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Abstract

Following pathogen infection the hosts’ nervous and immune systems react with coordinated responses to the danger. A
key question is how the neuronal and immune responses to pathogens are coordinated, are there common signaling
pathways used by both responses? Using C. elegans we show that infection by pathogenic strains of M. nematophilum, but
not exposure to avirulent strains, triggers behavioral and immune responses both of which require a conserved Gaq-
RhoGEF Trio-Rho signaling pathway. Upon infection signaling by the Gaq pathway within cholinergic motorneurons is
necessary and sufficient to increase release of the neurotransmitter acetylcholine and increase locomotion rates and these
behavioral changes result in C. elegans leaving lawns of M. nematophilum. In the immune response to infection signaling by
the Gaq pathway within rectal epithelial cells is necessary and sufficient to cause changes in cell morphology resulting in tail
swelling that limits the infection. These Gaq mediated behavioral and immune responses to infection are separate, act in a
cell autonomous fashion and activation of this pathway in the appropriate cells can trigger these responses in the absence
of infection. Within the rectal epithelium the Gaq signaling pathway cooperates with a Ras signaling pathway to activate a
Raf-ERK-MAPK pathway to trigger the cell morphology changes, whereas in motorneurons Gaq signaling triggers behavioral
responses independent of Ras signaling. Thus, a conserved Gaq pathway cooperates with cell specific factors in the nervous
and immune systems to produce appropriate responses to pathogen. Thus, our data suggests that ligands for Gq coupled
receptors are likely to be part of the signals generated in response to M. nematophilum infection.
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Introduction

Animals have evolved multiple strategies for coping with the

presence of pathogenic microbes. The best characterized is the

immune response where animals activate their physical and

cellular defenses to respond to invading microorganisms. The

innate immune response is the first line of this defense, acting to

recognize and eliminate pathogens [1,2,3]. Unlike adaptive

immunity; which is only found in vertebrates, innate immunity is

highly conserved throughout evolution with plants, invertebrates

and vertebrates sharing surprisingly similar responses including

expression of antimicrobial peptides and activation of phagocyto-

sis. As a consequence of this, invertebrate model systems, including

Drosophila and Caenorhabditis elegans, have provided important

insights into the molecular mechanisms that underlie infection

responses [4,5,6,7] C. elegans is able mount innate immune

responses to both naturally occurring (Nematocida parisii, Drechmeria

coniospora and Microbacterium nematophilum) and clinically important

(Pseudomonas aeruginosa and Staphylococcus aureus) bacterial and fungal

pathogens when they are provided as a food source

[7,8,9,10,11,12,13]. Because it lacks professional immune cells

and phagocytes C. elegans relies on epithelial innate immunity to

mount a response that includes transcription of many host defense

genes [14] including numerous anti-microbial peptides [15]. It is

becoming increasingly clear that this type of epithelial immunity

also plays an important role in the immune response of the

mammalian intestine [16].

Changes in neuronal signaling also occur upon infection and

neuronal signaling can modulate the innate immune response

[17]. In addition, behavioral changes can also be triggered by

exposure to pathogen. For example, avoidance of pathogens is

likely to be an important part of the response to microbes in many

animals and perhaps even humans [18]. Studies of pathogen

avoidance have utilized C. elegans, which has evolved rapid

avoidance behaviors allowing it to alter its locomotion in response

to aversive cues in its environment [19,20,21,22]. Aversive cues

such as serrawettin, a secreted surfactant produced by Serratia

marcescens, are directly sensed by chemosensory neurons located in

the animal’s head [19]. The receptors for these pathogen-

associated cues are unknown, however, the G-protein ODR-3

and the TAX-2/4 cGMP gated channel are required to mediate

avoidance to S. marcescens [19] and TAX-2/4 is also required for

animals to avoid M. nematophilum and P. aeruginosa [23] implicating

G-protein coupled receptors (GPCRs) in at least some of these

responses. A conserved MAP Kinase pathway including p38

MAPK has also been shown to regulate both the innate immune

response and aversive behavior to Pseudomonas aeruginosa [24] and

neuronal TGF-ß signaling is important for the induction of
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antimicrobial peptides upon infection by D. coniospora [25]. Some

of these behavioral responses are likely to involve detection of

pathogen by chemosensory neurons, for example, serotonin

release from ADF chemosensory neurons is required for learnt

aversive responses to pathogenic bacteria [22], dopamine release

from sensory neurons is required for behavioral responses to

enteropathic E. coli [26], and a p38 MAPK pathway is required in

chemosensory neurons to mediate changes in egg laying in

response to P. aeruginosa [24].

Behavioral changes such as aversion require changes in

locomotion. Within C. elegans cholinergic motor neurons Gaq

(EGL-30), Ga12 (GPA-12) and Gao (GOA-1) comprise a G-

protein coupled regulatory network that controls the release of

acetylcholine (ACh) at the neuromuscular junction [27] by

regulating diacylglycerol (DAG) levels at the synapse [28]. EGL-

30 (Gaq) is central to this regulatory network and mediates DAG

production through regulation of EGL-8 (PLCß) [29]. DAG

produced by EGL-8 (PLCß) is also required for activation of the

PKC homolog TPA-1 in the response to infection by the fungus D.

coniospora [30]. However, this role for DAG in response to infection

does not involve neurons. More recently Gaq (EGL-30) has also

been shown to regulate DAG destruction by directly activating the

Trio ortholog UNC-73 (RhoGEF) resulting in activation of the

small GTPase RHO-1 (the single C. elegans Rho ortholog), which

negatively regulates the diacylglycerol kinase DGK-1 [31,32].

Reduction-of-function mutations in EGL-30 (Gaq) are lethargic

and gain-of-function mutants have hyperactive locomotion [33].

Animals with mutations in UNC-73 (Trio) also move lethargically

[32,34]. Similarly, inhibiting endogenous RHO-1 signaling by

expressing the Rho inhibitor, C3 transferase, in the cholinergic

motor neurons leads to lethargic locomotion and a decrease in

ACh release [31]. Thus, changes in Gaq-RhoGEF Trio-Rho

signaling result in changes in ACh release and locomotion rate.

Although a great deal has been discovered about the G-protein

pathways that control neuronal activity in the cholinergic motor

neurons less well understood are the signals that act upon the

GPCRs to regulate G-protein signaling. Almost certainly changes

in the environment will alter activity of the cholinergic motor

neurons and thus locomotion. In its natural environment C. elegans

is constantly sensing and responding to attractive and aversive

signals by altering its locomotion and animals that have evolved

effective mechanisms for interpreting and responding to environ-

mental cues, such as the presence of pathogen, will have an

evolutionary advantage. A recent study has shown that EGL-30

(Gaq) signaling in the chemosensory neuron, ASH, is required for

the response to some aversive stimuli [35]. Is the Gaq-RhoGEF

Trio-Rho pathway part of the signaling network that modulates

neuronal activity and alters locomotion in response to the presence

of pathogen, and if so in which cells is this pathway required? In

order to understand more about how the regulation of Gaq

signaling modulates neuronal activity in response to pathogens we

have investigated the role of EGL-30 (Gaq) in the response to

infection by the nematode-specific pathogen M. nematophilum. M.

nematophilum colonizes the rectum of C. elegans causing it to mount

an innate immune response that includes the induction of several

antimicrobial factors, swelling of the tail and an aversive behavior

that causes animals to leave lawns of M. nematophilum [9,23,36].

Here we show that upon infection by M. nematophilum pathogen

C. elegans alters locomotion behavior: we observe an increase in

both ACh release and locomotion in response to infection that

requires the Gaq-Rho GEF Trio-Rho signaling pathway in the

cholinergic motorneurons and that this signaling is required for

aversive behavior. We also show that the innate immune response

to M. nematophilum infection requires the Gaq-Rho GEF Trio-Rho

signaling pathway. Activation of this pathway in neurons is

sufficient to trigger the behavioral response to pathogen, but in

epithelial cells it must co-operate with a Ras signaling pathway to

trigger the innate immune response. Thus, our studies demon-

strate that the Gaq-Rho GEF Trio-Rho signaling pathway is a

core pathway acting either alone or in combination with other

pathways in a cell specific manner to trigger behavioral and innate

immune responses to pathogen.

