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Abstract 

Classically, the emergence of resistance to protease inhibitors (PIs) in HIV-1 requires the 

stepwise accumulation of primary and compensatory mutations in the viral protease (PR). In 

addition, it was demonstrated that mutations occurring on one of the natural substrates of the 

PR, Gag, could behave as compensatory mutations in the presence of certain primary PR 

mutations. Furthermore, mutations on the Gag could account for resistance to PIs when 

appeared in isolation. So far, most studies assessing the effect of Gag mutations on resistance 

to PIs have focused on two cleavage sites (CS), namely P7/P1 and P1/P6. However, data on 

the remaining CS and non-cleavage sites is scarce. 

In my PhD studies, I developed and optimized an assay for the amplification and sequencing 

of HIV-1 Gag and PR genes in order to characterize mutations occurring in patients failing 

PI-based therapy. Initially, I performed a cross-sectional analysis by comparing the Gag and 

protease sequences from PI-experienced patients and PI-naïve subjects. A number of Gag 

mutations associated with PI-selective pressure were determined, which were not restricted to 

P7/P1 and P1/P6 CSs, but present throughout the Gag. Subsequently, I conducted a 

longitudinal analysis of patients failing a PI-based regimen, which confirmed that under PI-

selective pressure the entire Gag evolved along with the PR and that changes were most 

prominent at P2/P7, P7/P1 and P1/P6 CSs and in the P17 protein outside CSs. Finally, I 

performed phenotypic characterization of PI susceptibility and replicative capacity studies on 

patient’s viruses and side-directed mutants. As a result of these investigations I found that the 

evolution of Gag in patients on unsuccessful PI therapy led to increased levels of PI 

resistance and improved viral replicative capacity. Specifically, I characterized two novel CS 

mutations (P17/P24: Y132F, and P2/P7: T375A) that conferred resistance in the context of a 

wild type backbone. 
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1 Chapter one: general introduction 

1.1 History of the discovery of HIV-1 

On 5
th

 June 1981, the Centers for Disease Control and Prevention (CDC) published a report 

of Pneumocystis carinii pneumonia in five previously healthy young homosexual men in Los 

Angeles, two of whom had died (CDC Weekly 1982a; CDC Weekly 1982b; CDC Weekly 

1982c). Examination of the patients showed a marked reduction in cellular immune response 

as a common denominator. Owing to the media influence, the disease was originally dubbed 

Gay-related immune deficiency (GRID). Similar cases were soon reported in Western 

European countries, all of which were characterized by a profound depression of cell-

mediated immunity and the presence of opportunistic infections and rare malignancies 

previously described only in severely immunocompromised patients. These new cases were 

not restricted to men who have sex with men (MSM), but affected other population groups, 

such as blood transfusion patients and injecting drug users. In 1982, the CDC introduced the 

term acquired immune deficiency syndrome (AIDS) to describe this newly recognized entity.  

 

In January 1983, a potential causative agent was isolated at the Pasteur institute in France by 

Luc Montagnier and colleagues from cultured T lymphocytes derived from a patient with 

cervical lymphadenopathy, a sign that was considered a precursor of AIDS. The new 

retrovirus was named lymphadenopathy-associated virus (LAV), but no proof of causality 

with AIDS was established at this time (Barre-Sinoussi, 1983). In May 1984, Robert Gallo’s 

group compiled sufficient evidence to convince the medical and scientific communities that 

the new virus, which was renamed human T-lymphotropic virus type III (HTLV-III), was the 

etiological agent for the emerging AIDS epidemic (Popovic et al, 1984). In August 1984, Jay 
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levy confirmed Gallo’s findings by reporting they had isolated a retrovirus designated ARV 

for AIDS-associated retrovirus, in 22 patients with AIDS (Levy et al, 1984).  

 

In February 1985, sequencing of the entire genome from LAV, HTLV-III and ARV viruses 

demonstrated that they were variants of the same virus (Ratner et al, 1985). In 1986, the 

Committee on the Taxonomy of Viruses proposed the name human immunodeficiency virus 

(HIV) to designate the causative agent of AIDS. On the same year, a second retrovirus was 

isolated from West African patients hospitalized at a Lisbon hospital (Clavel et al, 1986), 

who had a clinical picture compatible with AIDS but no detectable antibodies against HIV. 

This new virus was called human immunodeficiency virus type 2 (HIV-2), and the original 

HIV was renamed as human immunodeficiency virus type 1 (HIV-1).   

 

For the discovery of the infectious agent currently known as HIV-1, Luc Montagnier and 

Francoise Barré-Sinoussi from the Pasteur Institute were awarded the Nobel Prize in 

Physiology or Medicine in 2008. 

 

1.2 HIV-1 origin and diversity  

HIV-1 is classified in four groups, named M (major), N (non-M, non-O), O (outlier) and P, 

each of which arose from an independent zoonotic transmission from non-human primates 

infected with simian immunodeficiency virus (SIV) to humans in Central and West Africa. 

Human infections probably occurred through cutaneous or mucous membrane exposure to 

infected ape blood/body fluids during activities such as hunting or butchering of primates. 

HIV-1 groups M and N originated from two different lineages of SIVcpzPtt that infected 

common chimpanzees (Pan troglodytes troglodytes) inhabiting southeastern and south-
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central Cameroon, respectively (Corbet et al, 2000; Gao et al, 1999; Keele et al, 2006). HIV-1 

groups O and P are related to SIVgor found in gorillas (Gorilla gorilla) living in Cameroon, 

although SIVgor itself is supposed to be derived from an ancestor of a divergent SIVcpz lineage 

acquired by cross-species infection from sympatric chimpanzees (Plantier et al, 2009 and Van 

Heuverswyn et al, 2006). 

 

The timing of cross-species transmissions varies according to particular HIV-1 groups. HIV-1 

group M appears to be the oldest lineage in humans with an estimated time to the most recent 

common ancestor around 1908 (range 1884-1924). The estimated times of the most recent 

common ancestors of HIV-1 groups O and N are 1920 (1890-1940) and 1963 (1948-1977), 

respectively (Korber et al, 2000; Wertheim et al, 2009). The time of origin of HIV-1 group P 

is unknown as only two different sequences are available, precluding relevant phylogenetic 

analysis.   

 

The current global diversity of HIV-1 is the result of the interaction of several elements, 

namely the intrinsically high genetic variation of the virus, the selection and evolution of 

viral strains within the host and the different patterns of propagation of viral strains.  

 

HIV has a huge intrinsic genetic variability. The lack of 3’-5’ exonuclease activity 

(proofreading activity) of the reverse transcriptase enzyme introduces 0.2-2 substitutions per 

genome per replication cycle (Darke et al, 1993; Roberts et al, 1988). In addition, relatively 

large insertions and deletions are common occurrences in the viral genome. These high rates 

of mutation in conjunction with high rates of virus replication (10
10

-10
12

 virions per day) (Ho 

et al, 1995) result in the rapid generation of genetically diverse viral populations within each 

individual, where viral sequences can differ by up to 10%. Moreover, further genetic 
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variability occurs due to a high recombination rate (7-30 recombination events per genome 

per replication cycle) (Jetzt et al, 2000) when two or more different strains simultaneously 

infect an individual.  

The enormous genetic diversity of HIV-1 is subject to intra-host evolutionary selective 

pressures. Among them, the action of the immune system plays a crucial role in shaping the 

structure of the viral population. Despite the variability of the HIV-1 genome, only 10%  

undergoes positive selective pressure. The regions affected are those that define critical 

residues in host-pathogen interaction, half of which are mapped to CTL epitopes located in 

the Gag protein. The importance of the host immune response in driving viral diversity and 

evolution was clearly showed by Draenert and colleagues in a study of monozygotic twins 

infected with the same viral strain (Draenert et al, 2006). They found that the initial CD8+ T 

cell response targeted 17 epitopes, 15 of which were identical in each twin. Three years post- 

infection, four responses had declined in both twins, three of which showed mutations at the 

same Gag residues. Similarly, the antibody responses cross-neutralized the other twin’s virus 

and also showed similar evolutionary changes in the envelope gene. These results illustrated a 

considerable concordance in cellular and humoral immune response and HIV-1 evolution in 

the same genomic environment.  

 

In addition to adaptive immune response, mammalian cells express a number of proteins 

whose function is to suppress viral replication. These have been termed restriction factors and 

provide an initial line of defense against infection as a component of, or even preceding, 

innate antiviral responses. The most extensively described host restriction factors include the 

apolipoprotein B messenger RNA (mRNA)-editing enzyme catalytic polypeptide-like 3 

(APOBEC 3) family of proteins, and in particular APOBEC3G, the tetherin/bone marrow 

stromal cell antigen 2 (BST2)/CD317 termed tetherin, and the tripartite-motif-containing 5α 
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(TRIM5α).  APOBEC3G is a member of a family of vertebrate proteins with polynucleotide 

cytidine deaminase activity; its action interferes with reverse transcription by inducing 

numerous deoxycytidine to deoxyuridine mutations on the nascent proviral negative strand, 

which ultimately results in guanosine-to-adenosine hypermutation at hot spots within the 

proviral DNA, thus rendering the provirus defective. Its action is counteracted by HIV-1 vif 

protein, which binds APOBEC3G inducing its proteosomal degradation. TRIM5α is a 

cytoplasmic protein, whose mechanism of action is unknown, but it has been demonstrated 

that binds to the viral capsid precipitating its degradation soon after entry and ultimately 

blocking reverse transcription. Tetherin is a transmembrane protein that is incorporated into 

the lipid envelope of the HIV-1 particle and causes virions to remain trapped at the surface of 

the infected cells hindering its dissemination. The HIV-1 Vpu protein antagonizes tetherin 

action by an uncertain mechanism (Neil et al, 2008). In general, host restriction factors are 

poor inhibitors of retrovirus that are found naturally in the same host species, but are often 

active against retroviruses that are found in other species and therefore these proteins are 

important determinants of host range and cross species transmission. In addition, in order to 

establish infection a host-pathogen co-evolution is required and consequently, host restriction 

factors are important determinants of viral evolution. For instance, it has been proposed that 

APOBEC action is not completely abolished by HIV-1 vif and that it can induce infrequent 

mutations (as opposed to hypermutation) which may be benefitial to the virus in terms of 

immune escape or drug resistance and consequently, APOBEC3 appears to be an important 

contributor to viral diversity and evolution (Wood et al, 2009; Kim et al, 2010 and Sadler et 

al, 2010).  

 

 Furthermore, exogenous pressures, such as anti-retroviral therapy, further delineate the 

nature of quasispecies present in single individuals.  



- 6 - 

 

 

The patterns of dissemination of HIV-1 groups are substantially different. Whereas groups N, 

O and P have not spread significantly beyond Central and West Africa, group M is 

responsible for the HIV pandemic as the vast majority (>95%) of viral strains distributed 

worldwide belong to this group.   

 

HIV-1 group M is highly heterogeneous on the basis of phylogenetic analysis. Currently, it is 

divided into nine subtypes or clades (A, B, C, D, F, G, H, J, K) (Geretti, 2006), which show 

an average intersubtype genetic variability of 15% for the gag gene and 20% for the env gene 

(Geretti 2006; Robertson et al, 2000). Moreover, some subtypes are subdivided in sub-

subtypes (Geretti, 2006), as is the case for clades A and F, which are separated into A1 and 

A2 and F1 and F2, respectively. In addition, full-length genome sequencing has revealed the 

existence of intersubtype recombinants, which are classified either as unique recombinant 

forms (URFs) or circulating recombinant forms (CRFs). URFs represent recombinant viruses 

that have been only identified in a single individual or an epidemiologically linked cluster 

without evidence of epidemic spread, whereas CRFs are recombinant viruses that have been 

identified in at least three epidemiologically unlinked individuals (Geretti, 2006; Thomson 

and Najera, 2005). CRFs are labeled with numbers in order of discovery followed by the 

letters of the two parental subtypes in alphabetical order (e.g., CRF03_AB) In addition, the 

extension “cpx”, for complex, is given if the CRF consists of contributions from three or 

more subtypes. At present, a total of 51 CRFs have been described, which constitute around 

20% of all HIV infections worldwide (Hemelaar et al, 2012).  
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1.3 HIV-1 epidemiology 

1.3.1 Global distribution of HIV 

Currently, HIV-1 accounts for more than 30 million infections worldwide. Group M viruses 

constitute the pandemic form of HIV representing over 95% of all HIV-1 infections and has 

been found in virtually every country on the globe. By contrast, the contribution of HIV-1 

groups O, N and P to the pandemic is negligible as these clades have remained confined to 

specific countries in West and Central Africa. Group O viruses have not spread significantly 

beyond Cameroon, Gabon and Equatorial Guinea, and represent less than 1% of global HIV-

1 infections. Group N infections have been only detected in 13 individuals from Cameroon, 

whereas group P viruses have so far only been identified in two Cameroonians from 

Yaounde.   

 

The different group M subtypes and recombinant forms have distinct global distribution 

patterns (Hemelaar et al, 2012). All HIV-1 group M subtypes and a high proportion of URFs 

and CRFs are present in West Central Africa, the potential epicentre of the global HIV 

epidemic. However, in other regions usually one or two genetic forms are predominant, fact 

that responds to a founder effect whereby the earliest genetic form successfully introduced 

within a population establishes itself as predominant and gains an initial advantage over other 

genetic forms arriving later. Nonetheless, this situation is not static and replacement of 

established genetic variants can occur. The best example is possibly the case occurred in 

Thailand were the initially introduced subtype B was replaced by CRF01-AE a year later. 

Similarly, an increase in non-B subtype infections has been reported in several Western 

European countries, mainly among native individuals. 
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On a global scale, subtype C is the most successful of the HIV-1 M lineages (48%) 

(Hemelaar et al, 2012), followed by subtypes A (12%) and B (11%). The most abundant CRF 

is CRF02_AG, which accounts for 8% of global HIV-1 infections. Other subtypes and 

recombinant forms represent individually less than 5% of the global total.  

 

Regarding subtype distribution, subtype C is highly prevalent in Southern Africa countries, 

India and Ethiopia and also circulates as a minor form in Brazil and Russia (Geretti, 2006). 

Subtype A viruses are predominant in East and West Africa as well as in Eastern Europe and 

Central Asia (Thomson and Najera, 2005). Subtype B predominates in the Americas, Western 

Europe, the Middle East and North Africa. However, the prevalence of non-B subtype 

infections in high-income countries of North America and Western Europe has increased as a 

consequence of the influx of immigrant population from Africa and Asia (Fox et al, 2010). 

With regard to CRFs, CRF02-AG is highly prevalent in West Africa (Takebe et al, 2004), 

whereas CRF01-AE is the major genetic variant in South and East Asia (Thomson and 

Najera, 2005), where it has replaced subtype B as the predominant form.   

 

Other less prevalent subtypes and CRFs are more locally distributed. For example, subtype D 

is mainly found in East Africa, subtype F is predominant in Romania, subtype G is mainly 

spread across West and Central Africa, with the highest prevalence in Nigeria but it is also 

found in Portugal and northwest Spain (Thomson and Najera, 2005), and CRF12_BF widely 

circulates in Argentina. In addition, URFs also feature in the HIV epidemic. A diversity of 

URFs have been reported in areas such as DR Congo, Tanzania, Argentina, Cuba and Galicia 

(Thomson and Najera, 2005).  
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1.3.2 Current status of the HIV pandemic 

Since the pandemic began in 1981, the cumulative total of individuals infected with HIV 

ascends to 60 millions, 25 millions of whom have since died (UNAIDS 2010). At the end of 

2009, the Joint United Nations Programme on HIV/AIDS (UNAIDS) estimated that there 

were 33.3 million [31.4-35.3] people living with HIV infection, that 2.6 million [2.3-2.8] 

people became newly infected with the virus during 2009 and that there were 1.8 million 

[1.6-2.1] AIDS-related deaths in the same year (UNAIDS 2010).   

 

Worldwide, the rates of annual new infections have been steadily declining since 1997, the 

year in which the epidemic peaked. Between 2001 and 2009, a more than 25% reduction in 

HIV incidence was documented in 33 countries, 22 of which were located in sub-Saharan 

Africa, the global region bearing the highest HIV prevalence. In spite of the number of new 

infections falling in most parts of the world, the number of people living with HIV has 

continued to rise due to a significant reduction in AIDS-related deaths as a consequence of 

expanded access to antiretroviral therapy.   

 

Sub-Saharan Africa is the global region with the highest HIV prevalence (67.5%). The HIV 

burden is unevenly distributed, with countries in southern Africa most severely affected 

(South Africa, Zambia, Zimbabwe, Malawi, Mozambique, Namibia, Botswana, Lesotho, 

Swaziland). In particular, South Africa, which had an estimated 5.6 million [5.4-5.8] infected 

people in 2009, remains the largest epidemic in the world. Although the rate of new 
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infections in sub-Saharan Africa decreased from 2.2 million in 2001 to 1.8 million in 2009, 

the number of people living with HIV has steadily risen during this period reaching a total of 

22.5 million [20.9-24.2] at the end of 2009, figure which corresponds to 68% of the global 

total. Importantly, women account for 60% of infections. The main transmission modes are 

unprotected sexual intercourse and perinatal infection. In regard to AIDS-related mortality, 

sub-Saharan Africa continues to be the most important contributor worldwide, with an 

estimated 1.3 million [1.1-1.5] deaths ascribable to the epidemic during 2009, which equals 

to 72% of the global total.    

South and East Asia is second to sub-Saharan Africa in terms of HIV prevalence (14.3%), 

with an estimated 4.9 million [4.5-5.5] infected people at the end of 2009. The HIV epidemic 

in this global region is largely stable as the previous figure is similar to the one from 2004. 

Between 2001 and 2009, the HIV incidence has fallen by more than 25% in India, Nepal and 

Thailand, remained stable in Malaysia and Sri Lanka, but increased by more than 25% in 

Bangladesh and Philippines. The HIV burden is mainly concentrated in intravenous drug 

users, sex workers and their clients and homosexual men.   

 

The Eastern Europe-Central Asia global region deserves special merit as the number of 

people living with HIV has more than doubled since 2001 and reached an estimated total of 

1.4 million [1.3-1.6] in 2009. The HIV incidence has increased in several countries in this 

region such as Armenia, Georgia, Kazakhstan, Kyrgyzstan, Tajikistan, The Russian 

Federation and Ukraine. However, The Russian Federation and Ukraine account for almost 

90% of newly reported HIV diagnoses. The HIV epidemics is mainly concentrated among 

intravenous drug users and their sexual partners, which is leading to an increase of the 

proportion of HIV infected women, and sex workers and their clients (Mathers et al, 2008). 
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The Middle East and North Africa global region shows a similar trend to Eastern Europe-

Central Asia global region as the number of people living with HIV has leapt from an 

estimated 180,000 (150,000-200,00) in 2001 to an estimated 460,000 (400,000-530,000) in 

2009. In addition, the HIV incidence has more than doubled and AIDS-related deaths have 

more than tripled during this period. However, reliable data of the epidemic in these regions 

are still scarce, hindering proper data analysis. 

 

The HIV epidemic in the North America and Western-Central Europe global region appear to 

have stabilized as the rates of annual new HIV infections have remained constant for at least 

the past five years. However, the number of people living with HIV has steadily risen 

between 2001 and 2009 reaching a total of 2.3 million [20.9-2.7] at the end of 2009. 

Unprotected sex between men continues to dominate patterns of HIV transmission in these 

areas. However, injecting drug use and unprotected heterosexual paid sex are also important, 

especially in Mexico and parts of Southern Europe. Worth of mention is the increasing role 

played by immigrants from countries with generalized epidemics, as they represented almost 

17% of people newly infected with HIV in Europe during 2007. 

 

The HIV epidemics in other global regions, including Central and South America, the 

Caribbean and Oceania are either stable or declining. In South and Central America, about 

one third of all people living with HIV live in Brazil and most of the epidemic is concentrated 

in this region in and around networks of MSM. Injecting drug use has been the other main 

route of transmission, especially in the southern cone of South America. In the Caribbean, 

unprotected heterosexual sex is believed to be the main mode of transmission in this region 

and the burden of HIV varies considerably between countries, the exceptionally low 

prevalence of Cuba (0.1%) contrast with a 3.1% adult HIV prevalence in the Bahamas. The 
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Caribbean remains the only region, besides sub-Saharan Africa, where women outnumber 

men among people living with HIV. The HIV epidemic in Oceania is small, the largest and 

the only one generalized is in Papua New Guinea. The HIV epidemic is mainly driven by 

sexual transmission. Unprotected heterosexual intercourse is the main mode of transmission 

in Papua New Guinea, while unprotected sex between men predominates in the smaller 

Pacific countries and those of Australia and New Zealand. 

 

1.3.3 The status of the HIV epidemic in the UK 

To date, 120,000 people have been diagnosed with HIV in the UK, of whom 27,000 have 

developed AIDS and more than 20,000 have died. An estimated number of 91,500 (85,400-

99,000) people were living with HIV in the UK at the end of 2010, of whom approximately a 

quarter were unaware of their infection (HIV in UK 2011 report). Most individuals acquired 

their infection heterosexually [47,000 (43,900-50,400)] and through sex between men 

[40,100 (35,300-46,700)], whereas a minority [2,300 (1,900-2,700)] were injecting drug 

users.   

 

A total of 6,660 individuals (4,510 men and 2,150 women) were diagnosed with HIV 

infection during 2010. An estimated 50% (3,350) of newly diagnosed individuals acquired 

their infection heterosexually. Most of these individuals were black Africans who acquired 

the infection abroad, mainly in sub-Saharan Africa. However, 33% of heterosexually 

acquired infections occurred within the UK.  An estimated 45% (3,000) of new HIV 

diagnoses resulted from sex between men. Most of these individuals (81%) acquired the 

infection in the UK, were of white ethnicity and two thirds were born in the UK. While the 

number of HIV diagnoses among people infected heterosexually has declined, new diagnoses 

among MSM have reached an all-time high. The number of new infections among people 
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who inject drugs remains low (2.5%), mostly due to early and effectual harm-reduction 

programmes. No case of HIV acquisition through blood transfusion has been documented in 

the UK since 2002.  

 

Concerning subtype and CRFs distribution, subtype B continues to be the most common 

subtype among MSM, however an increase of non-B subtypes among this population has 

been reported with subtypes C, and A followed by CRF01-AE and CRF02-AG recombinant 

being the most common subtypes found, indicating that risk-group segregation of HIV-1 

clades is becoming less distinct (Fox et al, 2010).   

 

 

 

1.4 HIV-1 virion characteristics 

HIV-1 is a member of the Lentivirus genus in the family of Retroviridae (Ratner et al, 1985; 

Wain-Hobson et al, 1985). The HIV-1 virion is spherical in morphology and measures 

between 100 and 150 nm in diameter. 
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1.5 HIV-1 genome and proteins 

The HIV-1 genome is approximately 9.2 kb in length. The sequence is flanked by the two 

long terminal repeats (LTRs). The 5’ LTR contains the enhancer/promoter sequence for viral 

transcription and the 3’ LTR contains the polyadenylation signal.  The viral genome contains 

nine open reading frames (ORFs). From 5’ to 3’ it comprises the gag gene, which encodes the 

virion structural components; the pol gene, which encodes the viral enzymes and the env 

gene, which encodes the envelope glycoproteins. The HIV-1 genome contains six additional 

genes: tat and rev which code for two regulatory proteins and vif, vpr, nef and vpu which 

encode four accessory peptides.  

 

Figure 1.3 Genome organization of HIV-1 (adapted from Sierra-Aragon, 2008).  

 

 

The three primary HIV-1 translation products (Gag, pol and env) are initially synthesized as 

polyprotein precursors, which are subsequently processed by viral or cellular proteases into 

mature proteins. The Gag precursor is cleaved by the viral protease into the matrix (P17), 

capsid (P24), nucleocapsid (P7) and p6 proteins as well as two small spacer peptides P1 and 

P2 (Henderson et al, 1992; Mervis et al, 1988).  The P17 protein is located along the inner 

leaflet of the viral lipid envelope, where it directs the incorporation of the envelope 

glycoproteins into the forming virion (Dorfman et al, 1994). The P24 protein assembles to 

form the conical core of the virion. The P7 is an RNA binding protein responsible for 

packaging of the genomic RNA into the virion (Gorelick et al, 1990). The p6 protein appears 

to be important for viral budding (Accola et al, 2000).  Autocatalysis of the Gag-Pol 

precursor give rise to the retroviral enzymes: the protease (PR), which is an homodimeric 

protein that is required for the formation of fully mature and infectious viral particles; the 
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reverse transcriptase (RT), which provides both the RT activity, that allows RNA-dependent 

RNA polymerization and the RNase H activity, that allows the specific degradation of RNA 

in RNA-DNA duplexes; and the integrase (IN) which mediates the integration of the viral 

DNA into the chromosome of the host cell (Farnet et al, 1996). Finally, proteolytic digestion 

of the envelope glycoprotein (gp160) by cellular serine proteases leads to surface (gp120) and 

transmembrane (gp41) subunits (Willey et al, 1988). The remaining six HIV-1 encoded 

proteins (Vif, Vpr, Tat, Rev, Vpu and Nef) are the primary translation products of spliced 

mRNA.  The tat protein is a trans-activating protein that enhances the rate of viral 

transcription and permits synthesis of full-length transcripts to occur (Laspia et al, 1990; 

Marciniak et al, 1990).  The rev protein mediates the transport of single spliced and unspliced 

viral RNAs from the nucleus to the cytoplasm (Emerman et al, 1989; Malim et al, 1989). The 

vif protein acts late in the viral life cycle to facilitate virus release and infectivity, it interacts 

with the cellular proteins APOBEC3F and APOBEC3G inducing their degradation by 

proteosomes. In the absence of vif the APOBEC proteins are incorporated into virions where 

they deaminate cytidine to uridine in the minus strand of the forming cDNA leading to 

inactivating hypermutation in the HIV-1 genome. Consequently, Vif is required for 

production of infectious virions (Malim et al 2008; Henriet et al, 2009). The vpr protein is 

involved in infectivity, apoptosis, cell cycle control, viral transcription and nuclear import of 

the pre-integration complex (Romani and Engelbrecht, 2009). The nef protein modulates both 

cellular signal transduction and membrane trafficking. It plays a role in downregulation of 

CD4 and class I major histocompatibility complex (MHC) from the cell surface preventing 

immune recognition of infected cells (Garcia et al, 1991). Finally, the vpu protein enhances 

the release of virions from infected cells (Klimkait et al, 1990; Nomaguchi et al, 2008) and 

degrades CD4 during virus production preventing and inhibitory effect on infectivity of 
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progeny virions that occur when the viral receptor interacts with the viral envelope (Levesque 

et al, 2003).  

 

 

1.6  The HIV-1 replication cycle 

The entire replication cycle of HIV-1, which is completed in approximately 24 hours 

(Perelson et al, 1996), comprises a series of sequential steps which are shown in figure 1.4 

and reviewed below.  
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Figure 1.4 Replication cycle of HIV-1 
 

The HIV-1 replication cycle begins with the binding of viral envelope surface glycoprotein (gp120) to the cell surface CD4 receptor and CCR5 or CXCR4 

chemokine coreceptors. This is followed by fusion, entry and uncoating of the conical viral core. Reverse transcription converts the single-stranded viral RNA 

genome into a double-stranded DNA copy. The preintegration complex (PIC) of viral and cellular proteins and proviral DNA is transported to the nucleus, 

followed by integration into the host chromosomal DNA. Next, the integrated viral DNA is transcribed by cellular RNA Pol II forming spliced and unspliced 

mRNA templates used for translational synthesis of the accessory factors and polyproteins (Gag and Gag-Pol) encoding structural proteins and functional 

enzymes. Viral RNA, polyproteins, and envelope localize to the inner face of the plasma membrane where they are packaged into assembling viral particles. 

Finally, progeny virions bud from the cell surface as immature particles and acquire infectious capacity by proteolysis-induced morphological maturation.  
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1.6.1 Viral entry 

Initially, the virion adsorbs to the target cell (i.e., T helper lymphocytes, macrophages and 

some populations of dendritic cells) through the interaction of the viral envelope protein 

(env) or human cell membrane proteins present on the viral envelope with a number of 

several attachment factors displayed on the target cell membrane (e.g., heparan sulfate 

proteoglycans, α4β7 integrin), which in turn brings the viral receptor (i.e., CD4 molecule) 

and co-receptor (i.e., CC or CXC family of chemokine receptors) in close proximity to env, 

thus increasing the efficiency of infection. Subsequent binding of the gp120 subunit of env to 

the CD4 molecule causes rearrangements in the V1/V2 loops followed by the V3 loop and 

leads to the formation of a bridging sheet composed of two double stranded β sheets that are 

spatially separated in the unliganded state. These conformational changes in gp120 enable its 

binding to the co-receptor molecule (Sattentau et al, 1991; Wu et al, 1996). Two major co-

receptor molecules, the α-chemokine receptor CXCR4 and the β-chemokine receptor CCR5, 

have been identified. Although a number of other chemokine receptors can act as co-

receptors for HIV-1 entry in cultured cells (Berger et al, 1999), there is no compelling 

evidence that they play an important role in vivo. HIV-1 strains can be classified based on 

their co-receptor usage preference, which is mainly determined by the base sequence of the 

V3 loop. R5-tropic strains are those that employ CCR5, X4-tropic strains those that use 

CXCR4 and dual-tropic strains those that can employ both co-receptors (Berger et al, 1998). 

The importance of viral co-receptors for HIV-1 infection was demonstrated by the discovery 

of a 32 base-pair deletion in CCR5, termed CCR5∆32, which has an allelic frequency of 10% 

in Caucasians. This mutation results in a truncated CCR5 protein that is not expressed on the 

cell membrane, but retained in the endoplasmic reticulum. Homozygosity for this 

polymorphism confers profound resistance to HIV-1 infection as homozygous individuals are 
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only rarely infected despite persistent high risk behavior (Paxton et al, 1996; Samson et al, 

1996). Co-receptor binding induces the exposure of a hydrophobic fusion peptide in the 

amino-terminal ectodomain of gp41, which inserts into the cell membrane. This allows the 

fusion peptide of each gp41 in the trimer to fold at an angle bringing the amino and carboxy-

terminal helical regions from each gp41 subunit together to form a six helix bundle, which in 

turn brings the viral and cellular lipid bilayers into close apposition, resulting in the formation 

of a fusion pore (Melikyan et al, 2000) through which the viral contents are delivered into the 

cytoplasm. 

 

1.6.2 Uncoating 

Uncoating is defined as the loss of viral capsid that occurs within the cytoplasm of the 

infected cell after the virion enters the cell and before the viral genome penetrates the 

nucleus. It is an obligatory step in the HIV life cycle that accompanies the transition between 

reverse transcription complexes (RTCs), in which reverse transcription occurs, and pre-

integration complexes (PICs), which are able to integrate into the host genome. HIV-1 enters 

the nucleus through a nuclear pore which diameter falls behind that of the viral capsid. 

Consequently, uncoating should occur at some point after viral entry and before nuclear 

import. Nevertheless, the exact time and location of the event remains unclear. Recent studies 

suggest that uncoating occurs gradually, possibly in response to both cellular and viral 

signals. Among cellular factors are found:  Cyclophilin A (CypA), which has been seen to 

bind the capsid and assist uncoating (Javanbakht, et al 2007), prolyl isomerases pin 1 (Pin1) 

which specifically recognised phosphorilated serine-proline residues in the viral capsid and 

promotes uncoating as demonstrated by the linked between dysfunctional uncoating and 

depletion of pin1 in cell targets (Misumi et al, 2010) and also cellular factors present in non-

resting cells as it has been demonstrated that uncoating requires cell activation (Auewarakul 
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et al, 2005).  Viral factors such as the integrase protein that appears to be required to maintain 

the interaction between CypA and capsid (Briones et al, 2010) as well as the complexion of 

reverse transcription and formation of the central DNA flap seems also to play a crucial role 

in HIV-1 uncoating (Arhel et al, 2007).  

 

1.6.3 Reverse transcription 

Reverse transcription is the process whereby the single-stranded RNA viral genome is 

converted into a linear double-stranded DNA that is the substrate for integration into the host 

genome. The enzyme that performs this action is the HIV-1 reverse transcriptase (RT), which 

has two activities: (a) DNA polymerase that can copy either RNA or DNA templates and (b) 

RNase H that degrades RNA from DNA-RNA duplexes.  

 

Reverse transcription commences with the binding of the host tRNA
Lys3

 to a complementary 

sequence located approximately 180 nucleotides from the 5’ end of the viral genome called 

the primer binding site (PBS). The RT initiates the synthesis of the minus strand DNA from 

the 3’ end of the tRNA and proceeds towards the 5’ end of the viral genome sequentially 

copying the U5 and R sequences. The RNase H activity of the RT removes the U5 and R 

RNA sequences from the RNA-DNA structure, exposing the newly synthesized minus DNA 

strand. As a result of the degradation of RNA-DNA hybrid, the minus DNA strand is exposed 

facilitating the annealing between the newly synthesized R DNA sequence and a 

complementary R RNA sequence present at the 3’ end of the RNA genome, which in turn 

leads to the transfer of the minus DNA strand to the direct repeat at the 3’ end of the RNA 

genome. After this transfer, the RT continues to elongate the minus DNA strand towards the 
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PBS located at the 5’ end of the RNA genome. As DNA synthesis proceeds, so does RNase H 

degradation. In HIV-1, there are two short purine rich sequences, known as polypurine tracts 

(PPT), which are resistant to the RNase H activity and serve as primers for the synthesis of 

the plus DNA strand. The PPT located adjacent to the 3’ end of the viral genome is essential 

for viral replication, whereas the PPT located near the middle of the viral genome increases 

the ability of the virus to complete the plus DNA strand, but is not essential. The RT initiates 

the synthesis of the plus DNA strand from the PPT adjacent to the 3’ end of the viral genome 

and proceeds towards the 5’ end of the minus DNA strand sequentially copying the U3, R, 

U5 sequences, but also the first 18 nucleotides of tRNA
Lys3

. Afterwards, the tRNA is partially 

removed by the RNaseH activity, exposing the PBS sequence in the 3’ end of the plus DNA 

strand and facilitating its pairing with the complementary PBS sequence located at the 3’ end 

of the minus DNA strand and consequently leading to a second translocation event. Extension 

of plus and minus DNA strands by the RT leads to the synthesis of the complete double-

stranded linear viral DNA, which is longer than the viral genome as each end is flanked by a 

long terminal repeat (LTR) containing the U3-R-U5 sequence. Plus-strand synthesis 

terminates at the end of the minus strand at a sequence known as central termination signal 

(CTS) (Charneu et al, 1994). The position of the central PPT upstream of the CTS results in 

the displacement of approximately 100 nucleotides of plus-strand DNA and the formation of 

a central triplex DNA structure termed central DNA flap which appears to have a role in 

translocation of the viral DNA into to the nucleus (Zennou et al, 2000) and that is 

subsequently eliminated by the cellular enzyme flap endonucelase I (FEN1).  
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1.6.4 Intracellular transport and nuclear entry  

Prior to integration, the viral cDNA is translocated into the nucleus as part of a large 

nucleoprotein complex, the pre-integration complex (PIC), which contains both viral (i.e., 

P17, P24, RT, integrase and Vpr) (Farnet et al, 1991; Miller et al, 1997) and cellular proteins. 

 

HIV-1 and other lentiviruses have the unusual ability of infecting non-dividing cells, which 

implies that the PIC must enter the nucleus through an intact nuclear membrane. In contrast, 

other retroviruses require the disintegration of the nuclear membrane during mitosis to gain 

access to the nuclear components. The exact mechanism by which HIV-1 enters into the 

nucleus remains to be established (Fassati 2006). Over the years, a plethora of viral 

determinants involved in viral translocation through the nuclear pore have been proposed, 

including several components of the PIC, such as  matrix (P17), capsid (P24) and integrase 

proteins, as well as a triple stranded DNA structure known as the flap. Nuclear import of the 

PIC is mainly directed by nuclear location signals (NLS) present in the above mentioned viral 

proteins. Thus, both P17 and integrase proteins are recognised by the NLS-binding site 

present on the importin α protein. This binding triggers the interaction between importin α 

and β proteins, which in turn targets the PIC to the nuclear pore by attachment to 

nucleoporins (Nitahara-Kasahara, et al, 2007; Görlich et al, 1996). Although Vpr does not 

contain a NLS, it has been shown to promote the translocation of the PIC by tethering to the 

nuclear pore in a manner analogous to the importin α/β family (Gallay et al, 1996; Vodicka, 

et al 1998). In addition, the three-stranded DNA flap structure generated at the central 

polypurine tract also appears to contribute to the nuclear import of the PIC as a ten-fold 

reduction in the efficiency of this process was documented in its absence (Zennou et al, 

2000). 
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However, the latest evidence suggests that the capsid protein (P24) is the main viral 

determinant of nuclear import and point mutations in this protein selectively impair viral 

entry into the nucleus. In addition, genome-wide screens studies have identified several host 

nuclear pore proteins that HIV-1 can utilize to gain access to the nucleus; among them are  

transportin 3 (product of the TNPO3 gene) and Nup358 (product of RANBP2 gene)  and P24 

is  responsible for controlling the virus interaction with such host factors (Brass et al, 2008 

and Lee et al, 2010).  

 

1.6.5 Integration 

Once in the nucleus, the next and second distinguishing feature of the HIV-1 replication cycle 

is the integration of a copy of the viral cDNA into a cellular chromosome. The integrated 

viral cDNA, termed provirus, serves as the template for the synthesis of viral RNAs, which 

may either be translated into viral proteins or act as genomic RNA in progeny virions. In 

addition, the proviral DNA is replicated along with cellular DNA during cycles of cell 

division and is maintained as part of the host genome for the lifetime of the infected cell. 

Integration of the viral cDNA into a cellular chromosome is catalyzed by the integrase and 

proceeds in a series of coordinated events. Firstly, the integrase catalyses the removal of two 

nucleotides from each 3’ terminus of the linear viral cDNA leading to a pre-integration 

substrate with 3’-recessed ends that always terminate with the conserved CA-3´ sequence.  In 

the next step, the integrase catalyses a strand transfer reaction where the cellular DNA is 

cleaved at the integration site and the newly-generated 3’ ends of the viral cDNA are 

covalently bound to the 5´ends of the cellular DNA. Finally, proviral formation is completed 

by cellular enzymes that remove two unpaired bases at the 5´ends of the viral cDNA, fill in 

the single-strand gaps between viral and cellular DNA and ligate the 5´ends of viral DNA to 
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the cellular DNA (Delelis et al, 2008; Jegede et al, 2008). Although viral DNA can integrate 

into any sequence in the host, it has been shown to preferentially target actively transcribed 

regions in order to promote efficient gene expression (Marshall et al, 2007). Cell proteins, 

primarily the transcription activator factor LEDGF/p75, appear to boost the efficiency of 

integration and mediate targeting to active transcription units. LEDGF/p75 contains a 

chromatin-binding region, which comprises a PWWP domain at the amino terminus and a 

pair A/T hook domains, and a carboxy-terminal domain that bounds tightly to IN. This 

protein binds simultaneously to the integrase and chromatin at active transcription units, thus 

directing integration to these locations.   

 

1.6.6 Gene expression 

Control of gene expression of the HIV-1 provirus is exerted by both cis and trans-acting viral 

elements, which orchestrate complex interactions with the cellular transcription, splicing and 

RNA export and translation apparatus. 

 

Transcription is positively regulated both at initiation and elongation stages. The U3 region 

located within the 5’-LTR contains two important elements that stimulate transcription 

initiation: an extremely efficient promoter, which is capable of supporting even higher levels 

of transcription than the adenovirus major late promoter or the CMV immediate early 

promoter, and an enhancer that contains two NF-κB binding motifs, which facilitate 

transcription initiation by removing chromatin restrictions near the promoter through the 

recruitment of histone acetyltransferases. The Tat protein up-regulates transcription 

elongation by binding simultaneously to a transactivating-responsive region (TAR) present in 

the 5’ end of nascent viral RNA and to the positive transcriptional elongation factor (pTEFb) 



- 25 - 

 

components CDK9 kinase and cyclin T1. These interactions trigger a complex set of 

phosphorylation reactions that stimulate transcription elongation by inactivating negative 

elongation factors, such as NELF and DSIF, and by enhancing RNA polymerase II 

processivity (Dingwall et al, 1990).  

 

Depending on the degree of splicing, viral transcripts produced during the replication cycle 

are classified into three categories: completely spliced mRNAs that encode the viral proteins 

Tat, Rev and Nef, incompletely spliced mRNAs that code for Env, Vif, Vpr and Vpu and full-

length unspliced transcripts, which act both as the virion genomic RNA and the mRNA for 

the Gag/Gag-Pro-Pol polyproteins. The efficiency of splicing is regulated by the intrinsic 

strength of 5’ and 3’ splice sites and the presence of cis-acting elements, such as splicing 

enhancers and silencers.  Immediately after infection, the synthesis of completely spliced 

mRNAs is predominant. These mRNAs are exported to the cytoplasm via a constitutive 

endogenous pathway used by cellular mRNAs and translated to yield Tat, Rev and Nef 

proteins. The Rev protein dictates the fate of incompletely spliced and unspliced viral RNA 

transcripts. When Rev levels are below a specific threshold these RNAs are either spliced or 

degraded in the nucleus. However, when Rev levels exceed the threshold, these intron-

containing viral RNAs are exported to the cytoplasm due to the interaction of Rev with an 

elongated stem-loop structure of 351 nt, termed the Rev-responsive element (RRE), present 

on these viral transcripts. The binding of Rev to the RRE induces its own polymerization and 

triggers the interaction with a protein of the nuclear pore complex, the karyopherin family 

member Crm1, which in a GTP-dependent process translocates the viral RNA species into the 

cytoplasm. As the infection proceeds, incompletely spliced mRNAs and full-length unspliced 

transcripts are increasingly exported to the cytoplasm (Groom et al, 2009). 

 



- 26 - 

 

Translation is regulated by frameshifting, in which specific cis-acting sequences in the RNA 

cause a reading frame change during translation. For example, the production of Gag-Pro-Pol 

precursor during the translation of full-length unspliced transcripts occurs as a consequence 

of a -1 shift in the Gag translational reading frame. This frameshift occurs 5% of the time and 

results in the production of one Gag-Pro-Pol precursor for every 20 Gag precursors 

synthesized.  

    

 

1.6.7 Assembly, budding and maturation  

During assembly, viral and cellular components are packaged at nucleation sites leading to 

the formation of immature virions. Gag polyprotein is largely responsible for viral assembly 

and its expression is sufficient for the formation of non-infectious spherical viral-like 

particles. Gag, which is translated from full-length unspliced RNA transcripts in cytoplasmic 

polysomes, is composed by folded domains separated by flexible linker regions that display 

HIV-1 protease cleavage sites (CSs) (Figure 1.5).  

 

 

 

Figure 1.5 Gag polyprotein domains and protease cleavage sites. 

 

The majority of Gag traffics in the cytoplasm as soluble monomers or dimers in an auto-

inhibited conformation. However, a minor proportion is found complexed with dimers of 

genomic RNA forming ribonucleoprotein complexes (RNPs). RNPs genesis requires 

dimerization of genomic RNAs, which occurs in the cytoplasm by virtue of the non-covalent 
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binding at the dimer initiation sites located within the 5’UTR, followed by the interaction of 

Gag with genomic RNA dimers, where two retroviral zinc motifs within the P7 domain of 

Gag recognize highly-organized structures in the 5’UTR. In particular, the ψ sequence, which 

is located in the 5’ LTR region spanning the major splice donor and the Gag initiation codon, 

plays a central role in this process and is required for efficient genome packaging (Berkowitz 

et al, 1996).  

 

Nucleation sites are plasma membrane lipid rafts that are enriched in sphingomyelin, 

cholesterol and plasmalogen-PE and display an increase in saturated fatty acids compared 

with the cell plasma membrane. Targeting of Gag and RNPs to nucleation sites is mediated 

by a multipartite membrane-binding signal located within the P17 domain, which consists of 

a myristic acid covalently attached to the N-terminal Gly in the P17 protein and a patch of 

basic residues. Binding of the P17 domain to the inner leaflet lipid phosphatidyl inositol (4, 

5) biphosphate exposes the myristoyl group stably anchoring Gag/RNPs to the plasma 

membrane. In addition, electrostatic interactions between the stretch of basic residues and 

acidic phospholipids on the inner leaflet of the lipid rafts reinforce membrane docking 

(Hermida-Matsumoto and Resh, 1999; Zhou et al, 1994). The initial presence of RNPs at 

nucleation sites is important for effective virion assembly. The interaction of newly-arrived 

Gag monomers or dimers with RNPs through their CA domains converts the auto-inhibited 

conformation into one that is optimal for Gag polymerization. Multimerization of Gag 

through its P24-P2 region leads to the formation of an immature lattice, in which membrane-

bound Gag molecules are extended and oriented radially with the carboxy-terminal end 

facing the interior of the particle. During viral assembly, apart from Gag and 

ribonucleoprotein complexes, other viral components are also incorporated into the immature 

viral particle. The Gag-Pro-Pol polyprotein, which is translated in the cytosolic polysomes, is 
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incorporated via the same mechanism as Gag/RNPs.  The Env protein is translated in ER-

associated ribosomes and then travels through the constitutive cellular secretory pathway 

where it is glycosylated, olygomerized into trimeric complexes, cleaved by furin to form 

transmembrane (gp41) and surface (gp120) subunits and transported to the plasma membrane 

via vesicular transport. The long intracellular tail of gp41 helps to sort the protein into 

nucleation sites and interacts with the P17 domain of Gag to promote Env virion 

incorporation. Other viral proteins, such as Vpr, Vif or Nef are incorporated into the 

immature viral particle by virtue of its interaction with the carboy-terminal P6 domain of 

Gag. In addition, a number of cellular components have been shown to be packaged into the 

viral particles. The host tRNA
Lys3

 is recognized by an 18 base-pair sequence (PBS) located 

within the 5’ LTR. In addition, host proteins, such as ICAM-1, HLA-II, actin, cyclophilin A, 

are incorporated into the virion either passively or by interaction with Gag. The involvement 

of these human proteins in viral biology is not well established in the majority of cases.    

 

During budding the immature virion is released from the plasma membrane. The process is 

largely mediated through interactions between P6 protein and the cellular ESCRT 

(endosomal sorting complexes required for transport) machinery. The ESCRT apparatus 

usually catalyzes membrane fission reactions that release vesicles into endosomal 

multivesicular bodies.  

 

The carboxy-terminus of Gag (P6) contains two short sequence motifs (i.e., late assembly 

domains) that recruit and bind to early-acting ESCRT factors (Katzman et al, 2002). The 

highly conserved PTAP motif located near the amino terminus of P6 (Huang et al, 1995) 

binds to the TSG101 component of the ESCRT-I complex, whereas the YPXL motif located 

downstream of the PTAP motif interacts with the ESCRT-III binding partner ALIX (Usami, 
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et al 2009; Roxrud et al, 2010; Bieniasz et al, 2009; Strack et al, 2003 and VerPlank et al, 

2001). These interactions result in the recruitment of the ESCRT-III proteins of the CHMP 1, 

2 and 4 families, which promote closure of the virion neck, and VPS4 ATPases, which 

complete the fission reaction by hydrolyzing ATP. As a result of these actions the immature 

viral particle is released from the plasma membrane.  

 

During maturation, the immature virion experiences dramatic morphological changes and 

becomes infectious.  Maturation begins concomitant with or immediately after budding and is 

driven by the HIV-1 protease cleavage of Gag and Gag-Pro-Pol polyproteins (Kaplan et al, 

1993). Construction of mutant virus lacking the viral PR clearly indicated that the proteolytic 

processing of these polyproteins is required for restructuring of the virion in a fully mature 

and infectious form (Kohl et al, 1988; Peng et al, 1989).  

 

HIV-1 PR is an aspartyl protease with extensive sequence homology to cellular counterparts, 

such as pepsin and renin. Like other aspartic acid proteases, HIV-1 PR uses two aspartic acid 

side chains within a characteristic Asp-Thr-Gly motif to activate a water molecule that 

catalyses the hydrolysis of the peptide bond. In contrast to cellular proteases, the holoenzyme 

is a dimer of two identical subunits, each containing 99 amino acid residues (Tozser et al, 

2003). As revealed by crystallographic studies, the active site is located in the interior of a 

long cleft present at the dimer interface and is stabilized by non-covalent interactions 

between Asp-Thr-Gly motifs and four-stranded mixed β sheets created by the amino and 

carboxy termini of each subunit. The active site contains two catalytic aspartic acid residues 

(Asp-25 and Asp-25’), each contributed by a different subunit (Oroszlan et al, 1990;  

Wlodawer et al, 1993). Substrate access to the active site is regulated by two flexible flaps 
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that undergo dramatic movements to allow entry of substrates and exit of products.  The 

structure of the HIV-1 PR is shown in figure 1.6.  

 

 

HIV-1 PR binds substrates asymmetrically in an extended anti-parallel β-sheet conformation. 

Three to four amino acids (P4 to P1 and P1’ to P3’) located on either side of the cleavable 

peptide bond (P1↓P1’) participate in binding to the substrate cavity of the protease. Substrate 

specificity studies (Pettit et al, 1991; Poorman et al, 1991; Billich et al, 1988; Griffiths,  et al, 

1992; Tomasseli et al, 1994; Tozser et al, 1992; Loeb et al, 1989) have reached a series of 

conclusions: P1 and P1’ are usually large hydrophobic residues, P1 never contains a β-

branched aliphatic side chain, P2 and P2’ are typically hydrophobic or small polar residues, 

and P4, P3 and P3’ can accommodate a variety of residues. However, as Gag and Gag-Pro-

Pol cleavage sites vary considerably in amino acid sequence, it has been postulated that the 

enzyme appears to recognize the shape of the substrate rather than its specific sequence 

(Prabu-Jeyabalan et al, 2000; Prabu-Jeyabalan et al, 2002). 

  

The Gag-Pro-Pol polyprotein contains three inactive viral enzymes: protease, reverse 

transcriptase and integrase. The molecular mechanisms that lead to activation and regulation 

of HIV-1 protease are unclear, but these processes must be tightly regulated, so that the Gag 

polyprotein is not cleaved before assembly and budding.  Experimental findings have 

suggested that dimerization of Gag-Pro-Pol polyproteins during assembly at nucleation sites 

is required for initial activation (Franke et al, 1994; Gamble et al, 1997; Gatlin et al, 1998) 

and an aggregation model has been proposed to explain how this may be regulated. However, 
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other factors such as drop in pH or an influx of Ca
2+

 ions associated with virion release, may 

contribute to activation (Skalka, 1989; Vogt, 1996). The partially active HIV-1 PR within the 

Gag-Pro-Pol dimer appears to be responsible for the initial autocatalysis of Gag-Pro-Pol 

through intra-molecular mechanisms (Pettit et al, 2004; Tessmer and Krausslich, 1998). 

Primary processing occurs at the P2↓P7 junction (Pettit et al, 2004) and is followed by 

secondary and tertiary processing of the transframe region (TFR or P6) at TFR↓P6
pol

 and 

P6
pol

↓PR, respectively (Phylip et al, 1995). Based on these studies, these initial processing 

events give rise to p121, p114 and p107 early intermediates as a consequence of cleavage at 

P2↓P7, TFP↓P6
pol

 and P6
pol

↓PR CSs, respectively. Since the TFR negatively regulates PR 

function, its removal is concomitant with the appearance of an elevated enzymatic activity 

characteristic of a mature PR (Louis et al, 1991). Subsequent cleavage events occur by inter-

molecular mechanisms and liberate the structural and functional enzymes of the Gag and Pol 

regions, respectively (Wondrak et al, 1996). There is little information available concerning 

the sequence of events in processing CSs in HIV-1 pol. Studies support that RT↓IN is 

processed first and is followed by PR↓RT and the by RTP51↓RTP66 (Tozser et al, 1991). 

However, a simultaneous processing of all pol CSs resulting in the concurrent release of PR, 

IN and both RT subunits (P66 and P51) cannot be excluded. As a consequence of the entire 

autocatalytic process, three fully active protease, reverse transcriptase and integrase are 

produced (Craven et al, 1991; Swanstrom and Wills, 1997; Xiang et al, 1997; Gross et al, 

2000). 

 

The Gag polyprotein contains four structural proteins, matrix (P17), capsid (P24), 

nucleocapsid (P7) and P6, and two smaller spacer peptides P2 and P1 located between 

P24/P7 and P7/P6, respectively (Orozslan et al, 1990). Gag is cleaved by the HIV-1 protease 
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at five different sites (CS). The order of cleavage is highly conserved and is mainly regulated 

by the intrinsic susceptibility of each site to proteolysis (Tozser et al, 1997). These cleavage 

sites are classified into three groups according to their rate of processing: rapid (P2 / P7), 

intermediate (P1 / P6, P17 / P24) and slow (P7 / P1, P24 / P2) (Pettit et al, 1994). Cleavage at 

each site appears to occur independently (Pettit et al, 1994) and appears to perform a different 

function. Primary processing occurs at P2 / P7 and gives rise to P43 (P17-P24-P2) and P14 

(P7-P1-P6) intermediates. This cleavage is conducive to the activation of the Env protein. 

Secondary processing involves cleavage at P1 / P6 shortly followed by cleavage at P17 / P24 

and leads to P17, P6, and P8 (P7-P1) and P25 (P24-P2) intermediates. Finally, tertiary 

cleavage at P7 / P1 followed by P24 / P2 gives rise to P7, P1, P24 and P2 final products. 

These cleavages lead to the condensation and stabilization of the dimeric RNA genome and 

the assembly of the conical capsid. The dramatic rearrangement of the internal virion 

components triggered by Gag proteolytic processing is essential for the production of viable 

infectious virus particles (Kaplan et al, 1993, Pettit et al, 1994, Swanstrom and Wills, 1997; 

Xiang et al, 1997 and Vogt, 1996). 
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Figure 1.7 Schematic representation of the genomic and polyprotein organization of HIV-1. 

 The upper diagram represents the 9.8 kb provirus genome. The lower diagram represents the HIV-1 

Gag and Gag-Pol polyprotein precursors. The proteins encoded in pol are synthesized at a frequency 

of 5-10% by a -1 translational frameshift of the unspliced genomic mRNA template to yield Gag-Pol. 

At the stage of virion budding and release, Gag and Gag-Pol polyproteins are proteolytically cleaved 

at domain boundaries by the viral protease to release their constitutive protein species and complete 

the maturation process. The location of these protease cleavage sites are indicated by the vertical 

arrows. Primary (1), secondary (2), tertiary (3), and quaternary (4) cleavage events are numbered 

accordingly. Gag polyproteins are processed into matrix (MA, p17), capsid (CA, p24), nucleocapsid 

(NC, p7), p6
gag 

and two spacer proteins p2 and p1. Processing of Gag-Pol polyproteins additionally 

yields the transframe region proteins (TFP and p6
pol

), protease (PR, p10), reverse transcriptase (RT, 

p66/51) which contains an RNase H (RNH) domain in its larger subunit, and integrase (IN, p32). The 

HXB2 amino acid sequence for each cleavage site in HIV-1 Gag and Gag-pol precursor is indicated in 

the table below, the scissile amide bond is indicated by the vertical arrow (↓). 

 

1.7 Antiretroviral drugs and mechanisms of resistance 

Currently, there are 24 antiretrovirals (ARVs) approved by the US Food and Drug 

Administration (FDA) for the treatment of HIV-1 infection (Table 1.1). They are classified 

into six classes: nucleo(s)tide reverse transcriptase inhibitors (NRTIs), non-nucleoside 
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reverse transcriptase inhibitors (NNRTIs), protease inhibitors (PIs), fusion inhibitors (FIs), 

integrase inhibitors (INIs) and co-receptor antagonists (CCR5 antagonists). All, except for the 

CCR5 antagonists, target essential viral proteins-reverse transcriptase (NRTIs and NNRTIs); 

protease (PIs), transmembrane protein gp41 (FIs) and integrase (INIs). The CCR5 antagonist, 

by contrast, is unique among the ARVs in that it targets the host cell chemokine co-receptor 

CCR5 rather than a viral protein. All ARVs act by inhibiting some of the steps of the viral 

replication: FIs and CCR5 antagonists inhibit viral entry; NRTIs and NNRTIs inhibit reverse 

transcription; PIs inhibit the proteolytic processing of Gag and Gag-Pro-Pol polyproteins and 

INIs inhibit the integration of the viral DNA into the host cell chromosome.  

 

A common feature derived from the use of ARVs, regardless of its class, is the emergence 

and selection of resistant HIV-1 variants. As a general rule, resistance is conferred by 

punctual and well-characterized mutations in the target gene. In general, the main drivers of 

the development of drug resistance are the high level of virus production reaching up to 10
9
-

10
12

 virus particles per day in untreated patients (Perelson et al, 1996) and the high error rate 

during reverse transcription, the RT introduces an average of one or two mutations for each 

viral genome transcribed (Bebenek et al, 1989; Ji and Loeb, 1992). These two characteristics 

combined ensure that patients have a complex and diverse mixture of viral strains termed 

“quasispecies”, each differing by one or two mutations. Within the quasispecies certain 

strains dominate. This represents an equilibrium between escape from selective pressure, 

such as immune system or drug therapy, and preserved ability to replicate and infect. 

Consequently, variants with reduced susceptibility to ARVs are usually found in the viral 

population before treatment, but are present at low frequency due to impaired fitness when 

compared to the wild-type strain.  If any of these variants confers a selective advantage to the 



- 35 - 

 

virus, such as decreased drug susceptibility, it will become dominant. Emergence of 

resistance will therefore only occur in patients who have ongoing viral replication in the 

presence of levels of ARVs that are insufficient to completely abolish viral replication but 

sufficient to exert a positive selective pressure on variants with decreased susceptibility. The 

main scenario conducive to emergence of drug resistance is in patients with suboptimal 

adherence to treatment. However, others circumstances, such as drug interactions, may also 

lead to sub-therapeutical drug levels and as a result to the development of drug resistance.  

Many studies have demonstrated that toxicity and side effects are closely associated with 

adherence to antiretroviral therapy. For instance, in the ICONA study group, patients 

receiving indinavir-and-ritonavir containing HAART had a higher chance of discontinuing 

therapy because of toxicity (21%) compared to treatment failure (10%) (D’arminio Monforte, 

et al, 2000). The development of new, more potent and safer antiretroviral therapies has 

reduced HAART-related toxicity. However, unfortunately no drug is entirely devoid of 

secondary effects. Of the NRTIs, tenofovir can cause renal toxic effects and potentially 

osteopaenia. Abacavir can cause an increased risk of cardiovascular disease and is also 

associated with a serious hypersensitivity reaction, particularly in HLA-B5701 positive 

patients. Many of the once popular thymidine analogues, especially stavudine, are currently 

known to cause profound long-term and probably irreversible side-effects, such as 

lipoatrophy. Among the NNRTIs, efavirenz is reported to be teratogenic and has also 

substantial short-term CNS toxic effects. Neviripine can cause severe liver disease and 

hypersensitivity reactions, particularly in patients starting therapy with high CD4 T-cell 

counts. Regarding integrase inhibitors, raltegravir appears to be safe, well tolerated and 

highly effective, but long-term safety data are still missing. Concerning protease inhibitors, 

most of them increase plasma lipid concentrations and consequently increase cardiovascular 

risk; in addition, many have clinically relevant drug interactions, usually when boosted with 
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low dose ritonavir. Furthermore, most PIs are associated with gastrointestinal disturbances. 

Atazanavir also increases the plasma concentration of unconjugated bilirubin, occasionally 

causing reversible jaundice. The CCR5 inhibitor maraviroc is generally well tolerated and has 

no known short or long-term side effects. However, by contrast with all other antiretrovirals, 

CCR5 inhibitors bind a host target and consequently there are concerns about its long term 

risk. Lastly, the fusion inhibitor Enfuvirtide is poorly tolerated because of the need for 

injection twice daily, which is often associated with local pain.  

 

Strict adherence is required to achieve and maintain viral suppression. Suboptimal drug 

exposure can result in the rapid development of drug resistance. This is especially true for 

drugs with low genetic barrier to resistance, which are commonly part of some of the most 

popular first-line regimens, and include NRTIs (e.g., lamivudine or emtricitabine), NNRTIs 

(e.g., efavirenz and nevirapine) and INIs (e.g., raltegravir). By contrast, PIs have a higher 

genetic barrier to the development of resistance and consequently long-term exposure is 

generally required before resistance emerges. In general, it is believed that PIs are more 

forgiving in terms of non-adherence. The management of HAART side effects is of pivotal 

importance in the management of HIV-infection. Most treatment modifications of first line 

HAART are related to toxic effects (Elzi et al, 2010). Similarly, it has been reported that 

nearly all first regimen virological failure can be attributed to either non-adherence or pre-

existing drug resistance (Paredes et al, 2010). Consequently, virological failure should trigger 

a thorough review of potential causes for non-adherence including drug side-effects, search 

for other drugs that can be affecting absorption or metabolism and because resistance 

selection may have occurred, a resistance genotype should also be obtained.  
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Resistance to ARVs in an individual is not only the result of failure to therapy, but can be due 

to interpersonal transmission of resistant strains.  Importantly, due to the integration of the 

HIV-1 viral genome into the host cell chromosome during replication, all major quasispecies 

that have ever been generated within a patient will be archived and replication will favour the 

form that is fittest under current conditions. However, if conditions change, previously 

archived variants can rapidly re-emerge.    

 

The mechanisms of resistance differ for ARVs as it does their genetic barrier to resistance 

defined by the ease of emergence of resistance, which is a function of the number of 

mutations required to abrogate drug activity. The highest barrier to resistance is observed for 

ritonavir boosted PIs (PI/r), as the phenotypic impact of individual mutations is generally 

low. By contrast, the lowest genetic barrier to resistance is documented for first generation 

NNRTIs, such as efavirenz (EFV) and nevirapine (NVP), as a single mutation is sufficient to 

confer complete resistance to the drugs.    

 

Below, we describe the mechanism of action and resistance of each class of ARVs: 

 

 

    1.7.1 Fusion inhibitors 

Emfuvirtide (T-20) is the only fusion inhibitor currently available in the market. As 

previously discussed, the entry of the HIV-1 virus into the target cell is a multi-step process 

that involves attachment, co-receptor binding and fusion of the viral envelope and the cell 
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membrane. T-20 binds the heptad repeat region 1 (HR1) region in the HIV-1 trans-membrane 

protein gp41 preventing the formation of the six helical bundle and consequently blocking the 

fusion between the lipid bilayer of the virus and that of the host cell. 

 

Resistance to T-20 is the consequence of mutations in the HR1 region.  The first three 

substitutions associated with resistance were described in amino acids 36-38 (Derdeyn et al. 

2000, 2001 and Rimsky et al, 1998). It was demonstrated that amino acid position 36 played 

a relevant role in the fusogenic activity of HIV-1 envelope and certain mutations at this 

residue were associated with increased fusion kinetics, leading to resistance to the drug. On 

completion of clinical trials in HIV-1 infected patients, the region conferring T-20 resistance 

was expanded to include amino acid positions 36-45 (Lu et al, 2004; Wei et al, 2002).    

 

1.7.2 Co-receptor antagonists 

Maraviroc is so far the sole co-receptor antagonist licensed for the treatment of HIV-1 

infection (Macarthur and Novak, 2008). It is a noncompetitive allosteric antagonist of CCR5 

(Dorr et al, 2005; Watson et al, 2005) that binds the CCR5 co-receptor and prompts a 

conformational change that ultimately prevents the interaction between CCR5 and the V3 

crown of the surface glycoprotein gp120 (Watson et al, 2005; Dragic et al, 2000) and 

consequently the entry of the virus into the target cell. Maraviroc binds the CCR5 co-receptor 

but not the closely related CCR2 chemokine or CXCR4 receptors (Dorr et al, 2005). As a 

result, maraviroc selectively inhibits the entry of R5-tropic HIV-1 strains into cells, but not 

that of X4-tropic viruses. Since maraviroc dose not compete with the binding of chemokines 

to CCR5 it is not expected to affect cellular signaling via CCR5 (Dorr et al, 2005).  
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Different pathways of resistance to maraviroc have been reported. A first mechanism of 

resistance involves the use of the co-receptor CXCR4 for entry into the host cell.  This 

requires a change in HIV-1 tropism, which can be acquired by two possible mechanisms: the 

first is through the de novo acquisition of mutations in the env gene, which allow the use of 

the CXCR4 co-receptor (truly co-receptor switch), and the second involves the outgrowth of 

a pre-existing population of CXCR4-using variants. A number of studies have suggested that 

the outgrowth of CXCR4-using variants is the most common mechanism of resistance 

(Westby et al, 2006; Kuhmann and Moore, 2005). Another potential mechanism of resistance 

is the emergence of mutations in the gp120 envelope protein, primarily in the V3 loop, which 

will increase the affinity of the protein for the inhibitor-free co-receptor, consequently 

favouring the binding of the virus versus. the antagonist. In addition, mutations in the V3 

loop may enable the virus to bind the inhibitor-bound receptor (Westby M, 2007a). Given the 

extensive variability of the HIV-1 envelope, the patterns of mutations emerging as a 

consequence of maraviroc selective pressure may considerably differ among patients and as a 

result the genotypic predictors of this mechanism of resistance have yet to be clearly 

identified (Westby et al, 2007b).    

 

 

 

 1.7.3 Reverse transcriptase inhibitors 

Inhibition of the reverse transcriptase constitutes the cornerstone of most antiretroviral 

regimens. Two different classes of drugs are grouped within the reverse transcriptase 

inhibitors: nucleos(t)ide reverse transcriptase inhibitors (NRTIs) and nonnucleos(t)ide reverse 



- 40 - 

 

transcriptase inhibitors (NNRTIs). Although, both classes target the reverse transcription step 

by inhibiting the activity of the viral reverse transcriptase enzyme, the mechanism of action 

differed between the two classes. 

 

1.7.3.1 NRTIs 

NRTIs are competitive inhibitors of the DNA polymerase activity of the RT.  Structurally, 

NRTIs are nucleos(t)ide analogues that lack the 3’-hydroxy group, which once incorporated 

into the growing DNA chain caused premature chain termination (Parker et al, 1991, El et al; 

2007;  Zdanowicz, 2006). There are currently eight NRTIs, comprising seven nucleosides 

analogues: zidovudine (ZDV), stavudine (d4T), zalcitabine (ddC), didadosine (ddI), 

lamivudine (3TC), abacavir (ABC) and emtricitabine (FTC) and one nucleotide analogue: 

tenofovir (TDF). ZDV was in fact the first antiretroviral approved for the treatment of HIV-1 

infection in 1987 and since then NRTIs has formed the backbone of antiretroviral therapy.  

 

NRTIs are pro-drugs that require phosphorylation (bi-phosphorylation for nucleotide 

analogues and tri-phosphorylation for nucleoside analogues). Tissue-dependant cellular 

kinase activity determines the levels of drug effectiveness (Gao et al, 1993). In addition, 

NRTIs that rely on the same phosphorylation pathway, as it is the case for ZDV and d4T, can 

show antagonism when administered in combination (Havlir et al, 2000).  

 

Resistance to NRTIs is the result of the emergence of amino acids changes in the RT enzyme. 

These changes could be sequential additions (e.g; for ZDV resistance), insertions, or single 
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amino acid substitutions (e.g; for 3TC resistance). RT mutations confer resistance to NRTIs 

by two possible mechanisms: the first, which is termed NRTI excision, involves and ATP-

dependent pyrophosphorolysis that leads to the selective removal of the NRTIs from the 3’-

end of the nascent DNA chain and as a result to reversal of the chain termination (Arion et al, 

1998; Boyer et al, 2001; Meyer et al, 1999). Mutations that cause resistance by this 

mechanism are the thymidine analogue mutations (TAMs), which include a group of amino 

acids changes selected by ZDV and d4T, such as M41L, D67N, K70R, T215Y/F and 

K219E/Q (Bacheler et al, 2001; Boucher et al, 1992; Harrigan et al, 1996; Kellam et al, 

1992). Emergence of TAMs by NRTI-selective pressure occurs by two different pathways: 

TAM-1, which includes mutations M41L, L210W, T215Y and occasionally D67N, and 

TAM-2, which includes D67N, K70R, T215F and K219Q/E. The TAM-1 pathway is 

associated with greater level of ZDV resistance and NRTI cross resistance than the TAM-2 

pathway (Marcelin et al, 2005; Miller, 2004; Hu et al, 2006).  TAMs emerge in sequential 

order and their accumulation over time leads to increasing levels of resistance, mainly to 

ZDV and d4T but also ABC, ddI and TDF.  

