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Entropy maximising spatial interaction models have been widely exploited in a range of

disciplines and applications: from trade and migration flows to the spread of riots and the

understanding of spatial patterns in archaeological sites of interest. When embedded into a

dynamic system and framed in the context of a retail model, the dynamics of centre growth

poses an interesting mathematical problem, with bifurcations and phase changes, which

may be addressed analytically. In this paper, we present some analysis of the continuous

retail model and the corresponding discrete version, which yields insights into the effect of

space on the evolving system, and an understanding of why certain retail centres are more

successful than others. The slowly developing growths and the fast explosive growths that are

of particular concern are explained in detail.

Key words: Mathematical model; urban evolution; entropy; asymptotics; 91D10; 91D25;

34E10; 34A34; 39A33.

1 Introduction

The dynamics of urban centre growth has been the subject of a great deal of academic

interest since the 1960s. Although a number of modelling methods now exist (Batty, 2010)

the so-called production-constrained spatial interaction model has been, and remains, a

particularly popular tool in this context thanks to its performance in empirical studies

and its flexible framework (Birkin et al.; O’Kelly, 2010). The model has its origins in

the shopping model initially developed by Huff (1963) and Lakshmanan and Hansen

(1965) and shares many similarities to the gravity models widely used in location theory

and urban planning (Isard, 1975; Senior, 1979). It was later formalised by Wilson and

Wilson (1971), embedded into a dynamic Lotka–Volterra type system (Harris and Wilson,

1978) and has since been adapted to a range of applications in theory and practice,

including trade (Fry, 2012), migration (Dennett and Wilson, 2013), higher education

(Singleton et al., 2012), policing strategy (Baudains et al., 2013; Davies et al., 2013),

analysis of archaeological sites (Davies et al., 2014) and distribution of city sizes (Favaro

and Pumain, 2011).
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In its simplest form, the model is capable of predicting the most likely set of flows

between any origin and destination. Techniques to calibrate the model against em-

pirical data are well established (Batty and Mackie, 1972) and have been widely ex-

ploited for a number of years, particularly in retail, with many large retail firms de-

veloping their own in-house versions of the model. Indeed, UK corporations such as

Sainsbury’s and Tesco saw unprecedented growth in the latter part of the 20th Century

thanks in part to their adoption and development of geographic information systems and

spatial interaction models (Birkin et al., 2010). As the application to a real-world setting

has mostly been performed by those in industry, there are relatively few empirical studies

in the academic literature (Johnston and Thrift, 1993). However, the model has been

validated in the following studies: Clarke and Wilson (1983), Gould (1972), Haggett et al.

(1977), Rae (2009), Guy (1991), and Openshaw (1976), while a useful review of the issues

encountered in real-world application may be found in Birkin et al. (2010). As discussed

in the review and elsewhere, the model is not without its limitations. It cannot take ag-

glomeration effects into account, nor address a retailer’s option of relocation over organic

growth (Fotheringham and Knudsen, 1986). Nonetheless, it has historically provided a

simple and useful framework with which to study urban growth.

Despite the model’s popularity, relatively little analysis or similar insight into the

dynamics of the model exists in the literature. Harris and Wilson (1978) discussed the

stationary points and their stabilities, and others have performed similar investigations

on extensions to the model (see, for example (Fotheringham and Knudsen, 1986)) but

the majority of studies focus on simulation and adaptation of the original model. The

present paper aims to explore the dynamics in more detail by using asymptotic analysis

and matching. Our focus will be restricted to certain special cases, chosen to allow a

greater understanding of the underlying mechanisms and shedding light on continuum

and discrete descriptions and their interplay when many entities are initially present.

Although the potential adaptations are wide, it is perhaps simplest to frame our

investigation in the context of retail as the model was originally written. Consider a

discrete spatial region with residential areas labelled i and shopping centres j. If Xi is

the vector of total money spent by shoppers from residential area i, the aim initially is

to determine Yij which is the matrix of money spent in shopping centre j by residents of

area i. This is achieved by assuming that a shopper from i will choose to spend money in

j according to some utility, Uij:

Uij = α lnZj − βdij , (1.1)

where Zj is the floorspace of centre j and dij is a term representing cost to travel between

i and j, often taken as Euclidean distance. Here, α and β are constants which weigh the

relative importance of distance and size to a shopper. The logarithmic term in (1.1) is used

to reflect a returns to scale of customer perception of retail floorspace. This particular

form of utility function follows from Harris and Wilson (1978) is widely used throughout

urban modelling and has been shown to perform well in empirical tests (Clarke and

Wilson, 1983; Dearden et al., 2015; Tang et al., 2015).

By framing the spending flows as a problem in information theory, it can be shown

that the most likely outcome for Yij may be determined via entropy maximisation.
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The derivation in the present context is based on a analogy with equilibrium statistical

mechanics (see Senior, 1979) and the probability that a shopper from i will choose centre

j takes the Boltzman form, given by

Pij =
Zα
j e

−βdij

∑
j̄ Z

α
j̄
e−βdij̄

, (1.2)

so that the flows of money from i to j may be written as

Yij =
XiZ

α
j e

−βdij

∑
j̄ Z

α
j̄
e−βdij̄

. (1.3)

This form for Yij makes good intuitive sense: the exponential form of the utility equation

(1.1) appears in the numerator, while the denominator acts as a competition term, equi-

valent to a partition function in statistical physics, comparing the relative attractiveness

of centre j to the finite set of alternatives. It is worth noting at this stage that the

form of equation (1.2) is identical to that of the conditional logit discrete choice model

(McFadden, 1980). In that setting, the utility function equation (1.1) includes an extreme

value error term, which notionally takes into account fluctuations in individual taste.