Results

Gaq signaling mediates behavioral responses to infection
We, and others, have previously characterized an extensive

network of G-protein signaling pathways that regulate ACh release

and locomotion in the cholinergic motor neurons of C. elegans [28].

An important question is what are the environmental inputs into

this network of neuronal signaling pathways that trigger changes in

the activity of the cholinergic motor neurons? One important

environmental cue would be the presence of pathogens; it would

be an advantage, upon infection, for animals to alter their

locomotion to move away from the location of the pathogen and

this has been demonstrated in a number of cases [37]. This proved

to be correct as wild-type C. elegans increased their rate of

locomotion upon exposure to the pathogen M. nematophilum

relative to animals grown on control OP50 E. coli (Figure 1A).

Mutations in C. elegans EGL-30 (Gaq) (egl-30(ad805)) caused a

decrease in locomotion and these mutants did not change their

locomotion in response to exposure to M. nematophilum indicating

that signaling via EGL-30 (Gaq) is required to alter locomotion

behavior in response to exposure to M. nematophilum (Figure 1A). It

is possible that the reduced locomotion of egl-30(ad805) animals

makes it impossible for us to detect small increases in locomotion

caused by exposure to M. nematophilum. Mutations in the UNC-29

nicotinic ACh receptor (unc-29(e1072)) [38] cause a stronger

reduction in locomotion than egl-30(ad805), however, these

mutants still increased rates of locomotion in response to exposure

to M. nematophilum, confirming that we can detect differences in

locomotion rate caused by exposure to M. nematophilum in mutants

Author Summary

Once infected by a pathogen the nervous and immune
systems of many animals react with coordinated responses
to the danger. A key question is what are the pathways by
which responses to infection occur and to what extent are
the same pathways involved in differing responses? Here
we demonstrate that a Gaq-RhoA pathway is required for
both behavioral and immune responses to infection in C.
elegans. We show that Gaq-RhoA signaling is a late step in
the response to infection and their site of action defines
the cellular targets of signals generated internally in
response to infection. One response is to move away
from sites of pathogenic bacteria and Gaq-RhoA signaling
acts in motorneurons to achieve this. A second response is
an innate immune response where Gaq-RhoA signaling
acts within cells close to sites of infection, the rectal
epithelial cells, to cause major changes in their size and
shape to mitigate the effects of infection. Our work
demonstrates that ligands for Gq coupled GPCRs are likely
to be required for response to infection. Identifying these
ligands and the cells that release them will help define the
mechanisms by which C. elegans recognizes pathogens
and coordinates behavioral and immune responses to
infection.

Gaq and RhoA Roles in Infection
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Figure 1. EGL-30 (Gaq) signaling is required in different tissues for behavioral and immune responses to infection. The locomotion
rate of wild type and unc-29(e1072) animals was increased following infection with M. nematophilum (A). No increase was observed in egl-30(ad805)
loss-of-function mutants (A). Synaptic release of endogenous acetylcholine was measured by determining the onset of paralysis induced by the
acetylcholine esterase inhibitor aldicarb. Infection of wild type animals with M. nematophilum resulted in a faster onset of aldicarb-induced paralysis
relative to wild type controls grown on E. coli, suggesting an increase in the levels of ACh release following infection (B). In contrast egl-30(ad805) was

Gaq and RhoA Roles in Infection
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that move slowly. Increased locomotion of C. elegans relative to

controls could represent a specific response to exposure to a

pathogen or a non-specific difference between M. nematophilum and

our control bacteria (the OP50 E. coli strain) as a food source, for

example animals growing on M. nematophilum could be starved

relative to animals growing on E. coli. To determine which

explanation is likely to be correct we exposed C. elegans to the

UV336 M. nematophilum strain, which is unable to infect C. elegans

[39]. Animals grown on UV336 did not change their locomotion

compared to controls suggesting that wild-type animals increased

their rate of locomotion upon infection by M. nematophilum

(Figure 1A). We have previously shown that EGL-30 (Gaq) acts

within the cholinergic motorneurons to regulate locomotion.

Expression of EGL-30 from the unc-17 cholinergic motorneuron

specific promoter (MN::EGL-30) not only restored the locomotion

of EGL-30 (Gaq) mutant animals it also caused the animals to

move faster than wildtype animals. Expression of EGL-30 (Gaq) in

just the cholinergic motorneurons also restored the increased

locomotion response of animals in response to infection by M.

nematophilum compared to E. coli (Figure 1A).

We next examined the effect of infection on ACh release at the

C. elegans neuromuscular junction using the acetylcholine esterase

inhibitor aldicarb. Aldicarb prevents the removal of endogenously

released ACh causing it to build up and resulting in hyper-

contraction of the body wall muscles that paralyses the animal with

a time course dependent on the rates of release from the

cholinergic motor neurons [40]. Animals with decreased levels of

ACh release are resistant to aldicarb-induced paralysis [41].

Exposure of wild type animals to M. nematophilum resulted in an

increase in ACh release as shown by hypersensitivity to aldicarb

compared to animals grown on E. coli (Figure 1B). Exposure to the

avirulent UV336 M. nematophilum strain did not alter levels of ACh

release suggesting that changes in ACh release are in response to

infection by M. nematophilum. Reduction-of-function mutations in

EGL-30 (Gaq) are resistant to aldicarb ([29] and Figure 1B) and

infection of egl-30(ad805) did not result in an increase in ACh

release (Figure 1B) indicating that EGL-30 (Gaq) signaling is

required to increase ACh release and alter locomotion behavior in

response to infection. Expression of EGL-30 (Gaq) only within the

cholinergic motorneurons (MN::EGL-30) rescued the decreased

ACh release defect in egl-30(ad805) mutant animals and caused a

level of ACh release higher than that of wild-type animals.

Cholinergic expression of EGL-30 (Gaq) was also sufficient to

restore the increased levels of ACh release in response to infection

by M. nematophilum compared to E. coli (Figure 1E). Thus, our

results are consistent with a role for EGL-30 (Gaq) within the

cholinergic motorneurons that is necessary and sufficient to

mediate the increased locomotion response and the increased

ACh release response of C. elegans infection by M. nematophilum.

Gaq signaling mediates immune responses to infection
Upon M. nematophilum infection of wild type C. elegans the

pathogen adheres to the cuticle around the rectal opening causing

the animal to mount an innate immune response that includes

swelling around this opening known as the Deformed anal region

(Dar) phenotype [9] (Figure 1C and G). While carrying out our

locomotion assays we noticed that the Dar phenotype was

significantly decreased in egl-30(ad805) animals following infection.

The egl-30(ad805) mutation did not alter the ability of the

pathogen to attach to the cuticle, as Syto13-labelled M.

nematophilum was still observed adhering to the rectum (Figure 1D

and G). In addition to tail swelling, infection with M. nematophilum

causes constipation [9]. This is exacerbated in animals that are

defective in the Dar response [42]. Consistent with their decreased

Dar response egl-30(ad805) animals became severely constipated

following infection, but not when grown on E. coli (Figures 1D and

S1). Thus, EGL-30 (Gaq) signaling is required for both behavioral

and innate immune responses to infection.

resistant to aldicarb and infection of these animals did not increase ACh release (B). Mutations in egl-30(ad805) significantly decreased the percentage
of Dar animals observed following M. nematophilum infection although bacteria, labeled in green using the nucleic acid stain SYTO13, still attached to
the anal opening (C, D and G) (rectal opening is indicated with an arrow in C and D). These animals were severely constipated and the intestinal
distention is indicated by a double-headed arrow (D). Expression of EGL-30 (Gaq) in the rectal epithelium (F kindly drawn by H. Chamberlin) using a
1.3 Kb fragment of the egl-5 promoter (egl-5p::EGL-30; egl-30(ad805)) was sufficient to rescue the Dar response following infection (G) however these
animals remained resistant to aldicarb and ACh release was not increased following infection (E). In contrast cholinergic motorneuron expression of
EGL-30 (Gaq) from the unc-17 promoter (MN::EGL-30) rescued increases in locomotion (A) and ACh release following infection (E) but not the Dar
response (G). P values between 0.05 and 0.001 (*), and P values of 0.001 or less (**).
doi:10.1371/journal.ppat.1002530.g001

Table 1. Analysis of genetic interactions between Rho, Ras and Gaq signaling in the immune response.