 

The second mechanism of NRTI resistance involves the prevention of NRTI incorporation 

into the nascent DNA chain. Mutations associated with this mechanism of resistance are 

M184V/I, K65R, K70E, L74V and Q151M.  The M184V/I mutations are selected by 3TC or 

FTC-containing regimens and associated with high level resistance to both drugs. The 

mutation is located close to the RT active site and causes steric hindrance that hampers the 

incorporation of the NRTI (Sarafianos et al, 1999). The K65R mutation is selected by TDF, 

ABC and ddI and decreases susceptibility to all NRTIs except for ZDV. The mutation 

favours the incorporation of the natural dNTP substrate over the drug (Deval et al, 2004; 
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White et al, 2006). K70E mutation is primarily associated with resistance to TDF by 

prompting a decrease in the incorporation of the inhibitor (Sluis-Cremer et al, 2007). The 

L74V mutation is selected by ddI and ABC conferring resistance to both drugs; the mutation 

alters the rate of incorporation of ddI and also favours the incorporation of natural dNTP over 

ABC (Deval et al, 2004; Winters et al, 1997).  Finally, the Q151M mutation is part of multi-

drug resistance mutation complex (MDR) along with amino acid changes, such as F116Y, 

F77L, V75I and A62V. These mutations are typically selected by drug combinations 

including ZDV and ddI and confer resistance to all NRTIs, albeit less so to 3TC and TDF 

(Sluis-Cremet et al, 2000). The Q151M mutation interacts with the nitrogen base of the dNTP 

resulting in the altered recognition and reduced incorporation of the NRTI (Sluis-Cremer et 

al, 2000).     

 

In addition to the two classic mechanisms of resistance to NRTIs described above, a growing 

body of evidence has emerged indicating a role in resistance to this drug class for mutations 

in the connection and the RNase H domains. These mutations have been demonstrated to 

increase resistance to ZDV by altering the balance between NRTI excision and RNase H 

activity. Specifically, the mutations reduce the RNase H activity of the RT enzyme allowing 

more time for the enzyme to excise ZDV from the terminated DNA chain. Mutations in the 

connection domain conferring resistance to ZDV are E312Q, G335C/D, N348I, A360I/V, 

A371V, V365I, A376S (Nikolenko et al, 2007; viks-Frankenberry et al, 2007; Viks-

Frankenberry et al, 2008 and Yap et al, 2007) and mutations located in the RNase H domain 

that also contribute to ZDV resistance include H539N, D549N and Q509L (Brehm et al, 

2007; Brehm et al, 2008 and Nikolenko et al, 2005).   
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1.7.3.2 NNRTIs 

Currently, there are five NNRTIs licensed for the treatment of HIV-1 infection. They are 

classified as first generation, which include delavirdine (DLV), efavirenz (EFV) and 

nevirapine (NVP) and second generation, which comprise etravirine (ETV) and rilpivirine 

(RPV). They are allosteric noncompetitive inhibitors of the RT.  

 

All NNRTIs exert their action by binding to the HIV-1 RT in a hydrophobic pocket termed 

the non-nucleoside inhibitor binding pocket with a common butterfly-like binding mode 

(Kohlstaedt et al, 1992; Ding et al, 1995). The non-nucleoside binding pocket, which exists 

only in the presence of the NNRTI and is not opened in the unliganded enzyme, consists of 

hydrophobic residues Y181, Y188, F227, W229 and Y232 and hydrophylic residues, such as 

K101, K103, S105, D192 and E224 in the p66 subunit of the RT and E138 in the P51 subunit 

of the enzyme.  The NNRTI-binding pocket is close but distinct from the active site and the 

dNTP binding site of the enzyme and as a consequence it does not prevent the binding of 

either the dNTP or the RNA template to the RT, but it brings a conformational change that 

impairs its catalytic activity. The main difference between first and second generation 

NNRTIs lies in that the former are rather inflexible and their binding to the RT is severely 

impaired as a consequence of key mutations in the enzyme. By contrast, second generation 

NNRTIs are much more flexible and consequently can rapidly adapt to changes in the drug 

binding pocket (Andries 2004; Rodriguez-Barrios et al, 2005).     

 

High level resistance to NNRTIs generally results from the rapid acquisition of single amino 

acid substitutions located directly in the NNRTI-binding pocket (Tantillo et al, 1994) and as a 
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result hamper the binding of the inhibitor. Mutations that confer NNRTI resistance cluster in 

two regions of the HIV-1 RT enzyme: regions adjacent to codons 180-188 and 100-110 

(Nunberg et al, 1991; Larder, 1992 and Larder, 1995). Mutations associated with high level 

resistance to first generation NNRTIs (NVP, EFV and DLV) are K103N, Y181C, G190A/S, 

Y188L and V106A/M (Wainberg et al, 2003). Other mutations, such as L100I, K101E/P, 

A98G, V108I, V179D/E, P225H, M230L and K238T/N, cause low level resistance to first 

generation NNRTIs and they usually occur in combination with the major NNRTI-resistance-

associated mutations described above and act synergistically to reduce NVP, EFV and DLV 

susceptibility (Pelemans et al, 1998; Bacheler et al, 2001; Rhee et al, 2006).  In general, 

resistance mutations are shared between the three first generation NNRTIs, but exceptions are 

G190A and Y181C, which are frequently selected by NVP-containing regimens but rarely 

emerge under EFV-selective pressure. By contrast, K103N is by far the most frequently 

selected mutation by EFV. While K103N and G190A cause high level resistance to all the 

three agents, Y181C causes high level resistance to NVP and DLV, but only intermediate 

resistance to EFV (Casado et al, 2000). However, results of treatment with EFV in patients 

who developed the mutation after NVP-failure has been disappointing (Lecossier et al, 2005) 

and consequently patients who develop resistance after treatment with any of the three first 

generations NNRTIs cannot be successfully treated with another of these agents (Delaugerre 

et al, 2001).  

 

Second generation NNRTIs (ETV and RPV) have a higher genetic barrier to resistance than 

first generation NNRTIs as accumulation of several mutations is required before significant 

reduction in susceptibility to the drugs is observed (Seminari et al, 2008). This finding can be 

explained by the fact that these drugs can bind the RT enzyme in different conformations and 
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as a result can rapidly adapt to changes in the NNRTI-binding pocket created as a 

consequence of specific resistance mutations. In general, it is considered that complete 

resistance to ETV requires accumulation of several of the following mutations V90I, A98G, 

L100I, K101E/P, V106I, E138A/G/K/Q, V179D/F/T, Y181C/I/V and G190A/SA and 

M230L. However, studies have shown that mutations at codons 100, 101 and 181 have a 

greater impact on clinical response to ETV compared to other mutations (Haddad et al, 2010). 

A total of 15 mutations have been associated with reduced susceptibility to RPV including 

K101E/P, E138A/G/K/Q/R, V179L, Y181C/I/V, H221Y, F227C and M230L, of them E138K 

is the most frequently found in patients failing RPV therapy (Rimsky et al, 2012; Haddad et 

al, 2011).  

1.7.4 Protease inhibitors 

There are currently nine protease inhibitors (PIs) licensed for the treatment of HIV-1 

infection: saquinavir (SQV), ritonavir (RTV), indinavir (IDV), nelfinavir (NFV), amprenavir 

(APV), lopinavir (LPV), atazanavir (ATV), tipranavir (TPV) and darunavir (DRV).  All of 

them are competitive inhibitors that bind to the active site of the viral PR with high affinity 

and by doing so they prevent the binding of its natural substrate Gag. As a consequence, PIs 

inhibit the catalytic processing of the Gag and Gag-Pro-Pol polyprotein into their mature 

components rendering the released virus immature and non-infectious. (Flexner, 1998; Patick 

and Potts, 1998). 

 

PIs are designed as analogues of the cleavage sites found in the natural substrate Gag of the 

HIV-1 PR in which the scissile bond has been replaced by a non-cleavable, transition-state 

motif. All of them, except for TPV, are peptidomimetic inhibitors and therefore they contain 
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a hydroxyethilene core, which shares structural similarity with the tetrahedral intermediate 

formed during the hydrolytic cleavage of a peptide bond of the natural substrate (Randolph 

and Degoy, 2004).  By contrast TPV, contains a dihydropyrone ring as a central scaffold, 

which directly interacts with the flap region of the HIV-1 PR and is structurally unrelated to 

the tetrahedral intermediate (Chrusciel and Strobach 2004). This unique binding motif and 

structure of TPV has been reported to increase flexibility allowing the drug to adjust to amino 

acid changes in the active site of the viral PR (Larder et al, 2000; Turner et al, 1998).  

 

Due to the vital role that HIV-1 PR plays in the viral life cycle and its small size, it was 

initially believed that resistance to PIs would be infrequent during treatment. However, the 

protease gene has shown great plasticity with mutations detected in 49 of the 99 amino acids 

of the HIV-1 protease and more than 20 substitutions associated with resistance to PIs (Shafer 

et al, 2000). Emergence of PI resistance requires the stepwise accumulation of primary 

mutations (major mutations) and secondary mutations (minor, compensatory or accessory 

mutations) (Molla et al, 1996), where each inhibitor usually selects for signature primary 

mutations and a characteristic pattern of secondary mutations. Thus, multiple substitutions 

are required for the development of complete PI resistance while maintaining effective virus 

replication and maturation. In general, primary resistance mutations are located near the 

active site of the PR at positions involved in inhibitor and substrate binding, some of these 

are: D30N, G48V, I50V, V82A, and I84V. Often, these mutations have a deleterious effect 

on the replication capacity of the resistant virus (Nijhuis et al, 2001; Quinones-Mateu, 2001) 

and such negative effect can be alleviated by the emergence of secondary mutations in the 

PR. These amino acid changes are generally outside the substrate-binding cavity of the 

enzyme and promote adaptation to the primary changes observed in the protease and 
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compensate at least partially the impairment of HIV-1 replication (Eastman et al, 1998; Ho et 

al, 1994; Mammano et al, 2000 and Nijhuis et al, 1999). Importantly, early studies 

demonstrated that in addition to mutations in the PR, changes located within the substrate 

(Gag) Cleavage sites are also selected in the context of PI resistance (Clavel et al, 2000; 

Doyon et al, 1996; Miller 2001; Nijhuis et al, 2001; Zhang et al, 1997), these mutations have 

been classified as compensatory mutations similarly to secondary mutations selected in the 

PR. Primary mutations directly affect the binding of the inhibitor to the protease and by doing 

this, they confer resistance to the drug. By contrast, the mechanisms in place for secondary 

mutations located both in the PR and in its natural substrate Gag is more difficult to elucidate. 

It has been propose that certain secondary PR mutations may alter the active site of the 

enzyme to adapt to the changes introduced by the active site primary mutations. Similarly, it 

has been proposed that mutations at cleavage sites provide better substrates for the mutated 

protease, which partially compensate for the loss of viral fitness displayed by the PI-resistant 

virus (Clavel et al, 2000; Doyon et al, 1996; Mammano et al, 2000; Nijhuis et al, 2001 and 

Zennou et al, 1998). However, other studies have shown that in certain instances Gag 

cleavage site mutations compensate for the replicative capacity of PI-resistant viruses without 

increasing the rate of cleavage compared to the wild type virus, suggesting that secondary 

mutations in Gag may exert their action through a variety of mechanism (Mammano et al, 

2000). Regardless of the mechanism of action, a common characteristic of secondary 

mutations in the PR and Gag is that they do not confer significant levels of PI resistance on 

their own by they are required along with primary PI resistance in order to achieve high level 

resistance to the inhibitors.  
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The advent of the first PIs (SQV, RTV, IDV, and NFV) in the early 1990s was a landmark 

breakthrough in the treatment of HIV-1 infection. They made possible the dual class triple 

combination therapy that became known as highly active antiretroviral therapy (HAART). 

HAART not only reduced HIV-1 RNA plasma levels below the level of quantification in 

most patients (Gulick et al, 1997; Hammer et al, 1997) but also significantly slowed the 

progression of HIV disease compared with single or dual therapy (Hammer et al, 1997) and 

as a result it was established as standard of care in all HIV-1 infected patients. However, the 

clinical utility of early PIs was restricted by their low bioavailability and large pill burden 

which ultimately reduced adherence and limited long-term viral inhibition. Furthermore, 

failure to first generation PI-containing therapy often resulted in the development of high 

levels of PI resistance due to the accumulation of mutations in amino acids generally located 

in the PR active site, D30, G48, I50, V82, I84V, but also occasionally at non-active site 

residues such as M46 and L90M. Despite each PI selecting for a characteristic pattern of 

mutations, cross-resistance was common among first generation PIs as all of them occupy a 

similar space in the HIV-1 PR.  

 

The next major development in the treatment of HIV-1 came when it was observed that RTV 

was a strong inhibitor of the CYP34A isoenzyme, which is the main responsible for the 

catabolism of PIs and consequently co-administration of most PIs with low dose RTV boost 

the exposure of the PI allowing flexible dosing including once daily dose. In addition, when 

boosted with RTV, PIs became more effective against PI-resistant viruses by increasing the 

drug plasma levels and consequently requiring higher levels of resistance to completely 

abrogate drug activity (Condra et al, 1996).  Subsequently, novel PIs were developed which 

were specifically designed to be active against PI-resistant viruses. While first generation PIs 
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fixed exactly within the active site of the PR and were designed with large hydrophobic 

groups to maximize hydrophobic interactions with the HIV-1 PR, novel PIs were developed 

to fix in the substrate-binding region. In addition, smaller hydrophobic groups were 

introduced in novel PIs so that the affinity for the inhibitor was not so dramatically affected 

by mutations in the active site as well as introducing additional polar interaction with main 

chain atoms which cannot be easily altered by mutations and which provided the inhibitor 

with enough flexibility as to adapt to changes in the PR active site. The first PI conceived 

with this approach was APV, this drug was developed to fit predominantly within the 

substrate envelope (King et al, 2004) and its mutational profile was distinct to the first 

generation PIs (SQV, RTV and IDV) providing evidence that inhibitors with greater 

resemblance to the natural substrate will be less affected by mutations selected by first 

generation PIs. Following the same structural approach, more recently DRV was developed 

which provide additional interactions with the active site protein backbone which, by contrast 

with the rest of the PR, is extraordinarily conserved. By introducing additional interactions, 

DRV provides an impressive resistance profile necessitating up to six active site mutations in 

the PR before the activity of the drug is completely abolished.  

It was soon thought that alternative mechanisms may assist the virus to evade the drug 

selective pressure. Indeed, it was demonstrated that viral strains resistant to DRV were 

selected in vitro. These resistant viruses exhibited changes in the Gag CS P7/P1 in the 

absence of any other changes in the HIV-1 genome, and when introduced in a reference 

strain, it was demonstrated that such variants conferred 10 fold resistance to the PI (Nijhuis et 

al, 2007). This was the first evidence that Gag CS mutations could cause resistance by 

themselves independently of their role as compensatory mutations. Since them, a few studies 
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have pointed to the role of Gag mutations, not only at CS but also beyond, in resistance to the 

drugs (Parry et al, 2009; Gupta et al, 2010). 

 

1.7.5 Integrase inhibitors 

Raltegravir (RAL) is the only INI currently licensed for the treatment of HIV-1 infection. It is 

an analogue of the diketo acid class compounds and as a result it shares their β-hydroxy-

ketone structural motif (Hazuda et al, 2000; Pommier et al, 2005). As previously specified, 

the process of integration is catalysed by the viral integrase and is a multistep mechanism that 

comprises the formation of a pre-integration complex; its nuclear importation; the 3’-

processing of the DNA molecule; and strand transfer reaction that results in the attachment of 

viral and cellular DNA.  To exert its action, the HIV-1 integrase requires the presence of 

divalent cations, such as Mg
2+

 or Mn
2+, 

in its active site. Raltegravir is an inhibitor of the 

strand transfer event in the integrase process (Hazuda et al, 2000) which, as other diketo-acid 

compounds, possesses metal-chelating functions. Its mechanism of action is not completely 

understood. However, it is reported that it binds tightly to the active site of the viral integrase 

and its chelating properties result in the sequestration of the metal ions present in the active 

site that are crucial for HIV-1 IN function.    

 

Resistance to Raltegravir is associated with mutations pointed directly to the catalytic site of the 

HIV-1 integrase enzyme (Pommier et al, 2005) and emerge in at least three different genetic 

pathways defined by a major mutation at Q148H/K/R, N155H and less often Y143R/H/C and one 

or more minor mutations which further increase the level of resistance to the inhibitor and/or 

compensate for the decreased fitness often associated with the presence of major mutations 
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(Delelis et al, 2010; Marinello et al, 2008; Kobayashi et al, 2008). The Q148 amino acid is a 

critical part of the active site of the integrase.  Not surprisingly, mutations at this codon reduce 

the susceptibility to raltegravir, but also markedly impair enzyme function. The replication defect 

associated with the presence of the signature raltegravir mutation Q148 H/K/R is frequently 

rescued by the compensatory mutations G140S and to a lesser extend E138E/K (Fransen et al, 

2009; Delelis et al, 2010). The second most common pathway of raltegravir resistance includes 

the major mutation N155H, which lies at the base of the catalytic site of the HIV1- integrase 

interacting with active site residues and directly interfering in enzyme metal binding (McColl et 

al, 2010). The N155H mutation reduces raltegravir susceptibility without affecting the replicative 

capacity to the extent of mutations at codon 148. The E92Q minor mutation is frequently found in 

combination with N115H and in this context further contribute to resistance to the INI, but it does 

not rescue the replicative capacity of the mutant virus (Fransen et al, 2009). Finally, the third 

pathway of resistance, which is much less common, comprises the mutation Y143R/C. 

Raltegravir interacts with Y143 residue during binding to the integrase inhibitor and consequently 

mutations at this site removes this favourable interaction causing resistance to the drug (Hare et 

al, 2010 and Delelelis et al, 2010). The T97A minor mutation is commonly seen with Y143R/C 

and significantly increases raltegravir resistance (Reuman et al, 2010;  Fransen et al, 2009).     
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Table 1.1 Antiretrovirals approved for HIV-1 treatment. 

Abbreviations:   NRTIs = nucleoside/nucleotide reverse transcriptase inhibitors; NNRTIs = non-nucleoside/nucleotide 

reverse transcriptase inhibitors; PIs = protease inhibitors; FIs = fusion inhibitor; INIs = integrase inhibitor; RT = 

reverse transcriptase; PR = protease; IN = integrase.  

Name (Abbreviation) Key mutations implicated in resistance 

NRTIs 

Zidovudine (ZDV) RT: M41L, D67N, K70R, L210W, T215YF, K219EQ 

Stavudine (d4T) RT: M41L, K65R D67N, K70R, L210W, T215YF, K219EQ 

Lamivudine (3TC) RT: K65R, M184VI 

Abacavir (ABC) RT: K65R, L74V, Y115F, M184V 

Didadosine (ddI) RT: K65R, L74V 

Emtricitabine (FTC) RT: K65R, M184VI 

Tenofovir (TDF) RT: K65R, K70E 

NNRTIs 

Nevirapine (NVP) RT: L100I, K101P, K103NS, V106AM, V108I, Y181CI, Y188CLH, G190A 

Delaviridine (DLV) RT: L100I, K101P, K103NS, V106AM, V108I, Y181CI, Y188CLH, G190A 

Efavirenz (EFV) RT: L100I, K101P, K103NS, V106M, V108I, Y181CI, Y188L, G190AS, P225H 

Etravirine (ETV) RT: V90I, A98G, L100I, K101EHP, V106I, E138AGKQ, V179DFT, Y181CIV, G190AS, M230L 

Rilpivirine (RPV) RT: K101EP, E138AGKQR, V179L, Y181CIV, H221Y, F227C, M230IL 

PIs 

Saquinavir (SQV) PR: L10IRV, L24I, G48V, I54VL, I62V, A71VT, G73S, V77I, V82AFTS, I84V, L90M 

Ritonavir (RTV) PR: L10FIRV, K20MR, V32I, L33F, M36I, M46IL, I54LV, A71VT, V77I, V82AFT, I84V, L90M 

Indinavir (IDV) PR: L10IRV, K20MR, L24I, V32I, M36I, M46IL, I54V, A71VT, G73SA, L76V, V77I, V83AFT, I84V, 
L90M 

Nelfinavir (NFV) PR: L10FI, D30N, M36I, M46IL, A71VT, V77I, V82AFTS, I84V, N88DS, L90M 

FosAmprenavir  (fAPV) PR: L10FIRV, V32I, M46IL, I47V, I50V, I54LVM, G73S, L76V, V82AFST, I84V, L90M 

Lopinavir (LPV) PR: L10FIRV, K20MR, L24I, V32I, L33F, M46IL, I47AV, I50V, F53L, I54ALMTSV, L63P, A71TV, 

G73S, L76V, V82AFTS, I84V, L90M 

Atazanavir (ATV) PR: L10CFIV, G16E, K20IMRTV, L24I, V332I, L33FIV, E34Q, M35ILV, M46IL, G48V, I50L, F53LY, 

I54ALMVT, D60E, I62V, A71ILTV, G73ACST, V82AFIT, I84V, I85V, N88S, L90M, I93LM 

Tipranavir (TPV) PR: L10V, L33F, M36ILV, K43T, M46L, I47V, I54AMV, Q58E, H69KR, T74P, V82LT, N83D, I84V, 

L89IMV 

Darunavir (DRV) PR: V11I, V32I, L33F, I47V, I50V, I54LM, T74P, L76V, I84V, L89V 

FIs 

Emfuvirtide (T20) Gp41: G36DS, I37V, V38AEM, Q39R, Q40H, N42T, N43D 

INIs 

Raltegravir (RAL) IN: E92Q, Y143CHR, Q148HKR, N155H 

Co-receptor antagonists 

Maraviroc (MVC) There are not specific mutations described. 
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1.8 Resistance testing 

The development of drug resistance is an important factor leading to treatment failure 

(Alcorn and Faruki, 2000). Consequently, major guidelines recommend the use of resistance 

testing at the time of treatment failure in order to decide the optimal regimen (US Department 

of Health and Human Services guidelines, 2010; Hirsh et al, 2008; The British HIV 

Association guidelines, 2012). Several randomized studies have demonstrated that this 

practice leads to superior virological response (Durant et al, 1999; Baxter et al, 2000; Cohen 

et al, 2002).  There are two main types of resistance testing: genotypic and phenotypic. 

Although both approaches are appropriate to evaluate drug resistance in the context of 

treatment failure, genotypic testing is preferred in clinical practice due to its faster turnaround 

time and simplicity.  

  

To perform genotypic resistance testing, the viral RNA is isolated from plasma, the genomic 

region of interest (HIV-1 RT, PR, IN, Env) is amplified by RT-PCR and the amplicon is 

sequenced by the Sanger method. This sequencing method uses dideoxynucleotides 

(ddNTPs), which lack the 3’ hydroxyl group required for the formation of a phosphodiester 

bond between two nucleotides and consequently they act as chain terminators. Briefly, the 

amplicon is denatured and a primer annealed to one of the template strands. The four 

deoxynucleotides triphosphate (dNTPs) are added together with the four ddNTPs, each 

marked with a different colour dye, at a 100:1 ratio. As the DNA polymerase polymerizes, 

dNTPs are added to the growing chain. However, on occasion a ddNTP rather than a dNTP is 

incorporated resulting in a chain terminating event. Chain of different lengths are produced 

and detected via fluorescence.  
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Direct sequencing from amplicons is known as viral population sequencing, and generates a 

consensus nucleotide sequence from the patient’s most prevalent viral quasispecies, which is 

further translated into its corresponding amino acid sequence. Point mutations are identified 

by alignment with a reference wild-type strain sequence, typically HXB2, and those variants 

with known effects on drug resistance are scored in the interpretation. Several online 

genotypic interpretation systems are available, which translate a specific mutation pattern into 

the predicted level of susceptibility. The three most commonly employed in clinical practice 

are ANRS, Rega and Stanford HIV db (Frentz et al, 2010).     

 

To perform phenotypic testing, in its initial format the isolation of patient’s virus and PBMCs 

were required. These were subsequently cultivated for 2-8 weeks in the presence of 

increasing concentrations of drugs and the readout was generally the production of P24 in the 

supernatant. This method has the advantage of incorporating both cells and virus from the 

patient, thus mimicking “in vivo” conditions closely. However, this approach had major 

disadvantages, particularly the long time required to complete the assay. In addition, due to 

biological variations, reproducibility was also a problem (Schmidt et al, 2002; Japour et al, 

1993).  As a result, simpler phenotypic resistance testing methods based on recombinant virus 

techniques were developed. The initial steps are the same as for genotypic testing and 

involved the isolation of the patient’s RNA and the amplification of the gene of interest, 

typically RT, PR and/or IN. In phenotypic tests, the amplified gene is then transferred into a 

laboratory strain of HIV that lacks the gene of interest, producing a recombinant virus. This 

mosaic virus contains patient-derived sequences that can be tested for drug susceptibility in 

two possible formats; these are:  
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 Single cycle phenotypic assay: this method is based on a single round of infection. 

The assay uses restriction, digestion and ligation to clone the patient’s HIV genomic 

region of interest into an HIV expression vector that lacks this region, to form 

Resistance Test Vectors (RTVs). The RTVs are replication defective as they are 

deprived of the envelope gene. Cells are co-transfected with three plasmids:  the 

resistance test vector, which contains the patient’s derived sequences, a reporter 

vector, which contains the HIV packaging sequence and also expresses luciferase that 

is employed as a marker of virus production, and a vector expressing the vesicular 

stomatitis G protein, which provides the envelope to the pseudovirus,.  Following 

exposure to increasing drug concentrations, the amount of pseudotyped virus is 

measured by quantifying the amount of luciferase production. Single cycle assays also 

provide a measure of the replicative capacity of the virus, which is defined by its 

ability to replicate in the absence of drugs and reported as a proportion (%) of the 

replication observed with wild-type virus.  

 

 Multiple cycle phenotypic assay: In this format the tested virus undergoes multiple 

rounds of infection. The assay uses homologous recombination in cell culture to insert 

the HIV genomic region of interest into a molecular HIV-1 clone, usually HXB2, 

which lacks the same region. This yields infectious recombinant viral particles 

capable of multiple rounds of replication. The virus is grown in the presence of 

increasing drug concentrations and replication is measured by expression of a reporter 

gene such as 3-(4, 5-dimethylthiazol)-2, 5-diphenyltetrazolium bromide (MTT).  
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The main advantage of multiple cycle assays is that the virus undergoes multiple rounds of 

infection and as a result mimics more closely “in vivo” conditions. However, these types of 

assays are time consuming, processing requires high level of containment, and retain the 

potential that the virus may mutate during passages. By contrast, single cycle phenotypic 

testing can typically be performed within a week and the results obtained are generally highly 

reproducible. In addition, the format of the assay eliminates the possibility of selection of 

viral populations that may not accurately represent the original virus and therefore may be the 

method of choice when the effect of specific mutations needs to be characterized. Regardless 

of the format of phenotypic assay employed, both assays report drug susceptibility results as 

a fold change for each drug, which is determined by the ratio of the IC50 (the concentration of 

a drug that is required for 50% viral inhibition) from the patient’s chimeric virus divided by 

the IC50 of a wild-type reference virus.  The interpretation of phenotypic tests is based on 

defined cut-offs. The technical cut off is generated by measuring the variation seen with 

repeat testing of the same samples and provides a measurement of the reproducibility of the 

system. The biological cut off (BCO) represents the phenotypic variability observed within 

treatment naïve patients and provides a measurement of the normal variation in fold changes 

observed in wild type viruses. The clinical cut off (CCO) represents the value that 

discriminates between treatment responders and non-responders among treatment 

experienced patients. Two clinical cut-offs are defined for each drug:  the lower cutoff 

(CCO1) would define when the susceptibility begins to decline, but the drug still has partial 

activity, and the upper cutoff (CCO2) represents the fold change at which all drug activity is 

lost.  From a clinical perspective, clinical cut-offs provide the most useful information, but if 

these clinical cutoffs have not been defined for a given drug, then biological cutoffs are 

applied.  
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Both standard phenotypic and genotypic resistance testing have limitations. Firstly, they are 

unable to detect minority variants, which are present at frequencies below 20%. Alternative 

methods capable of detecting low frequency variants include allele specific PCR (Charpentier 

et al, 2004), single genome analysis (Palmer et al, 2005) and ultra-deep sequencing assays 

(Wang et al, 2007). The allele specific PCR employs genetic probes to detect specific 

resistance mutations. It can detect mutations at frequencies between 0.5-1 % depending on 

the specific mutation. In single genome analysis, the complementary viral DNA is 

synthesized from the patient’s plasma and diluted to one copy; then each viral copy is 

amplified and sequenced. Finally, Ultra-deep sequencing uses large scale parallel 

pyrosequencing and is able to detect viral quasispecies present at very low levels. The role of 

minority variants in failure of antiretroviral remains to be elucidated. In drug naïve patients, 

studies have shown an association between the presence of minority drug resistant variants 

and subsequent virological failure, particularly when NNRTI-based regimens are 

administered (Johnson et al, 2008a; Metzner et al, 2009 and Geretti et al, 2009). However, 

definitive cut-offs remain to be established. There is likely a threshold above which minority 

variants will lead to therapy failure and this threshold will depend on the barrier to resistance 

of the affected drug, the antiviral activity of other drugs in the regimen as well as patient’s 

characteristics, such as baseline viral load and adherence patterns. Another important 

restriction of current phenotypic and genotypic resistance testing methods is that they do not 

include the entire viral sequence. As a result, there may be important mutations outside the 

standard area of interest that will be missed by these techniques. For instance, to evaluate 

resistance to RTIs, the connection and RNase H domains are not routinely sequenced or 

included in the recombinant viruses used for phenotypic assays. Mutations in these areas have 

been reported to be selected by NRTI therapy and increase the level of resistance to these 

drugs (Nikolenko et al, 2007). Similarly, most phenotypic and genotypic tests only include 
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the PR region of HIV-1, those that include regions of Gag,  the main substrate for protease, 

are restricted to the two CS located at the C-terminal site (P7/P1/P6). However, mutations in 

Gag outside this region have been recently demonstrated to contribute to resistance to PIs 

(Parry et al, 2009). Importantly, mutations in the RNase H and connection domains have been 

reported to emerge in the context of multiple TAMs. Therefore, their presence in already 

highly resistant virus questions its clinical utility. However, mutations in Gag have been 

found to confer resistance in the absence of typical PI-resistance-associated mutations 

(Nijhuis et al, 2007; Gupta et al, 2010).  

 

1.9 Viral fitness and replicative capacity  

The term “viral fitness” refers to the ability of a virus to replicate and produce a progeny in a 

given environment (Domingo et al, 1997a). There are two stages to describe the evolution of 

viral fitness whilst on therapy. The first stage is characterised by the selection of primary, 

also referred to as major, resistance mutations resulting in viruses that not only have reduced 

drug susceptibility but often an impaired replicative capacity relative to the wild type virus. 

During the second stage, additional mutations arise that alone do not confer drug resistance 

but in combination with the primary mutations enhance the replicative capacity of the virus. 

These mutations are known as accessory mutations or also termed minor or secondary 

mutations (Nijhuis et al, 1999). It can be said that the natural evolution of HIV under drug 

pressure is towards increasing levels of resistance, cross-resistance and fitness. There are 

different modes for the assessment of viral fitness and these methods can be broadly 

classified as in vivo and in vitro methods. In vivo methods assess viral fitness by comparing 

the amount of wild type and mutant virus detected in “in vivo” populations (Devereux et al, 

2001).  These methods closely mimic the natural setting of the natural host. However, the 
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entire individual offers a variety of cell types and microenvironments to the infecting HIV-1 

with conflicting selective pressure and consequently, in vivo methods are difficult to 

extrapolate to different situations.   

 

In vitro methods employ HIV-1 isolates or more frequently recombinant viruses and can be 

very useful as models for determining the effect of drug resistant variants on replication in a 

fixed environment. There are several methods for the evaluation of viral fitness in vitro. In 

general, they are all grouped into two main categories: monoinfection assays (or viral growth 

kinetics) and growth competition experiments. In monoinfection assays, the replicative 

capacity of different HIV isolates or recombinant viruses is tested individually and measured 

by measuring the amount of specific viral proteins, usually P24, or the activity of viral 

enzyme, such as RT.  Virus replicative capacity can also be measured in monoinfection 

assays by using a reporter gene, such as luciferase, in a single cycle assay (Dykes and 

Demeter, 2007) and comparing luciferase production by a mutant virus and WT reference 

virus.   

 

In growth competition experiments, two phenotypically distinguishable viruses are mixed at 

similar or different proportions and the outgrowth of one of the population is measured 

(Domingo et al, 1997a;  Domingo and Holland et al, 1997b). By doing this, the fitness of both 

viral strains can be directly compared as two viral populations in cell culture compete with 

each other until one outgrows the other one. In general, cells are infected with the mixture of 

viruses and after several passages, the proportion of both viruses is measured and compared 

with their proportions in the initial mixture (Holland et al, 1991 and Domingo et al, 1997a).  
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Overall, growth competition experiments are more accurate and sensitive for the 

determination of small differences in fitness than monoinfection assays.  The single cycle 

assay offers a fast and reproducible method to measure the replicative capacity of mutant 

virus that can be compared and expressed as a percentage of that observed for a WT reference 

strain. As it is a monoinfection assay, it cannot accurately determined small differences in 

replicative capacity. However, it can be of use for the characterization of novel mutations 

since growth competition experiments increase the potential for mutations to occur in the 

different passages and divert form the population of interest.  
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2 Chapter two: materials and methods 

2.1 Materials 

2.1.1 Bacteria 

 TOP10: F
-
 mcrA Δ (mrr-hsdRMS-mcrBC) Φ80lacZΔM15 ΔlacΧ74 recA1 araD139 

Δ (ara-leu) 7697 galU galK rpsL (Str
R
) endA1 nupG. 

 HB101: F-, thi-1, hsdS20 (rB-, mB-), supE44, recA13, ara-14, leuB6, proA2, lacY1, 

galK2, rpsL20 (str
r
), xyl-5, mtl-1.  

 XL1 blue supercompetent cells: recA1 endA1 gyrA96 thi-1 hsdR17 supE44 relA1 lac 

[F´ proAB lacI
q
ZΔM15 Tn10 (Tet

r
)]. 

 

2.1.2 Mammalian cell lines 

Human Embryonic Kidney 293 cells (HEK 293 Cells): HEK 293 cells were generated in the 

70s by transformation of cultures of normal human embryonic kidney cells with sheared 

adenovirus 5 DNA (Graham FL, et al, 1977).  
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2.1.3 Bacterial culture media 

Luria-Bertani (LB) broth: 10 g tryptone, 5 g of yeast extract, 10 g NaCl and deionised water 

to a final volume of 1 litre. Ampicillin was added at a concentration of 50 mg/ml.  

 

 LB agar plates: LB medium was prepared as indicated above and 15g/l of agar was 

added before autoclaving and supplemented with 50 mg/ml of ampicillin after 

autoclaving.  

 LB agar X-Gal plates: ampicillin-containing LB agar plates were prepared as above 

and spread with 40 µl of 40 mg/ml X-gal 10 minutes before use.  

 Super Optimal Broth with catabolite repression (SOC): SOC medium was purchased 

from Invitrogene and contained 20 g tryptone, 5 g yeast extract, 10 mM NaCl, 2.5 

mM KCl, 10 mM MgCl2 and 20 mM glucose.  

 NZY
+
 broth: 10 g of NZ amine (casein hydrolysate), 5 g of yeast extract, 5 g of NaCl, 

12.5 ml of 1M MgCl2, 12.5 ml of 1M MgSO4, 10 ml of 2M glucose and deionised 

water to a final volume of 1 litre. The pH was adjusted to 7.5 using NaOH.  
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2.1.4 Cell culture media 

Cells were grown in Dulbecco’s Modified Eagle Medium (DMEM) (GIBCO, Invitrogene, 

Paisley, UK) supplemented with 100 U/ml of penicillin, 100 mg/ml of streptomycin and 15% 

of Fetal Calf Serum (FCS) (Biosera, UK).  

 

Cell transfection was conducted in Opti-MEM® Reduced Serum Medium with GlutaMAX 

(Opti-MEM) (GIBCO, Invitrogene, Paisley, UK).  

 

2.1.5 Transfection reagent 

FuGENE® 6 Transfection Reagent (Roche Diagnostics, US), which is a proprietary blend of 

lipids and other components, was employed for cell transfection.   

 

2.1.6 Antiretrovirals 

Protease inhibitors (PIs): Amprenavir (APV), Atazanavir (ATV), Darunavir (DRV), Indinavir 

(IDV), Lopinavir (LPV) and Saquinavir (SQV). All antiretrovirals were obtained through the 

AIDS Research and Reference Program, Division of AIDS, NIAID, NIH.  
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2.1.7 Primers 

 Sequences for the primers employed in the study are detailed in tables 2.1 to 2.4. 

 

2.1.8 Vectors 

 P8.9NSX: it is a modified form of Gag-Pro-Pol expression plasmid pCMV-∆R8.2 

(Naldini et al, 1996). The vector encodes HIV-1 Gag-pol and the virulence genes (vif, 

vpu and nef); accessory genes (Rev and Tat) as well as env gene have been deleted. In 

addition, the vector contains numerous restriction sites such as NotI site upstream of 

Gag, ApaI and SpeI sites within Gag and XmaI in the integrase allowing foreign Gag-

PR and RT sequences to be cloned. We further modified the P8.9NSX vector to allow 

the independent cloning of external full-length Gag and PR genes.  Modifications 

were performed by SDM and consisted of introduction of a BglII site at the end of 

Gag and beginning of PR and a BamHI site at the end of the protease. In addition, an 

additional BglII and a BamHI present in the vector downstream of RT were blocked 

by “in vitro” mutagenesis so that the final sequence contains a unique NotI site 

upstream of Gag, a unique BglII at the end of Gag and beginning of PR and a unique 

BamHI at the end of the PR. Upon completion of the “in vitro” mutagenesis, the HIV 

backbone sequence of the P8.9NSX vector was confirmed by sanger sequencing and 

the presence of the restriction sites by digestion with the corresponding restriction 

endonucleases.     
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 pCSFLW: it is a modified form of the pHR-SIN-CSGW vector in which the gene 

encoding green fluorescent protein has been replaced with firefly luciferase (FL) 

(Demaison et al, 2002). Therefore, as pHR-SIN-CSGW, pCSFLW  is a self-

inactivating vector (SIN vector) in which the U3 region of the 5’ LTR of HIV has 

been replaced with the CMV promoter and that has a deletion in the U3 region of the 

3’ LTR which includes segments encoding the enhancer and promoter functions. The 

deletion will be transferred to the 5’LTR after reverse transcription and as a result the 

transcriptional unit from the LTRs in the provirus is eliminated providing a SIN 

vector. The pCSFLW encoded firefly luciferase which is employed as the reporter 

gene in the drug susceptibility and replicative capacity assays and also contains the 

HIV packaging sequence.  

 

 PMDG: it expressed the Vesicular estomatitis virus G envelope protein under 

regulation of the CMV promoter and is used for the pseudotyping of the HIV and 

luciferase expressing vectors.  

 

 PCR2.1®TOPO: it is a commercial vector (Invitrogene, Pasley, UK) which is 

supplied linearized with a 3’-thymidine (T) overhang and Topoisomerase covalently 

bound to the vector.  This vector was employed for TA cloning of PCR products 

which would be used for clonal analysis of samples which did not render interpretable 

population sequencing results or in which clonal analysis was required for the study 

of linkage of mutations.      
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 PGEM8.9: this vector was obtained by cloning the P8.9NSX HIV backbone 

containing restriction sites into the commercial vector PgemEasyTvector (Promega, 

UK). PGEM8.9 was employed as a template for SDMs.   

 

2.2 Methods 

2.2.1 Patients, samples and sequences 

 In the validation of the HIV-1 Gag and protease (Gag-PR) amplification and 

sequencing assay, we employed plasma samples from patients attending the HIV services at 

Royal Free Hospital (RFH). The Virology Department at Royal Free Hospital holds a 

database in which all HIV-1 infected patients that attend the hospital for drug resistance 

testing have their pol gene sequences and genotypic profile entered. The database also 

contains information on treatment status, treatment regimen, plasma HIV-1 RNA load and 

HIV-1 subtype. In 2011, the database contained approximately 10000 pol sequences. Plasma 

samples were selected representing a wide range of HIV-1 subtypes and circulating 

recombinant forms (CRFs).  

 

 In the cross-sectional comparison of PI-naïve and PI-experienced patients, we 

included patients from different cohorts in order to increase the number of sequences 

analyzed. Firstly, we selected both PI-naïve and PI-experienced patients from the RFH (n= 

52 and n=50, respectively). Secondly, we analyzed sequences from PI-experienced patients 

attending the Cologne University Hospital (n = 128). Lastly, we included PI-experienced 
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patients from the MaxCmin 1, MaxCmin2 and COLATE clinical trials (n = 13).  . In 

addition, we also downloaded 148 drug-naïve Gag-PR sequences from the HIV Los Alamos 

Database.  In total, we compared 200 PI-naïve and 191 PI-experienced sequences. All 

sequences obtained from PI-experienced patients contained at least one major PR resistance 

mutations and all sequences were retrieved from subjects with long lasting subtype B HIV-1 

infection (i.e.; 3-10 years).    

 

 

 In  the longitudinal analysis of Gag-PR in patients failing PI-based regimens as well 

as for the assessment of the effect of Gag mutations on PI susceptibility and replicative 

capacity (RC), we  selected patients from the MaxCmin1, MaxCmin2 or COLATE trials, 

who had matched pre-treatment and treatment failure plasma samples. In addition, we also 

studied patients from the HIV services at Royal Free Hospital who had long term on-going 

viraemia while on PI-based regimen and showed evidence of PR evolution on their routine 

HIV resistance genotypic tests.   

 

2.2.2 General molecular biology techniques 

Standard molecular biology techniques as described in Molecular Cloning: a Laboratory 

Manual, (Maniatis et al, 1986) were used throughout.  
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2.2.2.1 RNA extraction 

We employed Qiagen QIAamp Viral RNA Kit (Qiagen, Crawley, UK) and EasyMag 

automated extractor (Nuclisens, Biomerieux, Boxtel, Netherlands) for manual and semi-

automated RNA extraction, respectively. Both methods are based on the nucleic acid 

extraction protocol developed by Boom and colleagues (Boom et al, 1990) which employed 

the lysing and nuclease-inactivating properties of the chaotropic agent guanidinium 

thiocynate together with the nucleic acid-binding properties of silica particles in the presence 

of this agent. One millilitre of plasma was centrifugated for 1 hour at 4°C to concentrate the 

virus. The supernatant was then removed and the pellet re-suspended to a final volume of 280 

µl. The re-suspended pellet was employed for nucleic acid extraction with either Qiagen 

QIAamp Viral RNA Kit (Qiagen, Crawley, UK) if the plasma HIV viral load was below 

1,000 copies/ml or the automated extractor EasyMag (Nuclisens, Biomerieux, Boxtel, 

Netherlands) if the HIV plasma viral load was above that threshold. In both cases nucleic acid 

extraction was performed following the manufacturer’s instructions.   

 

2.2.2.2 Amplification of HIV-1 Gag-protease region 

A RT-nested PCR protocol was designed for reverse transcription followed by specific 

amplification of full-length Gag-PR. Primers employed for amplification are shown in table 

2.1. Three different commercial Kits were evaluated for amplification of the HIV-1 Gag-PR 

region. Two of the methods performed reverse transcription and amplification in a single tube 

followed by a second PCR round on the initial PCR product: Qiagen one step RT-PCR 

Kit/Qiagen HotStar®Taq DNA polymerase Kit (Qiagen, Crawley, UK), namely Qiagen Gag-

PR amplification protocol and Invitrogene SuperScript®III One-Step RT-PCR System/ 
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Platinum® Taq DNA polymerase HF Kit (Invitrogene, UK), namely Invitrogene Gag-PR 

amplification protocol. The third method (AccuScript™ High Fidelity (HF) PCR/ PfuUltra 

HF DNA Polymerase) (Stratagene, Netherlands), namely Stratagene Gag-PR amplification 

protocol, separates both reverse transcription and both rounds of amplification in three 

independent steps.  

 

 Qiagen incorporates non-proofreading enzymes for both reverse transcription and 

amplification. Invitrogene system uses a blend of proof-reading and non-proofreading 

enzymes for reverse transcription and PCR. In addition, the reverse transcriptase included in 

Invitrogene system displayed a reduced RNase H activity facilitating complete synthesis of 

cDNA strands. Lastly, Stratagene kits contained proof-reading enzymes for both reverse 

transcription and amplification.  

 

The three systems were optimized and the selection of one or another method for 

amplification will depend on the specific purpose i.e.: population sequencing vs. clonal 

analysis. 
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2.2.2.2.1 Qiagen Gag-protease amplification protocol 

One step RT-PCR: 

 Prepare master mix containing: 1 x Qiagen RT-PCR buffer, 400 µM dNTPs, 0.4 µM 

of forward and reverse primers and 2.5 Units of Qiagen RT/PCR enzyme mix.  

 Add 40 µl of the above mix to 10 µl of RNA extract. 

 Perform RT-PCR as follows: 

 

 

 

2
nd 

round PCR: 

 Prepare master mix containing: 1 x Qiagen PCR buffer, 400 µM dNTPs, 0.4 µM of 

forward and reverse primers and 2 Units of Qiagen Hotstar Taq DNA polymerase.  

 Add 48 µl of the above mix to 2 µl of 1
st
 round PCR product. 

 Perform PCR as follows: 
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2.2.2.2.2 Invitrogene Gag-protease amplification protocol: 

One step RT-PCR: 

 Prepare master mix containing: 1 x Invitrogene buffer supplemented with 1.2 Mm 

Mg
2+

 and 200 µM dNTPs, 0.4 µM of forward and reverse primers and 2 Units of 

RT/PCR enzyme mix.  

 Add 40 µl of the above mix to 10 µl of RNA extract. 

 Perform RT-PCR as follows: 
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2
nd 

round PCR: 

 Prepare master mix containing: 1 x Invitrogene PCR buffer, 1.5 mM Mg
2+ 

, 200 µM 

dNTPs, 0.4 µM of forward and reverse primers and 2.5 Units of Platinum Taq HF Taq 

DNA polymerase.  

 Add 48 µl of the above mix to 2 µl of 1
st
 round PCR product. 

 Perform PCR as follows: 

 

 

 

2.2.2.2.3 Stratagene Gag-protease amplification protocol: 

Reverse transcription (RT): 

 Prepare master mix containing: 1 x AccuSript RT buffer, 10 Mm Dithiothreitol 

(DTT),   1mM dNTPs, 2µM of outer reverse primers and 20 Units of RNase 

inhibitors.  

 Add 39 µl of the above mix to 10 µl of RNA extract 
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 Incubate the above mix at 65°C for 5 minutes and subsequently cool down reaction to 

room temperature.  

 Add 2 units of AccuScript RT enzyme 

 Perform RT for 1 hour at 42°C.  

 

1
st
 round PCR:  

 Prepare master mix containing: 1 x Pfu Ultra HF buffer  containing 2 mM Mg
2+ 

, 200 

µM dNTPs, 0.4 µM of forward and reverse primers and 2.5 Units of Pfu Ultra HF 

DNA polymerase.  

 Add 45 µl of the above mix to 5 µl of cDNA 

 Perform PCR as follows: 
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2
nd

 round PCR:  

 Prepare master mix containing: 1 x Pfu Ultra HF buffer , 4 mM Mg
2+ 

, 200 µM 

dNTPs, 0.4 µM of forward and reverse primers and 2.5 Units of Pfu Ultra HF DNA 

polymerase.  

 Add 48 µl of the above mix to 2 µl of 1
st
 round PCR product. 

 Perform PCR as follows: 

 

 

 

2.2.2.3 Agarose gel electrophoresis 

Agarose gel electrophoresis was used to confirm the correct size of the PCR product. 1.5 g of 

agarose was dissolved in TAE buffer in a microwave and once cooled; 10mg/ml ethidium 

bromide was added. PCR products were mixed with 5X loading dye and loaded onto the gel 

with a DNA mass ladder. Gels were run for approximately 1-2 hours at 100 volts, depending 

on the size of the band expected. All gels were visualised using a UV transilluminator 

(Biorad, Hertfordshire, UK). 
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2.2.2.4 Purification of PCR products 

PCR products were visualised using ethidium bromide staining and agarose gel 

electrophoresis. Products of the expected size were either excised and purified using the 

QIAQuick Gel Extraction Kit (Qiagen, Crawley, UK) if the PCR product was going to be 

subsequently cloned,  or directly purified from the PCR mixed using the QIAQuick PCR 

Purification kit (Qiagen, Crawley, UK). Both purification methods were performed in 

accordance with the manufacturer’s instructions. Briefly, the PCR product was added to the 

buffer containing the chaotropic agent guanidine thiocyanate and bound to the silica 

membrane in the QIAquick spin column through centrifugation for 1 minute at 13,000rpm. 

Impurities and contaminants were removed through washing with an ethanol containing 

buffer and DNA was eluted into a low salt and pH containing buffer. If gel excision was 

employed, the gel slice was previously dissolved in 3 volumes of buffer QG and subsequently 

the DNA purified as indicated above for a PCR product.  

 

2.2.2.5 A-tailing 

To enable efficient TA cloning of products generated with high fidelity polymerases, such as 

those incorporated into Invitrogene or Stratagene systems, purified PCR products were added 

to a mix of 250 uM dATP, 10Xbuffer containing 2.5 mM MgCl2, and 2.5 units of Amplitaq 

Gold Polymerase. The mix was heated to 95
o
C for 10 minutes followed by 20 minutes at 

72
o
C. 
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2.2.2.6 PCR TA cloning into pCR®2.1-TOPO 

The TOPO TA cloning kit (Invitrogen, Paisley, UK) was used to clone the HIV Gag-PR 

genes. TOPO TA cloning uses Topoisomerase I to ligate the PCR product with the vector. All 

PCR products produced with conventional Taq polymerases contain a deoxyadenosine (A) 

overhang to the 3’end, as a consequence of the non-template-dependent terminal transferase 

displayed by the enzymes. In the case that proof-reading enzymes were employed for PCR, 

the A-overhang was incorporated into the PCR product by the A-tailing procedure described 

above. The linearized vector supplied in the kit (pCR®2.1-TOPO) has a deoxythimidine (T) 

overhang. Ligation will occur between A-overhang in the PCR product and T-overhang in the 

vector.  A number of cloning reaction, varying amount of PCR products and incubation 

times, were set-up in order to identify the optimal condition for the cloning of HIV-1 Gag-PR 

genes into the pCR®2.1-TOPO vector. Final ligation reaction consisted of: 4 µl PCR product, 

1 µl salt solution and 1 µl pCR®2.1-TOPO vector. Ligation reactions were incubated at room 

temperature for 30 minutes and then placed on ice ready for transformation. 50 µl of TOP10 

E. coli cells were transformed with 2 µl of the ligation reaction. Transformation was carried 

out by incubating cells and ligation reaction for 30 minutes on ice followed by heat shock at 

42ºC for 45 seconds and cooled on ice for 2 minutes. 250 µl of SOC medium (Invitrogen, 

Paisley, UK) was added to the cells and incubated in a 37ºC orbital shaker for 1 hour. Cells 

were then plated onto LB agar plates containing 50 mg/ml ampicillin and 40 mg/ml of X-Gal 

and incubated overnight at 37ºC.  
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2.2.2.7 Plasmid DNA purification 

2.2.2.7.1 Minipreps 

Plasmid DNA was extracted from bacterial cells using the QIAPrep Spin Mini-prep Kit 

(Qiagen, Crawley, UK) in accordance with the manufacturer’s instructions. Briefly, a single 

transformed E. coli colony was inoculated into 3 mls of LB broth containing 50 mg/ml 

ampicillin and incubated overnight at 37°C in an orbital shaker. 2mls of the overnight culture 

were employed the following day for plasmid DNA  extraction. Bacterial cells were 

resuspended and lysed under alkaline conditions. The lysate was then neutralised with acetic 

acid and bound to the silica membrane of the QIAprep spin column through centrifugation for 

1 minute at 13,000rpm. Remaining impurities were washed away using an ethanol based 

buffer. The plasmid DNA was then eluted under low salt conditions into RNase-free water. 

 

2.2.2.8 DNA quantification 

The quality and quantity of plasmid DNA extracted was assessed by UV-Vis-

Spectophotometry using 1 µl of mini-prep and a NanoDrop® ND-1000 UV-Vis 

Spectrophotometer (NanoDrop).  

 

PCR products were also quantified by visualization using Ethidium bromide (Invitrogene) 

staining and agarose gel electrophoresis of a 5 µl aliquot of purified DNA with a DNA 

molecular marker.   
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2.2.2.9 EcoRI restriction digest 

The introduced PCR product is flanked by EcoRI restriction sites in the pCR®2.1-TOPO 

vector. Therefore, digestion of the plasmids with EcoRI restriction endonuclease will release 

the PCR product and allow us to identify clones harbouring the expected insert. To this 

purpose, 5 µl of mini-prep were digested with 1µl EcoRI (Invitrogen, Paisley, UK), 2µl 

buffer containing 1 mM MgCl2, and 12µl RNase free water. Digests were incubated for 1 

hour at 37ºC and visualised using ethidium bromide staining and agarose gel electrophoresis. 

Positive clones were identified as those harbouring the correctly sized inserts. 

 

2.2.2.10 DNA sequencing 

All DNA was sequenced using Sanger methodology. Primers employed for Gag-PR 

sequencing are shown in table 2.2.  Purified PCR products or Plasmids identified as 

containing the PCR insert were diluted to a concentration of around 20 ng/µl and sequenced 

using the BigDye Sequencing mix v3.1. Sequencing reaction contained 8 µl of PCR product 

or plasmid, 0.5 µM of the selected primer and nuclease-free water to a final volume of 20 µl.  

A total of 8 to 10 primers were required for full-length Gag-PR sequencing. Primers were 

employed in different combinations depending on the specific sample. Sequencing PCR 

conditions were as follows, 25 cycles of 96°C for 10 seconds, 50°C for 5 seconds and 60°C 

for 4 minutes and a hold at 4°C. Sequencing reactions were purified by precipitating the DNA 

with 52 µl of a mix containing 50 µl of 100% ethanol (EtOH) and 2 µl of 3M sodium acetate 

followed by a washing step with 150 µl of 70% EtOH. Purified sequencing reactions were 

then run on a 3730-Avant Genetic Analyzer (Applied Biosystems, UK) and the obtained 
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sequence analysed employing Sequence analysis version 5.0, Seqscape version 6.0 and Mega 

Molecular Evolutionary Genetic Analysis software version 4.0 programmes.  

 

2.2.2.11 Site-directed mutagenesis 

Site directed mutagenesis was carried out using Quickchange Multi/Site Directed 

Mutagenesis Kit (Stratagene, Cheshire, UK) to insert desired mutations. All primer 

combinations were designed specifically to incorporate the desired mutation and are shown in 

table 2.3. 50 ng plasmid and 125 ng of the primers containing the required mutation were 

used in the following PCR, 16 cycles of 95°C for 30 seconds, 90°C for 30 seconds, 55°C for 

1 minute, 72°C for 2 minutes and a hold at 4°C. In order to degrade the parental DNA 

plasmid, the PCR product was incubated at 37ºC for at least one hour with the restriction 

enzyme Dpn1. 50 µl of XL1-blue supercompetent cells were then transformed with 2 µl of 

Dpn-digested DNA. Transformation was carried out by incubating cells and ligation reaction 

for 30 minutes on ice followed by heat shock at 42ºC for 30 seconds and cooled the reaction 

on ice for 2 minutes. 500 µl of NZY
+
 broth were added to the cells and incubated in a 37ºC 

orbital shaker for 1 hour. Cells were then plated onto LB agar plates containing 50 mg/ml 

ampicillin and incubated overnight at 37ºC. The following days, a number of colonies were 

selected for screening for the presence of the correct mutation. Plasmidic DNA was extracted 

with QIAPrep Spin Miniprep Kit (Qiagen, Crawley, UK) as described in section 2.2.2.7.1 and 

the presence of the correct mutations was confirmed by sequencing the full Gag-PR region 

using Sanger sequencing as previously described in section 2.2.2.10. 
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2.2.3 General tissue culture techniques 

All cells and pseudo-virus cultures were grown in humidified 37°C incubators with 5% CO2 

in varying volumes and passaged as required.  

 

2.2.3.1 Cell thawing 

HEK-293 cells were removed from liquid nitrogen and thawed rapidly at 37°C. Cells were 

added to 10 ml of pre-heated DMEM media (GIBCO, Invitrogene, Pasley, UK) supplemented 

with 100 U/ml penicillin, 100 µg/ml streptomycin (GIBCO, Invitrogene, Pasley, UK) and 

10% FCS (Biosera, UK). The cells were subsequently pelleted at 325g for 5 minutes, washed 

once in 10 ml of DMEM media and re-suspended in 15 ml of DMEM media in 10 cm dishes. 

The following day the media was replaced with fresh media.  

 

2.2.3.2 Cell passaging 

HEK-293 cells were maintained in DMEM media (GIBCO, Invitrogene, Pasley, UK) 

supplemented with 10% FCS (Biosera, UK), 100 U/ml of penicillin and 100 µg/ml 

streptomycin (GIBO, Invitrogene, Pasley, UK). Cells were washed with phosphate buffered 

saline (PBS) [137 mM NaCl, 2.7 mM KCl, 4.3 mM Na2H(PO)4, 1.4 mM KH2(PO)4], 

incubated with 2 ml of trypsin-EDTA (Gibco, Invitrogene, Pasley, UK) until the cells were 

detached from the dish. Cells were then pelleted at 325g for 5 minutes, the tripsine removed 

and the cells re-suspended in fresh DMEM media. Cells were split 1:4 to 1:8, depending on 

the cell density and rate of growth, two or three times a week and grown in 5% CO2 at 37°C. 
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2.2.3.3 Cell freezing 

HEK-293 cells were centrifugated at 325g for 5 minutes and re-suspended at 1x 10
7
cells/ml 

in 40% DMEM media, 50% FCS and 10% dimethyl sulphoxide (DMSO, Sigma, UK). Cells 

were then aliquoted into cryovials (Nunc, USA) and gradually cooled to -80°C in an 

isopropanol-containing cryo-container (Nalgene, USA) before being transferred to liquid 

nitrogene.   

 

2.2.4 Single cycle assay related techniques 

2.2.4.1 Generation of resistance test vectors 

RTVs were generated by cloning patient related Gag and/or PR sequences into the P8.9NSX 

HIV expression vector. The P8.9NSX was provided by Professor Pillay’s group and was 

further modified to facilitate the cloning of patients’ Gag, PR or Gag-PR sequences. 

Modification consisted of “in vitro” side-directed mutagenesis leading to introduction of two 

restriction sites and the blocking of other two restriction sites in order to generate unique sites 

at the beginning and end of Gag and protease genes allowing the cloning of these two genes 

either simultaneously or independently. After mutagenesis, the sequence of the P8.9NSX 

HIV backbone was confirmed by Sanger sequencing and the presence of the restriction sites 

verified by digestion with the corresponding restriction endonucleases. Primers employed for 

vector modification by SDM are shown in table 2.4.  
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The generation of RTVs comprised the following steps: 

1. Introduction of appropriate restriction sites in patient’s samples: the introduction of 

restriction sites in patient’s samples was accomplished by amplification employing 

Invitrogene protocol and modified nested PCR primers (sequences are shown in table 

2.5).  Modified primers were designed with restriction sites in their 5’ regions. 

Different restriction sites were including in the forward and reverse primers 

generating a PCR product whose termini now carry restriction sites that can be used 

for directional cloning.  

 

2. Purification of PCR product containing restriction sites: Once the restriction site-

containing PCR product was generated, this was purified to eliminate the excess of 

primers, dNTPs and DNA polymerase from the amplified product before digestion 

with restriction endonucleases. PCR products were purified with QIAQuick PCR 

purification Kit (Qiagen, Crawley, UK) as indicated in section 2.2.2.4.  

 

 

3. Digestion with restriction endonucleases: the purified PCR fragment and the 

PGEM8.9 vector were subsequently digested with appropriate restriction enzymes and 

the digested products were separated by agarose gel electrophoresis and visualized 

using ethidium bromide staining.  The right size digested PCR product and vector 

were then gel extracted using QIAQuick Gel Extraction Kit as indicated in section 

2.2.2.4.  
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Three different digestion protocols were optimized depending on whether Gag, PR or 

Gag-PR was going to be cloned into the P8.9NSX vector: 

 

 Gag Cloning: vector and patient sample were digested with NotI and BglII. 

Digestion reaction contained:  1 µg of DNA, 2 µl of 1:10 Bovine Serum Albumin (BSA), 

5 units of NotI and BglII to a final volume of 20 µl of NE Buffer 3. Digestion proceeded 

at 37°C for 2 hours after which 2 more units of NotI were added and the reaction 

incubated for two further hours.      

 PR Cloning: vector and patient sample were digested with BglII and BamHI. 

Digestion reaction contained: 1 µg of DNA, 2 µl of 1:10 BSA, 5 units of BglII and 

BamHI to a final volume of 20 µl of NEBuffer 3. Digestion proceeded for 2 hours at 

37°C.  

 Gag-PR cloning:  vector and patient sample were digested with NotI and 

BamHI. Digestion reaction contained:  1 µg of DNA, 2 µl of 1:10 BSA, 5 units of NotI 

and BamHI to a final volume of 20 µl of NE Buffer 3. Digestion proceeded at 37°C for 2 

hours after which 2 more units of NotI were added and the reaction incubated for two 

additional hours.      

 

 

4. Cloning: the digested PCR product and PGEM8.9 vector were ligated together using 

Rapid Ligation Kit (Roche Diagnostics, USA) according to the manufacturer’s 

instructions. Previous to ligation the digested PGEMP8.9 vector was treated with 

shrimp alkaline phosphatase (Roche Diagnostics, USA) to prevent self-ligation. A 
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typical ligation reaction contained vector: insert molar ratio 1:3 in a final volume of 

21 µl and total DNA content of 200 ng.  

 

5. Transformation of E.coli HB101 cells: Ligated products were purified employing 

QIAQUICK PCR purification Kit (Qiagen, Crawley, UK) to eliminate excess 

restriction endonucleases and transformed into E.coli HB101 cells. Transformation 

was carried out by incubating cells and ligation reaction for 30 minutes on ice 

followed by heat shock at 42ºC for 45 seconds and cooled on ice for 2 minutes. 250 µl 

of SOC medium (Invitrogen, Paisley, UK) was added to the cells and incubated in a 

37ºC orbital shaker for 1 hour. Cells were then plated onto LB agar plates containing 

50 mg/ml ampicillin and incubated overnight at 37ºC.  

 

 

6. Miniprep: Plasmid DNA was extracted from bacterial cells using the QIAPrep Spin 

Mini-prep Kit (Qiagen, Crawley, UK) as indicated in section 2.2.2.7.1.  

 

7. Sequencing: The miniprep containing the plasmid DNA was subsequently sequenced 

with HIV specific primers to verify the successful cloning of patient’s sample into 

pGEMP8.9. 
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8. SDM: The plasmid containing ligated PGEMP8.9 and patient’s Gag, PR or Gag-PR 

sequences could be employed as a template for SDM in case modified patient’s 

sequences or modified wild type HIV sequences were required. 

 

9. Transfer of Patient’s sample from PGEM8.9 to the HIV expression vector P8.9NSX: 

patient’s Gag, PR or Gag-PR sequences or modified sequences for these genes were 

transferred from PGEMP8.9 vector to the HIV expressing vector (P8.9NSX) by 

digestion of both plasmids with appropriate restriction endonuclease, ligated together 

using rapid Ligation Kit (Roche Diagnostics, US) and transformed into E. coli HB101 

cells as described above.  Upon sequencing of the HIV backbone of the P8.9NSX 

vector using HIV specific primers in order to confirm successful cloning of patient 

backbone into the P8.9NSX vector, the RTVs are ready to be employed in drug 

susceptibility and RC experiments.  

 

2.2.4.2 Generation of pseudotyped viruses 

Pseudotyped viruses were produced by transient transfection of HEK 293-T cells with three 

plasmids: RTV containing patient’ related Gag and/or protease sequences or wild type HIV; 

pCSFLW containing the HIV packaging sequencing and the luciferase encoding gene and 

PMDG expressing vesicular estomatitis G protein. Briefly, HEK 293-T cells were seeded so 

that 10 cm dishes were just sub-confluent on the day of transfection. 18 µl of FuGENE-6 

(Roche Diagnostics, US) was added to 200 µl of Opti-MEM medium (Invitrogene). 1.5 µg of 

pCSFLW, 1 µg of PMDG and 1 µg of P8.9NSX HIV Gag-pol expression vector were made 

up to 15 µl of TE buffer and added to the Fu-GENE-6 and Opti-MEM mixture. The 
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transfection mixture was incubated for 30 minutes at room temperature before being added 

dropwise to the sub-confluent HEK 293-T cells in 8 ml of fresh DMEM medium 

(Invitrogene) supplemented with 10% FCS (Biosera, UK), 100 U/ml penicillin and 100 µg/ml 

streptomycin (Invitrogene). HEK 293-T cells and transfection mixture were incubated 

overnight at 37°C and 5% CO2. The following day, the cell culture medium was replaced for 

fresh medium. The pseudovirus containing supernatants were either directly employed in 

drug susceptibility assays or harvested at 48 and 72 hours, filtered with a 0.45 µm filter to 

eliminate cell debris and stored at -80°C in 1ml aliquots for subsequent applications.   

 

2.2.4.3 Protease inhibitor susceptibility assay 

Pseudovirus stocks used for PI susceptibility testing were obtained by co-trasfecting HEK 

293 T cells with RTV, pCSFLW and PMDG plasmids as described above. The cells were 

tripsinized approximately 16 hours after transfection and distributed into 96-well plates 

containing serial dilutions spanning and empirical determined range for each PI (between 

1000 nm -0.005 nm). Pseudoviral stocks generated in the presence of PIs were harvested at 

around 48 hours after transfection and employed to infect fresh HEK 293 T cell cultures in 

96-well plates in the absence of drug. Replication was monitored by measuring luciferase 

expression in infected target cells at approximately 48 hours after infection. Luciferase 

expression was measured using Steady Glo and a Glomax Luminometer (both Promega). 

Data were analyzed by plotting the percent inhibition of luciferase activity versus. log10 drug 

concentration. The percent inhibition was derived as follows: [1-(luciferase activity in the 

presence of drug-background)/ (luciferase activity in the absence of drug-background)] x 100. 

Mean percent inhibition for each drug concentration was determined from independent 
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replicates and the deviation standard calculated.  Inhibition curves, defined by the four-

parametric sigmoidal function f(x) = a- [b/ (1+(x/c)
d
], were fit to the data by nonlinear least-

squares and used to calculate the drug concentration required to inhibit virus replication by 

50% (IC50). The fold change (FC) in drug susceptibility is determined by comparing the IC50 

for the tested virus to the IC50 of the WT reference virus (P8.9NSX) which contains the PR 

and RT sequences of the NL4-3 strain of HIV-1. All analysis was performed employing 

GraphPad PRISM version 5.  

 

2.2.4.4 Replicative capacity assay 

Pseudovirus stocks are prepared by co-transfecting HEK 293T cells with RTVs, pCSFLW 

and PMDG plasmids as described above. Cells and transfection mix are incubated for 48 

hours in DMEM medium supplemented with 10% FCS, 100 U/ml penicillin and 100 µg/ml 

streptomycin. The medium will be replaced with fresh medium every 24 hours. Pseudo-virus 

supernatant will be filtered with a 0.45 µm filter to eliminate cell debris and 100 µl will be 

employed to infect fresh HEK 293T cells in 96 well plates. Thus, pseudo-virus containing 

supernatant will be titrated along the HEK 293- cells-containing 96 well plates. Replication 

will be monitored by measuring luciferase expression 48 hours after infection. Luciferase 

activity was determined with steady Glo and a Glomax Luminometer (both Promega) and 

expressed relative to the wild type reference virus (P8.9NSX). The relative light luciferase 

units (RLU) were plotted against both µl of virus supernatant and the ng of P24 produced by 

virus supernatants and the mean luciferase activity calculated by using at least four values 

within the linear range. Replicative capacity (RC) of the tested virus would be directly related 
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to the luciferase activity displayed and would be expressed as a percent of the WT reference 

virus (P8.9NSX) to which a 100% RC value would be assigned.    

 

2.2.4.5 P24 ELISA 

In order to correct for potential transfection efficiency, the relative luciferase units produced 

by RTVs were expressed normalized by ng of P24 protein. P24 protein in pseudovirus 

supernatant was measured by employing a twin-site sandwich Enzyme-linked 

immunosorbent assay (ELISA). The ELISA was performed with reagents supplied by Aalto 

Bioreagents LTd. Briefly, 96 well plates were coating with Anti-HIV-1-p24 Gag by adding 

100 µl per well of affinity purified sheep anti-HIV-1-p24 Gag (D7320, Aalto bio Reagenst 

Ltd) reconstituted in water at 1 mg/ml. Plates were incubated overnight at room temperature. 

The following day the plate is washed twice with 200 µl of TBS buffer. P24 antigen is 

captured from the pseudo-virus containing supernatant which is previously inactivated by 

treated with Empigen zwitterionic detergent (Sigma Aldrich) at a final concentration of 1% 

per volume and incubated at 56ºC for 30 minutes. Serial dilutions of pseudo-virus 

supernatants are made in TBS/Empigen and 100 µl of the dilutions added to the Anti-HIV-

p24-Gag-coated well and incubated for 3 hours at room temperature. Unbound p24 was 

washed away with 2 x 200µl of TBS. Bound p24 was detected by using alkalin- phosphatase- 

conjugated anti-HIV-1-p24 mouse monoclonal antibody (BC 1071-AP, Aalto Bio Reagenst) 

and the AMPAK ELISA amplification system. The HIV-1 p24 assay was calibrated using 

known amounts of a purified recombinant p24 protein (AG6054, Aalto Bio Reagenst). The 

calibration curved was obtained by plotting the optical density (OD) at 492 nm against the 

known amount of recombinant p24 protein. Comparison of OD displayed by pseudo-viral 
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supernatants with that of calibrators allowed us to determine the amount of p24 in pseudo-

virus containing supernatants.         

