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Abstract. Resonant vibrational and rotation-vibration excitation cross sections for

electron–CO scattering are calculated in the 0–10 eV energy range for all 81 vibrational

states of CO, assuming that the excitation occur via the 2Π shape resonance. Static

exchange plus polarization calculations performed using the R-matrix method are used

to estimate resonance positions and widths as functions of internuclear separation.

The effects of nuclear motion are considered using a local complex potential model.

Good agreement is obtained with available experimental data on excitation from the

vibrational ground state. Excitation rates and cross sections are provided as a functions

of the initial CO vibrational state for all ground state vibrational levels.
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1. Introduction

When a spacecraft enters an atmosphere at speeds exceeding the local speed of sound,

a shock wave is formed behind it and its kinetic energy is transformed into heat. The

energy delivered to the gas in this process promotes excitation of the molecular internal

degrees of freedom (rotational, vibrational and electronic) and chemical reactions

(including dissociation and ionization). The hot reacting (and radiating) gas is often

in thermal and chemical nonequilibrium conditions and it is this complex system that

interacts with the vehicle surface.

In this paper we consider electron-impact resonant vibrational excitation and

rotational-vibrational excitation of carbon monoxide over the entire range of vibrational

levels supported by its ground electronic state, CO(X1Σ+), and over an extended

electron temperature range. The energy range of concern here is 0–10 eV. This data

provides important input information into spacecraft entry models for atmospheres such

as those on Mars and Venus as well as to study other processes in the atmospheres

of these planets [1] and in comets [2]. It is also useful for understanding processes

involved in the CO laser [3, 4] and to study CO plasma in presence of electrical

discharge [5, 6]. Infrared emission from CO in the upper atmospheres of Mars, Venus

and several other planets is a subject of current theoretical and experimental interest.

The first measurements of cross sections for low-energy electron impact excitation of

the vibrational levels of the ground state of CO have been made by Schulz [7]. Recent

new measurements showing the contribution of electron impact relative to emissions by

other mechanisms, have been reported [1].

Direct vibrational excitation of diatomic molecules by electron impact is, in general,

an inefficient process because of the small electron-to-molecule mass ratio. However,

when the incident electron can attach to form a temporary negative ion, vibrational

excitation cross section can be hugely enhanced [8]. These processes are called resonant

collisions. In this paper the following reaction is treated:

e− + CO(X1Σ+, vi) → CO−(2Π) → e′− + CO(X 1Σ+, vf) , (1)

where vi and vf are the initial and final vibrational levels of the molecule. A number of

reviews on this subject are available [9, 10, 11, 12].

Resonance enhanced vibrational excitation of CO from its vibrational ground

state (vi = 0) has been well-studied experimentally, notably in recent work by

Allan [13], Poparić et al. [14] and by Gibson et al. [15]; earlier experimental work is

reviewed by Brunger and Buckman [12]. Theoretically the best calculations are due

to Morgan [16, 17] who used an R-matrix method to characterize the resonance as a

function of CO internuclear distance. As will be shown below, her studies show rather

good agreement with both data available to her at the time and subsequent studies.

The various studies show that electron collisions involving the well-known, low-lying 2Π

shape resonance lead not only to a large vibrational excitation cross section but also

show that ∆v (= vf − vi) can be large: excitation cross sections with ∆v = 11 were

measured by Allan [13].
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So far studies of electron impact vibrational excitation of CO have concentrated

almost exclusively on excitations from the vibrational ground state. However for

modeling CO in hot environments it is necessary to know the corresponding cross

sections starting from excited vibrational states, vi > 0. In this work we develop a

model which reproduces the known data for vi = 0 and then use it to obtain vibrational

excitation cross sections and rates for the whole range of possible initial vibrational

states.

The paper is organized as follows: In section 2 the theoretical model is presented

for both electron dynamics and nuclear motion; in section 3 the calculated results are

presented and in section 4 they are discussed.

2. Theoretical model

2.1. Electron collisions

The R-matrix method [18, 19] is used to obtain a complex potential energy curve for

the resonance. Our methodology and calculations are heavily based on the work of

Morgan [16] who, as is shown below, obtained excellent results for the excitation process.

For the present study it was necessary to extend the range of Morgan’s calculations to

allow for excitation to high-lying bound states. To do this we follow the prescription

for the electron collision calculations given in her paper but, since the paper does not

provide entire details of the calculation, it was necessary to first perform a number of

test studies. The nuclear dynamics is treated in the local-complex-potential model as

explained in the next subsection.