Genotype % animals with dar phenotype ± s.e.m n value

hs::EGL-30*+heat shock 68.563.2 6

hs::EGL-30*;unc-73(ce362)+heat shock 5.661.7a 5

hs::EGL-30*;egl-8(md1971)+heat shock 2.661.4a 3

hs::EGL-30*;let-60(n1046gf)+heat shock 81.764.2b 4

let-60(n1046gf) 060 7

egl-30(js126gf) 060 7

egl-30(js126gf);let-60(n1046gf) 8.963.5c 7

The number of dar animals was scored as a percentage of the total. Heat shock was as described in the Material and Methods. Values are means +/2 the standard error.
a = p,0.001 relative to hs::EGL-30*+heat shock alone.
b = p,0.05 relative to hs::EGL-30*+heat shock alone.
c = p,0.05 relative to single mutants.
doi:10.1371/journal.ppat.1002530.t001
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Expression of EGL-30 (Gaq) within the cholinergic motorneur-

ons was unable to rescue the Dar response of egl-30(ad805)

mutants (Figure 1G). Expression of EGL-30 (Gaq) cDNA from a

1.3 Kb egl-5 promoter fragment that is expressed in the B, K, F, U,

and P12.pa rectal epithelial cells and in three posterior body wall

muscles [43] (Figure 1F) did rescue the Dar phenotype in egl-

30(ad805) animals, however, these animals remained constipated

(Figures 1G and S1). egl-30(ad805) animals expressing EGL-30

(Gaq) in the rectal epithelial cells remained resistant to aldicarb

and no increase in ACh release was observed following infection

(Figure 1E). Our data suggest the EGL-30 (Gaq) regulates

behavioral responses to infection by M. nematophilum by acting in

the cholinergic motorneurons and innate immune responses to

infection by acting in the rectal epithelial cells.

Expression of constitutively active EGL-30(Q205L) in cholin-

ergic motorneurons or from a heat shock-inducible promoter is

sufficient to increase both locomotion and ACh release [29]. To

determine whether EGL-30 (Gaq) signaling was sufficient to

induce the Dar response in the absence of infection we generated

transgenic animals that expressed constitutively active EGL-

30(Q205L) in adult animals (using a heat shock-inducible

promoter) or in the rectal epithelial cells (using a 1.3 Kb fragment

of the egl-5 promoter). Over expression of activated EGL-30 (Gaq)

from these transgenes resulted in tail swelling in the absence of

infection (Table 1 and data not shown) suggesting that EGL-30

(Gaq) signalling in the adult rectal epithelial cells is sufficient to

cause the Dar phenotype. A gain-of-function mutation in the

chromosomal egl-30 (egl-30(js126)) gene has also been isolated [44].

In contrast to transgenic expression of activated egl-30 this

chromosomal mutation did not trigger the Dar response

(Table 1). The inability of the egl-30(js126) mutation to activate

an innate immune response is in contrast to cholinergic motor

neurons where this mutation is sufficient to increase locomotion

and ACh release [29,32].

The RhoGEF UNC-73(Trio) is required for the C. elegans
immune and behavioural responses to infection

EGL-30 (Gaq) signaling in the cholinergic motor neurons

activates at least two pathways to regulate ACh release [45]. Firstly

EGL-30 (Gaq) activates the PLCß, EGL-8, to increase diacylgly-

cerol (DAG) production [29] and secondly it binds to and activates

the RhoGEF UNC-73 (Trio) [32] to regulate signaling via RHO-1

and decrease DAG destruction [45]. Mutations in EGL-8 (PLCß)

and UNC-73(Trio) suppress the increased locomotion and ACh

release caused by activation of EGL-30 (Gaq) [29,32]. Does EGL-

30 (Gaq) utilise the same pathways during the Dar response to

infection? To determine whether UNC-73 (Trio) and EGL-8

(PLCß) are also required downstream of EGL-30 (Gaq) during the

immune response we induced the Dar phenotype in the absence of

infection using a heat shock-inducible gain-of-function EGL-

30(Q205L). Following heat shock the Dar phenotype observed in

these animals was suppressed by egl-8(md1971) and unc-73(ce362)

mutants (Table 1) placing PLß and Rho signaling downstream of

EGL-30 (Gaq) in the immune response to infection. Consistent

with our results mutations in EGL-8 (PLCß) were identified in a

screen for suppressors of the infection-induced Dar phenotype [23]

suggesting that conserved signaling pathways may act in multiple

tissues to regulate different responses to infection. Here we

investigate the role of UNC-73 (Trio) and its effector RHO-1 in

the response to M. nematophilum infection.

The C. elegans genome encodes 21 Dbl containing Rho GEF’s

several of which are required for viability [46,47]. To investigate

whether UNC-73 (Trio) was the only Rho GEF required for the

innate immune response we infected viable, fertile animals

carrying mutations in 10 of the 21 known C. elegans Rho GEF’s

with M. nematophilum. Following infection only unc-73(ce362) and

ect-2(ku427) significantly decreased the percentage of infected

animals with a Dar phenotype, indicating that a subset of Rho

signaling pathways are required for the pathogen-induced Dar

response (Figure 2A). UNC-73 (Trio) is a highly conserved

RhoGEF related to mammalian Trio [34]. It contains two tandem

RhoGEF domains: the N-terminal RHOGEF1 domain specifically

activates Rac family GTPases, whereas the C-terminal RHO-

GEF2 domain specifically activates RHO-1 [48] (Figure 2B).

Mutations that selectively disrupted unc-739s RacGEF activity

(e936 and ok936) [34] had a normal pathogen-induced Dar

response, whereas mutations specific to the RhoGEF domain

(ce362 and ok317) [32] had a decreased response (Figure 2C)

although pathogen was still able to attach to the cuticle, as Syto13-

labelled M. nematophilum was observed adhering to the rectum of

unc-73(ce362) animals (Figure 2E). Furthermore, the pathogen-

induced Dar could be rescued in unc-73(ce362) mutants by

expressing UNC-73 (Trio) isoforms that only contain the

RHOGEF2 domain [34] (Figure 2B and D), confirming that

RHO-1, but not Rac, activation by UNC-73 (Trio) is required for

the Dar response to pathogen. Henceforth all the UNC-73 (Trio)

mutations used are in the RHOGEF2 domain that selectively

blocks RHO-1 activation.

Because UNC-73 (Trio) was required for the Dar phenotype

and has previously been shown to regulate C. elegans locomotion

under standard conditions [32] we next asked whether Rho

signaling was also required to alter locomotion behavior and

increase ACh release following infection. Unlike wild type

controls, unc-73(ce362) animals did not increase their locomotion

rate following infection (Figure 3A). Expression of UNC-73E from

a pan-neuronal promoter partially rescued the reduced locomo-

tion phenotype and restored the increase in locomotion following

infection. unc-73(ce362) animals were slightly resistant to aldicarb

when grown on E. coli OP50 as has been observed previously [34]

and ACh release was not increased following infection (Figure 3B)

indicating that UNC-73(Trio) is required for both the immune and

behavioral responses to infection.

Rho signaling is required throughout development [49].

Therefore to investigate whether UNC-73 was required in adult

animals for the Dar phenotype we performed rescue experiments

in unc-73(ce362) animals using a heat shock-inducible UNC-73

transgene. We were able to partially rescue the Dar phenotype in

unc-73(ce362) adults by expressing UNC-73 10–18 hours prior to

adulthood (L3/L4 larval stage) indicating that Rho signaling in

adult animals is required for the response (Figure 2D).