The expression for Yij in equation (1.3) is known as the singly constrained spatial

interaction model and serves as a one-period model in many applications as previously

discussed. However, (Harris and Wilson, 1978) noted that since equation (1.3) provides

a mechanism with which to track money flows through a system it is also possible to

calculate the money flows into a given retail centre, Dj , by summing Yij over i

Dj =
∑

i

XiZ
α
j e

−βdij

∑
j̄ Z

α
j̄
e−βdij̄

. (1.4)

By assuming that the per-unit costs, k, to run a centre of size Zj are uniform across the

system of interest we may conclude that the profits of j are given simply by Dj − kZj .

Finally, assuming that the per-unit growth (or decline) of Zj in a given period is linearly

related to profit, we arrive at the final form of the retail model (Harris and Wilson, 1978)

1

Zj
∆Zj = ϵ

(
∑

i

XiZ
α
j exp(−βdij)∑

j̄ Z
α
j̄
exp(−βdij̄)

− kZj

)
, (1.5)

for some constant ϵ > 0, to ensure a positive relationship between profits and growth. ϵ

is typically small. The task then is to solve equation (1.5) for a given number of centres.

In the majority of applications equation (1.5) is used in a dimensional form. However,

it is possible to choose a substitution which allows for full removal of all units from the

equation, leaving the intrinsic properties in the form of just one dimensionless parameter

which characterises the system: in this case a quantitative measure of relative expense.

By measuring against this parameter we may directly compare systems with the same

properties, regardless of scale, allowing analogies to be theoretically drawn between inner

city and suburban centres.
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The substitutions required for non-dimensionalisation are as follows:

Zj = Z∗Z̃j , dij = d∗d̃ij , Xi = X∗X̃i, β =
β̃

d∗ , t =
t̃

X∗ ,
(1.6)

where (Z∗, X∗, d∗) are typical dimensional values of (Z,X, d), leaving (Z̃ , X̃, d̃) as dimen-

sionless and O(1). These leave the form of the dynamics equation largely unchanged,

where the tildes have been dropped for ease of notation

1

Zj
∆Zj = ϵ

(
∑

i

XiZ
α
j exp(−βdij)∑

j̄ Z
α
j̄
exp(−βdij̄)

− κZj

)
, (1.7)

and the dimensionless parameter κ is given by

κ =
kZ∗

X∗ . (1.8)

The numerator of (1.8) speaks of a typical total running cost, while the denominator is

a typical amount of money which a residential area has available to spend. The ratio of

the two characterises how difficult it is for a retail centre within the system to grow. High

values of κ are relatively expensive systems (from the point of view of the retailer) with

lots of competition, high running costs, and/or populations with low disposable income.

Low κ means that the population has high spending, and/or the relatively cheap system

has little competition and/or low running costs. In this way, for a given utility function

equation (1.1) we see that the dynamics of a system like central London – with high

running costs and competition – will share similarities with a collection of rural retail

centres where the money flows are small, as both are characterised by a large κ.

The non-dimensional model in equation (1.7) will form the basis of investigation for

what follows. In Section 2, we discuss characteristics that the discrete form can promote

and hence reduce the system into a one-dimensional continuous framework. In doing so,

it becomes possible to scale out space entirely from the model and employ asymptotic

techniques to offer insight into the remaining dynamics in three special cases: α ≪ 1 in

Section 3; α near unity in Section 4 and α ≫ 1 in Section 5. We conclude with a discussion

in Section 6.

2 Continuous and discrete versions

For different values of ϵ, equation (1.7) has been known to exhibit chaotic behaviour.

This notion is illustrated by the examples given in Figure 1(a), where calculations based

on different values of ϵ are shown for comparison. The figure shows average value of Z

in the system against time. In the examples shown, both blue simulations demonstrate

their volatility, while the orange case quickly approaches the steady state of the model

(discussed in equation (2.8)).

This feature of sensitivity to the value of ϵ in the dynamics has similarities to the well-

studied logistic map. The mapping was first popularised in 1976 by Robert May (May,

1976) and demonstrates how complex behaviour can arise from a seemingly simple non-

linear dynamic equation. The similarities to the present retail model become particularly
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(a) (b)

Figure 1. (a) Further evidence of the volatility of systems with relatively large ϵ. (b) Exact solutions
for Z0 + αZ1 in the case where α ≪ 1 (see Section 3) and Z0(s, 0) = constant are used to give the
results shown in circles and compared to a time-marched Z calculated from equations (2.14) and
(2.15) (lines). Here, α = 0.05.

apparent on application of the following transformation:

Zj =
1 + ϵDj

ϵκ
zj , (2.1)

to the difference equation form of (1.7). In such a case, the retail model is equivalent to

the logistic map

zt+1
j = aztj

(
1 − ztj

)
, (2.2)

where the coefficient is

a = 1 + ϵDj. (2.3)

Working under the perhaps bold assumption that Dj may be treated as independent of

Zj enables the findings of May to be considered relevant here. This assumption is purely

for simplification purposes, but does offer useful insights into the behaviour of the system

• If ϵDj < 0: the retail population will eventually die, regardless of the initial conditions,

although in this setting the value of ϵDj is bounded below by zero, since revenue may

not be negative.