Calculations were performed using the diatomic molecule implementation of the

UK Molecular R-matrix codes [20] which uses Slater Type Orbitals (STOs) to represent

the target and numerical functions to represent the continuum. We used the STO

basis given by Kirby-Docken and Liu [21] to generate a total of 16σ and 12π molecular

orbitals, and numerical Bessel functions for partial waves up to l = 6 for the continuum

inside the R-matrix sphere which had a radius of 10 a0. To avoid linear dependence

problems, two of the continuum π orbitals were removed by Lagrange orthogonalization

to the target orbitals [22]. Resonance positions and widths were obtained by fitting the
2Π eigenphase sum at geometry to a Breit-Wigner form using program RESON [23].

The resonance becomes very broad at short internuclear separations and, under these

circumstances, the background eigenphase can vary significantly across the resonance

resulting in fits that are less stable. The effect of this can be seen in the behavior of the

fitted width as a function of CO bondlength. See Fig. 2 below.

Morgan tested a number of models but found that a Static Exchange plus

Polarisation (SEP) model performed best. This model uses a Hartree-Fock (HF) target

wavefunction and includes polarisation effects augmenting the scattering wavefunction

with so called two particle – one hole (2p-1h) configurations. These configurations

involve simultaneously exciting a single target electron into an unoccupied target
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(“virtual”) orbital and placing the scattering electron in a virtual orbital. Results for

resonances parameters are well-known to be sensitive to the precise choice of parameters

in an SEP calculation [24]. Our final model froze the C and O 1s and 2s electrons

and considered excitation of remain 6 “valence” electrons into virtual orbitals, all of

which were retained. At the CO equilibrium bondlength this model gives a resonance

position and width of (1.67, 0.82) eV which can be compared to Morgan’s values of (1.68,

0.95) eV. It can be seen that the positions are in excellent agreement but our width is

somewhat narrower. As discussed below, it was decided to increase our calculated widths

by 10 % to improve agreement with experiment.

2.2. Nuclear motion

Our treatment of vibrational excitation by low-energy electron impact follows the

general formulation given in the refs. [8, 25]. At low energies the cross section is

dominated by negative ion resonance contributions, that is the incident electron is

temporarily captured by the molecule and a negative intermediate state occurs, then

the resonant state decays into a new state. In this paper, process (1) is described

within the framework of the local-complex-potential (LCP) model [26, 27, 28], that is

an approximation to the more general non–local theory, which is appropiate when the

resonance width is much larger than the spacing between the target vibrational levels (for

CO ∼ 0.1 eV). In general the resonance width depends on the energy as well as on the

internuclear distance, Γ(E,R); the LCP approximation replaces this energy-dependence

with the value E(R), the fixed-nuclei resonance energy [29]:

Γ(E,R) ≈ Γ(E(R), R) = Γ(R) . (2)

In the following all dynamical quantities are understood energy-independent.

In the LCP approach the electron-molecule cross section, in the rest frame of the

molecule for vibrational transition vi → vf and for an incident electron with energy ǫi,

is given by [8]:

σif (ǫi) =
16 π4me

ℏ2
g
kf
ki

|〈χf |V|ξ〉|2 , (3)

where me is the electron mass and g = 2 is a statistical factor. k2
i(f) = 2me ǫi(f)/ℏ

2 is the

incoming (outgoing) electron momenta, ξ(R), depending on the internuclear distance

R, is the solution of the nuclear wave equation of the negative ion, with total energy

E = ǫi + ǫvi ,
(

TJ + V − +∆− i

2
Γ−E

)

ξ(R) = −V χi(R) , (4)

and χi(f)(R) is the initial (final) vibrational eigenfunctions of the neutral molecule with

eigenvalue ǫvi(f) , given by the equation:

(TJ + V0)χn(R) = ǫvn χn(R) . (5)
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The kinetic energy operator, TJ(R), including the centrifugal potential, is expressed as

TJ(R) = − ℏ
2

2µ

d2

dR2
+

J(J + 1)ℏ2

2µR2
, (6)

where µ is the nuclei reduced mass and J the angular momentum quantum number

of the target molecule. The adiabatic potentials of the target and resonant electronic

states, V0(R) and V −(R), have been represented by a Morse function:

V (R) = De

[

1− e−α(R−Re)
]2

+W . (7)

In the LCP model, the discrete–state–continuum coupling potential V is expressed

as:

V2(R) =
1

2π

Γ(R)

k(R)
, (8)

where k(R) is defined by

k2(R) =
2m

ℏ2

∣

∣V − − V0

∣

∣ . (9)

The level shift operator ∆(R) and the resonance width Γ(R) are discussed in the next

section.