 

Table 2.1 Primers employed for the amplification of HIV-1 Gag and protease genes 

 

Primer 

name
a
 

Sequence 5’-3’ Position
b
 Description 

GagFout GTT GTG TGA CTC TGG TAA CTA 

GAG ATC CCT CAGA 

570-603 Forward outer primer 

GagBout TCC TAA TTG AAC YTC CCA RAA 

GTC YTG AGT TC 

2797-2828 Reverse outer primer 

GagFin TCT CTA GCA GTG GCG CCC GAA 

CAG 

626-649 Forward inner primer 

 

GagBin 

 

GGC CAT TGT TTA ACC TTT GGD 

CCA TCC 

 

2597-2623 

 

Reverse inner primer 

GagFin2 AAA TCT CTA GCA GTG GCG CCC 

GAACAG 

623-649 Forward inner primer 

GagBin2 TGG MCC AAA RGT TAA ACA RTG 

GC 

2600-2622 Reverse inner primer 

a
GagFin and GagBin were employed as default inner primers in the nested PCR protocol. GagFin2 

and GagRin2 were used when the default primers failed.  

b
Primer position is relative to HXB2 (GenBank accession number K03455).   
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Table 2.2 Primers employed for the sequencing of HIV-1 Gag and protease genes 

Primer 

name 

Sequence 5’-3’ Position
a
 Direction 

G00* GACTAGCGGAGGCTAGAAG 764-782 Forward  

G50* CACAGCAAGCAGCAGCTG 1133-1150 Reverse  

G70* ATGAGGAAGCTGCAGAATGGG 1406-1426 Forward 

G01* AGGGGTCGTTGCCAAAGA 2281-2264 Reverse  

G05* TGTTGGCTCTGGTCTGCTCT 2157-2138 Reverse  

G35* CATGCTGTCATCATTTCTTCTA 1838-1817 Reverse  

G45* TTGGACCAACAAGGTTTCTGTC 1761-1740 Reverse  

Ana1 GGG CCA TCC ATT CCT GGC TT 2602-2586 Reverse  

Ana2 CAG AGC CAA CAG CCC CAC CAG 2147-2167 Forward  

Ana3 ATC KTT CYA GCT CCC TGC TTG 916-899 Reverse 

Ana4 GCC ATA TCR CCT AGA ACY TT 1228-1244 Forward  

Ana5 GGG ATT AAA YAA AAT AGT AAG 1593-1612 Forward  

Ana6 TAG AAG RAA TGA TGA MAG 1820-1834 Forward  

Ana7 ATA ATC CAC CTA TCC CAG 1547-1561 Forward  

Ana8 GAC ACC AAR GAA GCY TTA 1078-1092 Forward  

G85* TGC ACT ATA GGG TAA TTT TG 1193-1173 Reverse  

Ana9 GAT AGG GGG AAT TGG AGG TTT 

TAT CAA AGT 

2390-2419 Forward  

Ana10 ATG TTG ACA GGT GTA GGT CCT 

ACT AAT ACT GTC C 

2503-2470 Reverse  

Primers G00, G50, G70, G01, G35, G45 and G85 had been previously published (Sanders-Buel, 

1995). 
a
Primer position is relative to HXB2 (GenBank accession number K03455).   
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Table 2.3 Primers employed for Site-directed mutagenesis (SDM) 

Primer 

name 

Sequence 5’-3’ Description 

Y132F-F CAGGTCAGCCAAAATTTCCCTATAGTGCAGACC Forward primer for 

introduction of 

Y132F  

Y132F-R GTTCTGCACTATAGGGAAATTTTGGCTGACCTG Reverse primer for 

introduction of 

Y132F 

T375A-F CAAATCCAGCTGCCATAATGATACAGAAAGGC Forward primer for 

introduction of 

T375A 

T375A-R GCCTTTCTGTATCATTATGGCAGCTGGATTTG Reverse primer for 

introduction of 

T375A 

∆T375A-F CCAAGTAACAAATCCAGCTACCATAATGATACAGAAAGGC Forward primer for 

reversion of T375A 

∆T375A-R GCCTTTCTGTATCATTATGGTAGCTGGGTTTGTTACTTGG Reverse primer for 

reversion of T375A 

V82I-F CTTAGATCATTATATAATACAATAGCAACCCTCTATTGTGTG Forward primer for 

introduction of 

V82I 

V82I-R CACACAATAGAGGGTTGCTATTGTATTATATAATGATCTAAG Reverse primer for 

introduction of 

V82I 

A115I-F CAAAAGTAAGAAAAAAGTACAGCAAGCAGCAGCTGACAC Forward primer for 

introduction of 

A115I 

A115I-R GTGTCAGCTGCTGCTTGCTGTACTTTTTTCTTACTTTTG Reverse primer for 

introduction of 

A115I 

A120S-F CACAGCAAGCAGCAGTTGACACAGGACACAG Forward primer for 

introduction of 

A120S 
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A120S-R CTGTGTCCTGTGTCAACTGCTGCTTGCTGTG Reverse primer for 

introduction of 

A120S 

I437V-F GCTAATTTTTTAGGGAAGGTCTGGCCTTCCCACAAGGG Forward primer for 

introduction of 

I437V 

I437V-R CCCTTGTGGGAAGGCCAGACCTTCCCTAAAAAATTAGC Reverse primer for 

introduction of 

I437V 

Y441H-F GAAGATCTGGCCTTCCCACAAGGGAAGGCCAG Forward primer for 

introduction of 

Y441H 

 

Y441H-R CTGGCCTTCCCTTGTGGGAAGGCCAGATCTTC Reverse primer for 

introduction of 

Y441H 

G443E-F GATCTGGCCTTCCTACAAGGGGAGGCCAGGGAATTTTTTTCAG Forward primer for 

introduction of 

G443E 

G443E-R CTGAAAAAAATTCCCTGGCCTCCCCTTGTAGGAAGGCCAGATC Reverse  primer for 

introduction of 

G443E 

∆Y132F-F CAGGTCAGCCAAAATTACCCTATAGTGCAGAAC Forward primer for 

reversion of Y132F 

∆Y132F-R GTTCTGCACTATAGGGTAATTTTGGCTGACCTG Reverse primer for 

reversion of Y132F 

∆L449F-F GGCCAGGGAATTTTCTTCAGAGCAGCC Forward primer for 

reversion of L449F 

∆L449F-R GGTCTGCTCTGAAGAAAATTCCCTGGCC Reverse primer for 

reversion of L449F 

∆A431V-F CTGAGAGACAGGCTAATTTTTTAGGGAAGATCTG Forward primer for 

reversion of A431V 

∆A431V-R CAGATCTTCCCTAAAAAATTAGCCTGTCTGTCTCAG Reverse primer for 

reversion of A431V 
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Table 2.4 Primers employed for modification of P8.9NSX vector by SDM 

Primer 

name 

Sequence 5’-3’ Description 

BglII-F TCTCTTTGGCAGCGCTTCCCTCAGAT Forward primer for 

introduction of 

BglII restriction site 

BglII-R CGCTGCCAAAGAGAGGTCTGAGGGAAG Reverse primer for 

introduction of 

BglII restriction site 

BamHI-F CCAGGTATGGATCCCCCAAAAGTTAAACAATGGCC Forward primer for 

introduction of 

BamHI restriction 

site 

BamHI-R 

 

GGCCATTGTTTAACTTTTGGGGGATCCATACCTGG Reverse primer for 

introduction of 

BamHI restriction 

site 

∆BglII-F CTAATTTTTTAGGGAGACCTGGCCTTCCCGAAGG Forward primer for 

blocking BglII 

restriction site 

∆BglII-R CCTTGTGGGAAGGCCAGGTCTTCCCTAAAAAATTAG Reverse primer for 

blocking BglII 

restriction site 

∆BamHI-F CATTCGATTAGTGAACGGGTCCTTGGCACTTATCTG Forward primer for 

blocking BamHI 

restriction site 

∆BamHI-R CAGATAAGTGCCAAGGACCCGTTCACTAATCGAATG Reverse primer for 

blocking BamHI 

restriction site 
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Table 2.5 Primers employed for the introduction of appropriate restriction sites 

a
Primer position is relative to HXB2 (GenBank accession number K03455).   

The above primers are employed for nested amplification of patient’s samples in preparation for 

cloning into the P8.9NSX  HIV-1 expression vector. Cloning of Gag gene will require amplification 

with GagF-NotI and GagB-BglII, cloning of PR gene will require amplification with PRF-BglII and 

PRB-BamHI and cloning of both Gag and PR simultaneously will require amplification with GagF-

NotI and PRB-BamHI.  Restriction sites are shown in bold.  

 

 

 

 

Primer 

name 

Sequence 5’-3’ Position
a
 Description 

GagF-NotI  TCTCTAGCGGGCCGCGCAGTGGCGCCCGAACAG 626-649 Forward primer for 

introduction of 

NotI site at the 

beginning of Gag 

gene 

GagB-

BglII 

GGCCATAGATCTTGTTTAACYTTTGGDCCATCC 2597-2629 Reverse primer for 

introduction of 

BglII site at the 

end of Gag gene 

PRF-BglII CCCAGATCTCACCAGAAGAGAGCTTC 2159-2178 Forward primer for 

introduction of 

BglII at the 

beginning of PR 

gene.  

PRB-

BamHI 

 

GGGGGATCTCCATCCATTCCTGGCTT 2585-2604 Reverse primer for 

introduction of 

BamHI at the end 

of PR gene. 



- 95 - 

 

 

3 Chapter three: development and optimization of 

an assay for the amplification and sequencing of 

full-length HIV-1 Gag and protease genes 

3.1 Introduction 

Since the discovery of HIV as the causative agent of acquired immunodeficiency syndrome 

(AIDS), research efforts have led to the development and clinical use of several drugs aimed 

at inhibiting the viral replication cycle at particular critical stages. Six classes of antiretroviral 

drugs are currently approved that target the fusion between viral and cellular membranes, the 

reverse transcription of viral RNA into cDNA, the integration of viral DNA into the host 

genome and the maturation of  newly synthesized virions.  

 

In 1996-1998, the combination of three antiretroviral drugs, which is known as highly active 

antiretroviral therapy (HAART), revolutionized the care of patients infected with HIV 

leading to a dramatic decrease in mortality and morbidity. However, inadequate treatment 

(e.g., lack of complete adherence to therapy or insufficient potency of some regimens) may 

produce incomplete viral suppression, which often results in the appearance of viral 

resistance and as a consequence in therapy failure.  
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The clinical relevance of HIV drug resistance is well established. The emergence of 

resistance to first-line HAART might not only facilitate failure to subsequent line of therapy 

due to cross resistance, but is also associated with an increased risk of death, particularly if all 

three major classes of drugs (nucleoside or nucleotide reverse transcriptase inhibitors 

(NRTIs), non-nucleoside reverse transcriptase inhibitors (NNRTIs) and protease inhibitors 

(PIs)) are involved (Hogg et al, 2006; Zaccarelli et al, 2005). In most cases, resistance arises 

from genetic mutations affecting the viral protein targeted by the antiretroviral drug. As a 

consequence, detection of resistance in clinical practice is usually achieved by sequencing the 

targeted gene, commonly reverse transcriptase (RT) or protease (PR), followed by the 

identification of resistance-associated mutations (RAMs).  

 

The classic mechanism of resistance to PIs features the stepwise accumulation of 

substitutions in the viral protease (Croteau et al, 1997; Johnson et al, 2008b and Nijhuis et al, 

1999). The first amino acids changes observed during PI exposure often involve the 

substrate-binding cleft of the viral enzyme. The mutations that encode these amino acid 

changes, termed primary mutations, are responsible for the resistance of the virus to PIs. 

However, these mutations also have a deleterious effect in the replication capacity of the 

virus as they code for a protease that displays a reduced cleaving activity. Long-term 

exposure to a non-suppressive PI-containing regimen may lead to the selection of 

compensatory mutations, whose principal role is to re-establish the original replication 

capacity of the wild type (WT) virus. Several compensatory mutations have been described, 

mainly within the protease itself (Eastman et al, 1998; Ho et al, 1994; Mammano et al, 2000; 

Molla et al, 1996; Nijhuis et al, 2001 and Quinones-Mateu and Arts, 2001;), but also in its 

natural substrate, the Gag gene (Clavel et al, 2000; Doyon et al, 1996; Miller et al, 2001; 
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Nijhuis et al, 2001 and Zhang et al, 1997). Most reports have identified the Gag C-terminal 

cleavage sites (CS) P7/P1 and P1/P6 as major mutation hot spots (Doyon et al, 1996; Malet et 

al, 2007; Nijhuis et al, 2007; Verheyen et al, 2006 and Zhang et al 1997). However, this 

observation may be biased as most studies have only targeted these cleavage sites. In fact, 

there have been anecdotal reports that describe mutations at other CS or even outside the CS 

areas in association with exposure to PIs (Gatanaga et al, 2002), which imply that such 

regions may also have a role in the development of PI resistance. Moreover, some groups 

have suggested that mutations in Gag outside CSs could be responsible for primary resistance 

to PIs (Gupta et al, 2010; Nijhuis et al, 2007 and Parry et al 2009). Taken together, these 

observations suggest that resistance to the PIs may be underestimated in routine clinical 

practice since only primary mutations in the protease are searched for. 

 

The objective of the study presented in this chapter was to develop an assay for the co-

amplification and sequencing of full-length HIV-1 Gag and protease genes in order to 

evaluate the contribution of Gag mutations to drug susceptibility and viral fitness, and 

investigate linkage between Gag and protease mutations in patients failing PI-based therapy. 

More specifically, this encompassed: 1) the design and selection of PCR and sequencing 

primers; 2) the optimization of the PCR reaction for full-length HIV-1 Gag and protease 

genes and 3) sequencing optimization for full-length HIV-1 Gag and protease genes.   
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3.2 Methods 

3.2.1 Samples 

Plasma samples derived from HIV-1 infected patients attending the HIV services at the Royal 

Free Hospital were used for this study. The HIV-1 subtype was determined by submitting 

polymerase (pol) sequences to the NCBI HIV-1 genotyping tool. The plasma HIV-1 RNA 

load (“viral load”) was measured with the RealTime HIV-1 assay (Abbott Molecular, USA).  

A selection of samples representing a wide range of HIV-1 subtypes and circulating 

recombinant forms (CRFs) was employed for the study.  

 

3.2.2 Primers 

A total of 1,400 HIV-1 sequences from all available group M subtypes and CRFs were 

downloaded from the Los Alamos National Laboratory Database (www.hiv.lanl.gov) and 

aligned using Mega Molecular Evolutionary Genetic Analysis software version 4.0. 

Sequences that were relatively well conserved across different subtypes and close to the Gag 

and protease region of interest (Gag-Pr) were selected for primer design. PCR and sequencing 

primers were constructed employing Oligo software V7.0 and synthesized by Invitrogene 

(Invitrogene, UK).  

 

 

 

http://www.hiv.lanl.gov/
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3.2.3 RNA extraction 

One milliliter of plasma was centrifuged at 25,000 g for one hour at 4°C to concentrate the 

virus. The supernatant was then removed and the pellet re-suspended to a final volume of 280 

µl. The re-suspended pellet was used for nucleic acid extraction; two extraction methods 

were employed according to the manufacturer’s instructions, the manual QIAamp Viral RNA 

MiniKit (Qiagen, Germany) and the semi-automated EasyMag (Nuclisens, France). 

Finally, the RNA was eluted into 55µl of buffer and stored at -80°C. The performance of the 

assay with both extraction methodologies was compared.  

 

3.2.4 Amplification of Gag-protease region 

A reverse-transcription-nested (rt-nested) PCR protocol was designed for the amplification of 

the HIV-1 Gag-Pr region. The procedure was divided in two stages:  

 

Stage 1 encompassed two sequential reactions, an initial reverse transcription of the viral 

RNA into cDNA followed by a PCR reaction leading to the generation of a 2.2Kb DNA 

fragment; the Qiagen one-step RT-PCR kit (Qiagen, Germany) used for this purpose contains 

Omniscript® / Sensiscript® reverse transcritptase and HotStar® Taq DNA polymerase.  

 

Stage 2 comprised a PCR reaction on the 2.2 Kb DNA fragment which led to the production 

of a 2.0 Kb DNA fragment. This stage was carried out using the HotStar® Taq DNA 

polymerase kit (Qiagen, Germany).  



- 100 - 

 

 

All experiments were initially performed following the manufacturer’s instructions. 

However, subsequent modifications to different parameters affecting the development of 

reverse transcription and nested PCR reactions, such as annealing temperature, concentration 

of Magnesium [Mg
2+

], concentration of desoxiribonucleotides [dNTPs],  concentration of 

primers [primers], type of reverse transcriptase (AccuScript reverse transcriptase (Stratagene, 

Netherlands), SuperScript® III reverse transcriptase (Invitrogene, UK) and type of DNA 

polymerase (Pfu Ultra DNA polymerase (Stratagene, Netherlands), Platinum®TaqDNA 

Polymerase HF(Invitrogene, UK) were tested in order to optimize the yield. 

 

The optimized reverse transcriptase-nested PCR protocol was validated with a variety of 

HIV-1 group M and CRFs.  

 

3.2.5 Sequencing of the Gag-protease region 

PCR products were purified using Microcon YM-100 centrifugal filters units (Millipore, UK) 

according to the manufacturer’s instructions. Population sequencing was performed using the 

ABI PRISM BigDye Terminator v3.1 ready reaction cycle sequencing kit and reactions were 

run on an ABI3100 Genetic analyzer. 
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3.2.6 Cloning of PCR products  

Clonal analysis was performed on samples were population sequencing was not conclusive. 

For this purpose, the 2.0 Kb PCR product encompassing the sequence of the HIV-1 Gag-Pr 

region was cloned into a plasmid vector (PCR2.1) using the TOPO TA Cloning Kit 

(Invitrogene, UK). Positive clones, identified as those harbouring inserts of the correct size 

after restriction enzyme digestion, were isolated and sequenced as previously described. 

 

3.2.7 Sequence analysis 

Sequences were analyzed using Sequence analysis version 5.0, Seqscape version 6.0 and 

Mega Molecular Evolutionary Genetic Analysis software version 4.0 programmes. 
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3.3 Results 

3.3.1 Primers 

Multiple sets of potential primers for amplification and sequencing were obtained by OLIGO 

software and their characteristics were examined in order to choose the most suitable pairs. 

Selection criteria included:   

 GC content >50%. 

 No obvious tendency to form secondary structures.  

 No complementary regions between primers of the set.   

 Lack of homology with other sequences on either strand of the HIV-1 genome. 

 Difference in melting temperature between forward and reverse primers < 5°C.  

  

The region targeted by forward amplification primers was located within the 5’LTR region, 

which is present upstream of the Gag gene. As this sequence was relatively conserved across 

different HIV-1 strains only a single set of primers was designed for each of the reactions 

comprising the nested PCR. By contrast, no conserved region located downstream of Gag and 

protease genes was identified, so reverse amplification primers, consisted of a mixture of 

several primers whose sequences differ at certain positions (i.e., degenerated primers), were 

constructed. 
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We selected the following sets of primers for the amplification of HIV-1 Gag-Pr by nested 

PCR: 

 A sole set of outer primers derived from an alignment of all group M HIV-1 subtypes 

and CRFs.  

 Two sets of inner primers: a main set that was chosen based on an alignment 

constructed with the most prevalent subtypes found in the Royal Free Hospital 

population (i.e., subtypes B, C, A, D and CRF02) and an accessory set that was 

obtained from an alignment of all other group M HIV-1 subtypes and CRFs and was 

employed when the main set of primers did not render a PCR product.  

 

Similarly, we designed several primers for sequencing purposes. A total of 18 primers were 

employed in different combinations, usually 8 to 10, in order to obtain a full-length Gag-Pr 

sequence. The location of the primers and the amplicon length for each set of amplification 

primers are indicated in Figure 3.1. Primer sequences for amplification and sequencing are 

given in chapter 2, tables 2.1 and 2.2, respectively.  
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Figure 3.1 Location of amplification primers in HIV-1. 

 The length of the amplicons for different sets of primers is indicated.   

 

3.3.2 Reverse transcription and amplification of Gag-protease 

region 

The Qiagen one-step RT-PCR kit was used for reverse transcription of viral RNA and first 

PCR run. The kit consisted of a single enzyme mix, which contained Omniscript® and 

Sensiscript® reverse transcriptase and HotStar® Taq DNA polymerase.  

 

The initial experiment was conducted under the conditions recommended by the 

manufacturer: 1X buffer containing 2.5 mM of Mg
2+

, 400 µM of each dNTP, 0.6 µM of both 

forward and reverse primers and 2.5 units of RT-PCR enzyme mix. Reverse transcription 

occurred for 30 minutes at 50°C. By heating at 95°C for 15 minutes, the reverse transcriptase 

was inactivated and simultaneously the DNA polymerase was activated. Subsequent PCR 

cycling conditions included a denaturation step of 2 minutes at 95°C; 40 cycles of 15 seconds 
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at 95°C; 30 seconds at the annealing temperature calculated by OLIGO software for the set of 

primers (56°C) and 2 minutes and 30 seconds extension at 68°C and followed by a final 

extension step of 10 minutes at 68°C.   

 

The experiment included HIV-1 positive (subtype B) and negative controls. The positive 

control was diluted at different concentrations prior to extraction.  

 

The results of these preliminary experiments are shown in figure 3.2. Successful 

amplification was demonstrated by visualization of a 2.2 Kb PCR product on an agarose gel 

electrophoresis. A patent band of the expected size was present when viral loads were 

between 3,000 and 100,000 copies/ml. A very faint band could be appreciated at viral loads 

around 1,000 copies/ml. No amplification was detected when the viral load was 500 

copies/ml.  However, strong non-specific amplification was evident on the agarose gel at all 

tested viral loads.  

 

As amplification of the target was achieved, the primer pair employed was considered 

appropriate. However, it was deemed that the sensitivity and specificity of the method should 

undergo further optimization. Parameters considered for optimization included PCR cycling 

conditions, particularly annealing temperature as well as Mg
2+,

 dNTPs and primer 

concentrations.  
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Figure 3.2 Agarose gel electrophoresis following RT and amplification of HIV-1 Gag-pr region. 

The band numbers from 1 to 10 on the gel correspond to different viral load of the dilutions tested : 

1(negative control); 2 (100,000 cp/ml); 3 (50,000 cp/ml); 4 (25,000 cp/ml); 5 (12,500 cp/ml); 6 

(10,000 cp/ml); 7 (5,000 cp/ml); 8 (3,000 cp/ml);9 (1,000 cp/ml); 10 (500 cp/ml) and M correspond to 

low DNA Mass ladder (Invitrogene, UK). 

 

3.3.2.1 Optimization of annealing temperature 

Optimization of the annealing temperature started by calculating the melting temperature 

(Tm) for the primer-template pairs with the OLIGO software v7.0. As recommended for most 

PCR applications, the annealing temperature (Ta) was preliminarily set 5°C below the 

calculated Tm, which was 57°C. The optimal Ta was finally determined by performing 

temperature gradient PCR studies within the range 52-62°C, employing Qiagen one Step RT-
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PCR system. This was achieved by programming a 10°C gradient and setting the Ta to 57°C. 

Other PCR parameters such as [Mg
2+

]
,
 [dNTPs], primers and target concentrations remained 

constant. Results are presented in Figure 3.3.  

 

The amplification of the desired target (2.2 Kb product) was successful when the annealing 

temperature was between 55°C and 60°C, but strong non-specific reactivity was detected on the 

agarose gel. Below 55°C only non-specific amplification was observed. At annealing 

temperatures above 60°C there was no evidence of amplification on the agarose gel. The 

strongest amplification of the target was observed at 57 °C; therefore, this annealing temperature 

was maintained constant on subsequent experiments, while other parameters were modified for 

further optimization.   
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Figure 3.3 Agarose gel electrophoresis of the temperature gradient PCR experiments.  

A subtype B HIV-1 positive control of 20,000 copies/ml was extracted manually with 

QiaAmp Viral RNA extraction kit and subjected to a temperature gradient PCR with Qiagen 

one step RT-PCR. Band M correspond to Low DNA Mass ladder (Invitrogene, UK) and the 

different annealing temperatures tested are shown.   

 

3.3.2.2 Optimization of magnesium concentration 

The optimal [Mg
2+

] was determined empirically by setting a series of experiments between 

0.5 and 5.0 mM of Mg
2+

. Results are shown in figure 3.4. As demonstrated in the agarose gel 

electrophoresis, a minimum [Mg
2+

] of 2.5 mM was required in order to achieve amplification 

of the target. Above this concentration, a faint band of the expected size was visualized on the 

gel and specificity and sensitivity of the PCR protocol did not significantly change within the 

range 2.5- 5 mM [Mg
2+

]. Because an increase in the [Mg
2+

] may have a detrimental effect on 
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the fidelity of the Taq DNA polymerase and because no difference in sensitivity and 

specificity of the PCR reaction was detected above 2.5mM of the cation, we considered this 

concentration appropriate for further experiments and no adjustment of [Mg
2+

] and [dNTPs] 

with respect to those recommended by the manufacturer were judged necessary.    

 

 

 

Figure 3.4 Agarose gel electrophoresis of [Mg
2+

] titration experiments.   

Optimization was carried out with a subtype B HIV-1 positive control of 20,000 copies/ml and 

Qiagen one step RT-PCR system. 400 µM of each dNTPs was included in all reactions. Band number 

from 1 to 10 correspond to 10 different PCR reactions with Mg
2+

 concentrations of (1) 0.5 mM; (2)1.0 

mM; (3) 1.5 mM; (4) 2.0 mM; (5) 2.5 mM; (6) 3.0 mM; (7) 3.5 mM; (8) 4.0 mM; (9) 4.5 mM and 

(10) 5.0mM, respectively. Band M correspond to low DNA Mass ladder (Invitrogene, UK).    
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3.3.2.3 Optimization of primer concentrations 

Most PCR applications give suitable results with primer concentrations within 0.1-1.0 µM.  

The use of the lowest concentrations of primers favours specific amplification and generally 

requires at least 30 cycles of amplification for a 1Kb segment. Longer templates, however, 

necessitate higher primer concentrations, which can result in mispriming and ultimately non-

specific amplification. The Qiagen system recommends employing specific primers at a 0.6 

µM concentration. Primer titration experiments were carried out in order to assess the optimal 

primer concentration. According to the agarose gel electrophoresis presented in figure 3.5, a 

0.4 µM concentration of primers seems to be sufficient for amplification. At lower 

concentrations, no PCR product was detectable on the gel. By contrast, increasing primer 

concentrations led to substantial non-specific reactivity. Because keeping primer 

concentrations low is likely to have a positive effect on PCR specificity as well as fidelity, we 

decided to select the lowest concentration of primers at which amplification of the target was 

visible on agarose gel electrophoresis;(0.4 µM); this concentration was used in subsequent 

experiments.       

 

 

 

 

 

 



- 111 - 

 

 

 

Figure 3.5 Agarose gel electrophoresis of primer titration experiments.  

Amplification was performed after manual extraction with QiaAmp Viral RNA extraction Kit 

(Qiagen) of a HIV-1 subtype B positive control, employing Qiagen one step RT-PCR system. Primer 

concentrations between 0.1 µM and 1mM were tested and the band numbers from 1 to 10 on the gel 

correspond to the different primer concentrations: 1 (0.1µM); 2 (0.2µM); 3 (0.3µM); 4 (0.4µM); 5 

(0.5µM); 6 (0.6µM); 7 (0.7µM); 8 (0.8µM); 9 (0.9µM) and 10 (1mM) and band M corresponds to low 

DNA Mass ladder (Invitrogene, UK).  
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3.3.2.4 Touchdown and nested PCRs 

Previous experiments demonstrated that using the Qiagen one-step RT-PCR with the selected 

set of primers successfully generated a 2.2 Kb product comprising HIV-1 gag and protease 

genes. However, there were two main drawbacks to the procedure: 

 Weak detection of target band on agarose gel electrophoresis, even after optimization 

of the RT-PCR conditions. 

  Variable amount of non-specific reactivity.    

Two strategies were envisaged to correct these defects: 

 

1) Touchdown PCR 

Touchdown PCR may be used to reduce non-specific amplification. A high annealing 

temperature is maintained during the initial PCR cycles favouring specific priming, but is 

decreased as the reaction progresses in order to facilitate amplification. This ensures initial 

selective generation of the target amplicon, so that it will be in a favorable position to 

outcompete any lagging PCR product during the remaining cycles. To this end, the first 3 

PCR cycles were set at an annealing temperature of 60°C, which was the maximum annealing 

temperature at which we observed amplification in the temperature gradient PCR 

experiments, whereas the remaining 37 PCR cycles were maintained at the previously 

determined optimal Ta of 57°C.  
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2) Nested PCR 

Nested PCR may be used to increase both specificity and sensitivity. Nested PCR is expected 

to reduce contamination in the PCR product resulting from amplification of unexpected 

primer binding sites. It is highly unlikely that any unwanted PCR products contain binding 

sites for both set of primers, ensuring that the product from this second PCR run has little 

contamination from unwanted PCR products of primer dimers, hairpirins and alternative 

primer targeted sequences. In addition, by conducting a second run of amplification, the 

sensitivity of the target amplification is also expected to increase. Therefore, a volume of two 

µl of the first PCR run product was subjected to an additional PCR run with the designed 

inner set of primers.  Hotstar Taq DNA polymerase (Qiagen, Germany) was employed and 

we maintained the [Mg
2+

]
, 
[dNTPs] and primer concentrations determined for the first PCR 

run. The optimal annealing temperature for the inner PCR primers was calculated by 

oligosoftware and confirmed by setting temperature gradient experiments as previously 

described. Final cycling conditions consisted of a denaturation step of 2 minutes at 95°C; 3 

cycles of 15 seconds at 95 °C, 30 seconds at 60°C and 2 minutes and 30 seconds at 68°C 

followed by 27 cycles of 15 seconds at 95°C, 30 seconds at the primer annealing temperature 

(55°C) and 2 minutes and 30 seconds at 68 °C and a final extension step of 10 minutes at 

68°C.   

 

Results can be seen in Figure 3.6. Touchdown and nested PCRs significantly reduced non-

specific amplification and increased the sensitivity of the amplification reaction as 

demonstrated by the presence of distinct bands of the expected size (2.0 Kb) for all viral load 

levels tested (500-100,000  copies/ml). 
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Figure 3.6 Agarose gel electrophoresis of nested and touchdown PCR.  

Amplification was performed after manual extraction with QiaAmp Viral RNA extraction Kit 

(Qiagen) of a HIV-1 subtype B positive control. The RNA extract was subjected to reverse 

transcription and 1
st
 run PCR and 2 µl of the 1

st
 run PCR product was subjected to a second PCR. The 

eight bands presented on the gel correspond to the Mass ladder (M) and positive control at 

concentrations 100,000 cp/ml (1); 50,000 cp/ml (2); 25,000 (3); 10,000 cp/ml (4); 3,000 cp/ml (5); 

1,000 cp/ml (6) and 500 cp/ml (7), respectively.  

 

3.3.3 Evaluation of the RT-nested PCR protocol  

RT-nested PCR conditions were as depicted in detail in section 2.2.2.2.1 of chapter 2 and 

briefly summarized below:  

 

 Concentration of reagents, primers and enzyme for RT-PCR:  1 X Qiagen RT-PCR 

buffer, 400 µM dNTPs, 0.4 µM forward and reverse primers (GagFout, GagBout), 

10µL of RNA extract and 2.5 Units of Qiagen RT/PCR enzyme mix.  
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 RT-PCR conditions: temperature and time:   

o Reverse transcription of viral RNA into cDNA: 30 minutes at 50°C. 

o Inactivation of reverse transcriptase and activation of DNA polymerase: 15 

minutes at 95°C 

o 1st PCR run:  2 minutes at 95°C; 3x { 15 seconds at 95°C, 30 seconds at 60°C 

and 2:30 minutes at 68°C}; 37x {15 seconds at 95°C, 30 seconds at 57°C, 2:30 

minutes at 68°C} and 10 minutes at 68°C. 

 

 Concentration of reagents, primers and enzyme for 2
nd 

 PCR run : 2µ of 1
st
 run PCR 

product, 1X Qiagen PCR buffer, 400 µM dNTPs, 0.4 µM forward and reverse primers 

(GagFin, GagBin) and 2 units of Qiagen Hotstar Taq polymerase. 

 2
nd

 PCR run conditions:  2 minutes at 95°C; 3x {15 seconds at 95°C, 30 seconds at 

60°C, 2:30 minutes at 68°C}; 27x {15 seconds at 95°C, 30 seconds at 55°C, 2:30 

minutes at 68°C} and 10 minutes at 68°C. 

 

The optimized RT-nested PCR protocol was tested against a panel of different HIV-1 group 

M subtypes and CRFs. The limit of detection for each subtype was determined by performing 

serial dilutions. The results of the evaluation are summarized in table 3.1. Amplification of 

HIV-1 Gag and protease genes was achieved in 21/28 (75%) samples. The majority of these 

samples (16/21, 76%) were amplifiable at viral load levels ≤ 1,000 copies/ml. However, 5 

samples (1 HIV-1 subtype G; 2 CRF02; 1 CRF14 and 1 CRF06) required viral loads > 1,000 
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copies/ml in order to attain amplification. Samples that failed to amplify included 3 HIV-1 

subtype G; 1 subtype J; 2 Complex mosaic HIV-1 sequences and 1 CRF13.  

 

Amplification using an accessory set of inner primers (GagFin2 and GagBin2) was attempted 

in samples that did not amplify at all, or that did not amplify at viral loads below 1,000 

copies/ml. All of the samples amplified (Figure 3.7) and serial dilutions of these samples 

demonstrated amplification at viral loads below 1,000 copies/ml for all them (Table 3.2).  

Sample Subtype Viral load 

(copies/mL) 

Last dilution positive by 

PCR  

(viral load copies/mL) 

First dilution negative  

by PCR  

(viral load copies/mL) 

B-1 B 123,237 1:200 (600) 1:400 (300) 

B-2 B 200,237 1:400 (500) 1:800 (250) 

B-3 B 1,075 1:2 (500) 1:4 (250) 

C -1 C 130,307 1:200 (650) 1: 400 (300) 

C-2 C 61,595 1:800 (750) 1:1600 (350) 

C-3 C 16,000 1:200 (800) 1:400 (400) 

D-1 D 46,168 1:200 (500) 1:400 (250) 

D-2 D 10,015 1:20 (500) 1:40 (250) 

D-3 D 867 1:1 (867) 1:2 (435) 

A-1 A 9,000 1:16 (600) 1:32 (300) 

A-2 A 26,579 1:40 (750) 1:80 (350) 

A-3 A 138,783 1: 200 (700) 1:400 (350) 

G-1 G 1,236 PCR FAILED  

G-2 G 714,852 1:100 (7000) 1:200 (3500) 

G-3 G 7,550 PCR FAILED  

G-4 G 604,206 PCR FAILED  

F-1 F 24,737 1:100 (300) 1:200 (150) 

J-1 J 218,794 PCR FAILED  

CRF02-1 CRF02 11,346 1:1 (10,000) 1:2 (5,000) 

CRF02-2 CRF02 16,500 1:20 (800) 1:40 (400) 

CRF02-3 CRF02 76,000 1:2 (35,000) 1:4 (19,000) 

CRF01-1 CRF01 6,831 1:8 (850) 1:16 (425) 

Cpx-1 Complex 22,000 1:20 (1,000) 1:40 (500) 

Cpx-2 Complex 14,523 PCR FAILED  

Cpx-3 Complex 9,354 PCR FAILED  

CRF13-1 CRF13 824 PCR FAILED  

CRF14-1 CRF14 102,675 1:20 (5,000) 1:40 (2,500) 

CRF06-1 CRF06 93,980 1:40 (2,000) 1:80 (1,000) 

Table 3.1 Evaluation of the RT-nested PCR protocol (1).  

The subtype and viral loads of 28 HIV-1 plasma samples employed in the evaluation are shown. Samples were manually 

extracted using QiaAmp Viral RNA extraction Kit (Qiagen). Undiluted samples were initially amplified with the optimized 

RT-nested PCR protocol. Positive samples were subsequently diluted before extraction and amplification to estimate the 

limit of detection of the assay. 
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Figure 3.7 Agarose gel electrophoresis of RT-nested PCR.  

Amplification of 12 plasma samples that failed to amplify with the initial set of selected primers was 

performed with the optimized RT-nested PCR protocol employing an accessory set of inner primers 

(GagFin2, GagBin2). Bands number from 1 to 12 represent different genotypes and viral loads: (1) G, 

1,236 cp/ml;  (2) G, 7,550 cp/ml; (3) G, 604,206 cp/ml; (4) J, 218,794 cp/ml; (5) Cpx, 14,523 cp/ml; 

(6) Cpx, 9,354 cp/ml; (7)CRF13, 824 cp/ml; (8) G, 1,236 cp/ml; (9) CRF02, 1,546 cp/ml; (10) 

CRF02, 76,000 cp/ml; (11) CRF14, 102,675 cp/ml; (12) CRF06, 93,980 cp/ml and band M refers to 

the low DNA mass ladder (Invitrogene).  
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Sample Subtype Viral load 

(copies/mL) 

Last dilution positive 

by PCR  

(viral load copies/mL) 

First dilution negative  

by PCR  

(viral load copies/mL) 

G-1 G 1,236 1:2 (618) 1:4 (309) 

G-2 G 714,852 1:800 (875) 1:1600 (440) 

G-3 G 7,550 1:10 (750) 1:20 (375) 

G-4 G 604,206 1: 800 (750) 1:1600 (375) 

J-1 J 218,794 1:200 (1,090) 1:400 (545) 

CRF02-1 CRF02 11,346 1:10 (1,134)     1;20 (567) 

CRF02-3 CRF02 76,000 1:100 (760) 1:200 (380) 

Cpx-2 Complex 14,523 1:20 (726) 1:40 (363) 

Cpx-3 Complex 9,354 1:10 (935) 1:20 (467) 

CRF13-1 CRF13 824 1:1 (824) 1:2 (412) 

CRF14-1 CRF14 102,675 1:100 (1,026) 1:200 (513) 

CRF06-1 CRF06 93,980 1:100 (940) 1:200 (470) 

Table 3.2 Evaluation of RT-nested PCR protocol (2).  

The subtypes and viral loads of the 12 samples amplified with a second set of inner PCR primers 

(GagFin2, GagBin2) are shown. Samples were manually extracted with QiaAmp viral RNA extraction 

kit. Undiluted samples were initially amplified and positive samples were subsequently diluted before 

extraction and amplification to estimate the limit of detection.    
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3.3.4 Evaluation of the amplification protocol with proofreading 

enzymes 

Both the reverse transcriptase and Taq DNA polymerase employed for amplification of HIV-

1 Gag and protease genes lack proofreading activity (3’-5’exonuclease activity) and as a 

consequence they may not be appropriate for applications where fidelity is paramount. We 

evaluated the performance of the amplification method with alternative polymerase enzymes. 

After extensive literature review, we selected AccuScript™ High Fidelity (HF) RT-PCR plus 

PfuUltra HF DNA Polymerase (Stratagene) and SuperScript III one-step RT-PCR plus 

Platinum®TaqDNA Polymerase HF (Invitrogene). The Stratagene kit separates reverse 

transcription and PCR reactions in two different steps: it employs proofreading enzymes for 

both reverse transcription (AccuScript) and PCR (pfuUltra DNA polymerase).  RNA was 

reverse transcribed into cDNA using the following conditions: 1X AccuScript RT buffer; 10 

mM DTT; 1mM dNTPs, 20 Units of RNAse inhibitors and 2 µM of outer reverse primer. 

Primers and template are incubated at 65°C for 1 hour time after which the reaction is cooled 

to room temperature, 2 Units of AccuScript RT enzyme are then added and reverse 

transcription occurs at 42°C for 1 hour. The resulting cDNA is then subjected to nested PCR 

using the same cycling conditions as for Qiagen. The optimal [Mg
2+

], [dNTPs] and primer 

concentrations were determined by running titration experiments as previously described.  

 

The final conditions were : 1
st
 run PCR mix including: 1x Pfu Ultra HF buffer containing 

2mM of Mg
2+

; 200 µM dNTPs; 0.4 µM of forward and reverse primers and 2.5 units of Pfu 

Ultra DNA polymerase. 2 µl of the 1
st
 run PCR was subjected to a second PCR with 1X Pfu 
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Ultra HF buffer; 200 µM dNTPs; 0.4 µM of forward and reverse primers, additional Mg
2+ 

was required up to 4mM in the final mix and 2.5 Units of Pfu Ultra DNA polymerase.   

 

The Invitrogene kit performs reverse transcriptase and PCR in a single step but in contrast to 

Qiagen, it employs a mix of a proofreading reverse transcriptase (Pfu) and non-proofreading 

DNA polymerase (Taq). Cycling conditions for rt-nested PCR were those previously established 

with Qiagen. As before, optimal [Mg2+], [dNTPs] and primers for Invitrogene system were 

determined by performing titration experiments. The final conditions for amplification of Gag 

and protease with Invitrogene were: RT-PCR mix included 1X Invitrogene buffer containing 1.2 

mM Mg2+ and 200 µM dNTPs; 0.4 µM of forward and reverse primer and 2 unit of RT-PCR 

enzyme mix. 2µl of the resulting PCR product was subjected to nested PCR with Platinum Taq 

DNA polymerase (Invitrogene, UK). Nested PCR mix contained 1x PCR buffer, 1.5 mM of 

Mg2+, 200µM of dNTPs, 0.4µM of forward and reverse primers and 2.5 unit of Platinum Taq HF 

DNA polymerase.  

 

For a more detailed explanation about reverse transcription and nested PCR protocols (Qiagen, 

Stratagene and Invitrogene), please refer to section 2.2.2.2 in chapter 2. 

Ten plasma samples from patients infected with HIV-1 subtypes B (n=2), C (n=2), D (n=2), A 

(n=2), CRF02 (n=2) were diluted to achieve a final viral load concentration of 10,000 copies/ml 

and amplified according to the conditions specified in the three protocols (Qiagen, Invitrogene 

and Stratagen).  
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The agarose gel electrophoresis of the 10 plasma samples amplified with the three systems is 

presented in figure 3.8. The Qiagen and Invitrogene protocols amplified 10/10 (100%) samples, 

although bands were in general fainter when the Invitrogene kit was employed. By contrast 4/10 

(40%) samples failed to amplify when the Stratagene kit was utilized. 

 

Figure 3.8 Agarose gel electrophoresis of nested PCR with Qiagen, Stratagene and Invitrogene 

kits.  

Ten plasma samples (subtype B, n=2; C, n=2; D, n=2; A, n=2, CRF02, n=2) were tested with the three 

protocols, which differed in the reverse transcriptase and polymerase enzymes employed. Samples 

were diluted to a HIV-1 RNA load of 10,000 copies/ml and manually extracted with QiaAmp Viral 

RNA extraction Kit (Qiagen) before amplification. Band M correspond to low DNA mass ladder 

(Invitrogene) and bands from 1-10 represents subtypes B (1, 2); C (3, 4); D (5, 6); A (7, 8) and CRF02 

(9, 10), respectively. 

 

3.3.5 Manual vs. automated extraction 

Plasma samples of subtypes A, B, C and CRF02 were diluted to achieve a viral load of 3,000, 

1,000 and 500 copies/ml prior to extraction. Extraction was carried out using either a manual 



- 122 - 

 

(QiaAmp viral RNA extraction Kit (Qiagen,) or a semi-automated (Nuclisens EasyMag 

(France)) method. As shown in the agarose gel electrophoresis presented on figure 3.9, all 

samples extracted with QiaAmp viral RNA MiniKit amplified successfully. However, by 

using semi-automated extraction most samples with viral load of 1,000 and 500 copies/ml 

failed to amplify by PCR. The manual extraction method incorporates carrier-RNA that 

facilitates efficient RNA extraction. In addition, in the manual extraction, samples are 

previously concentrated by centrifugation at 25,000g at 4°C. Including the centrifugation step 

before semi-automated extraction may also increase the sensitivity of amplification as 

demonstrated by visualization of a band on agarose gel electrophoresis at a viral load of 1,000 

copies/ml in all  samples  and in 2/4 (50%) of samples with 500 copies/ml.  

 

 

Figure 3.9 Agarose gel electrophoresis of nested PCR after manual, automated or modified 

automated extraction.  

Four samples (subtype A, B, C, CRF02,) were diluted to a viral load of 3,000 1,000 and 500 copies/ml 

before being extracted manually (QiaAmp Viral RNA extraction kit, Qiagen) or with a semi-

automated extractor (EasyMag, Nuclisens). EasyMag* included a high speed centrifugation for 1 hour 

at 4 °C prior to extraction. Band M corresponds to low DNA mass ladder (Invitrogene) and bands 

from 1 to 3 represents samples with viral load levels of 3,000 copies/ml; 1,000 copies/ml and 500 

copies/ml, respectively.  
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3.3.6 Sequencing results 

Twenty-eight plasma samples belonging to different group M subtypes and CRFs (B, n=3; C, 

n=3; A, n=3; D, n=3; G, n=4; F, n=1; J, n=1; CRF02, n=3; CRF01, n=1; Cpx, n=3; CRF13, 

n=1; CRF14, n=1 and CRF06, n=1) were amplified by nested PCR using the Qiagen rt-nested 

PCR protocol and subsequently sequenced. In addition, 5 samples (subtypes B, n=2; C, n=2 

and D, n=1) were amplified in parallel with Stratagene and Invitrogene kits prior to 

sequencing in order to assess to what extent the use of a non-proofreading enzyme (Qiagen), 

a proofreading enzyme (Stratagene) or a mix of both affected the  sequencing results. 

Different combinations of sequencing primers were used in order to achieve full-length Gag-

PR sequencing. Population sequencing was achieved in 17/28 (61%) samples. The remaining 

11 samples produced non-interpretable sequences by population sequencing in P7 (2/11); P6 

and P7 (1/11); P6 and P17 (2/11); P6, P7 and P17 (6/11) and clonal analysis was required to 

obtain full-length Gag-PR sequencing.  The primers employed for each sample are detailed in 

Figure 3.10.  

 

The analysis of amino acid sequences showed no variation between the different DNA 

polymerases in the 17 samples analysed by population sequencing.  

 

Clonal analysis of 11 samples demonstrated higher genetic variability in the regions where 

population sequencing was inconclusive compared with other regions of Gag and protease. 

Thus, mean inter-clone nucleotide variability was between 0.4-3.01 % in P17; 0.05-0.14% in 

P24; 0.71-8.51% in P7 and 0.08-5.96 in P6 (Table 3.4).  
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One of the samples requiring clonal analysis was amplified by the Qiagen, Invitrogene and 

Stratagene protocols. No significant difference was observed in the pattern of nucleotide 

variations regardless of the amplification protocol used. The most predominant nucleotide 

changes detected in Gag were A-to-G (23.8%) and G-to-A (16.25%) transitions, followed by T-

to-C (15.14%) and C-to-T (13.89%) transitions. Transitions occurred around three times more 

frequently than transversions. Similarly, no significant difference was observed in the percentage 

of nucleotide variations among clones obtained after amplification with the three different 

protocols (Table 3.3). 
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Figure 3.10 Primers employed for full-length Gag and protease sequencing.  

A total of 28 plasma samples representing different subtypes and CRFs underwent population 

sequencing after manual extraction with QiaAmp Viral RNA extraction kit and amplification by 

nested PCR with the Qiagen system. Samples B-1, B-3, C-1 C-3 and D-2 were in addition amplified 

in parallel following Invitrogene and Stratagene protocols before sequencing. Samples C-3; CRF01-1; 

A-3; G-3; G-4; Cpx-1; CRF13-1; D-3; CRF14-1; J-1; CRF06-1 yielded non-interpretable sequences 

and required cloning prior to successful full-length sequencing.  
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Mean % nucleotide variation 

Sample Gag P17 P24 P7 P6 Region failing population sequencing 

C-3 2.1 3.01 0.05 0.70 3.30 P17, P6 

CRF01-1 1.97 0.4 0.08 2.45 0.08 P7 

A-3 2.03 0.47 0.12 2.50 0.08 P7 

G-3 1.38 1.44 0.14 2.37 1.61 P17, P7, P6 

G-4 1.87 0.34 0.13 1.18 5.96 P7,P6 

Cpx-1 3.12 1.32 0.05 8.51 2.57 P17, P7, P6 

CRF13-1 1.12 2.01 0.06 0.31 2.06 P17, P6 

D-3 1.87 0.98 0.13 2.11 4.33 P17, P7, P6 

CRF14-1 0.97 1.21 0.03 0.71 2.05 P17, P7, P6 

CRF06-1 1.04 0.96 0.05 2.01 1.13 P17, P7, P6 

J-1 1.63 2.55 0.05 1.94 1.98 P17, P7, P6 

Table 3.3 Nucleotide sequence variation of Gag gene.  

Variability across different Gag regions in 11 samples failing population sequencing was determined. 

Intra-clone distances were calculated using Mega software version 5.0.   

 

 

 Nucleotide (%) Amino acid (%) 

Qiagen 3.29 5.21 

                         Invitrogene 3.08 5.13 

Stratagene 2.98 5.02 

Table 3.4 Nucleotide and amino acid variability.  

The nucleotide variability among 20 clones obtained from one plasma sample was compared 

employing non-proofreading (Qiagen), proofreading (Stratagene) and a mix of proofreading/non-

proofreading (Invitrogene) enzymes. Inter-clone distances were calculated with Mega software 

version 5.0.    
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3.4 Discussion 

The present chapter describes the design, optimisation and validation of an assay for the 

amplification and sequencing of HIV-1 Gag and protease. Two main characteristics were to 

be taken into account when designing the assay:    

 

1) Heterogeneous target population: 

Group M HIV-1 viruses, which are further classified into nine subtypes (A-D, F-H, J and K) 

and at least 51 circulating recombinant forms (CRFs), are responsible for most HIV 

infections globally. The distribution of these viruses varies by geographical areas. In Western 

Europe, including the UK, subtype B predominates. However, the prevalence of non-B 

subtypes in Europe has progressively increased owing to the influx of immigrants from 

Africa and Asia (Deroo et al, 2002; Machuca et al, 2001; Lospistao et al, 2005; Op de Coul et 

al, 2001; Snoeck et al, 2004; Thomson and Najera, 2001). Because of historical and current 

connections with many countries across all six continents, subtypes other than B, namely A, 

C, D, E, F, G and H, were reported early in the UK (Clewley et al, 1996; Devereux et al, 

1999) and by 2001 it was estimated that up to 25% of HIV-1 infections were due to non-B 

subtypes and CRFs (Barlow et al, 2001). A study published in 2006 based on sequence 

analysis of the polymerase gene and representing approximately one-fifth of all UK HIV 

infections, showed that while B was the most common subtype, subtypes C and A were 

present at prevalence of 10% and 6%, respectively. In addition, all other subtypes as well as 

several CRFs and unclassified strains were also identified (Gifford et al, 2006).  
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Consistent with the increasingly diversity of the HIV-1 epidemic in the UK, a wide variety of 

subtypes are encountered among HIV-infected patients attending the Royal Free Hospital. 

Approximately half of the HIV-1 infected patients seen locally harbour subtypes other than 

B, most commonly subtype C followed by subtypes A, D and the recombinant form CRF02. 

However, all other subtypes as well as other recombinant forms and complex mosaic 

sequences are also detected (Booth et al, 2007). It should be emphasized that although 

subtypes other than B were historically linked to immigration (Barlow et al, 2001), more 

recently an increase has been observed in recent years in the number of UK indigenous 

population infected with non-B clade HIV-1(Fox et al, 2010). In line with these findings, 

non-B subtype infection among UK autochthonous population has also been observed within 

the Royal Free Hospital cohort, (Booth et al, 2007) possibly indicating a higher degree of 

mixture between UK native and non-native inhabitants.  As a consequence of the diversity of 

HIV strains in our study population, we aimed at developing an assay able to detect a wide 

range of HIV-1 subtypes and CRFs. 

 

2) Main purpose of the assay: 

The primary intended use of the assay was the detection of amino acids changes in HIV-1 

Gag and PR genes in patients failing a PI-based regimen, in order to identify markers of drug 

resistance associated with changes in these two genes. Genotypic resistance testing is the 

most convenient method to identify resistance to antiretrovirals as the cause of treatment 

failure and is recommended in patients experiencing failure of their current regimen and 

requiring a change in antiretroviral therapy (Hirsch et al, 2008).  
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Current guidelines for the treatment of HIV infection recommend durable and maximal 

plasma viral load suppression to <50 copies/ml as the desired outcome after starting 

antiretroviral treatment. They also indicate that therapy failure should be identified and 

managed promptly to achieve this outcome (Gazzard et al, 2008; Hammer et al, 2008 and US 

Department of Health and human services 2008). As a result, genotypic resistance testing is 

frequently performed early after the onset of treatment failure, on samples still displaying a 

low viral load. Therefore one key requirement for our assay was to have a high analytical 

sensitivity.   

 

A number of factors were considered in order to optimize the assay performance 

characteristics: 

1) Type of PCR 

Nested PCR was chosen over conventional PCR in order to achieve high analytical 

sensitivity, which would allow detection of the virus at a low viral load. This PCR strategy 

significantly improved not only the analytical sensitivity but also the analytical specificity of 

the amplification protocol.  

 

2) Primer design 

Due to the complex mixture of HIV-1 subtypes and CRFs in our study population, good 

primer design was a critical step to achieve a successful outcome. However, the design of 

suitable primers for the amplification of the HIV-1 Gag gene from different subtypes was 

more challenging than it would be for other genomic regions, such as pol, due to the higher 
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genetic variability present within this region (Albert et al, 1994). To address this problem, we 

proceeded as follows: Firstly, we selected the most conserved sites adjacent to the target 

sequence to ensure optimal primer binding. Secondly, multiple sets of primers were 

constructed in order to cover major sequence variations among different strains. Lastly, 

ambiguity positions were introduced in some primers in order to account for minor genomic 

diversity at primer binding sites within strains.  

 

3) Nucleic acid extraction methods 

Efficient recovery of high-quality intact HIV-1 RNA is fundamental for the success of any 

RT-PCR-based procedure. A plethora of nucleic acid extraction methods, both manual and 

automated, are currently available. As it has been reported that HIV genotypic resistance 

testing achieves higher rates of success when manual extraction techniques are employed 

(Perandin et al, 2009), we initially selected a manual extraction kit, the QiaAmp Viral RNA 

extraction minikit (Qiagen). However, because manual extraction methods are labour 

intensive and more susceptible to variations in operator performance, we evaluated in parallel 

a semi-automated extraction platform, the Nuclisens EasyMag (BioMerieux), which is an 

easy-to-use bench top instrument based on silica extraction technology.   

 

Consistent with previous studies, the success rate of amplification was higher when manual 

extraction was employed. However, the efficiency of the automated extraction procedure 

could be easily improved by including a high speed centrifugation step of the plasma sample 

prior to extraction. This additional step enabled us to amplify all samples with viral load 

around 1,000 copies/ml and 50% of samples with viral load around 500 copies/ml. Although, 
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the amplification success rate was slightly lower at viral load levels around 500 copies/ml 

when using the Nuclisens EasyMag platform compared to the QiaAmp Viral RNA minikit 

(100% vs. 50%), we considered it sufficient for the purpose of our assay. This performance is 

in line with that of commercial kits for HIV genotypic resistance testing of pol, which 

recommend a viral load of at least 1,000 copies/ml for reliable results. In addition,  the 

benefit of performing resistance testing below a threshold of 1,000 copies/ml is still focus of 

controversy, and although multiple studies have demonstrated that resistance testing below 

this threshold is informative (Mackie et al, 2004 and Mackie et al, 2010 ), the clinical utility 

remains unclear.  

 

In  light of our results, we can conclude that although HIV-1 RNA extraction using the 

manual QiaAmp Viral RNA extraction minikit (Qiagen) increases diagnostic sensitivity of 

the amplification of HIV-1 Gag and protease from diverse subtypes in comparison to the 

semi-automated platform Nuclisens EasyMag (Biomerieux), the latter performs to an 

acceptable level when slight modifications are introduced and offers a more suitable 

methodology in the diagnostic setting where high throughput and reduced  hands-on time are 

required.  

 

4) Types of reverse transcriptase and DNA polymerase enzymes 

The choice of enzymes involved in RT-PCR protocols represents another major parameter 

that influences a successful outcome.  
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There are currently a large number of reverse transcriptase and DNA polymerase enzymes to 

choose from, which differ among other characteristics in thermal stability, fidelity and 

processivity. Some manufacturers provide ready-to-use kits that incorporate both enzymes 

plus an optimized reaction buffer whereby reverse transcription and PCR reactions can be 

performed either in the same tube or independently in two tubes. Single-tube reverse 

transcription-PCR (RT-PCR) procedures are recommended in the diagnostic setting because 

they are simple to perform, allow high-throughput and reduce the risk of cross-contamination 

between samples.   

 

Initially, we selected the Qiagen one-step RT-PCR kit (Qiagen), which contains  a specially 

formulated enzyme blend for both reverse transcription (i.e., Omniscript / Sensiscript reverse  

transcriptases) and PCR (i.e., HotStarTaq DNA polymerase)  reactions and a proprietary 

reaction mix containing a buffer with optimised concentrations of Mg
2+

 cations and dNTPs. 

Omniscript and Sensiscript are non-MMLV/AMV-derived reverse transcriptases (RTs). 

These enzymes may be superior to other commercially-available enzymes due to their higher 

affinity for RNA, which facilitates transcription through secondary structures where other 

RTs may be inhibited. In addition, the special composition of the buffer provided allows 

these RTs to operate at high temperatures (50°C), thus further improving reaction efficiency 

by disrupting secondary structures. As a result of their different abilities to copy small 

amounts of template, this enzyme mixture provides highly efficient and sensitive reverse 

transcription of any RNA quantity from 1 pg to 2 µg.     
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HotStarTaq DNA polymerase is an engineered version of the native Taq DNA polymerase, 

which was isolated from Thermus aquaticus. While maintaining the robustness and low cost 

of the original Taq DNA polymerase, this enzyme features a hot start procedure where the 

enzyme is activated by a 15-minute incubation at 95°C; this activation pattern ensures that 

polymerase activity does not start until the sample has reached a temperature where all DNA 

is denatured, thus avoiding extension from non-specifically annealed primers and primer-

dimers that may have formed at lower temperatures. In addition, this enzyme, as all Taq DNA 

polymerases, has the capacity to incorporate adenosine overhangs at the 3’ end of the PCR 

products; this characteristic is very useful for clonation studies when using TOPO or TA 

vectors, as the presence of thymidine (T) overhangs in these vectors enables ligation using 

topoisomerase or DNA ligase. 

 

Using the Qiagen one-step RT-PCR kit (Qiagen) we achieved a high success rate for the 

amplification of gag and protease with a variety of group M HIV-1 subtypes. A success rate 

of 100% was achieved when samples with viral loads ranging from ≤ 1,000 to >100,000 

copies/ml were tested following the manufacturer’s recommendations. In addition, we carried 

out clonal analysis using TOPO/TA vectors on 11 samples that did not provide conclusive 

results by population sequencing. We successfully cloned all the 11 samples, using the TOPO 

TA cloning kit according to the manufacturer’s recommendation. No optimization was 

required as it is often necessary when traditional cloning methods involving restriction 

digestion are applied. Cloning of PCR product with proof-reading enzymes such as those 

included in Invitrogene and Stratagene systems required additional steps to introduce the A 

overhangs and was in general less efficient.  
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 Despite the advantages of Taq DNA polymerases, one of their main drawbacks is the lack of 

3’→5’ exonuclease activity (i.e., proof-reading activity), which removes a mispaired 

nucleotide from the 3’ end of the growing strand, thus improving the fidelity of 

polymerization. The error rate of DNA polymerases is commonly expressed as the number of 

mutations per nucleotide per cycle; it depends not only on the intrinsic properties of the 

enzyme but also on the nature of the target sequence and the PCR conditions. Some studies 

have suggested that mutation rates may be artificially increased when employing Taq DNA 

polymerases (Bracho et al, 1998) due to their lack of proof-reading activity. In one report, the 

use of Taq DNA polymerase overestimated the proportion of minor hepatitis C virus 

quasispecies variants detected (Mullan et al, 2001), and it has been documented that 

quasispecies diversity is in general lower when proof-reading enzymes are used (Polyak et al, 

2005). In another study the error rate of Taq DNA polymerase for the amplification of the 

HIV-1 Gag gene was estimated at about 1 in 83,000 nucleotides by cloning individual DNA 

molecules from the amplified population and determining the number of DNA sequences 

changes (Eckert and Kunkel, 1991).     

 

To investigate how the fidelity of reverse transcription and PCR reactions could affect the 

detection of Gag and protease mutations, we performed further studies with alternative 

commercial kits. After extensive literature revision, we selected the AccuScript® HF RT-

PCR system (Stratagene) and the SuperScript® one-step RT-PCR system with platinum Taq 

HF. AccuScript® HF RT-PCR system (Stratagene) contains  a specially formulated enzyme 

blend for both reverse transcription (i.e., AccuScript reverse transcriptase) and PCR (i.e., 

PfuUltra HF DNA polymerase)  reactions plus two proprietary reaction buffers containing 

optimized concentrations of Mg
2+

 cations and dNTPs; reverse transcription and PCR 
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reactions are performed independently in two separate tubes. AccuScript is a MMLV-derived 

reverse transcriptase, its main differential feature is the presence of 3’→5’ exonuclease 

activity which improves reverse transcription fidelity by more than three fold when compared 

to other commercially-available RTs (43).  PfuUltra HF DNA polymerase is an engineered 

version of the native Pfu DNA polymerase, which was isolated from Pyrococcus furiosus. Its 

accuracy has been documented to be 18 times higher than that of Taq DNA polymerases 

(Lundberg et al, 1991).  

 

Through the high fidelity (HF) of the enzymes included in the AccuScript® HF RT-PCR 

system (Stratagene, Netherlands), we expected to improve the accuracy of detection of 

mutations in HIV gag and protease genes. However, the Stratagene system had a series of 

disadvantages. Firstly, a series of extra requirements, such as the incorporation of RNAse 

inhibitors in the RT-PCR mix, the setting of the reverse transcription and PCR reactions on 

ice or the initiation of the PCR reaction in a pre-heated thermocycler immediately after the 

addition of the enzyme to avoid primer degradation. These additional steps increase hands-on 

time and the length and cost of the procedure. In addition, we observed a very low success 

rate for the amplification of our target sequence when following the manufacturer’s 

recommendations. To improve the performance of the assay, an increase in the Mg
2+

 cation 

concentration was required. It is known that while the lowest concentrations of Mg
2+

 favour 

specific priming and thus reduce non-specific amplification, the highest ones increase 

polymerization rates and as a result PCR sensitivity, but tend to facilitate non-specific primer 

binding, therefore diminishing PCR specificity. As a consequence, increasing Mg
2+

 

concentration may have led to a decrease in the fidelity of the Pfu DNA polymerase. After 

optimization of the [Mg
2+

], an amplification failure rate of 40% was observed compared to 
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0% with the Qiagen one-step RT-PCR kit. In addition, for those samples where amplification 

was successful, smaller amount of amplicons was produced by the Stratagene system than by 

the Qiagen kit, as demonstrated by the lower intensity of the PCR bands on agarose gel 

electrophoresis. This reduced yield can be due to primer degradation by the Pfu DNA 

polymerase as a result of its proof-reading activity and/or the stringent conditions of the PCR 

reaction (Takagi et al, 1997).  In conclusion, although the Stratagene system may be 

recommendable for techniques that require HF DNA synthesis, such as clonal analysis, it is 

not convenient for population sequencing purposes in a diagnostic setting as it may decrease 

the success rate of RT-PCR reactions and increase the length and cost of the procedure.      

 

Mixtures of proofreading and non-proofreading DNA polymerases have been reported to 

synthesize higher yields of PCR product (Barnes 1994) and fidelity comparisons with 

Pfu/Taq-containing polymerase blends have shown that the error rate of the mixtures appears 

to be intermediate between the error rate of Pfu and the non-proofreading enzyme (Cline et 

al, 1996) and is likely to depend on the ratio of non proof-reading to proof-reading enzyme. 

In order to obtain high reaction success rates and HF of template replication, we performed a 

one-step RT-PCR with SuperScript® III Platinum® one-step RT-PCR  system with Platinum 

® Taq DNA polymerase HF (Invitrogen, UK)  followed by amplification with Platinum ® 

Taq DNA polymerase HF (Invitrogen, UK).  SuperScript® III Platinum® one-step RT-PCR 

system with Platinum ® Taq DNA polymerase HF (Invitrogen, UK) combines SuperScript® 

III reverse transcriptase, Platinum® Taq DNA polymerase HF and a propietory reaction mix 

containing a buffer with optimised concentrations of Mg
2+

 cations and dNTPs. SuperScript® 

III is a version of MMLV RT that has been engineered to reduce RNAaseH activity providing 

more full-length cDNA than other RTs. Platinum ® Taq DNA polymerase HF (Invitrogen, 
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UK) is an enzyme mixture composed of Pyrococcus species GB-D polymerase, a 

recombinant enzyme that features 3’→5’ exonuclease activity, and a recombinant non proof-

reading enzyme, Platinum® Taq DNA polymerase. The reaction success rates obtained with 

the Invitrogene system were comparable to those obtained with Qiagen and the level of 

accuracy of mutation detection is likely to be between Qiagen and Stratagene.  

 

We performed a comparative study between the three enzymatic systems. A total of six 

samples underwent reverse transcription followed by a nested PCR reaction and the PCR 

products were subsequently analysed by population sequencing. We did not find significant 

differences between the three systems in the rate of mutations encountered. With regard to 

the type of mutations, transitions were much more frequently found than transversions  and 

were in order of decreasing frequency A-G (23.8%),G-A (16.5%),  T-C (15.4%) and C-T 

(13.9%) . These results suggest that a proof-reading polymerase is not advantageous over a 

DNA polymerase lacking 3’→5’ exonuclease activity for the purpose of population 

sequencing. The rate and type of mutations these enzymes produce is similar. Although the 

rate of mutations may be slightly higher with non-proofreading enzymes, it can be minimized 

by optimizing the PCR reaction conditions. In any case, the proportion of PCR product 

displaying enzyme-derived mutations represents only a minority of the quasispecies and as a 

consequence would go undetected by population sequencing (Alcorn and Faruki 2000). On 

the other hand reaction success rates were substantially higher when non-proofreading DNA 

polymerase was employed.   

 



- 138 - 

 

However, population sequence analysis was unsuccessful in 20% of the samples. These 

samples were further characterized by clonal analysis, an application that may be more 

affected by low fidelity of template replication. When we compared 20 individual clones 

derived from one sample, we could not found any significant differences in the rate of 

mutations observed.  Therefore, we concluded that despite lacking proof-reading activity, Taq 

polymerase can be used for some down-stream applications such as population sequencing 

and in our study clonal analysis, offering the advantages of high success rates, low cost, 

robustness and ease of use in cloning applications. We need to emphasize that our clonal 

analysis studies were not aimed at the detection of minority variants and therefore we only 

analyzed a reduced number of clones. In applications where variants that represent a minority 

in the quasispecies are of interest, requiring the analysis of a high number of clones, the use 

of more accurate enzymes, such as Pfu, is recommended.  

 

Another possible application of our clonal analysis was the study of linkage between 

mutations. Polymerising enzymes employed for this purpose must have the ability to 

complete strand synthesis and display HF of template replication. PCR-mediated 

recombination is a main concern when performing linkage analysis. Recombinants during 

PCR presumably arise due to the presence of incompletely extended primers annealing to a 

heterologous target (Meyerhans et al, 1989); this situation is avoided when complete rather 

than partial strand synthesis is achieved. Early studies demonstrated that the enzyme 

employed for DNA synthesis significantly affects the rate of artificial recombination (Fang et 

al, 1998). In general, proofreading enzymes facilitate complete strand synthesis and are the 

preferred enzymes in this setting. 
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The Invitrogen system may be best suited for this use as the reduced RNAase H activity if 

SuperScript® III reverse transcriptase maximises synthesis of complete cDNA strands and 

Platinum® Taq DNA polymerase HF contains a proofreading enzyme that ensures synthesis 

of HF complete DNA strands. However, adjustment of other parameters that may affect the 

rate of artificial recombination, such as the method of RNA isolation, reverse transcription 

time or number of cycles during PCR (Fang et al, 1998) may be required in order to optimise 

this application.   

 

The greatest challenge we faced to develop a protocol for the amplification and sequencing of 

HIV-1 gag and protease genes was the high degree of genetic variability present within the 

HIV-1 gag gene, which is not only observed between different subtypes, but also within 

subtypes and intra-patient quasispecies (Brown and Monaghan, 1988; Louwagie et al, 1993; 

Markham et al, 1995; Mulder-Kampinga et al, 1995 and Yoshimura et al, 1996).  Variability 

is not equally distributed across the gag gene. P17 and P7 were the most variable sites, 

whereas P24 is the most conserved region; Yoshimura and colleagues observed a variation of 

around 12% in P17 and P7 and 3% in P24 in a cohort of patients infected with the same HIV-

1 subtype. Similarly, when sequences of the gag clones within HIV-1 infected patients were 

compared, the greatest genetic diversity was located in P17 and P7 regions, while P24 had the 

lowest sequence variability (Yoshimura et al, 1996). 