To determine the site of action for UNC-73 (Trio) in both the

behavioral and immune responses to infection we performed

rescue experiments using UNC-73 expressed from either the

neuronal specific promoter rab-3 or in the rectal epithelial cells

using a 1.3 Kb egl-5 promoter fragment. Expression of UNC-73 in

the rectal epithelial cells was sufficient to rescue the defective Dar

response of unc-73(ce362) mutants (Figure 2D) however these

animals remained resistant to aldicarb and no increase in

neurotransmitter release was observed following infection

(Figure 3C). Conversely expression of UNC-73 in the nervous

system failed to rescue the Dar response (Figure 2D) but wild type

levels of neurotransmitter release were observed in these animals

in the absence of infection (Figure 3C). M. nematophilum infection of

these animals resulted in an increase in ACh release that was

identical to the one observed following infection of wild type

animals (Figure 3C). Taken together this data confirms that the

Gaq-RhoGEF Trio signaling pathway acts in different tissues to

mediate the behavioral and immune responses to infection.

Gaq and RhoA Roles in Infection
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Figure 2. UNC-73 (Trio) is required in rectal epithelial cells for the Dar response to infection. Viable RhoGEF mutants were infected with
M. nematophilum and the percentage of Dar animals scored. Mutations in unc-73(ce362), and ect-2(ku427), but not other RhoGEF’s, significantly
decreased the percentage of Dar animals (A). The UNC-73 gene contains two RhoGEF domains, one specific for Rac (RhoGEF1) and the other specific
for Rho (RhoGEF2) (B). Animals with mutations that prevented Rac activation (unc-73(e936) and (ok936)) had a wild-type Dar response whereas
mutations in RhoGEF2 (unc-73(ce362) and (ox317)) significantly decreased the percentage of Dar animals (C). Expression of UNC-73 isoforms E or D1
using heat shock at L1, L2/L3 and L3/L4 stage (hs::UNC-73E) or rectal epithelial (egl-5p::UNC-73D1::GFP), but not neuronal (n::UNC-73E), expression

Gaq and RhoA Roles in Infection
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Activation of Rho signaling in the C. elegans adult rectal
epithelial cells alters cell morphology and mimics the
innate immune response to infection

The simplest explanation for our results is that UNC-73(Trio)

activation of RHO-1 is required for immune and behavioral

responses to infection. To confirm the requirement for Rho

signaling in the rectal epithelial cells we inhibited endogenous

RHO-1 in a subset of rectal epithelial cells (K, F and U) by

expressing the Rho inhibitor, C3 Transferase, from the bus-1

promoter and found that this was sufficient to decrease the

percentage of Dar animals (Figure 4A). Conversely expression of

activated RHO-1(G14V) (RHO-1*) in adults using a heat shock-

inducible transgene caused a strong Dar phenotype (Figure 4B, C

and D) that was not observed when RHO-1* was expressed from a

neuronal promoter (Figure 4B), demonstrating a role for RHO-1

in adult C. elegans outside of the nervous system.

Tail swelling was observed when RHO-1* was expressed from a

1.3 Kb egl-5 promoter fragment that is expressed in the B, K, F, U,

and P12.pa rectal epithelial cells and in three posterior body wall

muscles [43] (Figure 4B and E) but not when RHO-1* was

expressed in the body wall muscles and the B cell using a 469 bp

fragment of the same promoter [43] (Figure 4B). Thus, RHO-1

signaling in the adult rectal epithelial cells is sufficient to

phenocopy the C. elegans response to infection.

How does RHO-1 signaling in the rectal epithelial cells cause

the Dar phenotype? One well established role for Rho signaling is

the regulation of cell shape [50]. Co-expression of mCherry

together with RHO-1* using the same 1.3 Kb egl-5 promoter

fragment allowed us to visualize cell shape changes in rectal

epithelial cells. Activation of RHO-1* caused changes in cell

morphology; cells appeared larger and were no longer organised

around the rectal opening instead spreading towards the dorsal

side of the animal (Figure 4 F, G, J and K). These changes were

also observed in the rectal epithelial cells of wild-type animals

infected with Microbacterium nematophilum (Figure 4F–I) [51]. Thus,

RHO-1* acts cell-autonomously to alter rectal epithelial cell

morphology in a manner similar to the innate immune response to

pathogens.

Although inhibition of RHO-1 in a subset of the rectal epithelial

cells (the K, F and U cells) using the bus-1 promoter reduced the

Dar response, expression of RHO-1* in these same cells did not

trigger the Dar response (Figure 4B) suggesting that coordinated

activation of RHO-1 in multiple rectal epithelial cells is required

for the Dar response.

Cholinergic Gaq signaling is required for aversion to
pathogenic M. nematophilum

What is the physiological effect of increases in locomotion in

response to infection by M. nematophilum? Previous results have

shown that if given a choice between lawns of E. coli and M.

nematophilum then after 4 hours C. elegans have left lawns of M.

nematophilum, and this is termed the aversion behavior. We have

repeated these experiments and show that animals do avoid M.

nematophilum but do not avoid the avirulent M. nematophilum strain

UV336 suggesting that aversion requires infection of C. elegans

(Figure 5). We also noticed that initially, after 30 minutes, animals

show no aversion to M. nematophilum suggesting that aversion differs

to that of repellents such as quinine, to which C.elegans responds to

in seconds [52]. The M. nematophilum aversion behavior was lost in

animals with mutations in EGL-30 (Gaq) (egl-30(ad805)) or UNC-

73 (Trio) (unc-73(ce362)). Expression of EGL-30 in cholinergic

motorneurons (MN::EGL-30) partially rescued the aversion

behavior of the egl-30(ad805) mutants suggesting that at least

some of the aversion response occurred independent of EGL-30

(Gaq) signaling in the sensory neurons (Figure 5). Expression of

UNC-73 from pan-neuronal promoter (N::UNC-73) rescued the

aversion behavior of the unc-73(ce362) mutants demonstrating that

neuronal RHO-1 signaling is required for aversion behavior.

Gaq/Rho and Ras converge on Raf/MEK/ERK signaling
during the immune response

It was previously shown that the Raf/MEK/ERK MAPK

pathway is necessary and sufficient for the Dar response: hyper

activation of the pathway by the over expression of constitutively

active forms of LIN-45 (Raf), MEK-2 (MEK), or MPK-1 (ERK)

results in tail swelling in the absence of infection (as we have shown

for constitutively active EGL-30* and RHO-1*), while mutations

in lin-45, mek-2 or mpk-1 result in a defective Dar response [42].

Blocking MAPK signaling using the MEK inhibitor U0126, RNAi

for mpk-1, or mutations in lin-45(sy96), mek-2(n1989), or mpk-1(ku1)

significantly decreased the Dar response induced by RHO-1*.

(Table 2 and Figure S2). In addition, we observed that loss of

RHO-1 signaling, using an unc-73(ce362) mutant, was unable to

suppress Dar induced by over expression of constitutively activated

LIN-45, MEK-2, or MPK-1 (Table 2), demonstrating that Rho

signaling acts upstream of Raf and its downstream effectors the

MAPKs to trigger the Dar response.

The small GTPase Ras activates the ERK MAPK pathway and,

in mammalian cells, RhoA cooperates with Ras during cell

transformation [53]. Therefore, we tested whether the C. elegans

Ras genes (let-60, ras-1, and ras-2) and RHO-1 cooperate during

the Dar response. RHO-1*-induced Dar significantly decreased in

animals with a reduction-of-function mutation in let-60(n2021),

indicating that RHO-1 acts either upstream, or in parallel to,

LET-60 (RAS) during the Dar response (Table 2). Previous studies

have reported a wild-type response to infection in let-60(n2021)

mutants [42], however, we observed that the Ras mutants let-

60(n2021) and let-60(sy93) had a reduced Dar response when

exposed to M. nematophilum (Figure 6A). let-60(n2021) decreased M.

nematophilum-induced tail swelling, however, bacteria (labelled with

SYTO13) were still observed adhering to the rectum (Figure 6B)

demonstrating that mutations in LET-60 (RAS) do not block

infection but do block the Dar response. Mutations in the other

Ras genes, ras-1(gk237) or ras-2(ok628), had no effect, suggesting

that LET-60 (RAS) is the only RAS gene required during the Dar

response triggered by infection or RHO-1* activation (Figure 6A).

