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Abstract

This doctoral dissertation is concerned with the study of quantum dynamics

where finite dimensional systems (typically two-level ‘qubits’) interact with or

through a set of bosonic modes, in various different configurations. Our main fo-

cus is on identifying and investigating signatures of quantum coherence emerging

between the qubits in such dynamical situations.

We first present a toy model where two qubits are encoded in the single-excitation

subspace of the global system and study the average fidelity of a controlled-Z (CZ)

quantum gate mediated by the bosonic modes.

Next, we turn to analytically intractable spin-boson like models, by adopting the

Multi-configurational Ehrenfest (MCE) method. We apply MCE to the study of

the Choi fidelity of a CZ gate between two distant qubits, mediated by sets of

bosonic modes (including sets which represent discretization of bath’s continua)

under different coupling Hamiltonians. The testing of the MCE method is then

pushed further by a comparative analysis with full variational approaches and

adiabatic path integral techniques in a case of super-Ohmic spin-boson model.

Finally, we determine a general error bound applicable to most approximated

treatments of unitary quantum evolutions, and suitable to compare MCE with

other numerical techniques for the study of spin-boson dynamics.
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Chapter 1

Introduction and motivations

1.1 Quantum systems interacting with an envi-

ronment

1.1.1 The fundamental role of decoherence

Quantum coherence is the original resource and essence behind the emergence of

the intriguing features and promising applications of quantum theory in the areas

of computation [MAN00, LJL+10], communication, key distribution [GRTZ02],

sensing, biometrics, metrology [ECR+07, LCF07] and technology in general. To

implement quantum tasks, it is crucial to maintain coherence for sufficiently long

times. But the quantum system, which we are interested in, is almost impossible

to isolate from the uncontrollable environment. The interaction between the

quantum system and the environmental degrees of freedom plays a general and

fundamental role in physics, where it is the established mechanism to describe

decoherence (whereby the bath ‘drains’ quantum coherence out of the system)

[CL81], and even the transition to classicality in macroscopic systems [Zur91].

More specifically, interactions between controllable systems with small Hilbert

spaces and large environments comprising many bosonic degrees of freedom

11



1.1. Quantum systems interacting with an environment 12

(‘modes’) must be accounted for in a huge range of applications, in, e.g. solid

state quantum computing [FI07, SMSS06], quantum impurities [BCP08], quan-

tum chemistry and molecular dynamics, and the rising field of quantum biology

[MRLAG08, PH08, CDC+10, CCD+09].

Therefore, it is crucial to appreciate and correctly describe the role of the ubiqui-

tous environmental degrees of freedom [HPB02, Hor09]. Recent developments in

experimental technologies and interferometric techniques, enabling one to track

the behavior of quantum coherence by observable quantities in more and more

diverse systems (see, e.g., [CWW+10]), pushes further the need for effective ways

of modelling and understanding the effects of the (large) environment upon the

(small) quantum system.

1.1.2 Environment: bad or good?

It is commonly recognized that the effect of the environment is basically wash-

ing out quantum coherence from the system. In the classic view “à la Zurek”,

the environment induces a super-selection rule, by performing a kind of indirect

measurement of the system. Although the joint evolution of system and environ-

ment is a unitary transformation, such measurements are represented by a sum

of projectors which can not be represented by unitary operators. This induces

the decay of the phase relations between different quantum states of the system.

Hence, a vast amount of effort has been devoted to engineer solutions to suppress

or eliminate the decoherent impact of the environment employing, for example,

decoherence free subspaces [LCW98, ZR97], the quantum Zeno effect [MFZ+08],

or dynamical decoupling [GK06, FN07].

On the other hand, recent fascinating experiments [ECR+07, LCF07], in which

long-lived quantum coherence was observed, reveal that the environment may

play a constructive role to sustain certain coherent features and could even be

responsible for the optimised energy transfer in some photosynthetic systems.
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This evokes considerable interest to treat and understand the system-environment

interaction more carefully and accurately.

Moreover, the last ten years saw the birth and development of a substantial strand

within quantum information and solid state physics where the environmental de-

grees of freedom, which are ordinarily responsible of ‘dispersive’ dynamics – where

the quantum information of the system usually ‘disperses’ in the environment,

are instead seen as a medium through which coherent quantum effects can arise

[BDD+02, PH02, CVDC03, BFP03, STP06, CPA08, MNBF09]. The present the-

sis is an investigation along these lines: we will develop and apply techniques

to study the dispersive dynamics of quantum systems interacting with bosonic

environments, and identify relevant quantities to analyse the coherent signatures

of such dynamics.

1.2 Quantum environments

Understanding the interplay between a quantum system and its environment is

not straightforward, since the uncontrollable environment consists of a large num-

ber of degrees of freedom and how to model them well is a challenging question.

Due to the typical lack of knowledge of the detailed microscopic description of the

environment in most relevant situations, it is difficult to derive models capable

of reproducing the observed environmental influence.

The environment is often comprised of bosonic modes in condensed matter set-

tings like, for example, Bose-Einstein condensates coupled to atomic quantum

dots or, less exotically, phononic baths for lattice vibrations, ion traps (where

the vibrational normal modes in the ion traps constitute a phononic bath), op-

tical lattices (in several configurations, for example bosonic atoms can be seen

as a bosonic bath for ferminoc atoms in a Bose-Fermi mixture), quantum optics

(where any atom interacts dissipatively with bosonic light modes). In these cases

the environment, also termed the “bath”, is treated as a huge reservoir of many
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of harmonic oscillators (modes).

Furthermore, since the coupling of the system of interest with an individual mode

is inversely proportional to the mode volume, it is reasonably considered as a

linear coupling in the bosonic coordinate (a fact which had already been noted

by Lord Rayleigh upon studying the perturbative dynamics of material harmonic

oscillators). Though it is fairly weak for one individual mode, the collective

effects of a large number of modes upon the quantum system is not necessarily

weak and could be very strong [Eck09]. The linear coupling assumption is based

on the “dipole approximation” in Lamb-Dicke regime, and therefore it may break

down when the typical size of the system’s wave-function gets comparable to the

wavelength of the environmental field modes [Hor09]. For a critical view on the

role of linear couplings in system-bath interactions, see [Ali02].

The other typical option for a bath is a spin environment. For instance, in nu-

clear magnetic resonance experiments, localized electronic spin dephasing is dom-

inated by the interaction with a bath of lattice nuclear spins at low temperatures

[WDS06], which causes local spectral diffusion (where the electron spin resonance

frequency diffuses in frequency space) in the quantum system. We shall not deal

with spin baths in this dissertation, and will only refer to bosonic baths in the

following.

1.2.1 Spin-boson bath model

Let us consider a basic spin-bath interaction model where the bath is a set of

bosonic modes and the localised quantum system (‘spin’) is just a two-level system

[LCD+87, LCD+95].

The reason for considering a two-level spin system is mainly due to the fact that it

is obviously the simplest quantum system one can study. Besides, a great number

of interesting quantum systems can be restricted to a two-dimensional Hilbert

space and thus considered as effective two-state systems (‘qubits’, in the language
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of quantum information), and that qubits, quantum analogous of classical ‘bits’

are of great interest for quantum computation.

The whole spin-boson Hamiltonian Ĥ is typically comprised of three parts: the

bare spin Hamiltonian ĤS, the bath Hamiltonian ĤB, and interaction Ĥint be-

tween them (hereafter ~ = 1):

Ĥ = ĤS + ĤB + Ĥint , (1.1)

ĤS =
1

2
(εσ̂z −∆σ̂x) , (1.2)

ĤB =
N∑

j=1

1

2
(
p̂2
j

mj

+mjω
2
j x̂

2
j) , (1.3)

Ĥint =
N∑

j=1

Cjσ̂zx̂j , (1.4)

where ε is the bare tunneling bias, ∆ determines the tunneling between the two

levels at zero bias, σ̂x and σ̂z are Pauli matrices, such that [σ̂x, σ̂y] = iσ̂z/2, p̂j,

x̂j, mj, ωj are, respectively, the momentum operator, position operator, mass

and frequency of the jth bath’s bosonic mode, such that [x̂, p̂] = i. The coupling

with σ̂x and σ̂y may induce substantial physical effects. However, these effects

can be included in the model above by renormalizing the tunneling matrix ele-

ment ∆ and the bias σx. Therefore, in this respect, considering a coupling to

σ̂z only is not a restriction. Note also that, by a proper local canonical trans-

formation of the field modes [CL84], the linear coupling can be made to depend

on positions alone. It should be noted that, in most applications, the coupling

in the oscillator coordinates and/or momenta is linear only under the condition

that the coupling to any one environmental degree of freedom is sufficiently weak

[LCD+87, LCD+95, CL83].

For a bath at thermal equilibrium and represented by N modes, all the influence

of the environment of harmonic oscillators is fully encapsulated by a spectral

density function J(ω) given by [HPB02]

J(ω) =
π

2

N∑

j=1

C2
j

mjωj
δ(ωj − ω) , (1.5)
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which represents essentially the energy per unit of frequency of the bath and

from which we can get all the information on the distribution of frequencies and

couplings between the spin and environmental degrees of freedom.

For a continuum of modes, the J(ω) can usually be written as

J(ω) = 2παω1−s
c ωsΘ(ωc, ω) , (1.6)

where ωc is the so called ‘cut-off frequency’ of the bath, and Θ(ωc, ω) is a function

depending on ωc and ω. These spectral densities are classified into three different

categories: s > 1, s = 1, and s < 1, referring to the super-Ohmic, Ohmic and sub-

Ohmic bath respectively. The parameter α is a dimensionless quantity capturing

the strength of the system-bath interaction. Spectral functions corresponding to

different values of s lead to various physical behavior (including different Quan-

tum Phase Transitions) when associated to the spin-boson model. For example,

s = 3 is known to feature dephasing due to the coupling to acoustic phonons

[MN11, W9̈8]. It has also been shown by numerical and analytical approaches

that, depending on the value of s, the spin-boson model presents examples of

quantum phase transitions between a delocalized and a localized phase, where

the system freezes in one of the two accessible states [Eck09, CPHP11].

1.2.2 Interest of the spin-boson model

The spin-boson model is thus a good prototype to describe quantum tunneling

between quantum states linearly coupled with a bath of harmonic oscillators and

is capable of justifying a variety of dynamical effects [LCD+87, LCD+95, Wei08].

When the spectral density takes the form of a power law with an exponential

cutoff, the model is commonly applied to study dissipative dynamics in atomic

physics, condensed matter quantum information processing, and electron transfer

in biological molecules [GOA85, ME03, ME04].

From the theoretical viewpoint, it represents a rich paradigm to investigate the

crucial roles played by the environment: quantum phase transition between local-
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ized and delocalized phases, dissipation, and the quantum-to-classical transition.

Some examples of applications in experiments and experimental proposals in-

volve quantum impurity systems [LHDBH07], arrays of trapped ions [PMvDC08],

atomic dots coupled to a Bose-Einstein condensate bath [RFZ+05], mesoscopic

metal rings [TV06], and cold atoms [OSLH08].

Although intensive efforts have been devoted to the study of the model, there are

still interesting unexplored regimes like, for example, super-Ohmic regions where

the memory effects of slow baths could be prominent. The spin-boson model thus

provides one with width and wealth of applications, many of which are yet to be

investigated.

1.3 How to study the model

Even if one can describe the model reasonably well, only very few cases can be

studied analytically. The simplest of them, which however gives rise to a rather

uninteresting dynamics, is the one where the tunnelling parameter ∆ is set to

zero, such that σ̂z is a constant of motion and only the phases between the two

quantum states are affected by the environment.

In most cases, the model is impossible to solve analytically, and thus requires

either stringent approximations to be tackled, or efficient numerical approaches.

1.3.1 Approaches within the Born-Markov approximation

Several approaches at the model, like those based on the F́’orster resonance energy

transfer (FRET) theory [JNS04, JNS07] or Redfield equation [HMK05, SKS06,

WKvD04], work within the standard Born-Markov approximation.

The assumptions of this regime are twofold [HPB02]. First, the Born approxi-

mation is valid when the coupling between the system and the environment are

intrinsically weak and the influences of the system upon the environment is small,
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such that perturbation theory can be applied. Therefore, the time evolution of

the density matrix can be expanded to second order and the total system density

matrix can be considered as a tensor product of two parts up to terms of the first

order in the coupling Hamiltonian. Second, the Markov approximation implies

that the correlation time scale of the bath is much shorter than the relevant re-

laxation time of the quantum dynamics of the system of interest and thus the

environmental memory effects can be neglected, so that one typically ends up

with a master equation depending only on a first order time derivative of the

system’s density matrix.

Frequently, and especially at high frequencies, like in quantum optics, the rotating

wave approximation is also applied, whereby the counter-rotating terms of the

interaction Hamiltonian, which would not conserve the number of excitations, are

neglected. This guarantees a master equation in ‘Lindblad form’.

In many realistic situations, these assumptions may break down: for example,

in photosynthetic systems, the scale of the phonon characteristic relaxation time

seems to be quite long compared to the dynamics of interaction between chro-

mophores; and the perturbative treatment of the electron-phonon coupling is not

justified. In this situation, the Lindblad equation [OCLOJ08, YDS05] obtained

through a secular approximation does not include some relevant terms, resulting

in an unfair treatment of the chromophores and bath [HC10]. As well known,

the Markov approximation is only strictly satisfied if the environment is infinitely

large with a continuum of frequencies.

1.3.2 Beyond Born-Markov

As we see, non-perturbative and non-Markovian treatments of the system-

environment interaction are in much demand, and of significant challenge. This

stimulates and pushes numerical developments in the spin-boson arena, based

on quantum Monte Carlo techniques [EW92], real-time renormalization group

[KS01], numerical renormalisation group [ABV07, TBAN08], quasi-adiabatic
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path integrals [TGH01, MM95a, MM95b], numerical path integrals [TER+09,

BM82, NET10], and numerical hierarchy techniques [IF09b, TT10, IF09a], time-

adaptive density matrix renormalisation group treatments (t-DMRG) [DKSV04,

PCHP10], Iterative Linearized density matrix (ILDM) [HC10]. Analytic and

semi-analytic methods based on the ‘polaron transform’ have also been very suc-

cessful [Naz09, CPHP11].

Each approach possesses its own advantages and disadvantages. Quantum

Monte-Carlo, employing random sampling to solve the exponential increase of

the dimension of the Hilbert space with the number of degrees of freedom,

faces the difficulties of negative transition probabilities at low temperatures

[ZKAHD07, BLTV05], as well as problems in extracting the dynamical infor-

mation on the real frequency axis [EM94, V9̈8].

Numerical renormalisation group (NRG), numerical path integral, numerical hi-

erarchy techniques are all restricted to certain spectral densities of the bath, and

become less efficient when decreasing temperatures and facing complex internal

environmental dynamics. Quasi-adiabatic path integral (QUAPI) techniques are

particularly interesting, as they allow for the analytic integration of the field and,

by identifying an adiabatic propagator and non-adiabatic corrections to it, are

likely to perform particularly well at relatively long times.

The time-dependent density matrix renormalization group approach is applied to

the spin-boson model in two steps: first, by adopting a suitable description in

terms of special polynomials, the system is mapped onto linear chain (of bosons

and two-level systems). Then, the standard t-DMRG techniques are applied,

where the whole chain is divided into subsystems across links, and an adaptive

time-varying truncated basis is inferred from the Schmidt decomposition of the

density matrix [CHP11]. The basis states form a good representation of the

wave-function and keep them at low dimensionality.

The Polaron transformation (representation) [Naz09, JCRE08, Jan09] works by

displacing the bath oscillators depending on the system state, and allows one to
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analyse in terms of master equations a much broader range of parameters’ space

comparing to the original representation. It establishes a bridge from weak to

strong coupling regimes, although it is still subject to certain conditions on the

driving strength [MN10] (For instance, Coulombic energy transfer strength for

a donor-acceptor pair must not become the largest energy scale in the system

[MN11]).

It would be convenient to develop and test a numerical method capable of han-

dling various spin-boson like dynamics in a wide range of spectral densities and

other dynamical and thermodynamical parameters. With their extreme in-built

flexibility, variational approaches like the multi-configurational time-dependent

Hartree (MCTDH) method (see Chapter 3), along with the as of yet less tested

t-DMRG adaptation presented above, hold promise to become such an ultimate

tool for the study of spin-boson dynamics. In this thesis we will explore and test

another, in a sense ‘modified’, variational approach to the solution of the spin-

boson Schrödinger equation, that goes under the name of multi-configurational

Ehrenfest (MCE) [Sha09]. Our strategy will have the advantage of sharing many

of the typical advantages of the other variational approaches, while being at the

same time particularly light in terms of computational resources and relatively

easy to program.

1.4 Overview of the thesis

The structure of the thesis is as follows.

In Chapter 2, we conduct a preliminary study where we address a case of dis-

tributed quantum information processing: by adopting a particular qubit en-

coding configuration to restrict the whole system in the single-excitation Hilbert

space, we show that highly reliable Controlled-Z gates between the qubits could

be mediated by a discrete set of bosonic modes. In this case we will be able

to treat a somewhat ‘dispersive’ dynamics (in the sense that the quantum infor-
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mation could in principle be kept in the bosonic degrees of freedom, out of the

qubits’ reach) analytically.

In order to explore more generic and complex quantum systems, we then turn

to the ‘Multi-Configurational Ehrenfest’ (MCE) method, essentially based on the

adoption of time-dependent coherent states as a discrete ‘basis grid’ to represent

the degrees of freedom of the bath. The spirit and working equations of MCE are

laid out in Chapter 3. We then proceed to apply this method to distributed quan-

tum information processing (Chapter 4), but under much more general conditions

than in Chapter 2: we will study the Choi fidelity of an entangling quantum gate

between two two-level systems interacting through a set of bosonic modes (includ-

ing a discretized bath). Numerically converged signatures of quantum coherence

will thus be analysed in regimes beyond perturbation theory.

In the following chapter (5), a specific case of super-Ohmic single spin spin-

boson dynamics, in which the bath memory effects become important, is in-

vestigated by MCE. Our intention is benchmarking the MCE results against

two well-established numerical methods: multi-configurational time-dependent

Hartree (MCTDH) and Quasi-adiabatic path integrals (QUAPI). The agreement

between MCE and MCTDH/QUAPI is very convincing, and shows that MCE is

capable to cope well in certain challenging dynamical regimes.

Chapter 6 is dedicated to the mathematical analysis of the geometric error bound

on the 2-norm distance between the “true” state of the system and the state

we obtain by MCE. This part of our investigation is very general and does ac-

tually apply to most numerical approaches based on the direct solution of the

Schrödingier equation on states stored in finite ‘hard-disks’: in fact, and perhaps

most relevantly, it provides one with a heuristic recipe to compare the accuracy

of different numerical methods.

Finally, conclusions and future perspectives are given in Chapter 7.



Chapter 2

Coherent effects through the

single-excitation sector

2.1 Motivation

As explained in Chapter 1, coherence plays a vital role for both fundamental

quantum theory and quantum applications. Thus, it is of great relevance to

identify physical systems and operating regimes where coherent quantum ef-

fects are susceptible to emerge. A current paradigm for quantum information

processing is provided by two subsystems (qubits), where the information usu-

ally is stored, mediated by a bosonic field [CZ95, CZKM97, vEKCZ99, Pel97,

PHBK99, RNO+99, ZG00, LDM+03, CPGP03, Zhe04, ZZG05, SMB06, BP06,

YL07, YZZ08, YZ08, Kim08, YYSZ10]. This is a building block for applications

in cavity QED [Pel97, SMB06], ion traps [CZ95], for the explanation of energy

transfer in biological system [FNOC10], and in several other settings.

We shall refer to the space where the mediating bosonic modes reside as a “fiber”.

Usually, only one of the bosonic fiber modes, or a selected few, is investigated.

This assumption is reasonable if the frequency spacing in the fiber is very large

and the experimental control is rigorous. However, in practice, more than one

22
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mediating mode exists, if the fiber is too long or redundant environmental bosonic

modes enter the dynamics. Therefore, the effects of this sort of modes should

be taken into account as well. This Chapter launches our investigation into

the conditions allowing for coherent quantum effects to take place between two

qubits interacting through a set of bosonic field modes [YYZS10]. Note that, in

practice, our qubits could be two-level impurities interacting with the same band

of a photonic crystal [YYX+11, JJWM08, LFvDN+04], the internal levels of two

ions interacting through the vibrational modes of an array of ions in a linear trap

[PMvDC08, DP12] , or even superconducting or solid-state qubits interacting

through microwave radiation.

As a signature of coherence, the fidelity of a quantum controlled-z (CZ) gate

between the two qubits is employed. The reason for choosing a CZ gate is that

it is capable of generating maximal entanglement, and would allow for a univer-

sal set of quantum gate operations if supplemented with single-qubit operations

[BDD+02]. This is central to the long-term objective of realising “distributed

quantum computation” [CZ95, CEHM99], and could also be a way to realize

multipartite entangled states for one-way quantum computing [RB01]. More

generally, distributed computation is appealing because it would let us address

individual particles (qubits) more flexibly and avoid, or at least control, unwanted

interactions due to their proximity.