 

 Due to the diversity seen in the gag gene, sequencing of this region posed a big challenge. 

Mismatches between sequencing primers and complementary sequences in the gag gene led 

to foreshortened sequences or to complete failure of the sequencing reaction in numerous 
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occasions. To overcome this problem, we developed multiple overlapping sequencing 

primers. A total of 18 sequencing primers were required to obtain a full-length gag sequence 

and were employed in different combinations according to the specific sample.  An additional 

challenge for gag sequencing is the intra-patient genetic variability, which according to 

previous reports is mainly concentrated in P17, P7 and P6 regions (Brown and Monaghan, 

1988). In our study, we obtained unreadable P17, P7 and/or P6 sequences due to 

heterogeneous sequencing signals in 11/27 (41%) of the samples analyzed. In addition, 

quasispecies displaying insertion and deletions of different length were also found in one 

patient (1/27, 4%), which resulted in a shift of the chromatogram and yielded a non-

interpretable population sequence. In order to circumvent these problems, we performed 

clonal analysis. Twenty clones per patient were analyzed to obtain full-length gag sequences 

of the independent dominant variants that constituted the patient’s quasispecies. Although 

this approach was cumbersome, it allowed us to accomplish full-length gag sequencing with 

all of the samples.         

 

In summary, we successfully developed an assay for the amplification and sequencing of 

HIV-1 gag and protease. The assay was validated by testing both manual and automated 

nucleic acid extraction techniques as well as different reverse transcriptase and DNA 

polymerase enzymes. The assay can be employed for different purposes, such as therapy 

monitoring or the study of linkage of mutations. The choice of manual or automated nucleic 

acid extraction methods, characteristics of RTs and DNA polymerases will depend on the 

goal of the study. The high variability present in the HIV-1 gag gene leads to a significant 

assay failure rate; the use of clonal analysis is required to characterize failed samples, 
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situation that makes the sequencing of Gag cumbersome in a high-throughput routine 

diagnostic setting.        
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4 Chapter four: cross-sectional comparison of 

prevalence and patterns of HIV-1 Gag mutations in 

PI-experienced and PI-naïve patients 

4.1 Introduction 

The HIV-1 protease (PR) plays a crucial role in the late phase of the HIV life cycle. It cleaves 

gag and Gag-Pro-Pol precursor polyproteins at particular sites thereby generating mature 

proteins, which are indispensable for the production of infectious virions. HIV-1 PR is a 

member of the aspartyl protease family. The functional enzyme exists as a symmetrical 

homodimer, each subunit comprising 99 amino acids and the two subunits interact non-

covalently to form a long tunnel where the active site is located. The active site consists of 

two Asp-Thr-Gly sequences, each sequence derived from a single monomer, and the aspartic 

residues play an essential role in the catalytic process. Access of substrates to the active 

centre is regulated by two flexible flaps located at the top of the tunnel, which undergo 

significant conformational changes to allow the substrate to enter and leave the tunnel.      .  

 

The gag precursor polyprotein is cleaved to generate structural proteins. Cleavage occurs in a 

controlled manner at 5 unique cleavage sites (CSs), comprising P17/P24, P24/P2, P2/P7, 

P7/P1 and P1/P6 (Krausslich et al, 1989; Pettit et al, 1994 and Wiegers et al, 1998). An 

important factor governing the order and rate of cleavage is the amino acid sequence at the 

specific CS (Pettit et al, 2002). Each CS consists of 10 amino acids; their positions relative to 

the cleaved peptide bond designated from N to C terminus as follows: N-P5-P4-P3-P2-
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P1/P1’-P2’-P3’-P4’-P5’-C, with cleavage occurring between P1and P1’ (Pettit et al, 2002). 

The amino acid sequence of the different CSs within Gag differs strikingly from one site to 

another. In addition, some sites, most notably P2/P7, show a high degree of polymorphism 

between HIV-1 strains (Bally et al, 2000; Feher et al, 2002; Gallego et al, 2003; Malet et al, 

2007 and De Oliveira et al, 2003). The difference in the amino acid sequence between these 

different CSs explains, at least in part, their differential rate of cleavage by the viral PR (Pettit 

et al, 2002 and Wiegers et al, 1998). Interestingly, in spite of the marked sequence diversity, 

these Gag sites show a strong similarity in their secondary structure (Bandaranayake et al, 

2008; Prabu-Jeyabalan et al, 2002), which explains why they all constitute strong and specific 

substrates for the viral PR, albeit with different rates of cleavage.  

 

The essential role that HIV-1 PR plays in the viral life cycle makes this enzyme an attractive 

target for antiretroviral drugs. There are currently nine protease inhibitors (PIs) licensed for 

the treatment of HIV-1 infection, namely Atazanavir (ATV), Darunavir (DRV), 

Fosamprenavir (FPV), Indinavir (IDV), Lopinavir (LPV), Nelfinavir (NFV), Ritonavir 

(RTV), Saquinavir (SQV) and Tipranavir (TPV). They act as competitive inhibitors that bind 

the active site of the viral PR blocking the entrance of the natural substrate. Unfortunately, 

resistance to all available PIs has been documented and represents a major obstacle for 

successful treatment of HIV-1 infected patients. The classic mechanism of PI resistance 

involves accumulation of substitutions in the viral PR (Croteau et al, 1997; Mammano et al, 

2000; Nijhuis et al, 1999). In general, the first mutations to be selected (i.e, primary or major 

resistance mutations) are located within or close to the substrate-binding domain, and can 

differ from one PI to another. Subsequently, secondary mutations are selected, which involve 

amino acids located away from the substrate-binding cleft. These secondary mutations, also 
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termed minor resistance mutations, are less drug-specific than primary mutations, but still 

essential for high-level resistance to PI and many of them play a key compensatory role, 

restoring viral fitness in strains with primary mutations.      

 

An alternative pathway of resistance to the PIs has been proposed, which is mediated by other 

genomic regions and focuses on cleavage sites of the viral PR (Nijhuis et al, 2007). The co-

evolution of PR and C-terminal gag CSs in PI-resistant viruses was reported soon after the 

introduction of PIs in antiretroviral regimens (Doyon et al, 1996; Zhang et al, 1997). The 

occurrence of CS mutations (CSMs) was originally attributed to compensatory effects similar 

to those described with secondary PR mutations (Doyon et al, 1996; Mammano et al, 

2000).However, growing evidence shows that CS mutations also confer PI resistance either in 

isolation or in combination with PR mutations (Dam et al, 2009; Maguire et al, 2002; Nijhuis 

et al, 2007; Prado et al, 2002; Zhang et al, 1997). Amino acids substitutions associated with 

PI resistance have been described at two gag CSs, namely P7/P1 and P1/P6. However, the 

role of amino acid changes at other gag CSs or outside CS regions of gag remains to be 

elucidated.  

 

The aim of the present chapter was to obtain full-length HIV-1 gag and PR sequences from 

PI-experienced patients employing the assay described in the previous chapter. These 

sequences were compared to HIV-1 gag and PR sequences from PI-naive individuals in order 

to identify mutations associated with PI-exposure. Furthermore the sequences were analysed 

with the aim of determining significant associations between PR mutations and gag mutations 

that may identify novel pathways of PI resistance.  
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4.2 Methods 

4.2.1 Sequences 

The gag and PR genes from 191 PI-experienced and 200 PI-naïve patients were analyzed 

retrospectively.  

 

Sequences from PI-experienced patients were obtained from different cohorts: patients 

recruited in the MaxCmin1, MaxCmin2 and COLATE trials, patients attending Cologne 

University Hospital and patients attending the Royal Free Hospital. The MaxCmin1 and 

MaxCmin2 were two open label, multicentre, phase IV trials that compared the safety and 

efficacy of ritonavir boosted Saquinavir (SQV/r), against ritonavir boosted Indinavir (IDV/r) 

and against ritonavir boosted Lopinavir (LPV/r). COLATE recruited patients failing a 

lamivudine-containing regimen, and assessed whether maintaining lamivudine in the 

subsequent regimen was of virological benefit. Patients from MaxCmin1, MaxCmin2 and 

COLATE whose regimens included one or more PIs and who showed major PR resistance 

mutations (n = 13) were included in the analysis. In order to maximize numbers, we also 

selected patients from Cologne University (n = 128) Hospital and Royal Free Hospital (n 

=50) who had been previously exposed to PIs, all of whom showed major PR resistance 

mutations.  

 

As a comparator group, we constructed a database of PI-naive sequences which included 

sequences obtained from RFH patients who had been previously exposed to antiretrovirals 
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(ARVs) other than PIs (n = 52) and sequences from ARV-naïve subjects from the Los 

Alamos database (n =148).    

 

Both PI-experienced (n= 191) and PI-naive (n = 200) sequences were retrieved from patients 

with long lasting (i.e.; 3-10 years of infection) subtype B HIV-1 infection.  

 

4.2.2 RNA extraction 

Prior to extraction, one millilitre of plasma was centrifuged at 25,000g for 1 hour at 4°C to 

concentrate the virus; the supernatant was then removed and the pellet re-suspended to a final 

volume of 280 µl. Samples with HIV-1 RNA load above 1,000 copies/ml underwent 

extraction employing the semi-automated extractor EasyMag (Nuclisens, France), whereas 

those with viral load below 1,000 copies/ml were extracted manually with the QIAamp Viral 

RNA MiniKit   (Qiagen, Germany). Finally, the RNA was eluted into 55µl of elution buffer 

and stored at -80°C until required.  

 

4.2.3 Amplification of the Gag-protease region 

A 2 Kb PCR product comprising full-length HIV-1 Gag and PR was amplified by nested 

PCR employing the Qiagen Gag-PR amplification protocol described in section 2.2.2.2.1 in 

chapter 2.    
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4.2.4 Purification of PCR products 

PCR products for population sequencing were purified using QIAQuick PCR purification Kit 

(Qiagen, Crawley, UK) according to the manufacturer’s instructions.  

 

4.2.5 Analysis of PCR products 

Five µl of PCR product mixed with five µl of loading buffer were loaded into a 1% agarose 

gel containing 0.5 µg/ml of ethidium bromide. Three µl of mass ladder was also loaded to use 

as a reference, and the gel was run for one hour at 80V. The gel was examined with UV light 

and the quantity and size of DNA was evaluated by comparing the intensity and position of 

the bands to those of the DNA mass ladder.  

 

4.2.6 Sequencing 

Purified PCR products of the right size were diluted to a final concentration of approximately 

10-20 ng/µl and population sequencing was performed using the ABI PRISM BigDye 

Terminator v3.1.ready reaction cycle sequencing Kit. Primers selected for PR and Gag 

sequences were those described in chapter 3 (Table 3.2).   
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4.2.7 Sequence analysis 

Sequences were analyzed using Sequence analysis version 5.0, Seqscape version 6.0 and 

Mega Molecular Evolutionary Genetic Analysis software version 4.0 programmes. 

 

4.2.8 Classification of protease mutations 

PR resistance mutations were assessed according to the last available list of mutations of the 

International AIDS Society (IAS, 2011) and classified into primary and secondary mutations 

according to the Stanford HIV Drug Resistance Database (Figure 4.1). 

 

4.2.9 Classification of Gag mutations 

We analysed mutations in the entire Gag protein. Gag sequences were aligned with the 

reference sequence HXB2 and subtyped by submitting the sequence to two different 

subtyping tools (NCBI and Rega). Mutations were defined as any change relative to the 

reference sequence. Mutations were divided into those seen in CSs (CSMs) and those seen 

outside CSs (Non-CSMs). Each CS consisted of the five amino acids on both sides of the 

cleavage bond. P5 to P1 and P5’ to P1’ were designated for residues on the N and C terminal 

sides of the target, respectively (Figure 4.2).  
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4.2.10 Gag and protease analysis 

PI-naive sequences were compared to the HXB2 reference sequence. The variability at each 

position in the Gag protein was given as a percentage, defined as the proportion of sequences 

with a non-wild type amino acid relative to the total number of sequences. We considered 

amino acid positions showing a variability ≤1 % as being conserved. The association between 

gag mutations and PI-exposure was analyzed by using the Fischer’s exact test. Gag CS 

positions (n =50) and Non-CS positions (n=450) were analyzed separately. A p value of less 

than 0.05 was considered to indicate a statistically significant different between groups in a 

preliminary analysis. Subsequently, the Bonferroni correction was applied in order to account 

for multiple comparisons. Therefore a p value of less than 0.05/50 = 0.001 for CSMs and 

0.05/450 = 0.0001 for Non-CSMs were considered as the threshold to show statistically 

significant differences. In addition, the association between presence of gag mutations and 

presence of PR mutations was also analyzed using the Fisher’s exact test after, again after 

applying the Bonferroni’s correction for multiple associations.  
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Figure 4.1 Protease inhibitor resistance mutations.  

The first row of letters indicates the reference (HXB2) amino acid sequence. All amino acids are indicated by their one letter code.  The position of the first 

and last amino acid of each series of 10 is indicated as well as positions where primary PR resistance mutations have been described which are also 

highlighted in bold. Letters below in bold red indicates primary resistance mutations and in black secondary mutations.      
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1
GARASVLSGG ELDRWEKIRL RPGGKKKYKL KHIVWASREL ERFAVNPGLL ETSEGCRQIL GQLQPSLQTG  

 

  SEELRSLYNT VATLYCVHQR IEIKDTKEAL DKIEEEQNKS KKKAQQAAAD TGHSNQVSQN YPIVQNIQGQ  

  MVHQAISPRT LNAWVKVVEE KAFSPEVIPM FSALSEGATP QDLNTMLNTV GGHQAAMQML KETINEEAAE  

  WDRVHPVHA            GPIAPG QMREP  RGSDIAGTTS TLQEQIGWMT NNPPIPVGEI YKRWIILGLN KIVRMYSPTS  

    ILDIRQGPKE PFRDYVDRFY KTLRAEQASQ EVKNWMTETL LVQNANPDCK TILKALGPAA TLEEMMTACQ  

  

 GVGGPGHKAR VLAEAMSQVT NSATIMMQRG NFRNQRKIVK CFNCGKEGHT ARNCRAPRKK GCWKCGKEGH  

  

 QMKDCTERQA NFLGKIWPSY KGRPGNFLQS RPEPTAPPEE SFRSGVETTT PPQKQEPIDK ELYPLTSLRS  

  LFGNDPSSQ
500

 

Figure 4.2 Gag HXB2 sequence.  

The letters indicate the reference (HXB2) Gag amino acid sequence. All amino acids are indicated by their one letter code. The number position of the first 

and last amino acid of the Gag polyprotein is indicated. The beginning and end of each individual protein is indicated by arrows. CSs sequence and positions 

are indicated in red.
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4.3 Results 

4.3.1 Patient characteristics 

PI experienced patients had been exposed to a median (range) of 2 PIs (1-4), 4 (2-5) NRTIs 

and 1 (0-2) NNRTIs. At the time of analysis, the most common PI individuals had previously 

been exposed to were: LPV/r (60/191, 31 %); SQV/r (42/191, 22%); IDV/r (30/191, 16%); 

APV/r (30/191; 16%); ATV/r (10/191, 5%); TPV/r (6/191, 3%) and DRV/r (4/191, 2%). All 

patients had major and minor protease resistance mutations. Similarly, 187/191 (98%) 

patients had NRTI-resistance-associated mutations and 125/191 (80%) had NNRTI-resistance 

associated mutations. The median (range) of major and minor PI resistance mutations at study 

entry were 3 (1-6) and 4 (0-8), respectively. The median (range) of NRTI and NNRTI-

resistance associated mutations were 5 (0-11) and 1 (0-4), respectively.  

 

PI-naïve patients were either completely treatment naïve (n = 148) or exposed to NRTIs and 

NNRTIs but not to PIs (n = 52). None of them had major PI resistance mutations and the 

median (range) number of minor PI resistance mutations was 1 (0 – 3). However, while none 

of the 148 treatment naïve sequences showed either NRTI nor NNRTI-resistance associated 

mutations, all of the 52 sequences ontained from patients previously exposed to ARVs other 

than PIs showed NRTI-resistance associated mutations, median 2, range (1-3) and 23/52 

(44%) showed in addition NNRTI-resistance associated mutations, median 2 (0-2).  
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4.3.2 Gag variability at non-cleavage site positions 

The 500 amino acid positions setting up the sequence of the Gag protein from 200 PI-naïve 

patients infected with subtype B HIV-1 were compared to the reference sequence HXB2. 

Non-cleavage site (Non-CS) amino acid positions (n=450) and CS amino positions (n=50) 

were examined separately. The latter comprised the 5 CSs (P17/P24; P24/P2; P2/P7; P7/P1 

and P1/P6), each consisting of 10 amino acids. Figures 4.3a to 4.3f show the variability of 

Non-CS amino acid positions in PI-naïve individuals, divided into the different Gag domains 

Matrix (P17), Capsid (P24), Nucleocapsid (P7), P6, P2 and P1, and excluding amino acid 

positions within the CSs. 

 

The analysis of the 450 Non-CS amino acid positions in the 200 PI-naïve individuals revealed 

the following: 

 P17:  

A total of 76/127 (60%) amino acid positions were conserved among subtype B HIV-1 

strains. Some conserved residues were scattered, such as K27, Y29, L50, Q63, S77, I92, 

K103 and Q116, while others were contiguous forming conserved motives of between 2 and 

10 amino acids. The remaining 51/127 (40%) positions showed a degree of variability 

ranging between 1% and 55% (Figure 4.3a).   

 P24:  

This region showed the highest degree of conservation. A total of 154/220 (70%) amino acid 

positions were conserved. Most conserved residues formed motives of between 2 and 11 
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amino acids, and only a few were individually scattered including 164F, 253N, 336A and 

347M. The remaining 66/220 amino acids (30%) showed a degree of variability ranging 

between 1% and 82% (Figure 4.3b).    

 P7:   

A total of 24/45 (53%) amino acid positions were conserved. Most conserved residues 

formed motives of between 2 and 6 amino acids except for one that was individually 

scattered (C426).  The remaining 21/45 amino acids (47%) showed a degree of variability 

ranging between 1% and 95% (Figure 4.3c).  

 P6:   

 This region showed the highest degree of variability. A total of 22/47 (47%) amino acid 

positions were conserved, six of them individually scattered (P455, V467, P472, Q474, P485 

and D496) and the remaining forming motives of between two and five amino acids. 

However, the majority of the amino acids (25/46, 54%) showed a degree of variability 

ranging between 1% and 75% (Figure 4.3c). 

 Spacer peptides P1  and P2 : 

The first spacer peptide encountered in the Gag polypeptide P2 was found to be highly 

polymorphic in the four Non-CS residues, with a degree of variability ranging between 8% 

and 22%. By contrast, the second spacer peptide P1 showed 3/6 (50%) conserved amino acids 

and 3/6 (50%) polymorphic residues (P439, S440, Y441H) with a degree of variability of 9%, 

1% and 48%, respectively (Figure 4.3c).  
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Figure 4.3a Polymorphisms of the HIV-1 P17 protein in subtype B strains from protease 

inhibitor-naïve patients.  

Cleavage site positions (amino acid: 128-132) were excluded from this analysis. Sequences from 200 

PI-naïve patients were compared to the HXB2 reference sequence (amino acid: 1-127). The letters 

specified on the bars indicate polymorphisms occurring at frequency ≥ 6%. HXB2 reference sequence 

and amino acid positions are shown.  
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Figure 4.3b Polymorphisms of the HIV-1 P24 protein in subtype B strains from protease 

inhibitor-naïve patients.  

Cleavage Site positions (amino acid: 133-138 and 359-362) were excluded. Sequences from 200 PI-

naïve patients were compared to the HXB2 reference sequence (amino acid: 138-358). The letters 

indicate polymorphisms occurring at frequencies ≥ 6%. HXB2 reference sequence and amino acid 

positions are shown.  
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Figure 4.3c Polymorphism of the P7, P6, P1 and P2 proteins in subtype B strains from protease 

inhibitor-naïve patients.  

Cleavage Site positions (amino acid: 377-381; 428-431; 448-453; 432-437; 444-447; 363-368 and 

373-376) were excluded. Sequences from 200 PI-naïve patients were compared to the HXB2 

reference sequence (amino acid 383-427; 454-500; 369-372 and 438-443 respectively).The letters 

indicate polymorphisms occurring at frequencies ≥ 6%. HXB2 reference sequence and amino acid 

positions are shown.  
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4.3.3 Gag variability at cleavage site positions 

The CS sequences from the 200 PI-naïve patients were examined and compared to the 

reference sequence HXB2. Each cleavage site consists of 10 amino acids designated as P5 to 

P1 and P1’ to P5’ for residues on the N and C terminal sites of the CS, respectively. 

Variability of CS differed considerably. Whereas three CSs (P17/P24; P24/P2 and P7/P1) 

were relatively conserved, P1/P6 and P2/P7 showed moderate and high variability 

respectively. Specifically, the P17/P24 CS showed only three mutations: V128A in 8/200 

(4%) patients, and V128S and Q130H in 2/200 (1%) patients each; the remaining eight 

positions were completely conserved.  The P24/P2 CS showed only two mutations: V362I in 

46/200 (23%) and R361K in 4/200 (2%) patients; the remaining eight positions were 

conserved.  Concerning the P7/P1 CS, only two mutations were encountered among the 200 

PI-naïve patients; these were E428D and K436R observed in 26/200 (13%) and 22/200 (11%) 

patients, respectively By contrast, at P2/P7 only two positions (Q379 and N382) were 

conserved, while all patients showed at least one mutation at the remaining eight positions 

and 144/200 (72%) showing more than one mutation (range 2-4mutations). Lastly, mutations 

at the P1/P6 CS were located at the C-terminal part, where four out of the five positions were 

variable; the most common mutations were L449P and L453P, found in 48/200 (24%) and 

46/200 (23%) patients, respectively. Mutations at positions Q450 (Q450E, 22/200, 11%) and 

S451 (S451N 22/200, 11%; S451A 10/200, 5%) were less frequent. The five amino acids 

forming the N-terminal part of the P1/P6 CS were completely conserved in the PI-naïve 

population.  Variability of the amino acids at the five Gag CSs is shown in figure 4.4.  
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Figure 4.4 Polymorphisms of the HIV-1 Gag CSs (P17/P24, P24/P2, P2/P7, P7/P1 and P1/P6) in subtype B strains from protease inhibitor-naïve 

patients.  

Sequences from 200 PI-naïve patients were compared to the HXB2 reference sequence. Letters indicate polymorphisms occurring at frequencies ≥ 6% 

HXB2 reference sequence and amino acid positions are shown.  
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4.3.4 Comparison of Gag non-cleavage site mutations according 

to history of exposure to protease inhibitors  

The comparison of full-length Gag and PR sequences from 191 PI-experienced and200 PI-

naïve individuals showed the following results: 

 P17:  

The 127 amino acids of the P17 protein were compared between sequences from PI-

experience and PI-naïve patients.  Overall 61 (48%) vs. 76 (60%) amino acids were 

conserved while 66 (52%) vs. 51 (40%) amino acids were variable, respectively. Among the 

66 variable positions seen in PI-experienced patients, we detected a total of 150 different 

mutations. Although 39 mutations out of the 150 found were associated with PI exposure 

when a cut-off  of 0.05 was considered, only 10 remained significantly associated when the 

Bonferroni’s correction for multiple associations was applied ( p = 0.05/450) (Table 4.1a).  

 P24:  

The 220 amino acids of the P24 protein were compared between sequences from PI-

experienced and PI-naïve patients. As described for the PI-naïve individuals in section 4.3.1, 

the CA-P24 protein also showed the highest degree of conservation in PI-experienced 

patients. Overall 149 (68%) vs. 154 (70%) residues were conserved and 71 (32%) vs. 66 

(30%) residues were variable in PI-experienced vs. PI-naïve individuals, respectively. Among 

the 71 variable positions seen in PI-experienced patients, we detected a total of 98 mutations. 

Although 17 out of the 98 mutations were associated with PI exposure when a cut- off of 0.05 

was considered, only five remained significantly associated when the Bonferroni’s correction 

for multiple associations was applied ( p = 0.05/450)  (Table 4.1b).  
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 P7:   

The 45 amino acids of the P7 protein were compared between sequences from PI-experienced 

and PI-naïve patients. We found the same number of conserved and variable residues in the 

two groups; these were 24 conserved residues and 21 variable residues. Among the 21 

variable amino acids in PI-experienced patients, we detected 42 mutations. Although seven 

out of the 42 mutations were significantly associated with PI-exposure when a cut-off of 0.05 

was considered, none remain significantly associated when the Bonferroni’s correction for 

multiple associations was applied (p= 0.05/450) (Table 4.1c).  

 P6:   

The 47 amino acids of the P6 protein was compared between sequences from PI-experienced 

and PI-naïve patients, overall 13 vs. 22 residues were conserved and 34 vs. 25 residues were 

variable in PI-experienced vs. PI-naïve individuals, respectively. We found 81 mutations 

distributed among the 34 variable residues seen in PI-experienced patients. Although, 19 out 

of the 34 mutations were associated with PI exposure when a cut-off of 0.05 was considered, 

only three remained significantly associated when the Bonferroni’s correction for multiple 

associations was applied (p = 0.05/450)   (Table 4.1d).  

 Spacer peptides P2: 

The four amino acids comprising the P2 peptide were compared between sequences from PI-

naïve and PI-experienced subjects. As I described for PI-naïve individuals in section 4.3.1, all 

P2 residues (n =4) were variable in PI-experienced individuals.  A total of 11 mutations were 

found distributed among the four variable residues in PI-experienced subjects. Although four 

out of the 11 mutations were significantly associated with PI exposure when a cut-off of 0.05 
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was considered, only one remained significantly associated when the Bonferroni’s correction 

for multiple associations was applied (p = 0.05/450) (Table 4.1e).  

 Spacer peptides P1: 

  Finally, the 6 amino acids comprising the P1 peptide were compared between sequences 

from PI-experienced and PI-naïve patients. Overall one vs. three residues was conserved and 

five vs. three were variable in PI-experience and PI-naïve patients, respectively. Among the 

five variable positions seen in PI-experienced subjects, we detected five mutations. Although 

one out of the five mutations was significantly associated with PI-exposure when a cut-off of 

0.05 was considered, it did not remain significantly associated when the Bonferroni’s 

correction for multiple associations was applied (p = 0.05/450) (Table 4.1e). 
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P17 

 

MUTATION 

PI-naïve (n= 200) PI-experienced (n= 191)  

n % n % P 

I34L 

Q59K 

L61I 

P66S 

T80A 

V82I 

T84V 

Y86W 

R91G 

I92V 

E93D 

I94V 

K103R 

E107I 

N109T 

N109S 

K113Q 

K113R 

K114R 

K114Q 

A115I 

Q117P 

Q117E 

A118T 

A119T 

A119E 

D121G 

D121A 

T122A 

T122K 

T122E 

G123K 

G123E 

H124K 

N126S 

N126G 

N126K 

Q127P 

Q127K 

16 

0 

2 

0 

0 

24 

60 

0 

0 

0 

62 

114 

0 

0 

2 

0 

0 

0 

0 

0 

0 

4 

0 

0 

0 

0 

0 

0 

24 

0 

0 

0 

6 

0 

16 

0 

0 

0 

0 

8 

0 

1 

0 

0 

12 

30 

0 

0 

0 

31 

57 

0 

0 

1 

0 

0 

0 

0 

0 

0 

2 

0 

0 

0 

0 

0 

0 

12 

0 

0 

0 

3 

0 

8 

0 

0 

0 

0 

32 

8 

20 

10 

10 

46 

86 

6 

6 

6 

92 

158 

16 

8 

10 

6 

22 

8 

22 

10 

6 

18 

6 

8 

6 

10 

16 

14 

48 

6 

18 

6 

18 

8 

130 

12 

6 

8 

24 

17 

4 

10 

5 

5 

24 

45 

3 

3 

3 

48 

83 

8 

4 

5 

3 

11 

4 

11 

5 

3 

9 

3 

4 

3 

5 

8 

7 

25 

3 

9 

3 

9 

4 

68 

6 

3 

4 

12 

0.02 

0.007 

<0.0001 

0.002 

0.002 

0.005 

0.009 

0.003 

0.03 

0.03 

0.003 

<0.0001 

<0.0001 
0.007 

0.04 

0.03 

<0.0001 

0.007 

<0.0001 

0.04 

0.03 

0.003 

0.03 

0.007 

0.03 

0.04 

<0.0001 

<0.0001 

0.003 

0.03 

<0.0001 

0.03 

0.02 

0.007 

<0.0001 

0.0004 

0.03 

0.007 

<0.0001 

Table 4.1a Non-cleavage site mutations in P17 significantly associated with PI-exposure.  

Mutations showing significant different between 200 PI-naïve (none of them showing major PI 

mutations, 52 showing NRTI-resistance associated mutations and 23 showing NNRTI-resistance 

associated mutations) and 191 PI-experienced individuals (all of them showing major protease 

resistance associated mutations, 187/191 (98%) showing NRTI-resistance associated mutations and 

125/191 (80%) showing NNRTI-resistance associated mutations) are presented. Total number f 

patients, percentage and p-values are shown. A p value of less than 0.05 was considered significant in 

a preliminary analysis. A Bonferroni’s correction was subsequently applied and a p of less than 

0.05/450 = 0.0001 was used instead. The mutations that remained significantly associated with PI 

exposure after the Bonferroni’s correction was applied are shown in bold.  
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P24 

MUTATION PI-naïve (n= 200) PI-experienced (n= 191)  

n % n % P 

I138A 

V143T 

V143I 

A146S 

S173A 

Q182H 

T186M 

T190I 

M200I 

A210S 

E211D 

V218A 

M228L 

L268M 

T280I 

S310T 

N315G 

2 

2 

0 

2 

2 

0 

0 

0 

0 

0 

0 

0 

0 

10 

0 

0 

0 

1 

1 

0 

1 

1 

0 

0 

0 

0 

0 

0 

0 

0 

5 

0 

0 

0 

14 

10 

6 

10 

12 

6 

16 

16 

12 

16 

16 
6 

6 

22 

10 

28 

6 

 

7 

5 

3 

5 

6 

3 

8 

8 

6 

8 

8 

3 

3 

11 

5 

14 

3 

0.003 

0.04 

0.03 

0.04 

0.01 

0.03 

<0.0001 

<0.0001 

0.0004 

<0.0001 

<0.0001 

0.03 

0.03 

0.04 

0.02 

<0.0001 

0.03 

 

Table 4.1b Non-cleavage site mutations in P24 significantly associated with PI-exposure.  

Mutations showing significant different between 200 PI-naïve (none of them showing major PI 

mutations, 52 showing NRTI-resistance associated mutations and 23 showing NNRTI-resistance 

associated mutations) and 191 PI-experienced individuals (all of them showing major protease 

resistance associated mutations, 187/191 (98%) showing NRTI-resistance associated mutations and 

125/191 (80%) showing NNRTI-resistance associated mutations) are presented. A p value of less 

than 0.05 was considered significant in a preliminary analysis. A Bonferroni’s correction was 

subsequently applied and a p of less than 0.05/450 = 0.0001 was used instead. The mutations that 

remained significantly associated with PI exposure after the Bonferroni’s correction was applied 

are shown in bold.  
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P7 

MUTATION PI-naïve (n= 200) PI-experienced (n= 191)  

n % n % P 

I389V 

V390A 

R403K 

K415R 

M423I 

T427S 

T427I 

0 

0 

52 

0 

0 

0 

0 

0 

0 

26 

0 

0 

0 

0 

6 

8 

74 

6 

6 

6 

10 

 

3 

4 

39 

3 

3 

3 

5 

 

0.03 

0.007 

0.02 

0.03 

0.03 

0.03 

0.002 

 

Table 4.1c Non-cleavage site mutations in P7 significantly associated with PI-exposure.  

Mutations showing significant different between 200 PI-naïve (none of them showing major PI 

mutations, 52 showing NRTI-resistance associated mutations and 23 showing NNRTI-resistance 

associated mutations) and 191 PI-experienced individuals (all of them showing major protease 

resistance associated mutations, 187/191 (98%) showing NRTI-resistance associated mutations and 

125/191 (80%) showing NNRTI-resistance associated mutations) are presentedTotal number of 

patients, percentage and p-values are shown. A p value of less than 0.05 was considered significant in 

a preliminary analysis. A Bonferroni’s correction was subsequently applied and a p of less than 

0.05/450 = 0.0001 was used instead. The mutations that remained significantly associated with PI 

exposure after the Bonferroni’s correction was applied are shown in bold.  
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P6 

MUTATION PI-naïve (n=200) PI-experienced (n= 191)  

n % n % P 

F463L 

F463V 

R464K 

R464G 

S465M 

G466R 

T469A 

T469I 

T470V 

T470A 

T471A 

T471S 

P472S 

Q474P 

E477G 

P478T 

P478Q 

I479V 

I479T 

0 

0 

0 

0 

0 

0 

0 

0 

0 

14 

4 

0 

0 

0 

0 

10 

0 

0 

6 

0 

0 

0 

0 

0 

0 

0 

0 

0 

7 

2 

0 

0 

0 

0 

5 

0 

0 

3 

22 

6 

12 

12 

8 

6 

6 

16 

6 

34 

18 

10 

10 

10 

10 

26 

22 

8 

22 

11 

3 

6 

6 

4 

3 

3 

8 

3 

18 

9 

5 

5 

5 

5 

14 

11 

4 

11 

<0.0001 

0.03 

0.0004 

0.0004 

0.007 

0.03 

0.03 

<0.0001 

0.003 

0.003 

0.03 

0.002 

0.002 

0.002 

0.002 

0.008 

<0.0001 

0.007 

0.003 

 

Table 4.1d Non-cleavage site mutations in P6 significantly associated with PI-exposure.  

Mutations showing significant different between 200 PI-naïve (none of them showing major PI 

mutations, 52 showing NRTI-resistance associated mutations and 23 showing NNRTI-resistance 

associated mutations) and 191 PI-experienced individuals (all of them showing major protease 

resistance associated mutations, 187/191 (98%) showing NRTI-resistance associated mutations and 

125/191 (80%) showing NNRTI-resistance associated mutations) are presented. A p value of less than 

0.05 was considered significant in a preliminary analysis. A Bonferroni’s correction was subsequently 

applied and a p of less than 0.05/450 = 0.0001 was used instead. The mutations that remained 

significantly associated with PI exposure after the Bonferroni’s correction was applied are shown in 

bold.  
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P1 

 

MUTATION 

PI-naïve  (n= 200) PI-experienced (n= 191)  

n % n % P 

K442R 0 0 8  4 0.007 

P2 V370M 

T371A 

T371Q 

N372P 

0 

0 

0 

0 

0 

0 

0 

0 

8 

8 

14 

6 

4 

4 

7 

3 

0.007 

0.007 

<0.0001 

0.03 

 

Table 4.1e Non-cleavage site mutations in P1 and P2 significantly associated with PI-exposure.  

Mutations showing significant different between 200 PI-naïve (none of them showing major PI 

mutations, 52 showing NRTI-resistance associated mutations and 23 showing NNRTI-resistance 

associated mutations) and 191 PI-experienced individuals (all of them showing major protease 

resistance associated mutations, 187/191 (98%) showing NRTI-resistance associated mutations and 

125/191 (80%) showing NNRTI-resistance associated mutations) are presented. A p value of less than 

0.05 was considered significant in a preliminary analysis. A Bonferroni’s correction was subsequently 

applied and a p of less than 0.05/450 = 0.0001 was used instead. The mutations that remained 

significantly associated with PI exposure after the Bonferroni’s correction was applied are shown in 

bold.  
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4.3.5 Comparison of Gag cleavage site mutations according to 

history of exposure to protease inhibitors  

At the five CSs, we detected 52 different mutations in PI-experienced individuals. The 

mutations were distributed as follow:  

 P17/P24. Six mutations were present at three positions: V128, Q130 and Y132. 

Variants at these residues were detected in 34/191 (18%), 16/191 (8%) and 2/191 (1%) PI-

experienced patients, respectively.  

 P24/P2. Three mutations were present at three positions A360, V362 and S368. 

Variants at these residues were detected in 2/191 (1%), 34/191 (18%) and 4/191 (2%) PI-

experienced patients, respectively. 

 P2/P7. 20 mutations were present at eight positions: S373, A374, T375, I376, M377, 

M378, R380 and G381. Variants at these residues were detected at a frequency ranging 

between 1% and 36% in the PI-experienced population.   

 P7/P1.Nine mutations were present at five positions: E428, R429, A431, K436, and 

I437. Variants at these residues were detected in 6/191 (3%), 2/191 (1%), 74/191 (39%), 

14/191 (7%), 28/191 (15%) and 4/191 (2%) PI-experienced patients, respectively. 

 P1/P6: 14 mutations were present at four positions: L449, S451, R452 and P453. 

Variants at these residues were detected at frequencies ranging between 1% and 21% in the 

PI-experienced population. 
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Overall, 17/52 CSMs were significantly associated with PI exposure when a cut-off of 0.05 

was considered. The majority of them 14/17 remained significantly associated with PI 

exposure after Bonferroni’s correction for multiple associations was applied (p= 0.05/50 = 

0.01). The 14 mutations associated with PI-exposure were: two in P17/P24 (V128I and 

Y132F), none in P24/P2, four in P2/P7 (S373T, A374S, T375A and T375N), three in P7/P1 

(A431V, K436R and I437V) and five in P1/P6 (L449F, S451T, S451R, R452S and P453T).  

 

Details of CSMs in PI-experienced and PI-naïve individuals are presented in table 4.1f.  

Comparison of the number of mutations detected on PI-naïve vs. PI-experienced sequences is 

depicted in figure 4.5.   
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 Mutation PI experienced 

patients (%) 

PI-naïve 

patients (%) 

p-value 

 

P17/P24 

Gag 128-137 

VSQNY/PIVQN 

V128I 

Y132F 

34 (18) 

16 (8) 

 

0 (0) 

0 (0) 

 

<0.0001 

< 0.0001 

 

P2/P7 

Gag 373-381 

SATIM/MQRGN 

S373A 

S373T 

A374S 

A374P 

T375A 

T375N 

G381S 

 

10 (5) 

16 (8) 

8 (4) 

6 (3) 

36 (19) 

36 (19) 

10 (5) 

0 (0) 

0 (0) 

0 (0) 

0 (0) 

15 (8) 

10 (5) 

2 (1) 

0.02 

<0.0001 

0.007 

0.03 

0.002 

<0.0001 

0.02 

 

P1/P7 

Gag 428-437 

ERQAN/FLGKI 

A431V 

K436R 

I437V 

74 (39) 

14 (7) 

28 (15) 

 

0 (0) 

2 (1) 

0 (0) 

 

<0.0001 

0.003 

<0.0001 

 

P1/P6 

Gag 444-453 

RPGNF/LQSRP 

L449F 

S451T 

S451R 

R452S 

P453T 

 

20 (10) 

16 (8) 

8 (4) 

10 (5) 

10 (5) 

0 (0) 

0 (0) 

0 (0) 

0 (0) 

0 (0) 

<0.0001 

<0.0001 

0.007 

0.002 

0.002 

 

Table 4.1f Gag CSMs significantly associated with PI-exposure.  

Mutations showing significant different between 200 PI-naïve (none of them showing major PI 

mutations, 52 showing NRTI-resistance associated mutations and 23 showing NNRTI-resistance 

associated mutations) and 191 PI-experienced individuals (all of them showing major protease 

resistance associated mutations, 187/191 (98%) showing NRTI-resistance associated mutations and 

125/191 (80%) showing NNRTI-resistance associated mutations) are presented. Total number of 

patients, percentage and p-values are shown. A p value of less than 0.05 was considered significant in 

a preliminary analysis. A Bonferroni’s correction was subsequently applied and a p of less than 

0.05/50 = 0.001 was used instead. The mutations that remained significantly associated with PI 

exposure after the Bonferroni’s correction was applied are shown in bold.  
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Figure 4.5 Number of different mutations detected in PR and Gag functional domains and CSs 

in PI-naïve and PI-experienced patients.  

Sequences from 200 PI-naïve (none of them showing major PI mutations, 52 showing NRTI-

resistance associated mutations and 23 showing NNRTI-resistance associated mutations) and 191 PI-

experienced individuals (all of them showing major protease resistance associated mutations, 187/191 

(98%) showing NRTI-resistance associated mutations and 125/191 (80%) showing NNRTI-resistance 

associated mutations) were compared.  
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4.3.6 PROTEASE CONSENSUS SEQUENCES 

The reference sequence HXB2 for the 99 amino acids forming the HIV-1 protease and the two 

consensus sequences obtained from 200 PI-naive and 191 PI-experienced patients, respectively, are 

shown. Primary and secondary resistance positions are shown in red and blue, respectively. Dots 

denote identity with the reference sequence 

 

Amino acid 1 2 3 4 5 6 7 8 9 10 11 12 

HXB2 P Q V T L W Q R P L V T 

PI-naive . . . . . . . . . V . AINST 

PI-experienced . . . . . . . . . IFV I AINST 

 

 

 

Amino acid 13 14 15 16 17 18 19 20 21 22 23 24 

HXB2 I K I G G Q L K E A L L 

PI-naive AIV . IV AEG EG KQ ILT IK . . . . 

PI-experienced AIV . IV AEG EG KQ ILT IK . . IL IL 

 

 

 

Amino acid 25 26 27 28 29 30 31 32 33 34 35 36 

HXB2 D T G D D D T V L E E M 

PI-naive . . . . . . . . FLV . ED IM 

PI-experienced . . . . . DN . IV FLV . ED IM 

 

 

 

Amino acid 37 38 39 40 41 42 43 44 45 46 47 48 

HXB2 S L P G R W K P K M I G 

PI-naive ADES . KPQ . KR . KRT . KR . . . 

PI-experienced ADES . KPQ . KR . KRT . KR ILM IV AGMV 
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Amino acid 49 50 51 52 53 54 55 56 57 58 59 60 

HXB2 G I G G F I K V R Q Y D 

PI-naive . . . . . .  . . KR . . DE 

PI-experienced . ILV . . FL ILMT  .  . KR EQ . DE 

 

 

 

Amino acid 61 62 63 64 65 66 67 68 69 70 71 72 

HXB2 Q I L I E I C G H K A I 

PI-naive EQ IV AHLPVST IMV DE . CES . HQ KR . ITV 

PI-experienced EQ IV AHLPVST IMV DE . CES . HQ KR AILV ITV 

 

 

 

Amino acid 

 61 62 63 64 65 66 67 68 69 70 71 72 

HXB2 Q I L I E I C G H K A I 

PI-naive EQ IV AHLPVST IMV DE . CES . HQ KR . ITV 

PI-experienced EQ IV AHLPVST IMV DE . CES . HQ KR AILV ITV 

 

 

 

Amino acid 73 74 75 76 77 78 79 80 81 82 83 84 

HXB2 G T V L V G P T P V N I 

PI-naive . S . . IV . . . . I . . 

PI-experienced CGST PST . LV IV . . . . ACFSV . IV 
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Amino acid 85 86 87 88 89 90 91 92 93 94 95 96 

HXB2 I G R N L L T Q I G C T 

PI-naive . . . . LMV . . . IL . . . 

PI-experienced . . . DNS LMV LM . . IL . . . 

 

 

 

Amino acid 97 98 99 

HXB2 L N F 

PI-naive . . . 

PI-experienced . . . 

 

 

4.3.7 GAG CONSENSUS SEQUENCES 

The reference sequence HXB2 for the 500 amino acids forming the HIV-1 Gag polyprotein and the 

two consensus sequences obtained from 200 PI-naive and 191 PI-experienced patients, respectively, 

are shown below. CS positions are shown in red and the beginning of each domain is indicated. Dots 

denote identity with the reference sequence.  

 

 

Amino acid 1 2 3 4 5 6 7 8 9 10 11 12 13 

HXB2 M G A R A S V L S G G E L 

PI-naive . . . . . . IV IL . . AG EKQ . 

PI-experienced . . . . . . . . . . . . . 

 

 

 

P17 
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Amino acid 14 15 16 17 18 19 20 21 22 23 24 25 26 

HXB2 D R W E K I R L R P G G K 

PI-naive . AKQR . . KR . . . . . . GS KNRS 

PI-experienced . AKR . . KR . KQR . . . GM . KR 

 

 

 

Amino acid 27 28 29 30 31 32 33 34 35 36 37 38 39 40 

HXB2 K K Y K L K H I V W A S R E 

PI-naive . KMQR . KQR . . . ILV . . . . . . 

PI-experienced . HKMQRT . KMQR . . . ILV VL . . GS . . 

 

 

 

Amino acid 40 41 42 43 44 45 46 47 48 49 50 51 52 

HXB2 E L E R F A V N P G L L E 

PI-naive . . . . . ASV ILV . . GS . IL . 

PI-experienced . LM . . FY . ILV . . GS . . . 

 

 

 

Amino acid 53 54 55 56 57 58 59 60 61 62 63 64 65 

HXB2 T S E G C R Q I L G Q L Q 

PI-naive . ALS DEGN . . KR . . ILM AEGRTV . IL . 

PI-experienced . APST ADEG . . KQR KQR . ILM EGRSTV HQ . HQ 

 

 

 

Amino acid 66 67 68 69 70 71 72 73 74 75 76 77 78 

HXB2 P S L Q T G S E E L R S L 

PI-naive . AS IL KQ . . . . . FIL KR . LV 

PI-experienced PS AST . KQR AT . ST . . FLV KR . . 
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Amino acid 79 80 81 82 83 84 85 86 87 88 89 90 91 

HXB2 Y N T V A T L Y C V H Q R 

PI-naive FY . . IV AV TV . . . . . QR KNR 

PI-experienced FHY ANT . ILV AV TV . FWY CF . . EQR GKNQR 

              

 

 

 

Amino acid 92 93 94 95 96 97 98 99 100 101 102 103 104 

HXB2 I E I K D T K E A L D K I 

PI-naive . DEG IV KQR . . KR . . . DE . IV 

PI-experienced IV DEGN IV KR . . KNQ . . . DE KQR ILV 

 

 

 

Amino acid 105 106 107 108 109 110 111 112 113 114 115 116 117 

HXB2 E E E Q N K S K K K A Q Q 

PI-naive . . . QR NT EK CGRS EK . IKT AETV . PQ 

PI-experienced . . DEIQ . DKNST EKQRT CS EKQR EKQR AKQR AIKTV PQ EKNQPS 

 

 

 

Amino acid 118 119 120 121 122 123 124 125 126 127 128 129 

HXB2 A A A D T G H S N Q V S 

PI-naive . . . . AT EGR . . KNSQ NQS ASV . 

PI-experienced APTV AEPTV AENV ADEGS AEIKRTV AEGNRV ADHKNRS DKNQS EGNQRS HKNPQST AIV . 

 

 

 

Amino acid 130 

 

131 

 

 

132 133 134 135 136 137 138 139 140 141 

HXB2 Q N Y P I V Q N I Q G Q 

PI-naive QH . . . . . . . AILM . . . 

PI-experienced HQRS . FY . . . . . AILMPV PQ . . 

 

 

P24 
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Amino acid 142 143 144 145 146 147 148 149 150 151 152 153 

HXB2 M V H Q A I S P R T L N 

PI-naive . IV . . ANPS ILM ST AP . . . . 

PI-experienced AMW ITV . . APS ILMP . . . DT . . 

 

 

Amino acid 154 155 156 157 158 159 160 161 162 163 164 165 

HXB2 A W V K V V E E K A F S 

PI-naive . . . . . IV EK . . AGN . NS 

PI-experienced . . . . . INV . . . AS . NS 

 

 

 

Amino acid 166 167 168 169 170 171 172 173 174 175 176 177 

HXB2 P E V I P M F S A L S E 

PI-naive . . IV . . . . AST . . AS . 

PI-experienced . . . IN . . . AST . . AS DE 

 

 

 

Amino acid 178 179 180 181 182 183 184 185 186 187 188 189 

HXB2 G A T P Q D L N T M L N 

PI-naive . AC . . QS . . . ST . . . 

PI-experienced . . . . HQ . . . MTV . . . 

 

 

 

Amino acid 190 191 192 193 194 195 196 197 198 199 200 201 

HXB2 T V G G H Q A A M Q M L 

PI-naive AT . . . . . . . . . . . 

PI-experienced IT IV . . . . . . . . IM . 
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Amino acid 202 203 204 205 206 207 208 209 210 211 212 213 

HXB2 K E T I N E E A A E W D 

PI-naive . DE . . . DE . . . . . . 

PI-experienced . DE AT . . DE . . ASV DE . . 

 

 

 

Amino acid 214 215 216 217 218 219 220 221 222 223 224 225 

HXB2 R V H P V H A G P I A P 

PI-naive . ILMTV . . AV HQ . . . AINV APV . 

PI-experienced . AILMTV . . AV HQ . . . AIV APV . 

 

 

 

Amino acid 226 227 228 229 230 231 232 233 234 235 236 237 

HXB2 G Q M R E P R G S D I A 

PI-naive . . IM . DE . . . . . . . 

PI-experienced . . IKLM . DE . . . . . . AP 

 

 

 

Amino acid 238 239 240 241 242 243 244 245 246 247 248 249 

HXB2 G T T S T L Q E Q I G W 

PI-naive . ST . . NT . AQ . . IV AGNT . 

PI-experienced . ST PT . NST LP . DE . IV AGNT . 

 

 

 

Amino acid 250 251 252 253 254 255 256 257 258 259 260 261 

HXB2 M T N N P P I P V G E I 

PI-naive . . GNST . AP AP IV . . . DE . 

PI-experienced . . GHNS . . AP ITV . . . DE . 
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Amino acid 274 275 276 277 278 279 280 281 282 283 284 285 

HXB2 V R M Y S P T S I L D I 

PI-naive . KR . . . . STV . . . . . 

PI-experienced . KR . . . . ACITV . . . . . 

 

 

 

Amino acid 286 287 288 289 290 291 292 293 294 295 296 297 

HXB2 R Q G P K E P F R D Y V 

PI-naive EKR . . . . . PS . . . . . 

PI-experienced KR . . . . . PS . . . . . 

 

 

 

Amino acid 298 299 300 301 302 303 304 305 306 307 308 309 

HXB2 D R F Y K T L R A E Q A 

PI-naive . . . FY KRS TV . . . . . AS 

PI-experienced . . . FY . ATV IL . . . . . 

 

 

 

Amino acid 310 311 312 313 314 315 316 317 318 319 320 321 

HXB2 S Q E V K N W M T E T L 

PI-naive ST PQ DE . . HNST . . . DE . . 

PI-experienced ST . DE . . GN . . . DE ST . 

 

 

 

Amino acid 322 323 324 325 326 327 328 329 330 331 332 333 

HXB2 L V Q N A N P D C K T I 

PI-naive . IV . . AS . . . . KR NTS . 

PI-experienced . . . . AS . . . . . ST . 
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Amino acid 334 335 336 337 338 339 340 341 342 343 344 345 

HXB2 L K A L G P A A T L E E 

PI-naive . KR . LM EG PQ AG . ST . . DE 

PI-experienced . KR . . . PT AG AS ST LQ EK DE 

 

 

 

Amino acid 346 347 348 349 350 351 352 353 354 355 356 357 

HXB2 M M T A C Q G V G G P G 

PI-naive IM . AIT . . . . . . . . GS 

PI-experienced . . AST . . . . LV . . . GS 

 

 

 

Amino acid 358 359 360 361 362 363 364 365 366 367 368 369 

HXB2 H K A R V L A E A M S Q 

PI-naive . . . KR IV . . . . . GS HQ 

PI-experienced . . AS . IV . . . . . CS HQ 

 

 

 

Amino acid 370 371 372 373 374 375 376 377 378 379 380 381 

HXB2 V T N S A T I M M Q R G 

PI-naive AIV SNT GNQS APQST ASNPT AINSTV IMV LM IMV . KR GS 

PI-experienced AMV ANQST GNPQS ACPST ANPST AINSTV IMV LM IMV . KR GS 

 

 

 

Amino acid 382 383 384 385 386 387 388 389 390 391 392 393 

HXB2 N F R N Q R K I V K C F 

PI-naive NT FY KR NST PQ KR KR INMPST IV . . . 

PI-experienced . FY NKRS GKNRS PQ GKR . AINPRSTV AIV KR . . 

 

 

 

P2 

P7 
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Amino acid 394 395 396 397 398 399 400 401 402 403 404 405 

HXB2 N C G K E G H T A R N C 

PI-naive . . . KR DET . . ILT AS KR . . 

PI-experienced . . . KR DEQT . . ILTV . KR . . 

 

 

 

Amino acid 406 407 408 409 410 411 412 413 414 415 416 417 

HXB2 R A P R K K G C W K C G 

PI-naive KR . . . KR KR . . . . . . 

PI-experienced KR . . . KR KR . . . KR . . 

 

 

 

Amino acid 418 419 420 421 422 423 424 425 426 427 428 429 

HXB2 K E G H Q M K D C T E R 

PI-naive KQR . . . . IM KR DE . NT ED . 

PI-experienced KQR . . . . IM KR DE . AINST EDG GKR 

 

 

 

Amino acid 430 431 432 433 434 435 436 437 438 439 440 441 

HXB2 Q A N F L G K I W P S Y 

PI-naive . . . . . . KR . . PS PS HY 

PI-experienced . AV . . . . GKR ILV . PS PS HY 

 

 

 

Amino acid 442 443 444 445 446 447 448 449 450 451 452 453 

HXB2 K G R P G N F L Q S R P 

PI-naive . . . . . . . LP EQ ANS . LP 

PI-experienced KR EG . . . . . FHLPV . GNRST GRS ALPST 

 

 

 

P1 

P6 
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Amino acid 454 455 456 457 458 459 460 461 462 463 464 465 

HXB2 E P T A P P E E S F R S 

PI-naive ET . ST . . . AE . . . . . 

PI-experienced AEP . ST . . . AE EQ ILS FLV EGKLR CEFMS 

 

 

 

Amino acid 466 467 468 469 470 471 472 473 474 475 476 477 

HXB2 G V E T T T P P Q K Q E 

PI-naive GR . EG KT AT APT . PS . KR PQ DE 

PI-experienced GMQR EV EGK AIKT AITV APQST PS PS QP . . DEG 

 

 

 

Amino acid 478 479 480 481 482 483 484 485 486 487 488 489 

HXB2 P I D K E L Y P L T S L 

PI-naive LPST IKRT . . DEG KLMQ PY . LV AT . . 

PI-experienced AKPQST AEGIKLRTV DEGNSV EKNQR DEG KLMQP APY AP . ADSTV AS . 

 

 

 

Amino acid 490 491 492 493 494 495 496 497 498 499 500 

HXB2 R S L F G N D P S S Q 

PI-naive KR . . . . NS . PL LS LS KQ 

PI-experienced KR . . . . NS DS PQ LST . KQT 
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4.3.8 Association between protease and Gag mutations 

We analyzed the 191 sequences obtained from PI-experienced patients and explore the 

relationship between major resistance mutations in PR (22 mutations at 14 positions listed 

along the 99 amino acids) and Gag mutations identified in this study and described in section 

4.3.4 as being associated with PI-exposure, after Bonferroni’s correction for multiple 

comparisons was applied (19 mutations at 18 non-CS positions and 14 mutations at 12 CS 

positions). Therefore, PR mutations including in this analysis were: D30N, V32I, M46I, 

M46L, I47V, G48A, G48M, G48V, I50L, I50V, I54L, I54M, I54T, L76V, V82A, V82C, 

V82F, V82S, I84V, N88D, N88S and L90M. Gag Non-CSMs associated with PI-exposure 

included in the analysis were:  L61I, I94V, K103R, K113Q, K114R, D121G, D121A, T122E, 

N126S, Q127K, T186M, T190I, A210S, E211D, S310T, T371Q, F463L, T469I and P478Q. 

Finally, Gag CSMs associated with PI exposure included in the analyses were: V128I, 

Y132F, S373T, A374A, T375A, T375N, A431V, K436R, I437V, L449F, S451T, S451R, 

R452S and P453T. A total of 418 combinations of Non-CSMs and major PR resistance 

mutations were identified and analyzed with Fischer’s exact test. Only two associations were 

selected based upon the Bonferroni’s corrected p value cut-off (< 0.05/418 = 1.2 x 10
-4

).  

Similarly, we identified 308 combinations of major PR and CSMs and only one associations 

retained significance after applying the Bonferroni’s correction for multiple associations (p < 

0.05/308 = 1.6 x 10
-4

).   The association between the CSM A431V and the PR mutations 

M46I/L  as well as between CSM L449F and I84V that have been extensively described in 

the literature were close to the cut-off p value defined in the study ( p = 6 x 10
-4 

and 2 x 10
-4

, 

respectively) . Results are shown in table 4.2    
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P values for indicated Gag residues
a
 

Protease 

mutations 

P17 

N126S 

P17/P24 

Y132F 

P2/P7 

T375A    G381S 

P7/P1 

A431V
b
 

P1/P6 

L449F
b 

D30N  0.008    

M46I/L < 10
-5

 0.03 0.004 6 x 10
-4

  

I54V < 10
-5

   < 10
-4

  

V82A   0.02   

I84V     2 x 10
-4

 

L90M    0.01  

 

Table 4.2 Association between major protease resistance mutations and Gag mutations.  

The table shows the associations between Gag and major protease resistance mutations which were 

statistically significant when considered a p value = 0.05.  
a
p values in bold correspond to the 

associations retained using the Bonferroni’s correction method (p= 1.2 x 10
-4 

for NCSMs and 1.6 x 10
-

4
 for CSMs, respectively). 

b
The association between A431V and M46I/L and between L449F and 

I84V showed  p values close to the Bonferroni’s corrected p value defined in the study p = 1.6 x 10
-4

. 
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4.4 Discussion 

In the present chapter, we performed a cross-sectional comparison of sequences from PI-

naïve and PI-experienced individuals in order to assess differences in the prevalence and 

patterns of mutations in the Gag protein. We identified key substitutions in both cleavage and 

non-cleavage site residues of Gag that were significantly associated with PI-exposure and the 

presence of major resistance mutations in the PR gene.  

 

Multiple pressures shape the evolution of Gag during long-term HIV-1 infection. Firstly, its 

key role in viral assembly and infectivity, which is mediated by the functional role of 

different gag cleavage products (Wang et al. 1993). Secondly, the immune system, as 

numerous CD8 epitopes are known to be located across the gag protein. Lastly, in those 

patients on suboptimal PI-based regimens who develop mutations on PR, Gag protein is 

likely to co-evolve in order to preserve the efficient cleavage of the polypeptide by the 

mutated PR. 

  

During or soon after the release of the immature virion from the plasma membrane, the gag 

polyprotein precursor (Pr55
gag

) is cleaved by the viral PR into four major Gag cleavage 

products, namely P17, P24, P7 and the C-terminal peptide P6. In addition, two small spacer 

peptides are generated - P2 which is closer to the N-terminus of Gag and P1. Polyprotein 

processing causes a dramatic transformation in viral structure. This process, known as 

maturation, gives rise to the condensed conical core, which is characteristic of fully infectious 

HIV viral particles. Each of the individual Gag proteins has multiple functions. The P17 
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protein plays a crucial role in targeting the Gag precursor to the site of assembly on the 

plasma membrane (Facke, et al. 1993; Spearman, et al. 1994; Wang et al, 1993; Yuan et al. 

1993); it is also essential for the stable association of the envelope glycoprotein with the viral 

capsid (Dorfman et al, 1994; Wang et al. 1993; Yu, et al. 1992) and its association with the 

pre-integration complex suggests that it might be important in directing this complex to the 

nucleus (Burkrinsky et al, 1993a; Burkrinsky et al, 1993b). The P24 protein is the major 

structural component of the virion, forming the capsid that encases the ribonucleoprotein 

complex. It influences both viral assembly and replication activities and determines the 

internal organization of the assembled and budded viral material (Cairns and Craven, 2001).  

The P7 protein contains sequences that are essential for the efficient encapsidation of the viral 

genomic RNA into the assembled viral particles (Aldovini and Young, 1990; Dorfman et al, 

1993; Gorelick, et al. 1988). The C-terminus proline-rich P6 peptide appears to be important 

in mediating viral budding (Gottlinger, et al. 1991). Little is known about the function of the 

two spacer peptides P1 and P2, which are present in all primate lentivirus.  Although poor 

conservation in sequence and length of these two peptides has been reported among different 

viruses (Henderson et al, 1988), their consistent presence suggests that they may have an 

important function in the retrovirus life-cycle. In fact, in the case of P2, early studies showed 

that this spacer peptide is essential for virus replication (Henderson et al, 1988).  

 

In agreement with the crucial roles that each functional Gag protein exerts in the life-cycle of 

HIV, we observed conserved amino acid motifs in each of them, including many known to be 

essential in the accomplishment of protein function during viral assembly. The first few 

amino acids located in the N-terminal of MA-P17 contain a myristilation signal that is 

essential for the formation of extracellular viral particles (Bryant et al. 1990; Gottlinger et al. 
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1989). In addition, a stretch of basic amino acids located between amino acid 17 and 31 is 

known to be responsible for the targeting of HIV-1 Gag to the plasma membrane during virus 

assembly by interacting with acidic phospholipids (Zhou et al, 1994). In an early mutagenesis 

analysis of the matrix protein performed by Freed and colleagues, mutations at some residues 

in this region, (i.e., R20, L21 and P23) were found to significantly decrease virus production 

(Freed et al, 1994). In the same study, several scattered residues in the C-terminus of matrix, 

such as A37, L50, E52, were also reported to decrease viral production and mutations at G56, 

C57 and I60 resulted in the complete absence of viral replication as well as mutations 

between positions L85 and H89.   

 

A high degree of conservation was observed in P24. The major homology region (MHR), 

which is located between amino acids I285 and L304, is known to be conserved across all 

lentivirus and has an important role in viral replication (Gorelick et al, 1990). Mutations in 

this region often interfere with particle assembly (Borsetti et al, 1998; Dorfman et al, 1994; 

Ebbets-Reed et al, 1996; Gamble et al, 1997; Mammano et al, 1994).Mutations at residues 

Q155, E159 and Y164 substantially reduce gag proteins release. In addition, numerous 

mutations scattered throughout the P24 protein have been found to block viral assembly and 

release (Chazal et al, 1994; Mammano et al 1994; Zhao et al 1994).  

 

The P7 protein contains the histidine box located between amino acids C392 and C405, 

which constitutes a metal-binding domain essential for effective RNA encapsidation, and 

mutations in this region yield viral particles with defective RNA encapsidation (Aldovini et al 

1990; Gorelick et al 1988; Gorelick et al 1990).  Three cysteines (C392, C395 and C405) and 
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one histidine (400H) are conserved. In addition, an aromatic amino acid at position Y393 and 

a basic amino acid at position K397 are also conserved.  

 

Consistent with these findings, the residues mentioned above were also highly conserved 

across our study population.  

 

P6 has been found to be the most variable protein in all primate lentiviruses including HIV 

(Accola et al, 2000). In agreement with this data, we observed some degree of variability in 

most of the amino acids of this protein in our population. However, even in this highly 

variable peptide we could recognise two highly conserved motifs. The first one was the 

PT/SAP motif located close to the amino terminus end of P6, from amino acids 455P to 

459P; this has been reported to be essential for viral release (Gottlinger et al, 1993; Huang et 

al, 1995). It has been demonstrated that mutations in this domain cause a defect in the 

budding process, which results in a larger number of immature particles tethering to the 

plasma membrane (Gottlinger et al 1991; Huang et al, 1995). The second conserved domain 

in the P6 protein was located towards the C-terminus and included amino acid L489 and 

491SLFG494. The conservation of this motif is less understood; the residues are known to be 

essential for the incorporation of the accessory protein Vpr into the assembling HIV-1 virion 

(Kondo et al, 1995; Kondo et al, 1996; Lu et al, 1995).  However, since this motif is 

dispensable for the incorporation of Vpr or the equivalent Vpx in certain simian 

immunodeficiency virus (Accola et al, 1999), it can be proposed that the interaction of the 

motif with other crucial factors during viral assembly must be in fact responsible for the 

striking conservation across HIV-1 strains. Apart from this constraint, the rest of the P6 
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protein seems to exhibit high plasticity with the exception of a few scattered conserved 

residues. 

 

With regard to the CSs, we observed a high degree of conservation in some of the amino 

acids that constitute the site of cleavage of HIV-1 PR, in particular those that directly 

constitute the cleavage bond (P1 and P1’). Sequential and ordered proteolytic processing of 

HIV-1 Gag is required to achieve fully infectious viral particles, and this process partially 

depends on the amino acid sequence within the processing site, thus explaining the necessity 

for some degree of conservation in the CS sequences. However, other determinants, such as 

the sequence of regions near the processing site that determines its accessibility are likely to 

contribute to effective processing. In addition, conservation across CSs is not equally 

distributed. Some of them, such as P2/P7, were highly variable, while others, such as P24/P2, 

were highly conserved. Amino acids at CSs are not only important for the concerted cleavage 

of the gag precursor polyprotein by the viral PR, but may in some cases be part of larger 

domains crucial for completion of the viral life-cycle. For example, amino acids located at the 

P24/P2 CS, and in particular those between amino acids L363 and S368, have been found to 

be part of a domain in P24 essential for viral replication. By contrast, those located in the 

P2/P7, and particularly those at the N terminus site between amino acids 373S and 378M, can 

be deleted without having a significant impact on viral replication, (Accola et al, 1998), 

which may at least partially explain the marked differences in variability in these two CSs.  

 

When we compared the PR and gag sequences obtained from PI-naïve and PI-experienced 

patients, we observed that PI-experienced patients had a higher variability not only in PR but 
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also throughout the Gag polyprotein. Importantly, certain mutations were significantly more 

prevalent in PI-experienced patients and others were completely absent across the PI-naïve 

population, suggesting that selective pressure with PIs leads to genetic evolution not only in 

PR but also in Gag. A role for Gag mutations in mediating PI resistance was proposed early 

after the introduction of PIs in antiretroviral therapy. In 1996, Doyon and colleagues 

demonstrated that HIV-1 variants highly resistant to PIs in vitro, showed mutations in the PR 

and also in the two gag CSs P1/P6 and P7/P1. In addition, they observed that CSMs improved 

polyprotein processing in viruses with PR mutations, providing the first evidence of a 

possible mechanism by which mutations in Gag can compensate for impaired PR activity. 

Furthermore, they observed that PR-mutated viral clones that contained CSMs grew much 

better in vitro than clones in which such mutations were removed by site-directed 

mutagenesis, highlighting a potential compensatory role for the CSMs (Doyon et al, 1996).  

Since then, numerous studies have demonstrated a role for Gag CSMs in failure to PIs, in 

particular for those located at the C-terminal P7/P1/P6. Although most studies agree on 

attributing a compensatory role to CSMs, the mechanism by which these mutations exert their 

function seems to differ. Thus, Gatanaga and colleagues observed that mutations in Gag were 

indeed essential for the efficient replication of APV-resistant variants. However, while the 

mutated gag was required for viral replication, the rate of cleavage was comparable to that 

exhibited by wild-type gag, suggesting that an alternative mechanism must be responsible for 

the compensatory role of Gag mutations towards improved polyprotein processing (Gatanaga 

et al, 2002).   

Most of the mutations at these two CSs (P7/P1 and P1/P6) that were associated with PI-

exposure in our study, such as A431V, I437V, K436R or L449F, have been previously 

described.  Thus, in line with previous studies (Verheyen et al, 2006), the A431V mutation 
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was found to be the most prevalent mutation in PI-experienced patients in our population. 

This mutation has been described before, both in vitro and in vivo (Mammano et al, 2000; 

Zhang et al, 1997; Maguire et al, 2002; Cote et al, 2001; Bally et al, 2000 and Dauber et al, 

2002). The residue is in direct contact with the substrate-binding pocket and the mutation 

results in an enhanced cleavage of P7/P1 by wild-type PR. Increased processing of A431V-

containing CS was also demonstrated in the background of primary PR resistance mutations 

at codons 46, 82, 84 and 90 (Feher et al, 2002).  Similarly, the L449F mutation, which on its 

own does not confer PI resistance, was associated with reduced PI susceptibility in the 

background of the major PR mutation I50V (Maguire et al, 2002; Prado et al, 2002). In 

addition, mutations such as I437V, which was also found to be associated with PI-exposure in 

our study, have been associated with enhanced proteolytic processing and direct contribution 

to PI resistance. Of note, the mutation was selected in the absence of any substitution in the 

PR during in vitro passages employing novel PIs (Nijhuis et al, 2007).  