• If 0 < ϵDj < 1: the retailers will quickly approach the value Zj = Dj/κ regardless of

the initial conditions. The rate of convergence is linearly related to ϵ.

• If 1 < ϵDj < 2: the population will also eventually approach the same value but will

fluctuate around that value for some time. The rate of convergence is linear, except for

ϵDj = 2 when it is dramatically slow, less than linear.

• If ϵDj > 2: the retail sizes will demonstrate oscillatory behaviour for almost all initial

conditions. At approximately ϵDj = 2.57 the onset of chaotic behaviour occurs and

oscillations no longer have finite period.
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Simulations for a range of ϵDj are shown in Figure 1(a) the results reflect what is found

in the ranges above. In practice, the model forces ϵDj ! 0; and numerical examples are

difficult to achieve once ϵDj > 2 and the system becomes very volatile.

Chaotic behaviour in Zj may be avoided by considering the continuous-time version

of equation (1.7). First by relating ϵ to δt and then letting δt → 0, equation (1.7) becomes

∂Zj

∂t
=

(
∑

i

XiZ
α
j exp(−βdij)∑

j̄ Z
α
j̄
exp(−βdij̄)

− κZj

)
Zj, (2.4)

but we may go further still by assuming that the number of homes and centres is relatively

large, or formally tends to infinity. In that case, the continuous version of the model, on

which we will base a good deal but not all of our analysis, is given by

1

Z

∂Z

∂t
=

∫ ∫
Zα(x, y, t)X(x̄, ȳ) exp

(
−β|r(x, y) − r̄(x̄, ȳ)|

)
∫ ∫

Zα(u, v, t) exp
(
−β|r(u, v) − r̄(x̄, ȳ)|

)
du dv

dx̄ dȳ − κZ(x, y, t). (2.5)

The integrals here are overall x, y in effect, with x, y denoting the spatial dimensions of

the system. The task now is to solve the integro-partial differential equation (2.5) for

Z(x, y, t) subject to initial conditions. To make some progress in our early investigations,

we examine equation (2.5) as a one dimensional problem and define Z along s between 0

and L, with one residential area of size X at s = 0. In such a case, the governing equation

reduces to the coupled form

∂Z

∂t
=

(
XZα exp (−βs)

F
− κZ

)
Z, (2.6)

F =

∫ L

0
Zα exp (−βs) ds. (2.7)

It is worth noting here that in the limit L → ∞, F(β, t) represents the Laplace transform

of Zα, in effect resolving Zα into its moments. The coupled system of equations (2.6) and

(2.7) has steady states at Z = 0 or when

∫ L

0
Z ds =

X

κ
, (2.8)

found by integrating the term in the large brackets of equation (2.6). In addition, by taking

the ratio of any two arbitrary points along s when Z ! 0, it is relatively straightforward

to show that the non-trivial steady state will take the form

Z(s) = Z(0) exp

(
βs

α − 1

)
. (2.9)

This expression equation (2.9) may be combined with equation (2.8) to give an exact

solution for Z(0) and hence the entire steady state, namely

Z(0) =
βX

κ (α − 1)

(
exp

(
βL

α − 1

)
− 1

) , (2.10)
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which holds only where α ! 1. The form of the steady state equations (2.9) and (2.10)

for the system equations (2.6) and (2.7) gives some early insights into the effects of α

and β: in cases where β/(α − 1) is small, the leading order steady state of Z(s) is X/κL

and all retail centres become equally sized. If β/(α − 1) ≫ 1, however, Z(s) will have its

maximum value at s = 0 of Z(0) = βX/(κ(α − 1)) and decay exponentially from that

point, independent of initial conditions.

The interdependence of α and β limits the knowledge that can be gained from exploring

equation (2.10). Ideally, we would want to decouple these two parameters to understand

the mechanisms at play which evolve to reach this steady state. It would be relatively

simple to convert the system to β = 1 for example, but in such a case the initial conditions

will still exert their effects on their own scale laterally, limiting the insights we could gain

from such a simplification.

Fortunately, it appears that with a system description presented as in equations (2.6) and

(2.7) it is possible to scale out β entirely, separating out the effects of space and centre size,

and providing a much simpler basis for analysis. This is achieved by transforming Z =

Z̄ exp (λs) and switching to a different time scale: t = t̄ exp (−λs), where λ = β/ (α − 1).

By also rewriting

s̄ = exp (λs) , L̄ = exp (λL) , X̄ = λX, F̄ = λF, (2.11)

the governing equations (2.6) and (2.7) become

∂Z̄

∂t̄
=

(
X̄Z̄α

F̄
− κZ̄

)
Z̄ , (2.12)

F̄ =

∫ L̄

0
Z̄α ds̄, (2.13)

and so formally the dynamics of Z̄ is effectively equivalent to the β = 0 scenario of

equations (2.6) and (2.7). Even though a radial dependence on s will still exist when

marching forward in transformed time, the new reduced system of equations (2.12)

and (2.13) is without an explicit spatial structure: a potentially powerful result. Initial

conditions will also exert their influence of course, and are particularly important here

as the system is without explicit boundary conditions. Regardless, this zero-beta system

of equations (2.12) and (2.13) is an important and central case which will provide much

insight into the underlying dynamics.