Interestingly although Ras (LET-60) signaling is required for the

immune response to infection it is not required for the behavioral

response. Although let-60(n2021) animals were slightly hypersen-

sitive to aldicarb when grown on E. coli OP50, infection by M.

nematophilum increased ACh release in let-60(n2021) mutants in a

manner similar to that observed in wild type controls (Figure 6C).

In C. elegans the function of LET-60 (RAS) has been best

characterized during vulval formation, where a gain-of-function

mutation in the chromosomal let-60(n1046) results in a multi-

vulval phenotype [54]. Over expression of constitutively active

LET-60(G12V) (LET-60*), either in adult animals (using the heat

shock-inducible promoter) or in the rectal epithelium, did cause

rescued the Dar phenotype in unc-73(ce362) animals (D). Although unc-73(ce362) animals failed to produce a Dar response M. nematophilum bacteria,
labeled using the nucleic acid stain SYTO13, still attached to the anal opening (E), the rectal opening is indicated with an arrow).
doi:10.1371/journal.ppat.1002530.g002
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the Dar response (Figure 6D), however, the chromosomal gain-of-

function let-60(n1046) mutation was not sufficient to trigger the

Dar response (Table 1). Expression of constitutively active LET-

60(RAS) in rectal epithelial cells did not cause as pronounced a

Dar response as observed with constitutively active MEK-2 from

the same promoter (Compare Figure 6D and E) and this could

reflect differences in expression of the genes, the strength of the

activating mutation or differences in the numbers of downstream

LET-60(RAS) pathways activated.

Using the MEK inhibitor U0126 we were able to suppress the

Dar response induced by either RHO-1* or LET-60* (Table 2 and

Figure S2) indicating that both of these pathways act upstream of

RAF/MEK/ERK to mediate the Dar response and suggesting that

at least one signal required for Raf activation in the rectal epithelia is

RHO-1 dependent. Consistent with this the LET-60*-induced Dar

response was significantly decreased in an unc-73(ce362) mutant

(Table 2). The Dar response of the LET-60*; unc-73(ce362) animals

was further reduced by addition of U0126 but this was not a

significant change (p = 0.18). Our results could suggest that RHO-1

acts downstream of LET-60 (RAS), but a mutation in x blocked the

Dar response caused by RHO-1* (Table 2) suggesting the RHO-1

and LET-60(RAS) pathways act in parallel. Both RHO-1 and LET-

60 (RAS) act upstream of Raf/MEK/ERK so our data suggests that

these parallel pathways converge on Raf (lin-45) to regulate ERK/

MAPK signaling and trigger the Dar response during the innate

immune response to pathogenic bacteria.

Activation of multiple signaling pathways is required to
trigger the immune response

Both the Gaq-RhoGEF Trio-RHO-1 and Ras signaling

pathways act upstream of LIN-45 (Raf) to mediate the immune

response to infection, however, chromosomal gain-of-function

mutations in EGL-30 (Gaq) or LET-60 (Ras) were not Dar

suggesting that levels of signalling from these mutations was not

individually sufficient to trigger the immune response. To

investigate whether simultaneous activation of these pathways was

able to cause the Dar phenotype we over expressed constitutively

active EGL-30(Q205L) in the chromosomal gain-of-function let-

60(n1046) mutant and observed an increase in the number of Dar

animals when compared to expression of this transgene in wild type

animals (Table 1). In addition we observed a number of animals

with the Dar phenotype when we combined the chromosomal gain-

of-function mutations in both egl-30(js126) and let-60(n1046)

(Table 1). These two observations suggest that these pathways act

in parallel to cause the Dar phenotype perhaps acting as a

coincidence detector between two infection signals. However, in

both of these experiments the increase in Dar animals was small

suggesting that in wildtype animals additional factors are required to

mediate a robust Dar response to M. nematophilum infection.

Figure 3. UNC-73 (Trio) is required in neurons for the
behavioral response to infection. Animals carrying a mutation in
unc-73(ce362) did not significantly change their locomotion rate when
infected by M. nematophilum and this effect was rescued by expression
of UNC-73E from a pan-neuronal promoter (n::UNC-73E) (A). unc-
73(ce362) mutants were slightly resistant to aldicarb when grown on E.
coli (B). ACh release was not increased in these animals following
infection (B). Expression of UNC-73 in neurons (n::UNC-73E), but not in
the rectal epithelial cells (egl-5p::UNC-73D1GFP), was sufficient to rescue
the increase in ACh release upon infection by M. nematophilum of unc-
73(ce362) mutants (C). P values between 0.05 and 0.001 (*), and P values
of 0.001 or less (**).
doi:10.1371/journal.ppat.1002530.g003
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Discussion

An EGL-30 (Gaq) signaling pathway is required for both
behavioral and innate immune response to infection

C. elegans display both behavioral and innate immune responses

upon exposure to pathogenic M. nematophilum [9,23]. Avirulent

strains of M. nematophilum fail to induce immune responses that

include the Dar response [9] and expression of putative anti-

microbial peptide genes [36,39] and here we show that the

avirulent UV336 strain of M. nematophilum is also unable to trigger

behavioral responses. The failure of the avirulent UV336 strain to

increase locomotion or increase ACh release compared to the E.

coli control makes it unlikely that behavioural responses are due to

different nutritional values of M. nematophilum versus E. coli, i.e.

animals growing on M. nematophilum receive less nutrition relative

to animals growing on E. coli. The simplest explanation for these

results is that C. elegans is capable of recognizing that it has become

infected and coordinates behavioural and immune responses in

response.

What are the signals produced by infection? Both the behavioral

and innate immune response to infection require the conserved

EGL-30 (Gaq)/UNC-73 (Trio RhoGEF)/RHO-1 (RhoA) signal-

ing pathway (henceforth referred to as the EGL-30 (Gaq)

pathway). Defects in the EGL-30 (Gaq) pathway do not prevent

infection by M. nematophilum, instead activation of the EGL-30

(Gaq) pathway is required in neurons and the rectal epithelial cells

to trigger behavioral and Dar responses to infection respectively.

Here we have only addressed locomotion, ACh release, aversion

and the Dar response but infection can also triggers other changes,

for example expression of anti-microbial peptides [36], and the

EGL-30 (Gaq) pathway could play a role in coordinating a wider

range of responses to pathogen than studied here. Indeed, EGL-30

(Gaq) is required in the intestine for protection against P.

aeruginosa, although it is unknown if RHO-1 signaling is also

required [55]. Thus, our results demonstrate that in response to

infection signals that activate Gq coupled GPCRs are at some

point required.

EGL-30 (Gaq), UNC-73 (Trio RhoGEF) and RHO-1 (RhoA)
act in different cell types to mediate behavioral and Dar
responses to M. nematophilum

In which cells are the Gq coupled GPCRs that trigger

behavioral and immune responses to infection located? Cell

specific rescue experiments show that cholinergic EGL-30 (Gaq)

signalling is required for behavioural responses to infection

whereas rectal epithelial EGL-30 (Gaq) signalling is required for

the Dar response to infection. We have previously demonstrated a

role for EGL-30 (Gaq) signalling in cholinergic neurons [29,31]

and here we show that one mechanism by which the cholinergic

EGL-30 (Gaq) pathway is activated is in response to infection. In

the case of the immune response this is the first demonstration of a

role for EGL-30 (Gaq) signalling in rectal epithelial cells for the

Dar response. The rectal epithelial cells consist of five cells (B, F,

Y, U, and K9), expression of activated RHO-1 in all five cells

caused a Dar response in the absence of infection, whereas

expression only in B failed to trigger the response. In contrast,

inactivation of RHO-1 in just the B cell prevented a Dar response

upon infection. Thus, coordinated EGL-30 (Gaq) signalling in

multiple, if not all, rectal epithelial cells is required for the Dar

response. Our results demonstrate separate sites of action for the

EGL-30 (Gaq) signaling pathway in behavioral and immune

responses to infection and argue against a model in which EGL-30

(Gaq) signaling acts in a single cell to produce further secreted

signals that go on to trigger behavioral and immune responses to

infection. Our data also argues against a model whereby the Dar

response triggers behavioral changes and vice versa. We conclude

that Gq coupled GPCRs present on the cholinergic motorneurons

and on multiple rectal epithelial cells are required for the

behavioral and immune responses of C. elegans respectively in

response to infection by M. nematophilum.