 

In our study, we found mutations associated with PI-exposure not only at P7/P1/P6 CS but 

also at all other CS, except for P24/P2. This cleavage site, similarly to what we observed in 

PI-naïve individuals, was also highly conserved in PI-experienced patients and the rare 

mutations detected in this site did not show a significant different prevalence between PI-

naïve and PI-experienced patients. The P24/P2 sequence has been reported to be one of the 

best HIV-1 processing sites (Richards et al, 1990 and Tozser et al, 1991), an observation that 

may account for the high degree of conservation observed in both PI-naïve and PI-

experienced patients, as little improvement can be added by sequence modification. In 

addition, as mentioned above, this CS along with sequences located closely in P24 and P2 

constitutes a domain that plays a pivotal role in viral replication (Accola et al, 1998). 
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 We detected a number of mutations at P2/P7 and P17/P24 that were significantly associated 

with exposure to the PIs. The implication of mutations at these two CS in PI failure has been 

only briefly suggested in the literature. For example, the two mutations in P17/P24 associated 

with PI-exposure in our study, namely V128I and Y132F, have been previously reported. 

V128I was documented by Dierynck and colleagues as the only CS gag mutation emerging in 

patients whose viral load rebounded during DRV/r monotherapy (Dierynck et al, 2007). 

Similarly, the Y132F mutation was found to be linked to certain primary PR mutations and 

associated with improved rate of cleavage of P17/P24 (Myint et al, 2004; Ueda et al, 2005). 

Mutations at P2/P7 have also been briefly documented. Malet and colleagues reported an 

association between variants at codon 373 and impaired responses to ritonavir booster 

saquinavir (SQV/r)-based regimens. Nevertheless, a clear role for mutations at P17/P24 and 

P2/P7 in failure to PIs remains to be established, although it is worth mentioning that the 

number of studies looking at the P7/P1/P6 CS by far outnumbers that of studies looking at 

other CSs, explaining the substantial difference in information regarding mutations in PI-

experienced patients at this CS and the others.  

 

In the present chapter, we have seen that under PI-selective pressure mutations are likely to 

be selected not only in PR and its CSs but also in gag regions outside of the CSs. A role for 

Gag mutations outside cleavage site in PI failure has been previously suggested. Gatanaga 

and colleagues studied the effect of various substitutions on the development of HIV-1 

resistance to APV: L75R in the P17 protein, H219Q in the P24 protein, V390D/A and R403K 

in the P7 protein and E468K in the P6 protein, together with the P1/P6 CSM L449F. They 

concluded that both the CSMs and the mutations located outside CSs were essential for the 
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efficient replication of APV-resistant HIV-1. They also observed that while some non-CSMs 

were selected before major APV resistance-associated mutations, others only emerged after 

the selection of major PR mutations; both groups were shown to be required for efficient viral 

replication. However, they failed to demonstrate any differences in the mutated PR cleavage 

patterns between the wild-type and the gag mutated virus, suggesting once again that gag 

evolution under PI-selective pressure may facilitate certain functions such as assembly, 

packaging and budding functions and contribute to resistance to PIs by means other than 

recovery of polyprotein cleavage function (Gatanaga et al, 2002). Similarly, Myint and 

colleagues demonstrated that non-CSMs are as important as CSMs for the recovery of fitness 

in PI-resistant viruses. In addition, they saw that non-CSMs differed in different viral clones, 

suggesting that while PR and CS mutations implicated in PI-failure may be consistent across 

different patients, the pattern of non-CSMs may vary widely (Myint et al, 2004).  

 

In our study, we observed a trend towards a higher number of mutations in PI-experienced 

patients compared with PI-naïve patients at all gag domains. The effect was particularly 

noticeable in the P17 and the P6 proteins, suggesting a potentially more prominent role of the 

two proteins in PI failure compared with other gag regions. Recently, Parry and co-authors 

studied full-length Gag and PR genes from one multidrug resistant clinical isolate and 

showed that the P17 protein from the multidrug resistance virus was on its own able to rescue 

the replicative capacity (RC) of the mutated PR to the level observed in the WT virus. In 

addition, they also demonstrated that such mutated P17 protein could lead to a reduction in 

susceptibility to PIs in the absence of major PR resistance mutations, suggesting that major 

determinants of PI-resistance may be located in the HIV-1 P17 protein (Parry et al, 2009). 

They observed 12 mutations in the P17 protein from the clinical isolate when compared with 
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the HXB2 reference sequence; of these six (I34L, T84V, E93D, I94V, N124K and N126S) 

were found to be associated with PI selective pressure in our analysis. In particular two 

mutations (I94V and N126S) remained significant even after applying the Bonferroni’s 

correction. Similarly, other studies have suggested that the P6 protein inhibits HIV-1 PR 

function (Paulus et al, 1999) and therefore it is speculated that variations in its sequence may 

change PR activity, thereby affecting viral fitness and PI susceptibility. Kaufman and co-

workers explored this hypothesis by looking at mutations in the P7/P1/P6 CS and the P6 

protein in patients who experienced virological failure while on a SQV/r-based therapy. They 

observed that mutations emerged in the P6 region and were in general associated with major 

PR mutations which suggest a compensatory role for mutations in this region. They also 

reported an association between insertions in the P6-region and failure (Kauffman et al, 

2001). This observation has not been confirmed by other investigators, and in fact we did not 

find a higher prevalence of insertions in the P6 protein in PI-experienced patients compared 

with PI-naïve individuals in our study.  

 

 Several statistically significant associations between Gag and PR mutations were identified 

in the present analysis. The M46I/L mutation was associated with the CSM A431V as well as 

with the mutation N126S in P17. A431V was also associated with the I54V mutation in PR. 

The M46I/L and I54V mutations have been found to be associated in isolates obtained from 

patients receiving PI-based regimen (Wu, 2003) and may be selected in patients failing IDV/r 

(Condra et al, 1996). The relationship of the M46I/L and I54V cluster with the A431V 

mutation in Gag has been previously described (Bally et al, 2000; Koch et al 2001; Malet et 

al, 2007). In addition, we identified an association between the PR mutation I84V and the 

P1/P6 Gag CSM L449F. This association was also previously described by Verheyen and 
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colleagues (Verheyen et al; 2006). In addition, we observed an association between a non-

CSM located in the P17 protein N126S and two major PR mutations M46I/L and I54V, 

which has not been previously reported. However, as it has been previously pointed, studies 

addressing the impact of mutations beyond the Gag CSs NC-P7/P1/P6 are scarce. In the study 

performed by Parry and colleagues, a multi-protease resistant patient showed the M46I, 

L33F, I54V and V82A mutations in PR and full length gag sequencing identified the N126S 

mutation in the P17 protein along with other seven mutations. However, the study was based 

on the analysis of a single patient and therefore no statistical association between mutations 

could be confirmed. As discussed above, the study showed the important role that the P17 

protein plays in conferring resistance to PIs, but whether this can be attributed to specific 

residues or to the whole protein was not clarified in the study.  

 

It should be emphasized that all of the sequences analyzed in the present chapter were 

subtype B HIV-1 and consequently those mutations identified as associated with PI exposure 

in our population could be naturally occurring polymorphism in other HIV-1 subtypes what 

may have implications for susceptibility to PIs of such non-B subtype viruses. Studies 

addressing the variability of gag in both B and non-B subtypes are scarce. De Oliveira and 

colleagues reported a greater variability of Gag for subtype C HIV-1 compared to B subtype 

particularly at certain CSs such as P2/P7 and P17/P24 (De Oliveira et al, 2003). Similarly, 

Jinnopat reported a higher Gag variability in subtype CRF01 HIV-1 (Jinnopat et al, 2009) and 

in particular the mutations L61I and P66S in P17 were frequently detected in drug-naïve 

CRF01 viruses. Both L61I and P66S mutations were associated with PI-exposure in our study 

and in the case of L61I mutation the association remained significant once the Bonferroni’s 

correction for multiple associations was applied.  In addition, Gupta and co-authors detected 
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the T84V mutation frequently in subtype A (Gupta et al, 2010), which have also been 

associated with PI-exposure in our study.  Importantly, both Jinnopat and Gupta reported a 

decreased susceptibility of recombinant viruses containing CRF01 and A subtype Gag, 

respectively, compare to viruses containing subtype B Gag (Jinnopat et al, 2009 and Gupta et 

al, 2011). Overall, these findings suggest that indeed mutations selected under PI –selective 

pressure in subtype B HIV-1 can occur as natural polymorphism in non-B subtypes and may 

contribute to decrease susceptibility to PIs of non-B subtype HIV-1 viruses. However, further 

studies are required to confirm this hypothesis. In summary, in this chapter we have showed 

that several Gag mutations are more common in subtype B-infected PI-experienced patients 

than in those who have never been exposed to these drugs infected with the same subtype, 

and demonstrated that certain specific mutations were in fact statistically associated with PI-

exposure.  

 

In agreement with previous studies, we have found that mutations located at P2/P7/P1/P6 

including T375A, A431V, I437V and L449F were associated with PI exposure and with the 

presence of specific PR mutations namely M46IL, I54V and I84V. In addition, by addressing 

full-length Gag sequencing, we have expanded previous reports and have identified a number 

of mutations strongly associated with PI selective pressure namely, V128I, Y132F, S373T, 

A374S, T375N and S451T in Gag CS and L61I, I94V, K103R, K113Q, K114R, D121AG, 

N126S, T186M, A210S, E211D, T371Q, F463L, T469I and P478Q outside gag CS.   

 

 As a consequence full-length PR and gag sequencing may be of importance for the full 

assessment of failure to PIs. A longitudinal analysis of Gag and PR genes in patients with 



- 197 - 

 

ongoing viraemia while on PI-based regimen may be helpful to clarify the role of gag mutations 

in failure to PI inhibitors. Clonal analysis and phenotypic analysis could be also important to 

confirm linkage and effect of specific gag mutations. These points will be addressed in 

subsequent chapters.    
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5 Chapter five: genetic evolution of HIV-1 Gag and 

protease in patients failing a ritonavir-boosted 

protease inhibitor-based antiretroviral regimen  

5.1 Introduction 

Ritonavir-boosted protease inhibitors (PI/r) are among the most effective antiretroviral drugs 

(ARVs) currently employed for the treatment of HIV infection. These compounds inhibit the 

proteolytic activity of the viral protease enzyme and as a result they exert a powerful 

inhibitory action on HIV replication both “in vitro” and “in vivo”. In the large majority of 

treated patients, combination regimens containing PI/r result in effective and sustained 

suppression of HIV replication, dramatically reducing HIV-related morbidity and mortality. 

However, as with all other ARVs, failure to fully suppress HIV replication leads to the 

development of PI drug-resistance.  

 

HIV resistance to PIs is a stepwise process in which accumulation of amino acid substitutions 

in the viral protease causes a progressive increase in the level of resistance. (Condra et al, 

1996; Molla et al, 1996). The first mutations to be selected are generally those affecting 

amino acids that are in or close to the substrate-binding site of the enzyme: these mutations, 

which are termed primary mutations, often differ from one PI to another. Subsequently, 

secondary mutations develop, which involve amino acids located away from the substrate-

binding site: these mutations are generally less drug-specific than primary mutations. Primary 

and secondary mutations produce in conjunction an enlargement of the catalytic site of the 
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enzyme, which decreases the affinity of the viral protease for the inhibitor (Logsdon et al; 

2004; Prabu-Jeyabalan et al; 2006a; Prabu-Jeyabalan et al, 2006b). In general, primary 

mutations are accountable for the resistant phenotype displayed by the mutated virus. By 

contrast, secondary mutations often do not have a substantial resistance effects, but they 

restore, at least partially, the fitness impairment caused by primary mutations. As a 

consequence, secondary mutations are still critical for the development of high-level PI 

resistance (Mammano et al, 2000; Martinez-Picado et al, 1999; Zennou et al, 1998).  

As discussed in the previous chapter, a key feature of resistance to the PIs is that mutations 

implicated in drug resistance and viral fitness are located not only in the viral protease, but 

also in its natural substrate Gag. Similarly to secondary mutations in the HIV-1 protease, 

substitutions in Gag were initially described as compensatory mutations aimed at restoring 

the loss of viral fitness caused by primary mutations (Doyon et al, 1996; Zhang, et al. 1997). 

Following these  observations, several studies pointed to the importance of Gag mutations in 

the evolution of HIV resistance to the PIs (Brumme et al, 2003; Banke et al, 2009; Brann et 

al, 2006; Cote et al, 2001; Maguire et al, 2002; Malet et al, 2007; Robinson et al, 2000). Since 

then, evidence has been accumulating that Gag mutations can also directly affect HIV 

susceptibility to the PIs independently of their effect on viral fitness (Zhang et al, 1997;; 

Maguire, et al. 2002; Prado, et al. 2002). Two recent studies in particular, clearly 

demonstrated that Gag mutations should be considered as authentic PI resistance mutations 

(Dam et al, 2009; Nijhuis et al, 2007). Nevertheless, it should be emphasized that all of the 

above studies have exclusively investigated mutations affecting cleavage site (CS) sequences 

in the P7-NC/P1/P6 region of Gag. A more recent paper however suggested that domains in 

Gag beyond its CSs can have both resistance and fitness effects in viruses bearing primary 

mutations in the protease (Parry et al, 2009).  
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Despite this body of knowledge, the impact of Gag mutations on clinical responses to PI-

based regimens remains to be established. Several studies have demonstrated that patients 

experiencing viraemia during their first PI/r containing regimen infrequently show primary 

protease resistance mutations in routine testing (Kempf et al, 2004; Delaugerre et al, 2009; 

Gupta et al, 2008; Lathouwers et al, 2011). Suboptimal adherence and fast pharmacokinetics 

of PIs compared to other drug classes such as the non-nucleoside reverse transcriptase 

inhibitors (NNRTIs) (Bangsberg et al, 2004) have been suggested as determinants for the 

frequent lack of protease drug-resistance mutations at the time of PI/r failure. Rapid clearance 

in particular may explain both the more common occurrence of rebound low-level viraemia 

during PI/r therapy and the narrower window for effective drug-selective pressure (i.e., the 

optimal combination of sufficient levels of virus replication and sufficient drug levels) 

compared to the NNRTIs (Bangsberg et al, 2004; Geretti et al, 2008). However, emergence of 

protease mutations can be observed during prolonged failure of a PI/r based regimen, and is 

facilitated by pre-existing protease mutations (Bandaranayake et al, 2010). There are scarce 

longitudinal data addressing Gag evolution in this population.  

 

In the previous chapter, we demonstrated that Gag mutations are observed in patients exposed 

to PIs and that many of these mutations are infrequent or absent in PI-naïve individuals. 

Importantly, mutations associated with PI-exposure were detected throughout the entire HIV-

1 Gag protein and not exclusively in CSs. Based upon this observation; we proposed that full-

length Gag sequencing may be required for full assessment of PI resistance.   
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The objective of the present chapter was to extend the above cross-sectional observations and 

longitudinally assess the emergence of mutations in the HIV-1 Gag and PR genes during 

failure of a PI/r-based regimen. Specifically, this involved the selection of patients with 

matched pre-treatment and failure plasma samples, the amplification and sequencing of full-

length Gag and PR at the two time points and the comparison of the sequences obtained. In 

addition, we postulated that if Gag mutations compensate for the loss of viral replicative 

capacity caused by protease resistance mutations, Gag and protease mutations should be 

linked on the same viral genome. To assess this hypothesis, we performed clonal analysis in 

samples showing evolution of Gag and PR genes.  
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5. 2 Methods 

5.2.1 Patient population 

We examined two groups of patients. The first group (Group I) received PI/r-based therapy 

within the MaxCmin1, MaxCmin2 and COLATE trials, experienced virological failure (see 

below) and had a resistance test available at both study entry (baseline) and virological 

failure. Patient’s treatment histories were examined in detail in order to exclude those that 

stopped therapy due to toxicity or poor adherence. The second group (Group II) consisted of 

PI/r-treated patients attending the HIV services of the Royal Free Hospital who presented 

with ongoing viraemia and evidence of accumulating protease resistance-associated 

mutations.  

 

5.2.2 Definition of virological failure for trial population 

Since the definition of virological failure differed between the three trials, we applied the 

MaxCmin2 definition on the combined trial population. This is: 

 For patients entering the trial with a HIV-1 RNA load <200 copies/ml, a confirmed viral 

load ≥200 copies/ml at any time during the trial.  

 For patients entering the trial with a viral load ≥200 copies/ml: 

o Any confirmed rise in viral load of > 0.5log10 copies/ml and/or 

o ≤ 0.5 log reduction in viral load at week 4 
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o ≤ 1.0 log reduction in viral load at week 12 

o Viral load ≥ 200 copies/ml at week 24 

 

5.2.3 RNA extraction 

One milliliter of plasma was centrifuged at 25,000 g for 1 hour at 4ºC to concentrate the 

virus. The supernatant was then removed and the pellet re-suspended to a final volume of 280 

µl. The re-suspended pellet was used for nucleic acid extraction. Samples with viral load 

above 1,000 copies/ml were subsequently processed employing the automated extractor 

EasyMag (Nuclisens, France) and those with viral load lower than 1,000 copies/ml were 

processed manually with the QIAamp Viral RNA Minikit (Qiagen, Germany). The RNA was 

eluted into 55 µl of elution buffer and stored at - 80ºC until required.   

 

5.2.4 Amplification of Gag-protease region 

The 2 Kb PCR product comprising the HIV-1 Gag and PR was amplified by nested PCR 

employing the invitrogene amplification protocol described in section 2.2.2.2.2 in chapter 

two.   
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5.2.5 Sequencing of Gag-protease region 

Purified PCR products of the right size were diluted to a final concentration of approximately 

10-20 ng/µl and population sequencing was performed using the ABI PRISM BigDye 

Terminator v3.1.ready reaction cycle sequencing Kit. Primers selected for PR and Gag 

sequences were those described in chapter 3 (Table 3.2). Sequences obtained were 

subsequently analyzed using Sequence analysis version 5.0 and Seqscape version 6.0.  

 

5.2.6 Classification of Gag and protease mutations 

As explained in chapter 4 (sessions 4.2.9 and 4.2.10) PR and Gag sequences from patients 

were aligned against the HXB2 HIV-1 reference sequence. Mutations were considered as any 

change with respect to the reference sequence. PR resistance associated mutations were 

assessed according to the IAS-2011 list (Figure 5.1). Gag mutations were classified into 

cleavage site mutations (CSMs) and non-cleavage site mutations (non-CSMs) and stratified 

as those associated and not associated with PI-exposure according to the cross-sectional 

analysis performed in the previous chapter.  

 

5.2.7 Cloning of Gag and protease genes  

PCR products obtained from selected patients were purified and cloned into the commercial 

vector pCR 2.1-TOPO (Invitrogene). Positive clones, identified as those harbouring inserts of 

the correct size after a restriction digest were subsequently sequenced and analysed as 

described above.  
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Figure 5.1 Protease resistance associated mutations.  

 

The first row of letters indicate the wild-type amino acid, numbers indicate codon position and 

letter below indicate amino acid substitution conferring resistance. Codons in red represent major 

mutation associated with resistance to the corresponding drug. All amino acids are shown by their 

one letter code.     
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5.3 Results 

5.3.1 Study population 

5.3.1.1 Group I 

The first group of patients studied was selected from those experiencing virological failure in 

the MaxCmin1, MaxCmin2 and COLATE clinical trials. The three trials together included 

over 700 patients on ART treatment with regimens including SQV/r, IDV/r or LPV/r as either 

first-line or subsequent lines of therapy. After reviewing the patients’ treatment histories to 

exclude those who had stopped therapy due to toxicity or poor adherence, we selected 28 

patients as eligible for the study: 7 on IDV/r, 13 on SQV/r and 8 on LPV/r. Of these, five 

were receiving their first PI-based regimen, whereas the remaining 23 had been exposed to 

other PIs before entering the trial. Details of these patients are presented in table 5.1.  

 

5.3.1.2 Group II 

We selected this second group from a laboratory database of patients undergoing drug 

resistance testing at the Royal Free Hospital. The database contains the patients’ pol gene 

sequences, current and past treatment regimens, plasma HIV-1 RNA load at the time of 

resistance testing, and HIV-1 subtype. Upon examination of the database, three patients with 

ongoing viraemia while on a PI/r-based regimen and whose routine genotype showed 

evidence of accumulating PI resistance-associated mutations were selected for the study. 

Details of these patients are shown in table 5.2. 

 



- 207 - 

 

Table 5.1 Group I: Patients from MaxCmin1, MaxCmin2 and COLATE who experienced 

virological failure.   

Patient ID* *Baseline HIV-1 RNA 

load (Copies/ml) 

 

VF HIV-1 RNA load 

(Copies/ml) 

Treatment status 

At **baseline  

IDV/r, n=8 

Pt-1 6,025 32,359 PI-naïve 

Pt-2 17,783 151,359 PI-experienced 

Pt-3 2,399 10,715 PI-experienced 

Pt-4 2,041 32,379 PI-experienced 

Pt-5 9,772 346,737 PI-experienced 

Pt-6 26,915 25,527 PI-experienced 

Pt-7 4,786 4,169 PI-experienced 

Pt-8 251,188 128,824 PI-naïve 

SQV/r, n=13 

Pt-9 9,333 8,317 PI-experienced 

Pt-10 549,540 40,738 PI-naïve 

Pt-11 281,838 38,019 PI-experienced 

Pt-12 3,467 6,761 PI-experienced 

Pt-13 147,910 43,651 PI-experienced 

Pt-14 21,380 589 PI-experienced 

Pt-15 43,651 10,233 PI-naïve 

Pt-16 117 301 PI-experienced 

Pt-17 10,000 275 PI-experienced 

Pt-18 1,047 363 PI-experienced 

Pt-19 1,259 282 PI-experienced 

Pt-20 1,995 229 PI-experienced 

Pt-21 1,202 501 PI-experienced 

LPV/r, n =7 

Pt-22 380,189 813 PI-experienced 

Pt-23 1,549 1,122 PI-naïve 

Pt-24 407,380 331 PI-experienced 

Pt-25 15,488 1,778 PI-experienced 

Pt-26 479 589 PI-experienced 

Pt-27 5,248 380 PI-experienced 

Pt-28 95,499 43,651 PI-experienced 

PI regimen, HIV-1 RNA load at baseline and at VF, as well as treatment status at baseline is 

indicated. 

*All patients were infected with subtype B HIV-1.    

**Baseline is referred to the sample at study entry.  
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Table 5.2 Group II: Patients with ongoing viraemia while on PI/r-based therapy selected for studying the dynamics of emergence of PR and Gag 

mutations. 

Pt Date HIV-1 RNA 

load 

(copies/ml) 

HIV-1 subtype        Regimen Protease resistance mutations 

RFH-1 08-2002 100,000  

 

C 

D4T,  3TC, NVP None 

11-2002 3,500 TDF, APV, LPV/r M46I 

06-2004 1,300 TDF, APV, LPV/r M46I, I84V 

11-2005 800 TDF, APV, LPV/r M46I, I84V, L76V 

08-2007 74,642 TDF, APV, LPV/r M46I, I84V, L76V, F53L 

    

RFH-2 09-2006 428,688  

CRF02 

NONE None 

03-2007 1,368 3TC, LPV/r, TDF None 

07-2007 857 3TC, ABC, TDF, LPV/r L76V 

10-2007 961 3TC, ABC, TDF, LPV/r L76V, M46I 

    

RFH-3 06-2004 64,545  

CRF02 

ddI, TDF, EFV, LPV/r M46I, I50V 

07-2005 49,861 ddI, TDF, EFV, LPV/r I54V, V82A 

11-2007 102,504 ZDV, 3TC, ABC, LPV/r, SQV/r G48V, I54V, V82A 

      

Date of resistance testing, HIV-1 RNA load and ARV regimen at the time of testing, as well as major PR resistance mutations detected in routine genotypic 

HIV resistance testing are shown.  

Abbreviations: stavudine (D4T), Lamivudine (3TC), Tenofovir (TDF). Didadosine (ddI), zidovudine (ZDV), efavirenz (EFV) and nevirapine (NVP) 

and PIs: ritonavir boosted lopinavir (LPV/r), amprenavir (APV) and ritonavir boosted saquinavir (SQV/r).   
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5.3.2 Full-length Gag and protease sequencing results 

 5.3.2.1 Group I  

 Baseline:  

At baseline 13/28 (46%) patients had at least one primary PR resistance-associated mutation 

(median 3, range 1-5); 27/28 (96%) had secondary PI resistance-associated mutations 

(median 4, range 1-7); and 28/28 (100%) had protease polymorphisms which are not 

associated with PI resistance. All 13 patients with primary PR mutations had been exposed to 

PIs before commencing the trial. The primary PR mutations observed included: D30N (n = 

1), V32I (n = 1), L33F (n = 1), M46I (n = 8), I47V (n =1), G48V (n = 1), I54V (n = 7), V82A 

(n = 7), I84V (n = 2), N88D (n = 1) and L90M (n = 5). The secondary PI mutations detected 

included: L10F (n = 1), L10I (n = 10), L10V (n = 4), I13V (n = 7), K20R ( n = 4), K20T (n = 

2), L24I ( n = 2), M36I ( n = 11), F53L ( n = 1), D60E ( n = 2), I62V ( n = 9), L63P ( n = 16), 

L63Q (n = 1), I64V ( n = 4), H69K ( n = 2), H69Q ( n = 2), A71I (n =1), A71T ( n = 3), 

A71V ( n = 5), G73S ( n = 1), G73T ( n = 1), V77I ( n =9), and I93L (n = 10).   

 

Regarding Gag, at baseline, 28/28 (100%) patients had at least one mutation associated with 

PI-exposure in the P17 protein (median 4, range 1-9); 13/28 (46%) showed at least one 

mutation associated with PI-exposure in the P24 protein (median 1, range 1-2); 15/28 (54%) 

presented at least one mutation associated with PI-exposure in the P7 protein (median 1, 

range 1-3); 18/28 (64%) had at least one mutation associated with PI exposure in the P6 

protein (median 3, range 1-4); 3/28 (11%) had at least one mutation associated with PI-

exposure in the spacer peptide P2 (median 1, range 1-2); and 8/28 (28%) had the mutation 
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K442R associated with PI-exposure in the spacer peptide P1.  In addition, at baseline 17/28 

(60%) showed at least one mutation associated with PI-exposure in one of the CSs, 

distributed as follow: 3/28 (11%) had ≥1 mutations in MA-P17/CA-P24; 15/28 (53%) had ≥1 

mutations in P2/P7; 3/28 (11%) had 1 mutation in NC-P7/P1 and 1/28 (3%) had 1 mutation in 

P1/P6. Most patients (24/28, 86%) presented polymorphisms in the CSs not associated with 

PI exposure and located mainly in P2/P7 (22/28, 78%) but also in P17/P24 (2/28, 7%), 

P24/P2 (4/28, 14%) and P1/P6 (2/28, 7%). Protease, Gag non-CS and Gag CS mutations at 

baseline for the 28 patients are shown in tables 5.3, 5.4a to 5.4f and 5.5, respectively.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



- 211 - 

 

 

Patient Protease mutations at baseline 

 MAJOR MINOR OTHER 

Pt-1* NONE I13V, V77I S37N, I64V, L90LF 

Pt-2 NONE I13V, M36I, I62V, L63P V3I, I15V, S37DN, K43R 

Pt-3 M46I, L90M L63P, A71AT, V77I V3I, T12ATM S37N, V82L 

Pt-4 NONE L10LV, L63P, I93L V3I, T12A, K14KR, S37N, 

R41K 

Pt-5 NONE M36I, H69HQ, I72IV V3I, S37D, Q61H 

Pt-6 V32I, M46I, I47V, 

V82A 

L10IL, K20R, M36I, I62IV, L63P, 

I93L 

E35D, S37D, K55R, Q58E 

Pt-7 L33F, I54V, I84V, 

L90M 

L10I, I13V, I62V, L63P, A71V, 

G73SG 

V3I, L19I, E21DE, E35D, 

S37D, D60E, I72L 

Pt-8* NONE I13V, K20R, M36I, H69K, I93L I15V, S37N, R41K, L89M 

Pt-9 L90M I13V, K20T, M36I, D60E, I93L V3I, I15V, E35D, S37N, P39Q, 

R41K, R57K, Q61D, I61IV 

Pt-10* NONE L10LV, M36I, D60E, I62IV V3I, I15V, E35D, S37N, P39Q, 

R41K, R57K, Q61D 

Pt-11 M46IM, I84IV, 

L90LM 

L10FIL, K20KT, I62IV, L63P,  

A71AV, V77IV, I93L 

V3I, K14KR, I15IL, G16AG, 

S37N, I85IV 

Pt-12 NONE M36I, I93L E35D, S37N, R41K, K45R, 

R57K, Q61S 

Pt-13 NONE L63P, V77IV L19Q, D25DN, S37CS 

Pt-14 NONE I62IV, L63P V3I, S37N, K45R, K70R, I72E 

Pt-15* NONE NONE V3I, S37N, L63A, E65DE 

Pt-16 NONE V77I S37N 

Pt-17 V82A M36I, L63P, H69K, I93L V3I, T12S, I15V, L19T, S37N, 

R41K, Q61E, L89M 

Pt-18 I54V, V82A L10I, L24I, I62IV, L63P, A71AITV,  

V77I, I93L 

S37T, R41K 

Pt-19 M46I, I54V, L90M L10IV, L63P, G73T I15V, S37N, K55R, V82C 

Pt-20  D30N, M46I, N88D L10IV, L63PQ, I64V, A71AV, V77IV S37N, E65D, V75IV, 

Pt-21 M46IM, G48V, 

I54IV, V82AV, 

L90LM 

I64IV, V77IV S37N, T74AT 

Pt-22 I54IV, V82A L10I, K20R, M36I, L63LP V3I, I15V, E35D, S37N, R41K, 

R57K, Q61N, I72IT, T74AT 

Pt-23* NONE L10I, I13V, L63P, H69HQ, A71AT V3I, L19IL 

Pt-24 NONE L63P, V77I R41K, I64L 

Pt-25 M46I, I54V, V82A L10I, I13V, K20R, M36I, I62V, I64V V3I, S37N, R41K, L63T, E65D 

Pt-26 NONE L63P, A71AV, I93L V3I, T12I, E35D, R41K, I62M 

Pt-27 M46I, I54V, V82A L10I, L24I, F53FL, I62V, I64V V3I, I15IV, E35D, M36V, 

S37N, K43T, K55R, L63A 

Pt-28 NONE M36I, I93L E35D, S37N 

Table 5.3 Protease mutations observed at baseline.  

*These patients were treatment-naïve at baseline.  
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Pt P17 mutations at baseline 

PI –exposure associated Other mutations 

Pt-1* V82I, E93D, I94V, N126SG S54P, G62VL, R76K,R91Q, A118TAins 

Pt-2 V82I, T84V, A119T, N126S E55EG, G62KREG, Q69QR, R76K,K114I, AT117ins 

Pt-3 T84V, E93D, I94V,Q123K, N126S A83AV, D102E, H124N 

Pt-4 I34L, I94V, N109NT, T122KT, N126S K28Q, K30Q, E55D, T70TS, G71RG, S72PS, E74QE, 

R76K, Y79YF, S11G, H124N, S125N 

Pt-5 E93D, I94V, K114R, N126S K28M, S38G, S54A, S67A, R76K, Y79F, K95R 

Pt-6 T84V, I94V, A119T, N126S R15S, K26S, K30Q, S54A, Q69K, R76K, Y79F,K113N, 

A120K, H124N 

Pt-7 G123K, N126S K20Q, K28R, R76K, R91N, E93K, I104V,K110E, 

Q117K, H124N 

Pt-8* L61I, I94V,  H124K R15T, R20K, K28NT, K30M, G49D, R58K, T81A, 

Q90E, E93A, A115T 

Pt-9 Q59K, L61I, V82I, T84V, I92V, 

K113R, Q117P, A119EA, T122K 

G62, L75F, A83V, C87F, R91K, I104L, K112Q, 

A115T, GHSN123ins, Q127G. 

Pt-10* I34L, L61IL, V82IM, T84V, K103R, 

K113KR, N126S 

R43QR, F44L, K58KR, G62A, Q63R, R76K, R91K, 

H124N 

Pt-11 T84V, I94V, A119T, T122A, Q127P K30Q, R76K, T81A, D102E, A118V, H124N, S125N 

Pt-12 T84V, K113R, A119T, K26N, K30R, E55G, G62E, R76K, Y79F, R91K, K98R, 

A120T, D121N, TGH122del 

Pt-13 V82I, N126S Q90E, R91K, D102E, I104V, A119E, AA119ins, 

G123R, H124N 

Pt-14 V82IV, E93D, I94V,  G123E, N126S G62AV, R76K, Y79YF, I104V, H124N 

Pt-15* I94IV, N126S K28T, K30R, G62M, R76K, E93N, S111C, H124N, 

S125N, 

Pt-16 E93D, I94V, D121G, N126S D102E, AT117ins, H124N 

Pt-17 D93E K58R, M61I, K62KNRS, A67S, Q69KN, H79F, 

K123del 

Pt-18 I34L, V82I, K113Q, K30R, R76K, D102E, A115V, H124N 

Pt-19 T84V, I94V, N109S, K114Q, N126S K30R, Q59R, Q65H, R76K, E93N, S111C, K112R, 

A115T, H124N 

Pt-20 T84V, E93D, N126S L61M, H124N, N125S 

Pt-21 N126S K28T, R76K, H124S, S125C, Q127S 

Pt-22 Q59K, I92V, I94V, R30K, V35I, P54T, K58R, R62G, A83V, C87F, K91Q, 

E102DE, KSQQK109ins, K110T, G111S, K114N 

Pt-23* I34L, I94V, N126S K28Q, K30Q, E55D, T70TS, G71GR, S72PS, E74QE, 

R76K, Y79YF, N109NT, S111SG, H124N, Q125N 

Pt-24 T84V, E93D, I94V, N126S V46IV, G62S, P66S, Q69K, R76K, H124N, Q127S 

Pt-25 I34L, L61I, I94V, K114Q, D121A, 

N126S 

K30R, V46L, N47D, E52D, S54A, Q69K, R76K, Y79F, 

Q90R, R91N, D102E, H124N 

Pt-26 I94IV, Q117P, T122A, N126S G62V, R76K, T81A, D96G, S111A, H124S 

Pt-27 T84V, I94V, N109S, N126S K30R, Q59R, Q65H, R76K, E93N 

Pt-28 T84V, Q127P K30R, R76K 

Table 5.4a P17 mutations observed at baseline.  

Mutations are classified as those associated with PI-exposure (as determined in the analysis presented 

in chapter 4) and other mutations. In bold are shown mutations which remained associated after 

Bonferroni’s correction.  

  * These patients were treatment-naïve at baseline.  
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Pt P24 mutations at baseline 

PI –exposure associated Other mutations 

Pt-1* None I138L, V215L, I223A, G248N, N252S, L268M, G357S 

Pt-2 None I138M, V215LV, R286K 

Pt-3 M200I, E211D I138L, A146P, I147L, S173T, V215L, N252S, E312D 

Pt-4 None N137T, I138IL, Q139P, Q141K, A146P, S176A, V215L, I223IV, 

T242TS, E245D, G248N, N252G, T280S, E312D, G357S 

Pt-5 None I138L, I223V, P292S 

Pt-6 L268M I138L, I147L, V215L, N252H, A340G 

Pt-7 L268M I147L, V215L, H219Q, I223V, M228I, G248A, R257KR, A326S, 

A340G 

Pt-8* None A147P, V157I, L213V, M226I, V254I, K284R 

Pt-9 T280I, N315G I138L, A146P, E203D, T204A, V215L, H219Q, G221R, A224P, 

M228I, G248Q, M252G, I256V, Y301F, S310T,E319P, A340G 

Pt-10* None I138L, I147L, V215L, H219Q, M228ML, T242N, G248A, T280V, 

E312D 

Pt-11 S173A I138L, S173T, T239S, N252S, I256IV, E312D, G357S 

Pt-12 None I138L, I147L, V159I, E203D, V215L, A224P, G248Q, N252S, 

I256V, T280V, Y301F, S310T, E319D, A340G 

Pt-13 None I138M, A146P, V159I, M200L, V215L, G248A, M250T, G357S 

Pt-14 A146S, Q182H I138L V191I, V215M, I223V, N252S, N253T, R286K, A326S 

Pt-15* None I138L, V215L, M228L, G248A, N253T, P255S, A340G 

Pt-16 None V215L, N252H 

Pt-17 None P144A, A147P, V157I, V166I, H217Q, V211IV, M226IV, V254I, 

T301GVCF, S240T 

Pt-18 L268M, T280I V147l, V159I, V215L, H219Q, I223V, T242N, G248A, N252G, 

P255A, A340G, G357S 

Pt-19 None I138L, V215L, A340G, E345D 

Pt-20 T280I I138L, I147L, V215L, N252H, E312D, G357S 

Pt-21 L268M V215L, H219Q, I223V, N252S, P292S, A340G 

Pt-22 N315G P142S, I143L, A214V, L220P, S316T, S322A 

Pt-23* None I138L, V215L, I223IV, E312D, G357S 

Pt-24 T280I, N315G I138L, V159I, V215L, I223V, T242S, G248A, N252S, I256V, 

A340G 

Pt-25 T280I I138L, V147L, V159I, V215L, I223V, E312D 

Pt-26 None V215L, Q246P, E312D, A326S, A340G 

Pt-27 None I138IL, V215L, I223A, T239S, N252S 

Pt-28 L268M, T280I I138L, I147L, S173A, V215M, R264K, R286K 

Table 5.4b P24 mutations observed at baseline.  

Mutations are classified as those associated with PI-exposure (according to chapter 4) and other 

mutations.  In bold are shown mutations which remained associated after Bonferroni’s correction.  

*These patients were treatment-naive at baseline. 
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Table 5.4c P7 mutations observed at baseline.  

Mutations are classified as those associated with PI-exposure (according to chapter 4) and other 

mutations.   

*These patients were treatment-naïve at baseline. 

 

 

 

 

 

Pt P7 mutations at baseline 

PI –exposure associated Other mutations 

Pt-1* None V390C, A402S 

Pt-2 R403K, T427S T401I, N404H, R406KR, K410R 

Pt-3 None N385S, I389T, T401I 

Pt-4 I389V, R403K, T427S R387G, E398A, T401I 

Pt-5 None N385K, T401I 

Pt-6 I389V, R403K T401I 

Pt-7 I389V, R403K T401I 

Pt-8* None R384K, N385G 

Pt-9 R403K N385Q, Q386H, R387K, K388R, E419K 

Pt-10* R403K N385H, K397R, T401I 

Pt-11 I389V, R403K R384K, R387K, K388R, K397R, T401I 

Pt-12 V390A, R403K R384K, T401I 

Pt-13 I389V, V390A, R403K K411R 

Pt-14 None T401I, K411R, D425E 

Pt-15* None T401I, K411R 

Pt-16 T427S T401I 

Pt-17 None I387V, L398I, R400K, K415R, V420M 

Pt-18 R403K R384K, R387K, K388R, E398V, T401I 

Pt-19 None R384K, R387KR, T401I 

Pt-20 I389V T401I, K418R 

Pt-21 None R384K, I389P, N394I, T401I, N404I, K424E 

Pt-22 None R383K, K413T, H416Q 

Pt-23* None T401I, K411R, K418R 

Pt-24 R403K T401I, K418R 

Pt-25 None R387K, K388R, T401I 

Pt-26 None T401I 

Pt-27 I389V T401I 

Pt-28 I398V, R403K N385S, T401I, K418R 
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Pt P6 mutations at baseline 

PI-exposure associated Other mutations 

Pt-1* None T456S, E460A, S465F, V467E, P473S, E477DE, D480E, T487A, R490K 

Pt-2 R464KR, T471A, S465F, I479R, T487A, R490K 

Pt-3 None V467E, T470A, I479V, T487A, R490K 

Pt-4 None 454EPTAins, S462C, S465F, V467E, T487AY, R490K, P497Q 

Pt-5 T470A, T471A E460A, S465F, V467E, 483LMPTins, R490K, S498L 

Pt-6 F463L, E477G, P478T S465L, V467E, P473S, T487A 

Pt-7 S465M, T469A 460EPTAPPEins, V467E, P473S, T487A, R490K 

Pt-8* None E460A, E482K, L483P 

Pt-9 T469A, Q474P, P478T, I479T 454EPTAPPAEins, E460A, P473A, K481R, P485A, R490K, N495S, 

S498L 

Pt-10* F463V, T470A E454A, T456S, S465F, V467E, E482D, R490K 

Pt-11 T470A, I479V APS459ins, S465F, V467E 

Pt-12 F463L, E477G, P478T S465L, V467E, P473S, T487A 

Pt-13 S465M, T470A, I479T V467E, T487A, 496-500del 

Pt-14 F463L, R464K, T469I, Q474P E460A, 465PPAESFins,V467F, P473A, P478A, I479R, K481R, P485A, 

R490K, N495S, S498L 

Pt-15* None E454A, 460EPTAPPEins, V467E, R490K 

Pt-16 T470A E454A, S462IV, S465F, V467E, P478PL, E482D, T487A, R490K 

Pt-17 None E457D, T487A, R490K 

Pt-18 None P459PS, S465F, V467E, E482D, R490K 

Pt-19 None E460A, E482K, L483P 

Pt-20 G466R R464L, D480V, K481N, S488A, D496S 

Pt-21 T471S, E477G, P478T S465F, V467E, T487A, R490K 

Pt-22 P478Q, I479T E460A, S465F, V467E, P473S, E482D, S488A 

Pt-23* None 459APSins, S465F, V467E, I479R 

Pt-24 None T456S, S465F, V467S, E482D, R490K 

Pt-25 S465M, P478Q V367E, E482D, T487A, R490K 

Pt-26 F463L,S465M, T471A, E477G V467E, P478A, S488A, R490K 

Pt-27 T470V, T471A, I479V E460A, S465F, V467E, P478S, D480E, R490K, N495S 

Pt-28 F463L, G466R 454EPTAins, S462C, S465F, V467E, T487AY, R490K, P497Q 

Table 5.4d P6 mutations observed at baseline.  

Mutations are classified as those associated with PI-exposure (according to chapter 4) and other mutations. In bold are 

shown mutations which remained associated after Bonferroni’s correction.  

 *These patients were treatment-naïve at baseline. 
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Pt P2 (SP1) mutations at baseline 

PI-exposure associated Other mutations 

Pt-1* None T371N 

Pt-2 None V370A 

Pt-3 None None 

Pt-4 None None 

Pt-5 None T371N 

Pt-6 None Q369H 

Pt-7 None None 

Pt-8* None T371N 

Pt-9 None T371N 

Pt-10* None V370A, N372S 

Pt-11 None None 

Pt-12 None None 

Pt-13 None V370A 

Pt-14 None None 

Pt-15* None None 

Pt-16 None None 

Pt-17 None V370A 

Pt-18 T371A Q369H, V370A 

Pt-19 None None 

Pt-20 None V370A 

Pt-21 None V370A, N372K 

Pt-22 None Q369H, T371V 

Pt-23* None None 

Pt-24 None Q369H 

Pt-25 V370M T371del 

Pt-26 None T371S 

Pt-27 None V370A 

Pt-28 V370M, T371A None 

Table 5.4e P2 mutations observed at baseline.  

Mutations are classified as those associated with PI-exposure (according to chapter 4) and other mutations.   

*These patients were treatment-naïve at baseline. 
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Pt P1 (SP2) mutations at baseline 

PI exposure associated Other mutations 

Pt-1* None Y441H 

Pt-2 K442R None 

Pt-3 None Y441H 

Pt-4 K442R Y441H, G443D 

Pt-5 K442R None 

Pt-6 None Y441H 

Pt-7 K442R Y441H 

Pt-8* None None 

Pt-9 None None 

Pt-10* None Y441S 

Pt-11 None None 

Pt-12 None None 

Pt-13 K442R Y441H 

Pt-14 None None 

Pt-15* None Y441S 

Pt-16 None Y441H 

Pt-17 None R439K 

Pt-18 None Y441H 

Pt-19 None None 

Pt-20 None R439K 

Pt-21 K442R None 

Pt-22 K442R None 

Pt-23* None None 

Pt-24 None Y441H 

Pt-25 K442R Y441H 

Pt-26 None Y441H, G443E 

Pt-27 None Y441H 

Pt-28 None None 

Table 5.4f P1 mutations observed at baseline.  

Mutations are classified as those associated with PI-exposure (according to chapter 4) and other mutations.   

*These patients were treatment-naïve at baseline
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Table 5.5 Cleavage site mutations observed at baseline.  

Mutations are classified as those associated with PI-exposure (according to chapter 4) and other mutations. In bold are shown mutations which remained 

associated after Bonferroni’s correction. *These patients were treatment-naïve at baseline.  

Patient Gag CS Mutations 

 P333I-exposure associated Other CS mutations 

 P17/P24 P24/P2 P2/P7 P7/P1 P1/P6 P17/P24 P24/P2 P2/P7 P7/P1 P1/P6 

Pt-1* None None A374S None None None A360S T375Y None None 

Pt-2 None None None None None None None S373A, R380K None None 

Pt-3 None None None None None None None S373Q None None 

Pt-4 None None A374S, T375A None None None None None None None 

Pt-5 None None T375A None None None None None None None 

Pt-6 V128I, Y132F None None None None None None S373A, A374N None None 

Pt-7 None None S373T, T375N None None None None A374del None None 

Pt-8* None None G381S None None Q130H None I376V, R380K None None 

Pt-9 None None G381S A431V None None None A374T, M377L, R380K None None 

Pt-10* None None None None None None V362I S373A, A374N, I376V None None 

Pt-11 None None T375N A431V None None None S373A, A374T None None 

Pt-12 None None S373T, G381S None None None None T375del, I376V, M377L None None 

Pt-13 None None A374P None None None None S373P, R380K None None 

Pt-14 None None T375A None None Q130H None None None P453L 

Pt-15* None None None None None None None S373P, R380K None None 

Pt-16 None None T375A None None None None AT373-374ins None None 

Pt-17 None None None None None None None None None L445F, N448S 

Pt-18 None None None A431V None None None TSA374ins, R380K None None 

Pt-19 Y132F None T375N None None None None S373A None None 

Pt-20 Y132F None A374S None None None V362I S373A, M378I None None 

Pt-21 None None None None None None None None None None 

Pt-22 None None G381S None None None A366V M378V None None 

Pt-23* None None None None None None None A374N, T375V, R380K None None 

Pt-24 None None None None S451T None None R380K None None 

Pt-25 None None A374S, G381S None None None None S373P, I376V, R380K None None 

Pt-26 None None None None None None None I376V, R380K None None 

Pt-27 None None None None None None None None None None 

Pt-28 None None None None None None None R380K None None 
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 Virological failure: 

At the time of virological failure, 6/28 (21%) and 13/28 (46%) patients showed emergence of 

primary and secondary PR resistance-associated mutations, respectively. Regarding Gag 9/28 

patients (32%) had P17 emergent mutations, 8/28 (28%) had P24 emergent mutations, 7/28 

(25%) had P7 emergent mutations, 5/28 (18%) had P1 emergent mutations, 4/28 (14%) had 

P2 emergent mutations and 1/28 (3%) had P6 emergent mutations. In addition, 13/28 (46%) 

patients had treatment emergent Gag CSMs including four patients with one mutation at 

P2/P7, five patients with one mutation in P7/P1 and four patients with one mutation in P1/P6.  

 

We next examined the Gag emergent mutations and classified them as associated or not 

associated with PI exposure. Among the 18 patients with Gag mutations emerging outside 

CSs, seven (39%) showed one mutation associated with PI exposure, three (17%) showed 

two mutations, one (5%) showed three mutations, and two (11%) showed four mutations. 

Overall, 24 mutations associated with PI exposure emerged at the time of VF and of them the 

majority were located in P17 (15/24, 62%); the remaining were found in P24 (5/20, 25%), P7 

(2/24, 8%) and P1 (2/24, 8%). In addition a total of 24 polymorphisms not associated with PI 

exposure emerged in 15/28 (53%) patients and where located in P17 (2/24, 8%), P24 (4/24, 

17%), P7 (7/24, 29%), P6 (2/24, 8%), P2 (5/24, 21%) and P1 (4/24, 17%). Among the 13 

patients with Gag CSMs, ten had one emergent mutation associated with PI exposure located 

in P2/P7, n = 3; P7/P1, n =4 and P1/P6, n =3. Moreover, three patients showed polymorphism 

not associated with PI exposure emerging in P2/P7, n =1; P7/P1, n =1 and P1/P6, n= 1.  
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Details of mutations emerging at the time of virological failure are shown in table 5.6. The 

comparison of the number of mutations observed at baseline and at virological failure is 

displayed in figure 5.2.  
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Table 5.6 Mutations emerging at virological failure. 

*These patients were treatment-naïve before commencing the PI-base regimen.  

Treatment Emergence mutations 
Patient Protease mutations Gag Mutations 

        Primary                Secondary  Polymorphisms CS non-CS 

 PI-associated others PI-associated others 

Pt-1* None None None P7/P1: I437V None P17: N109T; P7: I389V P7: T401I; P2: V370A 

Pt-2 None None T12ST P2/P7: T375A None None P2: T371N 

Pt-3 None I13V, M36I, I62V I15V, K43R None None P17: Q59K P24: E167EK 

Pt-4 None None None None None None None 

Pt-5 None None I51IV None P2/P7: R380K P17: L61I, P66S, H124K; P7: I389V P24: A163AV 

Pt-6 None None None None None None P24: Q139QR 

Pt-7 None None None P2/P7: G381S None None None 

Pt-8 None None K70KR None None None None 

Pt-9 I84V A71V None None P1/P6: P453L None None 

Pt-10* None None T4NT P1/P6: P453T None P17: Q59K, P66S, E93D; P1: K442R None 

Pt-11 None G73S None None None P24: V218A None 

Pt-12 None None V3I None None None P7: R387K, K388R 

Pt-13 None None None P1/P6: L449F None None P7: N404D 

Pt-14 M46IM, I54V, 

V82A, L90M 

L10I, I13IV, A71V, G73S, 

V77IV 

L19IL, Q61KQR P7/P1: A431V None P17: Q117P P1: Y441H 

Pt-15* None I13ILPT P9PS P1/P6: P453T None P24: E211D P6: E454A, T476P 

Pt-16 None L10V, I62V, L63P K14R, I15V, E35D, None None P1: K442R None 

Pt-17 None None K45KR None None None None 

Pt-18 I84V F53FL None None None None None 

Pt-19 None F53L None None None None None 

Pt-20 I84V T74P None P7/P1: I437V None P17: V82I, A115I P17: A120V; P1: Y441H, 

G443E 

Pt-21 I84IV M36I, L10I None None None None None 

Pt-22 None None K43KR P7/P1: K436R None P17: D121G; P24: S310T P1: R439G, P440Q 

Pt-23* None None V3I, E35DE None None P17: K103R, T122K; P24: N315G P17: E105K, P7: G420R 

Pt-24 None L24IL, I93L None None None None None 

Pt-25 None None I19IL None None P17: I92V P7: Q422L; P2: V370del, 

T371M 

Pt-26 None K20R None None P7/P1: E428K P24: T280I P24: R286K, P7: K418R 

Pt-27  None None E34EK P2/P7: T375A None None P2: N372A 

Pt-28 None L10V, I62V, L63P K14R, I15V, E35D, None None None None 
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Figure 5.2 Total number of mutations observed at baseline and at the time of virological 

failure in 28 patients failing a PI/r based regimen with IDV/r, SQV/r or LPV/r.  

Only major PI resistance-associated mutations and Gag CS and non-CS mutations associated with 

PI-exposure are shown. 
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5.3.2.2 Group II  

We selected three patients with ongoing viraemia while on a PI/r-based regimen.  

 Patient 1 (RFH-1) 

The first patient first attended the Royal Free Hospital in August 2002. At the time he was 

receiving an NNRTI-based regimen consisting of stavudine (D4T), Lamivudine (3TC) and 

nevirapine (NVP) and had never been exposed to PIs. The plasma HIV-1 RNA load was 

100,000 copies/ml. Routine HIV-1 genotypic resistance testing revealed subtype C infection, 

the presence of two major NRTI resistance-associated mutations and three secondary protease 

mutations which are commonly seen in drug naïve individuals as natural polymorphism, and 

no major protease-resistance mutation. Analysis of the Gag gene at this time point showed 

three CSMs and numerous non-CSMs. Two of the three CS and most of the non-CS mutations 

were polymorphisms; one CS and four non-CS mutations (P17: I34L, V82I, E93D, N126S) 

were associated with PI exposure. The patient was switched to a double PI/r-based regimen 

containing tenofovir (TDF), ritonavir boosted amprenavir (APV/r) and ritonavir boosted 

lopinavir (LPV/r) and in November 2002 his viral load was 3,500 copies/ml.  Analysis of full-

length PR and Gag genes showed the emergence of a major resistance-associated mutation in 

the protease (M46I) and no changes in Gag. In June 2004, while still on the above regimen, 

the viral load remained detectable (1,300 copies/ml). At this time point sequencing showed the 

emergence of the major protease mutations L76V and I84V and of 21 non-CS mutations 

distributed as follow: 3 mutations in P17, 6 mutations in P24, 5 mutations in P7, and 7 

mutations in P6. Of these 21 non-CS mutations, 9 were associated with PI-exposure and were 

located in MA-P17 (n=3), CA-P24 (n=1) and P6 (n=5). The remaining 12 were 

polymorphisms found in P24 (n=5), P7 (n=5) and P6 (n=2). The patient continued the same 



- 224 - 

 

regimen and in November 2005 showed a viral load of 800 copies/ml.  While no major 

protease mutation emerged at this time, new mutations appeared in Gag: the P1/P6 CS 

mutation L449F, one PI-associated mutation in P17, and two polymorphisms in P24. In 

August 2007, while still on the same regimen, the viral load increased to 74,642 copies/ml. 

Full-length PR and Gag sequencing showed the emergence of the secondary protease mutation 

F53L, 5 mutations in P17 (3 of which associated with PI exposure: Q59K, K103R, and 

Q117P), the P17/P24 CS Y132F mutation (associated with PI exposure), 4 mutations in P6 (2 

of which associated with PI exposure; R469K, E477G), and 3 polymorphisms in P7.  

 

To summarize, overall, 37 mutations emerged in Gag over time in this patient, including two 

CS and 35 non-CS mutations. The two CS mutations and most mutations emerging at P17 and 

P6 (7/9 and 7/11, respectively) were indicative of PI selective pressure according to the 

analysis showed in chapter 4.  The HIV-1 RNA viral load and PR and Gag evolution over time 

are shown in figure 5.3  
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Figure 5.3 Dynamic of emergence of PR and Gag mutations during PI/r-based therapy with 

ongoing viraemia - patient RFH-1.  

PI treatment and viral load at each time point are indicated. The table below shows the PR and Gag 

mutations emerging at each time point. Major PR mutations and Gag mutations associated with PI 

exposure are shown in red.   

 

 

 Patient 2 (RFH-2) 

 The patient first attended the Royal Free Hospital in September 2006 when he was ART-naïve 

and his viral load was 4278,688 copies/ml.  Full length PR and Gag sequencing demonstrated 

infection by a CRF02_AG recombinant HIV-1 virus, no major protease resistance-associated 

mutations and several Gag CS and non-CS mutations. The latter were mainly polymorphisms 

except for four mutations in P17, one in P7 and two in P6. The patient was started on 
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Lamivudine (3TC), Tenofovir (TDF) and LPV/r and in March 2007 his viral load remained 

detectable (1,368 copies/ml). Sequencing of PR and Gag genes showed no emergent mutations 

in the protease, but 6 P17 mutations (3 of which associated with PI exposure), and two 

polymorphisms in P7 emerged at that time. The patient continued on this regimen and in July 

2007 the viral load was 857copies/ml. At this time, sequencing showed the emergence of the 

major protease mutation L76V and four polymorphisms in Gag (P24, n=3; P7, n=1). Therapy 

was intensified with the NRTI Abacavir (ABC) but in October 2007 low-level viraemia 

persisted. Sequencing showed the emergence of the major protease mutation M46I and one 

gag CS mutation (P7/P1 A431V).  The HIV-1 RNA viral load and PR and Gag evolution over 

time are shown in figure 5.4.  
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Figure 5.4 Dynamic of emergence of PR and Gag mutations during PI/r-based therapy with 

ongoing viraemia-patient RFH-2.  

PI treatment and viral load at each time point are indicated. The table below shows the PR and Gag 

mutations emerging at each time point. Major PR mutations and Gag mutations associated with PI 

exposure are shown in red.   

 

 Patient 3 (RFH-3) 

The patient first attended the Royal Free Hospital in June 2004 when he was already highly 

ART-experienced and failing an IDV/r-based regimen consisting of didadosine (ddI), 

tenofovir (TDF), efavirenz (EFV) and ritonavir boosted indinavir (IDV/r). PR and Gag 

Sequencing showed infection by a CRF02_AG recombinant HIV-1 strain, two major protease 

mutations (M46I, I50V) and several gag CS (2 associated with PI-exposure) and non-CS 

mutations (12 associated with PI-exposure). A ritonavir boosted lopinavir (LPV/r)-containing 
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regimen was started (ddI, TDF, EFV and LPV/r) and in July 2005 the patient had a viral load 

of 49,861 copies/ml. PR and Gag sequencing did not show the two previous major protease 

mutations but all previously seen Gag mutations were still detectable. Two new major 

protease mutations emerged at this time (I54V, V82A) as well as two polymorphic CS 

mutations (P2/P7), and 8 non-CS mutations: three in MA-P17 (all associated with PI-

exposure), three in P24 (none associated with PI-exposure) and two in P6 (one associated 

with PI-exposure).  The patient was switched to a new regimen consisting of zidovudine 

(ZDV), lamivudine (3TC), abacavir (ABC), LPV/r and saquinavir (SQV) and in November 

2007 his viral load was 102,504 copies/ml and the major protease mutation G48V as well as 

2 mutations in P17 associated with PI-exposure, 6 mutations in P24 of which only one was 

associated with PI-exposure, 5 mutations in P7 of which none was associated with PI-

exposure, 3 mutations in P6, two of which were associated with PI-exposure and one P1/P6 

CS mutation associated with PI-exposure had also emerged.  The HIV-1 RNA viral load and 

PR and Gag evolution over time are shown in figure 5.5.   
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Figure 5.5 Dynamic of emergence of PR and Gag during PI/r-based therapy with ongoing 

viraemia-patient RFH-3.  

PI treatment and viral load at each time point are indicated. The table below shows the PR and Gag 

mutations that emerged or were lost at each time point. Major PR mutations and Gag mutations 

associated with PI exposure are shown in red.   

* Primary protease mutations shown in braquets were lost with respect to the baseline sample.  

 

 

5.3.3 Clonal analysis 

We performed clonal analysis using plasma samples from the last available time point for the 

three patients within the group II (RFH-1, RFH-2 and RFH-3) and for patient Pt-20 from 

group I.  A total of 10 clones per patient were analysed. 
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5.3.3.1 Full-length protease and Gag clones from patient RFH-1  

At the last time point, population sequencing in this patient had shown three major, four 

minor and three polymorphic protease mutations, respectively. Regarding Gag, population 

sequencing revealed five Gag CS mutations and 58 non-CS mutations. Out of the five CSMs 

detected, three were associated with PI-exposure according to the analysis presented in the 

previous chapter located in P17/P24, P2/P7 and P1/P6, respectively. With regard to non-

CSMs, 20 out of the 58 mutations detected were associated with PI exposure, 11 in P17, 8 in 

P6 and 1 in P24.  The 10 clones analysed all showed the four major protease resistance 

mutations and Gag mutations associated with PI-exposure were observed in between 54% 

and 100% of the clones. In particular, all those Gag mutations strongly associated with PI-

exposure (the association remained after a most conservative cut-off was applied, 

Bonferroni’s correction) including CSMs: Y132F and L449F; non-CSMs in P17:  I94V, 

K103R, K114R, D121G, N126S and the non-CSMs in P6: F463L were observed in over 90% 

of the clones.   Results are shown in Figure 5.6.   



- 231 - 

 

 

Figure 5.6 Clonal analysis from patient RFH-1.  

Full-length protease and gag genes from patient RFH-1 were cloned and sequenced. The proportions (%) of clones (n = 10) with mutations are shown. 

Sequences were analyzed for the presence of mutations relative to HXB2 wild type. Protease mutations were classified according to the IAS 2011-list of 

mutations. Bars in red denote major protease mutations, bars in orange represents Gag CS mutations associated with PI exposure and bars in purple shows gag 

non-CS mutations associated with PI exposure. Bars in grey indicate secondary protease mutations and gag mutations not associated with PI exposure, 

respectively.    
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5.3.3.2 Full-length protease and Gag clones from patient RFH-2  

At the last time point, population sequencing for this patient revealed the presence of two major, 

three minor and four polymorphic protease mutations, respectively. In addition, 5 CS and 37 non-

CS mutations were also detected. Regarding Gag mutations, two out of the five CSMs were 

associated with PI-exposure located at P2/P7 and P7/P1, respectively and 11 out of the 37 non-

CSMs were also associated with PI-exposure, located at P17 ( n = 8), P6 ( n = 2) and P7 ( n = 1). 

Clonal analysis demonstrated a very homogeneous population and the major PR mutations as 

well as the Gag CS and non-CS mutations associated with PI-selective pressure were present in 

all the ten clones. Figure 5.7 shows the protease and Gag mutations present in the 10 clones for 

patient RFH-2.  
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Figure 5.7 Clonal analysis from patient RFH-2.  

Full-length protease and gag genes from patient RFH-2 were cloned and sequenced. The proportions (%) of clones (n = 10) with mutations are shown. 

Sequences were analyzed for the presence of mutations relative to HXB2 wild type. Protease mutations were classified according to the IAS 2011-list of 

mutations. Bars in red denote major protease mutations, bars in orange represents Gag CS mutations associated with PI exposure and bars in purple shows gag 

non-CS mutations associated with PI exposure. Bars in grey indicate secondary protease mutations and Gag mutations not associated with PI exposure, 

respectively.    
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5.3.3.3 Full-length protease and Gag clones from patient RFH-3  

At the last time point, population sequencing for this patient showed the presence of three 

major, two minor and eight polymorphic protease mutations, respectively. Moreover, seven 

Gag CS and 46 non-CS mutations were also detected. With regard to Gag mutations, three of 

the seven CSMs were associated with PI exposure and were located at P2/P7, P7/P1 and 

P1/P6, respectively. Similarly, 20 of the 46 non-CSMs were associated with PI-selective 

pressure and were located at P17 (n = 11), P24 (n = 2) and P6 (n = 7). Clonal analysis 

demonstrated a homogeneous population and major protease mutations and Gag mutations 

associated with PI-exposure were present in between 99% and100% of the clones analyzed.  

Results are presented in figure 5.8. 
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Figure 5.8 Clonal analysis from patient RFH-3.  

Full-length protease and gag genes from patient RFH-3 were cloned and sequenced. The proportions (%) of clones (n = 10) with mutations are shown. 

Sequences were analyzed for the presence of mutations relative to HXB2 wild type. Protease mutations were classified according to the IAS 2011-list 

of mutations. Bars in red denote major protease mutations, bars in orange represents Gag CS mutations associated with PI exposure and bars in purple 

shows gag non-CS mutations associated with PI exposure. Bars in grey indicate secondary protease mutations and gag mutations not associated with PI 

exposure, respectively. 
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5.3.3.4 Full-length protease and Gag clones from patient Pt-20  

At the time of VF, population sequencing had shown four major, six minor and three 

polymorphic protease mutations. In addition, six Gag CS and 26 Gag non-CS mutations were 

also detected. With regard to Gag, three of the six CSMs were associated with PI exposure 

and were located at P17/P24, P2/P7 and P7/P1, respectively. Furthermore, eight out of the 26 

non-CSMs were also associated with PI-selective pressure and were located at P17 (n = 5), 

P24 ( n =1), P7 (n =1) and P6 ( n = 1). Clonal analysis showed a homogeneous population 

and all major protease mutations and Gag mutations associated with PI exposure were 

detected in all of the ten clones analysed.  
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Figure 5.9 Clonal analysis from patient Pt-20.  

Full-length protease and gag genes from patient Pt-20 were cloned and sequenced. The proportions (%) of clones (n = 10) with mutations are shown. 

Sequences were analyzed for the presence of mutations relative to HXB2 wild type. Protease mutations were classified according to the IAS 2011-list 

of mutations. Bars in red denote major protease mutations, bars in orange represents Gag CS mutations associated with PI exposure and bars in purple 

shows gag non-CS mutations associated with PI exposure. Bars in grey indicate secondary protease mutations and Gag mutations not associated with 

Pi exposure, respectively.  
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5.4 Discussion 

Numerous studies have shown that patients failing ritonavir-boosted protease inhibitors often 

lack major resistance-associated mutations in the protease gene that may account for the clinical 

resistance observed (Kempf et al, 2004; Delaugerre et al, 2009; Gupta et al, 2008; Lathouwers et 

al, 2011). Growing evidence however indicates that complete assessment of PI resistance is a 

more complex process than revealed by the detection of mutations in the protease gene. Analysis 

of the protease substrate Gag may be required to obtain a more complete picture. In this respect, 

the involvement of certain gag regions located at the protease cleavage sites P7/P1/P6 has been 

clearly established (Brumme et al, 2003; Banke et al, 2009; Brann et al, 2006; Cote et al, 2001; 

Maguire et al, 2002; Malet et al, 2007 and Robinson et al; 2000). However, the role of changes 

occurring elsewhere in the full-length gag protein has only rarely been addressed. The few 

studies available suggest that determinant of PI resistance may be located beyond gag CSs (Parry 

et al, 2009).   

 

In the current chapter we performed a longitudinal analysis of full-length protease and gag genes 

in patient experiencing virological failure while on PI/r-based regimens. We selected two 

different groups of patients to perform the analysis. The first group consisted of 28 patients 

infected with subtype B HIV-1 who had been enrolled in clinical trials and started on IDV/r, 

SQV/r or LPV/r. All of these patients experienced virological failure during up to 24 weeks of 

follow-up. The majority of the patients were treatment-experienced before commencing on one 

of these three regimens and in fact all but five had been exposed to PIs previously. Consistent 
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with this, we observed a high prevalence of primary and secondary protease mutations at 

baseline. In addition, we also detected a high frequency of Gag mutations at both CSs and non-

CSs which, based upon the analysis shown in the previous chapter, were associated with PI 

exposure. A substantial number of these baseline mutations, markedly those detected at the CSs, 

occurred very uncommonly in PI-naïve patients suggesting that long term PI-selective pressure 

could account for the significant variability observed in Gag in these baseline samples. 

Consistent with this hypothesis, the five trial patients who were PI-naïve at baseline showed no 

major protease mutation and the mutations detected in Gag were predominantly polymorphisms 

not associated with PI-experience. This was the case for the CSs as well as most non-CS regions 

except for the matrix protein (P17). P17, showed a high degree of variability even in PI-naïve 

patients.  

 

At the time of virological failure, our population showed a high prevalence of emergent primary, 

secondary or polymorphic protease mutations (17% of patients and 46% of patients, 

respectively) consistent with true virological failure and pointing at emergence of resistance 

variants as the cause of detectable viraemia. In addition, 54% of patients showed emergent 

polymorphic protease mutations, which are not known to confer PI resistance. Interestingly, 

emergence of mutations during virological failure was not restricted to the protease gene and in 

fact occurred more frequently in the Gag gene both within CSs (46% of patients) and in regions 

outside the CSs (64% of patients). While the vast majority of emergent mutations in Gag CSs 

and in P17 were seen predominantly or exclusively in the context of PI-selective pressure (77% 

and 94%, respectively), a substantial number of mutations emerging at other non-CSs such P24, 
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P7 and P2 were polymorphisms which are also seen relatively commonly in PI-naïve patients. 

This observation suggests that PIs exert a greater selective pressure on CSs and the non-CS, P17 

protein. As a result, one may postulate that mutations in these regions play a key role in PI 

failure.  

 

The high number of polymorphisms that were seen both at baseline and emerging under PI-

selective pressure in Gag may also be explained by pressure exerted by the immune system. 

Indeed, early studies showed that cellular immune pressure represent a dominant selective force 

in viral evolution, accounting for up to half of the intra-host amino-acid sequence diversity 

selected over the course of infection in some cases (Allen et al, 2005; O’Connor et al, 2004 and 

Jones et al, 2004). Importantly, certain Gag mutations observed frequently in PI-naïve and PI-

experienced patients in our population, such as K28QR, I34L, V82I, T84V, Y79F located in P17 

and I138L, A146P, G357S and V362I located in P24, are present within well defined CD8+ T-

cell epitopes (Frahm et al, 2008) and early studies performed  by Philips and colleagues 

demonstrated that some of these variants found in HIV seropositive haemophilic donors, such as 

I34L,  led to loss of CD8+ T cell recognition (Phillips et al, 1991). Similarly, Yokomaku and co-

authors showed that certain Gag variants located in immunodominant CD8+ epitopes in P17, 

such as K28Q, I34L or Y79F, failed to be killed by CD8+ T cell (Yokomaku et al, 2004) due to 

an impaired antigen processing and presentation. Overall, these studies suggest that evolution of 

Gag is greatly influenced by the host immune response and specifically by adaptive CD8+ T-cell 

selective pressure.  
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With regard to Gag CSMs emerging at VF, we observed that mutations emerged in P7/P1, P1/P6 

and P2/P7. Thus, at the time of VF we observed mutations emerging at P7/P1 in five patients. 