2.2 The prototype

As shown in Fig. 2.1a, the prototype we will address comprises two distant qubits

trapped in two remote optical microcavities, linked by an optical fiber. This

might represent two atoms or ions trapped in microfabricated optical cavities

coupling to a common integrated optical fiber [TGD+07, KSP+11]. It should be

emphasized that, however, by transforming to normal modes of the cavities and

fiber, the prototype could be applied to more generic systems (where two qubits
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(a) Prototype

e
k

g
k

s
k

(b) Level configuration

Figure 2.1: (a)The prototype: two remote nodes, wherein atoms are trapped,

are linked by a medium containing many bosonic modes at different frequencies;

(b)The level configuration of the two qubits (k = 1, 2). Notice that level |s〉1 does

not play any role in our scheme. Level |e〉2, instead, enters the dynamics but is

not used to encode any quantum information.

are directly mediated by a set of bosonic modes without two interfacing cavity

fields).

In our study, we have to face two main difficulties. On the one hand, we have

to deal with the customary computational difficulty of describing a many-body

quantum system. On the other hand, we want to identify a situation where a

controlled entangling quantum gate can be mediated by several degrees of free-

dom, so that we have to find a way to reduce the effects of dispersion through

such a medium.

Both these issues will be solved by encoding the two qubits asymmetrically – i.e.,

differently in the two sites – in one excited state and two kinds of ground states,

following a strategy introduced in Ref. [YWSZ09] and shown in Fig. 2.1b. In

the first cavity, labelled by 1, the qubit is encoded in the ground state |g〉1 and

in the excited state |e〉1, which are coupled to each other via the cavity mode,

by a rotating-wave Hamiltonian. In the second cavity, labelled by 2, the ground

state |g〉2 is also coupled to the excited state |e〉2, but the qubit is encoded in the

ground states |g〉2 and |s〉2, and the latter is not coupled to any state and does not

evolve at all in the dynamics we consider. This configuration allows us to study

the realisation of the CZ gate by restricting to the single excitation subspace,

thus both reducing the computational effort required – if N is the number of
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mediating modes, the size of the relevant Hilbert subspace only scales like N –

and limiting the dispersive effect of the modes. Note that such a simple level

structure can in principle be reproduced in non-atomic qubits as well.

We shall assume the cavity fields a1 and a2 to be at resonance with the atomic

transitions, so that the rotating-wave approximation holds, and shall have them

interacting with N modes of the “fibre” at different frequencies. In the frame

rotating at the cavity frequency, the total Hamiltonian of the system is then

Ĥ =
N∑

j=1

∆wjb
†
jbj +

(
2∑

k=1

gkak | e〉k〈g |k +h.c.

)
+

(
k=2,j=N∑

k=1,j=1

vkbja
†
k + h.c.

)
, (2.1)

where ∆wj is the frequency difference between the kth mediating mode and the

cavity mode, a†k (ak) and b†j(bj) are the creation (annihilation) operators for the

cavity modes and the fibre modes, respectively, vk denotes the coupling strength

between the mode of cavity k and the mediating modes (possibly including a

phase), and gk represents the coupling strength between atom and field in cavity

k. Note that the fibre-cavities couplings depend on the cavity but are assumed

to be the same for all the fibre modes. The emphasis in our analysis is rather on

the effect of the detunings ∆wj of the fibre modes.

Also, we will consider both losses of the cavities and fibre and spontaneous emis-

sion from the atoms (by far the main sources of decoherence at optical frequen-

cies), so that our dynamics is governed by the master equation

ρ̇ = −i[Ĥ, ρ] + κ

2∑

k=1

L[ak]ρ+ γ

2∑

k=1

L[σ−]ρ+ Γ
N∑

j=1

L[bk]ρ , (2.2)

where L[ô] = 2ôρô† − ô†ôρ − ρô†ô is for operator ô, and γ, κ and Γ are the

atomic spontaneous emission rate and the loss rates of the cavities – assumed,

for simplicity, to be identical – and of the fibre, respectively.

2.2.1 Haar measure average

In order to check the reliability of the controlled phase gate, we want to identify

a figure of merit which is independent from the specific initial state, and thus
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represents a property of the dynamics itself.

This can be done by averaging the quantum fidelity between the evolved qubit

density matrix and the desired CZ output, over all possible initial state. Such a

process of average requires one to define a measure over the space of two qubit

states. For such tasks, it is very natural to assume the Haar measure which,

although lacking a clear operational meaning, is invariant under the unitary op-

erations. We will hence consider the generic input state of two qubits

| Ψ〉in = α | e〉1 | g〉2 + β | e〉1 | s〉2 + γ | g〉1 | g〉2 + δ | g〉1 | s〉2 , (2.3)

where α, β, γ and δ are distributed according to the Haar measure of U(4) (that

is, as resulting from the application of a random Haar-distributed unitary on

any fixed normalised state). The Haar measure is defined as the measure which

is invariant under both left and right multiplication by any unitary transforma-

tion. A distribution borrowed from the Haar measure is a natural choice for

pure quantum states if one does not want to privilege any specific direction in

the Hilbert space, and hence for testing the average fidelity of a given quantum

operation, as is the case here. The desired, ideal output state |Ψ〉out of the CZ

gate, corresponding to the input state |Ψ〉in, is

| Ψ〉out = α | e〉1 | g〉2 − β | e〉1 | s〉2 + γ | g〉1 | g〉2 + δ | g〉1 | s〉2 , (2.4)

where the phase flips only for the state | e〉1 | s〉2. Clearly, of the four superposed

states defining |Ψ〉in, only |e〉1|g〉2 and |e〉1|s〉2 evolve, which further simplifies our

task (besides the fact that only the single excitation subspace is involved).

It is therefore straightforward to integrate Eq. (2.2) obtaining the final state %(t)

of the system given the initial state |Ψ〉in|0〉f , and to evaluate the Haar average

of the fidelity:

F̄ =

∫

Haar

〈Ψ |out Trf [%(t)] |Ψ〉out d|Ψ〉in , (2.5)

where the notation
∫
Haar

d|Ψ〉in loosely refers to the fact that integration is car-

ried over Haar-distributed input states, and Trf stands for the trace over the
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field’s degrees of freedom. In practice, this integral has been carried out by sam-

pling the input states according to the Haar distribution and by averaging the

resulting fidelity [CS06], with respect to the Haar measure on unitary group.

Samples of 200 points turned out to give reliable estimates, in that the average

fidelity at the first two significant figures would not change by increasing the sam-

ple’s size. Henceforth, we will always report fidelities at two decimal figures. For

some finer comparisons, we improved our sensitivity by increasing the integration

samples. In these cases as well we will limit ourselves to two decimal digits, and

will just qualitatively point out the configurations providing higher fidelities.

2.3 Results: Controlled coherent evolutions

We will study now the approximate realization of the CZ gate as detailed in the

previous section, in several different situations, mainly varying the number N of

fibre modes and their detuning with respect to the cavity modes. All the results

obtained are summarized at the end of the section.

Hereafter, we refer to the fibre mode resonant with the atomic transition between

|e〉k and |g〉k as the ‘central resonant mode’. In order to find regimes with high

average gate fidelity, we set g1 = v1 = g, while changing g2, v2 and the interaction

time t. To make comparisons more clear, we define two dimensional parameters

δg = (g2 − g)/g and δv = (v2 − g)/g.

2.3.1 Two mediating modes: the minimum gap

Initially, all the field modes including the cavity and mediating modes are as-

sumed to be in the vacuum state |0〉f . To study coherent effects resulting from

the competition of multiple mediating modes, we start from the case of having

only two mediating modes, with the same absolute detuning ∆ with respect to the

frequency of the central resonant mode. Fig. 2.2 shows the average gate fidelities

F̄ for different detunings at a time where the first peak in fidelity is achieved.



2.3. Results: Controlled coherent evolutions 28

0. 2

0.1

0

0. 1

0.  2

0.3
3

0.  5

1

1.  5

2

0.  9

0.92

0.94

0.96

0.98

 

X: 0
Y: 0.9

Z: 0.9781

 

 

0.91

0.92

0.93

0.94

0.95

0.96

0.97

(b)

gδ δv

F

-
-  0. 2

0.1

0

0. 1

0. 2

0. 3

0. 5

1

1. 5

2

0.88

0.9

0.92

0.94

0.96

 

X: 
Y: 0.9

Z: 0.9574

 

0.89

0. 9

0.91

0.92

0.93

0.94

0.95

(c)

0

gδ δv

F

-
-

 

  0.  2

0.1

0

0. 1

0.  2

0.3
3

0.  5 

1

1.  5

2

0.  9

0.92

0.94

0.96

0.98

1

 

X: 0
Y: 0.  9

Z: 0.9902

 

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

(a)

gδ
δv

F

-
-

Figure 2.2: The average gate fidelity F for two detuned modes versus δg and δv,

not taking losses into account, for (a): ∆ = 0.1g and gt = 4.6, (b) ∆ = 0.2g and

gt = 4.56, (c) ∆ = 0.3g and gt = 4.54.

Clearly, F̄ decreases as the detuning ∆ increases, since the two fibre modes be-

come more and more off-resonant. For instance, at the peaks, F̄ is 0.99, 0.98 and

0.96 for ∆/g = 0.1, 0.2, 0.3, respectively. To put these fidelities into some context,

let us mention that, depending on the noise and on the affordable computational

overhead, error thresholds between 10−4 and 10−2 are believed to be required to

achieve fault-tolerant quantum computation [Ste03, Kni05, RH07, Rei09].

Typically, when ∆ reaches 0.45g, and the gap between the two modes becomes

comparable to the interaction strength g, the average gate fidelity F̄ drops to 0.90.

As a reference, we will say that 0.9g is the “minimum gap”, within which “high

fidelity” (90%) can still be recovered with two mediating off-resonant modes. In a

cavity QED implementation with g ' 1 GHz, this gap would correspond to a fibre

length l of around one meter, since the spacing of two neighbouring mediating

modes is approximately cπ/l ' 109 Hz m/l.

As shown in Fig. 2.3, F̄ decreases by around 4%, when losses are included for γ =

κ = Γ = 10−2g. Further numerical analysis showed that for γ = κ = Γ = 10−3g,

the optimal fidelities decrease by around 0.5%. These findings are in agreement

with previous studies [SMB06] arguing that, for nearly resonant couplings like the

present one, average fidelities are virtually unaffected for loss to coupling strengths

ratios around 10−4, are only slightly affected for ratios around 10−3, and start
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Figure 2.3: The average gate fidelity F for two detuned modes versus δg and δv

for loss rates γ = κ = Γ = 10−2g, and for ∆ = 0.1g and gt = 4.6 (a), ∆ = 0.2g

and gt = 4.56 (b), and ∆ = 0.3g and gt = 4.54 (c).

to affect the fidelity significantly – between 1 and 10% – when such ratios reach

10−2. Of course, observing nearly ideal levels of coherence requires a high degree

of isolation. However, notice that a quantum CZ gate implemented with a fidelity

of 85% would still be a remarkable signature of quantum coherence, implying the

creation of substantial entanglement and of coherent off-diagonal elements in the

density matrix of the two qubits.

A note about the degree of stability of the gates obtained is also in order here:

a variation of the order of 0.1 in the parameters δg and δv, corresponding to

a variation of about 10% in the coupling strengths, leads to a decrease in the

gate fidelity of around 1%. The same degree of sensitivity occurs with respect to

fluctuations in the interaction times. Notice that, while achieving a lower peak

in fidelity, the performance of more off-resonant modes (∆ = 0.3g in the figures)

is slightly less sensitive to imperfections, as evident from Fig. 2.2.

2.3.2 Increasing number of mediating modes

Let us now consider the case of a larger number of mediating modes. Fig. 2.4

(a) shows the case of 31 mediating modes, with frequencies equally and symmet-

rically spaced around the central resonant mode and filling the minimum gap.

At the peak, a remarkable average fidelity F̄ = 0.99 can still be achieved: the



2.3. Results: Controlled coherent evolutions 30

 0.1

0
0. 1

0. 2

0.3

0.  7

0.  8

0.  9
1

1. 1

0.94

0.96

0.98

1

 

X: 0.1
Y: 0.  9

Z: 0.9938

 
0.96

0.965

0.97

0.975

0.98

0.985

0.99

(b)
δv

0.1

0

0. 1

0. 2

0. 3

0.  7
0.  8

0.  9
1

1.  1

0.94

0.96

0.98

1

 

X: 0.  1
Y: 0.  9

Z: 0.9943

 
 

0.96

0.965

0.97

0.975

0.98

0.985

0.99

(a)
-

F

δvgδ -
gδ

F

Figure 2.4: The average gate fidelity F̄ for a set of equally spaced mediating

modes within the minimum gap ∆ = 0.45g versus δg and δv at the time 4.3g−1,

without considering losses. In (a) 31 modes are considered; in (b) the central

resonant mode has been removed.

competition between the distinct modes, which could favour the ‘dispersion’ of

the coherence, is clearly canceled out at optimal times for such a configurations of

closely packed, nearly resonant modes. In the cavity QED model, for g ' 1 GHz,

the spacing considered here (0.03g) would correspond to a fibre of approximately

30 m: in principle, very long resonators can still mediate quantum evolutions

coherently. In Fig. 2.4 (b) the same case without the central resonant mode

is depicted: at the peak, the average fidelity drops very slightly but is still well

above 0.99, which proves that the coherent evolution mediated by these 31 modes

is not an effect due to the presence of the central resonant mode. Nor is this high

fidelity a consequence of the symmetric distribution of the modes around the

central resonant frequency: this has been directly tested by shifting all the fre-

quencies of the mediating modes and does not produce any significant alteration

in the maximal average fidelity, as apparent from Fig. 2.8.

To evaluate the influence of the modes very close to resonance with the cavity

frequencies, we now turn to cases where the set of mediating modes are all outside

the ‘minimum gap’. In Fig.2.5 (b), 32 equally spaced modes are considered: half

of them spans the range between 0.45g and 0.9g, while the other half spans the
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Figure 2.5: The average gate fidelity F̄ for equally spaced modes outside the

minimum gap, with detuning ranging from 0.45g to 0.9g, and from −0.45g to

−0.9g versus δg, at the time 4.48g−1, without considering losses. In (b), 32

modes are considered; in (a), a 33rd mode has been added, at the central resonant

frequency.
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Figure 2.6: Average gate fidelity F for equally spaced modes outside the minimum

gap, with detuning raging from 0.45g to 0.9g, and from −0.45g to −0.9g, at the

time 4.48g−1, considering loss rates γ = κ = Γ = 10−2g. (a) A 33rd mode has

been added, at the central resonant frequency; (b) 32 modes are considered.

range between −0.45g and −0.9g. Even in such an off-resonant configuration, a

maximum average fidelity of 0.98 can be achieved. This is a non-trivial finding,

mostly if compared to the – much lower – fidelity achievable with only two modes

with frequencies at the minimum gap (which is about 0.9). In this case, more

modes, and farther off from resonance, allow one to achieve a better performance

in terms of mediated quantum coherence. This is therefore a remarkable instance
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Figure 2.7: Average gate fidelity F for 16 equally spaced mediating modes outside

the minimum gap, with detuning ranging from 0.45g to 0.9g at the time 4.48 g−1.

No losses are considered in (a), while loss rates γ = κ = Γ = 10−2g are introduced

in (b).

where the cooperation between the mediating modes prevails over their competi-

tion, and their effect could hence be harnessed to implement distributed coherent

quantum evolutions. Fig. 2.5 (a) confirms that the addition of the central res-

onant mode has only a relatively modest impact on the maximal fidelity (which

raises slightly but is still essentially 0.98).

Fig. 2.6 displays the effect of losses on the optimal average fidelity: for decay

rates γ = κ = Γ = 10−2g, the average gate fidelity F̄ drops from around 0.98 to

around 0.94. Concerning decoherence, the resilience of many modes seems to be

comparable to that of few mediating modes.

Finally, in Fig. 2.7, the case of 16 modes with detuning ranging from 0.45g to

0.9g is considered. The results are very similar to the cases of 32 and 33 symmet-

rically detuned modes (including center resonant mode), in the same regime and

interaction time. At the peak, the average gate fidelity is 0.99. Such a fidelity is

reduced to 0.95 when losses with γ = κ = Γ = 10−2g are taken into account [see

Fig. 2.7 (b)].

The situations addressed above, where finite regions of frequencies are not pop-

ulated, although of clear theoretical interest in the context of our study, might

seem rather artificial in practice. However, even for bosonic fields, such situations
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Figure 2.8: Average gate fidelity F versus time for δg = 0.9 and δv = 0, when

the frequency spacing is kept constant but the centre of the set of frequencies

is shifted. (a) The frequency difference between neighbouring modes is 0.2g and

the central frequency is shifted from 0 to 0.1g; the curves at the highest peak

refer to two mediating modes, while the two curves at the lowest peak refer to

30 mediating modes. (b) The frequency difference between neighbouring modes

is 0.9g and the central frequency is shifted from 0 to 0.45g; the curves at the

highest peak refer to two modes, while the two curves at the lowest peak refer

to 30 modes. Notice that, mostly around the peaks, the curves are essentially

indistinguishable from each other.

could be of relevance in systems like photonic crystals, where photonic bandgaps

arise for properly modulated refractive indexes [JJWM08].

2.3.3 ‘Many’ mediating modes

Raising the number of mediating modes to 100, one can see from Fig.2.9 (a) that

very high fidelities can be obtained, still above 0.99, if all the modes are taken

within the minimum gap, which is promptly explained by the presence of a large

number of modes very close to resonance. More interestingly, in Fig. 2.9 (b) we
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Figure 2.9: Average gate fidelity F for a set of 100 equally spaced mediating

modes versus δg and δv at the time 4.3g−1, without considering losses. (a) Modes

are within the minimum gap, with detuning ∆ from −0.45g to 0.45g. (b) Modes

have detuning ∆ ranging from −1.5g to 1.5g; this plot depicts the same case of

Fig. 2.4(b) but with the additional 70 modes outside the minimum gap.

have reconsidered the situation of Fig. 2.4 (b), by adding to it 35 modes in each

direction with respect to the central resonant frequency. These additional modes

would of course be present in the realistic modelling of a 300 m long fibre, and

could approximately account for the whole field resonating in the fibre (as the

effect of more and more off-resonant modes can be considered to be very small).

In this case as well, the optimal average fidelity has been found to be well above

99%.

As for the stability of the quantum operations in the face of imperfections, a

comparative analysis of the plots shows that a larger number of modes grant

flatter and flatter fidelity peaks [compare, in particular, the two peaks of Fig.

2.8(a-b)]. So, while the fidelity obtained is slightly lower, the stability allowed by

many mediating modes is higher than that of two, or even one [SMB06], mediating

modes (it can be inferred from Fig. 2.9 that, for 100 modes, a 10% variation in

the coupling strengths leaves the fidelity practically unchanged at two decimal

figures).
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2.4 Summary of results and conclusions

Summing up, in this study we have shown that:

• for only two mediating fibre modes, the optimal average fidelity F̄ of a

CZ decreases relatively rapidly with increasing gap between the modes,

plummeting to 0.9 for a gap equal to 0.9g (where g is a reference value for

the atom-cavity and cavity-fibre couplings);

• increasing the number N of mediating modes, one can still achieve highly

reliable gates. For N ' 100, F̄ ' 0.99. This is the case regardless of the

symmetry of the frequency spacing of the mediating modes with respect to

the central resonant mode, and of the presence of a mode at resonance with

the cavities;

• nearly perfect gates (F̄ ' 0.98 for N ' 30) can even be obtained for off-

resonant interacting modes. In this case, a large number of modes actually

outperforms fewer modes;

• loss rates around 10−3g are necessary to operate such gates in perfect con-

ditions (to all practical purposes); however, even rates around 10−2g allow

for coherent effects to emerge (and entanglement to be generated);

• for two mediating modes, imperfections of the order of 10% in the coupling

strengths or interaction times affect the resulting fidelity by approximately

one percent; this stability improves for increasing number of modes, and

the fidelity is virtually unchanged for imperfections around 10% and 100

mediating modes.

Hence, we gathered evidence that coherent evolutions can be mediated by a rela-

tively large number of bosonic modes, if appropriate qubit encoding are utilized

and decay rates kept at bay. In practice, this indicates that distributed quantum

information processing could be potentially achieved even if the fibers are “very
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long”.1 The collective effects of multiple mediating modes populating particu-

lar frequency configurations are remarkable, and sometimes even challenge the

notion that fewer modes lead to less dispersion.

Furthermore, the present model could be extended to multiple qubits: initially,

all the qubits could be prepared in ground states and the interaction between

the qubits and cavity modes could be frozen by keeping the transition between

the excited state |e〉 and ground state |g〉 highly detuned from the cavity mode.

Next, addressable controlled-z gates could be implemented by first exciting the

control qubit to |e〉, and then setting the transitions of the two qubits involved at

resonance with the cavity mode by applying a Stark shift through a non-resonant

strong classical laser.

Clearly, though, what we studied in this chapter is essentially a toy model, based

on a rather artificial encoding, which is arguably not directly relevant to funda-

mental studies. Also, finite temperatures were not considered, thus restricting

our scope basically to quantum optics. To treat more general situations, we need

more powerful techniques: in the next chapter, a versatile and powerful numerical

method to the study of general spin-boson like dynamics will be presented. The

case of distributed computation will hence be resumed, under much more general

dynamical settings, in Chapter 4.

1 Of course, in our discussion we are neglecting the existence of very efficient, and “long”, single-

mode wave-guides. We would not propose many mediating modes as a pragmatic recipe to

achieve distributed quantum computation. We are rather intrigued by the general implications,

both applied and theoretical, that coherent effects mediated by many degrees of freedom might

have.