A further simplification may be made without loss of generality, by scaling out the

magnitude of the single remaining centre X̄ and the parameter κ, both of which are now

constant for a given system. This is achieved by replacing ¯̄s = κs̄/X̄, ¯̄L = κL̄/X̄ and

switching to a time scale ¯̄t = κ̄t. By dropping all bars for ease of notation then, the final

reduced system on which we base most of the remainder of our analysis is:

∂Z

∂t
=

(
Zα

F
− Z

)
Z, (2.14)

F =

∫ L

0
Zα ds. (2.15)

The steady states of this space-free formulation are Z = 0 and Z = 1/L and uniform in s,

found using the equivalent form of equation (2.8). Moreover, it is relatively straightforward
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to compute the dynamics of equations (2.14) and (2.15) for small times. The disturbance

from an initial distribution Z(s, 0) = Z0(s) say, takes the form

[Z, F] = [Z0(s), F0] + t [Z1(s), F1] + · · · , (2.16)

for any α value, with the initial F0 being known from the integral of Zα
0 over s. Then,

from equations (2.14) and (2.15) the departures Z1, F1 are determined by the balances

Z1(s) =

(
Zα

0 (s)

F0
− Z0(s)

)
Z0(s), (2.17)

F1 = α

∫ L

0
Zα−1

0 Z1(s) ds, (2.18)

yielding Z1, F1 successively. Further terms in equation (2.16) can be obtained in a similar

straightforward fashion, where the same procedure may be applied to the full one-

dimensional case in equations (2.6) and (2.7). By contrast, the large-time response will

show sensitive dependence on the value of the power α (except in the terminal case where

Z , F are constant for all s,t).

Beyond this rough overview, it is possible to explore the dynamics of the beta-zero

form of the retail model equations (2.14) and (2.15) further by employing an asymptotic

approach to three special ranges, yielding analytic insights into the system. First, we explore

the case of α ≪ 1 in Section 3, then α near one in Section 4 and finally α ≫ 1 in Section 5.

3 Alpha small

The range where α ≪ 1 relates to a retail system with diminishing returns for centre size,

where customers have little or no preference for shops with larger floorspace. Specialist

items and high-end products are traditionally thought to belong to this category, where

the consumer considers other factors such as price, distance and quality as more important

than the size of an outlet. Under this simplifying assumption, the space-free form of the

retail model equations (2.14) and (2.15) may be reduced to a solvable form, offering

insights into the dynamics of the full model. If we assume a form for Z and F in

equations (2.14) and (2.15) of Z = Z0 + αZ1 + · · · and F = F0 + αF1 + · · · respectively,

with coefficients being of order unity, we may exploit the expansion

Zα = 1 + α lnZ0 + α2

(
Z1

Z0
+

(lnZ0)
2

2

)
+ · · · , (3.1)

so that the full form for F follows neatly

F = L +α
∫ L

0 lnZ0 ds +α2
∫ L

0

(
Z1

Z0
+

(lnZ0)2

2

)
ds + · · · . (3.2)

The dominant balance in equation (2.14) may be solved exactly to give an analytic

expression for the leading order term in centre size Z:

Z0(s, t) =
1

L + C0(s) exp
(
−t/L

) , (3.3)
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for some C0(s) which is straightforward to determine by initial conditions, namely C0(s) =

Z0(s, 0)−1−L. If α = 0 then the system decays exponentially to a uniform state of Z0 = 1/L

where all revenue is equally shared amongst retailers, regardless of the initial state of Z ,

and there is no concentrated growth of any one centre.

The next order balance of equation (2.14) leaves an expression for Z1 which may be

solved numerically

∂Z1

∂t
=

(
1

L
− 2Z0

)
Z1 + Z0

(
lnZ0

L
− F1

L2

)
, (3.4)

where F1 is the O(α) term in equation (3.2). However, we may go further. If the system

begins with a uniform initial condition to leading order and Z0(s, 0) is a constant, then

C0 will also be constant and Z0 = Z0(t) only.

In this special case, F1 = L lnZ0 and equation (3.4) simplifies to give an exact solution

for Z1

Z1 =
C1 exp

(
t/L

)
(
L exp

(
t/L

)
+ C0

)2
. (3.5)

Here, C1 = C1(s) and is dictated by initial conditions. This solution for Z1 does not

actually require that Z1(s, 0) is constant, but Z1 will decay to zero with time, tending to a

solution of all centres equal. An example is shown in Figure 1(b) where Z1(s, 0) = sin(2πs)

for α = 0.05, δs = 10−4 and δt = 0.01. The asymptotic solutions from equations (3.3) and

(3.5) are combined and plotted as circles and compared to the full time-marched solution

from equations (2.14) and (2.15). The asymptotics perform well in this instance with little

difference between the two solutions.

The condition of a constant Z(s, 0) is a little restricting however, and it would be useful

to explore the results if we allow ourselves to numerically calculate Z1 from equation

(3.4). An example of this scenario is given in Figure 2 in which Z0 and Z are plotted

for comparison in (a) and Z1, as found from equation (3.4), is shown in (b). Here,

Z0(s, 0) = Z(s, 0) = s sin(2πs) + 1, δs = 10−4, δt = 0.01 and α = 0.01. The small value of

α means the leading order approximation of Z0 does well to match the full solution, but

the dynamics of Z1, which are independent of α, demonstrate some interesting insights.