EGL-30 (Gaq) signaling in the motorneurons mediates
the aversive response to M. nematophilum

What is the physiological relevance of the behavioral response

to infection by M. nematophilum? We show that C.elegans, when

infected by M. nematophilum, move faster and we show that this

results in the animals leaving a lawn of M. nematophilum. Such a

response is likely to lessen exposure to M. nematophilum and

subsequent eggs laid will not hatch in the presence of pathogen.

We also believe the behavioural changes we observe in response to

infection explain the aversion of C.elegans to lawns of M.

nematophilum. Yook et al. first demonstrated that given a choice

between lawns of E.coli and M. nematophilum animals preferentially

localized to the E. coli lawn after 4 hours [23] and this is termed

the aversive response. Our results are consistent with the

behavioral responses we report here as playing an important part

in the aversive response. Firstly, neither the behavioral or aversive

responses are triggered by the avirulent M. nematophilum strain

UV336. Secondly, both responses fail to occur in EGL-30 (Gaq)

and UNC-73 (TrioRhoGEF) mutant animals. And thirdly, these

responses are rescued by cholinergic motorneuron expression of

EGL-30 and neuronal expression of UNC-73. Evidence from

aversive responses to other pathogens suggests that aversion can be

a learnt response requiring both chemosensory neurons and

interneurons [22,56]. We observe that C. elegans do not avoid lawns

of M. nematophilum after 30 minutes but do so after 4 hours and this

is consistent with, but does not prove, a learnt behavior. Our

rescue experiments suggest that if chemosensory and interneurons

are required for aversion to M. nematophilum then the pathways

acting within those neurons can signal in the absence of EGL-30

(Gaq) signaling. However, the partial rescue of the aversion

response by cholinergic motorneuron expression EGL-30 (Gaq)

could indicate that the full aversion response does require

additional EGL-30 (Gaq) signaling in other cells, for example

the sensory neurons. Mutations in two components of a cyclic

nucleotide gated channel, tax-2 and tax-4, also prevent aversion of

C.elegans to lawns of M. nematophilum [23]. tax-2 and tax-4 genes are

required in sensory neurons to mediate aversive responses to S.

marcescens [19] possibly suggesting that chemosensory neurons are

also required for aversion to M. nematophilum. However, tax-2 and

tax-4 mutants also fail to produce the Dar response to M.

nematophilum infection and they have been reported to have cuticle

defects [23] thus, currently we cannot determine if sensory

neurons are required for the aversive or Dar response to M.

nematophilum.

RHO-1 or LET-60 (Ras) converge on LIN-45 (Raf) to trigger
the Dar innate immune response

Previously it has been shown that a conserved LIN-45 (Raf)/

MEK-2 (MEK)/MPK-1 (ERK) MAPK pathway is required for

the Dar response [42]. Raf is activated by Ras GTPases in other

systems and here we have shown that LET-60 (Ras) mutations

blocked the Dar response to pathogen whereas transgenic

overexpression of activated LET-60 (RAS) in the rectal epithelial

cells triggered the Dar response. As with the EGL-30 (Gaq)

pathway, signalling by LET-60 (Ras), LIN-45 (Raf), MEK-2

(MEK) and MPK-1 (ERK) (hereafter referred to as the LET-60
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Figure 4. Rho signaling in the adult rectal epithelium causes tail swelling and changes cell morphology. Inhibition of Rho in a subset of
rectal epithelial cells using the Rho inhibitor C3 Transferase expressed from the bus-1 promoter (bus-1p::C3T) significantly decreased the percentage
of Dar animals (A). Expression of RHO-1* in adult animals using a heat shock-inducible promoter triggers the Dar response (B and D), in the absence
of heat shock animals expressing hs::RHO-1* were wild type (B and C). Cell specific expression of RHO-1* in the rectal epithelial cells (egl-5p::RHO-1*);
but not in neurons (n::RHO-1*) or muscle (muscle::RHO-1*), also resulted in tail swelling (B and E). Rectal opening is indicated with an arrow. 1
indicates 0%. Expression of mCherry together with RHO- 1* in the rectal epithelium using the 1.3 Kb egl-5 promoter fragment (J and K) or infection of
animals expressing mCherry from the same promoter (H and I) results in changes in the morphology of the epithelial cells when compared to wild-
type controls (F and G). Rectal opening is indicated with an arrow. Rectal epithelial cell boundaries are indicated with a dotted line. P values between
0.05 and 0.001 (*), and P values of 0.001 or less (**).
doi:10.1371/journal.ppat.1002530.g004
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(Ras) pathway) is required cell autonomously within the rectal

epithelial cells for the Dar response. Two results suggest that

within the rectal epithelial cells the EGL-30 (Gaq) pathway and

LET-60 (Ras) converge on LIN-45 (Raf) to trigger the Dar

response – Firstly, reductions in signaling of the MAPK pathway

using either mutations in LIN-45 (Raf), MEK-2 (MEK), MPK-1

(ERK), or chemical inhibition of MEK-2 (MEK) using U0126

blocked the Dar response triggered by transgenic expression of

activated RHO-1 or LET-60 (RAS). In contrast, mutations in

RHO-1 signaling (UNC-73 (Trio)) or LET-60 (Ras) did not block

the Dar response triggered by transgenes expressing gain-of-

function mutations in LIN-45 (Raf), MEK-2 (MEK), and MPK-1

(ERK). These results suggest that both RHO-1 and LET-60 (RAS)

act upstream of LIN-45 (Raf).

Secondly, a mutation in UNC-73 (RhoGEF) blocked the Dar

response triggered by transgenic expression of activated LET-60

(RAS), and a mutation in LET-60 (RAS) blocked the Dar response

triggered by transgenic expression of activated RHO-1. Thus, for

the Dar response, defects in RHO-1 or LET-60 (Ras) signaling co-

suppressed each other suggesting that these two pathways act in

parallel.

The simplest model that explains our data is that in rectal

epithelial cells the RHO-1 and LET-60 (Ras) signaling pathways

converge on LIN-45 (Raf) (Figure 7). The requirement for

convergent RhoA and Ras signaling for Raf activation has also

been observed in mammalian cells, where dominant negative

forms of RhoA blocked the ability of Ras to activate Raf,

indicating that Rho signaling is required for Raf activation,

although the mechanism is unknown [57]. Alternative interactions

between Rho and Ras also exist. During C. elegans vulval formation

RHO-1 appears to act upstream of LET-60 (Ras) [54] suggesting

that the Rho and Ras signaling pathways can either act in parallel

Figure 5. Gaq-Rho GEF Trio-Rho Signaling is required for aversion to pathogenic M. nematophilum. Animals were placed equidistant
from a two lawns of bacteria (A vs B) and the number of animals on lawns A and B were counted at 30 minutes (solid bars) and at 4 hours (hatched
bars). The preference ratio shown is given by the formula [animals at A- animals at B/animals (A+B)]. Wildtype animals have no preference between E.
coli (OP50) and pathogenic M. nematophilum at 30 minutes, but at 4 hours they have a strong preference for OP50 E. coli. This preference is
abolished if the strain of M. nematophilum is avirulent (UV336) or if animals have a mutation in unc-73 or egl-30. Expression of EGL-30 in the
motorneurons (MN::EGL-30) or of UNC-73 in all neurons (N::UNC-73) rescued the preference for OP50 in egl-30 and unc-73 mutants respectively. P
values between 0.05 and 0.001 (*), and P values of 0.001 or less (**).
doi:10.1371/journal.ppat.1002530.g005
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or in series depending on the cell type. Interactions between Rho

and Ras pathways appear to be essential during cellular

transformation [53] and co-activation of RhoA and Ras signaling

can lead to different responses from those signaled by either

pathway alone [58]. It will be important to identify the cell specific

factors that control the interactions between the Rho and Ras

signaling pathways. Infection of C. elegans with M. nematophilum

provides a starting point for genetic screens to identify the molecular

mechanisms by which RhoA and Ras act together to activate Raf.