Once the collision cross section σif and the electron energy distribution are known,

the vibrational excitation rate coefficient Kif can be evaluate. Assuming that the

electron energy distribution is Maxwellian, the rate coefficient can be expressed, as

a function of the electron temperature T , as:

Kif(T ) =
2√
π
(κT )−1.5

∫

∞

ǫth

ǫ σif (ǫ) e
−ǫ/κT dǫ , (10)

where κ is the Boltzmann constant and ǫth = vf − vi is the threshold energy for the

process i → f .

3. Results

The ground state of the potential energy curve for carbon monoxide CO(X 1Σ+) was

calculated using Molpro [30] and an aug-cc-pwCV5Z GTO basis in a Davidson-corrected

Multi-Reference Configuration Interaction (MRCI) calculation. The calculated points

have been fitted with a Morse function and the parameters are displayed in Table 1,

compared with those of different authors. The CO−(2Π) potential curve was taken

from the R-Matrix described above up to the crossing point with the CO potential at

R = 2.6 a0; at longer bondlengths a Molpro calculation was used to extend the curve

to its asymptotic limit. This curve matched the resonance curve at the crossing point.

The resonance potential was made to reflect the true shape of the CO potential energy

curve by using resonances energies relative to our calculated target curve rather than

the HF curve used in the calculations. Our curves give an asymptotic electron affinity

of 1.43 eV, close to the observed oxygen atom electron affinity of 1.46 eV [31]. It is

important to get these details correct as the vibrational excitation cross sections are

very sensitive to the relative positions of the CO and CO− curves. Fig. 1 shows in
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CO(X1Σ+) CO−(2Π)

This work Theory [32] Exp. [33] This work Theory [16]

De (eV) 11.26 11.19 11.22 9.76 -

Re (a.u.) 2.13 2.13 2.13 2.30 2.25

W (eV) 0 - - 1.49 -

Table 1. Dissociation energy (De), equilibrium distance (Re) and minimum position

(W ) for the CO and CO− Morse-like parameters of Eq. (7), compared with those of

different authors.
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Figure 1. Left: CO and CO− potential energy curves. Right: CO ground state

potential energy curves including the rotational contribution coming from different

values of the rotational angular momentum, J , as indicated in the figure.

the left panel the obtained CO and CO− potential energy curves as a function of the

internuclear distance. The CO(X 1Σ+) ground state has been found to support 81

vibrational states. The righthand panel of Fig. 1 shows curves representing the ground

state potential energies plus the angular contribution coming from different rotational

states (J = 0, J = 100, and J = 200).

The resonance width, Γ(R), has been fitted with a polynomial function,

Γ(R) = (c1 + c2R + c3R
2 + c4R

3 + c5R
4) θ

[

V −(R)− V0(R)
]

, (11)

where c1 = −302.66 eV, c2 = 635.8 eV/a0, c3 = −480.06 eV/a20, c4 = 156.9 eV/a30,

c5 = −18.88 eV/a40; θ is the step function. This fit and the calculated results are

displayed in Fig. 2. In the local version of complex-potential model is not possible to

calculate the level shift ∆(R) from first principles (this requires Γ(E,R)). In the LCP

approach the level shift is therefore treated a phenomenological parameter external to

the model. We use this degree of freedom to match correctly the position of the peaks

using the 0 → 1 and 0 → 2 cross sections of Allan [13]. Moreover we scale the width

Γ(R) to correctly reproduce the experimental height of the main peaks. In practice

Γ(R) was multiplied by 1.1 and the ∆ parameter was set to 0.035 eV. Fig. 3 compares

our ab initio cross sections and the final results.

Fig. 3 compares our vibrational excitation cross sections for transition starting

from the lowest vibrational level (vi = 0), with the measurements of Allan [13] and

the previous ab initio predictions of Morgan [16]. It can be seen that the agreement
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Figure 2. Resonance width, Γ(R), as a function of bondlength. The figure shows the

the R-matrix points and the fitting curve given by Eq. (11.)
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Figure 3. e-CO resonant cross sections compared with the experimental results of

Allan [13] and the theoretical R-matrix calculation of Morgan [16].

between the three studies is very good for the lower vibrational levels. The discrepancy

for high-lying levels, as shown by 0 → 10 even when the experimental error of 20% is

taken into account, suggests a full non-local model and an energy-dependant widths, Γ,

are needed for these states. However, we note that the cross sections for these extreme

excitations are very small.