Z1 acts to prevent Z from reaching a uniform steady state by decreasing the values of

the centres with smaller initial sizes and boosting those centres which began with a larger

floorspace. This effect decays over time as Z1, like Z0, becomes constant throughout.

It is interesting to note how the two solutions, the asymptotic from equations (3.3)

and (3.4) and time-marched from equations (2.14) and (2.15), compare across time for

different values of α. Figure 3 shows the absolute difference at s = 0.8 between the two

solutions for the same parameter values and initial conditions as in Figure 2. The plot

demonstrates that the asymptotic solution holds well until around α = 0.3 when the two

solutions begin to deviate. Beyond that, the residual is largest in all cases at around t = 3

when ∂Z/∂t is greatest, but the two solutions converge once more as t increases, giving

useful long-time results for values of α up to 0.6.
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(a) (b)

Figure 2. (a) Shows Z0 + αZ1 as circles, constructed from the analytical solution given in equation
(3.3) and the numerically calculated Z1 in equation (3.4). These are compared against a time-
marched solution for Z calculated from equations (2.14) and (2.15) shown in solid curves. In both
cases, an initial condition of Z0(s, 0) = Z(s, 0) = s2 is used. (b) Shows the corresponding form for
Z1 found from equation (3.4) and demonstrates the role which it plays when centre size is taken
into account by the consumer. See the relevant text for discussion.

Figure 3. The residual at s = 0.8 between the asymptotic and time-marched solutions for Z for
varying α over time.
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4 Alpha near unity

The critical value for α in the original discrete retail model equation (1.5) is known to

be unity (Harris and Wilson, 1978), which indicates the point at which steady states

transition from uniform centre size to a ‘winner takes all’ style system. In a real world

context, calibration of this original model equation (1.5) tends to yield values of α

close to unity (Clarke and Wilson, 1983). This critical point is found to be present in

the space-free model of equations (2.14) and (2.15), presenting a regime which, as we

shall demonstrate in the present section, produces some interesting linear and non-linear

evolutionary properties.

First, when α = 1 exactly, Z = Z1(s, t) and F = F1(t) say, the governing dynamics in

equation (2.14) forms a Riccati equation. The behaviour of the system can be explored

via the implied separable equation

∫
Z−2

1 dZ1 =

∫ (
1

F1
− 1

)
dt. (4.1)

By setting the right-hand side to equal H(t) and setting H(0) = 0, we may define

B(s) = Z1(s, 0)−1 (known from initial conditions), so that a complete solution in implicit

form is offered by the integro-differential equation for H

1

Ḣ(t) + 1
=

∫ L

0

1

B(s) − H(t)
ds, (4.2)

where dot denotes a derivative with respect to time and equation (4.2) is equivalent to

equation (2.15), since:

Z1(s, t) =
1

B(s) − H(t)
, F1(t) =

1

Ḣ(t) + 1
. (4.3)

Given an initial state of the system, Z1(s, 0), a steady state will be reached as t → ∞ and

Ḣ → 0. This will force

F1(∞) = 1, (4.4)

and provides an explicit expression for the final form of Z1(s,∞) :

Z1(s,∞) =
Z1(s, 0)

1 − H(∞)Z1(s, 0)
, (4.5)

where the value of H(∞) will be determined by the integral contribution of:

∫ L

0

1

B(s) − H(∞)
ds = 1. (4.6)

The steady state of Z1 in equation (4.5) demonstrates the dependence on the initial

conditions of the system. The results here are consistent with the existing literature on

the full model (Clarke and Wilson, 1983; Harris and Wilson, 1978), agree with the small-

time features discussed near the end of Section 2 and confirm that in a sense boundary

conditions are not required.
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If, instead, α is close to unity, the dynamics may be explored by supposing that:

α = 1 + δα1, (4.7)

for δ ≪ 1 and α1 = O(1). The resulting approximations to the governing framework are

sensitive to time and an asymptotic approach here produces early and later stages of

evolution for centre size Z as discussed in the following sub-sections.

4.1 The early stage

While time is O(1), the solution to the coupled governing space-free system equations

(2.14) and (2.15) can be explored using a perturbed modification to Z and F of the form

Z = Z1 + δZ2 + · · · , (4.8)

F = F1 + δF2 + · · · , (4.9)

with δ as in equation (4.7). The dominant balance of the dynamic equation (2.14) gives

an expression identical to that seen in the α = 1 case of the previous section in equation

(4.1). The solutions and steady states given there for Z1(s, t) and F1(t) in equations (4.5),

(4.4) and (4.3) are also relevant here.