Chapter 3

The Multi-Configurational

Ehrenfest approach

In this chapter, we will present the Multi-Configurational Ehrenfest (MCE)

method, lay out its working equations and discuss its advantages and disad-

vantages.

3.1 Introduction

3.1.1 Quantum dynamics with time-independent basis

sets

Conventionally, to solve the Schrödinger equation, a wavefunction is written as

a combination of static basis states, leaving only the amplitudes (coefficients)

changing with the evolution time. For instance, a wavefunction |Ψ(t)〉, can be

expanded as a linear superposition of basis states:

|Ψ(t)〉 =
∑

k

Ck(t)|ψk〉 , (3.1)

where |ψk〉 is the kth basis state.

37
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An obvious choice of basis for a time-independent hamiltonian Ĥ (~ = 1)is the

one provided by the eigenstates of Ĥ. Then:

|Ψ(t)〉 = e−iĤt
∑

j

C ′j|ϕj〉

=
∑

j

C ′je
−iĤt|ϕj〉

=
∑

j

C ′je
−iEjt|ϕj〉 ,

(3.2)

where |ϕj〉 is the corresponding eigenstate for the eigenvalue Ej: Ĥ|ϕj〉 = Ej|ϕj〉,
and C ′j = 〈ϕj|Ψ(t = 0)〉 is the initial coefficient for the basis state |ϕj〉. Hence,

clearly, solving the quantum dynamics boils down to finding the eigenvalues of

Ĥ, which becomes difficult for a large number of degrees of freedoms. Suppose

the total number of degree of freedom is K and the Hilbert space of each degree

of freedom has dimension M , then the total Hilbert space has dimension MK :

this exponential scaling makes the exact solution of quantum dynamics of large

systems intractable.

Any other approach to the solution of Schrödinger equation, like those based

on the Dirac-Frenkel variational principles [Fre34] (which we will see later for

time-dependent bases), ultimately has the same problem of exponential scaling.

A detailed discussion regarding the memory and computing requirements to solve

the Schrödinger equation may be found, for instance, in [MW03]. Regardless of

details, it is however clear that time-independent bases are not adequate to solve

the dynamics of large quantum systems.

3.1.2 Time-dependent basis set

Since the early work by Heller [Hel75], adopting dynamical Gaussian wavefunc-

tions, time-dependent approaches opened a new way to solve the Schrödinger

equation. To treat several degrees of freedom, the single-configuration time-

dependent self-consistent field (TDSCF) technique [GBR82, GRB82] based on

time-dependent Hartree formalism was developed (where “single-configuration”
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refers to the fact that the field is represented by a single direction in the

Hilbert space at any time). To treat system-bath dynamics more accurately,

the multi-configurational approach was later introduced [MM87, Kos88]. To

escape the shortcomings of the multi-configurational self-consistent field ap-

proaches [MM87, Kos88], which depended on the prior choice of specific projection

operators, alternative multi-configurational time dependent Hartree (MCTDH)

[MMC90, MMC92, BJWM00, MW03] methods without introducing projection

operators have been developed.

Since the idea of the multi-configurational time dependent Hartree (MCTDH)

approach is very relevant to our multi-configurational Eherenfest coupled coherent

states (MCE) approach, here we introduce the basic idea behind it. The MCTDH

approach employs a time-dependent basis set (also termed as ‘configuration’)

|Ψ(t)〉 =
∑

k

Ck(t)|ψk(t)〉 . (3.3)

In general, the basis state |ψk〉 will be a tensor product of basis vectors of all the

degrees of freedoms:

|ψk(t)〉 =
M⊗

j=1

|Φk,j〉 , (3.4)

where M is the total number of degree of freedoms. The |Φk,j〉 is a basis vector

for the jth degree of freedom.

In contrast with the traditional basis set approach where only the expansion

coefficients Ck(t) are time-dependent, here each basis state (also termed ‘config-

uration’ or ‘basis function’) |ψk(t)〉 is changing with time as well.1 This gives a

certain freedom to adjust the configuration during the variational procedure and

1 While, as theoretical physicists, we would prefer the term basis ‘state’, or basis ‘vector’, we will

maintain the use of ‘configuration’ as well throughout this dissertation, given its extensive usage

in the relevant literature. To be rigorous, it should also be noted that, for infinite dimensional

Hilbert spaces, these sets of vectors are obviously not ‘bases’ at all. In the case of our MCE

based on a set of coherent states, we will sometimes refer to them as ‘grids’, or ‘phase-space

grids’.
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thus a small set of configuration functions can be adequately used instead of tak-

ing all possible configurations into consideration. The reason is that, compared

to static (time-independent) configurations, a relatively small number of combi-

nations of the ‘time-dependent’ configurations is of significance to the quantum

dynamics.

The Hartree product configuration simply consists in writing a multidimensional

wavefunction as the product of one-dimensional functions:

|ψk〉 =
M∏

j=1

|Φk,j(t)〉. (3.5)

Here, the ‘secondary basis’ |Φk,j(t)〉 is time dependent and in turn described by

an underlying time-independent ‘primary’ basis set:

|Φk,j(t)〉 =
∑

i

ck,j,i(t)|ϕk,j,i〉 . (3.6)

We do not intend to explain the specifics of the MCTDH method here. A de-

tailed derivation can be found in [BJWM00]. We just wish to highlight the idea

of the MCTDH approach, which is quite relevant to the Multi-configurational-

Eherenfest coupled coherent states (MCE) approach we use.

Typical primary bases in modern MCTDH codes are made of tens or even hun-

dreds functions per degree of freedom. The size of the secondary bases is, however,

relatively small, even around 2 or 3 functions per degree of freedom, depending

on the dynamics. It is still, of course, an exponential scaling with the number

of degrees of freedom, but with a much more reduced basis (e.g., 2n instead of

100n!).

Usually, in MCTDH programs, the degrees of freedom are grouped together so

that each secondary basis function spans several degrees of freedom at the same

time (a strategy that will be replicated in our MCE approach on a basis of

coupled coherent states). And finally, in ‘multilayer’ MCTDH, each secondary

basis function is in turn an MCTDH function as well (see further on). Some

approaches are even based on several layers of MCTDH functions, which can be

very effective but also extremely difficult to program.
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Clearly, MCTDH methods scale much more favourably than the time-independent

approach with the number of degrees of freedom, basically because the number

of physically important single particle functions |Φk,j(t)〉 is always much smaller

than the number of basis states in the time-independent conventional approach.

Thus, one is capable to approach a numerically converged result, as long as suffi-

ciently important ‘single particle’ (or, better, ‘single degree of freedom’) functions

are captured. In some cases, the method can also be combined with mean-field

techniques [BJWM00] to save further computational cost.

However, MCTDH methods also have important disadvantages: in general, they

are efficient only if the interaction Hamiltonians between different degrees of

freedom are in simple product form, and only if the time dependent wave-packet

can be expressed in a small and optimised product basis set at each time step.

Often, such methods may require a very large number of variational parameters

(for example, the number of basis functions) to get converged results. For large

systems (like baths with complex structured spectral distribution of the modes),

more variational parameters may be required.

Aiming to explore larger systems consisting of more degrees of freedom, Wang

and coworkers [WT03, WT08] have extended the MCTDH approach into the

multi-layer, multi-configurational time-dependent Hartree (ML-MCTDH):

|Φk,j(t)〉 =
∑

i

ck,j,i(t)|ϕk,j,i(t)〉 , (3.7)

where even the single particle function |Φk,j(t)〉 is further expanded as a linear

combination of time-dependent multi-configurational functions |ϕk,j,i(t)〉:

|ϕk,j,i(t)〉 =

Q∏

q=1

|φk,j,i,q(t)〉 . (3.8)

Compared to the original one-layer MCTDH, the ML-MCTDH builds more layers

to allow more flexibility on the variational functions based on the Dirac-Frenkel

variational principle. This essentially enables the ML-MCTDH approach to in-

vestigate more degrees of freedoms.
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Holding to the same aim of investigating more degrees of freedom, the Gaussian-

based multiconfiguration time-dependent Hartree method (G-MCTDH) [BMC99,

BGW08] has been developed to deal with bosonic systems by using a frozen

Gaussian basis set. Here, the degrees of freedom (‘modes’) are classified into

‘primary modes’ and ‘secondary modes’. The ‘primary modes’ are treated the

same as before in a rigorous way, while the ‘secondary modes’ are approximated

collectively by parameterized basis functions. For instance, the wavefunction is

written in the form [BMC99]

|Ψ(t)〉 =

n1∑

j1=1

· · ·
nf∑

jf=1

Cj1···jf−1jf (t)(

f−1∏

k=1

|φkjk(t)〉)|g
f
j 〉 , (3.9)

where |gfj 〉 contains a certain number of degrees of freedom, while the remaining

f−1 degrees of freedom are the same as single particle (one-dimensional) functions

as before. Here, nf is the total number of basis functions to represent the kth

degree of freedom, and Cj1···jf−1jf are the time-dependent expansion coefficients.

3.2 Multi-Configurational Ehrenfest Coupled Co-

herent States (MCE)

3.2.1 Variational principle acting on a time-dependent ba-

sis set

Quite similarly to MCTDH and the related ML-MCTDH and G-MCTDH, for the

Multi-configurational Ehrenfest Coupled Coherent States (MCE) method [Sha09],

time-dependent basis states are employed, but their full variational dynamics is

replaced by their “Eherenfest” dynamics (which will be explained later in this

chapter). Assume we have a wavefunction |Ψ(t)〉, which is written in a Hilbert

space spanned by the time-dependent basis |Vl(t)〉

|Ψ(t)〉 =
N∑

l

Cl(t)|Vl(t) > . (3.10)
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This equation is quite similar to Eq. (3.3). However, different |Vl(t) > are non-

orthogonal to each other in the MCE approach such that, more generally:

〈VJ |VK〉 = ΩJ,K (3.11)

for some time-dependent overlap matrix Ω. In essence, the MCE approach is

based on the variational principle

δS = 0 (3.12)

acting on the quantum Lagrangian

L = 〈Ψ|i∂t − Ĥ|Ψ〉 , (3.13)

whose action is defined as

S =

∫
Ldt . (3.14)

In Eq. (3.13), we understand the time-derivative operator to act on the right.

This is not really relevant: the same evolution equations would be obtained by

letting it act on the left.

From Eq. (3.12), one can obtain the Euler-Lagrange equations of motion for

the amplitudes (expansion coefficients) and for the basis states, given their

parametrization.

The motion of the amplitudes is given by:

∂L
∂C∗J

=
d

dt

∂L
∂Ċ∗J

. (3.15)
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Actually, Eq. (3.15) is equivalent to the Schrödinger equation:

L = 〈Ψ|i∂̂t − Ĥ|Ψ〉

=
i

2

J=N,K=N∑

J=1,K=1

C∗JĊkΩJ,K −
i

2

J=N,K=N∑

J=1,K=1

Ċ∗JCKΩJ,K

+
i

2

J=N,K=N∑

J=1,K=1

C∗JCK〈VJ |∂VK |Vk〉V̇K

− i

2

J=N,K=N∑

J=1,K=1

C∗JCK(〈VJ |∂VJ )|VK〉V̇J

−
J=N,K=N,J ′=N∑

J=1,K=1,K′=1

CJ
∗ΩJ,K′HK′KCK ,

(3.16)

where ΩJ,K = 〈VJ |VK〉 and Ĥ|VK′(t)〉 =
∑N

K′=1HK′K |VK(t)〉. One has then

∂L
∂C∗J

=
i

2

N∑

K=1

ĊkΩJ,K

+
i

2

N∑

K=1

CK〈VJ |∂VK |Vk〉V̇K

− i

2

N∑

K=1

CK(〈VJ |∂VJ )|VK〉V̇J

−
K=N,K′=N∑

K=1,K′=1

ΩJ,K′HK′KCK ,

(3.17)

and
d

dt

∂L
∂Ċ∗J

=
d

dt
(− i

2

N∑

K=1

CKΩJ,K)

= − i
2

N∑

K=1

ΩJ,KĊK −
i

2

N∑

K=1

CKΩ̇J,K ,

(3.18)

where Ω̇J,K = V̇J(〈VJ |∂VJ )|VK〉+ V̇K〈VJ |(∂VK |VK〉). Since the |VJ〉’s form a basis

(and are hence linearly independent), the inverse of the overlap matrix Ω−1
J,K exists.

Applying the variational principle

∂L
∂C∗J

− d

dt

∂L
∂Ċ∗J

= 0 (3.19)
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to Eq. (3.17) and Eq. (3.18), one arrives at

i

N∑

K=1

ĊkΩJ,K + i

N∑

K=1

CK〈VJ |∂VK |Vk〉V̇K =

K=N,K′=N∑

K=1,K′=1

ΩJ,K′HK′KCK . (3.20)

Multiplying through by
∑

J Ω−1
l,J the equation above gives

iĊl + i

J=N,K=N∑

J,K

Ω−1
l,JCK〈VJ |∂VK |VK〉V̇K =

K=N∑

K=1

Hl,KCK . (3.21)

On the other hand, from the time-dependent Schrödinger equation

i∂t|Ψ(t)〉 = Ĥ|Ψ〉, (3.22)

one obtains

i
N∑

l=1

Ċl|Vl〉+ i
N∑

K=1

CK V̇K∂VK |VK〉 =

K=N,l=N∑

K=1,l=1

Hl,KCK |Vl〉 . (3.23)

Inserting the identity operator I =
∑

l,J |Vl〉〈VJ |Ω−1
l,J into the second term on the

LHS, we get that

i
∑

l

Ċl|Vl〉+ i
∑

l,J,K

Ω−1
l,J 〈VJ |∂VK |VK〉V̇KCK |Vl〉 =

∑

K,l

Hl,KCK |Vl〉 . (3.24)

Comparing Eqs. (3.21) and (3.24), we can see that the variational principle which

we shall adopt is dynamically equivalent to the Schrödinger equation, as one

should expect.

3.2.2 MCE working equations

The Multi-Configurational Ehrenfest Coupled Coherent States (MCE) method

is an extension of the “coupled coherent states method” [SC00, SC01a, SC01b,

SC04, SSC06], which adopts coherent states (right eigenvectors of the annihilation

operator) as a basis set for bosonic degrees of freedom and, at the same time,

incorporates the spirit of the MCTDH based approaches.
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Why choose coherent states as basis states?

Coherent states have a series of attractive properties: they are eigenstates of the

annihilation operator:

a|Z〉 = Z|Z〉, (3.25)

and thus

〈Z|a† = 〈Z|Z∗ . (3.26)

Therefore, if one writes the Hamiltonian operator Ĥ in the ‘normal-ordered’ form

Hord (with all the creation operators to the left of all the annihilation operators),

the matrix elements of the Hamiltonian can be written out in a very simple way:

〈Zl|Ĥ|Zj〉 = 〈Zl|Zj〉Hord(Z
∗
l , Zj) . (3.27)

The price to pay for such simplicity in expressing the Hamiltonian is that different

coherent states are not orthogonal:

〈Zl|Zj〉 = eZ
∗
l Zj−

|Zl|
2

2
−
|Zj |

2

2 = Ωlj . (3.28)

Of course, the whole (infinite) set of coherent states constitutes an over-complete

set on the bosonic Hilbert Space, such that any vector can in principle be ex-

pressed as a linear combination of coherent states.

For our numerics, we will instead have to restrict to the finite subspace spanned

by a finite number of coherent states. On such a subspace, the identity operator

can be expressed as

I =
∑

l,j

|Zl〉Ω−1
l,j 〈Zj|. (3.29)

Here, Ω−1
l,j is the inverse of the 〈Zl|Zj〉 matrix.

How does the MCE method work?

Multi-configurational wavefunction. The MCE method uses a standard

orthogonal basis for finite-dimensional degrees of freedom and Gaussian wave

packets to describe the bosonic modes. Let us consider a system comprised of
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spins interacting with a bath. For the bosonic modes, multi-dimensional coher-

ent states are used as basis states while, for spins, a regular basis is maintained.

The wavefunction of the whole system can be written as a linear superposition

of N-configurations (Single-configuration wavefunction equations are described in

Appendix A, as an introduction to the full multi-configurational method):

|Ψ(t)〉 =
d∑

l=1

N∑

j=1

al,j(t)|φl〉
M⊗

m=1

|zmj (t)〉 , (3.30)

where M is the total number of bath modes considered, d is the complete (entire)

dimension for the finite system (for instance, spins), al,j(t) are the expansion

coefficients and, for each j, |zmj (t)〉 stands for the coherent state of mode m with

eigenvalue zmj : am|zmj (t)〉 = zmj |zmj (t)〉 if am is the annihilation operator of mode

m.

For example, in the case of two spins, |l〉 could denote the four (d = 4) two-spin

states | ↑1↑2〉,| ↑1↓2〉,| ↓1↑2〉 and | ↓1↓2〉. Each jth state of the basis ‘grid’ would

be a tensor product of M single-mode coherent states describing the individual

degree of freedoms.

A key aspect of the spirit of the MCE method is that, in each ‘configuration’,

coherent basis states belonging to different degrees of freedoms overlap with each

other (“couple” with each other, in the terminology of chemical physics), such that

coherent phases between distinct degrees of freedom of the bath can be accounted

for. Also, clearly, coherent basis states resident in different configurations can

couple to each other too. Hence, the name “coupled coherent states” assigned to

these basis grids.
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Working equations. From Eq. (3.30), one obtains the quantum Lagrangian

L = 〈Ψ|i ∂
∂t
− Ĥ|Ψ〉

= i

d∑

l=1

N∑

i,j=1

a∗l,iȧl,jΩij + i
d∑

l=1

N∑

i,j=1

a∗l,ial,j(Z
∗
i Żj −

Z∗j Żj + ZjŻ∗j
2

)Ωij

−
d∑

l,n=1

N∑

i,j=1

a∗l,ian,j〈Zi, φl|Ĥ|φn,Zj〉 ,

(3.31)

where Zj =
⊗M

m=1 |zmj (t)〉 and Ωij = 〈Zi|Zj〉 6= 1.

Equations for the coherent amplitudes. Applying the variation of a∗l,i:

∂L
∂a∗l,i

− d

dt

∂L
∂ȧ∗l,i

= 0 (3.32)

to Eq. (3.31), one arrives at

N∑

j=1

[iȧl,jΩij + ial,j(Z
∗
i Żj −

Z∗j Żj + ZjŻ∗j
2

)Ωij −
d∑

n=1

an,j〈Zi, φl|Ĥ|φn,Zj〉] = 0 .

(3.33)

In order to increase the accessible time step for numerical integral, classical ation

is introduced:

Sl,j =

∫
[i

ŻjZ
∗
j − ZjŻ

∗
j

2
− 〈Zj, φl|Ĥ|Zj, φl〉]dt. (3.34)

By rewriting the coherent amplitudes al,j into a pre-exponential smooth formalism

[Sha09]:

al,j = dl,je
iSl,j , (3.35)

the working equations for the expansion coefficients can become

i

N∑

j=1

ḋl,je
iSl,jΩij =

N∑

j=1

[δ2Hl,l(Z
∗
i ,Zj)dl,je

iSl,j

+
d∑

n=1

〈Zi, φl|Ĥ|φn6=l,Zj〉dn6=l,jeiSn 6=l,j ] ,
(3.36)

where

δ2Hl,l(Z
∗
i ,Zj) = 〈Zi, φl|Ĥ|φl,Zj〉 − 〈Zj, φl|Ĥ|φl,Zj〉 − iΩij(Z

∗
i − Z∗j)Żj . (3.37)
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The empirically tested classical action Sl,j of Eq. (3.34) plays the role of smooth-

ing the phases of the effective expansion coefficients dl,j, and thus allows one to

enlarge the time-step of numerical simulations.

Equations for the phase space grid’s trajectories. The derivation of the full vari-

ational principle applied on the zmj complex parameters of the Coherent basis

states is reported in Appendix A, where the path from the full variational equa-

tions to the Ehrenfest dynamics is explained clearly and in detail. Alternatively,

we provide here a simpler derivation of the Ehrenfest dynamics: first, let us as-

sume that the overlap between two different coherent basis states, the entry of the

matrix Ωij for i 6= j, to be very small and thus negligible. Under this assumption,

the coherent basis states belonging to different j’s do not couple to each other

and the problem is, actually, reduced to the single-configuration case treated in

Appendix A.

Let us then define a ‘simplified’ wave-function for the j-th trajectory:

|Ψ̃j〉 =
d∑

l=1

|l〉|Zj〉 , (3.38)

and the corresponding single-configuration Lagrangian L̃j as

L̃j = −
d∑

l,n=1

a∗l,jan,j〈Zj, l|Ĥ|n,Zj〉+ i
d∑

l=1

a∗l,j ȧl,j + i
d∑

l=1

|al,j|2(
Z∗j Żj − ZjŻ∗j

2
).

(3.39)

By writing the Euler-Lagrange equation for Z∗j and assuming d
dt

(
∑d

l=1 |al,j|2) = 0,

one obtains the working equation for each trajectory Zj:

Żj =

∑d
l,n=1 a

∗
l,jan,j

∂〈Zj ,φl|Ĥ|φn,Zj〉
∂Z∗i∑d

l=1 |al,j|2
, (3.40)

which is exactly the same as Eq. (A.7), derived from the full variation of all the

parameters.