Resonant VE electron–CO cross sections 8

0®01®1

2®2

3®3

4®4

5®5

0 1 2 3 4
0

5

10

15

20

25

Electron energy HeVL

C
ro

ss
se

ct
io

n
HÞ

2
L

0®0

10

20

30
40

50

60

70

0 1 2 3 4

0.01

0.1

1

10

Electron energy HeVL

C
ro

ss
se

ct
io

n
HÞ

2
L

1®1

1®5

1®10
1®15

1®20
1®25

0 2 4 6 8 10

10-10

10-8

10-6

10-4

0.01

1

Electron energy HeVL

C
ro

ss
se

ct
io

n
HÞ

2
L

10®10

10®15
10®20

10®30
10®25

10®40

0 2 4 6 8 10
10-9

10-7

10-5

0.001

0.1

Electron energy HeVL

C
ro

ss
se

ct
io

n
HÞ

2
L

Figure 4. e-CO resonant cross sections as a function of the incident electron energy.

Upper panels: elastic processes involving the vi = vf vibrational levels, as indicated

in the figures. Lower panels: vi → vf processes starting from vi = 1 (left), vi = 10

(right) and vf ≥ vi.

Having developed a satisfactory model for electron impact vibrational excitation of

CO we apply it to the whole range of vibrational states supported by the CO molecule.

Figure 4 gives sample results showing that the excitation cross sections are strongly

state dependent.

Fig. 5 shows the rate coefficients for the inelastic transitions vi → vf , calculated

from Eq. (10) assuming a Maxwellian electron energy distribution function. The left

panel of this figure illustrates the behavior of the rate coefficients for the inelastic

processes starting from the level vi = 0. The decrease of the rates with vf can be

attributed to the reduction in the corresponding cross sections, as is seen in Fig. 3.

Analogous behavior is observed in the right panel, where the rates for vibrational

excitations starting from vi = 10 are shown.

We have also tested the effect of including rotational motion in the calculation.

Figs. 6 and 7 show, respectively, some examples of cross sections and rates coefficients

for different values of the angular momentum quantum number J . For cool CO samples,

which only probe low-lying rotational states, the effect of including rotational motion

is small. However for hot samples of CO, which occupy highly excited J states, the

magnitude, structure and position of the resonance enhanced excitation cross section

changes significantly with rotational excitation.
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Figure 5. e-CO resonant vibrational-inelastic excitation rate coefficients for the

processes 0 → vf (left panel) and 10 → vf (right panel).
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Figure 6. e-CO resonant vibrational excitation cross sections calculated for different

values of J .

4. Summary

The aim of this work is to provide electron impact excitation cross sections and rate

coefficients of CO for modeling purposes. The theoretical cross section calculations

have been performed in the framework of the local complex potential model for resonant

collisions while the input parameters, adiabatic potential energies and widths, have been

computed by the R-matrix method. The results obtained are in good agreement with

the existing experimental and theoretical data.

A full set of cross sections and state-dependent rates can be obtained from [34].
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Figure 7. Rate coefficients as a function of the electron temperature for e-CO elastic

scattering calculated for J = 0, 100 and 200.
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[15] J. C. Gibson, L. A. Morgan, R. J. Gulley, M. J. Brunger, C. T. Bundschu and S. J. Buckman, J.

Phys. B: At. Mol. Opt. Phys., 29:3197, 1996.

[16] L. A. Morgan. J. Phys. B: At. Mol. Opt. Phys., 24:4649, 1991.

[17] L A Morgan and J Tennyson. J. Phys. B: At. Mol. Opt. Phys., 26:2429, 1993.



Resonant VE electron–CO cross sections 11

[18] J. Tennyson. Phys. Rep., 491:29–76, 2010.

[19] P. G. Burke. R-Matrix Theory of Atomic Collisions: Application to Atomic, Molecular and Optical

Processes. Springer, 2011.

[20] L. A. Morgan, J. Tennyson, and C. J. Gillan. Computer Phys. Comms., 114:120–128, 1998.

[21] K Kirby-Docken and B Liu. J. Chem. Phys., 66:4309–4316, 1977.

[22] J. Tennyson, P. G. Burke, and K. A. Berrington. Computer Phys. Comms., 47:207–212, 1987.

[23] J. Tennyson and C. J. Noble. Computer Phys. Comms., 33:421–424, 1984.

[24] S. Salvini, P. G. Burke, and C. J. Noble. J. Phys. B: At. Mol. Phys., 17:2549, 1984.

[25] W. Domcke. Phys. Rep., 208:97 – 188, 1991.
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