The secondary terms in equations (4.8) and (4.9) may be determined by looking at

an order δ balance of equations (2.14) and (2.15), yielding expressions for Z2 and F2

respectively

∂Z2

∂t
= 2

(
1

F1
− 1

)
Z1Z2 + Z2

1

(
α1 lnZ1

F1
− F2

F2
1

)
, (4.10)

F2 =

∫ L

0
(Z2 + α1Z1 lnZ1) ds. (4.11)

At large times, we expect F1 → 1 (as in equation (4.4)) so that the first term in equation

(4.10) will tend to zero. If F2(t) also tends to a steady state, that is F2(t) → F2(∞), the

second term in equation (4.10) will become constant in time and we may define

A2(s) = Z1(s,∞)2 [α1 lnZ1(s,∞) − F2(∞)] , (4.12)

implying a large-time response from Z2(s, t) as:

Z2(s, t) ∼ A2(s)t + B2(s) + · · · . (4.13)

For this solution to hold, we require the temporal component of equation (4.11) to vanish,

demanding that: ∫ L

0
A2(s) ds = 0. (4.14)

Applying the definition of A2(s) in equation (4.12) gives an expression for the large-time

form of F2(∞)

F2(∞) =

∫ L
0 α1Z1(s,∞)2 lnZ1(s,∞) ds

∫ L

0 Z1(s,∞)2 ds
, (4.15)

where Z1(s,∞) is given in equation (4.5).
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As t → ∞ then, |Z2| will continue to grow linearly with time, while |Z1| remains of

order unity. This causes a large time breakdown of the asymptotics in equation (4.8) as

non-linear effects begin to re-emerge. This second stage occurs as t becomes of order 1/δ

and is explored in the following section.

4.2 The middle stage

The first later stage occurs when t = t̄/δ, with δ as defined in equation (4.7). Scaled time

runs forward from zero where a match can be shown with the results from the previous

section. Here, a simplification of the governing system in equations (2.14) and (2.15) can

be made by application of the following substitutions for Z and F:

Z = z̄(s, t̄) + · · · , (4.16)

F = F̄1 + δF̄2 + · · · . (4.17)

A leading order balance of the dynamic equation in (2.14) again requires

F̄1 =

∫ L

0
z̄(s) ds = 1, (4.18)

as seen in previous sections. Here however, a secondary balance, after suitable manipula-

tion of z̄α, presents a non-linear pde for z̄:

∂z̄

∂t̄
=

z̄2

F̄1

(
α1 ln z̄ − F̄2

F̄1

)
, (4.19)

without forcing F̄2 to reach a steady state.

A complete analytical solution of the non-linear pair equation (4.19) with equation (4.18)

cannot be obtained readily, but it is relatively straightforward to perform a numerical

study of the system. In a similar manner to the method of the previous section, taking the

integral of equation (4.19) with respect to s from 0 to L makes the left-hand side zero, by

equation (4.18). Rearranging the result then offers an expression for F̄2 in terms of z̄(s, t̄)

F̄2(t) =
α1

∫ L

0 z̄2 ln z̄ ds
∫ L

0 z̄2 ds
, (4.20)

with clear similarities to equation (4.15). In this case, equation (4.20) can be coupled with

a discretised version of equation (4.19) to offer a complete time-marching process for the

current stage, suitable for numerical treatment.

A set of example solutions to equations (4.19) and (4.20) is presented in Figure 4 for

when α1 = 1. In each case, the initial condition Z = (1 + s sin(πs)) is used so that ∂Z/∂s

is small,
∫ L

0 Z(s, 0) ds is close to 1 and there is a global maximum at around s = 0.62. A

range of δs and δt regimes are tested in the numerics as shown, which offers insight into

some interesting behaviour.

In all cases, the dynamics is slow at first, with little deviation from the initial conditions

(shown as a black-dashed line) by t = 1. At t = 2, the values of Z which were initially

at the site of local maxima have begun to increase, while Z elsewhere decreases to
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(a) t = 1 (b) t = 2

(c) t = 2.2 (d) t = 2.4

(e) t = 2.6 (f) t = 2.8

Figure 4. Numerical simulations of the middle stage where α is near unity. The initial conditions
of Z(s, 0) = 1 + s sin(πs) are shown as a dashed line. See the relevant text for discussion.

accommodate the integral condition in equation (4.18). Beyond t = 2, the main peak

gathers momentum and increases rapidly, dominating the contribution to the integral in

equation (4.18) and forcing Z to decrease for all other values of s. By t = 2.8, only a

single point in each numerical solution has a non-zero value – which raises an interesting

scenario.
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(a) (b)

Figure 5. The terminal value of F2, shown in (a), and max(Z), shown in (b), depend on the value
of δs used in the discretisation. See the relevant text for discussion.

The area under the curve is fixed by equation (4.18), regardless of δt and δs, but the

triangular shape which is created, in effect by discretising this continuous system for the

numerical treatment, has a base whose width depends on the discretisation used. In effect

then, the final value of the single non-zero point in Z(s) must depend on δs, as verified in

Figure 5 where the steady-state solutions increase for smaller values of δs.

This perhaps somewhat unusual result appears through the interplay between discrete

and continuous versions of the model. The computational terminal values for both F̄2

and max(z̄) can be calculated analytically

F̄2(∞) = α1F̄1 ln

(
F̄1

δs

)
, max(z̄(s,∞)) = exp

(
α1F̄2

F̄2

)
, (4.21)

and are indeed determined by the numerical discretisation applied. These terminal forms

equation (4.21) are also shown in Figure 5 as a single dashed line for each case, but would

each be infinite in a true representation of the continuous system.

Returning to the continuous system in equation (4.19) with equation (4.18), the log-

arithmic term in equation (4.19) will balance with F̄2 near a peak to leading order, so

that the term in the bracket becomes O(1) and
∂z̄

∂t̄
balances with z̄2. This suggests that

formally z̄ ∼ 1/̄t and indicates an ending in finite time. Specifically, we expect a solution

of the form

z̄ ∼ A(̄t0 − t̄)−1 + · · · (4.22)

F̄2 ∼ − ln(̄t0 − t̄) + · · · , (4.23)

for some positive constant A and blow-up at t = t0. In this scenario, F̄2 tends to ∞ as

verified to a large extent by the computations.