The mutations detected were: I437V in a patient failing IDV/r who did not show major protease 

mutations either at baseline or at VF and in a patient failing SQV/r who by contrast, presented 

major PR mutations at baseline and emerging at VF; the A431V mutation emerged in a patient 

failing SQV/r who showed major PR mutations at baseline but not emerging at VF; the K436R 

mutation appeared in a patient failing LPV/r who showed major PR mutations at baseline, but no 

new major PR mutations emerged at VF and finally, the E428K emerged in a patient failing 

LPV/r in the absence of major PR mutation either at baseline or at VF.  All the mutations 

described above, except for E428K, have been identified in our study (see chapter four) and 

others as associated with PI selective pressure (Nijhuis et al, 2007; Verheyen et al, 2006; Bally et 

el, 2000; Koch et al, 2000; Malet et al, 2007 and Maguire et al, 2002) . The I437V mutation was 

described during in vitro selection experiment with an experimental PI (RO033-4649) and was 

shown to confer 5 to 8-fold resistance to multiple PIs in the absence of protease mutations 

(Nijhuis et al, 2007). The mutation was shown to enhance P7/P1 processing of the substrate by 

wild type protease. Similarly, The A431V mutation is one of the best-characterized CS mutations 

observed in the setting of PI failure. A number of studies have probed the association of A431V 

with protease resistance-associated mutations and demonstrated that the presence of this 

mutation increase the rate of Gag cleavage by a mutated protease  indicating a plausible 

compensatory role for A431V (Verheyen et al, 2006; Bally et al, 2000; Koch et al 2001; Malet et 

al, 2007). In line with these studies, in the cross-sectional analysis presented in chapter 4 we 

found a high prevalence of A431V in PI-experienced patients and its absence in PI-naïve 

individuals. Furthermore, there was a statistically significant association with several major 
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protease mutations including M46IL and I54V, both of which were present at baseline in the 

patient who acquired A431V. Finally, the K436R was identified in our cross-sectional analysis 

as associated with PI exposure in line with previous reports (Verheyen et al, 2006).  Overall, our 

results suggest that mutations emerging at this CS were indeed the result of PI-selective. The fact 

that patients in the three different regimens developed mutations associated with PI selective 

pressure at NC-P7/P1 suggests that this CS may broadly influence PI susceptibility and 

mutations selected at this CS may contribute to PI resistance by a common mechanism to the 

drug class. In the majority of cases major PR mutations were present either at baseline or 

emerging at VF along with CSMs suggesting that emergent of mutations at this site, in general, 

follow the appearance of PR resistance-associated mutations (RAMs) and may act as 

compensatory mutations in order to restore the impaired replication usually observed in viruses 

harbouring major PR mutations.  However, CSMs were also observed in a few cases emerging at 

VF in the absence of major PR mutations either at baseline or at VF indicating that mutations at 

this CS may occasionally precede the emergence of PR mutations and they may be the first 

signal of virological failure to PIs.  

 

Four patients developed mutations in P1/P6 including P453L in one patient failing SQV/r who 

showed the L90M and I84V major PR mutations at baseline and emerging at VF, respectively; 

the P453T mutations emerged in two patients failing SQV/r, in both cases in the absence of 

major PR mutations either at baseline or at the time of VF. Finally, the L449F mutation appeared 

in a patient failing SQV/r, once again in the absence of major PR mutations at baseline or at VF. 

The P453L mutation has been previously reported in the literature as a naturally occurring 
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polymorphism but has been also associated with major protease resistance mutations including 

I84V and V82A (Maguire et al, 2002). Similarly in the cross-sectional analysis previously 

presented we observed this mutation to occur frequently in both PI-naïve and PI-experienced 

patients and can be speculated that although natural polymorphism may favor the selection of 

protease resistance mutations by facilitating viral replication. Interestingly, the I84V mutation 

emerged concomitant with the P453L in our patient, confirming the association between both 

mutations that Maguire and co-authors (Maguire et al, 2002) reported. The L449F mutation has 

been previously documented and demonstrated to have in vitro effects on both viral fitness and 

phenotypic resistance to APV (Maguire et al, 2002). The P453T mutation has not been 

previously described. However, this mutation was found in our study (chapter four) as associated 

with PI exposure (p < 0.002). Overall, in our study mutations at this site occur in the absence of 

major PR mutations suggesting that they may precede the appearance of the latter and facilitate 

their selection. This finding contrast with the results observed by Maguire and colleagues who 

found that the L449F mutation was selected after the emergence of the major PR mutation I50V. 

However, agreed with those recently reported by Ghosn and colleagues who described that the 

L449F mutation detected at baseline in a patient on LPV/r led to the selection of the major PR 

mutation I50V at the time of VF (Ghosn et al, 2011). Our study and those conducted by Maguire 

and Ghosn differed on the PI failing which may account for the different encounters. In the study 

conducted by Maguire, the failing PI was APV, which is a second generation PI that was 

designed with greater resemblance to the natural substrate Gag and which interacts much tighter 

with the viral PR than earlier generation PIs and consequently displays a higher genetic barrier to 

resistance. Given these differences, it is not surprising that specific mutations may have a 

different impact on resistance to different PIs and that resistance pathways differed between both 
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of them. In fact, the order of accumulation of Gag and PR mutations is likely to depend on the 

failing PI and likely on the backbone viral sequence. This phenomenon has been clearly 

established for mutations in the PR. Bandaranayake and colleagues showed that PR sequence 

polymorphisms were capable of altering protease activity and inhibitor binding and consequently 

were able to alter the pathway of inhibitor resistance (Bandaranayake et al, 2010). Another 

interesting finding in our study is that all patients developing mutations at this site at the time of 

VF were failing SQV/r. This data may be indicative of a greater impact of P1/P6 mutations on 

this drug compared to other PIs.   However, the number of patients studied is low as to establish 

a definitive linked.  

 

Four additional patients developed mutation in P2/P7 at VF including T375A in a patient failing 

IDV/r who did not show major PR mutations at baseline or at VF and in another failing LPV/r 

who presented three major PR mutations at baseline, although did not develop any new major PR 

mutation at VF; the R380K mutation was seen emerging in a patient failing IDV/r who did not 

show major PR mutations at baseline or at VF and finally the G381S emerged in a patient failing 

IDV/r who showed four major PR mutation at baseline and none emerging at VF. Data on the 

role of mutations at this CS in PI resistance are scarce, since most studies have exclusively 

addressed the function of mutations at P7/P1/P6. A recent study conducted by Ghosn and 

colleagues showed that baseline mutations at this CS were predictive of virological failure of 

LPV/r monotherapy in patients enrolled on the monark trial (comparison of first line LPV/r and 

LPV/r + ZDV/3TC). However, they did not see emergence of mutations at this CS or others at 

the time of VF (Ghosn et al, 2011). The R380K mutation has been found in our study and others 
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to occur frequently as a polymorphism (Malet et al, 2007). The G381S mutation has been first 

time described in our study as associated with PI exposure (p < 0.02) (chapter four). Finally, the 

T375A mutation has been found to be associated with PI-experience both in our study (p < 

0.002) (chapter 4) and by other investigators (Malet et al, 2007).  

 

We did not observe emergence of mutations in the two remaining CSs P17/P24 and CA-P24/P2. 

We and others have indeed observed that these two CSs are highly conserved in both PI-naïve 

and PI-experienced patients (Malet et al, 2007). We also found in the previous chapter that only a 

limited number of mutations such as V128I and Y132F were detected in P17/P24 in PI-

experienced patients and these were indeed significantly associated with exposure to PIs (p < 

0.0001). TheY132F mutation was observed in 3 of our 28 patients at baseline, all of whom had 

been exposed to other PIs before entering the trial. One of the patients presented in addition the 

V128I mutation. All patients with mutations at this CS showed in adition to three to four major 

protease mutations, suggesting that the patients were heavily treated and therefore that evolution 

in this CS does occur, but probably requires prolonged PI-selective pressure. Overall, our 

findings suggest that while evolution of P17/P24 under PI pressure is possible, greater effects 

occur at CSs located in the C-terminal site - P7/P1, P1/P6 and P2/P7. In detail treatment history 

and length of exposure to PIs was unfortunately unavailable to confirm this judgment. 

 

We also observed frequent emergence of mutations in non-CS regions of Gag at the time of 

virological failure. The effect was most prominent in the P17 protein, but was also noticed in all 
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other domains of Gag. Interestingly, while most mutations emerging in P17 were associated with 

PI-exposure (94%), several emerging mutations in other non-CSs were polymorphisms. These 

findings point once again to a prominent role of P17 in PI failure.  

The role of the P17 protein in PI failure was discussed in the previous chapter. As mention there, 

the role of non-CS regions in PI resistance has been addressed in only a limited number of 

studies. One of them demonstrated that P17 plays a pivotal role in the rescue of the replicative 

capacity of multi-protease resistance virus. The same study also revealed that mutations in P17 

are sufficient to confer resistance to all PIs (Parry et al, 2009).  

 

In the previous chapter, we described a high prevalence of mutations associated with PI-exposure 

not only in P17 but also in P6. Although, no PI-associated mutations emerged in P6 at the time of 

virological failure, at baseline patients who had been previously exposed to PIs often presented 

PI-associated mutations at this site. By contrast, only one of the five PI-naïve patients showed 

PI-associated mutations in P6 before starting PI treatment. Therefore, we can speculate a 

situation similar to the one mentioned above for the P17/P24 site, in that P6 evolution can occur 

under PI-selective pressure, but effects are mainly observed in the P17 protein. As a 

consequence, the short period of time between baseline and VF for this patient may account for 

lack of emergence of mutations at the P6 protein. Once again, a formal analysis on the 

association of presence of specific mutations in particular regions of Gag with duration of PI 

treatment would be required to support this verdict. However, this information was unavailable 

for all of the patients.   
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It is worth mentioning that we also detected Gag mutations associated with PI-exposure at 

baseline even in the five patients who had never been exposed to PIs. The effect was more 

noticeable in MA-P17 but also to a lesser extend in other regions such as P7, P6 and the P2/P7 

CS. In fact, all patients showed mutations associated with PI selective pressure at MA-P17, one 

patient showed in addition one mutation associated with PI selective pressure at P7 and two at P6 

and two further patients presented a P2/P7 CSM at baseline. Conversely, mutations described as 

polymorphisms in our study and others such as R380K (Malet et al, 2007) and P453L (Maguire 

et al, 2002 and Verheyen et al, 2006) were seen emerging at VF in the absence or concomitantly 

with major PR mutations, respectively.  

 

The detection of mutations associated with PI-exposure among PI-naive patients is not unusual 

as naturally occurring polymorphisms can confer an advantage to strains growing under PI-

selective pressure and be enriched during therapy and play a role in virological responses. For 

example the secondary protease mutation L63P, which is frequently observed in untreated 

patients, does not confer resistance by itself but provides a significant replication benefit for 

certain viral mutants, particularly under drug pressure (Martinez-Picado, 1999; Sune et al, 2004), 

explaining its higher prevalence in PI-experienced patients. Similar considerations may apply to 

certain Gag mutations, explaining their presence in drug-naïve individuals and their increase in 

prevalence in the setting of PI-exposure. 
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In order to gather further insights into the evolution of Gag under prolonged PI selective 

pressure, we studied in detail three patients who had long-term viraemia while on a PI/r-based 

regimen. We observed that CS mutations frequently occurred at the same codons and often 

showed similar patterns in these patients. For example, the A431V CS mutation in P7/P1 was 

seen in two of the three patients. By contrast, mutations at non-CSs differed considerably among 

patients. As also seen with trial patients, the P17 protein showed a significant number of PI-

associated mutations emerging over time under PI-selective pressure. In addition, we observed a 

high number of non-polymorphic changes emerging at other sites of Gag, predominantly in P6s. 

These results provide further support to the hypothesis that prolonged viral replication under 

selective drug pressure may drive evolution outside the previously mentioned hotspots such as 

P17 and CS P2/P7/P1/P6. Furthermore, the wide variety of non-CS mutations encountered in 

different patients indicates that while CS mutations emerge in consistent patterns, the 

evolutionary pathways in non-CS are complex. This was also earlier suggested by Myint and 

colleagues, who found that while protease and CS mutations were consistent between different 

viral clones, non-CS mutations differed considerably (Myint et al, 2004).  

 

Finally, we performed clonal analysis to confirm co-occurrence of protease and Gag mutations in 

the same genome, which would strengthen a role for Gag mutations in PI failure. As the main 

aim of this clonal analysis was the identification of possible linkage between protease and Gag 

mutations, we were only interested in the dominant quasispecies and as a consequent we only 

examined 10 clones in each patient. We observed very homogenous population in all the three 

patients analysed and in most cases protease mutations and gag mutations associated with PI-
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exposure co-existed on the same viral genome. This observation supports a contribution of Gag 

mutations as compensatory mutations, true resistance mutations, or both. We frequently observed 

the association between the A431V and the I437V CS mutations in Gag with major protease 

mutations, particularly M46I and I84V respectively. We and others previously observed a 

significant statistical association between occurrence of A431V and detection of M46I and other 

protease mutations (Verheyen et al, 2006). Here we have shown that the statistical relationship 

correlates with a genetic linkage between these two mutations. 

 

In order to account for random mutations that may result as a consequence of PCR errors, we 

performed the clonal analysis from the PCR product obtained from five independent PCR 

reactions. The clones we obtained were rather homogenous in each of the patients examined. 

This is likely to reflect the fact that the dominant replicating quasispecies is also rather 

homogenous during prolonged replication under the same treatment regimen. A number of 

technical considerations should be made however. Firstly, two of the plasma sample selected for 

clonal analysis showed a low HIV-1 RNA load (961 and 229 copies/ml respectively). In 

addition, due to insufficient sample, two other samples were diluted to a final viral load of 750 

and 1000 copies/ml, respectively. The relatively low input of HIV-1 RNA may have reduced the 

variability of RNA templates used for cloning. However, it should be pointed out that the scope 

of our clonal analysis was not to address viral genetic diversity within each patient, but rather to 

assess the linkage of protease and gag mutations in the dominant quasispecies.  
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A further technical consideration is that it may be argued that nested PCR amplification may 

introduce errors through the incorporation of incorrect nucleotides, which can be subsequently 

cloned and lead to misleading results. However, all the mutations seen in the clones were 

previously detected by population (Sanger) sequencing, which can only identify variants that 

represent over 20% of the population (Alcorn and Faruki, 2000). If PCR errors are introduced in 

the early cycles the spurious quasispecies can reach such a threshold of representation. However, 

this scenario is unlikely when employing optimized PCR reactions and particularly when proof-

reading enzymes are used.   

 

Another consideration is the possibility of recombination occurring in vitro during the PCR 

reaction, leading to a false interpretation of linkage of mutations. Recombinants presumably arise 

during PCR reactions due to the presence of incompletely extended primers annealing to a 

heterologous target. Consequently to prevent artificial recombination it is necessary to achieve 

complete strand synthesis. One effective strategy is performing limiting dilutions of the cDNA so 

that a single template is employed in the PCR and sequencing reactions. In addition, this also 

minimizes errors in the PCR reaction, as even if an error is introduced during the early PCR 

stages, the error will not be present in more than 25% of the bases in the mixture and will not 

result in an erroneous base call during sequencing (Learn et al; 1996). Therefore, limiting 

dilution is considered the reference technique for the identification of linkage of mutations. 

However, it requires a high volume of sample which was not available in our study. 

Nevertheless, we introduced a number of steps in order to minimize the risk of artificial 

recombination. Firstly, we employed a proof-reading enzyme with reduced RNAse H activity 



251 

 

during PCR and we also employed long PCR extension times of up to 3 minutes. Both actions 

are known to promote complete strand synthesis and as a result minimize artificial 

recombination. In addition, we used a low input of HIV-1 RNA, which limits the number of 

initial templates in the PCR reaction, in turn reducing the possibility of artificial recombination. 

We are therefore confident that the risk of artificial recombination was small to negligible in our 

study, and that the mutations shown to co-exist were indeed linked on the same viral genome. 

We, however, also confirmed the relationship between different mutations by performing in vitro 

replicative capacity and drug susceptibility experiments, as shown in the subsequent chapter.    

 

To summarize, the results obtained in this chapter showed that under PI selective pressure 

evolution of Gag occurs primarily, although not exclusively, at CSs (P2/P7, P7/P1 and P1/P6) 

and at the P17 protein outside CSs. The fact that the majority of emergent mutations at Gag have 

been shown in our studies and others to be associated with PI exposure support a role for Gag 

mutations in failure of PI-based regimens. We should emphasize, however, that a high proportion 

of patients also showed emergent protease mutations which although are not known to confer PI 

resistance, we cannot exclude that such protease mutations may have led to PI failure in these 

particular patients. In the subsequent chapter we will focus on studying the contribution of the 

emergent Gag mutations on drug susceptibility and replicative capacity in order to clarify the 

potential role of Gag mutations in failure of PIs.     
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6 Chapter six: effect of Gag mutations on replicative 

capacity and susceptibility to protease inhibitors 

6.1 Introduction 

The results obtained in the previous chapters suggest that full-length Gag sequencing may be 

required for a complete assessment of resistance to protease inhibitors (PIs).  Mutations in the 

Gag polyprotein associated with exposure to PIs and rare or absent in PI-naïve individuals have 

been identified. Importantly, mutations were not restricted to cleavage sites (CSs) but were 

detected throughout the whole Gag protein. Furthermore, by performing longitudinal studies in 

patients failing ritonavir boosted protease inhibitors (PI/r), we described emergence during 

treatment failure of mutations both within CSs and outside. Interestingly emergence of Gag 

mutations occurred in same cases in the absence of major protease resistance mutations. In the 

present chapter I describe the “in vitro” phenotypic characterization of some of the virus strains 

identified in patients in terms of drug susceptibility and replicative capacity (RC). For this 

purpose, I employed a single cycle recombinant assay.   

 

There are two main methods for characterizing the viral phenotype using recombinant vectors, 

namely the single cycle system and the multiple cycle system.  Both assays employ recombinant 

viruses obtained by cloning patient-derived sequences into a defective molecular clone. The 

resulting recombinant virus is then incubated in the presence of increasing concentration of drug, 

and the drug concentration required to reduce replication of the test virus by 50% relative to the 

control virus (IC50) is calculated. Results are expressed as n-fold change (FC) in the IC50 
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compared to the wild-type (WT) reference virus. A FC greater than one indicates reduced 

susceptibility of the virus tested compared to the wild type. By contrast, hypersusceptibility is 

usually defined as a virus that has a FC ≤ 0.4 compared to the wild type virus (Clark et al, 2006). 

The main difference between multiple and single cycle systems is that the first generates an 

infectious molecular clone capable of multiple rounds of replication. By contrast, the single cycle 

assay employs a replication-deficient vector that undergoes only a single round of infection. 

While the multiple cycle assay are proposed to more closely mimic the conditions that the virus 

experiences “in vivo”, the single cycle assay offers the advantages of high sensitivity and greater 

reproducibility. Furthermore, a single cycle system may be especially appropriate when studying 

the effect of a specific mutation, as the format limits the opportunity for “in vitro” selection of 

genetically diverse virus subpopulations, which may not accurately reflect the effect of the 

mutation of interest. In the studies presented in this chapter, a single cycle assay was employed, 

which is based on the system previously described by Petropoulos (Petropoulos et al, 2000), to 

characterize drug susceptibility and RC of virus strains and mutations of interest identified in the 

previous chapters.  
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6.2 Methods 

6.2.1 Patient samples 

Sample for drug susceptibility testing was available for the three patients selected from the HIV 

services at Royal Free Hospital, these are patients identified in chapter five as RFH-1, RFH-2 

and RFH-3 as well as for 9 out of the 28 patients selected form the MaxCmin1, MxCmin2 and 

COLATE clinical trials, these ones include patients Pt-1, Pt-2, Pt-3, Pt-4, Pt-5, Pt-8, Pt-20, Pt-10 

and Pt-26 described in chapter five. We selected patients showing evolution on Gag and in 

particular at sites identified throughout this study as associated with PI selective pressure in order 

to further explore the role of this specific sites in resistance to PIs. We were interested in 

addressing the role of both CS and non-CS mutations and as a consequence we selected patients 

showing evolution at both CSs and beyond. In particular, regarding CS mutations we wished to 

address the effects of mutations firstly identified in our study, but we also wanted to evaluate 

how our phenotypic results compare to those previously published. Therefore, we selected some 

patients with novel mutations (Y132F and T375A) and others with mutations previously 

described (I437V and A431V). With regard to non-CS mutaions, we were particularly interested 

in addressing the effects of P17 mutations specially those associated with PI selective pressure in 

my study, as the results showed in chapter four and five suggest a most prominent role of P17 in 

PI failure. We, therefore, selected four patients for drug susceptibility and replicative capacity.  

 

  The two first patients were selected from the MaxCmin1, MaxCmin2 clinical trials. One of the 

patients was infected with a subtype B HIV-1virus and was failing a ritonavir boosted indinavir 

(IDV/r)-containing regimen with a viral load of 151,359 copies/ml. The other patient was 
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infected with a subtype B HIV-1 virus and was failing a ritonavir boosted saquinavir (SQV/r)-

containing regimen with a viral load of 229 copies/ml. These two patients were identified in 

chapter five as Pt-2 and Pt-20, respectively.  

 

  The third patient was selected from the HIV clinic at the Royal Free Hospital. The patient was 

infected with a subtype C HIV-1 virus and had longstanding ongoing viraemia while on a ritonavir 

boosted amprenavir (APV/r) plus ritonavir boosted lopinavir (LPV/r) containing regimen. The 

patient was identified in chapter five as RFH-1.  

 

 

 The fourth patient was infected with CRF02 HIV-1virus and had long lasting ongoing viraemia 

while on ritonavir boosted lopinavir (LPV/r)-containing therapy. The patient was identified in 

chapter five as RFH-2.  

 

We selected patients RFH-1 and RFH-2 as both showed siginificant evolution in Gag both at CSs 

and beyond. Therefore, the study of these two patients allowed us to explore the effect of such 

eveolution on PI susceptibility and differentlially assess the role of both Gag CS and non-CS 

mutations. In addition, while patient RFH-1 showed the Y132F CS mutation emerging, the patient 

RFH-2 demonstrated the A431V appearing. The Y132F mutation has been for the first time 

described in the present study as associated with PI-selective pressure. By contrast, A431V is well 

stablished in the literature as implicated on resistance to LPV. Consequently, by selecting these two 

patients we were able to further explore the effect of the novel Y132F mutation and also to evaluate 

how our result compare with those previously reported in the case of the A431V mutation.  
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In addition, we studied patients Pt-2 and Pt20. Patient Pt-2 has the P2/P7 CS mutation T375A 

emerging at the time of VF. One again, the T375A mutation has only been briefly reported in the 

literature as associated with PI-selective pressure (Malet et al, 2007). However, its effect on PI 

susceptibility has never been evaluated. In chapter five, we have also demonstrated an association 

of this mutation with PI exposure. As a result, we selected this patient in order to describe the effect 

of this newly described mutation in PI susceptibility and viral replication capacity. Finally, patient 

pt-20 has the P1/P7 CS mutation I437V together with mutations outside CS, in particular 3 P17 

mutations and 2 P1 mutations. The CS mutation I437V has been extensively described in the 

literature as implicated in PI resistance and in fact it was the first Gag CS mutation found to confer 

resistance to PIs independently of protease resistance mutations (Nijhuis et al, 2007). Most 

mutations in P17 emerging in this patient at VF has been found to be associated with PI selective 

pressure in my study (chapter 4). In addition, the results showed in both chapter four and five 

suggest that Gag evolution under PI selective pressure is most prominent in the P17 subdomain of 

Gag and consequently pointed to a main role of P17 in failure to PIs. Therefore, the selection of this 

patient allowed us not only to compare our results with those previously reported for the case of the 

I437V mutation, but also to explore the hypothesis of role of P17 in resistance to PIs.    

Overall, we considered these four patients representative of the studied population and sufficient to 

explore our hypothesis.   

 

 

6.2.2 Side-directed mutants  

In addition to using wild-type viruses of interest, we produced site-directed mutants clinical by 

introducing or reverting specific Gag mutations. Furthermore, we independently introduced the 
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mutations Y132F and T375A into a wild-type backbone. SDM was in all cases performed using 

the Quick Change Site-Directed Mutagenesis Kit (Stratagene) as described in section 2.2.2.11 

and employing primers described in table 2.3 in chapter 2. The resulting viruses were 

subsequently studied for the effect of the mutations on drug susceptibility and RC.     

 

 

6.2.3 Generation of resistance test vectors 

Appropriate restriction sites were introduced in patients’ samples by PCR employing modified 

nested PCR primers containing the corresponding restriction site in the 5’ end (primer sequences 

are detailed in table 2.5 in chapter 2). Patient-derived Gag, Protease or whole Gag-Protease 

regions were subsequently cloned into the Gag-pol expression vector P8.9NSX by employing 

suitable restriction sites.  

 

6.2.4 Drug susceptibility testing 

PI susceptibility testing was performed as indicated in section 2.2.4 and briefly summarized here.  

Pseudovirus stocks used for PI susceptibility testing were produced by co-transfecting confluent 

human embryonic kidney 293 (HEK293T) cells with a resistance test vector DNA plasmid 

containing patient-derived HIV sequences; PMDG encoding the vesicular stomatitis virus G 

protein; and pCSFLW, encoding the firefly luciferase and the HIV packaging sequence. Cells 

were harvested 16 hours after transfection and seeded in the presence of different PI 

concentrations. Pseudovirus stocks produced in the presence of PIs were harvested 

approximately 24 hours later and used to infect fresh target HEK293T cells. Replication was 
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monitored by measuring luciferase production in infected target cells 48 hours after infection and 

compared to a control in the absence of drug. The IC50 was calculated by plotting the percentage 

luciferase inhibition vs. log10 drug concentration and using GraphPad Prism v5.0 to fit the 

inhibition curve by nonlinear least-squares analysis. Results were expressed as FC in the IC50 

compared to the wild-type subtype B HIV-1 reference (P8.9NSX). Experiments were done in 

duplicate and the calculated IC50 represented the mean of at least two independent 

determinations. 

 

In this study, a technical cut-off has been obtained by repeat testing of the wild type virus used as 

a reference throughout the experiments (P8.9NSX). In addition, the results were compared with 

the BCO and/or the two CCO proposed by Virco where available. As described in the 

introduction, hypersusceptibility was considered a FC of ≤ 0.4 (Clark et al, 2006).  

 

 

6.2.5 Replicative capacity testing 

Replicative capacity was measured as described in section 2.2.4.4. Briefly, as described above, 

pseudovirus stocks were produced by transfecting HEK293T cells with the three plasmids 

(RTVs, PMDG, and pCSFLW) and the RC determined by titration of serial dilutions on 

HEK293T cells and quantification of luciferase activity 48 hours after infection. Luciferase 

activity was determined with SteadyGlo and a Glomax luminometer (both Promega) and a mean 

was calculated by using at least four values within the linear range. In order to control for 

transfection efficiency, the expression of luciferase activity was normalized for the amount of 
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P24 protein in pseudovirus supernatants and expressed relative to the P8.9NSX reference virus 

(relative light units, RLU).    

 

6.2.6 Statistical analysis 

Replication capacity and fold-changes in IC50   were compared using one-way ANOVA test (or 

unpaired t-test if only two constructs were compared). A p < 0.05 was considered to be 

statistically significant. When groups differed significantly, a Bonferroni’s multiple comparison 

post-test was performed to make two by two comparisons. 
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6.3 Results 

6.3.1 Patients 

We studied clinical samples from four patients. The first two patients (Pt-2 and Pt-20) were 

already PI-experienced before starting IDV/r and SQV/r, respectively. However, patient Pt-2 

showed no major protease resistance mutations at both baseline and the time of virological 

failure, while showing the emergence of Gag mutations at virological failure. By contrast, patient 

Pt-20 had pre-existing major protease resistance mutations at baseline and showed emergence of 

both additional major protease resistance mutations and Gag mutations at virological failure. The 

selection of these two patients allowed us to study the effect of gag mutations on drug 

susceptibility and RC both in the presence and absence of major PI resistance mutations. 

 

The other two patients (RFH-1 and RFH-2), were PI-naïve at baseline, although patient RFH-1 

had been exposed to other antiretrovirals. Neither showed major protease mutations at baseline. 

Patient RFH-1 was studied over a five-year period during which he showed persistent viraemia 

while on a regimen composed of LPV/r, APV/r and TDF. Over this period, longitudinal samples 

showed the emergence of a total of 4 major protease mutations, 35 Gag non-CS mutations and 2 

Gag CS mutations. Patient RFH-2 was studied over a one-year period of ongoing viraemia while 

receiving a LPV/r-based regimen. Over this time, longitudinal samples showed the emergence of 

2 major protease mutations, 13 gag non-CS mutations and 1 CS mutation. The selection of these 

two patients allowed us to assess the long-term evolution in the Gag gene and its impact on drug 

susceptibility and RC. 
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Further details on these four patients can be found in chapter five. To facilitate the interpretation 

of the phenotypic data, a summary of protease and Gag mutations at baseline and at virological 

failure is presented in figures 6.1 to 6.4.   
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Figure 6.1 Schematic representation of HIV Protease and Gag protein for patient Pt-2.  

Amino acid changes found in plasma virus of patient Pt-2 are illustrated. Protease and functional Gag matrix (P17), capsid (P24), P2, 

Nucleocapsid (P7), P1 and P6 are shown with protease cleavage sites indicated. Changes are numbered according to the HXB2 consensus 

sequence. Changes detected just before starting IDV/r therapy (baseline) are shown above and changes emerging at the time of IDV/r failure (VF) 

are presented below. Mutations in blue in the protease represent minor mutations and those in black other polymorphisms. In Gag, mutations in red 

are those associated with PI-exposure and those in black other polymorphisms. In addition, Gag cleavage sites mutations are presented in solid 

boxes. 
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Figure 6.2 Schematic representation of HIV Protease and Gag protein for patient Pt-20.  

Amino acid changes found in plasma virus of patient Pt-20 are indicated. Protease and functional Gag matrix (P17), capsid (P24), P2, 

Nucleocapsid (P7), P1 and P6 are shown with protease cleavage sites indicated. Changes are numbered according to the HXB2 consensus 

sequence. Changes detected just before starting IDV/r therapy (baseline) are shown above and changes emerging at the time of SQV/r failure (VF) 

are presented below. Mutations in red in the protease represent major resistance mutations, in blue minor mutations and in black other 

polymorphisms. In Gag, mutations in red are those associated with PI-exposure and those in black other polymorphisms. In addition, Gag cleavage 

sites mutations are presented in solid boxes. 
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Figure 6.3 Schematic representation of HIV Protease and Gag protein for patient RFH-1.  

Amino acid changes found in plasma virus of patient RFH-1 are indicated. Protease and functional Gag matrix (P17), capsid (P24), P2, Nucleocapsid (P7), P1 

and P6 are shown with protease cleavage sites indicated. Changes are numbered according to the HXB2 consensus sequence. Changes detected at baseline 

(RFH-1B) are shown above and changes emerging at different time points (RFH-11 to RFH-14) are presented below. Mutations in red in the protease represent 

major resistance mutations, in blue minor mutations and in black other polymorphisms. In Gag, mutations in red are those associated with PI-exposure and 

those in black other polymorphisms. In addition, Gag cleavage sites mutations are presented in solid boxes. 
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.  

 

 

  Figure 6.4 Schematic representation of HIV Protease and Gag protein for patient RFH-2.  

Amino acid changes found in plasma virus of patient RFH-2 are illustrated. Protease and functional Gag matrix (P17), capsid (P24), P2, Nucleocapsid (P7), 

P1 and P6 are shown with protease cleavage sites indicated. Changes are numbered according to the HXB2 consensus sequence. Changes detected at baseline 

(RFH-2B) are shown above and changes emerging at different time points (RFH-21 to RFH-23) are presented below. Mutations in red in the protease represent 

major resistance mutations, in blue minor mutations and in black other polymorphisms. In Gag, mutations in red are those associated with PI-exposure and 

those in black other polymorphisms. In addition, Gag cleavage sites mutations are presented in solid boxes. 
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6.3.2 Resistance test vectors 

A total of 20 RTVs were produced: 

1) 8.9Pt2Baseline: containing baseline PR and Gag genes from patient Pt-2. 

2) 8.9Pt2VF: containing virological failure PR and Gag genes from patient Pt-2. 

3) 8.9Pt2VF∆T375A: containing virological failure PR and a modified virological failure 

Gag gene. Modification of Gag consisted of reversion to WT of the T375A mutation by 

SDM, previous to cloning into P8.9NSX.   

4) 8.9Pt20Baseline: containing the baseline PR and Gag genes from patient Pt-20. 

5) 8.9Pt20 Baseline +Gag: containing the baseline PR and a modified baseline Gag gene 

from patient Pt-20. Modification of baseline Gag consisted of introduction of the Gag 

mutations emerging at virological failure by SDM, previous to cloning into P8.9NSX. 

6) 8.9Pt20Baseline+Gag+PR: containing modified baseline PR and Gag genes from patient 

Pt-20. Modification of PR and Gag consisted of introduction of PR and Gag mutations 

emerging at virological failure by SDM, previous to cloning into P8.9NSX.  

7) 8.9Pt20Baseline+P1: containing baseline PR and a modified baseline Gag genes from 

patient Pt-20. Modification of Gag consisted of introduction of the P1 mutations 

emerging at virological failure, previous to cloning into P8.9NSX. 
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8) 8.9Pt20Baseline+P17: containing baseline PR and a modified baseline Gag gene from 

patient Pt-20. Modification of Gag consisted of introduction of the P17 mutations 

emerging at virological failure by SDM, previous to cloning into P8.9NSX. 

9) 8.9Pt20Baseline+I437V: containing the baseline PR and a modified Gag gene from 

patient Pt-20. Modification of Gag consisted of introduction of I437V mutation by SDM 

previous to cloning into P8.9NSX.  

10) 8.9RFH-1PRBGagB: containing baseline PR and Gag genes from patient RFH-1. 

11) 8.9RFH-1PR4Gag4: containing the last time point PR and Gag from patient RFH-1. 

12) 8.9RFH-1PRBGag4: containing baseline PR and last time point Gag from patient RFH-1. 

13) 8.9RFH-1PR4GagB: containing last time point PR and baseline Gag from patient RFH-1.  

14) 8.9RFH-1PRBGag4∆Y132F: containing baseline PR and a modified last time point Gag 

from patient RFH-1. Modification of Gag consisted of reversion to WT of the Y132F 

mutation by SDM, previous to cloning into P8.9NSX.  

15) 8.9RFH-1PRBGAG4∆CS: containing baseline PR and a modified last time point Gag 

from patient RFH-1. Modification of Gag consisted of reversion to WT of the two CS 

mutations emerging over time (Y132F and L449F) by SDM, previous to cloning into 

P8.9NSX.   

16) 8.9RFH-2PRBGagB: containing baseline PR and Gag from patient RFH-2. 

17) 8.9RFH-2PR1Gag1: containing PR and Gag from the first time point after baseline from 

patient RFH-2. 
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18) 8.9RFH-2PR2Gag2: containing PR and Gag from the second time point after baseline for 

patient RFH-2. 

19) 8.9RFH-2PR3Gag3: containing PR and Gag from the third time point after baseline from 

patient RFH-2. 

20) 8.9RFH-2PR3Gag3∆A431V: containing 3
rd

 time point PR and a modified third time 

point Gag. Modification of Gag consisted of reversion to WT of the A431V mutation by 

SDM, previous to cloning into P8.9NSX.  

 

6.3.3 Determination of IC50 for the wild-type reference virus 

(P8.9NSX)  

The PI susceptibility profile for the wild-type reference virus P8.9NSX was determined.  The 

mean IC50 for each drug was obtained by repeat testing (n =10). Differences between the IC50 

from replicate assays were consistently below 2 fold and as a result we established a 2-fold 

change in IC50 as the technical cut-off for this study. The mean IC50, standard deviation and 95% 

confidence interval calculated from 10 separate determinations in the presence of 6 different PIs 

are shown in table 6.1.  
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Virus and statistics PI IC50(nM)* 

P8.9NSX 

Mean IC50 

SD 

95% CI 

APV ATV DRV IDV LPV SQV 

1.86 6.17 1.57 6.18 1.26 3.35 

0.14 0.24 0.09 0.25 0.09 0.23 

(1.6-2.3) (5.6-6.8) (1.4-1.8) (5.6-6.7) (1.2-1.4) (2.9-3.8) 

 

Table 6.1 IC50 for the WT reference virus P8.9NSX.  

The mean IC50, standard deviation (SD) and 95% confidence interval (95% CI) derived from 10 

independent determinations are shown for the wild type virus (P8.9NSX) employed as a reference in the 

present study.  

* 10% FCS was employed throughout the experiments.  

Abbreviations: amprenavir (APV), atazanavir (ATV), darunavir (DRV), indinavir (IDV), lopinavir (LPV) 

and saquinavir (SQV).  

 

 

6.3.4 Effect of Gag mutations on susceptibility to protease inhibitors 

We tested the susceptibility to ATV, DRV, IDV, LPV and SQV of all the resistance test vectors 

produced from patient Pt-2 (8.9Pt-2Baseline, 8.9Pt-2VF and 8.9Pt-2VF∆T375A) with the 

following results: 

At baseline (8.9Pt2Baseline) the FC was 1.5 for ATV, 2 for DRV, 3 for IDV and SQV and 6 for 

LPV. At the time of virological failure (8.9Pt2VF), the FC significantly increased for all PI 

tested from 1.5 to 3-fold for ATV, from 2-fold to 9-fold for DRV, from 3 fold to 8 fold for IDV, 

from 6 fold to 13 fold for LPV and from 3 fold to 15 fold for SQV. Reversion to WT of the 

treatment emergent T375A mutation (8.9Pt20VF∆T375A) led to a decreased in the level of 
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resistance to all PIs respect to the virological failure sample and was comparable to the FC 

observed at baseline. 

 

Figure 6.5 shows the drug susceptibility profile for the three RTVs from patient Pt-2. 
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Figure 6.5 PI susceptibility profile for patient Pt-2.  

The PI susceptibility profiles at baseline (8.9Pt2Baseline), at VF (8.9Pt2VF) and after reversion to wild-type of the treatment emergent Gag 

cleavage site mutation T375A (8.9Pt2VF∆T375A) are shown. Susceptibility is shown as change in IC50 compared to that of the wild-type virus; 

thus a FC of 1 indicates same susceptibility as the wild-type P8.9NSX. Error bars represent the standard error of the mean of three separate 

experiments. Numbers are the mean of three experiments ± SD. Bold numbers indicate that the different FC respect to the baseline was found 

statistically significant using one way ANOVA followed by Bonferroni’s multiple comparison post-test.  

DRUG    WT  

(mean IC50 nM) 

8.9Pt-2Baseline 8.9Pt-2VF 8.9Pt-2ΔT375A 

Mean 

IC50 nM 

Mean 

FC ± SD 

Mean IC50 nM Mean 

FC ± SD 

Mean 

IC50 nM 

Mean FC ± SD 

ATV 6 9 1.5 ± 0.15 18 3 ± 0.08 10 1.6 ± 0.11 

DRV 1.6 3.4 2± 0.10 15 9 ± 0.5 3 2 ± 0.06 

IDV 6 18 3± 0.15 46 8 ± 0.29 15 2.5 ± 0.14 

LPV 1.2 7.2 6± 0.361 16 13 ± 0.34 7 6  ± 0.17 

SQV 3 9 3± 0.32 46 15 ± 0.32 10 3 ± 0.2 
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We tested the susceptibility to ATV, DRV, IDV, LPV and SQV of all the resistance test vectors  

Obtained from patient 20, these were: 8.9Pt20Baseline, 8.9Pt20Baseline+Gag, 

8.9Pt20Baseline+Gag+PR, 8.9Baseline+P1, 8.9Baseline+P17 and 8.9Baseline+I437V. 

 

At baseline (8.9Pt20Baseline), according to the Virco biological and clinical cut-offs, the 

baseline sample showed complete susceptibility to DRV (FC: 2.0) and LPV (FC: 2.8) and 

reduced activity for ATV (FC: 4.8), IDV (FC: 5.3) and SQV (FC: 5.2). Introduction of the 

treatment emergent Gag mutations into the baseline Gag by SDM (8.9Pt20Baseline+Gag) led to 

an significant increase in the level of resistance for all the PIs tested, from 4.8-fold to 12 fold for 

ATV, from 2 fold to 10.5 fold for DRV, from 5.3 fold to 10 fold for IDV, from 2.8 to 10 fold for 

LPV and from 5.2 fold to 15 fold for SQV. Introduction of both treatment emergent Gag and 

protease mutations into the baseline (8/9Pt20Baseline+Gag+PR) led to a more substantial 

increase in the level of resistance for all the PIs tested, from 4.8 fold to 32 fold for ATV, from 2 

fold to 22 fold for DRV, from 5.3 fold to 43 fold for IDV, from 2.8 fold to 31 fold for DRV and 

from 5.2 fold to 75 fold for ATV.  

 

Figure 6.6 shows the drug susceptibility profile of 8.9Pt20Baseline, 8.9Pt20Baseline+Gag, 

8.9Pt20Baseline+Gag+PR. 
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DRUG 

WT 

 

8.9Pt20Baseline 8.9Pt20Baseline +Gag 8.9Pt20Baseline+Gag+PR 

 

Mean IC50 nM 

 

Mean IC50 nm Mean FC ± SD Mean  IC50 nm Mean FC ± SD Mean IC50 nm Mean  

FC ± SD 

ATV 6 28.8 4.8 ± 0.85 72 12 ± 0.9 192 32 ± 2 

DRV 1.6 3.2 2 ± 0.5 16.8 10.5 ± 1.0 35.2 22 ± 1.4 

IDV 6 32 5.3 ± 0.4 60 10 ± 1.3 258 43± 0.7 

LPV 1.2 3.4 2.8 ± 0.28 12 10 ± 1.3 37.2 31 ± 4.2 

SQV 3 15.6 5.2 ± 0.28 45 15 ± 1.0 225 75 ± 1.4 

 

Figure 6.6 PI susceptibility profile of RTVs: 8.9Pt20Baseline, 8.9Pt20Baseline+Gag and 8.9Pt20Baseline+Gag+PR. The figure shows the PI 

susceptibility of the baseline sample, after introduction of emergent Gag mutations (P17-MA: V82I, A115I and A120S; P1: Y441H and G443E) 

and after introduction of emergent Gag and PR (T74P and I84V) mutations. Susceptibility is shown as the change in IC50 compared to that of the 

wild-type P8.9NSX; thus a FC of 1 indicates same susceptibility as the wild-type. Error bars represent the standard error of the mean from three 

separate experiments. Bold numbers indicate that the different FC respect to the baseline was found statistically significant using one way 

ANOVA followed by Bonferroni’s multiple comparison post-test.  
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The susceptibility testing of the resistance test vectors containing modified Gag genes consisting 

of step-wise introduction of Gag mutations (8.9Pt20Baseline+P1, 8.9Pt20Baseline+MA and 

8.9Pt20Baseline+I437V) showed the following: 

Introduction of the two treatment emergent P1 mutations (Y441, G443E) did not change 

significantly the susceptibility profile of any of the PI tested compared to the baseline sample. 

However, introduction of the 3 treatment emergent P17 mutations (V82I, A115I and A120S) led 

to a significant increase of resistance to SQV from 5.2 fold to 9 fold compared with the baseline 

and from 2.8 fold to 6.0 fold for ATV sample but had no discernible effect on susceptibility to 

the other PIs.  Finally, introduction of the I437V mutations led to a significant increase of 

resistance to all PIs. From 4.8 fold to 8 fold for ATV, from 2 to 10.6 fold for DRV, from 5.3 fold 

to 10 fold for IDV, from 2.8 fold to 10 fold for LPV and from 5.2 to 8 fold to SQV.   

 

Figure 6.7 shows the comparison of the drug susceptibility profile of 8.9Pt20Baseline, 

8.9Pt20Baseline+P1, 8.9Pt20Baseline+MA, 8.9Pt20Baseline+I437V and 8.9Pt20Baseline+Gag. 
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DRUG WT  

(mean IC50 nM) 

P8.9Baseline P8.9Baseline+P1 P8.9Baseline+P17 P8.9Baseline+I437V P8.9Baseline+Gag 

Mean  

IC50 nM 

Mean  

FC ± SD 

Mean 

 IC50 nM 

Mean  

FC ± SD 

Mean  

IC50 nM 

Mean  

FC ± SD 

Mean 

IC50 nM 

Mean FC 

± SD 

Mean 

IC50 nM 

Mean  

FC ± SD 

ATV 6 28.8 4.8 ± 0.7 30 5 ± 0.2 36 6 ± 0.2 48 8 ± 0.6 72 12 ± 0.1 

DRV 1.6 3.2 2 ± 0.4 3.7 2.3 ± 0.2 3.4 2.1 ± 0.2 17 10.6 ± 0.2 16.8 10.5 ± 0.7 

IDV 6 32 5.3 ± 0.3 34.2 5.7 ± 0.5 29.7 4.9 ± 0.1 60 10 ± 0.1 60 10 ± 0.9 

LPV 1.2 3.4 2.8 ± 0.2 3.5 2.9 ± 0.3 3.6 3 ± 0.2 12 10 ± 0.4 12 10 ± 1.1 

SQV 3 15.6 5.2 ± 0.3 18.1 6 ± 0.5 27 9 ± 0.8 24 8 ± 0.4 45 15 ± 0.5 

 

Figure 6.7 Individual effects of treatment emergent Gag mutations on PI susceptibility. Susceptibility profile of the baseline sample 

(8.9Pt20Baseline), after introduction of P1 mutations (8.9Pt20Baseline+P1), after introduction of matrix mutations (8.9Pt20 Baseline+P17), after 

introduction of the I437V mutation (8.9Pt20Baseline+I437V) and after introduction of all Gag mutations simultaneously (8.9Pt20Baseline+Gag). 

Susceptibility is shown as the change in IC50 compared to that of the wild-type P8.9NSX; thus a FC of 1 indicates the same susceptibility as the 

wild-type. Error bars represent the standard error of the mean from three separate experiments. Bold numbers indicate that the different FC respect 

to the baseline was found statistically significant using one way ANOVA followed by Bonferroni’s multiple comparison post-test.  



276 

 

Next, it was compared the susceptibility to APV, ATV, DRV, IDV, LPV and SQV of patient 

RFH-1’s resistance test vectors including 8.9RFH-1PRBGagB, 8.9RFH-1PRBGag4, 8.9RFH-

1PRBGag4∆Y132F and 8.9RFH-1PRBGag4∆CS. The drug susceptibility results were as follow:  

At baseline (8.9RFH-1PRBGagB) it was found around 2-fold resistance to APV, DRV and LPV, 

a 3-fold resistance to ATV, a 5-fold resistance to IDV and a 7-fold resistance to SQV. When the 

Gag baseline was replaced by the last time point Gag in the baseline sample (8.9RFH-

1PRBGag4), a significant increase in resistance relative to the baseline sample was found. Thus, 

the FC for APV increased from 2.0 to 20, from 3 to 24 for ATV, from 2.2 to 23 for DRV, from 5 

to 28 fold for IDV, from 2 to 12 for LPV and from 7 to 22 for SQV. The reversion to WT of the 

Y132F mutation in Gag4 (8.9RFH-1PRBGag4∆Y132F) showed a decrease in the level of 

resistance for all PIs except SQV/r relative to the resistance test vectors containing intact Gag4 

but the level of resistance still  remained significantly above that seen with baseline Gag (GagB). 

Thus, the FC for 8.9RFH-1PRBGag4∆Y132F changed to 12-fold for APV, 19-fold for ATV and 

DRV, 22-fold for IDV, 10-fold for LPV and 21-fold for SQV. Finally, both Y132F and L449F 

mutations were reverted to wild-type in Gag4 (9RFH-1PRBGag4∆CS) to evaluate the effect that 

treatment emergent Gag CS mutations had on PI susceptibility. A further decrease in the level of 

resistance relative to that seen when only Y132F was reverted to wild-type was found. However, 

the FC still remained significantly higher than those seen with GagB for all PIs except for APV. 

Thus, FC with RFH-1PRBGag4∆CS was 4.3-fold for APV and IDV, 10-fold for ATV and DRV, 

6-fold for LPV and 14-fold for SQV. 

 

The contribution of Gag4 to PI susceptibility is depicted in figure 6.8 and figure 6.9.    
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Figure 6.8 Contribution of emergent Gag mutations to PI resistance. The PI susceptibility of the 

RTVs containing baseline protease and last time point Gag (8.9RFH-1PRBGag4) is shown. 

Susceptibility is shown as change in IC50 compared to that of the WT virus; thus a FC of 1 

indicates same susceptibility as the WT P8.9NSX. Error bars represent the standard error of the 

mean of two separate experiments.  

DRUG            WT  

(mean IC50 nM) 

8.9RFH-1PRBGagB 8.9RFH-1PRBGag4 

Mean  

IC50 nM 

Mean  

   FC ± SD 

Mean  

IC50 nM 

  Mean  

     FC ± SD 

APV 1.8 3.1 2 ± 0.3 36 20 ± 1 

ATV 6 18 3 ± 1.0 144 24 ± 1.4 

DRV 1.6 3.5 2.2 ± 0.4 37 23 ± 1.3 

IDV 6 29.4 5 ± 1.3 168 28 ± 0 

LPV 1.2 2.2 2 ± 0.3 15 12 ± 1.3 

SQV 3 13.5 7 ± 1.1 66 22 ± 1.3 
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DRUG WT  

(mean IC50 

nM) 

8.9RFH-1PRBGagB 8.9RFH-1PRBGag4ΔCS 8.9RFH-1PRBGag4ΔY132F 8.9RFH-1PRBGag4 

Mean 

IC50 nM 

Mean 

FC ± SD 

Mean 

IC50 nM 

Mean 

FC  ± SD 

Mean 

IC50 nM 

Mean 

FC ± SD 

Mean 

IC50 nM 

Mean 

FC ± SD 

APV 1.8 3.1 2 ± 0.3 15 4.3 ± 0.4 37 12 ± 0.4 36 20 ± 1.4 

ATV 6 18 3 ± 1 60 10 ± 0.7 72 19 ± 0.7 144 24 ± 1.6 

DRV 1.6 3.5 3 ± 0.4 16 10 ± 1.4 22 19 ± 0.7 37 23 ± 1.0 

IDV 6 29.4 5 ± 1.3 48 8 ± 1.2 60 22 ± 1.0 168 28 ± 1.2 

LPV 1.2 2.2 2 ± 0.3 7 6 ± 0.8 16 10 ± 0.3 15 12 ± 0 

SQV 3 13.5 7 ± 1.1 42 14 ± 0.1 51 21 ±0.6 66 22 ± 1.0 

 

Figure 6.9 Contribution of Gag CSMs to PI resistance.  The PI susceptibility of the RTVs containing baseline protease and last time point Gag 

after sequential reversion to WT of the emergent CSMs (8.9RFH-1PRBGag4∆Y132F and 8.9RFH-1PRBGag4∆CS) compared to the baseline and 

last time point (8.9RFH-1PRBGagB and 8.9RFH-1PR4Gag4) is shown. Susceptibility is shown as change in IC50 compared to that of the WT virus; 

thus a FC of 1 indicates same susceptibility as the WT P8.9NSX. Error bars represent the standard error of two different experiments. Bold 

numbers indicate that the different FC respect to the baseline was found statistically significant using one way ANOVA followed by Bonferroni’s 

multiple comparison post-test.  
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Finally, it was evaluated the susceptibility to ATV, DRV, IDV, LPV and SQV of the resistance 

test vectors obtained by cloning the PR and Gag sequences from patient RFH-2. These are 

8.9RFH-2PRBGagB, 8.9RFH-2PR1Gag1, 8.9RFH-2PR3Gag3 and 8.9RFH-2PR3Gag3∆A431V.  

The results of the PI susceptibility for the construct tested were as follow: 

At baseline (8.9RFH-2PRBGagB) a 4-fold resistance to LPV and below 2 fold change for all 

other PIs was observed.  At the first time point after the baseline (8.9RFH-2PR1Gag1), it was 

found that the level of resistance to ATV increased from 1 to 2.8 fold, to LPV from 4 to 6.7 fold 

and for SQV from 1.6 to 4 fold and no change was observed for DRV and IDV. The FC 

difference was only significant for SQV.  

When the last time point (8.9RFH-2PR3Gag3) was analysed, it was seen that the level of 

resistance further increased to a 12 fold change for LPV, 4 FC for DRV and 2 FC for IDV but 

hypersusceptibility for ATV and SQV (FC: 0.28 and 0.32, respectively) was detected. Applying 

the one-way ANOVA test followed by Bonferroni’s multiple comparison tests showed that in 

this case, the difference FC respect to the baseline was significant for LPV and DRV but not for 

other PIs. Reversion to WT of the A431V mutation in the above construct (8.9RFH-

2PR3Gag3∆A431V) led to a modest decrease in the LPV FC from 12 to 10 fold and no change in 

the other PIs. The difference fold change respect to the baseline still remained significance for 

LPV.  

PI susceptibility profiles for the RTVs obtained from patient RFH-2 are shown in figures 6.10 

and 6.11.   

 



280 

 

ATV DRV IDV LPV SQV
0

2

4

6

8

8.9RFH-2PRBGagB 8.9RFH-2PR1Gag1

F
o

ld
 c

h
a
n

g
e
 I

C
5

0

 

 

 

DRUG            WT  

(mean IC50 nM) 

8.9RFH-2PRBGagB 8.9RFH-2PR1Gag1 

Mean  

IC50 nM 

    Mean  

   FC ± SD 

   Mean  

IC50 nM 

     Mean  

   FC ± SD 

ATV 6 7 1 ± 0.8 17 2.8 ± 0.4 

DRV 1.6 2 1.2 ± 0.3 2.1 1.3 ± 0.1 

IDV 6 8 1.3 ± 0.2 10 1.7 ± 0.3 

LPV 1.2 5  4 ± 0.6 8 6.7 ± 0.7 

SQV 3 5 1.7 ± 0.3 13 4.3 ± 0.4 

 

Figure 6.10 PI susceptibility profiles at baseline and 1
st
 follow-up time for patient RFH-2. 

The PI susceptibility of the RTVs containing baseline sample and 1
st
 time point after the baseline is 

shown. Susceptibility is shown as change in IC50 compared to that of the wild-type virus; thus a FC of 1 

indicates same susceptibility as the wild-type P8.9NSX. Error bars represent the standard error of two 

different experiments.  Bold numbers indicate that the different FC respect to the baseline was found 

statistically significant using one way ANOVA followed by Bonferroni’s multiple comparison post-test.  
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Figure 6.11 Contribution of emergent Gag CSMs to PI resistance. The PI susceptibility of the RTVs 

containing the last time point Gag after reversion to WT of the emergent A431V mutation (8.9RFH-

2PR3Gag3∆A431V) is shown. Susceptibility is shown as change in IC50 compared to that of the WT virus; 

thus a FC of 1 indicates same susceptibility as the WT P8.9NSX. Error bars represent the standard error 

of the mean of two separate experiments. Bold numbers indicate that the different FC respect to the 

baseline was found statistically significant using one way ANOVA followed by Bonferroni’s multiple 

comparison post-test. Virco Biological cut off (BCO), lower and upper clinical cut-offs (CCO1 and 

CCO2) are shown.  

DRUG            WT  

(mean IC50 nM) 

RFH-23 RFH-23ΔA431V 

Mean  

IC50 nM 

Mean  

   FC ± SD 

Mean  

IC50 nM 

    Mean  

 FC ± SD 

ATV 6 3 0.4 ± 0.1 3 0.28 ± 0.1 

DRV 1.6 6 4 ± 0.5 6 4 ± 0.1 

IDV 6 14 2 ± 0.1 12 2 ± 0.1 

LPV 1.2 15 12.5 ± 0.7 12 10 ± 0.1 

SQV 3 2 0.2 ± 0.6 2 0.32 ± 0.1 
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6.3.5 Effect of Gag mutations on replicative capacity 

The replicative capacity (RC) of the 20 resistance test vectors generated was determined and 

compared to that of the wild type reference 8.9PNSX virus. The results were as follows: 

 Comparison of the RC of the resistance test vectors obtained from patient Pt-2 

demonstrated that the baseline virus 8.9Pt-2Baseline showed 80% ± 1.4 RC relative to wild-type 

virus. At the time of virological failure, the virus replicated more efficiently than the WT virus 

(RC 146% ± 5.7) (P < 0.0004). However, if the T375A mutation was reverted to WT in the latter 

virus (8.9Pt2VF∆T375A), the RC returned to levels observed at baseline (from 146% ± 5.7 to 

73% ± 7.8). Results are shown in the figure below (Figure 6. 12).  

WT

8.9Pt2Baseline

8.9Pt2VF

T375A8.9Pt2VF

Replication capacity (% of WT by rlu/ng P24)

0 25 50 75 100

 

Figure 6.12 Replication capacity of RTVs from patient Pt-2.Recombinant resistance test vectors were prepared containing 

patient’s derived PR and Gag genes: 8.9Pt2Baseline contained baseline PR and Gag, 8.9Pt2VF contained virological failure PR 

and Gag and 8.9Pt2VF∆T375A contained virological failure PR and a modified virological failure Gag in which the T375A 

mutation have been reverted to WT by SDM. RTVs were produced encoding luciferase and titrated. Luciferase activity was 

determined with SteadyGlo and a Glomax luminometer (both Promega); a mean was obtained using at least four values within 

the linear range and is expressed as the luciferase activity of the sample relative to the 8.9PNSX reference virus (relative light 

units, rlu). Virus titres were previously normalized for the amount of P24 protein produced in supernatants to correct for 

transfection efficiency. Results are shown as a percentage RC relative to the wild-type control virus.  
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 Comparison of the RC of the RTVs obtained from patient Pt-20 showed that the baseline 

virus (8.9Pt20Baseline) replicated around 50% less efficiently than the WT reference virus RC: 

(56% ± 2.82, P < 0.0001). Introduction of the treatment emergent PR mutations 

(8.9Pt20Baseline+PR) led to a significant decreased in viral RC from 56% ±2.82 to 32.5% ± 

3.54). However, introduction of treatment emergent Gag mutations (8.9Pt20Baseline+Gag) 

rescued the RC from 32.5 % ± 3.54 to 69% ± 1.4 (P < 0.0001) relative to the wild-type reference 

virus. Step-wise introduction of the Gag emergent mutations demonstrated that introduction of 

the MA-P17 mutations led to a recovery in RC comparable to that obtained when all Gag 

mutations were introduced (69% ± 1.4 vs. 68% ± 0). However, when either P1 mutations or the 

I437V mutation were introduced, no significance changed on RC was found: 32.5 ± 3.54 vs. 33.5 

± 2.12 and 32.5 ± 3.54 vs. 38 ± 2.83, respectively.  Results are shown in figure 6.13.  
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Figure 6.13 Replication capacity of RTVs from patient Pt-20. 

Recombinant resistance test vectors were prepared containing patient’s derived protease and Gag genes: 

8.9Pt20Baseline contained baseline PR and Gag, 8.9Pt20Baseline+PR contained baseline Gag and 

mutated PR in which all treatment emergent PR mutations (I84V + T74P) were introduced by SDM. 

8.9Pt20Baseline+PR+P1 contained the mutated PR and mutated Gag in which all treatment emergent P1 

mutations were introduced by SDM. 8.9Pt20Baseline+PR+ I437V contained the mutated PR and a 

mutated Gag in which the I437V mutation was introduced by SDM. 8.9Baseline+PR+P17 contained 

baseline PR and a mutated Gag in which treatment emergent P17 mutations were introduced by SDM and 

finally 8.9Pt20Baseline+PR+Gag contained the mutated PR and a mutated Gag in which all treatment 

emergent Gag mutations were introduced simultaneously by SDM. RTVs were produced encoding 

luciferase and titrated. Luciferase activity was determined with SteadyGlo and a Glomax luminometer 

(both Promega); a mean was obtained using at least four values within the linear range and is expressed as 

the luciferase activity of the sample relative to the 8.9PNSX reference virus (relative light units, rlu). 

Virus titres were previously normalized for the amount of P24 protein produced in supernatants to correct 

for transfection efficiency. Results are shown as a percentage RC relative to the wild-type control virus.  
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 Comparison of the RC of the RTVs obtained from patient RFH-1 showed that the 

baseline virus (8.9RFH-1PRBGagB) had a RC comparable to that of the WT virus (98.5 ± 2.12 vs. 

99 ± 0.71). At the last time point tested (8.9RFH-1PR4Gag4), the virus showed an increase in RC 

(131.5% ± 9.2, P < 0.0001) respect to the wild-type virus. In order to assess the role that Gag 

evolution played in this increased in RC, the Gag from the two time points were exchanged. It 

was found that the virus containing baseline PR and last time point Gag (8.9RFH-1PRBGag4) had 

a RC relative to WT virus of 159.5% ± 10.6. This difference respect to the baseline virus reached 

statistical significance (P < 0.0001). By contrast, the virus containing last time point PR and 

baseline Gag (8.9RFH-1PR4GagB) decreased significantly its RC respect to the baseline virus 

98.5 ± 2.12 vs. 10% ± 2.83 (P< 0.0001). Furthermore, the effect that treatment emergent Gag CS 

mutations had on RC was assessed by step-wise reversion to WT of the two emergent mutations 

Y132F and L449F in the last time point Gag. It was observed that reversion of Y132F (8.9RFH-

1PRBGag4∆Y132F) led to a non-significance decrease in RC from 159% ±1 0.6 to 150% ± 2.8 

and further reversion of  L449F (8.99RFH-1PRBGag4∆CS) led to a significant decrease from 

159%  ± 10.6 to 129 ± 3.0% ( P < 0.0001).  Results are shown in figure 6.14.  
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  Figure 6.14 Replication capacity of RTVs from patient RFH-1. 

Recombinant resistance test vectors were prepared containing patient’s derived PR and Gag genes: 8.9RFH-

1PRBGagB contained baseline PR and Gag, 8.9RFH-1PR4Gag4 contained last time point PR and Gag, 8.9RFH-

1PRBGag4 contained baseline protease and last time point Gag, 8.9RFH-1PR4GagB contained last time point PR and 

baseline Gag, 8.9RFH-1PRBGag4∆Y132F contained baseline PR and a modified last time point Gag in which the 

Y132F mutation have been reverted to WT by SDM and 8.9RFH-1PRBGag4∆CS contained baseline PR and a 

modified last time point Gag in which both Y132F and L449F mutations have been reverted to WT by SDM.  

Luciferase activity was determined with SteadyGlo and a Glomax luminometer (both Promega); a mean was 

obtained using at least four values within the linear range and is expressed as the luciferase activity of the sample 

relative to the 8.9PNSX reference virus (relative light units, rlu). Virus titres were previously normalized for the 

amount of P24 protein produced in supernatants to correct for transfection efficiency. Results are shown as a 

percentage RC relative to the wild-type control virus.  
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 Comparison of the RC of the RTVs obtained from patient RFH-2 showed that the 

baseline virus (8.9RFH-2PRBGagB) had a 97% ± 0.71 RC respect to the WT virus. At the first 

time point after the baseline (8.9RFH-2PR1Gag1) the RC increased to130% ± 1.41. The 

difference in RC between baseline and first time point reached statistical significance (P, 

0.0001). At the second time point after the baseline (8.9RFH-2PR2Gag2) the replicative capacity 

was significantly reduced from 97% ± 0.71 to 24 ± 4.24 ( P < 0.0001). However, the RC was 

rescued at the third time point after the baseline (8.9RFH-2PR3Gag3) from 24 ± 4.24 to 74.5 ± 

6.36, P < 0.0001. Reversion to WT of the treatment emergent Gag CS mutation A431V in the 

third time point (8.9RFH-2PR3GAG3∆A431V) led to a significant reduction in RC from 74.5% ± 

6.36 to 55% ± 4.24, P < 0.0001.  Results are depicted in the figure below (Figure 6.15).               

 

  Figure 6.15 Replication capacity of RTVs from patient RFH-2. 

Recombinant resistance test vectors were prepared containing patient’s derived PR and Gag genes: 

8.9RFH-2PRBGagB contained baseline PR and Gag, 8.9RFH-2PR1Gag1 contained first time point after 

baseline PR and Gag, 8.9RFH-2PR2Gag2 contained second time point after baseline PR and Gag, 

8.9RFH-2PR3Gag3 contained third time point after baseline PR and Gag, 8.9RFH-2PR3Gag3∆A431V 

contained third time point PR and a modified third time point Gag in which the A431V mutation have 

been reverted to WT by SDM.  Luciferase activity was determined with SteadyGlo and a Glomax 

luminometer (both Promega); a mean was obtained using at least four values within the linear range and 

is expressed as the luciferase activity of the sample relative to the 8.9PNSX reference virus (relative light 

units, rlu). Virus titres were previously normalized for the amount of P24 protein produced in 

supernatants to correct for transfection efficiency. Results are shown as a percentage RC relative to the 

wild-type control virus. 
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6.3.6 Characterization of Y132F and T375A mutations 

Y132F and T375A are CS mutations that were found to emerge during PI failure in our study, 

and which appeared to have effects on PI susceptibility and RC. In order to confirm the effect of 

these mutations we introduced each mutation in the P8.9NSX WT backbone by SDM and 

studied the phenotype of the resulting mutated viruses (P8.9NSX-T375A and P8.9NSX-Y132F). 

 

The results were as follows: 

Introduction of the P2/NC-P7 CS mutation T375A into the wild-type backbone by SDM led to a 

significant increase in resistance to all PIs. The FC in IC50 of the mutated virus compared to the 

wild-type virus was: 5 for ATV, DRV and LPV and 10 for DRV and SQV. The mutated T375A 

virus showed an RC of 161.5% ± 4.95, which was significantly higher compared to the WT virus 

(P = 0.003).  

Introduction of the MA-P17/CA-P24 CS mutation Y132F into the wild-type backbone by SDM 

also produced around a 10-fold increase in resistance to all PIs. However, it negatively affected 

RC as this declined to 61.5% ± 3.5, P = 0.009.  

Drug susceptibility and RC profiles for the P8.9NSX-T375A are shown in figures 6.16 and 6.17, 

respectively. Drug susceptibility and RC profiles for P8.9NSX-Y32F are shown in figures 6.18 

and 6.19, respectively.  
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DRUG WTP8.9NSX 

(mean IC50 nM) 

WTP8.9NSX-T375A 

Mean  IC50 nM Mean FC ± SD 

ATV 6.1 33 5.4 ± 0.3 

DRV 1.14 11.6 10 ± 1.4 

IDV 6.1 32.6 5 ± 0.7 

LPV 1.2 6.2 5.2 ± 0.6 

SQV 3.3 33 10 ± 0.7 

  

Figure 6.16 Phenotypic PI susceptibility profile of SDM containing T375A.  

Phenotypic drug susceptibility testing was performed with the wild-type reference virus 

P8.9NSX and a mutated wild-type virus (P8.9NSX-T375A) which contained the same 

HIV backbone as the reference virus except for the Gag CS mutation T375A which had 

been introduced by SDM. Green curves represent the reference virus and red curves 

represent the mutated virus. Inhibition curves shifted to the right (higher drug 

concentration) indicates reduced susceptibility.  The fold change was calculated by 

comparing the IC50 of the reference virus to the IC50 for the mutated virus.  
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  Figure 6.17 Replication capacity of SDM containing T375A.  

Recombinant resistance test vectors were prepared containing either the WT reference virus (P8.9NSX) or 

a mutated virus (P8.9NSX-T375A) in which the T375A Gag CS mutation was introduced by SDM.  

Luciferase activity was determined with SteadyGlo and a Glomax luminometer (both Promega); a mean 

was obtained using at least four values within the linear range and is expressed as the luciferase activity of 

the sample relative to the 8.9PNSX reference virus (relative light units, rlu). Virus titres were previously 

normalized for the amount of P24 protein produced in supernatants to correct for transfection efficiency. 

Results are shown as a percentage RC relative to the wild-type virus control.   
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Figure 6.18 Phenotypic PI susceptibility profile of SDM containing Y132F.  

Phenotypic drug susceptibility testing was performed with the WT reference virus P8.9NSX and 

a mutated WT virus (P8.9NSX-Y132F) which contained the same HIV backbone as the 

reference virus except for the Gag CS mutation Y132F which had been introduced by SDM. 

Green curves represent the reference virus and red curves represent the mutated virus. Inhibition 

curves shifted to the right (higher drug concentration) indicates reduced susceptibility.  The fold 

change was calculated by comparing the IC50 of the reference virus to the IC50 for the mutated 

virus..  

 

DRUG         

WTP8.9NSX  

(mean IC50 nM) 

WTP8.9NSX-Y132F 

Mean  IC50 nM Mean  FC ± SD 

ATV 6.1 61 10 ± 0.7 

DRV 1.63 16 9.8 ± 1.8 

IDV 6.2 60.6 9.8 ± 0.2 

LPV 1.2 12 10 ± 0.8 

SQV 3.3 33 10 ± 1.6 
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Figure 6.19 Replication capacity of SDM containing Y132F.  

Recombinant resistance test vectors were prepared containing either the WT reference virus 

(P8.9NSX) or a mutated virus (P8.9NSX-Y132F) in which the Y132F Gag CS mutation was 

introduced by SDM.  Luciferase activity was determined with SteadyGlo and a Glomax 

luminometer (both Promega); a mean was obtained using at least four values within the linear 

range and is expressed as the luciferase activity of the sample relative to the 8.9PNSX reference 

virus (relative light units, rlu). Virus titers were previously normalized for the amount of P24 

protein produced in supernatants to correct for transfection efficiency. Results are shown as a 

percentage RC relative to the wild-type virus control.  
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6.4 Discussion 

In the present chapter we have evaluated the impact of HIV-1 Gag mutations on PI susceptibility 

and viral replication capacity.  