In essence, the MCE approach is based on solving the system of linear Eqs. (3.36)

and (3.40), which determine the parameters al,j and Zj, and hence the quantum

state of the global system. Notice that, in the Ehrenfest approximation, the
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differential equations for the parameters Zj are decoupled from those for the ȧl,j,

such that the whole system can be solved with much less computational effort

and the code is definitely easier to program. This is where the essential technical

advantage of the method lies with respect to competing variational approaches

(e.g., MCTDH).

As shown in Appendix A, the dynamics we impose for the parameter Zj is equiv-

alent to adopting the Hamiltonian

Hj =
〈Ψ̃j|Ĥ|Ψ̃j〉
〈Ψ̃j|Ψ̃j〉

(3.41)

that is, in essence, a Hamiltonian where some quantum operators are replaced

with their expectation values. Hence, the name “Ehrenfest dynamics”, in defer-

ence to the classic theorem by Ehrenfest relating the time-derivative of expecta-

tion values to their corresponding classical equation of motions [Ehr27].

Further technical details concerning programming as well as the choice of the

phase space basis grid are contained in Appendix A.

3.3 Temperature of the initial state of the field

Our method, being based on a grid of coherent states, has the added advantage of

allowing for a straightforward treatment of an initial thermal state of the field’s

degrees of freedom.

If the latter are at zero temperature (T = 0), then we will just take each mode to

start in the vacuum state |0〉〈0| (which is easily represented since it is a coherent

state itself).

More generally, assume that the bosonic field (the ‘bath’, comprising M modes)

is initially in the canonical state %β, at thermal equilibrium at temperature

T = 1/(βkB) with respect to its free Hamiltonian
∑M

m=1 ωmb
†
mbm (we will set the

Boltzmann constant kB = 1 from now on). We can easily represent %β as a proba-

bilistic mixture of coherent states by its Glauber-Sudarshan P-representation Pβ,
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defined as

Pβ(Z) =
1

π2M

∫

CM

e|Y|
2

eZY
∗−Z∗YTr [DY%β] d2MY , (3.42)

where Y and Z are complex vectors of dimension M (with entries Ym and Zm),

and DY is the tensor product of displacement operators:

DY =
M⊗

m=1

eYmb
†
m−Y ∗mbm . (3.43)

The P-representation Pβ completely determines %β, according to

%β =

∫

CM
Pβ(Z)|Z〉〈Z|d2MZ, (3.44)

and is given by the product of single-mode P-representations [SMB97]:

Pβ(Z) =
M∏

m=1

(
eβωm − 1

π
exp

(
−(eβωm−1)|Zm|2

))
. (3.45)

Here, the state |Z〉 =
⊗M

m=1 |Zm〉 is a tensor product of coherent states (one for

each bosonic mode), so that bk|Z〉 = Zk|Z〉.

We can hence simulate a set of bosonic modes at finite temperature T = 1/β by

sampling the Gaussian distribution of initial coherent states given by Eq. (3.45).

Clearly, the quality and convergence rate of our treatment of temperature will

degrade with increasing temperature: a quantitative analysis of this issue in some

specific cases is reported in Appendix B.

Notice that no truncation in number basis is needed in our approach, at finite

temperature. The dimension of the Hilbert space where the numerics take place

is always dN .

3.4 Summary

The main advantages of the MCE method are the following:

• Like in most other similar approaches, the exponential scaling of the Hilbert

space’s dimension is avoided by letting all basis states describe all the de-

grees of freedom, at the expense of precision.
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• The amplitudes and coherent basis are both originally derived from a varia-

tional principle, which is the same as G-MCTDH [BMC99]. However, MCE

is smart, in the sense that the coherent state set is guided by the Ehrenfest

dynamics, which simplifies the full variational dynamics. Though it is not

based on the full variational principle, the Ehrenfest trajectories are not far

away from it, and save a substantial computational costs.

It should be noted that the only true approximation imposed in our treatment

is the use a finite number N of coherent basis states to describe bosonic modes.

The fact that the coherent basis states |Zj〉 are driven by the Ehrenfest dynamics,

instead of the full variational principle like the amplitudes al,j(t), is not an ap-

proximation by itself. It just corresponds to a different choice of time-dependent

basis. Employing the full varational principle for the amplitudes of the coherent

sates would make this method identical to G-MCTDH [BMC99], demanding a

much heavier computational effort. Arguably, using the full variational method

for the coherent amplitudes too would give slightly better results, as the numer-

ics would better approximate the variational method on the whole Hilbert space

(we will see in a future chapter an approach to quantify and compare the pre-

cision of different methods). However, since the basis coherent states’ overlaps

are typically very small, and that difference between MCE and the full varia-

tional principle is proportional to such overlaps, Ehrenfest guided trajectories are

usually very reliable, as we shall see.



Chapter 4

Control-Z gate through a

dispersive bosonic medium

In Chapter 2, the reasons why we are interested in studying a control-Z gate

between two remote nodes mediated by bosonic field modes have been clarified.

On the one hand, this physical situation is a general prototype for many diverse

systems (like trapped ions or impurities in photonics band gap media). On the

other hand, the realisation of a control-Z gate operation allows, with supplemen-

tary single-spin unitaries, for universal gate based quantum computation. The

possibility of obtaining this gate is therefore the ultimate signature of coherent

quantum evolution for the two qubits system.

To avoid the exponential scaling of the Hilbert space’s dimension with the number

of degrees of freedom, we previously dealt with this problem by restricting the

evolution to the one-excitation subspace. In order to solve more general cases, of

interest for most Hamiltonians where no control of the couplings is possible and

for non-zero temperatures, we employ here the multi-configurational Ehrenfest

(MCE) method on a basis of coupled coherent states to deal with a relatively

large number of bosonic modes (10-100).

Our aim is then to demonstrate that converged results for a sophisticated quanti-

53
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fier like the fidelity of a specific, relevant non-local gate can be obtained, showing

that Ehrenfest guided trajectories allow one to capture detailed features of co-

herent quantum dynamics.

To quantify the fidelity with which the control-Z gate (CZ) is realised, we will not

perform the Haar measure average as in Chapter 2, which would require a large

computational overhead in this case. Instead, we will map the channel resulting

from the non-unitary evolution of the two qubits into a mixed quantum state,

via the Choi isomorphism, and then evaluate the overlap between such a state

and the pure state corresponding to the CZ gate. We will then work directly in

the space of quantum operations, so that our results will be independent on any

specific input state and will therefore reflect the dynamics purely. Thus, we will

not have to average the fidelity over a vast number of different input states.

4.1 The model

We will consider a system of two spins one-half interacting through a bus of

bosonic modes initially in a thermal state at temperature T . The full Hamiltonian

of the system reads

Ĥ =
M∑

k=1

ωkb
†
kbk +

2∑

j=1

(εjσ̂z,j + ∆jσ̂x,j) +

j=2,k=M∑

j=1,k=1

gj,kσ̂x,j(bk + b†k) , (4.1)

where σ̂z,j and σ̂x,j are Pauli operators of the j-th spin (such that [σ̂x,j, σ̂y,k] =

iδjkσ̂z,j/2), bk(b
†
k) is the annihilation (creation) operator corresponding to the k-

th bath mode with angular frequency ωk, εj represents the energy splitting of the

two levels for the j-th spin, ∆j accounts for the tunnelling dynamics of the j-th

spin, gj,k is the coupling strength of the j-th atom with the k-th bath mode.

We will also consider the corresponding rotating wave Hamiltonian Hrw:

Ĥ =
M∑

k=1

ωkb
†
kbk +

2∑

j=1

(εjσ̂z,j + ∆jσ̂x,j) +

j=2,k=M∑

j=1,k=1

gj,k(S
+
j bk + S−j b

†
k) , (4.2)

where S−j (S+
j ) is the lowering (rising) atomic operator of the j-th spin: S−j =
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S+†
j = σ̂x,j − iσ̂y,j. For ∆j = 0, the Hamiltonian Hrw gives a good description of

the dynamics when |εj − ωk| � |εj + ωk|, as is the case for near-resonant optical

transitions. We shall however also extend our treatment to the rotating wave

Hamiltonian with ∆j 6= 0, which cannot be easily diagonalised since it does not

conserve the total number of excitations.

As already remarked in Chapter 2, our Hamiltonian might represent two impuri-

ties interacting via one band of modes of a photonic bandgap medium (photonic

crystal) or, perhaps more easily with current technology, two specific ions in a lin-

ear array whose internal levels have been coupled to the longitudinal vibrational

modes through laser light [PMvDC08, DP12, Toa09, Hu10].

In the following, we will treat finite initial temperatures of the bosonic modes

by sampling the initial coherent states of the modes according to the probability

distribution given in Eq. (3.45), as described in the previous chapter.

4.2 The figure of merit

4.2.1 The Choi-Jamiolkowski map

In order to evaluate a gate fidelity F independently from the initial state of the

spin-field system, we employ the Choi channel-state duality to map linear quan-

tum operations on a Hilbert space H into quantum states on a Hilbert H⊗H
(more commonly refereed to as the “Choi-Jamiolkowski” map).

The Choi map between a generic completely positive (CP) linear operation Ω on

the Hilbert space H and a quantum state ρΩ on the Hilbert space H⊗H can be

defined as

ρΩ = (Ω⊗ 1)|Ψ〉〈Ψ| (4.3)

where |Ψ〉 is a maximally entangled state on the double space H×H.

The map is bijective and retains all the information about the quantum operation.

As will be shown in the following, it will serve our purposes very well.
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4.2.2 Choi fidelity of the CZ gate

For convenience, we first re-label the four states of the computational basis for

the two spins:

|1〉 = | ↑↓〉 , (4.4)

|2〉 = | ↑↓〉 , (4.5)

|3〉 = | ↓↓〉 , (4.6)

|4〉 = | ↑↑〉 . (4.7)

In our case, the maximally entangled state given by

|Ψ〉 =
1

2

4∑

J=1

|J〉 ⊗ |J〉 =
1

2
(|1〉 ⊗ |1〉+ |2〉 ⊗ |2〉+ |3〉 ⊗ |3〉+ |4〉 ⊗ |4〉) , (4.8)

in the two-spins basis defined in (4.4-4.7).

The control-Z gate is represented by a unitary operation UCZ :

UCZ |J〉 = f(J)|J〉 , (4.9)

where f(J) = 1 for J = 1, 2, 3 and f(J) = −1 for J = 4. It means there is

a phase change only for the basis state |4〉 (that is, the state of the first qubit

controls the phase flip of the second one). Also, the quantum operation Γt acting

at time t on the state of the two spins ρ is defined as

Γt(ρ) = TrB[e−iĤt(ρ⊗ ρB)eiĤt] , (4.10)

where TrB stands for the partial trace over the bosonic field modes, and ρB is

their state at time t = 0. Good CZ gate operation means that Γt(ρ) is “close” to

the unitary CZ gate operation.

The quantum state ρCZ corresponding to the gate unitary operation can be de-
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termined as follows

ρCZ = (UCZ ⊗ 1)(
1

2

4∑

J=1

|JJ〉)(1

2

4∑

K=1

〈KK|)

= (UCZ ⊗ 1)(
1

4

4∑

J,K=1

|J〉〈K| ⊗ |J〉〈K|)

=
1

4

4∑

J,K=1

UCZ(|J〉〈K|)⊗ (|J〉〈K|)

= |ψcz〉〈ψcz| ,

where

|ψcz〉 =
4∑

J=1

f(J)

2
|JJ〉. (4.11)

Similarly, for the quantum state corresponding to the quantum operation Γt(ρ),

we have

ρΓt =
1

4

4∑

l,m=1

Γt(|l〉〈m|)⊗ (|l〉〈m|) . (4.12)

Finally, the ‘Choi’ gate fidelity F can be defined as the overlap between |ψCZ〉
and ρΓt :

F = 〈ψcz|ρΓt |ψcz〉

=
4∑

j,k,l,m=1

f(j)f(k)

16
〈jj|[Γt(|l〉〈m|)⊗ (|l〉〈m|)]|kk〉

=
4∑

j,k=1

f(j)f(k)

16
〈j|Γt(|j〉〈k|)|k〉 .

(4.13)

So, considering hermiticity, 10 different Γt(|j〉〈k|) need to be calculated at each

time. Because our numerical method is better suited at approximating the dy-

namics of physical states (in that physical states offer a variety of possible checks,

like norm conservation, during the evolution), we have obtained the operators

Γt(|j〉〈k|) from the dynamics of physical states. For example, Γt(|1〉〈2|) is calcu-

lated as follows:

Γt (|1〉〈2|) = Γt

( |1〉+ |2〉√
2

〈1|+ 〈2|√
2

)
− iΓt

(
i|1〉+ |2〉√

2

−i〈1|+ 〈2|√
2

)

− 1− i
2

[Γt (|1〉〈1|) + Γt (|2〉〈2|)] .
(4.14)
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The figure of merit F is therefore a property of the open dynamics of the spins

alone, and not of their initial state. Of course, we could have chosen other quan-

tifiers, such as the fidelity of another, possibly entangling, unitary quantum gate

or, more geometrically, we could have estimated the coherence of the dynamics by

the largest eigenvalue of the state ρΓt (which quantifies how close the dynamics

is to any unitary gate). However, we deemed the CZ gate fidelity to be a good

signature to describe the coherence – or lack thereof – of the quantum dynamics.

The study of the quantity F requires one to follow the evolution of 16 initial

states at any given time. Obtaining converged result for such a quantity is hence

in general computationally demanding. It is in cases like this that, within the

parameters’ region where Ehrenfest trajectories are reliable, the MCE method we

use stands out over competing, heavier approaches.

Note also that the relationship between F and ‘quantum coherence’ can be made

more formal by noting that if F ≥ 1/4 then the off-diagonal elements of the spins’

density matrix ρ must be different from zero. In fact, if the latter were the case,

one would have

F =
4∑

j,k=1

d(j)d(k)

16
〈j|Γt(|j〉〈k|)|k〉 =

4∑

j=1

1

16
〈j|Γt(|j〉〈j|)|j〉 ≤

4∑

j=1

1

16
=

1

4
.

(4.15)

The results that follow have been reconstructed from all the terms 〈j|Γt(|j〉〈k|)|k〉
obtained by converging the MCE method and tracing out all of the field modes.

The derivation of the relevant MCE equations is included in Chapter 3 and Ap-

pendix A.

4.3 Choi fidelity results

4.3.1 Rotating wave, excitation conserving case

Let us start with the relatively simple case of ε1 = ε2 = 0, ∆ = 0 and T = 0

with the rotating wave approximated Hamiltonian Hrw. Also, for simplicity we
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Figure 4.1: Choi fidelity F versus rescaled time, for Ĥrw with ε = ∆ = 0, g1 = 1,

g2 = 1.9, obtained at zero temperature by MCE method (dot-dashed) and exact

analytic integration (dotted) for M = 1 and ω1 = 0.1 (a), and M = 3 and

ωm = 0.1m for 1 ≤ m ≤ 3 (b). The lines F = 0.25 are reported for reference.

will assume gj,k = gj for all j and k (the coupling of the same spin to different

modes is the same). Of course this is not a crucial assumption for us, and we

could assume varying couplings if needed.

Comparison with analytical results

At zero temperature and small number of modes, we have solved this model

analytically by using the conservation of the number of particles. We could hence

obtain a reliable benchmark to compare to our numerics.

In Fig. 4.1a, only one mode with ω(1) = 0.1 is considered; while in Fig. 4.1b, three

modes with ω(1) = 0.1, ω(2) = 0.2, ω(3) = 0.3 are considered. In both cases, the

MCE method shows excellent agreement (in the order of 10−4) with analytical

results. Also, we can see in both cases the emergence of a first, pronounced

CZ fidelity peak which is around 0.9. This peak will be the main target of our
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investigation.

We can already see that increasing the number of modes reduces the period

accordingly: the period of 3 modes seems around 1√
3

of that of 1 mode. This

‘cooperative effect’ will be confirmed on larger numbers of modes and can be easily

explained by the fact that, for equal couplings, the interaction term between each

spin and the field can be re-written as:

gj

(
S+
j

M∑

k=1

bk + h.c.

)
=
√
Mgj

(
S+
j d+ h.c.

)
, (4.16)

where the bosonic mode d is defined as d =
(∑M

k=1 bk

)
/
√
M . The period of the

coherent oscillations is hence rescaled by the factor
√
M . Of course, this does not

mean that only one mode participates in the dynamics, since the other M − 1

modes will couple strongly to this mediating one. In a sense, the remaining modes

constitute a limited ‘environment’ for the mediating mode.

Another comment is in order here: the reasons why we choose such off-resonant

values for the frequencies (starting from 0.1 in units of bias ε) is twofold. Firstly,

for theoretical reasons, we are interested in regions of frequencies for the modes

where the dynamics will not be dominated by a resonant or near-resonant bus

mode, thus making our study fall back into a long strand of schemes where essen-

tially a single mode mediates the quantum information transfer or entanglement

generation between the distant subsystems. This way, when we introduce more

modes, actual dispersion of the quantum coherence among the bosonic modes will

take place. Secondly, after scanning a vast range of frequencies and dynamical

parameters, we found this region to be a good one to host a full study, with

interesting and comparable results (that is, except for the full non-rotating wave

Hamiltonian, as we will see later on).

Ten modes at different temperatures

In Fig. 4.2, larger number of bath modes, M = 10, at different temperatures T

are considered. The fidelity degrades as the temperature increases from T = 0,
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Figure 4.2: MCE results for the Choi fidelity F versus rescaled time, for Ĥrw with

ε = ∆ = 0, g1 = 1, M = 10, ωm = 0.1m for 1 ≤ m ≤ 10, under different values

of g2 and temperatures: (a) T = 0; (b) β = 10; (c) β = 5. The line F = 0.25 is

reported for reference.
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Figure 4.3: MCE results for the Choi fidelity F versus rescaled time, for Ĥrw with

ε = ∆ = 0, g1 = 1, M = 10, ωm = 0.1m for 1 ≤ m ≤ 10, under different values

of g2 and temperatures: (a) T = 0; (b) β = 10; (c) β = 5. (red stands for higher

values, blue for lower values.)

β = 1/T = 10 to β = 1/T = 5. In the case of g2 = 2.1, the maximum fidelity

decreases from around 0.92, 0.86 to 0.76. Clearly, the coherence of the spins are

better preserved at lower temperatures. Note that the range of frequencies and
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temperatures we address extends to βω~ ' 1, implying the involvement of around

4 states in the low frequency modes, resulting in a rather large treated portion

of the Hilbert space (even if under a number-excitation conserving dynamics).

In Fig. 4.3, we set g1 = 1 while changing g2 from 2.7 to 1.8. The values of fidelity

are displayed in colors (Red stands for higher values, blue for lower values.).

Clearly, a stronger coupling strength g2 achieves the first peak more quickly.

More importantly, we were able to scan a large range of coupling parameters and

to identify the optimal value g2 ' 2.1, where the fidelity F of the CZ gate is

maximum. A similar analysis could of course be directly applied to a specific

system, if coupling need to be optimised to some particular task.

4.3.2 More general cases

If the tunnelling rates ∆j 6= 0, the number of excitation number is no longer

conserved and analytic or semi-analytic solutions for both H and Hrw are only

possible in very special cases. Our intention here is then to check whether the

MCE approach is stable and works well in such more general cases as well.

Rotating wave Hamiltonian

Fig. 4.4 shows parameters similar to those in Fig. 4.2, but with ε = ∆ = 1. It

can be seen that the non-diagonal elements in the spin Hamiltonian make the

fidelity drop with respect to the case where the transitions between the energy

levels are only mediated by the field. Of course, higher temperatures induce a

lower gate fidelity. The qualitative behavior of the oscillations are roughly the

same at the two different temperatures T = 0 and T = 0.1. The fidelity reduces

to 0 at ∆t u 2.5 and then revives as time increases. The speed with which the

gate is approximated is still roughly proportional to the coupling strengths g1

and g2. Fig. 4.5 shares similar characteristics as Fig. 4.3.
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Figure 4.4: MCE results for the Choi fidelity F versus rescaled time, for Ĥrw

with ε = ∆ = 1, g1 = 1, M = 10, ωm = 0.1m for 1 ≤ m ≤ 10 under different

values of g2 and temperatures: (a) T = 0; (b) β = 1/T = 10. The line F = 0.25

is reported for reference.
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Figure 4.5: MCE results for the Choi fidelity F versus rescaled time, for Ĥrw with

ε = ∆ = 1, g1 = 1, M = 10, ωm = 0.1m for 1 ≤ m ≤ 10 under different values of

g2 and temperatures: (a) T = 0; (b) β = 10. (red stands for higher values, blue

for lower values.)
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Non-rotating wave Hamiltonian
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Figure 4.6: MCE results for the Choi fidelity F versus rescaled time, for Ĥ with

ε = ∆ = 1, g1 = 0.5, M = 10, ωm = 0.1m for 1 ≤ m ≤ 10 under different values

of g2 and temperatures: (a) T = 0; (b) β = 10. The line F = 0.25 is reported for

reference.

In Fig. 4.6, we report the CZ gate fidelity F for the full Hamiltonian H, including

the counter-rotating terms in the spin-field coupling.