At other positions of s, away from the peak, z̄ is not large enough for the logarithmic

term to play a role in equation (4.19). Instead, ∂z̄/∂t̄ = z̄2 ln(̄t − t̄0), suggesting a terminal

form as follows:

z̄ =
(
C(s) + (̄t0 − t̄) ln(̄t0 − t̄)

)−1
, (4.24)
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and thus z̄ tends to 1/C as t̄ → ∞. This fits together well with the findings from the

numerical simulations and presents a near-complete description of the system for α values

near unity. The finite-time breakup above indicates that discrete aspects come back into

play at positions close to the peak.

4.3 The final stage

The growth of z̄ close to a peak causes F̄2 to grow logarithmically with t as in equation

(4.23) and violate the assumptions in the series expansion of equation (4.17). Simultan-

eously, the growth effect of z̄ at the peak, s = s0 say, is no longer unity to leading order

and we begin to see exponentially large values for Z within a tiny range of values for s,

close to s0, and in an exponentially small time interval. Specifically, where s−s0 = O(e−n/δ)

for some n of order unity, we expect Z, F and t to take the form

t =
t̄0
δ

+
e−t∗/δ

δ
, F = O(1), Z = et

∗/δz∗ + · · · , (4.25)

where δ is as defined in equation (4.7). These substitutions make Zα−1 = eα1t
∗

predomin-

antly which, when applied with equation (4.25) to the governing equations of the system

equation (2.14) and (2.15), show that the leading order balance occurs between the con-

tributions within the parentheses of equation (2.14). To the first approximation then, we

expect

F = eα1t
∗
. (4.26)

This final stage solution fits with that of the middle stage, where close to a peak equations

(4.17) and (4.23) combine to give F = 1 − δB ln
(̄
t0 − t̄

)
+ · · · for some constant B. Given

that t̄ = δt = e−t∗/δ + t̄0 (as in equation (4.26)), F from the middle stage may be rewritten

as F = 1 +Bt∗ which matches with the solution for F in equation (4.26) when t∗ tends to

zero from above and B = α1.

The exponential growth in F suggests that the −Z2 term in equation (2.14) will dominate

the dynamics outside of this small range of s, causing all other centres to decay to zero.

The exponential growth in Z near the peak then serves to satisfy the integral condition of

equation (2.14) and indeed the solution continues to hold to large positive effective times

t∗. It is worth noting that the ‘exponential’ growth in both F and Z is actually in terms of

the exponentially defined t∗ in equation (4.25), meaning that the true temporal behaviour

is algebraic.

The overall effect of the three stages, early, middle and final, is that of delayed but

eventually explosive growth in centre size, arising about a single location.

5 Large alpha

The final range to explore is that of α ≫ 1. This relates to a retail system where high

importance is placed on the size of a retail site and large centres tend to prosper. The

original production-constrained retail system, given in equation (1.5), has been shown to

permit stable steady states with α > 1 for a range of small k (Clarke and Wilson, 1983)

(Harris and Wilson, 1978), a result that has been also found to exist in a real-world
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setting. In the present case, we restrict our analysis to the space-free system given in

equations (2.14) and (2.15) which instead allows large centres to grow explosively over

a comparatively short time scale as we shall see. Translation between results from the

reduced form used here and the original formulation in equation (1.5) is discussed in

Section 6.

For a sufficiently large α there are considerable changes in the magnitude of the Zα

contribution for values of Z either side of unity. To mitigate against this, it is convenient

to work with the following expansion for Z and F:

Z = 1 +
z

α
+ · · · , (5.1)

F = F0 +
F1

α
. (5.2)

With α ≫ 1, we expect a fast time response and so switch to a shorter time-scale t = T
α .

Together, these serve to reduce the balance of equations (2.14) and (2.15) to

∂z

∂T
=

exp (z)

F0(T )
− 1, (5.3)

F0(T ) =

∫ L

0
exp (z) ds, (5.4)

to leading order.

For points along s where z < 0, centres ultimately decay linearly at a constant rate.

Wherever z > 0 however, the exponential term in the dynamics equation (5.3) dominates,

which begins to imply how dramatic the rapid growth of larger centres is within the

system. Further insight is gained by a solution to equation (5.3), achieved by putting

z = Z − T , (5.5)

which leaves equation (5.3) in separable form with solution:

Z = Z0 − ln

(
1 − exp (Z0)

∫ T

0

1

F0(τ)
dτ

)
, (5.6)

F0(T ) =

∫ L

0
exp (Z) ds. (5.7)

Here Z0 = Z(s, 0), demonstrating the dependence on initial conditions and again confirm-

ing that boundary conditions are not required. The solution in equations (5.6) and (5.7) to

equations (5.3) and (5.4) is explored numerically when α = 2 and α = 4 in Figure 6. Here,

an initial condition of Z = (1 + s sin(4πs)) /4 is chosen so that there are local maxima

throughout s and a global maximum at around s = 0.62. The constants (δs, δt, L) were

set at (10−4, 10−4, 1) respectively throughout the numerics.