Overall our results showed that cleavage site mutations affect viral replicative capacity and 

resistance to protease inhibitors.  While all CS mutations evaluated in this study increased to 

some extend the level of resistance to one or more PIs, the impact on RC differed among 

mutations and among viral constructs. These results suggest that CS mutations may be selected 

as truly resistance mutation independent of their role as compensatory mutations.  In addition, we 

observed that non-CS mutations also increased the levels of PI resistance and in fact confer PI 

resistance on their own. By contrast with CS mutations, non-CS mutations had in all cases a 

positive effect on viral RC.  

 

We employed a single cycle assay for the assessment of drug susceptibility and RC. The system 

incorporates a self-inactivating vector capable of a single round of infection and was initially 

developed by Petropoulos and colleagues (Petropoulos et al, 2000).  Versions of this assay such 

as Phenosense are currently licensed for diagnostic purposes.  The ability of single cycle assays 

to predict drug susceptibility “in vivo” has been debated. It has been stated that multiple cycle 

assays may be more appropriate as they more closely reproduced “in vivo” conditions. However, 

a few studies have shown comparable drug susceptibility results with both formats (Maguire et 

al, 2002). In addition, we should emphasize that our primarily objective was to address the effect 

of specific Gag mutations detected at the time of virological failure. In this respect, single cycle 

assays may be more suitable as the restriction to a single round makes virtually impossible the 
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selection of virus subpopulations that may not accurately reflect the initial viral population.  The 

ability of our system to generate reproducible measurements of PI susceptibility was evaluated 

by repeatedly testing the drug susceptible reference strain P8.9NSX which derived from the 

NL4-3 molecular clone. The assay rendered highly reproducible measurements of PI 

susceptibility and the IC50 were within the range observed in published studies (Petropoulos et al, 

2000). 

 

We were interested in evaluating the contribution to PI resistance and RC of the emergent Gag 

mutations both at CSs and beyond. The I437V CS mutation located in P7/P1 emerged in patient 

Pt-20 together with one major (I84V) and one minor (T74P) protease resistance mutations as 

well as three non-CS mutations located in P17 and two in P1. Maximum levels of PI resistance 

for the recombinant construct containing patient derived Gag and PR sequences were observed 

when all PR, Gag CS and Gag non-CS mutations were incorporated. The stepwise introduction 

of Gag mutations demonstrated that the maximum effect on PI resistance was attributed to the 

I437V CS mutation. Thus the introduction of this mutation in the baseline sample led to a 

different in FC of between 2.8 and 8.6 depending on the PI and it was in all cases statistically 

significance. While P1 have no effect on resistance to PIs, a 3.8 FC difference for SQV and 1.2 

for ATV were found after introduction of the P17 mutations in the baseline sample. These 

differences were statistically significant when applying the one-way ANOVA with the 

Bonferroni’s correction for multiple comparisons. The fact that two of the three emergent P17 

mutations were found to be associated with PI selective pressure in our study (chapter 4), that the 

patient was failing a SQV-based regimen and that the introduction of the mutations led to an 

increase resistance mainly to this drug suggest that the selection of the mutations was driven but 
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SQV-selective pressure and contribute to therapy failure. With regard to the RC experiments, we 

saw that emerging Gag mutations improved the replication of the PR-mutated-containing virus 

and in this case most of the replicative benefit was conferred by the P17 emerging mutations 

while I437V and P1 mutations had no discernible effect. This result suggest that the CS 

mutation, I437V, was selected as a truly resistance mutation rather than as a compensatory 

mutation. These findings are consistent with those obtained by other authors. For instance, 

Nijhuis and colleagues (Nijhuis et al, 2007) reported the selection of I437V mutation in P7/P1 

without any preceding PR mutation during in vitro passages with an experimental PI (RO033-

4649); after introduction of the I437V mutation in a reference strain they observed between 2-5 

fold increase in IC50 to all PIs in a multiple cycle drug resistance assay and 2-3 fold increase in a 

single cycle assay. They demonstrated that incorporation of the mutation enhanced Gag 

polyprotein processing by the WT protease and propose this as a possible mechanism of PI 

resistance. Similarly, Dam and co-investigators (Dam et al, 2009) evaluated the effect of Gag on 

phenotypic PI resistance and observed the I437V in two patients infected with viruses containing 

several major protease resistance mutations. They observed that incorporation of the I437V 

mutation in the recombinant construct led to a 1.6 to 5 fold increase in resistance to all PIs in a 

single cycle assay while very little effect on resistance was attributed to other Gag regions (Dam 

et al 2009). Also consistent with our results, they reported that while reversion to WT of the 

I437V mutation clearly impacted the level of PI resistance, it did had very little effect on RC, 

strengthening the hypothesis that I473V has a role as a resistance mutation.  By contrast, the RC 

benefit mainly lied on the non-CS mutations and in particular on those located in the P17 region. 

In agreement with our results, Parry and co-authors reported that the P17 protein was sufficient 
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to recover the otherwise compromised RC of a multi-PI resistant virus to levels observed in the 

wild-type virus (Parry et al, 2009).  

 

We also observed the emergence of the T375A mutation at P2/P7 in patient Pt-2. Interestingly 

this patient had no major protease mutations either at baseline or emerging at VF. In fact the 

emergence of T375A along with T371N located in the spacer peptide P2 were the only changes 

observed at the time of virological failure in this patient. When we compared the level of PI 

resistance of the construct containing patient’s PR and Gag at baseline and at virological failure, 

we observed a significance difference in FC of between 1.5 and 12 depending on the PI. In order 

to assess the contribution of T375A to this increased level of resistance, we reverted the mutation 

to WT in the virological failure sample and observed that the level of resistance returned to the 

levels found at baseline. We also evaluated the RC of the different viral constructs and observed 

that in this case the T375A mutation not only increased PI resistance but also the RC of the virus. 

Thus, at baseline the patient virus showed 80% RC compared to the wild-type reference virus 

and this was increased to 146% at the time of VF. Importantly, the increased in RC correlated 

with a one log increased in the patient’s viral load.  While we and others have reported a 

significantly higher prevalence of T375A mutation in PI-experienced than in PI naïve subjects 

(Malet et al, 2007) a role for this mutation in resistance to PIs had never been evaluated. Our 

results suggest that the selection of T375A mutation at the time of VF was not a random event, 

but was indeed driven by PI selective pressure. Due to the novelty of the T375A mutation, we 

employed SDM to introduce the mutation in the wild-type reference strain in order to address the 

independent impact of the mutation on PI resistance and viral RC. We found that the T375A 

mutation led to a 5 to 10 fold increase in the IC50 for all PIs and increased significantly the RC of 
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the wild-type reference strain (100% to 146%).  These results further support a role of T375A 

mutation in PI resistance. The mechanism by which the T375A mutation exerts its effect on PI 

susceptibility and RC has not been addressed in this study. However, a role similar to the one 

documented for the well characterized A431V mutation can be postulated. A431V is located in 

the P7/P1 CS and it has been demonstrated to be selected in the presence of major protease 

resistance mutations. The A431V mutation increases the rate of processing of the CS 

compensating for the catalytic deficiency displayed by the mutated protease (Zhang et al, 1997 

and Zennou et al, 1998). We propose that the T375A mutation may also lead to better substrates 

for protease thereby facilitating Gag processing. The processing of Gag is a coordinated process 

in which every site is cleaved in a specific order and a specific rate. T375A is located in P2/P7 

CS, which in this study, and others, have found to be highly polymorphic (Malet et al, 2007). 

The extreme variation in this CS compared to others is probably related to the fact that this is the 

first site to be cleaved and its cleavage takes place rapidly. As a consequence, it is anticipated 

that variations in the rate of cleavage of this site may not be as crucial as those affecting other 

intermediate and rate limiting steps.  Therefore, it is possible that the presence of the T375A 

mutation leads to an increase rate of cleavage of P2/P7 and as consequence to an overall 

improvement of Gag processing and viral replication. Maximum benefit of the mutation will be 

however achieved in the context of impaired protease activity, explaining its preferential 

selection in PI-exposed subjects. A similar mechanism has been also demonstrated for 

compensatory mutations in the PR, such as L63P which is a common polymorphism in pre-

treatment isolates but is even more frequently selected during PI failure and it is known to 

improve the catalytic activity of the viral PR (Martinez-Picado et al, 1999).       
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Over a one year period on unsuccessful LPV/r therapy, patient RFH-2 developed the two major 

protease resistance mutations M46I and L76V, the CS mutation A431V in P7/P1 and several 

Gag non-CS mutations mainly located in the P17 protein. The emergence of P17 mutations 

preceded the appearance of both protease resistance mutations and the A431V mutation and was 

accompanied by a significance increase in viral replication capacity from 97% to 140% respect 

to the WT reference virus. In addition, an increased in the fold change for ATV (from 1 to 2.8 

FC), LPV (from 4 to 6.7 FC) and SQV (from1.7 to 4.3 FC) was also seen, which only reached 

statistical significance for SQV.  The appearance of the L76V resistance mutation led to a 

significant decrease in viral replication (from 140% to around 24% respect to the wild type 

reference virus) and finally the RC was rescued to 74% following the emergence of the M46I 

mutation in the PR and the A431V at P7/P1 CS. At this time the level of resistance to LPV also 

increased from 4 to 12 fold, while hypersusceptibility, defined as a fold change ≤0.4 (Clark et al, 

2006), to ATV and SQV was also seen. Reversion to wild type of the A431V mutation led to a 

significance decrease in RC from 74% to 55% and slight decrease in the IC50 for LPV from 12 to 

10 fold change, which was not statistically significance. The LPV/r resistance pathway 

consisting of emergence of L76V and M46I mutations in the protease was first time observed in 

patients failing LPV/r monotherapy in the MONARK trial (Delaugerre et al, 2009) and it was 

later confirmed by Nijhuis and colleagues. Consistent with our results, Nijhuis reported the 

concomitant occurrence of the two protease mutations with the A431V CS mutation and this 

mutation conferred a replicative benefit to the otherwise severely impaired replication of the 

L76V-containing virus.   However, they observed that the triple mutant containing M46I and 

L76V in the PR and A431V in Gag conferred 12 fold LPV resistance, while the single mutant 
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A431V conferred 3 fold resistance to LPV.  In addition, they also found that the A431V was the 

most frequent single mutant and proposed that the A431V may precede and facilitate the 

selection of the L76V protease resistance mutation. By contrast, our result showed that the 

A431V was selected after the emergence of the L76V protease resistance mutation and increased 

the RC of the virus while having no significance effect on resistance.  Differences in viral 

subtype and the format of the assay employed for drug susceptibility testing may be accountable 

for these discrepancies. Nijhuis and colleagues employed a multiple cycle assay and studied a 

subtype B HIV-1 virus, while we employed a single cycle assay and evaluated a CRF02 HIV-1 

virus.  Different viral subtypes may differ in the pathway and order of accumulation of mutations 

(Wainberg et al, 2011). Also, subtle differences in fold change may be observed in different 

phenotypic assays.   

 

Patient RFH-3 was followed over a five year period on unsuccessful LPV/r + APV/r therapy. 

During this time, the patient developed four major protease mutations (M46I, I84V, L76V and 

F53L), 35 non-CS mutations and 2 CS mutations (P17/P24: Y132F and P1/P6:  L449F).  

Interestingly, we observed that despite the presence of 4 major protease resistance mutations, 

which are known to have a negative effect on RC (Martinez-Picado et al, 1999; Nijhuis et al, 

1999), the patient’s last time point virus replicated significantly more efficiently than the 

baseline virus which did not contain major protease resistance mutations (97% vs. 160%). In 

order to assess the contribution of Gag evolution to the efficient replication, we exchanged the 

Gag from baseline and last time point. We observed that the resistance test vector containing the 

last time point PR combined with the baseline Gag displayed a significantly impaired RC of 4% 

compared to the 160% observed when both last time PR and Gag were incorporated. This result 
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illustrated that Gag evolution was required for effective replication of the virus containing 

multiple major protease resistance mutations. We next stepwise reverted to wild type the two 

emergent CS mutations so that we could determine their effect on viral replication. We found 

that reversion of both mutations led to a non-significance decrease in RC from 159% to 150% 

when Y132 was reverted to wild-type and the RC was further decreased if also L449F mutation 

was reverted to wild type (159% to 129%) and in this case the difference in replication reached 

statistical significance. This result indicates that although emergent Gag CS mutations slightly 

contributed to the efficient replication of the multi-PI-resistant virus, most of the replicative 

benefit exhibited by the virus is likely to lie on the non-CS mutations. The importance of non-CS 

Gag mutations for the full recovery of viral fitness of multi-PI resistant viruses has been 

previously reported. We have already mentioned that Parry and co-authors described the 

importance of the P17 Gag domain for the efficient replication of multi-PI resistant viruses 

(Parry et al 2009). In the same line, Gatanaga and colleagues studied the effect of various non-

CS substitutions on the development of HIV-1 resistance to APV and concluded that both the CS 

and non-CS mutations were essential for the efficient replication of APV-resistant HIV-1 

(Gatanaga et al, 2002).  

 

We also evaluated the PI susceptibility of the construct containing baseline Gag and PR and 

baseline PR with last time point Gag with and without emergent CS mutations in order to assess 

the effect of both CS and non-CS emergent mutations on PI susceptibility. Interestingly, we 

observed a significant increase in the level of resistance to all PIs when the baseline Gag was 

replaced with last time point Gag. The difference in FC was between 9 and 33 fold depending on 

the PI. If applying the Virco clinical cut-off to these data, this result means that Gag alone was 
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sufficient to elevate the level of resistance well above the lower clinical cut-off for all PIs and 

even above the upper clinical cut-off for APV. A further consideration of clinical relevance is the 

importance of addressing treatment failure early to avoid continuous viral replication and virus 

evolution which importantly, can occur not only in the PR but also in its substrate, the protein 

Gag and therefore be missed by routine genotypic testing.  In this line, studies have reported that 

patients are most likely to fail a PI regimen if they were previously PI experienced even if the 

level of cross-resistance predicted by genotypic analysis of the PR is low (Dronda et al, 2001). 

Our results suggest that continuous evolution of the Gag gene under unsuccessful PI therapy may 

be at least in part be accountable for this finding.  Although the stepwise reversion to wild type 

of the two emergent CS mutations (Y132F and L449F) led to a slight decreased in the level of PI 

resistance, the changes in IC50 were still significantly above those observed in the resistance test 

vector containing baseline Gag indicating that determinant of PI resistance were in this patient 

located in Gag both at CS and beyond. Importantly, at CSs we found the mutation L449F at 

P1/P6 and its reversion to wild type decreased the FC for all PI tested. Consistent with this 

finding Maguire and colleagues reported a 5-fold increase in APV resistance caused by this 

mutation (Maguire et al, 2002). Interestingly, we observed the mutation Y132F at P17/P24. The 

involvement of mutations at this CS on PI resistance has not been previously reported as we have 

already mentioned that studies have primarily focused on addressing the effect of mutations in 

P7/P1/P6. This focus reflects the fact that cleavage at these sites is the rate-limiting step in Gag 

processing and therefore it was anticipated that its cleavage would be severely affected by the 

loss of catalytic activity displayed by viral PR containing major PR resistance mutations. As a 

result, these CS were expected to rapidly evolve in order to maintain the efficient processing 

(Croteau et al, 1997; Zenou et al, 1998 and Martinez-Picado et al, 1999). However, it should be 
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noted that Maguire and colleagues showed that mutations in protease reduced cleaving efficiency 

for all known wild type CS substrates suggesting potential selective pressure on CS others than 

P7/P1/P6. In fact, in our study we have seen that mutations associated with PI exposure were 

seen in all CS except for P24/P2. In fact, we have found that the Y132F mutation was strongly 

associated with PI selective pressure (chapter four) and we and others have seen the Y132F 

mutation emerging in patients who developed PI resistance (Mammano et al, 1994). The fact that 

the reversion to wild type of the treatment emergent CS mutation Y132F led to an increase on PI 

susceptibility further support a role for the mutation in PI resistance.  

 

Due to the scarce information available on the phenotypic impact of Y132F, we employed SDM 

to introduce the mutation in a drug susceptible reference strain. It was observed that the Y132F 

mutation led to a 10 fold reduction on PI susceptibility while also having a detrimental effect on 

RC. The negative impact on RC is consistent with the observation that Y132F occurs exclusively 

in PI–experienced patients (chapter four). The mechanism by which Y132F reduce PI 

susceptibility have not been addressed. It can be postulated that as other CS mutations may 

render the CS better substrate and facilitate its cleavage. To support this hypothesis, early studies 

demonstrated that the Y132F mutation caused an increase in the rate of P17/P24 processing 

(Tritch et al, 1991). It may be envisaged that in the context of a wild-type protease displaying 

unimpaired catalytic activity Y132F may lead to premature cleavage and production of aberrant 

viral particles.  

 

It should be noticed that the effect of Y132F mutation on PI susceptibility was higher in the 

wild-type subtype B reference strain than it was on the CRF02 subtype patient’s virus 
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highlighting the importance of including the whole virus backbone in the phenotypic assay. 

Thus, it has been documented that polymorphism and secondary protease resistance mutations 

may have different PI resistance effects on different viral contexts (Wainberg et al, 2011 and 

Martinez-Cajas et al, 2012).  

 

Overall, our results showed that both CS and non-CS mutations are involved in modulating both 

PI susceptibility and RC. While most studies have agreed on the importance of Gag non-CS 

substitutions for the full recovery of virus RC of multi-PI resistant viruses (Gatanaga et al, 2002; 

Myint et al, 2004; Parry et al, 2009), the role of non-CS mutations in PI resistance have been 

debated. In line with our findings Parry and co-investigators reported that Gag alone was able to 

confer 10-15 fold resistance to all PIs. By contrast Dam and colleagues documented that no Gag 

region other than P7/P1/P6 was accountable for PI resistance. Several factors may account for 

the discrepancy such as the format of the phenotypic assay employed for drug susceptibility 

testing. In the present study and the one performed by Parry, a single cycle incorporating 

luciferase as reported gene was used. Dam and co-authors employed also a single cycle but 

galactosidase activity was in this case the indicator what may be less sensitive for the detection 

of subtle fold changes. In addition, as previously mentioned the backbone and subtype of the 

virus tested my also affect the results.  

 

In summary, we have shown that Gag CS and non-CS mutations modulate PI susceptibility and 

RC. Gag alone was sufficient to reduced PI susceptibility and in some cases the fold change in PI 

resistance was above the upper clinical cut-off reported by some commercial assays. In 
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conclusion, our results indicated that exclusion of the Gag gene in phenotypic resistance testing 

may overestimate PI susceptibility.   
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7 Chapter seven: general discussion 

The development of protease inhibitors (PIs) in the early 1990s was a landmark breakthrough in 

the treatment of HIV-1 infection. PIs made possible the dual-class triple combination therapy 

that became known as highly active antiretroviral therapy (HAART) and that has since 

constituted the standard of care of HIV-1 infected patients worldwide.  However, first-generation 

PIs, such as saquinavir (SQV), ritonavir (RTV) indinavir (IDV) and nelfinavir (NFV) showed 

significant pharmacokinetic limitations. Poor oral absorption, high serum-protein binding, and 

rapid liver enzyme metabolism resulted in PIs needing to be ingested often and in large 

quantities to maintain effective antiviral concentrations in blood, with significant food intake 

requirements. Consequently, first generation PI-based HAART often led to suboptimal 

adherence and limited long-term viral inhibition. Moreover, when therapy failure occurred, 

frequently multiple protease resistance mutations were present which were capable of producing 

significant cross-resistance, since all first- generation PIs occupied the same cavity within the 

HIV-1 protease (PR) enzyme.  A major advance in the use of PIs came with the discovery that 

ritonavir (RTV) was a potent inhibitor of the hepatic cytochrome P450 isoenzyme CYP3A4 

which, in turn, is the main enzyme responsible for PI metabolism. Concomitant administration of 

low-dose RTV with a PI (PI/r) led to “boosting” of the most important pharmacokinetic 

parameters of most PIs, which ultimately simplified otherwise complex regimens by reducing the 

frequency and number of pills to be administered and often obviating to complex food intake 

requirements. In addition, by elevating drug plasma levels, boosted PIs became les prone to 

select for drug resistance and more effective against PI-resistant HIV-1 variants. Subsequently, 

novel PIs were licensed for the treatment of HIV-1 infection which displayed improved 



306 

 

pharmacokinetic profiles and genetic barrier to resistance. Lopinavir (LPV) was the first and 

currently remains the only PI co-formulated with a low dose RTV. LPV/RTV was also the first 

boosted PI to be compared head-to-head with a non-nucleoside/nucleotide reverse transcriptase 

inhibitor (NNRTI) for the initial treatment of HIV-1 infection and is still currently one of the 

most frequently prescribed PI for HIV-1 treatment, especially in the developing world. Another 

approach to overcoming PI resistance consisted of the development of PIs with greater 

resemblance to the PR substrate, the protein Gag. This resulted mutational profiles different from 

those observed for previously developed PIs. Amprenavir (APV) and Darunavir (DRV) were the 

the first and last second-generation PI respectively designed with this approach. DRV shows a 

particularly high binding affinity for HIV-1 PR what further increases the genetic barrier 

compared to all previous PIs. DRV was initially introduced for the treatment of patient infected 

with multi-PI resistant viruses. However, its antiviral potency, good adverse event profile and 

high genetic barrier to resistance led to the drug being evaluated and approved for the treatment 

of antiretroviral naïve patients. Furthermore, boosted PIs, including atazanavir (ATV), LPV and 

DRV, have also been tested in clinical trials as monotherapy with results ranging from 

suboptimal (ATV) to good (DRV) relative to standard triple therapy.  As a result of all the 

progress made with PI-based therapy, since the introduction of the first PI nearly 20 year ago, 

these drugs continue today to be a cornerstone in the treatment of HIV-1 infection.  

 

Despite the extraordinary improvement in PI therapy, the life-long nature of HIV treatment, 

together with the enormous genetic plasticity of the virus, make the development of PI resistance 

and the subsequent loss of efficacy unavoidable. While failure of first generation PI-based 
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treatment strategies was generally characterised by the presence of multiple PR resistance 

mutations, treatment failure of combination therapy including newer PIs, such as LPV/RTV or 

DRV/RTV in subjects previously antiretroviral-naïve rarely showed the emergence of resistance 

mutations (Kempf et al, 2004 and Gupta et al, 2008). In contrast, it has been observed that their 

genetic barrier to resistance can be lowered by mutations selected during previous PI-based 

regimens (Mo et al, 2005). The main determinants for failure of PI/r in the absence of detectable 

PR resistance mutations remain poorly understood. Incomplete adherence or altered absorption 

and metabolism of PIs may be possible explanations in some patients. However, unexplored 

pathways of resistance involving the Gag protein have also been considered. Along this line, 

numerous studies have demonstrated an association between the selection of protease mutations 

and the emergence of mutations in Gag, predominantly in the cleavage sites (CS) P7/P1 and 

P1/P6 (Maguire et al, 2002; Prado et al, 2002; Nijhuis et al, 2007 and Dam et al, 2009). A study 

performed by Maguire and colleagues (Maguire et al, 2002) demonstrated that mutations in 

P1/P6 CS (L449F and P453L), which individually did not confer PI resistance, reduced APV 

sensitivity in the context of the major protease mutation I50V, thus providing evidence that PR 

and Gag mutations can interact to increase PI resistance.  Nijhuis and co-authors showed that 

variants in the Gag CS P7/P1 (A431V, K436E and/or I437V/T) were selected by PIs in vitro, in 

the absence of any substitution in the viral PR. The introduction of these Gag mutations in a 

reference strain led to low-level resistance to all PIs (Nijhuis et al, 2007). A more recent analysis 

of clinical isolates of patients on PI therapy carried out by Dam and colleagues (Dam et al, 2009) 

reported that mutations in P7/P1 (A431V and I437V) strongly and directly contributed to PI 

resistance in addition to compensating for the loss fitness caused by major PI resistance 
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mutations. Overall, these findings showed that selection of P7/P1 cleavage site mutations 

(CSMs) may represent an alternative pathway of PI resistance.  

 

 The role of mutations at other gag CS or even beyond CS regions has been poorly evaluated. A 

few studies suggest that determinants of PI resistance may be present at CS other than NC-P7/P1 

and P1/P6 as well as at non-cleavage sites (non-CS). Malet and colleagues showed that 

mutations at amino acid 373 in the P2/P7 CS were predictive of impaired virological responses 

to SQV/r (Malet et al, 2007). Recently, Ghosn and colleagues evaluated the impact of amino acid 

variability in the five Gag CSs on failure to LPV/r monotherapy within the MONARK trial. The 

study compared the efficacy of LPV/r monotherapy to that of triple therapy with LPV/r, 

zidovudine (ZDV) and lamivudine (3TC) for treatment of antiretroviral-naïve HIV-1 infected 

patients. They showed that having more than two mutations in P2/P7, especially if involving 

position 374, at baseline was predictive of virological failure of LPV/r monotherapy. Similarly, 

Parry and colleagues showed that determinants of PI resistance are likely to be located outside 

PR and its CSs, and that Gag conferred low-level resistance to all PIs in the context of a wild-

type PR (Parry et al, 2009). 

        

Despite this body of knowledge, the clinical management of PI failure remains based on the 

sequencing of the PR gene, in search for recognised protease resistance mutations. Similarly, the 

phenotypic evaluation of PI resistance involves the use of recombinant viruses containing 

patient’s derived PR and, in some cases, NC-P7/P1/P6 CS sequences. However, the contribution 

of full-length gag to PI resistance remains unaddressed. 
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In the course of my PhD studies, I developed and optimised an assay for amplification of full-

length HIV-1 PR and gag genes. This was made challenging by the considerable variability 

occurring in gag. Using this assay, I was able to amplify and sequence full-length PR and gag 

from a variety of HIV-1 subtypes and circulating recombinant forms (CRFs) at viral loads of 

around 500 to 1,000 copies/ml. Consequently, the assay sensitivity was regarded satisfactory for 

monitoring patients experiencing PI failure. However, due to the intra-patient variability of the 

gag gene, non-interpretable population sequencing was not unusual and clonal analysis was 

required to circumvent the problem in some samples. This represents an important limitation to 

the implementation of full-length gag sequencing in a high-throughput routine diagnostic setting.   

 

By applying the assay to the study of full-length Gag and PR genes from PI-naïve and PI-

experienced patients, we obtained sequences from 200 PI-naïve .and 191 PI-experienced patient 

samples. Comparison of the two groups demonstrated that PI-experienced subjects showed 

greater variability than PI-naïve individuals not only in PR, but also throughout the Gag protein. 

Importantly, there were significant differences in the prevalence of certain Gag mutations in the 

two groups, suggesting that HIV-1 genetic evolution under PI-selective pressure is not restricted 

to the PR gene but occurs in its natural substrate, the Gag protein.  Consistent with previous 

reports, we found that mutations in P7/P1 and P1/P6 CSs, such as A431V, K436R, I437V and 

L449F, were associated with PI selective pressure and occurred concomitantly with specific 

major PR resistance mutations, namely M46IL, I54V and I84V (Mammano et al, 2000; Zhang et 

al, 1997; Maguire et al, 2002; Cote et al, 2001; Bally et al, 2000 and Dauber et al, 2002, 
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Verheyen et al, 2006, Feher et al, 2002, Prado et al, 2002 and Nijhuis et al, 2007). However, by 

analysing full-length Gag, we significantly expanded previous knowledge and have identified a 

number of novel Gag mutations strongly associated with PI-experience. In the present study, 

mutations associated with PI-selective pressure were found in all CS except for CA-P24/P2. 

Mutations strongly associated with PI-experience included V128I and Y132F in P17/P24, and 

S373T, A374S and T375N in P7/P2.  

 

Interesting, in our study, we found that mutations associated with PI exposure were also present 

outside the CSs. Thus, we observed a trend towards a higher number of mutations in PI-

experienced patients compared with PI-naïve patients in all Gag domains. The effect was 

particularly noticeable in the MA-P17 and the P6 proteins, suggesting the two may play a 

prominent role in PI failure compared with other Gag regions. Consistent with this hypothesis, 

Parry and colleagues (Parry et al, 2009) reported that the P17 protein from a multidrug PI-

resistant virus was on its own able to rescue the otherwise impaired replicative capacity (RC) of 

the mutated PR to the level observed in the wild-type virus. In addition, they demonstrated that 

the mutated P17 reduced PI susceptibility in the absence of major PR resistance mutations, 

suggesting that major determinants of PI-resistance may be located in this protein. Interestingly, 

the clinical isolate they studied showed 12 mutations in MA-P17 (compared with the HXB2 

reference sequence) including six (I34L, T84V, E93D, I94V, N124K and N126S) that were 

found to be associated with PI selective pressure in our analysis. Two of these mutations in 

particular (I94V and N126S) showed a strong association with PI experience remaining 

significantly associated even after applying the Bonferroni’s correction.     
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In order to gather more insight into the role of Gag mutations in patient experiencing PI failure 

we performed longitudinal analyses of patients that were failing a PI-based treatment regimen. A 

group of 28 patients receiving IDV/r, SQV/r or LPV/r were followed for up to 24 weeks and 

their Gag and protease sequences obtained pre-treatment (baseline) and at the time of virological 

failure were compared. In addition, I was able to follow three patients for up to 5 years and 

obtain Gag and protease sequences at multiple time points (3-5) during treatment failure of 

.LPV/r for two patients and LPV/r plus APV/r for one patient. As expected, we observed a high 

prevalence of treatment-emergent major and minor protease resistance mutations. Interestingly, 

we observed an even higher prevalence of emergent Gag mutations both in and outside its CSs. 

In the first group of patients, we detected treatment- emergent mutations in three CSs:  P2/P7, 

P7/P1 and P1/P6. In total we observed nine different mutations emerging in these three CSs 

during failure. The majority of these mutations (6/9) had been found to be associated with PI 

selective pressure in both our study and studies by others (Verheyen et al, 2006; Malet et al, 

2006).  The role of most mutations occurring in P7/P1 (A431V and I437V), and in P1/P6 

(L449F) has been described in the literature (Mammano et al, 2000; Zhang et al, 1997; Maguire 

et al, 2002; Cote et al, 2001; Bally et al, 2000 and Dauber et al, 2002, 2002 and Nijhuis et al, 

2007). Emergence of CS mutations was observed both in the absence and presence of major 

protease mutations. Furthermore, the mutations did not appear to depend generally on the 

specific PI in the failing regimen, although P1/P6 mutations were more common in patients 

failing SQV/r and mutations in P2/P7 were seen mainly in patients failing IDV/r.  Nevertheless, 

the number of patients studied longitudinally was limited and did not allow a formal analysis in 

the association between specific regimen and the presence of certain Gag mutations.  
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Emergent mutations outside the CSs, and predominantly in P17, were also detected, that had 

been found to be associated with PI exposure, thus strengthening the hypothesis that in addition 

to gag CSs, P17 plays a significant role in PI failure.  

 

Although the cross-sectional analysis found several mutations associated with PI exposure in 

P17/P24 and P6, in our longitudinal analysis we did not observe emergence of mutations in these 

regions. However, we did observed the P17/P24 mutations Y132F and V128I in the baseline 

samples of three patients who had been previously exposed to PIs and showed several major 

protease resistance mutations. In addition, 18 patients had one or more mutations associated with 

PI selective pressure in P6, all of whom had been previously exposed to PIs. These findings 

suggest that that PI initially exert selective pressure mainly on the CSs P2/P7, P7/P1 and P1/P6 

(which are located in the gag terminal site) and on the P17 protein outside the CSs. Long-term 

selective pressure in contrast may trigger evolution in other CSs (such as P1/C-P24) and in P6 

outside the CSs. This concept was further supported by the observations made in the three 

patients who were followed by a longer period of time, and in whom we saw emergent mutations 

at these sites. Thus, the Y132F mutation in P17/P24 emerged in one patient after five years of 

ongoing viral replication while on APV/r and LPV/r, and P6 mutations also emerged in two 

patients overtime. Unfortunately, for most patients, we did not have access to data on the length 

of PI exposure at baseline. Therefore we could not formally analyse the association between 

duration of PI exposure and presence of specific Gag mutations.   
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An important observation is that while emergent Gag CS mutations were common among 

patients and consistent with previous reports, the emergent non-CSMs were highly heterogenous 

and did not show consistent patterns. This indicates that evolution outside CS is complex and 

likely to be driven by different pressures including virological factors (genetic make-up, level 

and duration of virus replication, emerging mutations in protease and CSs), pharmacology 

factors (drug type and drug exposure), and host-related factors (immune response).  

 

In the final chapter we applied a single cycle assay for the phenotypic measurement of PI 

susceptibility and viral RC. We studied samples collected from four patients at the time of 

virological failure and assessed the impact of several CSMs (Y132F, T375A, A431V, I437V and 

L449F) on drug susceptibility and RC. Overall, we observed that CSMs contributed to PI 

resistance. Thus, the reversion to wild-type of Y132F, T375A or L449F led in all cases to a 3-5 

fold reduction in PI susceptibility. Similarly, the introduction by side-directed mutagenesis of the 

I437V mutation in the patient’s baseline sample produced a 2-5 fold increase in PI resistance.  In 

addition, most CSMs led to an improvement in viral RC, with the exception of I437V which did 

not have a discernible effect. We confirmed the independent effect of mutations Y132F and 

T375A on PI susceptibility and RC by introducing the mutations in a wild type backbone. We 

found that Y132F conferred around 10 fold resistance to all PIs while decreasing RC, while 

T375A produced 5-10 fold resistance to all PIs but increased RC. In addition, in line with 

previous studies (Gatanaga et al, 2002; Myint et al, 2004; Dam et al, 2009 and Parry et al, 2009), 

we found that non-CS mutations, in addition to contributing to PI resistance, were also required 

for efficient replication of multi-PI resistance viruses. Importantly, we found that emergent Gag 
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mutations were not generally associated with a specific PI regimen but rather the same mutations 

were seen emerging under different PI regimens. This finding, combined with the observation 

that the Gag mutations conferred a degree of cross-resistance to most PIs in the phenotypic 

assay, suggests a common mechanism for conferring resistance.  

 

PIs, with the exception of IDV, are more than 90% protein bound in vivo (Bilello et al, 1996). 

Our phenotypic drug susceptibilities studies have been performed in HEK T293 cells grown and 

maintained in cell culture media supplemented with 10% FCS. As the calculation of the IC50 

relies on the presence of unbound drug concentrations, it will be highly dependent on  the 

composition of the incubation media. As a result, caution should be applied when comparing the 

results obtained in the present studies with those obtained under different tissue culture 

conditions and also before extrapolating the IC50 in this study to in vivo conditions.  

 

Overall, our results clearly indicate that continuous viral replication under PI selective pressure 

leads to evolution of the viral PR as well as its substrate, the Gag protein. Consequently, 

analyzing PR alone after PI failure may underestimate the level of PI resistance. Given our result 

and in general the expanding body of evidence indicating that Gag mutations contribute to PI 

resistance in treated patients, full-length Gag sequences should be incorporated in phenotypic 

assays to determine PI susceptibility of clinical isolates.  
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Expansion of full-length Gag sequencing in patients failing PI-based regimens would be also of 

interest to populate the relevant databases employed for the clinical assessment of HIV drug 

resistance and to assist in the identification of specific Gag determinants of PI susceptibility. 

Only then, the importance of Gag genotypic determination to guide patient care could be 

evaluated.    

 

In addition, the findings of my PhD studies could also have important implications for drug 

development and as a result I propose that when novel PIs are being developed, it should be 

checked whether Gag evolution provides an alternative mechanism of escape for the virus.  

 

It should be emphasised that all patients studied were failing PIs as part of triple combination 

therapies. However, due to financial constraints, the interest on PI-monotherapy regimens is 

increasing in many countries around the world. Nevertheles, it shold be emphasized that the 

analysis of patients failing LPV/r monotherapy in the MONARK trial demonstrated a lower 

genetic barrier to resistance compared with triple therapy. Therefore, it can be proposed that the 

effect of Gag mutations may be more prominent in the context of PI/r monotherapy. Consistent 

with this concept, the analysis of baseline Gag sequences from patients assigned to receive 

LPV/r monotherapy in MONARK showed that patients with at least two mutations in the gag CS 

P2/P7 were more likely to experience virological failure of LPV/r than those who did not show 

mutations at this CS (Ghosn et al, 2011).  Consequently, it would be of interest to address the 

evolution of the Gag in patients starting PI/r monotherapy and its effect of drug susceptibilty. 

Currently, PI/r monotherapy is only established as a treatment switch in patients with stable 
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undetectable viraemia while on HAART. Consquently, performing such analysis may be 

hampered by the potential lack of access to the baseline samples for the patients.   

 

It should be also noticed that most of my PhD work has been performed with subtype B HIV-1 

viruses.  By the end of 2007, nearly three million people were on HAART worldwide as a 

consequence of the therapy roll-out in developing countries. NNRTI-based regimens are 

recommended by the World Health Organisation (WHO) as first-line therapy in low-income 

countries. For second line therapy, the WHO advises initiation of a PI-based regimen, currently 

LPV/r or ATV/r, plus two NRTIs. As the number of patients having access to antiretroviral 

therapy increase in developing countries so does the number of patients needing to move to 

second line PI-based therapy. However, some of the Gag mutations that we have described as 

associated with PI exposure and that indeed we have found to decrease PI susceptibility “in 

vitro” may occur as natural polymorphisms in non-B subtypes thus potentially affecting 

responses to second-line therapy. This is especially important when considering that patients in 

these regions commonly start second-line therapy having already accumulated significant 

resistance to the NRTI component of the regimen. A few studies have shown that Gag variability 

is greater in non-B subtypes than in B subtype HIV-1 (Jinnopat et al, 2009 and Ghosn et al, 

2011). For instance, Jinnopat reported a higher Gag variability in subtype CRF01 (Jinnopat et al, 

2009), and in particular the mutations L61I and P66S in P17 were frequently detected in drug-

naïve patients. Both L61I and P66S were associated with PI-exposure in our study and in the 

case of L61I the association remained significant after the Bonferroni’s correction for multiple 

associations was applied. In addition, Gupta and co-authors frequently detected the T84V 
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mutation in subtype A (Gupta et al, 2010), which have also been associated with PI-exposure in 

our study.  Importantly, Gupta and colleagues reported that in the context of wild-type subtype B 

PR, replacing the subtype B Gag with subtype A Gag decreased PI susceptibility. Similarly, 

Ghosn and colleagues showed that the risk of virological failure of LPV/r monotherapy was 

significantly higher in patients with polymorphisms at P2/P7 CS and polymorphism at this CS 

were in turn more common in non-B subtypes compared to subtype B HIV-1 viruses.  

Considering that resistance testing is not routinely perfomed in developing countries and the 

important implications that Gag mutations in non-B subtypes and their correnponding effects on 

PI susceptibility may have for the public health approach to antiretroviral treatment, in future 

work, we would like to expand the full-length Gag sequencing to patients infected with non-B 

subtypes who are due to start a PI-based regimen and to evaluate the prevalence of subtype-B 

mutations associated with PI exposure in non-B subtypes at baseline as well as the impact of 

such polymorphisms on virological responses to PIs.  

 

 

 

 

 



318 

 

8 Chapter eight: references 

1. Accola MA, Bukovsky AA, Jones MS and Göttlinger HG. 1999.  A conserved dileucine-

containing motif in p6gag governs the particle association of Vpx and Vpr of simian 

immunodeficiency viruses SIV (mac) and SIV (agm). J. Virol. 73: 9992-9. 

 

2. Accola MA, Höglund S and Göttlinger HG. 1998. A putative alpha-helical structure 

which overlaps the capsid-p2 boundary in the human immunodeficiency type 1 Gag precursor is 

crucial for viral particle assembly. J. Virol. 72: 2072-8.  

3.  Accola MA, Strack B and Gottlinger HG. 2000. Efficient particle production by minimal 

gag constucts which retain the carboxyterminal domain of human immunodeficiency virus type 1 

capsid-p2 and a late assembly domain. J. Virol. 74: 5395-402. 

4. Albert J, Walhberg J, Leitner T, Escanilla D and Uhlen M. 1994 Analysis of a rape case 

by direct sequencing of the human immunodeficiency virus type 1 pol and gag genes. J. Virol. 

68: 5918-24.  

5. Alcorn TM and Faruki H. 2000. HIV resistance testing: methods, utility and limitations. 

Mol. Diagn. 5: 159-68.  

6. Aldovini A and Young RA. 1990. Mutations of RNA and protein sequences involved in 

human immunodeficiency virus type 1 packaging result in production of noninfectious viruses. J. 

Virol. 64: 1920-6. 

7. Allen TM, Altfeld M, Geer SC, Kalife ET, Moore C, O’Sullivan KM, Desouza I, Feeney 

ME, Eldridge RL, Maier EL, Kaufman DE, Lahaie MP, Reyor L, Tanzi G, Johnston MN, 

Brander C, Draenert R, Rockstroh JK, Jessen H, Rossenberg ES, Mallal SA and Walker BD. 

2005.  Selective escape from CD8þ T-cell responses represents a major driving force of human 

immunodeficiency virus type 1 (HIV-1) sequence diversity and reveals constraints on HIV-1 

evolution. J. Virol. 79: 13239-49.  

8. Andries K, Azijn H, Thielemans T, Ludovici D, Kukla M, Heeres J, Janssen P, De Corte 

B, Vingerhoets J, Pauwels R and de Béthune MP. 2004.  TMC125, a novel next generation 

nonnucleoside reverse transcriptase inhibitor active against nonnucleoside reverse transcriptase 

inhibitor-resistant human immunodeficiency virus type 1. Antimicrob. Agents and chemother. 

48:4680-6. 

9. Arhel NJ, Souquere-Besse S, Munier S, Souque P, Guadagnini S, Rutherford S, Prévost 

MC, Allen TD and Charneau P. 2007. HIV-1 DNA flap formation promotes uncoating of the 

pre-integration complexat the nuclear pore. EMBO J. 26: 3025-37.  

10. Arion D, Kaushik N, McCormick S, Borkow G, and Parniak MA. 1998. Phenotypic 

mechanism of HIV-1 resistance to 3'-azido-3'-deoxythymidine (AZT): increases polymerization 



319 

 

processivity and enhanced sensitivity to pyrophosphate of the mutant viral reverse transcriptase. 

Biochemistry. 37: 15908-17.   

 

11. Auewarakul P, Wacharapornin P, Srivhatrapimuk S and Puthavathana P. 2005. Uncoating 

of HIV-1 requires cellular activation.Virology. 337: 93-101. 

12. Bacheler L, Jeffrey S, HannaG, D’Aquila R, Wallace L, Logue K, Cordova B, Hertogs K, 

Larder B, Buckery R, Baker D, Gallagher K, Sacarnati H, Tritch R and Rizzo C. 2001. 

Genotypic correlates of phenotypic resistance to efavirenz in virus isolates form patients failing 

non-nucleoside reverse transcriptase inhibitor therapy. J. Virol. 75: 4999-5008.  

13. Bally F, Martinez R, Peters S, Sudre P and Telenti A. 2000. Polymorphism of HIV type 1 

gag P7/P1 and P1/P6 cleavage sites: clinical significance and implications for resistance to 

protease inhibitors. AIDS Res. Hum. Retroviruses. 16: 1209-13. 

14. Bandaranayake RM, Kolli M, King NM, Nalivaika EA, Heroux A, Kakizawa J, Sugiura 

W and Schiffer CA. 2010. The effect of clade-specific sequence polymorphisms on HIV-1 

protease activity and inhibitor resistance pathways. J. Virol. 84: 9995-10003. 

 15. Bandarnayake RM, Prabu-Jebayalan M, Kakizawa J, Sugiura W and Schiffer CA. 2008. 

Structural analysis of human immunodeficiency virus type 1 CRF01-AE protease in complex 

with the substrate P1-P6. J. Virol. 82: 6762-66. 

16. Bangsberg DR, Moss AR and Deeks SG. 2004. Paradoxes of adherence and drug 

resistance to HIV antiretroviral therapy. J.Antiomicrob Chemother. 53: 696-9.  

17. Banke S, Lillemark MR, Gerstoft J, Obel N and Jørgensen LB.  2009. Positive selection 

pressure introduces secondary mutations at Gag cleavage sites in human immunodeficiency virus 

type 1 harbouring major protease resistance mutations. J.Virol. 83: 8916-24. 

18. Barlow KL, Tatt ID, Cane PA, Pillay D and Clewley JP. 2001. Recombinant strains of 

HIV type 1 in the United Kingdom. AIDS. Re. Hum. Retroviruses. 17: 464-74. 

19. Barnes WM. 1994.  PCR amplification of up to 35 KB DNA with high fidelity and high 

yield from lambda bateriophage templates. Proc. Natl. Acd. Sci. U. S. A. 91: 2216-20. 

20. Barre-Sinoussi F, Chermann JC, Rey F, Nugeyre MT, Chamaret S, Gruest J, Dauguet C, 

Axler-Blin C, Vezinet-Brun F, Rouzioux C, Rozenbaum and Montagnier L. 1983. Isolation of a 

lumphotropic retrovirus from a patient at risk for acquired immune deficiency sindrome (AIDS). 

Science. 220: 868-71. 

21. Baxter JD, Mayers DL, Wentworth DN, Neaton JD, Hoover ML, Winters MA, 

Mannheimer SB, Thompson MA, Abrams DI, Brizz BJ, Loannidis JP and Merigan TC. 2000.  A 

randomized study of antiretroviral management based on plasma genotypic antiretroviral 

resistance testing in patients failing therapy. AIDS. 14: F83-F93.  

 



320 

 

22. Bebenek, K., J. Abbotts, J. D. Roberts, S. H. Wilson, and T. A. Kunkel. 1989. Specificity 

and mechanism of error-prone replication by human immunodeficiency virus-1 reverse 

transcriptase. J. Biol. Chem. 264: 16948-56.  

23. Berger EA, Doms RW, Fenyo EM,  Korber BT, Littman DR, Moore JP, Sattentau QJ, 

Schuitemaker H, Sodroski J and Weiss RA. 1998. A new classification for HIV-1. Nature. 391: 

240. 

24. Berkowitz R, Fisher J and Goff SP. 1996. RNA packaging. Curr.Top. Microbiol. 

Immunol. 214: 177-218. 

25. Bieniasz PD. 2009. The cell biology of HIV virion genesis. Cell Host & Microbe. 5:  

550-8, 18 June 2009.  

26. Bilello JA, Bilello PA, Stellrecht K, et al. 1996. Human serum α1-acid glycoprotein reduces 

uptake, intracellular concentration, and anti-viral activity of A-80987, an inhibitor of the human 

immunodeficiency virus type 1 protease. Antimicrob Agents Chemother. 40: 1491-1497.  

27. Billich  S, Knoop MT, Hansen J, Strop P, Sedlacek J, Mertz R and Moelling K. 1988. 

Synthetic peptides as substrates and inhibitors of human immune deficiency virus-1 protease. J. 

Biol. Chem. 263:17905-8. 

28. Booth C L, Garcia-Diaz A M, Youle M S, Johnson M A, Phillips A and Geretti AM. 

2007.  Prevalence and predictors of antiretroviral drug resistance in newly diagnosed HIV 

infection. J.Antimicrob. Chemother. 59: 517-24.  

29. Boom R, Sol C and Wertheim-Van Dillen P. 1990. Rapid purification of ribosomal RNAs 

from neutral agarose gels. Nucleic. Acids. Res. 18: 2195.   

30. Borsetti A, Ohagen A and Göttlinger HG. 1998. The C-terminal half of the human 

immunodeficiency virus type 1 Gag precursor is sufficient for efficient particle assembly. J. 

Virol. 72: 9313-7.  

31. Boucher C.A, O’Sullivan E, Mulder J.W, Ramautarsing C, Kellam P, Darby G, Lange 

J.M, Goudsmit J and Larder B.A. 1992. Ordered appearance of zidovudine resistance mutations 

during treatment of 18 human immunodeficiency virus-positive subjects. J. Infect. Dis. 165: 105-

110.  

32. Boyer P. L, Sarafianos SG, Arnold E and Hughes SH. 2001. Selective excision of 

AZTMP by drug-resistant human immunodeficiency virus reverse transcriptase. J. Virol. 75: 

4832-4842.  

33. Bracho MA, Moya A and Barro E. 1998. Contribution of Taq polymerase-induced errors 

to the estimation of RNA virus diversity. J. Gen. Virol. 79: 3921-2928.  

34. Brann TW, Dewar RL, Jiang MK, Shah A, Nagashima K, Metcalf JA, Falloon J, Lane 

HC and Imamichi T. 2006. Functional correlation between a novel amino acid insertion at codon 

19 in the protease of human immunodeficiency virus type 1 and polymorphism in the p1/p6 Gag 

cleavage site in drug resistance and replication fitness. J. Virol. 80: 6136-45. 



321 

 

35. Brass AL, Dykxhoorn DM, Benita Y, Yan N, Engelman A, Xavier RJ, Lieberman J and 

Elledge SJ. 2008. Identification of host proteins required for HIV infection through a functional 

genomic screen. Science. 319: 921-26.  

 36. Brehm, J. H., D. Koontz, J. D. Meteer, V. Pathak, N. Sluis-Cremer, and J. W. Mellors. 

2007. Selection of mutations in the connection and Rnase H domains of human 

immunodeficiency virus type 1 reverse transcriptase that increase resistance to 3'-azido-3'-

dideoxythymidine. J. Virol. 81: 7852-7859.  

37. Brehm JH, Mellors JW, and N. Sluis-Cremer. 2008. Mechanism by which a glutamine to 

leucine substitution at residue 509 in the ribonuclease H domain of HIV-1 reverse transcriptase 

confers zidovudine resistance. Biochemistry 47: 14020-14027. 

 38. Briones MS, Dobard CW and Chow SA. 2010. Role of human immuodeficiency virus 

type 1 integrase in uncoating of the viral core. J. Virol. 84: 5181-5190. 

39. Brown AL and Monaghan P. 1988. Evolution of the structural proteins of human 

immunodeficiency virus: selective constriants on nucleotide substitutions. AIDS. Res. Hum. 

Retrovirus. 4: 399-406. 

40. Brumme ZL, Chan KJ, Dong WW, Wynhoven B, Mo T, Hogg RS, Montaner JS, 

O'Shaughnessy MV and Harrigan PR. 2003. Prevalence and clinical implications of insertions in 

the HIV-1 p6Gag N-terminal region in drug-naïve individuals initiating antiretroviral therapy. 

Antivir. Ther. 8: 91-6. 

41. Bryant M and Ratner L. 1990. Myristoylation-dependent replication and assembly of 

human immunodeficiency virus 1. Proc. Natl. Acad. Sci. U. S. A. 87: 523-527. 

42. Bukrinsky M, Sharova N and Stevenson M. 1993a. Human immunodeficiency virus type 

1 2-LTR circles reside in a nucleoprotein complex which is different from the preintegration 

complex. J. Virol. 67: 6863-5. 

43. Bukrinsky MI, Haggerty S, Dempsey MP, Sharova N, Adzhubel A, Spitz L, Lewis P, 

Goldfarb D, Emerman M and Stevenson M. 1993b. A nuclear localization signal within HIV-1 

matrix protein that governs the infection of non-dividing cells.  Nature. 365: 666-9.   

44. Cairns TM and CraveN RC. 2001.  Viral DNA synthesis defects in assembly-competent 

rous sarcoma virus CA mutants. J. Virol. 75: 242-250.  

45. Casado JL, Hertogs K, Ruiz L, Dronda F, Van Cauwenberge A, Arno A, Garcia-Arata I, 

Bloor S, Bonjoch A, Blanquez J, Clotet B and Larder B. 2000. Non-nucleoside reverse 

transcriptase inhibitor resistance among patients failing a nevirapine plus protease inhibitor-

containing regimen. AIDS. 14: F1. 

46. CDC Weekly. 1982a. A cluster of Kaposi's sarcoma and Pneumocystis carinii pneumonia 

among homosexual male resisdents of Los Angeles Orange Counties, California. MMWR Morb. 

Mortal. Wkly. Rep. 31: 305-307. 



322 

 

47. CDC Weekly. 1982b. Pneumocystis carinii pneumonia among persons with hemophilia 

A. MMWR Morb. Mortal. Wkly. Rep. 31: 365-367. 

48. CDC Weekly. 1982c. Update on acquired immune deficiency syndrome (AIDS)--United 

States. MMWR Morb. Mortal. Wkly. Rep. 31: 507-8.  

49. Charneu P, Mirambeu G, Roux P, Paulous S, Buc H and Clavel F. 1994.  HIV-1 reverse 

transcription. A termination step at the centre of the genome. J.Mol. Biol. 241: 651-62. 

50. Charpentier C, Dwyer DE, Mammano F, Lecossier D, Clavel F and Hance AJ. 2004.  

Role of minority populations of HIV type 1 in evolution of viral resistance to protease inhibitors. 

J.Virol. 78: 4234-4247.  

51. Chazal N, Carrière C, Gay B and Boulanger P. 1994. Phenotypic characterization of 

insertion mutants of the human immunodeficiency virus type 1 Gag precursor expressed in 

recombinant baculovirus-infected cells. J.Virol. 68: 111-22. 

52. Chrusciel RA and Strohbach JW. 2004. Non-peptidic HIV protease inhibitors. Curr.Top. 

Med.Chem. 4: 1097-114.  

53. Clark SA, Shulman NS, Bosch RJ, and Mellors JW. 2006. Reverse transcriptase 

mutations 118I, 208Y, and 215Y cause HIV-1 hypersusceptibility to non-nucleoside reverse 

transcriptase inhibitors. AIDS. 20: 981-84.  

54. Clavel F, Guetard D, Brun-Vezinet F, Chmaret S, Ray MA, Santos-Ferreira MO, Laurent 

AG, Dauguet C, Katlama C, Rouzioux C. 1986. Isolation of a new human retrovirus from West 

African patients with AIDS. Science. 233: 343-6. 

55. Clavel F, Race E and Mammmano F. 2000. HIV Drug resistance and viral fitness. Adv. 

Pharmacol. 49: 41-66. 

56. Clewley J P, Arnold C, Barlow K L, Grant P R and Parry J V. 1996. Diverse HIV-1 

genetic subtypes in UK. Lancet. 347: 1487.  

57. Cline J, Braman JC and Hogrefe H. 1996. PCR fidelity of Pfu DNA polymerase and other 

thermostable DNA polymerases. Nucleic. Acids. Res.18: 3546-51.  

58. Cohen CJ, Hunt S, Sension M, Farthing C, Conant M, Jacobson S, Nadler J, Verbiest W, 

Hertogs K, Ames M, Rinehart AR, Graham NM; VIRA3001 Study Team. 2002. A randomized 

trial assessing the impact of phenotypic resistance testing on antiretroviral therapy. AIDS. 16: 

579-588.  

59. Condra JH, Holder DJ, Schleif WA, Blahy OM, Danovich RM, Gabryelski LJ, Graham 

DJ, Laird D, Quintero JC, Rhodes A, Robbins HL, Roth E, Shivaprakash M, Yang T, 

Chodakewitz JA, Deutsch PJ, Leavitt RY, Massari FE, Mellors JW, Squires KE, Steigbigel RT, 

Teppler H and Emini EA.1996.  Genetic correlates of in vivo viral resistance to indinavir, a 

human immunodeficiency virus type 1 protease inhibitor. J. Virol. 70: 8270-6.  



323 

 

60. Corbet S, Muller-Trutwin MC, Versmisse P, Delaure S, Ayouba A, Lewis J, Brunak S, 

Martin P, Brun-Vezinet F, Simon F, Barre-Sinousi F and Mauclere P. 2000. Env sequences of 

simian immunodeficiency viruses from chimpanzees in Cameroon are strongly related to those of 

human immunodeficiency virus group N from the same geographic area. J. Virol. 74: 529-34. 

61. Côté HC, Brumme ZL and Harrigan PR. 2001. Human immunodeficiency virus type 

1protease cleavage site mutations associated with protease inhibitor cross-resistance selected by 

indinavir, ritonavir, and/or saquinavir. J. Virol. 75: 589-94   

62. Craven RC, Bennett RP and Wills JW. 1991. Role of the avian retroviral protease in the 

activation of reverse trancriptase during virion assembly. J Virol. 65: 6205-6217. 

63. Croteau G, Doyon L, Thibeault D, McKercher G, Pilote L and Lamarre D. 1997. 

Impaired fitness of human immunodeficiency virus type 1 variants with high level resistance to 

protease inhibitors. J. Virol. 71: 1089-1096. 

64. Dam E, Quercia R, Glass B, Descamps D, Launay O, Duval X, Krausslich HG, Hance AJ 

and Clavel F. 2009. Gag mutations strongly contribute to HIV-1 resistance to protease inhibitors 

in highly drug-experienced patients beside compensating for fitness loss. PLoS. Path. 5: 

e1000345. 

65. Darke JW. 1993.  Rates of spontaneous mutation among RNA viruses. Proc. Natl. Acad. 

Sci. U.S.A. 90: 4171-5. 

66.  D’Arminio MA, Lepri AC, Rezza G et al. 2000. Insights into thereasons for 

discontinuation of the first highly active antiretroviral therapy (HAART) regimen in a cohort of 

antiretroviral naïve patients. I.C.O.N.A. Study Group. Italian cohort of antiretroviral naïve 

patients. AIDS, 14; 499-507.  

67. Dauber DS, Ziermann R, Parkin N, Maly DJ, Mahrus S, Harris JL, Ellman JA, 

Petropoulous C and Craik CS. 2002. Altered substrate specificity of drug resistance human 

immunodeficiency virus type 1 protease. J. Virol. 76: 1359-68. 

68. Delaugerre C, Flandre P, Chaix ML, Ghosn J, Raffi F, Dellamonica P, Jaeger H, 

Shürmann D, Cohen-Codar I, Van PN, Norton M, Taburet AM, Delfraissy JF, Rouzioux C; 

MONARK Study Group. 2009. Protease inhibitor resistance analysis in the MONARK trial 

comparing first-line lopinavir-ritonavir monotherapy to lopinavir-ritonavir plus zidovudine and 

lamivudine triple therapy. Antimicrob. Agents. Chemother. 53: 2934-9. 

 69. Delaugerre C, Rohban R, Simon A,  Moroux M, Tricot C, Agher R, Huraux JM, Katlama 

C and Calvez V. 2001. Resistance profile and cross-resistance to HIV-1 among patients failing a 

non-nucleoside reverse transcriptase inhibitor-containing regimen. J. Med. Virol. 65: 445.  

70. Delelis O, Crayaon K,Saib A, Deprez E and Moscadet J-F.  2008. Integrase and 

integration: biochemical activities of HIV-1 integrase. Retrovirology. 5:114. 

71. Delelis O, Thierry S, Subra F, Simon F, Malet I, Alloui C, Sayon S, Calvez V, Deprez E, 

Marcelin AG, Tchertanov L and Mouscadet  JF. 2010.  Impact of Y143 HIV-1 integrase 



324 

 

mutation in resistance to raltegravir in vitro and in vivo. Antimicrob. Agents. Chemother. 54: 

491-50.  

72. Demaison C, Parsley K, Brouns G, Scherr M, Battmer K, Kinnon C, Grez M and 

Thrasher AJ. 2002. High level transduction and gene expression in hematopoietic repopulating 

cells using  human immunodeficiency virus type-1 based lentiviral vector containing an internal 

spleen focus forming virus promoter. Hum. Gen. Ther. 13: 803-13.  

73. Derdeyn CA, Decker JM, Sfakianos JN, Wu X, O’Brien WA, Ratner L, Kappes JC, Shaw 

GN and Hunter E. 2000. Sensitivity of human immunodeficiency virus type 1 to the fusion 

inhibitor T-20 is modulated by coreceptor specificity defined by the V3 loop of gp120. J. Virol. 

74: 8358-67.  

74. Derdeyn CA, Decker JM, Sfakianos JN, Zhang Z, O’Brien WA, Ratner L, Shaw GM and 

Hunter E. 2001. Sensitivity of human immunodeficiency virus type 1to fusion inhibitors targeted 

to the gp41 first heptad repeat involves distinct regions of gp41 and is consistently modulated by 

gp120 interactions with the coreceptor. J. Virol. 75: 8605-14. 

 75. Derooo S, Robert I, Fontaine E, Lambert C, Plesseria J M, Arendt V, Staub T, Hemmer 

R, Schneider F and Schmit J C. 2002. HIV-1 subtypes in Luxembourg, 1983-2000. AIDS. 16: 

2461-7.  

76. Deval J, White KL, Miller MD, Parkin NT, Courcambeck J, Halfon P, Selmi B,  Boretto 

J and  Canard B. 2004. Mechanistic basis for reduced viral and enzymatic fitness of HIV-1 revrse 

transcriptase containing boith K65R and M184V mutations. J. Biol. Chem. 279: 509-16.  

77. Devereux H, loveday C, Burke A, Dann L, Johnson M and Phillips A. 1999. The 

prevalence of non-B subtype HIV-1 in a London HIV/AIDS outpatient clinic. AIDS. 13: 142.  

78. Devereux, HL, Emery VC, Johnson MA, and Loveday C. 2001. Replicative fitness in 

vivo of HIV-1 variants with multiple drug resistance associated mutations. J. Med. Virol. 65: 

218-24.  

79. Dierynck I, De Wit M, Gustin E, Keuleers I, Vandersmissen J, Hallenberger S and 

Hertogs K. 2007. Binding kinetics of darunavir to human immunodeficiency virus type 1 

protease explain the potent antiviral activity and high genetic barrier. J. Virol. 81: 13845-51. 

80. Ding J, Das K, Moereels H, Koymans L, Andries K, Janssen PA, Hughes SH and Arnold 

E. 1995. Structure of HIV-1 RT/TIBO R 86183 complex reveals similarity in the binding of 

diverse nonnucleoside reverse transcriptase inhibitors. Nat. Struct. Biol. 2: 407-15.   

81. Dingwall C, Ernberg I, Gait MJ, Green SM, Heaphy S, Karn J, Lowe AD, Singh M and 

Skinner MA. 1990.  HIV-1 tat protein stimulates transcription by binding to a U-rich bulge in the 

stem of the TAR RNA structure. EMBO J: 4145-54. 

82. Domingo E and Holland J. 1997a. RNA virus mutations and fitness for survival. Ann.  

Rev. Microbiol. 51: 151-78. 



325 

 

83. Domingo E, Menendez-Arias L and Holland JJ. 1997b. RNA virus fitness. Rev. Med. 

Virol. 7: 87-96.  

84. Dorfman T, Luban J, Goff SP, Haseltine WA and Göttlinger HG. 1993. Mapping of 

functionally important residues of a cysteine-histidine box in the human immunodeficiency virus 

type 1 nucleocapsid protein. J. Virol. 67: 6159-69.  

85. Dorfman T, Mammano F, Haseltine WA and Gottlinger HG. 1994. Role of the matrix 

protein in the virion association of the human immunodeficiency virus type 1 envelope 

glycoprotein. J. Virol. 68: 1689-1696. 

86. Dorr P, Westby M, Doobs S, Griffin P, Irvine B, Macartney M, Mori J, Rickett G, Smith-

Bruchnell C, Napier C, Webster R, Armour D, Price D, Stammen V, Wood A and Perros M. 

2005. Maraviroc (UK-427,857), a potent, orally bioavailable, and selective small-molecule 

inhibitor of chemokine receptor CCR5 with broad-spectrum anti-human immunodeficiency virus 

type 1 activity. Antimicrob. Agents. Chemother. 49: 4721-32.     

87. Doyon L, Croteau G, Thibetault D, Poulin F, Pilote L and Lamarre D. 1996. Second 

locus involved in human immunodeficiency virus type 1 resistance to protease inhibitors. J. 

Virol. 70: 3763-9.  

88.  Draenert R, Allen TM, Liu Y, Wrin T, Chappey C, Verril CL, Sirera G, Eldridge RL, 

Lahaie MP, Reiz L, Clotet B, Petropoulos CJ, Walker BD and Martinez-Picado J. 2006. 

Constraints of HIV-1 evolution and immunodominance revelaed in monozygotic adult twins 

infected with the same virus. J. Exp Med. 203 (3): 259-39.  

89. Dragic T, Trkola A, Thompson DA, Cormier EG, Kajumo FA, Maxwell E, Lin SW,  

Ying W, Smith SO, Sakmar TP and Moor JP. 2000. A binding pocket for a small moleculae 

inhibitor of HIV-1 entry within the transmembrane helices of CCR5. Proc. Natl. Acad. Sci. 

U.S.A. 97: 5639-44. 

90.  Dronda F, Casado JL, Morenao S, Hertogs K, Garcia-Arata I, Antela A, Perez-Elias MJ, 

Ruiz L, Larder B; NELSANE Study. 2001. Phenotypic cross-resistance to Nelfinavir: the role of 

prior antiretroviral therapy and the number of mutations in the protease gene. AIDS Res Hum 

Retroviruses. 17: 93-8 

91. Durant J, Clevenbergh P Halfon P, Delgiudice P, Porsin S, Simonet P, Montagne N, 

Boucher CA, Schapiro JM and Dellamonica P. 1999. Drug-resistance genotyping in HIV-1 

therapy: the VIRADAPT randomised controlled trial. Lancet. 353: 2195-99. 

92. Dykes C. and Demeter LM. 2007. Clinical significance of human immunodeficiency 

virus type 1 replication fitness. Clin. Microbiol. Rev. 20: 550-78.  

93. Eastman PS, Mittler J, Kelso R, Gee C, Boyer E, Kolberg J, Urdea M, Leonard JM,  

Norbeck DW, Mo H and Markowitz M. 1998. Genotypic changes in human immunodeficiency 

virus type q associated with loss of suppression of plasma viral RNA levels in subjects treated 

with ritonavir (Norvir) monotherapy.  J. Virol. 72: 5154-64.  



326 

 

94. Ebbets-Reed D, Scarlata S and Carter CA.1996.  The major homology region of the HIV-

1 gag precursor influences membrane affinity. Biochemistry. 12. 35: 14268-75. 

95. Eckert KA and Kunkel TA.1991.  DNA polymerase fidelity and the polymerase chain 

reaction. Genome. Res. 1: 17-24.  

96. El SY, Vivet-Boudou V and Marquet R. 2007. HIV-1 reverse transcriptase inhibitors. 

Appl. Microbiol. Biotechnol. 75: 723-37.  

97.  Elzi L, Marzolini C, Furrer H, et al. 2010. Treatment modification in human 

immunodeficiency virus-infected individuals starting combination antiretroviral therapy between 

2005 and 2008. Arch Intern Med; 170: 57-65.  

98. Emerman M, Vazeux R, Peden K. 1989. The rev gene product of human 

immunodeficiency virus affects envelope-specific RNA location. Cell. 57: 1155-65.  

99.  Facke  M, Janetzko A,  Shoeman, R L and Krausslich H G. 1993. A large deletion in the 

matrix domain of the human immunodeficiency virus gag gene redirects virus particle assembly 

from the plasma membrane to the endoplasmic reticulum. J. Virol. 67:4972-80. 

100. Fang G, Zhu G, Burger H, Kethly JS and Weiser B. 1998. Minimizing DNA 

recombination during long RT-PCR. J. Virol. Met. 76: 139-49.  

101. Farnet CM and Haseltine WA. 1991. Determination of viral proteins present in human 

immunodeficiency virus type 1 pre-integration complex. J.Virol. 65: 1910-15. 

102. Farnet CM and Bushman FF. 1996. HIV cDNA integration and inhibitor development. 

AIDS. 10: S3-S11.  

103.  Fassati A. 2006. HIV infection of non-dividing cells: a divise problem. Retrovirology. 3: 

74.  

104. Feher A, Weber IT, Bagossi P, Boross P, Mahalingan B, Louis JM, Copeland TD, 

Torshin IY, Harrison RW and Tozser J.2002.  Effect of seqeunce polymorphism and drug 

resistance on two HIV-1 gag processing sites. Eur. J. Biochem. 269: 4114-20.  

105. Flexner C. 1998. HIV-1 protease inhibitors. N. Engl. J. Med. 338: 1281-1292. 

106. Fox J, Castro H, Kaye S, McClure M, Weber J N, Fidler S; UK Collaborative group on 

HIV Drug resistance. 2010.  Epidemiology of non-B clade forms of HIV-1 in men who have sex 

with men in the UK. AIDS. 15: 2397-401.  

107. Frahm, N., B. Baker, and C. Brander. 2008. Identification and optimal definition of HIV-

derived cytotoxic T lymphocyte (CTL) epitopes for the study of CTL escape, functional avidity 

and viral evolution, p. 3-24. In B. T. M. Korber, ed. HIV molecular immunology. Los Alamos 

National Laboratory, Theoretical Biology and Biophysics, Los Alamos, NM. 

108. Franke E K, Yuan HE, Bossolt KL, Goff SP and Luban J. 1994. Specificity and sequence 

requirements for interactions between various retroviral Gag proteins. J. Virol. 68:5300-5. 