In the Ehrenfest guided approach, this coupling induces a larger time-derivative

˙̃Zj(t) for the basis coherent states, such that the coherent states’ grid propagates

more rapidly. Therefore, it becomes difficult to keep the system evolution in the

important dynamical regime and we could only truly track the dynamics on a

short time regime. For more details on such issues, see the Appdendix C. To

compensate for this problem, we have reduced the coupling strengths g1 and g2

accordingly to around 0.5, in order to obtain more easily converged results.

Unfortunately, and perhaps interestingly, besides these technical difficulties, we

also could not find any region of parameters where the gate fidelity increases

above 0.25, not even at zero temperature. The counter-rotating terms, rather
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than just swapping excitations around the system, and so allowing for times at

which the spins are relatively decoupled from the field, heat up the spins very

rapidly with couplings comparable to 1, thus seriously suppressing all possibility

of coherent evolutions.

4.3.3 Doubling ten modes

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

∆t

F

 

 
g

2
=2.7

g
2
=2.1

g
2
=1.8

(a) Hrw

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

∆t

F

 

 

g
2
=0.5

g
2
=0.4

g
2
=0.3

(b) H

Figure 4.7: MCE results for the Choi fidelity F versus rescaled time at zero

temperature, with ε = ∆ = 1, M = 20, ωm = 0.1m for 1 ≤ m ≤ 10, ωm =

0.1(m − 10) for 11 ≤ m ≤ 20 under different values of g2 and Hamiltonian: (a)

Hrw with g1 = 1; (b) Ĥ with g1 = 0.5. The line F = 0.25 is reported for reference.

In Fig. 4.7 we double the number of modes in the field (from 10 to 20), to account

for modes propagating in the two spatial directions, as would be the case in a

1-dimensional photonic band.

As we see, the general behavior is quite similar to corresponding cases of M = 10

for both Hrw in Fig. 4.4a and H in Fig. 4.6a. In Fig. 4.7a, the period is, as

expected, around 1√
2

as that of Fig. 4.4. Moreover, the maximum fidelity increases

slightly to around 0.84 at temperature T = 0, which is about 10% higher than the
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corresponding case of M = 10 displayed in Fig. 4.4a. In this case, the doubled

modes conspire to mediate the interaction between the qubits. However, in the H

model, the fidelity still stay below 0.25 in the regime g1 = 0.5 and g2 = 0.5 ∼ 0.1

at temperature T = 0, even when the number of modes doubles from M = 10 to

M = 20.

Our treatment could cope very well with this increase in the number of degrees

of freedom resulting, especially at larger temperatures, in a quite large effective

Hilbert space.

4.3.4 Zero Temperature Ohmic spin-boson bath

As mentioned in Chapter 1, the notion of entangling separated systems and of

distributing quantum coherence by mediating the interaction with a common heat

bath or other incoherent means is well established in the quantum information

and condensed matter communities [LDM+02, PH02, CVDC03, BFP03, VB03,

STP06, CPA08, MNBF09, BFM09]. However, the problem of studying the non-

perturbative interaction of two qubits with a common bath is still, in general, a

difficult one unless symmetries, like conservation of excitation number, simplify

the problem.

Thus, in Fig. 4.8 we also consider the gate fidelity F mediated by a bath with

Ohimc spectral density, defined by

J(ω) =
2

π
αωe−

ω
ωc ,

with Kondo parameter α = 0.09 (see Chapter 1). For the MCE approach, the

way to discretize the bath mode is with coupling strengths proportional to the

square root of the frequencies (discretization “w1” defined in Chapter 5), since

this kind of discretization works well for the Ohmic spin-bath model [Sha09]. In

particular, the frequencies and coupling strengths were chosen as follows:

ω(m) = −ωc ln[1−
m(1− exp −ωmax

ωc
)

M
] , (4.17)
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Figure 4.8: MCE results for the Choi fidelity F versus rescaled time at zero

temperature, under ε = ∆ = 1 and a common Ohmic bath with α = 0.09, and

different number of bath modes for different Hamiltonians: (a) Ĥ with ωc = 2.5;

(b) Hrw for ωc = 2.5 and ωc = 1. The line F = 0.25 is reported for reference.

g(m) =

√
ω(m)αωc(1− exp −ωmax

ωc
)

2M
, (4.18)

where g(m) = g1(m) = g2(m). For ωc = 2.5, we set the ωmax
ωc

= 5 while, for

ωc = 1, ωmax
ωc

= 6. For a detailed derivation of this discretization, see Appendix

C. The Hamiltonian is that of the spin-boson model, as defined in Equations (1.3)

and (1.4).

Here, as we see, increasing the number of bath modes from M = 50 to M = 100

does not change the fidelity much (in the order of 10−3). In this sense, we regard

the result as converged. For ωc = 2.5, the maximum fidelity in H is higher than

that of Hrw within the time regime ∆t = 5. With the rotating wave Hamiltonian

Hrw, the fidelity of the case of ωc = 1 is slightly higher than ωc = 2.5, within

∆t ≤ 3.5 (see Appendix C).
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4.4 Entanglement generation
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Figure 4.9: MCE results for the concurrence versus rescaled time at different

temperatures for Ĥrw with g1 = 1 and g2 = 2.1. In (a), ε = ∆ = 0, M = 10

(with ωm = 0.1m for 1 ≤ m ≤ 10) and the initial state is |4〉 = | ↑↑〉; in (b),

ε = ∆ = 0, M = 10 (with ωm = 0.1m for 1 ≤ m ≤ 10) and the initial state is

|2〉 = | ↑↓〉; in (c), ε = ∆ = 1, the initial state is |2〉 = | ↑↑〉 and, respectively,

M = 10 (with ωm = 0.1m for 1 ≤ m ≤ 10) for the dash dotted line and M = 20

(with ωm = 0.1m for 1 ≤ m ≤ 10 and ωm = 0.1(m − 10) for 11 ≤ m ≤ 20) for

the dashed line.

Typically, a large Choi fidelity for the (entangling) CZ gate corresponds to the

generation of large entanglement between the two qubits. To support this state-

ment, we report here a brief study on the entanglement generated between two

qubits. As an entanglement quantifier, we adopt the concurrence, an entangle-

ment monotone that can be easily calculated for a system of two qubits [Woo98].

Figs. 4.9a, 4.9b and 4.9c show the concurrence versus rescaled time for the rotat-

ing wave Hamiltonian Ĥrw with different initial states, temperatures, dynamical

parameters and number of modes. The degradation of quantum entanglement

due to temperature is evident (Figs. 4.9a and 4.9b), along with the speed up in

the entanglement generation induced by a doubling of the modes (Fig. 4.9c).

It is also worth noting that we did not find any region of parameters where
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entanglement between the two qubits is generated for the full Hamiltonian Ĥ

and M = 10, which matches our failure in detecting CZ fidelities larger than 0.25

in such dynamics in the regimes considered here.

4.5 Summary

In this chapter, we have shown how the MCE method can be applied to the

detailed study of coherent quantum evolutions, with a direct interest for quantum

information processing. We considered two qubits interacting with a common set

of bosonic field modes, and obtained converged results for the Choi fidelity of an

entangling CZ gate between the qubits for a rather wide range of Hamiltonian

parameters and field temperatures, which cannot be covered by perturbation

theory or other approximate approaches.

We were able to take into account the effect of finite bath’s temperatures on the

reduced dynamics of the qubits, we could optimize our figure of merit within

certain ranges parameters. and we also highlighted some interesting features

related to the scaling of coherent signatures with the number of field modes

(which we varied over the range 1− 100), showing that at times more mediating

modes can actually be advantageous for the distribution of quantum coherence.

The main limitations of our approach lie in the difficulty of handling counter-

rotating qubit-field coupling terms in the strong coupling regime (i.e., when

the coupling strengths are comparable to the bare dynamical frequencies of the

qubits). Even in such instances, we could however reach convergence by some-

what limiting the range of the coupling strengths.

Within such limitations, the MCE approach has hence been established as a pow-

erful tool for the detailed study of complex quantum dynamics even with relatively

limited resources (desktop computers), typically for systems where discrete sets

of up to 100 field modes are involved.

Understanding the limitations and advantages of the method for such applications



4.5. Summary 70

is very important because, on the way towards operating quantum technologies,

it will be crucial to possess advanced tools, such as Ehrenfest guided trajectories,

for the study and modelling of quantum systems.



Chapter 5

Comparative study of

super-Ohmic spin boson

dynamics

In this chapter, we apply the MCE method to the study of a set of spin boson

dynamics with super-Ohmic bath spectral density. This is a difficult case to

treat, because the bath becomes very coherent and thus capable of drawing and

releasing quantum information from and to the system. These complex memory

effects are difficult to follow, and one needs a well adapted numerical method.

At this stage, we mainly intend to benchmark our method against other estab-

lished numerical techniques, and to check its internal consistency. We will also

try to determine the region of dynamical parameters where the MCE method is

reliable. Our ultimate aim is to establish MCE not only as a method for applied

studies in well understood dynamical settings (as in the previous Chapter), but

also as a viable method for the fundamental study of complex spin-boson like

quantum dynamics.

As references, we will compare our results to two alternate methods: multi-

configurational time-dependent Hartree (MCTDH), based on a full variational

71



5.1. Super-Ohmic spin-boson Model 72

approach [BJWM00, Wan00, WT08] and quasi-adiabatic path integrals (QUAPI),

based on a path integral treatment of the bath [NPTG07].

MCE proves to agree very well with MCTDH, under an initial bath state at

thermal equilibrium. This is especially comforting, because it means that the

Ehrenfest dynamics for the coherent states of our basis grid captures well the

important dynamical region even in the super-Ohmic case.

It will also be shown that MCE produces results close to QUAPI, as well as

the systematic weak-coupling approximation (WCA) approach [GSW89]. How-

ever we suspect, by cross-comparison with MCTDH results and by assessing the

internal consistence of our numerics, that our approach might be more reliable

at (relatively) long times than the QUAPI results reported in [NPTG07], possi-

bly due to the fact that we could account for a wider range of frequencies upon

discretisation.

Regardless of such comparisons, after having shown its use in more applied cases

in the previous chapter, we will demonstrate here the use of the MCE method

for the fundamental analysis of quantum dynamics.

5.1 Super-Ohmic spin-boson Model

Let us remind the reader that the Hamiltonian of the spin-boson model consists

of three terms (the notation used in the following is the same as in the section

1.2.1 of chapter 1):

Ĥspin =
εσ̂z −∆σ̂x

2
(5.1)

for the spin,

ĤB =
M∑

j=1

1

2

[
p̂2
j

mj

+mjω
2
j x̂

2
j

]
(5.2)

for the bath, and

Ĥint =
M∑

j=1

−Cjσ̂zx̂j (5.3)
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for the interaction between them. By use of the following transformation

p̂j = i

√
mjωj

2
(b†j − bj)

x̂j =

√
1

2mjωj
(b†j + bj)

the ĤB and Ĥint can be rewritten as

ĤB =
M∑

j

ωj

(
b†jbj +

1

2

)
(5.4)

and

Ĥint = −
M∑

j=1

Cjσ̂z

[
1√

2mjωj
(b†j + bj)

]
(5.5)

respectively. To avoid unnecessary complications, we assume a real coupling

strength gj and define it as

gj =
Cj√

2mjωj
. (5.6)

The spectral density, which provides one with all the information on the effects

of the bath upon the spin, is given by:

G(ω) =
π

2

M∑

j=1

C2
j

mjωj
δ(ω − ωj) , (5.7)

and, in the ‘power-law formalism’:

G(ω) = 2δsω
1−s
ph ωse−ω/ωc , (5.8)

where s = 3 for the super-Ohmic case.

We shall set the following values for the dynamical parameters: ∆ = 1, ε = 1, δs =

0.01, ωc = 1 and β = 1/T = 10. In such a set-up, with the cutoff frequency ωc

on the same order as the tunneling frequency ∆ of the spin, the bath experiences

a slow dynamics (oscillations) and its memory effect becomes important in the

spin-bath interaction, thus calling for an accurate numerical approximation. The

same set of parameters is investigated in Fig.(14) of [NPTG07], which can thus

serve as a reference.
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5.2 Discretization recipes for super-Ohmic baths

Finding the right discretization of the bath’s frequencies that approximates effec-

tively the continuous spectral density is clearly very important to treat with the

spin-boson dynamics with limited computational resources.

Three different discretization recipes are introduced in this section, in order to

check which one is suitable for the present model. Let us first remind that, from

the density of frequency ρ(ω) as defined in appendix B, one arrives at

C2
j =

2

π
ωjmj

G(ωj)

ρ(ωj)
(5.9)

where ρ(ωj) can be arbitrary but does affect the convergence efficiency, and should

satisfy equation B.9 of appendix B. In the following, three choices of the density

of frequency ρ(ωj) are laid out (depending on re-normalization factors a1, a2 and

a3, which will be determined in the following):

• w1: coupling strengths proportional to
√
ω: gj =

√
ωj
πa1

, with

ρ(ωj) =
a1G(ωj)

ωj
. (5.10)

• w2: coupling strengths proportional to ω3/2: gj =

√
ω3
j

πa2
, with

ρ(ωj) =
a2G(ωj)

ω3
j

. (5.11)

• w3: coupling strengths independent of frequency: gj =
√

1
πa3

, with

ρ(ωj) = a3G(ωj) . (5.12)

Once the maximum frequency ωmax and the total number of modesM are decided,

by replacing ωj with ωmax, and j with M in Eq. (B.9) in Appendix B, the re-

normalisation factors a1, a2 and a3 can be retrieved. Then the corresponding

frequency ωj can be determined. As one will see, the choice w1 seems to be the

best among the three.
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5.3 Comparative results

Apart from comparing our results with QUAPI and MCTDH treatments, we can

also check the accuracy of the numerical approach by considering the quantities

conserved by the exact dynamics. We will thus consider the quantity ∆E(t) =

E(t)−E(0)
E(0)

, where E(t) and E(0) are, respectively, the expectation of the total

Hamiltonian at spin-bath interaction time t and at the initial time. In all the

figures below three parameters, the number of bath’s modes M , the number of

basis coherent states N and the compression parameter comp (defined as the

inverse of standard deviation of the Gaussian distribution from which the initial

coherent states are sampled, as defined in equation. A.10 in appendix A), are

adjusted in order to obtain converged results.

In all our studies we will consider the population difference, essentially corre-

sponding to 〈σz〉, which is a quantity both accessible to measurements in practical

instances and very popular in the spin-boson literature.

5.3.1 Comparison with MCTDH

In Fig. 5.1, initially, the bath is in the thermal equilibrium state and the spin

is in | ↑〉. The Hamiltonian parameters are ∆ = 1, ε = 1, δs = 0.01, ωc = 1

and β = 1/κT = 10. MCE produces results very close to MCTDH1, by setting

the maximal frequency of the bath either to ωmax → ∞ or to ωmax = 5. Within

the time scale ∆t ≤ 3.5, one sees essentially complete agreement of the case of

ωmax →∞ with analogous MCTDH results. During the period 4 ≤ ∆t ≤ 6, the

case ωmax →∞ is slightly shifted upwards with respect to MCTDH, whereas, for

ωmax = 5, the population difference is subtly changed in the opposite direction.

After ∆t 5 10, the former still remains slightly higher up until ∆t ∼= 25, while

1 Results kindly received from Hao-Bing Wang, as a private communication. Unfortunately, we

were not informed about what primary and secondary bases were utilised for these MCTDH

numerics.
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Figure 5.1: The expectation value of 〈σ̂z〉 versus rescaled time by MCTDH (green-

solid) and MCE with ∆ = 1, ε = 1, δs = 0.01, ωc = 1 and β = 10, in which the

bath is initially in thermal equilibrium state. The MCE results are provided with

different M , N (comp = 500 for N = 1000; comp = 1000 for N = 500), under

two different ωmax: in (a), ωmax → ∞; in (b), ωmax = 5. The insert figures are

the corresponding energy deviation ∆E(t) versus the rescaled time.

the latter matches MCTDH very well (the maximum discrepancy is around 6%).

In the figures’ inserts, we report the corresponding energy deviation ∆E(t) versus

∆t. For both ωmax → ∞ and ωmax = 5, ∆E(t) is of the order 10−3. For

N = 1000 (a basis grid of 1000 states), though the ∆E(t) is roughly similar,

the case of M = 100 approaches the MCTDH closer than M = 200 in the

two different ωmax considered here. This seems to indicate that, as the number of

modes increases, one needs a larger and larger number of basis states to reproduce

the full variational dynamics perfectly with Ehrenfest dynamics. For M = 200,

∆E(t) changes less in the case of N = 500 with comp = 1000 (red dash line),

with respect to N = 1000 with comp = 500 (blue dot line). These internal checks

strongly suggest that big compression numbers are helpful in reducing the size of
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the necessary number of coherent states N .

More generally, our capability to reproduce MCTDH results by an Ehrenfest

dynamics based approach is a convincing way of demonstrating that the MCE

method we adopt is very well suited to the study of spin-boson dynamics, even

in challenging super-Ohmic settings.

5.3.2 Comparison with QUAPI

We now intend to contrast our findings with the analysis of the super-Ohmic

spin-boson which can be found in [NPTG07], where the initial system’s state is

different from the one mentioned above. We will hence consider a bath that was

set in canonical equilibrium at t → −∞ and then let free to evolve and interact

with the spin, while the spin is however constrained in the state | ↑〉. By the

time t = 0, when the state of the spin is released and the spin-boson dynamics

takes off, each mode k of the the bath thermalizes to a state which is obtained by

acting with a displacement operator D̂(gk/ωk) on the canonical thermal state. In

our language, this simply corresponds to shifting the centers of the bath’s initial

state in phase space by the amount gk/ωk (for mode k). In the following, results

for the three different discretization recipes previously introduced are included.

w1 Discretization

For the discretization w1 (with coupling strengths proportional to the square

root of the frequencies), Fig. 5.2 shows that a choice ωmax → ∞, whilst sharing

similar dynamical features with ωmax = 5, gives results closer to QUAPI within

the relatively short time scale ∆t ≤ 20. However, the insert in Fig. 5.2b, with

lower compression number comp, agrees with QUAPI better than corresponding

cases with large comp. If QUAPI results are accurate, this would suggest that the

appropriate compression number should be adapted to the relevant Hamiltonian.

Large comp means small width of the distribution of the coherent basis states.
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Figure 5.2: The expectation value of 〈σz〉 versus rescaled time by QUAPI (green-

solid) and MCE (w1 discretization) with ∆ = 1, ε = 1, δs = 0.01, ωc = 1

and β = 10, for initially displaced thermal bath. The MCE results are pro-

vided with different M , N (comp = 500 for N = 1000, except comp = 300

for M70 − N1000; comp = 1000 for N = 500), under two different ωmax: in

(a), ωmax → ∞; in (b), ωmax = 5. The insert figure in (a) displays the corre-

sponding enery deviation with respect to rescaled time, while the insert figure in

(b) is still the 〈σz〉 versusing rescaled time, but under either smaller N or comp

(comp180, comp100, N500-comp500, comp300 represent ‘M70-N200-comp180’,

‘M100-N1000-comp100’, ‘M150-N500-comp500’, ‘M200-N500-comp300’, respec-

tively.) .

Clearly, if comp is too big, thus enforcing the initial coherent states of the grid to

lie very close to each other, too strong restrictions may be imposed on the initial

grid and the basis grid may then degrade relatively quickly.

Fig. 5.2 shows that sensitivity to oscillatory behaviours diminishes with respect

to QUAPI: this could be disadvantageous when employing the method to detect

quantum coherence in composite systems.
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It should be noted that, although MCE and QUAPI show relaxation at about the

same time ∆t = 30, the value 〈σz〉 of MCE is lower than that of QUAPI by around

6%. It is, however, very close to the WCA results showed in [NPTG07]. This

discrepancy between QUAPI and variational methods in the predicted relaxation

energy is probably the most striking feature of this comparison and probably

deserves a deeper analysis.2

w2 and w3 Discretization
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Figure 5.3: The expectation value of 〈σz〉 versus rescaled time by QUAPI (green-

solid) and MCE (w2 and w3 discretization) with ∆ = 1, ε = 1, δs = 0.01,

ωc = 1 and β = 10, for initially displaced thermal bath. In (a), w2 discretization

under different ωmax and with different M and N (comp = 500 for N = 1000;

comp = 250 for N = 900); In (b), w3 discretization under same ωmax →∞, but

with different M and N (comp = 500 for N = 1000).

In Fig. 5.3a for w2 discretization, results between ωmax → ∞ and ωmax = 5 are

close to each other. The feature is similar to that of w1 discretization. Moreover,

2 We would need to scan QUAPI results for wider ranges of parameters to investigate this further.
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the general behavior of the case ωmax = 10 is not far away from that of ωmax →∞
as well. This similarity arises from the fact that the spectral density G(ω) is

almost 0 when ω approaches 10. Here, different N and comp are accounting

for the discrepancies between them. This point will be further confirmed in the

following section.

In Fig. 5.3b for w3 discretization under the same ωmax → ∞, the results of

different M and N are close to each other, which shares similar characteristic as

in Fig. 5.2a.

However, it is obvious that both w2 and w3 discretizations behave less smoothly

and, more importantly, converge more slowly in the long time regime ∆t ≥ 30,

compared to the w1 descretization. This indicates the w1 descretization is more

suitable for the present model. That is the very reason why w1 discretization is

utilized when comparing with MCTDH in Fig. 5.1.