The factors that allow this co-operation are likely to be critical in C.

elegans and mammals for signaling involved in innate immunity and

oncogenesis. These results also demonstrate that in wildtype animals

the Dar response requires two signals: one that activates GPCRs

coupled to the EGL-30 (Gaq) pathway and a second that activates

receptors that activate the LET-60 (RAS) pathway. Where are these

signals likely to be produced? One candidate is the hypodermal cells

that are the focus of the M. nematophilum infection. Hypodermal

signaling is required to induce expression of anti-microbial peptides

in response to infection by D. coniospora [59,60], which, like M.

nematophilum, infects the hypodermis. This hypodermal signaling

requires p38 MAPK signaling [59] and it will be interesting to test if

the response to M. nematophilum also requires activation of the p38

MAPK pathway in hypodermal cells. Identifying the ligands that

activate the receptors coupled to EGL-30 (Gaq) and LET-60 (Ras)

will provide important clues to how C.elegans recognises it has been

infected.

Table 2. Analysis of genetic interactions between RHO-1 and the Ras/MAP Kinase pathway.

Effect of Ras/MAP Kinase pathway inhibition on RHO-1*-induced dar phenotype

Genotype % animals with dar phenotype ± s.e.m n value

hs::RHO-1* 90.264.5 13

hs::RHO-1*+DMSO 81.65.5 3

hs::RHO-1*+50 mM U0126 060a 3

hs::RHO-1*+control RNAi 90.461.6 19

hs::RHO-1*+mpk-1 RNAi 25.8615.6b 3

hs::RHO-1*; lin-45(sy96) 26.466.0c 7

hs::RHO-1*; mek-2(n1989) 2.562.5c 3

hs::RHO-1*; mpk-1(ku1);unc-32(e189) 060c 3

egl-5p::RHO-1* 83.861.8 4

egl-5p::RHO-1*+DMSO 78.364.7 9

egl-5p::RHO-1*+50 mM U0126 23.863.2d 9

egl-5p::RHO-1*+control RNAi 78.063.3 9

egl-5p::RHO-1*+mpk-1 RNAi 31.963.4e 9

egl-5p::RHO-1*; let-60(n2021) 31.964.5f 4

egl-5p::RHO-1*; lin-45(sy96) 24.464.4f 5

egl-5p::RHO-1*; mek-2(n1989) 060f 4

egl-5p::RHO-1*; mpk-1(ku1);unc-32(e189) 060f 4

Effect of unc-73(ce362) on Ras/MAP Kinase*-induced dar phenotype

EF1a::DMEK;hs::MPK-1 87.361.2 5

EF1a::DMEK;hs::MPK-1;unc-73(ce362) 79.662.8 5

hs::MEK-2* 85.965.8 5

hs::MEK-2*;unc-73(ce362) 87.864.2 5

hs::LIN-45* 53.964.6 5

hs::LIN-45*;unc-73(ce362) 52.567.6 5

hs::LET-60* 71.662.7 5

hs::LET-60*;unc-73(ce362) 34.564.4g 5

hs::LET-60*+DMSO 66.462.2 3

hs::LET-60*+50 mM U0126 24.464.4h 3

The number of dar animals was scored as a percentage of the total. Heatshock, drug treatment or RNAi were as described in the Methods. All animals containing heat
shock transgenes were heat shocked as described in the Methods, no dar phenotype was observed in unheatshocked controls. Values are means +/2 the standard
error. No dar animals were observed in mpk-1(ku1);unc-32(e189), mek-2(n1989), lin-45(sy96), let-60(n2021) or unc-73(ce362) single mutants.
a = p,0.001 relative to hs::RHO-1*+DMSO.
b = p,0.001 relative to hs::RHO-1*+control RNAi.
c = p,0.001 relative to hs::RHO-1*.
d = p,0.001 relative to egl-5p::RHO-1*+DMSO.
e = p,0.001 relative to hs::RHO-1*+control RNAi.
f = p,0.001 relative to egl-5p::RHO-1*.
g = p,0.001 relative to hs::LET-60*.
h = p,0.001 relative to hs::LET-60*+DMSO.
doi:10.1371/journal.ppat.1002530.t002
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Innate immune responses are harder to trigger than
behavioral responses

Transgenic activation of genes in the EGL-30 (Gaq) and LET-60

(Ras) pathways led to the Dar response even in the absence of

pathogen, however, gain-of-function mutations in the endogenous

chromosomal genes did not cause the Dar response. For example the

egl-30(js126gf) gain-of-function mutation increased locomotion and

ACh release [44] but did not trigger the Dar response and the let-

60(n1046gf) gain-of-function mutation results in multiple vulva

formation [61] but did not trigger the Dar response. A small

percentage of animals with both the egl-30(js126gf) and let-60(n1046gf)

mutations did show a Dar response in the absence of pathogen but at

a much lower rate than observed following transgenic expression of

gain-of-function mutants of EGL-30 (Gaq) and LET-60 (RAS). The

n1046gf mutation causes a Gly to Glu change in LET-60 (RAS) at a

position 13 [62], an amino acid change known to cause oncogenic

activation in mammalian RAS [63,64]. The js126gf mutation causes a

Val to Met change in EGL-30 (Gaq) at position 180 [65] and this

mutation is predicted to interfere with the GAP activity of EGL-30

(Gaq). Both the n1046gf and js126gf mutations are semi-dominant

[61,62,65] but the amino acid changes involved differ from the

mutations used to cause constitutive activation in our transgenes

(EGL-30(Q205L) and LET-60(G12V)) and it is unclear to what level

these different mutations activate EGL-30 (Gaq) and LET-60 (Ras).

It appears likely that our transgenes cause higher levels of EGL-30

(Gaq) and LET-60 (Ras) signalling, either the mutations involved in

the transgenes cause stronger activation, the increased level of

expression from the transgenes results in stronger signaling, or a

combination of these two possibilities. Perhaps strongly activating

mutations in the chromosomal EGL-30 (Gaq) and LET-60 (RAS)

genes cause lethality, whereas restricted expression of strongly

activating EGL-30 (Gaq) and LET-60 (RAS) mutations from a

transgene can be tolerated.

Unlike the Dar response, both transgenic and chromosomal

gain-of-function mutations in EGL-30 (Gaq) are sufficient to

trigger changes in ACh release and locomotion, and these

neuronal changes do not require inputs from the LET-60 (RAS)

pathway. This suggests that the Dar response requires a higher

level of EGL-30 (Gaq) signaling than the behavioral response to

infection. In addition the Dar response requires coincident EGL-

30 (Gaq) and LET-60 (RAS) signaling and this is not apparently

required for the behavioral response to infection. Perhaps the

consequences of inappropriate activation of the innate immune

response are more severe than inappropriate activation of the

behavioral response and animals may set a higher threshold for the

Dar response than changes in behavior.

C. elegans as a model to study coordinated neuronal and
immunological response to infection

This is the first demonstration for a role for RHO-1 in C. elegans

innate immunity, however, its mammalian ortholog RhoA is a key

regulator of mammalian immune responses acting to regulate Toll

receptor signaling, leukocyte migration, and phagocytosis of

pathogens [66] suggesting further parallels between mammalian

and C. elegans innate immunity. Although less well studied than the

immune response behavioral changes following infection play an

important role in defending many species, including humans, from

pathogen attack [18]. Coordination of these responses makes sense

as it allows animals to mount an immune response to the

immediate threat whilst simultaneously taking action to remove

the pathogen, however, the complicated nature of the mammalian

brain and immune system has made it difficult to identify the

molecular mechanisms that mediate these interactions. With its

simple, well described, nervous system and a rapidly growing

understanding of its immune system, C. elegans provides a model to

understand the role RhoA and Gaq signaling play in coordinating

behavioral and immune responses to infection [67].

