to consider a fourth important factor: spatial and

temporal transcriptional regulation. Zygotic X-TSK is expressed in

endoderm, dorsal mesoderm, and ectoderm with exclusion from

ventrolateral mesoderm. Zygotic X-TSK expression in ventrolat-

eral mesoderm is inhibited by FGF-MAPK signaling. Within the

endoderm, a regulatory loop may be created in which TSK

inhibits FGF-MAPK, which in turn promotes TSK expression.

Based on our observations, we propose a model for X-TSK

mediated embryonic patterning (Figure 10B). In the absence of X-

TSK, Xnr proteins create a pattern of Smad2 activation with

a vegetal-animal gradient. Activated X-TSK expression in the

endoderm creates a competent area, in which the activity of Xnr

proteins is enhanced, possibly by an increase in local effective

concentration. X-TSK provides ideal coordination for endoderm

formation: Xnr2 activation, FGF-MAPK inhibition, and BMP

inhibition. Conversely, MAPK activation inhibits expression of X-

TSK in ventrolateral mesoderm, possibly permitting mesoderm-

specific gene expression in this area. Moreover, X-TSK expression in

dorsal mesoderm contributes to organizer formation and function,

mainly through BMP inhibition by synergistic ternary complex

formation among X-TSK, BMP, and chordin [40] and possibly

through Xnr activation. In conclusion, through regulation of these

multiple factors, TSK coordinates formation of the endoderm and

patterning of mesoderm during early Xenopus embryogenesis.
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Future perspectives
It is now becoming clear that future work will focus upon the

dissection of an ‘extracellular network’ of signal regulation,

unraveling its importance in cell signaling as a whole. We have

demonstrated the importance of extracellular coordination of

FGF, Xnr2 and BMP signals in germ layer formation and

patterning. Future work will involve the potential role of Notch

and other activin-like signaling, which may go to demonstrate the

nature of extracellular networks in greater detail. It will also be

important to unravel the function of TSK in germ layer formation

and patterning in other species such as chick and zebrafish, in

order to demonstrate conservation and the importance of

extracellular coordination of multiple pathways.

MATERIALS AND METHODS

Embryology and in situ hybridization
Xenopus laevis embryos were staged according to Nieuwkoop and

Faber [71]. For animal cap assays, mRNA was injected into the

animal pole of 2-cell stage embryos. Animal caps were dissected

from stage 8-9 embryos in 16 MBS and cultured in 0.76 MBS.

For DMZ assays, mRNA was injected into the DMZ of 8-cell stage

embryos. DMZ was dissected from stage 10 embryos in 16MBS

and cultured in 0.76MBS. Whole mount in situ hybridization was

performed as described [72]. In situ hybridization of sectioned

embryos was performed as described [36]. The following probes

were used; X-TSK, Xbra [39], MyoD [42], Gsc [38], Sox17a [37],

GATA4 [41]. Gut width and areas of MyoD expression were

measured using Image J software (NIH). T Tests were performed

to evaluate the statistical significance of results.

Semi-quantitative RT-PCR
Embryos, animal caps or DMZ explants at the indicated stages were

snap-frozen, followed by RNA isolation with RNeasy kit (Qiagen).

cDNAs were generated according to the manufacturers protocol

(Taqman RT Reagents, Applied Biosystems). Primers used for the

PCR reaction were described previously: ODC [18], Xbra [18], X-

TSK [34]. Quantitative ranges were determined before final analysis.

All reactions were normalized against ODC gene product.

Microinjection of mRNA or morpholino

oligonucleotides
Capped mRNAs were synthesized from linearized plasmid

templates with mMessage Machine (Ambion). Embryos were

injected with 1-1000 pg mRNA per embryo at the indicated stages

in 0.26 MBS with 4% Ficoll. The following mRNAs were

synthesized: X-TSK (pCS2+X-TSK) and X-TSK-myc-His [33,34], H-

TSK (pCS2+H-TSK, accession number AF191019), truncated BMP

receptor (tBR) [44], Chordin [45], Xnr2 and Xnr2-myc [7], V-ras [51],

CerS [8], iFGFR [53], FGF8b [52], caALK3 [46]. A morpholino

antisense oligonucleotide (MO) against X-TSK was used for loss-of-

function experiments and has previously been shown to specifically

deplete X-TSK [34].

Pulldown assays
X-TSK-myc-His, FGF8b-FLAG, Xnr2-Myc and FRL1-FLAG

were expressed in Xenopus embryos and COS7. Stage 10.5

embryos were lysed in IP buffer [73]. After centrifugation, the

soluble fraction was used for pulldown assay as previously

described [33]. Myc-tagged and FLAG-tagged proteins were

detected after blotting using an anti-myc antibody 9E10 or anti-

FLAG antibody M2 (Sigma), anti-mouse-HRP (Amersham).

Cell signaling assays
Xenopus embryos were microinjected at the two-cell stage and

incubated until stage 8. Animal caps were dissected as above and

cultured until stage 10. DMZ was explanted at stage 10. Phospho-

Smad1, phospho-Smad2 and phospho-MAPK analysis was

performed as previous [74]. The following antibodies were used;

a-Activated clone MAPK-YT (Sigma), a-ERK (BD Biosciences),

a-Phospho-Smad2 (Cell Signaling Technology), a-Smad2 (BD

Biosciences), a-Phospho-Smad1 (Cell Signaling Technology), and

a-Smad1 (Santa Cruz).
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