5.3.3 Flipping the interaction Hamiltonian Phase

In this section, we want to test our numerics in terms of the effect induced by a

change of the phase of the interaction between the spin and bath, by replacing

g with −g, under the same numerical parameters (M = 100, N = 500, comp =

150),

As seen in Fig. 5.4a, filpping the phase of spin-bath interaction Hamiltonian,

does not change the evolution at all if the initial bath is in thermal equilibrium

state. This is as expected, since the initial state is then totally phase-symmetric

in phase space.

However, for an initially shifted bath (to which a fixed displacement operator

has been applied), the initial state of the spin-bath system is clearly not phase-

invariant anymore, and the change of phase has a relevant effect. In fact, it turns

out to slow the spin dynamics down. Our numerics are thus consistent as far as

phase-flips in the interaction couplings are concerned.
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Figure 5.4: The expectation value of 〈σz〉 versus rescaled time by MCE (w1

discretization) with ∆ = 1, ε = 1, δs = 0.01, ωc = 1 and β = 10, under different

spin-bath interaction Hamiltonian phase and for different initial thermal bath: In

(a) for initially canonical equilibrium thermal bath, MCE results are provided for

ωmax →∞ with g and phase flipping −g, and ωmax = 10 with −g, by comparing

with previous MCTDH result (green-solid); In (b) for initially displaced thermal

bath, MCE results are provided for ωmax = 5 with g and −g, by comparing with

previous QUAPI result (green-solid).

5.3.4 Adjusting the coupling strength by a factor of 2

We now intend to test how sensitive the MCE approach is with respect to the

magnitude of the coupling strengths, without ever shifting the initial bath state

in phase space.

Reducing the coupling strength by a factor of 2

In Fig. 5.5a, it is clear that the results of ωmax → ∞ agree very well with those

of ωmax = 5 under different bath modes M and basis size N , despite of small
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Figure 5.5: The expectation value of 〈σz〉 versus rescaled time by MCE (w1

discretization) with ∆ = 1, ε = 1, δs = 0.01, ωc = 1 and β = 10 for initially

canonical equilibrium bath, but with reduced coupling strength g/2 (instead of g).

In (a), different ωmax with different M , N and comp (comp = 500 for N = 1000,

comp = 1000 for N = 500); In (b), different ωmax, but with same M = 100, N =

500 and comp = 150. The insert figures are the corrsponding energy deviation

∆E(t) versus the rescaled time.

discrepancies. The insert figure display that, in both two different ωmax cases,

energy deviation ∆E of M = 200 with N = 500 (comp = 1000) is more stable

than that of M = 100 with N = 1000 (comp = 500).

In Fig. 5.5b, it is striking that, by fixing M = 100, N = 500, comp = 150, the

results for different ωmax, ranging from 10 to 3, are very similar to each other and

reach around the same 〈σz〉 at ∆t = 50. The energy deviation ∆E holds almost

flat after ∆t = 20.

The reason to highlight the choice of ωmax is because it is very relevant for the

whole system dynamics. If high frequencies do not play an important role, like

here in the relatively small coupling strength g/2 case (Recall that the difference
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in the case of g between ωmax → ∞ and ωmax = 5 is already less pronounced in

Fig. 5.1, Fig. 5.2 and Fig. 5.3.), one can set it to be fairly small. This will enable

one to save computational cost, in the sense that much less bath modes will be

required to fully display the whole system dynamics. We will address this issue

further in the following section by increasing the coupling strength by a factor of

2.

Obviously, reduced coupling strengths allows one to obtain quickly converged re-

sults. Also, it can be clearly inferred that the Ehrenfest approximation adopted

for MCE works very well with relatively small coupling strengths between spin

and bath. This happens because the derivative of the basis coherent states are

then relatively small even in full variational treatments, and hence the approxima-

tions introduced in their dynamics by using the Ehrenfest equations are definitely

negligible.

Increasing the coupling strength by a factor of 2

If the coupling strengths are increased by a mere factor 2, the internal consistency

of our method is lost, and we were not capable of obtaining converged results.

In Fig. 5.6a it is shown that, although the population difference 〈σz〉 always

degrades with a similar pattern, the discrepancy of 〈σz〉 between ωmax →∞ and

ωmax = 5 is dramatic. In both cases, results for M = 100 with N = 1000 decrease

much more quickly than those for M = 200 with N = 500. For the same M and

N , the case of ωmax →∞ displays a higher population difference than ωmax = 5.

Under the same adjustable parameters M = 100, N = 500, comp = 150, Fig. 5.6b

also shows very clearly that a large ωmax makes for unduly larger 〈σz〉.

This demonstrates that the MCE approach faces increasing difficulties to get

converged results in the large coupling strength case: we have probably hit the

region of parameters where the method stops being reliable, due to limitations

inherent in our approach.
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Figure 5.6: The expectation value of 〈σz〉 versus rescaled time by MCE (w1

discretization) with ∆ = 1, ε = 1, δs = 0.01, ωc = 1 and β = 10 for initially

canonical equilibrium bath, but with increased coupling strength 2g (instead of g).

In (a), different ωmax with different M , N and comp (comp = 500 for N = 1000,

comp = 1000 for N = 500); In (b), different ωmax, but with same M = 100, N =

500 and comp = 150. The insert figures are the corrsponding energy deviation

∆E(t) versus the rescaled time.

We now attempt at identifying the possible reasons for this shortfall:

• Bath discretization.

The key to a good bath discretization is to capture all the most important

dynamical bath frequencies with a good coupling profile. Such frequencies

are typically those close to the spin’s resonance frequency (the energy gap

between excited and ground state in the bare spin dynamics,
√

2 in our

case). Increasing the coupling strengths typically increases the frequencies

of the discretized bath and concentrates more frequencies away from the

important region, such that the numerics are more sensitive to the total

number of modes M . The maximum frequency ωmax is also very difficult
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to set in order to get converged results for higher coupling strengths.

As one sees from Fig. 5.6, the MCE approach faces difficulty to get con-

verged results for relatively strong coupling strengths. However, as evi-

denced in the other figures in this chapter, the results for ωmax = 5 is close

to ωmax →∞. The reason is because the energy gap in the bare spin dynam-

ics is only
√

2, and thus frequencies highly off it do not contribute as much

as the low frequencies (close to
√

2). Hence, one important information

revealed is that, if one is capable to distinguish the important frequencies,

which plays the most important role in the whole dynamics, from a broad

range of frequency distribution, much less coherent basis states are then

required to display the whole quantum dynamics and thus will essentially

save the computational resources. For instance, even in the case of 2g con-

sidered here, if there is a benchmark to compare or enough knowledge about

the true system evolution, it will help one to determine a relatively small

but reasonable ωmax, in order to reduce the total number of the discretized

bath modes and therefore to minimize the coherent basis states to interpret

the whole dynamics faithfully.

• Size of the grid of coherent states.

To study stronger spin-bath interactions, a larger size of the coherent states

grid N may be needed. First of all, clearly, a larger number of bath modes

M (which may be necessary as per the previous point) demands a larger

size of the coherent grid N . Further, even fixing ωmax and M , increasing

coupling strength might require larger N . Setting ωmax = 5 and M = 100,

the difference between N = 500 and N = 1000 is still considerable. This is

probably due to the fact that a larger portion of Hilbert space is spanned

at equal times if the interaction strength is increased.

• Time step.

The continuous dynamics is reproduced by a standard fourth-order Runge-

Kutta method, where the accumulated error should be of fourth order in



5.4. Discussion 86

the discrete time step. Even if such a method is rather reliable and allows

for converged results, the time step dt for the numerical simulation should

be sensisitive to the highest dynamical frequencies, which are pushed higher

by increasing the coupling strengths. However, in our case, even reducing

dt by a factor of 2 did not help us to achieve more easily converged results.

• Ehrenfest approximation.

As detailed in Chapter 2, in obtaining the simplified working Eq. (3.40) for

the coherent basis states, some components in the full variational Eq. (A.8)

for the coherent basis states have been neglected, under the assumption that

the overlap between two different coherent basis states becomes smaller as

the evolution time goes by. This is likely to affect the accuracy of the

MCE method to a certain extent, depending on the model. Typically, we

find that this approximation is reliable unless the dynamics of the coherent

states in phase space is too fast. Increasing the speed of such a dynamics

is precisely what increased coupling strengths do, thus probably incurring

in larger errors.

• Smooth actions.

The classical action Sl,j is introduced in Eq. 3.34, in order to obtain pre-

exponential smooth amplitudes in Eq. (3.35). Such actions do greatly de-

pend on the coupling strengths gj, in that higher dynamical frequencies

would imply quicker oscillations. The smoothening of the effective coherent

amplitudes by the classical actions may become less effective when interac-

tion strengths are increased.

5.4 Discussion

We have reported on a vast amount of simulation on the spin-boson model with

super-Ohmic spectral density, which was carried out by systematically adjusting

all the involved numerical parameters: the maximal frequency ωmax in the bath,
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number of bath modes M , the size of coherent states’ grid N , and the compression

number comp, under three different discretization recipes. The results showed

here are highly sensitive to such parameters in that, compared for instance to the

Ohmic spin-boson case, super-Ohmic spin-boson numerics are much more difficult

to converge in terms, typically, of the number of basis states.

Nevertheless, our MCE results are in very good agreement with MCTDH, indicat-

ing that the Ehrenfest approximation is rather reliable in the region of parameters

considered, and apt to study bath’s memory effects.

Our results are also relatively close with QUAPI numerics, although with some

discrepancies. Without a systematic comparative analysis for a wider range of

parameters, it is difficult to pin down these differences to specific reasons. It

would be worth to get in touch with the authors of [NPTG07] to discuss specific

advantages and limitations of the QUAPI approach, and compare them with our

study.

In a near future, it would also be worth to compare MCE with another promising

approach to spin boson dynamics based on density matrix renormalisation group

techniques [PCHP10].

Comparative arguments aside, let us here summarise the regimes within which we

could establish the Ehrenfest dynamics to follow the quantum dynamics reliably,

and hence the range of applicability and scope of the method.

5.4.1 Working conditions

Firstly, let us mention that super-Ohmic baths turned out to be considerably

more challenging than Ohmic ones. For instance, the Ohmic case of Fig.(8) of

[NPTG07], with a cutoff frequency ωc = 50, can be reproduced with a relative

precision of 10−3 with modest resources (around 200 basis states). We argue this

to be due to the smoother form of the spectral density, which is easier to capture

with our discretization.
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Essentially, the super-Ohmic case becomes unstable, and unreliable, for high

bath frequencies and strong spin-boson couplings: these are currently the main

limitations to the method we employed.

For instance, if the cutoff frequency ωc is too large, like ωc = 200 in Fig.(13) of

[NPTG07], the MCE approach fails to produce the oscillations for 〈σz〉 within

our current computational resources. The reason is that the coupling strengths

of such broadband spectra stay strong when using a limited number of discretized

modes to simulate the continuous bath.

Even for discrete sets of bosonic modes, as illustrated by Fig. 4.6 of chapter 4 (see

also Figs. C.6 and C.7 in Appendix C), the coupling strength has to be reduced

in order to get converged results. In the super-Ohmic case, a good rule of thumb

is that covered results may be obtained for coupling strengths up to 1/
√

2, in

units of the bare resonance frequency of the spin.

Temperature is clearly another concern. Our treatment, based on Monte Carlo

averaging, could be pushed up to temperatures of about 1, in units of bare res-

onance frequency of the spin. We could not have obtained a converged average

for higher order of magnitude of the temperature.

5.4.2 The scope of the MCE method

As demonstrated in the last two chapters, the MCE method could be utilized as a

useful tool to study systems where few two-level qubits (or low dimensional sub-

systems) interact with a relatively large number of bosonic degrees of freedoms.

The methodology is that low dimensional subsystems are treated in a complete

and static Hilbert vector space, while bosonic modes are described in an incom-

plete and dynamical Hilbert space, constructed from a set of propagating coupled

coherent states guided by Ehrenfest dynamics. Therefore, the MCE approach,

in principle, can be applied to very diverse physical systems sharing similar de-

scriptions involving bosonic modes, either spin-bosonic or purely bosonic. This
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versatility is probably the main strength of the method, which hence begs to be

applied in wider contexts than what done so far.

The work presented here will be the basis on which further investigation will be

built. A first obvious direction we intend to pursue is a rigorous study of the

memory effects of the bath (as quantified by the fluctuations of the bath’s, or

system’s, entropy) in the super-Ohmic regime. Then, we should also proceed

to a full, systematic study of the spin-boson model, ranging from sub-Ohmic to

super-Ohmic regimes and looking for various relevant dynamical features (e.g.,

localization), based on a single consistent numerical technique.

We have however already contributed to establish MCE as a numerical method

to study complex spin-boson dynamics, with performance comparable to com-

peting approaches, and which could be valuable for the investigation of quantum

dynamics of interest in quantum optics, chemical physics and solid state physics.



Chapter 6

General error bound for

approximated unitary quantum

dynamics

6.1 Motivation

As we pointed out several times before in this dissertation, the study of generic

quantum dynamics is doomed to approximation since, even when the evolution

of the system can reasonably be considered as unitary, and the corresponding

Hamiltonian as known, the dimension of the Hilbert space where the evolution

takes place is generally intractable on computing machines. One has then to

use approximated methods, like MCE in our case, which come in many flavours

and are adapted to many different tasks. With all this variety and diversity,

it would be extremely desirable to have systematic ways to estimate the errors

made while trying to calculate the evolving quantum state and, perhaps even

more importantly, to quantitatively compare different approaches to the same

problem. While error analyses have been carried out in specific contexts (see, for

instance [Lub08]), no established general framework has been developed for the

analysis of numerical errors, at least to our knowledge.

90
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Now, quite simply, most of the numerical approaches currently available rely

on the state of the system at any given time to be represented in a restricted

Hilbert space, such that it can be stored on a computer’s hard disk. Inspired by

this obvious remark, we shall proceed to determine how the upper bound on the

geometric (‘Euclidean’) distance between the ‘true’ vector state of the system,

|ψ〉, and the approximated vector space stored on the computer’s hard disk, |ψ′〉,
also referred to as the ‘hard disk state’ in what follows, can be updated at every

time-step of unitary evolution under a Hamiltonian Ĥ.

6.2 Derivation of the bound

Suppose that, at time t, one has

‖|ψ(t)〉 − |ψ′(t)〉‖2 ≤ δ(t) , (6.1)

where ‖|v〉‖2 =
√
〈v |v〉 is the 2-norm of the vector, and that the system’s true

state |ψ(t)〉 evolves under the known time-independent Hamiltonian Ĥ:

∂t|ψ(t)〉 = −iĤ|ψ(t)〉 . (6.2)

Our first aim is determining the distance ‖|ψ(t + dt)〉 − |ψ′(t + dt)〉‖2, at first

order in dt.

To this purpose, let us introduce the operator Pt, representing the orthogonal

projector on the restricted Hilbert space of the hard disk (the label t is included

to stress that such a projector might depend on time, as is the case in most

sophisticated numerical techniques, where the adopted ‘basis’ does depend on

time). One has, clearly, P 2
t = Pt, and Pt|ψ′(t)〉 = |ψ′(t)〉. We will also use the

expression Ĥ ′ = PtĤPt: the operator Ĥ ′ is nothing but the Hamiltonian stored

(or computable) in the hard disk as a matrix of complex numbers.

Schrödinger’s equation for the hard disk state reads

Pt∂t|ψ′(t)〉 = −iPtĤ|ψ′(t)〉 = −iĤ ′|ψ′(t)〉 . (6.3)



6.2. Derivation of the bound 92

It is crucial here to note that, in general, Pt∂t|ψ′(t)〉 6= ∂t|ψ′(t)〉: the time-

derivative operator as well, and not only the Hamiltonian, might not be exactly

representable on the hard disk Hilbert space. We will see in the following an

instance where this is the case, and show explicitly how the contribution of the

time-derivative to the error bar can be taken into account.

It should also be remarked that, in the following, we will assume that the approx-

imated dynamics will be wholly governed by the projected Schrödinger Eq. (6.3)

alone, without any step by step normalisation of the state vector. Several nu-

merical methods, among which MCE, work on this assumption (and actually rely

on evaluating the norm as an indicator of the quality of the simulation). The

framework we are introducing can be adapted to include forced normalisation, at

the price of some added complexity.

At first order one has

‖|ψ(t+dt)〉−|ψ′(t+dt)〉‖2 ≤ ‖|ψ(t)〉−|ψ′(t)〉‖2 +‖∂t|ψ(t)〉−∂t|ψ′(t)〉‖2dt+o(dt),

(6.4)

which can be further decomposed by repeated application of the triangular in-

equality and of the Schrödinger equations reported above, to obtain:

‖|ψ(t+ dt)〉 − |ψ′(t+ dt)〉‖2 ≤ δ(t) + ‖∂t|ψ′(t)〉 − Pt∂t|ψ′(t)〉‖2dt

+ ‖Ĥ|ψ(t)〉 − PtĤ|ψ′(t)〉‖2dt+ o(dt).
(6.5)

The notation o(dt) stands for Landau little-o symbol: limdt→0 o(dt)/dt = 0.

The two coefficients for the updated error at first order in dt can be re-expressed

in terms of overlaps. The first coefficient, which we will call κ(t), quantifies the

error due to the impossibility of representing the time-derivative exactly in the

whole Hilbert space, and is given by:

κ(t) = ‖∂t|ψ′(t)〉 − Pt∂t|ψ′(t)〉‖2 =
√
〈ψ′(t) |∂t(Pt − 1)∂t|ψ′(t)〉 , (6.6)

where 1 stands for the identity operator on the whole Hilbert space. Notice that

∂t can be understood to always act on the right and that κ(t) ≥ 0. The evaluation

of κ(t) for the MCE method on a phase-space grid may be found in Appendix E.
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The second coefficient accounts for the imperfect representation of the Hamilto-

nian Ĥ in the hard disk Hilbert space and can be recast as

‖Ĥ|ψ(t)〉 − PtĤ|ψ′(t)〉‖2

=

√
〈ψ(t) |Ĥ2|ψ(t)〉+ 〈ψ′(t) |Ĥ ′2|ψ′(t)〉 − (〈ψ(t) |ĤPtĤ|ψ′(t)〉+ c.c.) .

(6.7)

In the last expression, the first term is just the expectation value of the squared

Hamiltonian 〈Ĥ2〉, which is conserved, and can be very often exactly computed

from the initial conditions of the system. The second term, 〈ψ′(t) |Ĥ ′2|ψ′(t)〉 only

depends on the hard disk state and Hamiltonian, and can hence also be exactly

computed at any given time (it won’t necessarily be a constant, since Ĥ ′ = PtĤPt

generally depends on time). The last term can also be evaluated, as follows. First,

notice that Eq. (6.1) implies

|ψ(t)〉 = |ψ′(t)〉+ ε|v〉 , where ‖|v〉‖2 = 1 and ε ≤ δ(t) , (6.8)

which can be substituted for |ψ(t)〉 in (〈ψ(t) |ĤPtĤ|ψ′(t)〉+ c.c.) to get

−(〈ψ(t) |ĤPtĤ|ψ′(t)〉+ c.c.) = −(〈ψ′(t) |Ĥ ′2|ψ′(t)〉+ ε〈v |ĤPtĤ|ψ′(t)〉+ c.c.)

≤ −2〈ψ′(t) |Ĥ ′2|ψ′(t)〉+ 2δ(t)‖ĤĤ ′|ψ′(t)〉‖2 .

(6.9)

This inequality can be combined with Eq. (6.7), obtaining

‖Ĥ|ψ(t)〉 − PtĤ|ψ′(t)〉‖2 ≤
√
〈Ĥ2〉 − 〈ψ′(t) |Ĥ ′2|ψ′(t)〉+ 2δ(t)‖ĤĤ ′|ψ′(t)〉‖2 .

(6.10)

The definitions:

η(t) = 〈Ĥ2〉 − 〈ψ′(t) |Ĥ ′2|ψ′(t)〉 , (6.11)

ξ(t) = 2‖ĤĤ ′|ψ′(t)〉‖2 = 2

√
〈ψ′(t) |Ĥ ′Ĥ2Ĥ ′|ψ′(t)〉 (6.12)

lead to

‖Ĥ|ψ(t)〉 − PtĤ|ψ′(t)〉‖2 ≤
√
η(t) + δ(t)ξ(t) . (6.13)

Note that the expression 〈ψ′(t) |Ĥ ′Ĥ2Ĥ ′|ψ′(t)〉 can be rewritten as

〈ψ′(t) |Ĥ ′Ĥ2′Ĥ ′|ψ′(t)〉, where we have defined Ĥ2′ = PtĤ
2Pt. The coefficient ξ(t)
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is hence computable as long as the matrix elements of both Ĥ ′ and Ĥ2′ can be

evaluated in the ‘hard-disk basis’. This is a very weak requirement, satisfied by

most numerical techniques, including MCE.

As apparent, η(t) represents the contribution to the error at first order in

time due to the discrepancy between the exact invariant 〈Ĥ2〉 and the quantity

〈ψ′(t) |Ĥ ′2|ψ′(t)〉 stored in the hard disk. While η(t) can generally be negative,

the term within square root on the RHS of Inequality (6.10) is always positive.

Note also that, in natural units, κ(t) has the dimension of an inverse time whereas

η(t) and ξ(t) have the dimension of an inverse time squared.