Materials and Methods

Strains
C. elegans strains used in this study are detailed in Supplemental

material. All strains were cultivated at 20uC on nematode-growth

media (NGM) plates seeded with E. coli OP50 unless otherwise

stated and maintained as described previously [68].

Transgenes and germline transformation
Plasmids (listed as pRJM or SJN) were constructed using standard

techniques, and verified by sequencing. Transgenic strains (listed as

nzEx or impEx) were isolated by microinjection of 100 ng/ml of

plasmid unless otherwise described below together with ttx-3::gfp (a

gift of O. Hobert, Columbia University NY), unc-122::gfp (a gift of P.

Sengupta Brandeis University MA), rol-6 dominant marker, or acr-

2::mcherry (SJN445) at 50 ng/ml as a marker. Some cDNAs were

obtained from Yuji Kohara at the Center for Genetic Resource

Information, National Institute of Genetics, Research Organization

of Information and Systems, Mishima, Japan. Unless otherwise stated

all injections were performed into N2 animals. Plasmids and

transgenic strains are described in Supplemental Methods.

M. nematophilum infection and staining
Infection with M. nematophilum was performed as described

previously [42] with the following modifications. NGM plates were

seeded with 10% M. nematophilum diluted in OP50 E. coli. Adult

animals were transferred to infection plates and were maintained

at 20uC or 25uC. F1 progeny were scored for the presence or

absence of the Dar phenotype once they reached L4 or adult

stages. In the case of hs::UNC-73;unc-73(ce362) animals synchro-

nized populations of L1 animals were obtained by bleaching and

these L19s were transferred to infection plates. This generation was

assayed for the presence of the Dar phenotype. SYTO13 staining

was performed as described previously [42].

Analysis of locomotion and sensitivity to drug treatment
Adult animals were infected with 10% M. nematophilum diluted in

OP50 E. coli and F1 progeny were assayed as one-day-old adults.

Figure 6. LET-60 (Ras) activation is sufficient to cause tail swelling and is required for the Dar response to infection. Two different let-
60 (Ras) reduction-of-function mutations, n2021 and sy93, significantly decreased the Dar response upon infection with M. nematophilum (A). This
decrease was not observed using ras-1(gk237) and ras-2(ok628) mutants that showed a wild-type response to infection (A). Although decreased tail
swelling was observed in let-60(n2021) animals infected with M. nematophilum bacteria, labeled using the nucleic acid stain SYTO13, still attached to
the anal opening (B). let-60(n2021) animals were slightly hypersensitive to aldicarb when grown on E. coli OP50 and ACh release was increased in
these animals following infection with M. nematophilum (C). Cell specific expression of constitutively active MEK- 2(S223E, S227D) (egl-5p::MEK-2*) (D)
or constitutively active LET-60(G12V) (egl- 5p::LET-60*) (E) in the rectal epithelial cells using a 1.3 Kb egl-5 promoter fragment resulted in tail swelling
that phenocopied the Dar phenotype observed following infection and RHO-1* activation. Arrows in D and E indicate the rectal opening. P values
between 0.05 and 0.001 (*), and P values of 0.001 or less (**).
doi:10.1371/journal.ppat.1002530.g006
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Locomotion assays were performed as described previously [69].

Sensitivity to 1 mM aldicarb (Greyhound Chromatography) was

determined by analysing the onset of paralysis as described

previously [40]. For each experiment, at least 20 animals were

tested and each experiment was repeated at least four times. Error

bars indicate the s.e.m.

Aversion assay
Assays were performed essentially as described by Yook et al.

(2007) with the following changes. Assays were performed on

60 mm plates with 40 ml of an overnight culture of bacteria grown

in LB placed on opposite sides of the plate. Animals were washed

in M9 and allowed to settle before aspiration, centrifugation of the

animals was found to alter their behavior and was not used. A

suspension of animals in a drop of M9 was placed equidistant from

each bacterial lawn, numbers of animals varied from 25 to 100.

The chemotaxis index = (number of animals on lawn A- number

of animals on lawn B)/number of animals on lawn A+B. In all

experiments lawn A was OP50 except where both lawns contained

M. nematophilum.

Induction of heat shock-inducible transgenes
Expression from the heat shock promoter was achieved using two

rounds of heat shock for 60 min separated by 30 min at 20uC. Heat

shock was performed on one-day-old adults or L49s except for in

hs::UNC-73E;unc-73(ce362) animals where heat shock was performed

at 0, 24 and 48 hours after transfer to M. nematophilum plates when

animals were at approx L1, L2/3 and L3/4 stage respectively. For

transgenic animals containing hs::RHO-1* or hs::UNC-73E trans-

genes a heat shock temperature of 33uC was used. For all other

transgenes heat shock was performed at 37uC. Animals were allowed

to recover overnight at 20uC before scoring for the Dar phenotype.

MAPK inhibition using U0126
One-day-old adults were transferred to NGM plates seeded

with OP50 containing 50 mM U0126 (Sigma) or DMSO (as a

Figure 7. Gaq-Rho GEF Trio-Rho Signaling and Ras converge on Raf to regulate morphology during the immune response to
infection. The simplest explanation of our results is that following pathogen infection RHO-1 is activated in the rectal epithelial cells by multiple
upstream regulators including EGL-30 (Gaq) and UNC-73 (Trio). Together with Ras, Rho signaling converges on Raf to activate the MAPK pathway.
Activation of these pathways, together with at least one other, in the rectal epithelial cells leads to the changes in morphology that occur as part of
the immune response.
doi:10.1371/journal.ppat.1002530.g007
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control). Plates were incubated at 20uC for 2 hours and animals

were heat shocked as described above. Animals were allowed to

recover overnight at 20uC before scoring for the Dar

phenotype.

Microscopy
Animals were imaged by mounting on 2% agarose pads. DIC

images were obtained using a Zeiss Axioplan microscope with640

objective. Digital images were captured using Openlab software

(Improvision) and processed using ImageJ (NIH). For fluorescence

microscopy animals were viewed on a Leica TCS SP5 microscope

with a Leica 663 objective. Images were obtained using Leica

Application Suite Microscope software. Digital images were

processed to give maximum intensity projections or 3D projections

of a Z-series using ImageJ (NIH).

Statistical analysis
In all cases statistical analysis was performed using an unpaired

two-tailed t-test. P values between 0.05 and 0.001 (significant) are

indicated on figures using one asterisk, and P values of 0.001 or

less (highly significant) are indicated with two asterisks.

Ethics statement
No vertebrate animals were used for these studies and no ethical

approval was required.

Supporting Information

Figure S1 EGL-30 (Gaq) signaling in the rectal epithe-
lium fails to rescue severe constipation in infected egl-
30(ad805) animals. A. Uninfected egl-30(ad805) adult animals.

An asterisk indicates the intestine. B. egl-30(ad805) animals

infected with M. nematophilum are bus and severely constipated.

C. Expression of EGL-30 (Gaq) in the rectal epithelial cells using a

1.3 Kb egl-5 promoter fragment rescues the Dar phenotype

following infection however these animals remain severely

constipated. Extent of intestinal distention is indicated by

double-headed arrows.

(TIF)

Figure S2 Inhibition of the MAPK pathway suppresses
the RHO-1* induced Dar. Adult wild-type animals and

animals expressing hs::RHO-1* were pre-treated with 50 mM

of the MEK inhibitor U0126 (or DMSO as a control) for

2 hours at 20uC and then heat shocked as described in

Material and Methods. After overnight recovery the percent-

age of animals showing the Dar phenotype was scored. No Dar

response was observed in wild-type animals treated with either

DMSO or U0126 (A and B). Animals expressing activated

RHO-1* were Dar (C) and this was blocked by pre-treatment

with U0126 (C and D). Rectal opening is indicated with an

arrow.

(TIF)

Protocol S1 Details of plasmids and strains used.

(DOC)
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