Despite the relatively small value for α used in the numerical example, the asymptotic

solution performs well, matching the full time-marched system from equations (2.14) and

(2.15) even as the dominant peak begins to form. As expected from equation (5.3), the

peak emerges at the site of the initial global maximum and grows rapidly. Away from the

peak, F0 and Z become constant, yielding linear decay in z. As z → −∞ at these points,



18 H. M. Fry and F. T. Smith

(a) (b)

(c) (d)

Figure 6. The large α system at regular intervals of t = 0.1 between t = 0.0 and t = 0.3. (a)
Shows the asymptotic Z progressing for values of T when α = 2. (b) Takes the solution for
Z(s, T ) presented in (a) and converts it to Z(s, t) (shown as circles) in order to compare to the full
time-marched system (lines). (c) and (d) are as (a) and (b) except with α = 4 throughout.

Z → 0. This process continues until a single non-zero point remains in the numerically

discretised solution, as in Section 4.

6 Discussion

An asymptotic analysis of the continuous, one-dimensional, single source version of the

model the retail model has revealed a number of interesting insights into the dynamics

that underpin the full system. The analysis, based on the coupled equations (2.14) and

(2.15) is equivalent to a continuous β = 0 case of (1.5). Such a simplification presents

an opportunity to explore the effects of the parameter α and its role in the dynamics of

centre size Z .

If α = 0 an analytic solution to Z was found in which each centre decays exponentially

to a uniform state of Z = 1/L regardless of the initial conditions. For positive α ≪ 1,



Rate effects on the growth of centres 19

the higher order terms in an asymptotic analysis serve to slow the approach to a steady

state. Small α will boost the centres which were initially smaller and decrease the size of

those which began with a higher value of Z . This effect itself will decay in time, so that

whenever α < 1 all centres will eventually become equal.

The critical value of α = 1 has been discussed previously in the literature. In this

setting, it marks the transition from a steady state of uniform centre size to a system

where the ‘winner takes all’. Exploring the dynamics close to unity by setting α = 1 + δα1

demonstrates a delayed but eventually explosive growth of Z near a peak for α1 > 0. This

growth will be exponential in asymptotic time, although algebraic in true temporal terms.

Away from the peak, centres will decay to a constant value.

When α ≫ 1 an analytic solution is again possible. Here, the system experiences rapid

growth at the site of the original global maximum and linear decay elsewhere.

While these behaviours match the characteristic dynamics of real-world retail systems

(Clarke et al., 1998), by scaling out β from the system we introduced a radial dependence

on time in equations (2.12) and (2.13) that precludes a straightforward translation between

the special cases outlined here and the full system of (1.5). Nonetheless, for a qualitative

comparison with the results given here, some simulations of the original model are

included in Figures 7(a) and (b).

The simulations use an initial condition of Z = {j : j ∈ !, 0 < j ! 10} with the centres

positioned along the integers of the x axis from x = 0 to x = 9. A single source of X = 55

is positioned at (x, y) = (0, 1) and ϵ = 10−3 is used. To allow for a direct comparison

with the simplified model in (2.14) and (2.15) a value of β = 0 is applied throughout.

Figure 7(a) demonstrates the evolution of the mean centre size over time for the cases of

α = 0.1, 0.9, 1.1, 2.0.

When α = 0.1 the speed of the exponential decay to a steady state for each centre is

dependent on their initial size. Hence, the total size of the system drops quickly in Figure

7(a) as the initially large centres shrink much more rapidly than the growth of the initially

small centres. As time continues the system approaches its steady state of uniform centre

size, a result which is reflected in Figure 7(b) which shows the standard deviation of Zj .

The cases of α = 0.9 and α = 1.1 have clear similarities and both show the characteristic

slow-burning dynamics described in Section 4. Over a much longer time scale than the

small α case, the standard deviation of centre size does continue to grow and decay for

α > 1, α < 1 respectively, as predicted by the asymptotics.

Finally, when α = 2 the centre with the largest initial value of Z experiences rapid

growth, while away from the peak the other centres slowly decay. This is reflected in

Figure 7(b) where the standard deviation of the system slowly reaches a steady state of

a single non-zero centre. It should be noted that the finite terminal value of this steady

state is a result of the discrete system and would be infinite in the continuous model (see

Section 4).

An extension of the current framework to take the spatial structure of the system into

account (or rather, a direct translation between equations (2.14), (2.15) and (2.6), (2.7))

would likely demonstrate that a stable, multi-centre steady state is possible for α > 1,

although this is beyond the scope of the current study. However, the simulations of were

Figures 7(a) and (b) were repeated with β = 1 and are presented in Figures 7(c) and (d) to

offer some insight into the corresponding full system. From these graphs, it becomes clear
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(a) (b)

(c) (d)

Figure 7. Simulations of the discrete retail model given in (1.5) for various values of α. (a) Shows
the evolution of the mean centre size, Z̄ when β = 0 and (b) the standard deviation, s(Z). (c) Is the
mean centre size for an identical system, except with β = 1 and the respective standard deviation is
given in (d).

that the inclusion of space provides additional mechanisms that are worthy of further

investigation.

The analytical solutions for Z , and their respective discrete simulations, also reveal the

dependence of the model on initial conditions across a range of values of α, while an in-

terplay between discrete and continuous system suggests some caution in the middle stage

when α is near unity. Both these are important considerations in real-world application.
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