The term δ(t)ξ(t) is instead due to the imperfect knowledge of the quantum state

at time t. It should be stressed that, since no knowledge whatsoever about the

vector |v〉 of Eq. (6.8) can be assumed, this is the best possible geometric bound

achievable within our framework.

Before proceeding, let us summarise and re-organise our findings in a handier

form, by inserting (6.6), (6.10) and (6.13) into Inequality (6.5):

‖|ψ(t+dt)〉−|ψ′(t+dt)〉‖2 ≤ δ(t)+κ(t)dt+
√
η(t) + ξ(t)δ(t)dt+o(dt) = δ(t+dt)

(6.14)

(According to Ineq. (6.1), we have equated the error bound determined at time

t+ dt with δ(t+ dt)). By taking the limit dt→ 0 in the last equality, we obtain

a differential equation for the geometric error bound δ(t):

dδ

dt
= κ(t) +

√
η(t) + ξ(t)δ(t) . (6.15)

This is the central finding of our analysis: since the quantities κ(t), η(t) and

ξ(t) can all be evaluated as the numerics progress, the first-order differential

equation (6.15) can be always be numerically integrated, and its solution provides

a rigorous upper bound to the geometric distance between the true state |ψ〉 and

the hard disk state |ψ′〉.

Notice that our result, in the form of Eq. (6.15) is completely independent on the

technicalities involved in the numerical solution of the dynamical equations (as
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long as they provide a solution of Schrödinger equation with no error at first order

in dt, like the fourth order Runge-Kutta method we employ does), and on the

discretisation of time adopted. The reliability of a numerically determined δ(t)

would just be heralded by convergence with respect to a decrease in the numerics’

time-step.

6.2.1 Optimization with respect to ground energy

It is important to remark that, while the dynamical equations and the the nu-

merics are all obviously invariant under the transformation Ĥ → Ĥ + E0, where

E0 is a real additive constant, the quantities η(t) and ξ(t) are not. This fact is

not logically inconsistent, as it follows from the geometric nature of our bound,

and can actually be exploited to properly reduce the value of the time derivative

of δ(t), thus keeping the error as low as possible, at least at short times. Let

the functions η(t, E0) and ξ(t, E0) denote the counterparts of η(t) and ξ(t) if an

additive constant E0 is added to Ĥ. Such functions read

η(t, E0) = 〈Ĥ2〉 − 〈ψ′(t)|Ĥ ′2|ψ′(t)〉 − 2E0(〈Ĥ〉+ 〈ψ′(t)|Ĥ ′|ψ′(t)〉), (6.16)

ξ2(t, E0)

2
=E4

0 − 4〈ψ′(t)|Ĥ ′|ψ′(t)〉E3
0〈ψ′(t)|Ĥ ′Ĥ2′Ĥ ′|ψ′(t)〉

+ (5〈ψ′(t)|Ĥ ′2|ψ′(t)〉+ 〈ψ′(t)|Ĥ2′|ψ′(t)〉)E2
0

− (2〈ψ′(t)|Ĥ ′3|ψ′(t)〉+ 〈ψ′(t)|Ĥ2′Ĥ ′ + Ĥ ′Ĥ2′ |ψ′(t)〉)E0.

(6.17)

Each pairs of functions η(t, E0), ξ(t, E0) for given E0 provides one with a different

error bound. The optimal value E0, minimising the quantity δ(t) at relevant

times, clearly depends on the specific properties of Hamiltonian and numerical

method. Still, it would seem natural to take advantage of the freedom on the

choice of E0 to minimise the quantity ξ(0, E0), at time t = 0.
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6.3 Error bound estimates

In the previous section, we obtained a differential equation for a certifiable error

bound δ, of the form:

δ̇ = κ(t) +
√
η(t, E0) + ξ(t, E0)δ , (6.18)

where we have kept the zero point of the energy E0 as a free variable.

An analytic solution for δ(t) is not easy to obtain, and would anyway depend

on the functions κ(t), η(t, E0) and ξ(t, E0), which generally depends on the tech-

niques and system under examination. Still, it is very instructive to consider the

solution for δ(t) by replacing such functions with constant values, which shall be

denoted by κ, η and ξ. In fact, although κ(t), η(t, E0) and ξ(t, E0) will of course

fluctuate and vary in time in very complicated fashions, in practical cases their

typical values will not deviate too noticeably from their initial values, at least on

the relatively short time-scale we are interested in (once the error bound grows

too large, the present analysis cannot lend any substance to the numerics’ validity

anyway). Hence, the solutions for δ(t) at constant coefficients will provide one

with an insightful guideline on the error bound’s behaviour.

We will also assume, for simplicity, the initial condition δ(0) = 0 (very reasonable,

as the initial state can often be represented exactly). The solution to Eq. (6.18)

can then be given in terms of the solution of the following transcendent equation:

√
η

ξ
+ δ(t)− κ√

ξ
ln

(
1 +

√
ξ

κ

√
η

ξ
+ δ(t)

)
=

√
ξ

2
t+

√
η

ξ
− κ√

ξ
ln

(
1 +

√
η

κ

)

(6.19)

Preliminary studies show that, in practical cases, the solution δ(t), always a

convex increasing function, where κ(t), η(t) and ξ(t) are replaced with their

initial values typically yields a very reliable estimate for the numerically computed

bounds.

We can now push this heuristic arguments a bit further and inquire about the

different roles played of the coefficients κ, η and ξ. If ξ dominates the equation
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(i.e. for κ2 � ξ and η � ξ), then one has:

δ(t) ' ξ

4
t2 . (6.20)

Hence, in this case the time-scale on which the numerics are provably reliable is

simply given by 1/
√
ξ: after a time t ' 1/

√
ξ, the error bounds reaches the value

0.25 which, in the great majority of interesting (large and complex) systems,

implies that very little can be rigorously inferred from the numerics about the

true value of measurable quantities.

An increasing quadratic behaviour, due to the dominance of the term
√
ξδ(t) in

the differential equation, is always bound to kick in at long enough times. this is

however not always relevant to our study in that one should remember that the

Euclidean distance between two vector of unit norm is bound from above by 2.

Values of δ above 2 are hence nonsensical.

At short times, on the other hand, and more precisely for
√
ξt � 1, the term

ξδ(t) can be neglected, and the error accrues linearly in time:

δ(t) ' (κ+
√
η) t for

√
ξt� 1 . (6.21)

In practice, our approximated analysis shows that it is desirable to keep
√
ξ as

low as possible, so as to hold off the onset of the quadratic regime, where our

error bound rapidly blows up.

6.4 A brief comment on applications

We could not yet extensively test the bound on our numerics, because these results

were derived very recently. However, by a first inspection of standard Ohmic spin-

boson models by MCE (see Appendix E for an evaluation of the coefficient κ(t)

specific to the MCE on coupled coherent states case), it is clear that the term

δ(t)ξ(t) plays the dominant role in the error bound and, as anticipated, one has

error bounds comparable to the solution δ(t) of Eq. (6.19). Such error bounds,

unfortunately, become very large at very short times, well before our numerics
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become unreliable (as known, for instance, from analytical solutions of simple

dynamics).

This is not all that surprising: it is clear that the coefficient ξ(t) is the real

Achille’s heel of our analytical treatment. In fact, κ(t) and η(t) depend on differ-

ences between expectation values of ‘true’ Hilbert space operators and ‘hard-disk

estimates’ and do strongly depend on the quality of the numerical technique and,

for given technique, decrease with increasing resources (for instance, trivially, if

more basis states are used). Instead, ξ(t) is fixed number depending on some

expectation value of a hard-disk operator (H ′H2′H ′), whose magnitude does not

depend on the quality of the simulation.

However, this problem also inspires us to conjecture the existence of a ‘heuristic’,

stricter error bound. The quantity ξ was introduced in Eq. (6.9), where the over-

lap between a certain known vector of finite norm (ĤĤ ′|ψ′〉) and the completely

unknown vector of unit norm |v〉 has been bound from above by the norm of the

known vector. But, in Hilbert space of large dimension, this is an extremely pes-

simistic bound! Statistically (in the sense, for instance, of the Haar measure, see

Chapter 2), the average overlap between any two generic vectors of finite norm

goes to zero with increasing dimension of the Hilbert space. Since Hilbert spaces

of infinite dimension are what we are interested in, one could neglect the ξ(t)

term altogether, replace η(t) with |η(t)|, and end up with an easily computable

error bound δ(t) which would just linearly increase in time as:

δ(t) =

∫ t

0

(
κ(t) +

√
|η(t)|

)
dt+ δ(0) . (6.22)

As a first step, we intend to test this heuristic bound on our MCE numerics,

starting from well known situations.

We hope this might in time prove useful to establish a common set of guidelines

to compare different numerical techniques.



Chapter 7

Conclusions and Outlook

Coherence is the fundamental aspect of quantum theory producing both its in-

triguing features and its potential for applications [MAN00, LJL+10, GRTZ02,

ECR+07, LCF07]. The coherence of quantum subsystems is however very sen-

sitive to interactions, both within well identified systems and with surrounding

environments. This thesis is an attempt at developing and testing methods to

disclose the emergence of quantum coherence in complex quantum systems.

In chapter 2, high fidelity Controlled-Z gates between two remote qubits, linked

by dispersive bosonic modes, were shown to be achievable by employing a specific

way to encode quantum information to confine the whole system in one excitation

only Hilbert space. This feature saves the computation cost and also reduces the

disspation inducing by excitation states. The study reveals that relatively large

number of mediating modes may work co-operatively to perserve the quantum

coherence.

In chapter 3, the ‘Multi-Configurational Ehrenfest’ (MCE) is introduced to

truncate the infinite continuum bath modes, by utilizing time-dependent and

Gaussian-distributed coherent states as a basis followed by Ehrenfest guided dy-

namics. In chapter 4 and chapter 5, the self-consistent convergence and agreement

with another two numerical approaches ‘multi-configurational time-dependent

Hartree’ (MCTDH) and ‘Quasi-adiabatic path integrals‘ (QUAPI) evidence the
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capability of MCE as a numerical tool to study complex and large quantum sys-

tems. However, The discrepancies between different numerical scenario (either

relatively small or distinct), evokes the idea in chapter 6 to determine an error

bound to qualify the reliablity of computed state of system in computer hard

disk. Rigorous formulisam has been layed out as a starting point to carry out the

upper gemometic error bound, though no supported evidence is given to track

down the efficiency of this approach.

For the last three years, my co-workers1 and I have faced, and for the most part

sorted, a number of minor and major technical problems related to the application

of Ehrenfest guided trajectories to the study of quantum dynamics. The solution

of such technicalities, and the insight into the related physics such an exercise has

given us, have left us with a powerful, and relatively well understood, tool to deal

with quantum dynamics involving bosonic degrees of freedom. I am confident

these methods can be the foundation of substantial future work.

The MCE method can in fact be applied to study coherent effects in the most

diverse systems where qubits interact with a boson bath: in trapped ions, the in-

ternal levels may embody discrete spins, while the vibrational normal modes

constitute a finite phonon bath which, by adjusting laser beams onto a sin-

gle ion and the ion crystal’s dimensions, can mimic spectral densities ranging

from sub-Ohmic to super-Ohmic [PMvDC08]; in semiconductors, excitons and

phonons admit a natural spin-boson descrtiption within a solid state environ-

ment [RGG+10, RGB+10]; in light-harvesting antennae, where localised dimers

interact with the light field, spin-boson modelling plays a major role. In the lat-

ter setting, non-Markovian and non-perturbative effects become significant and

thus challenging to solve by semi-analytic methods, mainly due to the following

specific reasons: (i) the time scale of the protein-solvent bath (typically relevant

to the cutoff frequency) is comparable to (or even slower than) that of exciton

1 Primarily my supervisor, Dr. Alessio Serafini, and Dr. Dmitrii Shalashilin, who pioneered the

MCE method, and without whose help most of this research would not have been possible.
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dynamics [TER+09]; (ii) the coupling strength between the system and bath is

strong when compared with the intra-system coherent coupling rates [HP11]. In

all these physical systems, the MCE approach may be utilized to study the in-

terplay between system and bath and thus possibly identify regimes where the

system’s coherence is preserved for longer times, where non-Markovian effects are

dominant, or where localisation and de-localization occur under various physics

conditions, including finite temperatures and different bath spectral densities.

The main limitations to this programme we can foresee are related to the diffi-

culties in treating broad spectral densities and very strong spin-boson couplings,

illustrated in chapter 5. We can still be very confident our techniques will provide

one with results which are well beyond the reach of conventional, semi-analytic

approaches and, as previously remarked, which are applicable over a wide set of

parameters and systems.

Very importantly, MCE could also be convenient employed for purely bosonic

systems – like optomechanical or all-optical systems – with anharmonic Hamil-

tonians (higher than quadratic in order, and thus not analytically solvable). In

particular, for instance, our method, where the wave-function is represented on

a grid of coherent states, would be especially well suited to simulate the genera-

tion of Schrödinger cats of coherent states [SMW07], or entangled coherent states

[San92] in non-linear crystals.

Finally, in the general context of the numerical approximation of quantum dy-

namics, it would be worth to carry out more stringent comparative analysis not

only with path integral techniques but also with spin-boson adapted t-DMRG

methods [CHP11], as discussed in Chapter 5. It would also be worth investigat-

ing whether the analytical transformation (1D chain mapping) of arbitrary and

possibly highly structured baths used in such an approach, could be borrowed

to overcome the sensitivity of the MCE method with respect to the various dis-

cretization recipes for the bath. Furthermore, the comparison with t-DMRG is

particularly interesting, because the error analysis presented in Chapter 6 would
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apply quite directly to such numerics as well (where error bounds can be quanti-

fied in terms of ‘truncation errors’), and could serve as a quantitative guideline

to compare the two techniques.

In this dissertation, we demonstrated not only the advantages, but also the lim-

itations of the MCE method. As shown in Chapters 4 and 5 and noted above,

MCE faces difficulties to get convergence as the spin-boson coupling strength

increases. We believe that part of the reason behind this shortfall is very likely

the Ehrenfest approximation itself. Hence, it could be worth to program a full

variational method, adopting full Euler-Lagrange equations not only for the ex-

pansion coefficients, but also for the coherent states of the basis grid (and possibly

to compare it with MCE by our quantitative error analysis).
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Appendix A

Further notes on the MCE

method

In this appendix, the detailed derivation of the working equations of the Multi-

configurational coupled coherent states technique will be laid out, and other re-

lated technical details will be discussed. To pave the way to the understanding of

the method, we take a model of spins interacting with a bath of bosonic modes

as an example.

A.1 Wavefunction

A.1.1 Single-configuration

For clarity, let us first consider the single-configurational wavefunction. The

wavefunction of the whole system is:

|Ψ(t)〉 =
d∑

l=1

al(t)|φl〉|Z(t)〉 (A.1)

where the spin is expanded in the complete basis |φl〉 with the total dimension d

(for example, d = 4 for two spin), and the bath is represented as a tensor product
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of M coherent states:

|Z(t)〉 =
M⊗

m=1

|zm(t)〉 (A.2)

Here, m and M donates the mth bath mode and total number of bath modes,

respectively.

The quantum Lagrangian of Eq. (3.13) can be explicitly expressed as

L = −
d∑

l,n=1

a∗l an〈φl|H|φn〉+ i

d∑

l=1

a∗l al + i

d∑

l=1

|al|2(
Z∗Ż− ZŻ∗

2
) . (A.3)

The variation of Z∗ acting on the quantum Lagrangian yields

∂L
∂Z∗

= −
d∑

l,n=1

a∗l an
∂〈φl|H|φn〉

∂Z∗
+ i

d∑

l=1

|al|2
Ż

2
, (A.4)

and
d

dt
(
∂L
∂Ż∗

) = −iZ
2

d(
∑d

l=1 |al|2)

dt
− i

d∑

l=1

|al|2
Ż

2
. (A.5)

Then, assuming d
dt

(
∑d

l=1 |al|2) = 0 and defining an Eherenfest mean-field Hamil-

tonian as in [Bil83, MM79, KHS03]

HEhr =
〈Ψ(t)|Ĥ|Ψ(t)〉
〈Ψ(t)|Ψ(t)〉

=

∑d
l,n=1 a

∗
l an〈Z, φl|H|φn,Z〉∑d

l=1 |al|2
,

(A.6)

one obtains the working equation for the coherent basis states

iŻ =
∂HEhr

∂Z∗
. (A.7)

The original Eherenfest mean-field approximation is a semi-classical approach,

based on the assumption that: (i) the whole system is divided into quantum

subsystem with Hamiltonian operator Ĥquant, a classical subsystem with classical

Hamiltonan Hclass, and with interaction Hamiltonian Ĥint between them; (ii) the

motion of the classical trajectories (usually referring to the evolution of momenta

and coordinates) is derived from the averaging of the Hamiltonian over the quan-

tum subsytem. However, for the MCE approach, we will first treat all of the
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variables at the quantum level and then make an approximation (which is similar

to Ehrenfest mean-field thorem) to simplify the computational efforts.

Similarly to the cases of single-configuration and multi-configuration time-

dependent self-consistent field (TDSCF), or Single- and Multi-configurational

time dependent Hartree (MCTDH), as discussed in [MM87, MMC92], the single-

configuration wavefunction is expected to reflect the dynamics poorly in most

cases.

A.1.2 Multi-configurational equations

The Multi-configurational wavefunction has been introduced in Eq. (3.30) in

Chapter 3. The corresponding working equations for the expansion coefficients

al,j has been derived as well. Here below, we apply the full variational principle

on Eq. (3.31) in order to get the full variational working equations for the coher-

ent basis states Zj. One shall then see why it is reasonable to make the Ehrenfest

approximation for these trajectories.

Working equations for the trajectories

Applying the varational principle δ
∫
Ldt = 0 to Eq. (3.31), leads to the Euler-

Lagrange equations of motion for the coherent basis states. The variation of Z∗i
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yields
∂L
∂Z∗i
− d

dt

∂L
∂Ż∗i

=
d∑

l=1

N∑

j=1

{ia∗l,iȧl,jΩij(Zj −
Zi

2
) + ia∗l,ial,jΩijŻj

+ ia∗l,ial,j(Z
∗
i Żj −

Z∗j Żj + ZjŻ∗j
2

)(Zj −
Zi

2
)Ωij

−
d∑

n=1

[a∗l,ian,j
∂〈Zi, φl|Ĥ|φn,Zj〉

∂Z∗i

+ a∗l,ian,j〈Zi, φl|Ĥ|φn,Zj〉(Zj −
Zi

2
)]}

− iZi

2

d

dt

d∑

l=1

|al,i|2,

(A.8)

where the last term arises from the second component in Eq. (3.31) in the case of

j = i. Aiming for a simplified working equation for the coherent basis states, we

neglect the last term by setting d
dt

(
∑d

l=1 |al,i|2) = 0. Then all the terms involving

(Zj − Zi
2

) can be split into the two parts (Zj − Zi) and +Zi. After employing

Eq. (3.33) to cancel out all the terms containing +Zi, one arrives at

d∑

l=1

N∑

j=1

[a∗l,ial,jΩijŻj −
d∑

n=1

a∗l,ian,j
∂〈Zi, φl|Ĥ|φn,Zj〉

∂Z∗i
]

+
d∑

l=1

a∗l,i

N∑

j=1

{(Zj − Zi)[iȧl,jΩij + ial,j(Z
∗
i Żj −

Z∗j Żj + ZjŻ∗j
2

)Ωij

−
d∑

n=1

an,j〈Zi, φl|Ĥ|φn,Zj〉]}

= 0 .

(A.9)

If one solves Eqs. (3.33) and (A.9) simultaneously, then the only approximation

left in the numerics with respect to a full variational study is just assuming

only a finite number N of coherent basis states to describe the bath’s modes, as

evidenced in Eq. (3.30). The smart thing about the MCE approach is that another

approximation is made here in Eq. (A.9). As we see, especially if the number

of modes is large enough, as is the case in typically interesting situations, the

overlaps 〈Zi|Zj〉 will customarily be very small, and thus one safely neglect them
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in the evolution equation for the Zj parameters (but, quite critically, keep them

for the evolution of the coherent coefficients alj!). Therefore, instead of solving

N ×M complex equations for N ×M complex parameters, the above equation

can be greatly simplified by replacing it with Eq. (3.40), which is actually the

same as the Eq. (A.7).

It is important to stress, here, that the overlaps Ωij are not disregarded for the

whole dynamical equations, but only in the equations for the evolution of the time-

dependent coherent states’ grid. In fact, the coupling between different coherent

states is actually essential to capture the full, “multi-configurational”, quantum

dynamics of the bath. In typical quantum evolutions, what happens is that,

after some evolution time, the coherent states |Zj〉 drift away from each other,

the overlaps Ωij become smaller and smaller, and one is left with an essentially

semi-classical description, where the bath is described by orthogonal separated

trajectories, and the coherent features of the quantum dynamics are lost.

Once the working equations for the expansion coefficients and moving trajecto-

ries (coupled coherent basis states) have been established, the essential problem

reduces to how to choose an adequate initial set of coherent states in order to

cover the important dynamical region and reflect the actual evolution accurately

throughout the interesting time range. Moreover, since obviously only a finite

size of the coherent basis set is utilized, a good initial sampling of the coherent

basis states is crucial to achieve numerically converged result efficiently.

A.2 Sampling for the initial basis set

A.2.1 Gaussian wave packets, some history

Hellen [Hel75] was arguably the first to explore a semiclassical approach in which

the wavefunction is represented as a superposition of time-dependent Gaussian

wave functions. This approach was however quite restrictive, in that it was based
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on the fact that Gaussian wave packets will remain Gaussian under certain con-

ditions (for instance, under quadratic potentials). If such conditions are met,

however, the problem of solving the time-dependence of the basis is reduced to

finding the time evolution of few variables of the Gaussian wave packet.

In order to extend this approach to more general situations and longer times,

Sawada and coworkers [SHJM85, SM86] turned to a method with multiple Gaus-

sian wave-functions, but where each wave-function is isolated and independent

from the others. By introducing a minimum error (MEM) method in [SHJM85],

guided by the standard time-dependent Frenkel variational principle [Fre34], this

method achieved better accuracy for longer times. The approach preserves some

quantum effects and is not a purely classical method, but is still rather sensitive

to the choice of preselected basis set, which must not only be good enough to rep-

resent the initial wavefunction, but also to describe the wave function adequately

during the propagation time.

In the early eighties, Heller pioneered the idea of employing frozen Gaussian wave

packets [Hel81], based on the heuristic intuition that such wave packets would

establish ‘collective correlations’ since they share the same mean position and

momentum.

A.2.2 The initial phase space grid

The time-dependent basis states we are using [Sha09] combines, in some sense,

the advantages of the above Gaussian wave packets: (i) the wave-function is

represented as a linear combination of ‘frozen’ Gaussian coherent basis states;

(ii) all frozen Gaussian coherent basis states overlap with each other; (iii) the

quantum coherence between different degrees of freedoms can be represented by

superposing the frozen Gaussian states.

It is, however, still left to determine how to pick the initial grid of coherent

states. Fortunately, in the case of thermal (or zero-temperature) baths consid-
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ered throughout this dissertation, such a choice is clearly dictated by the physical

conditions: to reproduce the distributions given by Eq. (3.45), at any tempera-

ture, we will in fact always start with the bath in a product of coherent states

|Zini〉. Hence, for each j, it is convenient to choose a Gaussian probability distri-

bution p of the initial Zj centered around Zini:

p(Zj) =
1√

2πα2
comp

e
−|Z−Zini|

2

2α2comp , (A.10)

where αcomp is the standard deviation of the Gaussian distribution.

The parameter αcomp can be changed as suited and allows one to optimize the

choice of the initial basis grid. A very good heuristic criterion to select a reliable

frozen Gaussian basis set, is to check that the normalisation [SC08]

〈Zini |̂I|Zini〉 =
N∑

j,k

〈Zini|Zj〉Ω−1
j,k〈Zk|Zini〉 (A.11)

is close to 1. Of course, ‘good’ values of αcomp depend on N , and the issue here

is to find a good combination of N and αcomp. It should be noted that, even

if the frozen Gaussian basis states represent the initial wave-function very well,

there’s no guarantee that the basis states will be good enough for the evolution

time considered. The only sure way to choose a good pair of N and αcomp, is to

systematically converge the results with respect to these two parameters.

An analysis of the effect of different choices of basis grids may be found in [SC08].

During our investigations, we have tried at times different choices of the initial

grids, but none seemed to give significant advantages over the simple Gaussian

distribution, at least in the cases dealt with. For instance, when studying the

convergence of our results for the Choi fidelity (Chapter 4), we have also adopted

“conjugated” initial states (that is, distributions of pairs of complex conjugated

numbers): results for these choice are displayed in Appendix B.

Note that, in the whole thesis, the ‘compression parameter’ comp is defined as

comp =
1

αcomp
. (A.12)
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A.3 A note on the programming language

Our MCE code was first written in Matlab. However, the limitations of such an

approach were immediately manifest: quite simply, the Matlab code proved to

run painfully slowly on any desktop computer even for moderately low numbers

of modes.

Therefore, I rewrote the code in Fortran90, in order to reduce computing time.

More importantly, the Fortan code can be easily adjusted to run in parallel on

UCL “Legion” cluster, which is very desirable for some of the cases we studied

in this thesis (for instance, to obtain converged results at finite temperature in

reasonable times).



Appendix B

Bath discretizations

In this appendix, we will first discuss how to approximate the continuous spectral

density of a bath with a discrete set of modes and then specialise the argument

to the Ohmic spin-boson case.

B.1 Generic spectral density

Given a set of M frequencies {ωj} and spin-boson couplings {Cj}, one has that, at

thermal equilibrium, the spectral density of the spin-bath system can be written

as [LCD+87]

π

2

M∑

j=1

C2
j

mjωj
δ(ω − ωj) , (B.1)

where Cj is the coupling strength between the spin and the jth bath’s mode;

(if two or more spins are present, we assume that the two spins have the same

coupling strength with mode j) and mj is the mass of the jth bath mode. It

should be noted that the definition of Cj is different from the gj as defined in

chapter 4: assuming ~ = 1, from the standard redefinition

x̂ =

√
1

2mjωj
(b+
j + bj) (B.2)
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one has that Cjx̂j can be written as gj(b
+
j + bj), where

gj =
Cj√

2mjωj
. (B.3)

Now, given a generic continuous spectral density J(ω), we want to determine sets

of frequencies and couplings capable of reproducing it. In other words, we want

that

J(ω) ' π

2

M∑

j=1

C2
j

mjωj
δ(ω − ωj) . (B.4)

Considering the role of the delta functions as distributions, this equation can be

recast as ∫ +∞

−∞
J(ω)T (ω)dω ' π

2

M∑

j=1

C2
j

mjωj
T (ωj) ,

for any test function T (ω). We will now make the crucial assumptions that T (ω)

varies very little over the typical interval between two frequencies ∆ωj = ωj−ωj−1,

and that J(ω) decays fast enough, such that

π

2

M∑

j=1

C2
j

mjωj
T (ωj) '

∫ +∞

−∞
J(ω)T (ω)dω '

M∑

j=1

J(ωj)T (ωj)∆ωj , (B.5)

which must hold for all independent, smooth T (ω). Hence:

π

2

C2
j

mjωj
= J(ωj)∆ωj . (B.6)

It is convenient to re-parametrize the interval ∆ωj in terms of a continuous density

of frequencies ρ(ω). First, define:

1

∆ωj
= ρ(ωj) , (B.7)

for a continuous and positive function ρ(ω). This condition does not entirely

determine ρ(ω). For a slowly varying ρ, it can however be rewritten as

1 = ∆ωjρ(ωj) '
∫ ωj

ωj−1

ρ(ω)dω , (B.8)

which finally gives:

∫ ωj

0

ρ(ω)dω = j , 1 ≤ j ≤M . (B.9)
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Inserting Eq. (B.7) into Eq. (B.6) also determines the coupling strengths:

C2
j =

2

π
mjωj

J(ωj)

ρ(ωj)
. (B.10)

Hence, given any set of M frequencies ωj and any slowly varying positive function

ρ(ω) satisfying (B.9), the choosing the coupling strengths according to (B.10)

allows one to approximate the bath with continuous spectral density J(ω).

In principle, any density of frequencies ρ(ω) allows one to reproduce any bath’s

spectral density, in the sense that in the limit of M going to infinity all such

choices reproduce the same spectral density. However, in practice, the rate of

convergence to the desired spectral density does depend on the choice of ρ(ω)

very much. A comparison between different discretizations for the super-Ohmic

spin-boson case is included in chapter 5.

B.2 Ohmic bath

In chapter 4, we use a Ohmic form of the spectral density:

J(ω) = ηωe−
ω
ωc , (B.11)

where η = π
2
α, and α is the Kondo parameter.

Here, we adopt the same discretization method as in [WTM00]:

ρ(ωj) = a
J(ωj)

ωj
, (B.12)

where a is a re-normalization factor.

This choice of ρ(ωj) proves to converge fairly quickly (as clear from the closeness

of the M = 50 and M = 100 cases in Fig. 4.8) and has been demonstrated to

work efficiently for the spin-boson model on several occasions [WTM00, MFP07,

Sha09].

By substituting Eqs. B.11 and B.12 into equation B.9 one gets
∫ ωmax

0

aηe−ω/ωcdω = M (B.13)
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where ωmax and ωc are, respectively, the maximum frequency of the discrete set

of frequencies and the cutoff frequency of the bath. Therefore, we have

a =
M

ηωc[1− e(−ωM/ωc)]
. (B.14)

Substituting the re-normalisation factor a into the Eq. (B.9) for the jth bath

mode gives ∫ ωj

0

dω(a
ηωe−

ω
ωc

ω
) = j. (B.15)

Thus, we have a recipe for discretizing the bath frequencies:

ωj = −ωc ln[1− j(1− e−ωM/ωc)
M

] (B.16)

which is the same as Eq. (4.17) in Chapter 3. Once the ωj has been determined,

then according to Eq. (B.10), we have

Cj = ωj

√
2ηωc(1− e−ωM/ωc)

πM
. (B.17)

Hence, from Eq. (B.3), the recipe for the coupling strengths between bath and

spins in Eq. (4.18) of chapter 4 is obtained.



Appendix C

Convergence of Choi Fidelity

numerics

To give an idea of the quality and range of reliability of our results, we give here

some evidence of the convergence of our numerics.

As clarified in Appendix A, the centres of the initial set of coherent states are

distributed in phase space with a Gaussian distribution with standard deviation

1/comp [see Eq. (A.12)]. The parameter comp is a free parameter of the numer-

ics, which is tuned to optimise convergence. As indicators of the quality of the

numerics we will observe the convergence of specific entries of the density matrix

of the two qubits ρ̃, as well as the ‘norm’ Tr(ρ̃) and the expectation value of

the energy Tr(Ĥρ̃), which are obviously conserved in the exact dynamics. Notice

that our method does not have any in-built routine enforcing the conservation of

the state vector’s norm, so that Tr(ρ̃) is a relevant figure of merit to assess its

reliability.

We will see how MCE is more sensitive to the coupling strengths g1 and g2 in

the full Ĥ model than for the rotating wave coupling of Ĥrw, generally converges

faster if the excitation number is conserved, and is however still capable to achieve

converged results in quite general regimes very well.
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Figure C.1: Norm and expectation value of the energy for MCE results at β = 10,

for Ĥrw with ε = ∆ = 0, g1 = 1, g2 = 2.1, M = 10 (with ωm = 0.1m for

1 ≤ m ≤ 10) and different values of N and comp.

C.1 Rotating-wave number of excitations con-

serving Hamiltonian

C.1.1 Zero temperature

As one sees from Figs. C.1 and C.2, MCE converges in a clear and nice way in

the case of conserved total excitation number, for initial spin state | ↑〉 ↑〉, g1 = 1,

g2 = 2.1 and β = 10. Fig. C.1 further confirms that a larger size of coherent

basis set N and compression parameter comp make the total energy E and norm

(close to 1) more stable. The density matrix’s entries ρ̃11 and ρ̃1,3 also converge

faster in terms of N and comp, if compared to the non-number conserving case

of Fig. C.5.

C.1.2 Temperature convergence

To see how effectively MCE reproduces thermal distributions, we show three

examples of our results at finite temperature (here, β = 0.5) with respect to
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(a) ρ̃11 versus rescaled time
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Figure C.2: Entries of the qubits’ density matrix ρ̃11 and ρ̃13 for MCE results at

β = 10, for Ĥrw with ε = ∆ = 0, g1 = 1, g2 = 2.1, M = 10 (with ωm = 0.1m for

1 ≤ m ≤ 10) and different values of N and comp.

the increase in the number of states NT over which the thermal distribution of

Eq. (3.45) is sampled (Figs. C.3a ,C.3b and C.3c). Here, a total NT = 300

initial states of the bath are sampled in batches of 50 to test the convergence.

(For example, NT1 − 50 means NT = 50 initial coherent states of the baths are

sampled, while NT51 − 100 means that another different 50 states are sampled

(NT = 50).

C.2 Rotating wave Hamiltonian with tunnelling

Figs. C.4a and C.4b display the norm and expectation value of the energy for

a case of non-number conserving rotating wave Hamiltonian (initial spin state

| ↑↑〉) with coupling strengths g1 = 1 and g2 = 2.7, while in Figs. C.5a and

C.5b the entries ρ̃11 and ρ̃13 are plotted. The reliability of the numerics over the

whole timeframe considered is apparent (for large enough compression parameter

comp), in terms of both convergence with increasing number N of coherent states

and of conservation of invariant quantities. For instance, though the total energy
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Figure C.3: Choi fidelity and concurrence for two different separable initial states

versus rescaled time, for Ĥrw with ε = ∆ = 0, g1 = 1, g2 = 2.1, β = 0.5 and

different values of NT . In all plots M = 10 with ωm = 0.1m for 1 ≤ m ≤ 10.

“Conjugate” refers to the fact that for those curves the initial centres of the

coherent states to sample thermal distribution bath are in complex conjugate

pairs.
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Figure C.4: Norm and expectation value of the energy for MCE results at zero

temperature, for Ĥrw with ε = ∆ = g1 = 1, g2 = 2.7, M = 10 (with ωm = 0.1m

for 1 ≤ m ≤ 10) and different values of N and comp.
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(a) ρ̃11 versus rescaled time
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(b) ρ̃13 versus rescaled time

Figure C.5: Entries of the qubits’ density matrix ρ̃11 and ρ̃13 for MCE results

at zero temperature, for Ĥrw with ε = ∆ = g1 = 1, g2 = 2.7, M = 10 (with

ωm = 0.1m for 1 ≤ m ≤ 10) and different values of N and comp.

increases robust in the case of the compression parameter comp = 20, it maintains

still in those cases of comp = 200. With regard to norm, energy, ρ̃11, and ρ̃13,

under the same comp = 200, it is hard to distinguish the differences for sizes of

coherent basis set ranging from N = 200 to N = 500.

C.3 Non rotating-wave Hamiltonian

As anticipated, the situation is much more dire for the full Hamiltonian Ĥ (initial

spin state | ↑↑〉). In this case, Figs. C.6 and C.7 show that our numerics are only

reliable up to rescaled times around 2.5, after which both convergence, and norm

and energy conservation are lost, even at smaller coupling strengths (in that

g2 = 1 rather than g2 = 2.7 as before). For example, in Fig. C.7b, it is very clear

that ρ̃13 can only be tracked for relatively short time, since the discrepancies

between different size of coherent basis states N become quickly larger as time

increases. The compression paramter comp = 200, seems better than comp = 20,

as the total energy E is more stable as evidenced in Fig. C.6b. This feature is
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similar to the case of Ĥrw in Fig. C.4b.
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Figure C.6: Norm and expectation value of the energy for MCE results at zero

temperature, for Ĥ with ε = ∆ = g1 = g2 = 1, M = 10 (with ωm = 0.1m for

1 ≤ m ≤ 10) and different values of N and comp.
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(a) ρ̃11 versus rescaled time
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Figure C.7: Entries of the qubits’ density matrix ρ̃11 and ρ̃13 for MCE results at

zero temperature, for Ĥ with ε = ∆ = g1 = g2 = 1, M = 10 (with ωm = 0.1m

for 1 ≤ m ≤ 10) and different values of N and comp.



Appendix D

Convergence of super-Ohmic

spin-boson numerics

In this appendix, we assess the convergence of our results for the population

difference in a super-Ohmic bath (Chapter 5), with respect to three parameters:

the number of bath modes M , the size of the coherent states’ basis grid N and

the compression parameter comp. Like in Chapter 5, two different initial bath

states are considered: one where the bath is initially in a thermal equilibrium

state (used to compare with MCTDH); one where each bath mode is displaced

by the operator D̂(gk/ωk) from the canonical thermal state (used to compare with

QUAPI).

Not-shifted bath Fig. D.1a, for M = 100, shows a number of typical features.

For the same size N of the phase space grid, a larger compression parameter

comp keeps the energy more stable. Conversely, setting a fixed compression

parameter comp, one can increase N to stabilise the expectation value of the

energy. Fig. D.1b shows that increasing number of bath modes (M = 200) does

not change the roles of N and comp significantly (with respect to Fig. D.1a).

Furthermore, and very interestingly, the results for N = 500 and comp = 1000

are almost the same as those for N = 1000 and comp = 500, which reveals that
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Figure D.1: The expectation value of 〈σ̂z〉 versus rescaled time by MCTDH

(green-solid) and MCE with ∆ = 1, ε = 1, δs = 0.01, ωc = 1 and β = 10,

in which the bath is initially in thermal equilibrium state. The MCE results

are provided under same ωmax →∞, but with different M , N and comp: In (a)

M = 100; In (b) M = 200; In (c) M = 299 (comp = 600), M = 399 (comp = 800)

and M = 499 (comp = 1000) with same N = 400. The insert figures are the

corresponding energy deviation ∆E(t) versus the rescaled time.

a reasonably large comp can be adopted to reduce N and save computational

cost. From Fig. D.1c it is clear that, for fixed N = 400, increasing M induces

larger energy fluctuations. In this model, N = 400 seems not large enough to

fully describe the dynamics for number of bath modes M = 299, M = 399 and

M = 499. Obtaining converged results with respect to M is thus a somewhat

more worrying concern than convergence with respect to N and comp, hence the

need for an effective discretization of the bath. These are the maximum values

of M and N we could reach so far, due to the limited computing resources and

time.

Shifted bath Plots demonstrating convergence for shifted initial baths are de-

picted in Fig. D.2. Qualitatively, these data are analogous to those in Fig. D.1a,

commented above.
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Figure D.2: The expectation value of 〈σ̂z〉 versus rescaled time by QUAPI (green-

solid) and MCE (w1 discretization) with ∆ = 1, ε = 1, δs = 0.01, ωc = 1 and

β = 10, for initially displaced thermal bath. The MCE results are provided

under same ωmax → ∞, but with different M : In (a) M = 100: comp = 500 for

N = 200, N = 500, N = 1000; In (b) M = 200: comp = 500 for N = 200 and

N = 1000, comp = 1000 for N = 500; In (c) M = 299 (comp = 600), M = 399

(comp = 800) and M = 499 (comp = 1000) with same N = 400. The insert

figures are the corresponding energy deviation ∆E(t) versus the rescaled time.



Appendix E

Time-derivative error for coupled

coherent states

In this appendix, the formalism for evaluating the term κ(t) for the error bound

δ(t) introduced in Chapter 6 is provided for a basis of coupled coherent states.

The state of the system stored in the computer, |ψ′(t)〉, is written as

|ψ′(t)〉 =
d∑

l=1

N∑

j=1

alj|l,Zj〉 , (E.1)

where d is the dimension of the finite dimensional (‘spin’) Hilbert space, while

the bosonic modes are expanded in a set of N M -modes coherent states |Zj〉 =
⊗M

m=1 |Z
(m)
j 〉. Therefore, the projector operator can be expressed as

Pt =
d∑

l=1

q=N,r=N∑

q=1,r=1

|l,Zq〉〈l,Zr|Ω−1
qr , (E.2)

where Ωqr = 〈Zq|Zr〉. Recalling that

|Z(m)
j 〉 = e−

Z
(m)
j

Z
(m)∗
j

2

∞∑

n=0

Z
(m)n
j√
n!
|n〉m, (E.3)

one has

∂
Z

(m)
j
|Z(m)

j 〉 = (b†m −
Z

(m)∗
j

2
)|Z(m)

j 〉, (E.4)
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and

∂
Z

(m)∗
j
|Z(m)

j 〉 = −
Z

(m)
j

2
|Z(m)

j 〉. (E.5)

These lead to

∂t|ψ′(t)〉 =
d∑

l=1

N∑

j=1

M∑

m=1

(
ȧlj − alj

Z
(m)∗
j Ż

(m)
j

2
− alj

Z
(m)
j Ż

(m)∗
j

2

)
|l,Zj〉

+
d∑

l=1

N∑

j=1

M∑

m=1

aljŻ
(m)
j b†m|l,Zj〉,

(E.6)

and

Pt∂t|ψ′(t)〉 =
d∑

l=1

N∑

j=1

M∑

m=1

(
ȧlj − alj

Z
(m)∗
j ȧ

(m)
j

2
− alj

Z
(m)
j Ż

(m)∗
j

2

)
|l,Zj〉

+
1∑

l=0

N∑

j,q,r=1

M∑

m=1

Ω−1
qr aljŻ

(m)
j Z(m)∗

r Ωrj|l,Zq〉.
(E.7)

As one sees from the above two equations, the last terms in ∂t|ψ′(t)〉 and

Pt∂t|ψ′(t)〉 are different, giving rise to a non-zero κ(t), as defined in Eq. (6.6)

of Chapter 6. Although the vector b†m|Z(m)
j 〉 is not accessible on the hard disk,

one can calculate the overlap between the two vectors by applying the operator

b†m on the bra side: 〈Z(m)
j |b†m = 〈Z(m)

j |Z(m)∗
j , and thus evaluate κ(t) exactly.
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• Modelling of quantum information processing with Ehrenfest

guided trajectories: a case study
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arXiv:1201.6171v1 Submitted to Phys. Rev. A

• Coherent quantum effects through dispersive bosonic media

S.-Y. Ye, Z.-B. Yang, S.-B. Zheng and A.Serafini

Phys. Rev. A 82, 012307 (2010)

• Distributed coherent manipulation of qutrits by virtual excitation

processes

Z.-B. Yang, S.-Y. Ye, A. Serafini and S.-B. Zheng

J. Phys. B: At. Mol. Opt. Phys. 43, 085506 (2010)
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