327 

 

109. Fransen S, Gupta S, Danovich R, Hazuda D, Miller M, Witmer M, Petropoulos CJ and 

Huang W. 2009. Loss of raltegarvir susceptibility of HIV-1 is conferred by multiple non-

overlapping genetic pathways. J. Virol. 83: 11440-6.  

110. Freed EO, Orenstein JM, Buckler-White AJ and Martin MA. 1994. Single amino acid 

changes in the human immunodeficiency virus type 1 matrix protein block virus particle 

production. J. Virol. 68: 5311-20.    

111. Frentz D, Boucher CA, Assel M, De Luca A, Fabbiani M, Incardona F, Libin P, Manca 

N, Muller V, Nuallain B, Paredes R, Prosperi M, Quiros-Roldan E, Ruiz L, Sloot PM, Torti C, 

Vandamme AM, Van Laethem K, Zazzi M and Van de Vijver DA. 2010.  Comparison of HIV-1 

genotypic resistance test interpretation systems in predicting virological outcomes over time. 

PLoS. One. 5: e11505. 

112. Gallay, P, Stitt V, Mundy C, Oettinger, M and Trono D. 1996. Role of the karyopherin 

pathway in human immunodeficiency virus type 1 nuclear import. J. Virol. 70: 1027-1032. 

113. Gallego O, De Mendoza C, Corral A and Soriano V. 2003. Changes in human 

immunodeficiency virus P7-P1-P6 gag gene in drug-naïve and pretreated patients. J. Clin. 

Microbiol. 41: 1245-47. 

114. Gamble TR, Yoo S, Vajdos FF, von Schwedler UK, Worthylake DK, Wang H,  

McCutcheon JP, Sundquist WI and Hil CP. 1997. Structure of the carboxyl-terminal 

dimerization domain of the HIV-1 capsid protein. Science. 278:849-853. 

115. Gao F, Bailes E, Robertson DL, Chen Y, Rodenburg CM, Michael SF, Cummins LB, 

Arthur LO, Peeters M, Shaw GM, Sharp PM and Hahn BH. 1999.  Origin of HIV-1 in the 

chimpanzee Pan troglodytes troglodytes. Nature. 397: 436-41.  

116. Gao WY, Shirasaka T, Johns DG, Broder S Mitsuya H. 1993.  Differential 

phosphorylation of azidothymidine, dideoxycytidine, and dideoxyinosine in resting and activated 

peripheral blood mononuclear cells. J. Clin. Invest. 91: 2326-2333. 

117. Garcia JV and Miller AD. 1991. Serine phosporilation-independent downregulation of 

cell surface CD4 by nef. Nature. 350: 508-11. 

118. Gatanaga H, Suzuki Y, Tsang H, Yoshimura K, Kaulick NF, Nagashima K, Gorelick RJ, 

Mardy S, Tang C, Summers MF and Mitsuya H. 2002. Amino acid substitutions in gag protein at 

non-clevage sites are indispensable for the development of a high multitude of HIV-1 resistance 

against protease inhibitors. J. Biol. Chem. 277: 5952-5961. 

119. Gatlin J, Arrigo SJ and Schmidt MG. 1998. HIV-1 protease regulation: the role of the 

major homology region and adjacent C-terminal capsid sequences. J. Biomed. Sci. 5:305-8. 

120. Gazzard B, on behalf of the BHIVA treatment guidelines writing group. 2008.  British 

HIV association guidelines for the treatment of HIV-infected adults with antiretroviral therapy. 

HIV. Med. 9: 563-608.  



328 

 

121. Geretti AM, Fox ZV, Booth CL, Smith CJ, Phillips AJ, Johnson M, Li JF, Heneine W 

and Johnson JA. 2009.  Low-frequency K103N strengthens the impact of transmitted drug 

resistance on virologic responses to first-line efavirenz or nevirapine-based highly active 

antiretroviral therapy. J. Acquir. Immune. Defic. Syndr. 52: 569-73.  

122. Geretti AM, Smith C, Haberl A, Garcia-Diaz A, Nebbia G, Johnson M, Phillips A and 

Staszewski S. 2008. Determinants of virological failure after successful viral load suppression in 

first-line higly active antiretroviral therapy. Antivir. Ther. 13:  927-36.  

123. Geretti AM, 2006. HIV-1 subtypes: epidemiology and significance for HIV management. 

Curr. Opin. Infect. Dis. 19:1-7. 

124. Ghosn J, Delaugerre C, Flandre P, Galimand J, Cohen-Codar I, Raffi F, Delfraissy JF, 

Rouzioux C and Chaix ML. 2011. Polymorphims in Gag gene cleavage sites of HIV-1 non B 

subtype and virological outcome of a first line lopinavir/ritonavir single drug regimen. PLos 

One. 6: e24798.  

125. Gifford R, De Oliveira T, Rambaut A, Myers R E, Gale C V, Dunn D, Shafer R, 

Vandamme AM, Kellam P, Pillay D; UK collaborative Group on HIV Drug resistance. 2006. 

Assessment of automated genotyping protocols as tools for surveillance of HIV-1genetic 

diversity. AIDS. 13: 152-9.  

126. Gorelick RJ, Nigida SM, Bess JW, Arthur LO, Henderson LE and Rein A. 1990. 

Noninfectious human immunodeficiency virus type 1 mutants defficient in genomic RNA. J. 

Virol. 64: 3207-11. 

127. Görlich D, Henklein P, Laskey RA and Hartmann E. 1996. A 41 amino acid motif in 

importin-alpha confers binding to importin beta and hence transit into the nucleus. EMBO J. 15: 

1810-7.  

128. Göttlinger HG, Dorfman T, Sodroski JG and Haseltine WA. 1991. Effect of mutation 

affecting the P6 gag protein on human immunodeficiency virus particle release. Proc.Natl .Acad. 

Sci.U.S.A. 88: 3195-9.  

129. Gottlinger HG, Sodroski J and Haseltine WA. 1989. Role of capsid precursor processing 

and myristoylation in morphogenesis and infectivity of human imunodeficiency virus type 1. 

Proc. Natl. Acad. Sci.U.S.A. 86: 5781-5. 

130. Graham FL, Smiley J, Russel WC, Nairn R. 1977. Characteristics of a human cell line 

transformed by DNA from human adenovirus type 5. J. Gen. Virol. 36: 59-74.  

131. Griffiths JT, Phylip LH, Konvalinka J, Strop P, Gustchina A, Wlodawer A, Davenport 

RJ,  Briggs R, Dunn BM  and Kay J. 1992. Different requirements for productive interaction 

between the active site of HIV-1 proteinase and substrates containing –hydrophobic 

hydrophobic- or –aromatic pro- cleavage sites. Biochemistry. 31:5193-200. 

132. Groom HCT, Anderson EC and Lever AM. Rev beyond nuclear export.2009.  J. Gen.  

Virol. 90: 1303–18. 



329 

 

133. Gross I, Hohenberg H, Wilk T, Wiegers K, Grattinger M, Muller B, Fuller S and 

Krausslich HG. 2000. A conformational switch controlling HIV-1 morphogenesis. Embo J. 19: 

103-13. 

134. Gulick RM, Mellors JW, Havlir D, Eron JJ, Gonzalez C, McMahon D, Richman DD, 

Valentine FT, Jonas L, Meibohm A, Emini EA and Chodakewitz JA. 1997. Treatment indinavir, 

zidovudine and lamivudine in adults with human immunodeficiency virus infection and prior 

antiretroviral therapy. N. Engl. J Med. 337: 734-9.  

135. Gupta R, Hill A, Sawyer AW and Pillay D. 2008. Emergence of drug resistance in HIV 

type 1-infected patients after receipt of first-line highly active antiretroviral therapy. A sytematic 

review of clinical trials. Clin. Infec.t Dis. 47: 712-22.  

136. Gupta R, Kohli A, McCormick A, Towers G, Pillay D and Parry C. 2010. Full length 

HIV-1 Gag determines protease inhibitor susceptibility within in vitro assays. AIDS. 24: 1651–

55. 

137. Haddad M, Napolitano LA, Paquet AC. 2011.  Impact of HIV-1 reverse transcriptase 

E138 mutations on rilpivirine drug susceptibility. [Abstract 10.] Antivir Ther. 16: A18.  

138. Haddad M, Stawiski E, Benhamida J, Coakley E. 2010. Improved genotypic algorithm 

for predicting etravirinbe susceptibility: Comprehensive predicting list of mutations identified 

through correlation with matched phenotype. [Abstract 574] 17th Conference on Retrovirus and 

oportunistic infections (CROI). San Francisco, CA.  

139. Hammer SM, Eron JJ Jr, Reiss P, Schooley RT, Thompson MA, Walmsley S, Cahn P, 

Fischl MA, Gatell JM, Hirsch MS, Jacobsen DM, Montaner JS, Richman DD, Yeni PG and 

Volberding PA; International AIDS Society-USA. 2008. Antiretroviral treatment of adult HIV 

infection. 2008 recommendations of the IAS-USA panel. JAMA. 300: 555-70.  

140. Hammer SM, Squires KE, Hughes MD, Grimes JM, Demeter LM, Currier JS, Eron JJ Jr, 

Feinberg JE, Balfour HH Jr, Deyton LR, Chodakewitz JA and  Fischl MA. 1997. A control trial 

of two nucleoside analogues plus indinavir in persons with human immunodeficiency virus 

infection and CD4 cell counts of 200 cubic millimeter or less. AIDS clinical Trials Group 320 

Study Team. N. Engl. J. Med. 11: 725-33.   

141. Hare S, Gupta SS, Valkov E, Engelman A and Cheperanov P. 2010. Retroviral intasome 

assembly and inhibition of DNA strand transfer. Nature. 464:232-6. 

142. Harrigan PR, Kinghorn I, Bloor S, Kemp SD, Najera I, Kohli, A and Larder BA. 1996. 

Significance of amino acid variation at human immunodeficiency virus type 1 reverse 

transcriptase residue 210 for zidovudine susceptibility. J. Virol. 70: 5930-4.  

143. Havlir DV, Tierney C,  Friedland GH, Pollard RB, Smeaton L, Sommadossi JP, Fox L, 

Kessler H, Fife KH and Richman DD. 2000.  In vivo antagonism with zidovudine and stavudine 

combination therapy. J. Infect. Dis. 182: 321-25.  



330 

 

144. Hazuda DJ, Felock P, Witmer M, Wolfe A, Stillmock K, Grobler JA, Espeseth A, 

Gabryelski L, Schleif W, Blau C and Miller MD. 2000. Inhibitors of strand transfer that prevent 

integration and inhibit HIV-1 replication in cells. Science. 287: 646-50.  

145. Hemelaar J. 2012. The origin and diversity of the HIV-1 pandemic. Trends. Mol. Med.18: 

182-92. 

146. Henderson LE, Benveniste RE, Sowder R, Copeland TD, Schultz AM and Oroszlan S. 

1988.  Molecular characterization of gag proteins from simian immunodeficiency virus 

(SIVMne). J. Virol. 62: 2587-95.  

147. Henderson LE, Bowers MA, Sowder RC, Serabyn SA, Johnson DG, Bess JW, Arthur LO 

Jr, Bryant DK and Fenselau C. 1992. Gag proteins of the higly replicative MN strains oh human 

immunodeficiency virus type 1: posttranslational modifications, proteolytic processing, and 

complete amino acid sequences. J. Virol. 66: 1856-1865. 

148. Henriet S, Mercennet G, Bernacchi S, Paillart J-C and Marquet R. 2009. Tumultuous 

relationship between the human Immunodeficiency Virus type 1 viral infectivity factor (Vif) and 

the human APOBEC-3G and APOBEC-3F restriction factors. Microbiol. Mol. Biol. Rev. 73: 

211-32.  

149. Hermida-Matsumoto L and Resh MD. 1999.  Human immunodeficiency virus type 1 

protease triggers a myristoyl switch that modulates membrane binding of Pr55(gag) and P17MA. 

J. Virol. 73: 1902-8. 

150. Hirsh MS, Gunthard HF, Schapiro JM, Brun-Vezinet F, Clotet B, Hammer SM, Johnson 

VA, Kuritzkes DR, Mellors JW, Pillay D, Yeni PG, Jacobsen DM and Richman DD. 2008. 

Antiretroviral drug testing in adult HIV-1 infection. Recommendations of an international AIDS 

Society Panel. Clin. Infect. Dis. 47: 266-85.  

151. HIV in the United Kingdom: 2011 report. Health Protection Agency. Nov. 2011.  

152. Ho  D D, Toyoshima T, Mo H, Kempf D J, Norbeck D, Chen CM, Wideburg NE, Burts, 

SK, Erickson JW and Singh M K. 1994. Characterization of human immunodeficiency virus type 

1 variants with increased resistance to a C2-symmetric protease inhibitor. J. Virol. 68: 2016-20.  

153. Ho DD, Neumann AU, Perelson AS, Chen J, Leonard JM and Markpwitz M. 1995. Rapid 

turnover of plasma virions and CD4 lymphocytes in HIV-1 infections. Nature. 373: 123-6. 

154. Hogg RS, Bangsberg DR, Lima VD, Alexander C, Bonner S, Yip B, Wood E, Dong 

WW, Montaner JS and Harrigan PR.2006.  Emergence of drug resistance is associated with an 

increased risk of death among patients first starting HAART. PloS Med. 3: e356. 

155. Holland JJ, De la Torre JC, Clarke DK, and Duarte E. 1991. Quantitations of relative 

fitness and great adaptability of clonal populations of RNA viruses. J. Virol. 65: 1960-67.  

156. Hu ZF, Giguel H, Hatano P, Reid J, Lu, and Kuritzkes DR. 2006. Fitness comparison of 

thymidine analog resistance pathways in human immunodeficiency virus type 1. J. Virol. 80: 

7020-7. 



331 

 

157. Huang M, Orenstein JM, Martin MA and Freed EO. 1995.  P6Gag is required for particle 

production from full-length human immunodeficiency virus type 1molecular clones expressing 

protease. J. Virol. 69: 6810-8.  

158. Japour  AJ, Mayers DL,   Johnson VA, Kuritzkes DR,  Beckett LA, Arduino JM, Lane J,  

Blacj RJ, Reichelderfer PS and  D'Aquila RT. 1993. Standardized peripheral blood mononuclear 

cell clture assay for determination of drug susceptibilities of clinical immunideficiency virus type 

1 isolates. The RV-43 Study Group, the AIDS Clinical Trials Group Virology Committe 

Resistance Working Group. Antimicrob. Agents. Chemother. 37: 1095-101.  

159. Javanbakht H, Diaz-Griffero F, Yuan W, Yeung DF, Li X, Song B and Sodroski J. 2007. 

The ability of multimerized cyclophilin A to restrict retrovirus infection. Virology. 367: 19-29 

160. Jegede O, Babu J, Di Santo R, McColl J, Weber J and Quinones-Mateu M. 2008. HIV 

type 1 integrase inhibitors: from basic research to clinical implications. AIDS Review. 10: 172-

189. 

161. Jetzt AE, Yu H, Klarmann GJ, Ron Y, Preston BD and Dougherty JP. 2000. High rate of 

recombination throughout the human immunodeficicency virus type 1 genome. J. Virol. 74: 

1234-40. 

162. Ji JP and Loeb LA. 1992. Fidelity of HIV-1 reverse transcriptase copying RNA in vitro. 

Biochemistry. 31: 954-8. 

163. Jinnopat P, Isarangkura-na-ayuthaya P, Utachee P, Kitagawa Y, de Silva UC, 

Siripanyaphinyo U, Kameoka Y, Tokunaga K, Sawanpanyalert P, Ikuta K, Auwanit W and 

Kameoka M. 2009. Impact of amino acid variations in Gag and protease of HIV type 1 

CRF01_AE strains on drug susceptibility of virus to protease inhibitors. J. Acquir. Immune. 

Defic. Syndr. 52: 320-8.   

164. Johnson JA, Li JF, Wei X, Lipscomb J, Irlbeck D, Craig C, Smith A, Bennett DE, 

Monsour M, Sandstrom P, Lanier ER and Heneine W. 2008a.  Minority HIV-1 drug resistance 

mutations are present in antiretroviral treatment naive populations and assocaited with reduced 

treatment efficacy. PLoS Med. 5: e158.  

165. Johnson VA, Brun-Vezinet F, Clotet  B, Gunthard HF, Kuritzkes DR,  Pillay D, Schapiro 

JM and Richman DD. 2008b. Update of the drug resistance mutations in HIV-1. Top. HIV Med. 

16:  138-145. 

166. Jones NA, Wei X, Flower DR, Wong M, Michor F, Saaq MS, Hahn BH, Nowak MA, 

Shaw GM and Borrow P. 2004.  Determinants of human immunodeficiency virus type 1 escape 

from primary CD8 cytotoxiv T lymphocyte responses. J.Exp. Med. 200: 1243-56.  

167. Kaplan AH, Zack JA, Knigge M, Pau DA, Kempf DJ, Norbeck DW and Swanstrom R. 

1993. Partial inhibition of the human immunodeficiency virus type 1 protease results in aberrant 

virus assembly and the formation of noninfectious particles. J. Virol. 67:4050-5. 

168. Katzman DJ,Odirizzi G and Erm SD. 2002. Receptor downregulation and multi-vesicular 

body sorting. Nat. Rev. Mol.  Cell. Biol. 3: 893-905. 



332 

 

169. Kauffman GR, Suzuki K, Cunningham P, Mukaide M, Kondo M, Jnai M, Zaunders J and 

Cooper DA. 2001. Impact of HIV type 1 protease, reverse transcriptase, clevage site, and p6 

mutations on the virological response to quadruple therapy with saquinavir, ritonavir and two 

nucleoside analogs. AIDS Res Hum. Retroviruses. 17: 1293-6.   

170. Keele BF, Van Heuverswyn F, Li Y, Bailes E, Bibollet-Ruche F, Chen Y, Wain LV, 

Liegeois F, Loul S, Ngole EM, Bienvenue Y, Delaporte E, Brookfield JF, Sharp PM, Shaw GM, 

Peeters M and Hahn BH. 2006.  Chimpanzee reservoirs of pandemic and nonpandemic HIV-1. 

Science. 313: 523-26. 

171. Kellam P, Boucher CA and Larder BA. 1992. Fifth mutation in human 

immunodeficiency virus type 1 reverse transcriptase contributes to development of high-level 

resistance to zidovudine. Proc. Natl. Acad. Sci. U.S.A. 89: 1934-8.  

172. Kempf DJ, King MS, Bernstein B, Cernohous P, Bauer E, Moseley J, Gu K, Hsu A, Brun 

S and Sun E. 2004.. Incidence of resistance in a double-blind study comparing lopinavir/ritonavir 

plus stavudine and lamivudine to nelfinavir plus stavudine and lamivudine.  J. Infect. Dis. 189: 

51-60. 

173. King NM, Prabu-Jeyabalan M, Nalivaika EA, Wigerinck P, de Béthune MP and Schiffer 

CA. 2004. Structural and thermodynamic basis for the binding of TMC114, a next generation 

human immunodeficiency virus type 1 protease inhibitor. J. Virol. 78: 12012-21. 

174.  Kim EY, Bhattacharya T, Kuntsman K, Swantek P, Koning FA, Malim MH, Wolinsky 

SM. 2010. Human APOBEC3G-mediated editing can promote HIV-1 sequence diversification 

and accelerate adaptation to selective pressure. J Virol 84: 10402-10405.  

175. Klimkait T, Strebel K, Hoggan MD, Martin MA and Orenstein JM. 1990. The human 

immunodeficiency virus type 1 specific protein vpu is required for efficient maturation and 

release. J. Virol. 64: 621-9.  

176. Kobayashi M, Nakahara K, Seki T,  Miki S , Kawauchi S, Suyama S, Wakasa-Morimoto 

C, Kodama M,  Endoh T, Oosugi E, Matsushita Y,  Murai H, Fujishita T,  Yoshinaga T, Garvey 

E,. Foster D, Underwood M, Johns B, Sato A, and  Fujiwara T. 2008. Selection of diverse and 

clinically relevant integrase inhibitor-resistant human immunodeficiency virus type 1mutants. 

Antiviral Res. 80: 213-222.  

177. Koch N, Yahi N, Fantini J and Tamalet C. 2001. Mutations in HIV-1 gag cleavage sites 

and their association with protease mutations. AIDS. 15: 526-8.  

178. Kohl NE, Emini EA, Schleif WA, Davis  LJ, Heimbach JC, Dixon RA, Scolnick EM and 

Siga  I S. 1988. Active human immunodeficiency virus protease is required for viral infectivity. 

Proc. Natl. Acad. Sci. U. S. A. 85:4686-4690. 

179. Kohlstaedt LA, Wang J, Friedman JM,  Rice PA, and Steitz TA. 1992. Crystal structure 

at 3.5 A resolution of HIV-1 reverse transcriptase complexed with an inhibitor. Science 256: 

1783-90.  



333 

 

180. Kondo E and Göttlinger HG. 1996. A conserved LXXLF sequence is the major 

determinant in p6Gag required for the incorporation of human immunodeficiency virus tyep a 

Vpr. J. Virol. 170:  159-64.  

181. Kondo E, Mammano F, Cohen EA and Göttlinger HG.1995.  The p6Gag domain of 

human immunodeficiency virus type 1 is sufficient for the incorporation of Vpr into 

heterologous viral particles. J. Virol. 69: 2759-64.   

182. Korber B, Nuldoon M, Theiler J, Gao F, Gupta R, Lapedes A, Hahn BH, Wolinsky S, 

Bhattacharya T. 2000.  Timing the ancestor of the HIV-1 pandemic strains. Science. 288: 1789-

96. 

183. Kräusslich HG, Ingraham RH, Skoog MT, Wimmer E, Pallai PV and Carter CA. 1989.  

Activity of purified biosynthetic proteinase of human immunodeficiency virus on natural 

substrates and synthetic peptides. Proc. Natl. Acad. Sci. U.S.A. 86: 807-811.  

184. Kuhmann S and Moore JP. 2005. The HIV-1 phenotypic variants: deadly and deadlier. J 

Viral Entry. 1: 4-16. 

185. Mo H, King MS, King K, Molla A, Brun S and Kempf DJ. 2005.  Selection of resistance 

in protease inhibitor-experienced, human immunodeficiency virus type 1-infected subjects 

failing lopinavir-and ritonavir-based therapy: mutation patterns and baseline correlates. J. Virol. 

79: 3329-38.     

186. Larder BA 1995. Viral resistance and the selection of antiretroviral combinations. J. 

Acquir Immune Defic Syndr Hum Retrovirol. 10: S28.  

187. Larder, BA. 1992. 30‐Azido‐30‐deoxythymidine resistance suppressed by a mutation 

conferring human immunodeficiency virus type 1 resistance to nonnucleoside reverse 

transcriptase inhibitors. Antimicrob. Agents Chemother. 36: 2664-9.  

188. Larder BA, Hertogs K, Bloor S, van den Eynde CH., DeCian W, Wang Y,  Freimuth 

WW and Tarpley G. 2000. Tipranavir inhibits broadly protease inhibitor-resistant HIV-1 clinical 

samples. AIDS. 14: 1943-8.  

189. Laspia M.F, Rice A.P and Mathews M.B. 1990. Synergy between HIV-1 Tat and 

adenovirus E1A is principally due to stabilization of transcriptional elongation. Genes Dev. 4:  

2397-408.  

190. Lathouwers E, De Meyer S, Dierynck I, Van de Casteele T, Lavreys L, de Béthune MP 

and Picchio G. 2011. Virological characterization of patients failing darunavir/ritonavir or 

lopinavir/ritonavir treatment in the ARTEMIS study: 96 weeks analysis. Antivir Ther. 16: 99-

108. 

191. Learn GH, Korber BT Jr, Foley B, Hahn BH, Wolinsky SM and Mullins JI.1996.  

Maintaining the integrity of human immunodeficicency virus sequence databases. J. Virol. 70: 

5720-30.    



334 

 

192. Lecossier D, Shulman NS, Morand-Joubert L, Shafer RW, Joly V, Zolopa AR, Clavel F 

and Hance AJ. 2005. Detection of minority populations of HIV-1 expressing the K103N 

resistance mutation in patients failing nevirapine. J. Acquir Immune Defic Syndr. 38:37. 

193.  Lee K, Ambrose Z, Martin TD, Oztop I, Mulky A, Julias JG, Vandegraff N, Baumann 

JG, Wang R, Yuen W, Takemura T, Shelton K, Taniuchi I, Li Y, Sodroski J, Littman DR, Coffin 

JM, Hughes SH, Unutzan D, Engelman A and KewalRamani VN. 2010. Flexible use of nuclear 

import pathways by HIV-1. Cell Host and Microbe. 7: 221-3. 

194. Levesque K, Zhao YS and Cohen EA. 2003. Vpu exerts a positive effect on HIV-1 

infectivity by downmodulating CD4 receptor molecules at the surface of HIV-1 producing cells. 

J. Biol. Chem. 278: 28346-53.  

195. Levy JA, Hoffman DA, Kramer SM, Landis JA, Shimabukuro JM Aand Oshiro LS. 

1984.  Isolation of cytopathic retroviruses from San Francisco patients with AIDS. Science. 4664 

24: 840-42. 

196. Loeb DD, Hutchison CA, Edgell MH, Farmerie WG and Swanstrom R. 1989. Mutational 

analysis of human immunodeficiency virus type 1 protease suggests functional homology with 

aspartic proteinases. J. Virol. 63:111-21. 

197. Logsdon BC, Vickrey JF, Martin P, Proteasa G, Koepke JI, Terlecky SR, Wawrzak Z, 

Winters MA, Merigan TC and Kovari LC. 2004. Crystal structure of a multi-drug resistant 

human immunodeficiency virus type 1 protease reveals an expanded active-site cavity. J. Virol. 

78: 3123-32.  

198. Lospistao E, Alvarez A, Soriano V and Holguin A. 2005. HIV-1 subtypes in Spain: a 

retrospective analysis from 1995 to 2003. HIV Med. 6: 313-30.  

199. Louis JM, McDonald RA, Nashed NT, Wondrak EM, Jerina DM, Oroszlan S and Mora, 

PT. 1991. Autoprocessing of the HIV-1 protease using purified wild-type and mutated fusion 

proteins expressed at high levels in Escherichia coli. Eur. J. Biochem. 199:361-9. 

200. Louwagie J, McCutchan F.E, Feeters M, Brennan T.P, Saunders-Buell E, Eddy G.A, Van 

der Groen G, Fransen K, Gershy-Damet GM, Deleys R and Burke D.S. 1993. Phylogenetic 

analysis of gag genes from 70 international HIV-1 isolates provides evidence for multiple 

genotypes. AIDS. 7: 769-80.  

201. Lu, J., Sista, P., Giguel, F., Greenberg, M., and Kuritzkes, D. R. 2004. Relative 

replicative fitness of human immunodeficiency virus type 1 mutants resistant to enfuvurtide (T-

20). J. Virol. 78: 4628-4637. 

202. Lu YL, Bennett RP, Wills JW, Gorelick R and Ratner L. 1995. A leucine triplet repeat 

sequence (LXX)4 in p6gag is important for Vpr incorporation into human immunodeficiency 

virus type 1 particles. J. Virol. 69: 6873-9.  

 203. Lundberg KS, Shoemaker D.D, Adams MW, Short JM, Sorge JA and Mathur EJ. 1991 

High fidelity amplification using a thermostable DNA polymerase isolated from Pyrococcus 

furiosus. Gen. 108: 1-6.  



335 

 

204. MacArthur RD and Novak RM. 2008. Maraviroc: The first of a new Class of 

Antiretroviral Agents. Clin. Infect. Dis. 47:236–41.  

205. Machuca R, Bogh M, Salminen M, Gerstoft J, Kuinesdal B, Pedersen C, Obel N, Nielsen 

H and Nielsen C. 2001. HIV-1 subtypes in Denmark. Scand J Infect Dis. 33: 697-701.  

206. Mackie EN, Dustans S, McClure MJ, Weber JN and Clartre JR. 2004. Detection of HIV-

1 antiretroviral drug resistance from patients with persistently low but detectable viremia. J. 

Virol. Met. 119: 73-81.  

207. Mackie EN, Phillips AN, Kaye S, Booth C and Geretti AM on behalf of the UK HIV 

drug resistance database and the UK collaborative HIV cohort study. 2010.  Antiretroviral drug 

resistance in HIV-1infected patients at low-level viremia. J. Infect. Dis. 201: 1303-7. 

208. Maguire MF, Guinea R, Griffin O, Macmamus S, Elston RC, Wolfram J, Richards N, 

Hanlon MH, Portor DJ, Wrin T, Parkin N, Tisdale M, Furfine E, Petropoulos C, Snowdon BW 

and Kleim JP. 2002. Changes in human immunodeficiency virus type 1 gag at positions L449 

and P453 are linked to I50V protease mutants in vivo and cause reduction of sensitivity to 

amprenavir and improved viral fitness in vitro. J.Virol. 76: 7398-406. 

209. Malet I, Roquebert B, Dalban C, Wirden M, Annellel B, Agher R, Simon A, Katlama C, 

Costangliola D, Calvez V and Marcelin AG. 2007. Association of gag clevage site to protease 

mutations and to virological response in HIV-1 treated patients. J. Infect. 54: 367-74.  

210. Malim MH, Emerman M. 2008. HIV-1 accessory proteins-ensuring viral survival in a 

hostile environment. Cell Host Microb. 3: 338-98.  

211. Malim MH, Hauber J, Les Y, Maizel JV and Cullen BR. 1989. The HIV-1 rev trans-

activator acts through a structured target sequence to activate nuclear export of unspliced viral 

mRNA. Nature. 338: 254-7.  

212. Mammano F, Ohagen A, Höglund S and Göttlinger HG. 1994.  Role of the major 

homology region of human immunodeficiency type 1 in virus morphogenesis. J. Virol. 68: 4927-

36.    

213. Mammano F, Trouplin V, Zennou V and Clavel F. 2000. Retracing the evolutionary 

pathways of human immunodeficiency virus type 1 resistance to protease inhibitors: virus fitness 

in the absence and in the presence of drug. J. Virol. 74:  8524-8531.  

214. Maniatis T, Fritsch FF and Sambrook J. 1986. Molecular cloning a laboratory manual. 

Cold Spring Harbor Laboratory.  

215. Marcelin AG, Flandre P, Pavie J, Schmidely N, Wirden M, Lada O, Chiche D, Molina 

JM, and Calvez V. 2005. Clinically relevant genotype interpretation of resistance to didadosine. 

Antimicrob. Agents Chemother. 49: 1739-44.  

216. Marciniak RA, Calnan BJ, Frankel AD and Sharp PA.1990. HIV-1 tat protein 

transactivates transcription in vitro. Cell. 16: 63: 791-802. 



336 

 

217. Marinello J, Marchand C, Mott BT, Bain A, Thomas CJ, and Pommier Y. 2008. 

Comparison of realtegravir and elvitegravir on HIV-1 integrase catalytic reactions and on series 

of drug-resistant integrase mutants. Biochemistry. 47: 9345-54.  

218. Markham RB, Yu X, Farzagedan H, Ray SC and Vlahov D. 1995. Human 

immunodeficiency virus type 1 env and P17 gag sequence variation in polymerase chain 

reaction-positive, seronegative injection drug users. J. Infect. Dis. 171: 797-804.  

219. Marshall HM, Ronen K, Berry C, Llano M, Sutherland H, Saenz D, Bickmore W, 

Poeschla E and Bushman FD. 2007. Role of PSIP1/LEDG/p75 in lentiviral infectivity and 

integration targeting. Plos One. 19: e1340.  

220. Martinez-Cajas JL, Wainberg M, Oliveira M, Asahchop EL, Doualla-Bell F, Lisovsky I, 

Moisi D, Mendelson E, Grossman Z and Brenner BG. 2012. The role of polymorphism at 

posistion 89 in the HIV-1 protesae gene in the development of drug resistance to HIV-1 protease 

inhibitors. J. Antimicrob. Chemother. 67: 988-94.  

221. Martinez-Picado J, Savara AV, Sutton L and D'Aquila RT. 1999. Replicative fitness of 

protease inhibitor-resistant mutants of human immunodeficicency virus type 1. J. Virol. 73: 

3744-52.    

222. Mathers BM, Degenhardt L, Phillips B, Wiessing L, Hickman M, Strathdee SA, Wodak 

A, Panda S, Tyndall M, Toufik A and Mattick RP.2008. Global epidemiology of injecting drug 

use and HIV among people who inject drugs: a sytematic review. Lancet. 372: 1733-45. 

223. McColl DJ and Chen X. 2010. Strand transfer inhibitors of HIV-1 integrase: brining a 

new era of antiretroviral therapy. Antivir. Res. 85:101-18.  

224. Melikyan GB, Markosyan RM, Hemmati H, Delmedico MK, Lambert DM and Cohen 

FS. 2000. Evidence that the transition of HIV-1 gp41 into a six-helix bundle, not the bundle 

configuration, induces membrane fusion. J. Cell. Biolog. 151: 413-23.  

225. Mervis RJ, Ahmad N, Lillehoj EP, Raum MG, Salazar FH, Chan HW, and Venkatessan 

S. 1988. The gag gene products of human immunodeficiency virus type 1: alignment within the 

gag open eading frame, identification of postranslational mdifications and evidence for an 

alternative gag precursors. J. Virol. 62: 3993-4002. 

226. Metzner KJ, Giulieri SG, Knoepfel SA, Rauch P, Burgisser P, Yerly S, Gunthard HF and 

Cavassini M. 2009.  Minority quasispecies of drug resistant HIV-1 that lead to early therapy 

failure in treatment-naive and-adherence patients. Clin Infect Dis. 48: 239-47.  

227. Meyer PR, Matsuura SE, Mian AM, So AG., and Scott WA. 1999. A mechanism of AZT 

resistance: An increase in nucleotide-dependent primer unblocking by human HIV-1 reverse 

transcriptase. Mol. Cell. Biol. 4: 35-43.  

228. Meyerhans A, Cheyner R, Albert J, Seth M, Kwok S, Sninsky J, Morfeldt-Manson L, 

Asjo B and Wain-Hobson S. 1989. Temporal fluctuations in HIV qusispecies in vivo are not 

reflected by sequential isolations. Cell. 58: 901-10. 



337 

 

229. Miller V. 2001. International perspectives on antiretroviral resistance. Resistance to 

protease inhibitors. J. Acquir Immune Defic. Syndr. 26: S34-50.  

230. Miller, MD. 2004. K65R, TAMs and tenofovir. AIDS Rev. 6:22-33. 

231. Miller MD, Farnet CM and Bushman FD. 1997. Human immunodeficiency virus type 1 

pre-integration complexes: studoes of organization and composition. J. Virol. 71: 5382-90. 

232. Misumi S, Inoue M, Dochi T, Kishimoto N, Hasegawa N, Takamune N and Shoji S. 

2010. Uncoating of HIV-1 requires prolyl isomerase Pin 1. J Biol Chem. 285: 25185-95. 

233. Mo H, King MS, King K, Molla A, Brun S and Kempf DJ. 2005. Selection of resistance 

in protease inhibitor-experienced, human immunodeficiency virus type 1-infected subjects 

failing lopinavir-and ritonavir-based therapy: mutation patterns and baseline correlates. J Virol. 

79: 3329-38.    

234. Molla A, Korneyeva M, Gao MQ, Vasavanonda S, Schipper PJ, Mo HM, Markowitz M,  

Chernyavskiy T, Niu P, Lyons N, Hsu A, Granneman GR, Ho GR, Boucher CA, Leonard JM; 

Morbeck DW and Kempf DJ. 1996. Ordered accumulation of mutations in HIV protease confers 

resistance to ritonavir. Nat. Med. 2: 760-6. 

235. Mulder-Kapinga GA, Simonon A, Kuiken CL, Dekker J, Scherpbier HJ, Van Deferre p, 

Boer K and Goudsmit J. 1995. Similarity in env and gag genes between genomic RNAs of 

human immunodeficiency virus type 1 (HIV-1) from mother and infant is unreleated to time of 

HIV-1 RNA positivity in the child. J. Virol. 69: 2285-96.  

236. Mullan B, Kenny-Walsh E, Collins JK, Shanahan F and Fanning LJ. 2001. Inferred 

hepatitis C Virus Quasispecies Diversity is influenced by choice of DNA polymerase in reverse-

transcriptase-polymerase chain reaction. Analytical Biochemistry. 289: 137-46.   

237. Myint L, Matsuda M, Matsuda Z, Yokomaku Y, Chiba T, Okano A, Yamada K and 

Sugiura W.  2004. Gag non-cleavage site mutations contribute to full recovery of viral fitness in 

protease inhibtor-resistant human immunodeficiency virus type 1. Antimicrob Agents 

Chemother. 48: 444-52.   

238. De Oliveira T, Engebrecht S, Janse Van Rensburg E, Gardon M, Bishop K, Zur Megede 

J, Barnet SW and Cassol S.  2003. Variability at human immunodeficiency virus type 1 subtype 

C protease clevage sites: an indication of viral fitness?. J. Virol. 77: 9422-30. 

239. Naldini L, Blomer U, Galley P, Ory D, Mulligan R, Gage FH, Verma IM and Trono D. 

1996. In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. 

Science. 272: 263-7.  

240. Neil SJ, Zang T, Bieniasz PD. 2008. Tetherin inhibits retrovirus release and is antagonized 

by HIV-1 vpu. Nature 451: 425-430.  

241. Nijhuis M, Deeks S and Bouder C. 2001. Implications of antiretroviral resistance on viral 

fitness. Curr. Opin Infect Dis. 14: 23-8.  



338 

 

242. Nijhuis M, Schuurman R, De Jong D, Erickson J, Gustchina E, Albert J, Schipper p, 

Gulnik S and Boucher CA. 1999. Increased fitness of drug resistant HIV-1 protease as a result of 

acquisition of compensatory mutations DURING suboptimal therapy.  AIDS. 13: 2349-59.  

243. Nijhuis M, Van Maarseveen NM, Lastere S, Schipper P, Coakley E, Glass B, Rovenska 

M, De Jong D, Chappey C, Goedegebuure IW, Heilek-Sneyder G, Dulude D, Cammack N, 

Brakier-Gingras L, Kovalinka J, Parkin N, Krausslich HG, Brun-Vezinet F and Boucher CA. 

2007.  A novel substrate-based HIV-1 protease inhibitor drug resistance mecahnism. PLoS Med. 

4: 636.  

244.  Nijhuis M, Wensing AM, Biermes WF, De Jong D, Kagan W, Fun A, Jasper CA, 

Schurink KA, Van Agtmael MA and Boucher CA. 2009. Failure of treatment with first line 

lopinavir boosted with ritonavir can be explained by novel resistance pathways with protease 

mutation L76V. J. Infect. Dis. 200: 698-709.  

245. Nikolenko GN, Delviks-Frankenberry KA, Palmer S, Maldarelli F, Fivash MJ Jr, Coffin 

JM and Pathak VK. 2007. Mutations in the connection domain of HIV-1 reverse transcriptase 

increase 30-azido-30-deoxythymidine resistance. Proc. Natl. Acad. Sci. U.S.A. 104: 317-22.  

246. Nikolenko GN, Palmer S, Maldarelli F, Mellors JA, Coffin JM, and Pathak VK. 2005. 

Mechanism for nucleoside analog-mediated abrogation of HIV-1 replication: balance between 

Rnase H activity and nucleotide excision. Proc. Natl. Acad. Sci. U.S.A. 102: 2093-98.  

247. Nitahara-Kasahara Y, Kamata M, Yamamoto T, Zhang X, Miyamoto Y, Muneta K, 

Iijima S, Yoneda Y, Tsunetsugu-Yokota Y and Aida Y. 2007. Novel nuclear import of Vpr 

promoted by importin alpha is crucial for human immunodeficiency virus type 1 replication in 

macrophages. J. Virol. 81: 5284-93.  

248. Nomaguchi M, Fujita M and Adachi A. 2008. Role of HIV-1 vpu protein for virus spread 

and pathogenesis. Microb and Infect. 10: 960-67.  

249. Nunberg JH, Chleif WA, Boots EJ,  O’Brien JA, Quintero JC, Hoffman JM, Emini EA 

and Goldman ME. 1991. Viral resistance to human immunodeficiency virus type 1 specific 

pyrimidone reverse transcriptase inhibitors. J. Virol. 65: 4887.  

250. O’Connor DH, McDermott AB, Krebs KC, et al. 2004. A dominant role for CD8þ-

Tlymphocyte selection in simian immunodeficiency virus sequence variation. J. Virol. 78: 

14012-22.  

251. Op de Coul E L, Coutinho R A, Van der Schoot A, Van Doornum G J, Lukashov V V, 

Goudsmit J and Cornelissen M. 2001. The impact of immigration on env HIV-1 subtype 

distribution among heterosexual in the Netherlands: influx subtype B and non-B strains.  AIDS. 

15: 2277-86.  

252. Orozslan, S. and Luftig, R. B. 1990. Retroviral proteinases. Curr. Top. Microbiol. 

Immunol. 157:153-85. 

253. Palmer S, Kearney M, Malderelli F, Halvas EK, Bixby CJ, Bazmi H, Rock D, Falloon J, 

Davey RT Jr, Dewar RL, Metcalf JA, Mellors JW and Coffin JM. 2005. Multiple, linked human 



339 

 

immunodeficiency virus type 1 drug resistance mutations in treatment-experienced patients are 

missed by standard genotypes analysis. J. Clin Microbiol. 43: 406-13.  

254. Panel on antiretroviral guidelines for adults and adolescents. Guidelines for the use of 

antiretroviral agents in HIV-1 infected adults and adolescents. 2008.  US Department of Health 

and human services. Http://www. Aidsinfo.nih.gov/contentfiles/adultandadolescentGL.pdf.  

255. Paredes R, Lalama CM, Ribaudo HJ et al. 2010. Pre-existing minority drug-resistant 

variants, adherence and risk of antiretroviral treatment failure. J Infect Dis; 201: 662-71.  

256. Parker WB, White EL, Shaddix SC, McCaleb G, Secrist JA, Vince R, Shannon WM. 

1991.  Mechanism of inhibition of human immunodeficiency virus type 1 reverse transcriptase 

and human DNA polymerases alpha, beta, and gamma by the 5'-triphosphates of carbovir, 3'-

azido-3'-deoxithymidine, 2',3'-dideoxiguanosine and 3'-deoxythimidine. A novel RNA template 

for the evaluation of antiretroviral drugs. J Biol Chem. 266: 1754-62.  

257. Parry CM, Kohli A, Boinett CJ, Towers GJ, McCormick AL and Pillay D. 2009.  Gag 

determinants of fitness and drug susceptibility in protease inhibitor-resistant human 

immunodeficiency virus type 1. J. Virol.  83: 9094-101.  

258. Patick AK and Potts KE. 1998. Protease inhibitors as antiviral agents. Clin Microbiol 

Rev. 11: 614-627. 

259. Paulus C, Hellebrand S, Tessmer U, Wolf H, Kräusslich HG and Wagner R. 1999. 

Competitive inhibition of human immunodeficiency virus type 1 protease by the Gag-pol 

transframe protein. J. Biol. Chem. 274: 21539-43.  

260. Paxton WA, Martin SR, Tse D, O’Brien TR, Skurnick J, VanDevanter NL, Padian N, 

Braun JF, Kotler DP, Wolinsky SM and Koup RA. 1996. Relative resistance to HIV-1 infection 

of CD4 lymphocytes from persons who remain uninfected despite multiple high-risk sexual 

exposures. Nat. Med. 2: 412-7.  

261. Pelemans H, Esnouf RM, Parniak MA, Vandamme AM, De Clercq E and Balzarini J. 

1998. A proline-to-histidine substitution as position 225 of human immunodeficiency virus type 

1 (HIV-1) reverse transcriptase (RT) sensitizes HIV-1 RT to BHAP U-90152. J. Gen. Virol. 

79:1347.  

262. Peng C, Ho BK, Chang TW, and Chang NT. 1989. Role of human immunodeficiency 

virus type 1-specific protease in core protein maturation and viral infectivity. J. Virol. 63:2550-6. 

263. Perandin F, Pollara C.P, Gargulo F, Bonfauti C and Manca N. 2009.  Performance 

evaluation of the automated Nuclisens easyMag nucleic acid extraction platform in comparison 

with QIAamp Mini Kit from clinical specimens. Diagnostic Microbiol. Infect. Dis. 64: 158-65.  

264. Perelson AS, Neumann AU, Markowitz M, Leonard JM, and Ho DD. 1996. HIV-1 

dynamics in vivo: virrion clearance rate, infected cell life-span, and viral generation time. 

Science. 271: 1582-86. 



340 

 

265. Petropoulos CJ, Parkin NT, Limoli KL, Lie YS, Wrin T, Huang W, Tian H, Smith D, 

Winslow GA, Capon DJ and Whitcomb JM. 2000. A novel phenotypic drug susceptibility assay 

for human immunodeficiency virus type 1. Antimicrob Agents Chemother. 44: 920-8.  

 

266. Pettit SC, Henderson GJ, Schiffer CA and Swanstrom R. 2002. Replacement of the P1 

amino acid of human immunodeficiency virus type 1 gag processing sites can inhibit or enhance 

the rate of cleavage by the viral protease. J. Virol. 76: 10226-33.  

267. Pettit SC, Moody MD, Wehbie RS, Kaplan AH, Nantermet PV, Klein CA and 

Swanstrom R. 1994. The p2 domain of human immunodeficiency virus type 1 Gag regulates 

sequential proteolytic processing and is required to produce fully infectious virions. J. Virol. 68: 

8017-27. 

268. Pettit SC, Simsic J, Loeb DD, Everitt L, Hutchison CA and Swanstrom, R. 1991. 

Analysis of retroviral protease cleavage sites reveals two types of cleavage sites and the 

structural requirements of the P1 amino acid. J. Biol. Chem. 266:14539-47. 

269. Pettit SC, Everitt L E, Choudhury S, Dunn BM and Kaplan  A H. 2004. Initial Cleavage 

of the Human Immunodeficiency Virus Type 1 GagPol Precursor by Its Activated Protease 

Occurs by an Intramolecular Mechanism. J. Virol. 78:8477-85. 

270. Phillips RE, Rowland-Jones S, Nixon DF, Gotch FM, Edwards JP, Ogunlesi AO, Elvin 

JG, Rothbard JA, Bangham CR, Rizza CR. 1991. Human immunodeficiency virus genetic 

variation that can escape cytotoxic T cell recognition. Nature. 354: 453-9.  

271. Phylip LH, Griffiths JT, Mills JS, Graves MC, Dunn BM and Kay J. 1995. Activities of 

precursor and tethered dimer forms of HIV proteinase. Adv. Exp. Med. Biol. 362:467-72. 

272. Plantier JC, Leoz M, Dickerson JE, De Oliveira F, Cordonnier F, Lemee C, Damond F, 

Robertson DL and Simon F. 2009. A new human immunodeficiency virus derived from gorillas. 

Nat Med. 15: 871-2.  

273. Polyak SJ, Sullivan DG, Austin MA, Dai JY, Shuhart MC, Lindsay KL, Bonkousky HL, 

Di Bisceglie AM, Lee WM, Morrishima C, Gretch DR and the HALT-C Trial group. 2005. 

Comparison of amplification enzymes for hepatitis C virus quasispecies analysis. Virology J. 2: 

41.  

274. Pommier Y, Johnson AA, and Marchand C. 2005. Integrase inhibitors to treat HIV/AIDS. 

Nat. Rev. Drug Disc. 4: 236-48.  

275. Poorman RA, Tomasselli AG, Heinrikson RL and Kezdy FJ. 1991. A cumulative 

specificity model for proteases from human immunodeficiency virus types 1 and 2, inferred from 

statistical analysis of an extended substrate data base. J. Biol. Chem. 266:14554-61. 

 276. Popovic M, Sarngadharan MG, Read E and Gallo RC. 1984. Detection, isolation, and 

continuous production of cytopathic retrovirus (HTLV-III) from patients with AIDS and pre-

AIDS. Science. 224: 497-500. 



341 

 

277. Prabu-Jeyabalan M, King NM, Nalivaika EA, Heilek-Snyder G, Cammack N and 

Schiffer CA. 2006a. Substrate envelope and drug resistance: crystal structure of RO1 in complex 

with wild-type human immunodeficiency virus type 1 protease. Antimicrob Agents Chemother. 

50: 1518-21 

278. Prabu-Jeyabalan M, Nalivaika E and Schiffer C. 2000. How does a symmetric dimer 

recognize an asymmetric substrate? A substrate complex of HIV-1 protease. J. Mol. Biol. 301: 

1207-20. 

279. Prabu-Jeyabalan M, Nalivaika E and Schiffer C. 2002. Substrate shape determines 

specificity of recognition for HIV-1 protease: analysis of crystal structure of six substrate 

complexes. Structure. 10: 369-81. 

280. Prabu-Jeyabalan M, Nalivaika EA, Romano K and Schiffer CA. 2006b. Mechanism of 

substrate recognition by drug-resistant human immunodeficiency virus type 1 protease variants 

revealed by a novel structural intermediate. J. Virol. 80:  3607-16. 

281. Prado JG, Wrin T, Beauchaire J, Ruiz L, Petropoulos CJ, Krost SDW, Clotet B, C'Aquila 

RT and Martinez-Picado J. 2002. Amprenavir resistant HIV-1 exhibits lopinavir cross-resistance 

and reduced replication capacity. AIDS. 16: 1009-17.  

282. Quinones-Mateu M.E and Arts EJ. 2001. HIV-1 fitness: implications for drug resistance, 

disease progression and global epidemic evolution. In: Kuiken, C; Foley, B; Hahn, B; Marx, P.A; 

McCutchan, F; Mellors, J (Eds), HIV sequence compendium. Theoretical Biology and 

Biophysics Group, Los alamos National Laboratory.  

283. Randolph JT and De Goey DA. 2004. Peptidomimetic inhibitors of HIV protease.  Curr 

Top Med Chem. 4: 1079-95.  

284. Ratner L, Haseltine W, Patarca R, Liva KJ, Starchi B, Josephs SF, Doran ER, Rafalski 

JA, Whitehorn EA, Baumeister K. 1985. HTLV-III, LAV and ARV are variants of the same 

AIDS virus. Nature. 313: 277-84. 

285. Reuman EC, Bachmann MH, Varghese V, Fessel WJ and Shafer RW. 2010. Panel of 

prototypical raltegravir-resistant infectious molecular clones in a novel integrase-deleted cloning 

vector. Antimicrob Agents Chemother. 54: 934-6.          

 286. Rhee S-Y, Taylor J, Wadhera G, Ben-Hur A, Brutlaq DL and Shafer R. 2006. Genotypic 

predictors of human immunodeficiency virus type 1 drug resistance. Proc. Natl. Acad. Sci. 

U.S.A. 103: 17355.  

287. Richards A D, Phylip LH, Farmerres WC, Scarborough PE, Alvarez A, Dunn BM, Hirel 

Ph-H, Konvelinka J, Strop P, Paulickova L, Kostka V and Kay J.1990.  Sensitive, soluble 

chromogenic substrates for HIV proteinase. J. Biol. Chem. 15. 265: 7733-6.  

288. Rimsky LT, Shugars DC and Matthew TJ. 1998. Determinants of human 

immunodeficiency virus type 1 resistance to gp41-derived inhibitory peptides. J. Virol. 72: 986-

93.  



342 

 

289. Rimsky LT, Vingerhoets J, Van Eygen V, Eron J, Clotet B, Hoogstoel A, Boven K and 

Picchio G. 2012. Genotypic and phenotypic characterization of HIV-1 isolates obtained from 

patients on rilpivirine therapy experiencing virologic failure in the phase 3 ECHO and THRIVE 

studies: 48-week analysis. J. Acquir. Immune. Defic. Syndr. 59: 39-46.  

290. Roberts JD, Bebenek K and Kunkel TA. 1988. The accuracy of reverse transcriptase from 

HIV-1. Science. 242: 1171-73. 

291. Robertson DL, Anderson JP, Bradac JA, Carr JK, Foley B, Funkhouser RK, Gao F, Hahn 

BH, Kalish ML, Kuiken C, Learn GH, Leitner T, McCutchan F, Osmanov S, Peeters M, 

Pieniazek D, Salminen M, Sharp PM, Wolinsky S and Korber B. 2000.  HIV-1 nomenclature 

proposal. Science. 288: 55-6. 

292. Robinson LH, Myers RE, Snowden BW, Tisdale M and Blair ED. 2000. HIV type 1 

protease cleavage site mutations and viral fitness: implications for drug susceptibility 

phenotyping assays. AIDS. Res. Human. Retroviruses. 16: 1149-56. 

293. Rodríguez-Barrios F, Balzarini J and Gago F. 2005. The molecular basis of resilience to 

the effect of the Lys103Asn mutation in non-nucleoside HIV-1 reverse transcriptase inhibitors 

studied by targeted molecular dynamics stimulation. J.Am. Chem. Soc. 127: 1570-8.  

294. Romani B and Engelbrecth S. 2009. Human immunodeficiency virus type 1 Vpr: 

functions and molecular interactions. J. Gen. Virol. 90: 1795-805. 

295. Roxrud I, Stenmark H and Malerod L. 2010. ESCRT & Co. Biol. Cell. 102: 293–318.  

296. Sadler HA, Stenglein MD, Harris RS, Mansky LM. 2010. APOBEC3G contributes to HIV-

1 variation through sublethal mutagenesis. J Virol 84: 7396-7404.  

297. Samson M, Libert F, Doranz BJ, Rucker J, Liesnard C, Farber CM, Saragosti S, 

Lapoumeroulie C, Cognaux J, Forcellie C, Muyldermans G, Verhofstede C, Burtonboy G, 

George M, Imai T, Rana S, Yi Y, Smyth RJ, Collman RG, Doms RW, Vassart G and Parmentier 

M. 1996.  Resistance to HIV-1 infection in Caucasian individuals bearing mutant alleles of the 

CCR5 chemokine receptor gene. Nature. 382: 722-25.  

298. Sarafianos SG, Marchand B, Das K, Himmel DM, Parniak MA, Hughes SH and Arnold 

E. 1999. Structure and function of HIV-1 reverse transcripatse: molecular mechanism of 

polymerization and inhibition. J. Mol. Biol. 385: 693-713.  

299. Sattentau QJ and Moore JP. 1991. Conformational changes induced in the human 

immunodeficiency virus envelope glycoprotein by soluble CD4 binding. J. Exp. Med. 174: 407-

15. 

300. Schmidt B, Korn K and Walter H. 2002. Technologies for measuring HIV-1 drug 

resistance. HIV. Clin. Trials. 3: 227-36.  

301. Seminari E, Castagna A and Lazzarin A. 2008. Etravirine for the treatment of HIV 

infection. Exp. Rev. Anti-Infect. Ther. 6: 427. 



343 

 

302. Shafer RW, Kantor R and Gonzales MJ. 2000. The genetic bases of HIV-1 drug 

resistance to Reverse Transcriptase and protease inhibitors. AIDS. Rev. 2: 211-28.  

303. Skalka, A. M. 1989. Retroviral proteases: first glimpses at the anatomy of a processing 

machine. Cell. 56:911-13.  

304. Sluis-Cremer N, Sheen CW, Zelina S, Torres PS, Parikh UM, and Mellors JW. 2007. 

Molecular mechanism by which the K70E mutation in human immunodeficiency virus type 1 

reverse transcriptase confers resistance to nucleoside reverse transcriptase inhibitors. 

Antomicrob. Agents. Chemother. 51: 48-53.  

305. Sluis-Cremer N, Arion D, and Parniak MA. 2000. Molecular mechanism of HIV-1 

resistance to nucleoside reverse transcriptase inhibitors (NRTIs). Cell Mol. Life. Sci. 57: 1408-

22.  

306. Snoeck J, Van Laethem K, Hermans P, Van Wijngaerden E, Derdelinckx J, Schrooten Y, 

Vijver D A van de, De Wit S, Clumeck N and Vandamme A M. 2004. Rising prevalence of HIV-

1 non-B subtypes in Belgium: 1983-2001. J. Acquir. Immune. Defic. Syndr.  35: 279-85.  

307. Spearman P, Wang JJ, Vander Heyden N and Ratner L. 1994. Identification of human 

immunodeficiency type 1 Gag proteins domain essential to membrane binding and particle 

assembly. J. Virol. 68: 3232-42.  

308. Strack B, Calistri A, Craig S, Popova E and Gootlinger HG. 2003. A1P1/ALIX is a 

binding partner for HIV-1 P6 and EIAV P9 functioning in virus budding. Cell. 114: 689-99.   

309. Suñé C, Brennan L, Stover DR and Klimkait T. 2004. Effect of polymorphisms on the 

replicative capacity of protease inhibitor-resistant HIV-1 variants under drug pressure. Clin. 

Microbiol. Infect. 10: 119-26.  

310. Swanstrom R and Wills J. 1997.  Retroviral gene expression: Synthesis, processing and 

assembly of viral proteins. In retrovirus edited by: Varmus HE, Coffin JM and Hughes SH. Cold 

Spring Harbor, NY, Cold Spring Harbor Laboratory Press: 263-334. 

311. Takagi M, Nishioka M, Kakihara H, Kitabayashi M, Inoue H, Kawkani B, Oka M and 

Imanaka T. 1997. Characterization of DNA polymerase fromPyrococcus sp strain KOD1 and its 

application to PCR. Appl. Environ. Microbiol. 63: 4504-10. 

312. Takebe Y, Kusagawa S and Motomura K. 2004. Molecular epidemiology of HIV: 

tracking AIDS pandemic. Pediatr. Int. 46: 236-44. 

313. Tantillo C, Ding J, Jacobo‐Molina A, Nanni RG, Boyer PL, Hughes SH, Pauwels R, 

Andries, K, Janssen PA and Arnold E. 1994. Locations of anti-AIDS drug binding sites and 

resistance mutations in the three-dimensional structure of HIV-1 reverse transcriptase. 

Implications for mechanism of drug inhibition and resistance. J. Mol. Biol. 243: 369-87.  

314. Tessmer, U. and Krausslich, H. G. 1998. Cleavage of human immunodeficiency virus 

type 1 proteinase from the N- terminally adjacent p6* protein is essential for efficient Gag 

polyprotein processing and viral infectivity. J. Virol. 72:3459-63. 



344 

 

315. The British HIV Association Guidelines for the treatment of HIV-1 positive adults with 

antiretroviral therapy 2012.. http://www.bhiva.org.  

316. Thomson MM and Najera R. 2005. Molecular epidemiology of HIV-1 variants in the 

global AIDS oandemic: an update. AIDS. Rev. 7: 210-24. 

317. Thomson MM and Najera R. 2001. Travel and the introduction of human 

immunodeficiency virus type 1 non-B subtypes genetic forms into Western countries. Clin. 

Infect. Dis. 32: 1732-7.  

318. Tomasseli AG and Heinrikson RL. 1994. Specificity of retroviral proteases: an analysis 

of viral and nonviral protein substrates. Methods Enzymol. 241:279-301. 

319. Tozser J, Bagossi P, Weber IT, Louis JM, Copeland TD and Oroszlan S. 1997. Studies on 

the symmetry and sequence context dependence of the HIV-1 proteinase specificity. J. Biol. 

Chem. 272:16807-14. 

320. Tozser J, Blaha I, Copeland TD, Wondrak EM and Oroszlan S. 1991. Comparison of the 

HIV-1 and HIV-2 proteinases using oligopeptide substrates representing cleavage sites in Gag 

and Gag-Pol polyproteins. FEBS Lett. 281:77-80. 

321. Tozser J, Shulenin S, Kadas J, Boross P, Bagossi P, Copeland TD, Nair BC, 

Sarngadharan MG and Oroszlan, S. 2003. Human immunodeficiency virus type 1 capsid protein 

is a substrate of the retroviral proteinase while integrase is resistant toward proteolysis. Virology. 

310:16-23. 

322. Tozser J, Weber IT, Gustchina A, Blaha I, Copeland TD,  Louis JM and Oroszlan S. 

1992. Kinetic and modeling studies of S3-S3' subsites of HIV proteinases. Biochemistry. 

31:4793-800. 

323. Tritch RJ, Cheng YE, Yin FH and Erickson-Viitanen S. 1991. Mutagenesis of protease 

cleavage sites in the human immunodeficiency virus type 1 gag polyprotein. J. Virol. 65:922-30. 

324. Turner SR, Strohbach JW, Tommasi RA, Aristoff PA, Johnson PD,  Skulnick HI, Dolak 

LA, Seest EP, Tomich PK, Bohanon MJ, Horng MM, Lynn JV. 1998. Tipranavir (PNU-140690): 

A potent, orally bioavailable nonpeptidic HIV protease inhibitor of the 5,6-dyhydro-2-pyrone 

sulfonamide class. J. Med. Chem. 41: 3467-76. 

325. U.S Department of Health and Human Services HIV Guidelines. 

http://WWW.AIDSINFO.NIH.GOV/guidelines.  

326. Ueda T, Myint L, Shino T, Nishizawa M, Matsuda M and Sugiura W. 2005. Analysis of 

interference and co-evolution between protease inhibitor resistance mutations and gag mutations. 

Antivir. Ther. 10:S116.  

327. UNAIDS 2010. UNAIDS AIDS epidemic update.  

328. Usami Y, Popov S, Popova E,  Inoue M, Weissenhorn W and  Gottlinger H. 2009. The 

ESCRT pathway and HIV budding. Biochem. Soc. Trans. 37:181–84. 

http://www.aidsinfo.nih.gov/guidelines


345 

 

329. Van Heuverswyn HF, Li Y, Neel C, Bailes E, Keele BF, Liu W, Loul S, Butel C, 

Liegeois F, Yangda B, Sharp PM, Mpoudi-Ngole E, Delaporte E, Hahn BH and Peeters M. 2006.  

Human immunodeficiency viruses: SIV infection in wild gorillas. Nature. 444: 164.  

 

330. Verheyen J, Litau E, Sing T, Daumer M, Balduin M, Oette M, Fatkenheuer G, Rockstroh 

J K, Schuldenzucker U, Hoffmann D, Pfister H and kaiser R. 2006. Compensatory mutations at 

the HIV clevage sites P7/P1 and P1/P6-gag in therapy-naïve and therapy-experienced patients. 

Antivir. Ther. 11: 879-87.  

331. Verplank L, Bouamr F, LaGrassa TL, Agresta B, Kikonyogo A and Leis J. 2001. Tsg101, 

a homologue of ubiquitin-conjugating (E2) enzymes, binds the L domain in HIV type 1. 

Pr55Gag. Proc. Natl. Acad. Sci. U.S.A. 98: 7724-9.   

332. viks-Frankenberry KA, Nikolenko GN, Barr R, and Pathak VK. 2007. Mutations in 

human immunodeficiency virus type 1 Rnase H primer grip enhance 3'-azido-3'-deoxythymidine 

resistance. J. Virol. 81: 6837-45.  

333. viks-Frankenberry KA, Nikolenko GN, Boyer PL, Hughes SH, Coffin JM, Jere A and 

Pathak VK. 2008. HIV-1 reverse transcriptase connection subdomain reduces template RNA 

degradation and enhances AZT excision. Proc. Natl. Acad. Sci. U.S.A. 195: 10943-48.  

334. Vodicka MA, Koepp DM, Silver PA and Emerman M. 1998. HIV-1 Vpr interacts with 

the nucelar transport pathway to promote macrophage infection. Genes. Dev. 12: 175-85.  

335. Vogt VM. 1996. Proteolytic processing and particle maturation. Curr.Top. Microbiol. 

Immunol. 214: 95-131.  

336. Wainberg MA. 2003. HIV resistance to nevirapine and other non-nucleoside reverse 

transcriptase inhibitors. J. Acquir. Immune. Defic. Syndr. 34: S2.  

337. Wainberg MA, Zaharatos GJ and Brenner BG. 2011. Development of antiretroviral drug 

resistance. N. Engl. J. Med. 18: 637-46. 

338. Wain-Hobson S, Alizon M and Montagnier L. 1985. Relationship of AIDS to other 

retroviruses. Nature. 313: 743.  

339. Wang C, Mitsuya Y, Gharizadeh B, Ronaghi M and Shafer RW. 2007. Characterization 

of mutation spectra with ultra-deep pyrosequencing: application to HIV-1 drug resistance. 

Genome. Res. 17: 1195-201. 

340. Wang CT, Zhang Y, McDermott J and Barklis E. 1993. Conditional infectivity of a 

human immunodeficiency virus matrix domain deletion mutant. J. Virol.  67: 7067-76.  

341. Watson CS, Jenkinson C, Kazmierski W and Kenakin T. 2005. The CCR5 receptor-based 

mechanism of action of 873140, a potent allosteric noncompetitive HIV entry inhibitor. Mol 

Pharmacol. 67: 1268-82. 



346 

 

342. Wei X, Decker JM, Liu H, Zhang Z, Arani RB, Kilby JM, Saag MS, Wu X, Shaw GM 

and Kappes JC. 2002. Emergence of resistance human immunodeficiency virus type 1 in patients 

receiving fusion inhibitor (T-20) monotherapy. Antimicrob. Agents. Chemother. 46: 1896-905.  

343. Wertheim JO and Worobey M. 2009. Dating the age of the SIV lineages that gave rise to 

HIV-1 and HIV-2. PLoS. Comput.  Biol. 5: e1000377. 

344. Westby M. 2007a. Resistance to CCR5 antagonists. Curr Opin in HIV AIDS. 2:137–44. 

345. Westby M, Lewis M, Whitcomb JM, et al. 2006. Emergence of CXCR4-using human 

immunodeficiency virus type 1 (HIV-1) variants in a minority of HIV-1 infected patients 

following treatment with the CCR5 antagonist maraviroc in form pre-treatment CXCR4-using 

virus reservoir. J. Virol. 80: 4909-4920.  

346. Westby M, Smith-Burchnell C, Mori J, Lewis M, Mosley M, Stockdale M, Dorr P, 

Ciaramella G and Perros M. 2007b. Reduced maximal inhibition in phenotypic susceptibility 

assays indicates that viral strains resistant to the CCR5 antagonist maraviroc utilize inhibitor-

bound receptor for entry. J. Virol. 81: 2359-71.    

347. White KL, Chen JM, Feng JY, Margot NA, Ly JK, Ray AS, Macarthur HL, McDermott 

MJ, Swaminathan S and Miller MD. 2006. The K65R reverse transcriptase mutation in HIV-1 

reverses the excision phenotype of zidovudine resistance mutations. Antivir. Ther. 11: 155-63.  

348. Wiegers K, Rutter G, Kottler H, Tessmer U, Hohenberg H and Krausslich HG. 1998. 

Sequential steps in human immunodeficiency virus particle maturation revealed by alterations of 

individual Gag polyprotein cleavage sites. J. Virol. 72: 2846-54. 

349. Willey RL, Bonifacino JC, Potts BJ, Martin MA and Klausner RD. 1988. Biosynthesis, 

cleavage, and degradation of the human immunodeficiency virus 1 envelope glycoprotein gp160. 

Proc. Natl. Acad. Sci. U.S.A. 85: 9580-84. 

350. Winters MA, Shafer R, Jellinger RA, Mamtora G, Gingeras T, and Merigan TC. 1997. 

Human immunodeficiency virus type 1 reverse transcriptase genotype and drug susceptibility 

chamges in infected individuals receiving dideoxyinosine monotherapy for 1 to 2 years. 

Antimicrob. Agents. Chemother. 41: 757-62.  

351. Wlodawer A and Erickson J. 1993. Structure-based inhibitors of HIV-1 protease. Annu. 

Rev. Biochem. 62: 543-85.  

352. Wood N, Bhattacharya T, Keele BF, Giorgi E, Liu M, Gaschen B, Daniels M, Ferrari G, 

Haynes BF, McMichael A, et al. 2009. HIV evolution in early infection: Selection pressures, 

patterns of insertion and deletion, and the impact of APOBEC. PLoS pathog 5: e1000414. Doi: 

10.371/journal.ppat.10000414.  

353. Wondrak EM, Nashed NT, Haber MT, Jerina DM and Louis JM. 1996. A transient 

precursor of the HIV-1 protease. Isolation, characterization, and kinetics of maturation. J. Biol. 

Chem. 271:4477-81. 



347 

 

354. Wu L, Gerard NP, Wyatt R, Choe H, Parolin C,  Ruffing N, Borsetti A, Cardoso AA,  

Desjardin E, Newman W, Gerard C and Sodroski J. 1996. CD4-induced interaction of primary 

HIV-1 gp120 glycoproeins with the chemokine receptor CCR-5. Nature. 384: 179-83. 

355. Wu TD, Schiffer CA, Gonzales MJ, Taylor J, Kantor R, Chou S, Israelski D, Zolopa AR, 

Fessel WJ and Shafer RW. 2003. Mutation patterns and structural correlates in human 

immunodeficiency virus type 1 protease following different protease inhibitor treatments. J. 

Virol. 77: 4836-47. 

356. Xiang Y, Ridky TW, Krishna NK and Leis J. 1997. Altered Rous sarcoma virus Gag 

polyprotein processing and its effects on particle formation. J. Virol. 71: 2083-91. 

357. Yap SH, Sheen CW, Fahey J, Zanin M, Tyssen D, Lima VD, Wynhiven B, Kuiper K, 

Sluis-Cremer N, Harrigan RP, and Tachedjian G. 2007. N348I in the connection domain of HIV-

1 reverse transcriptase confers zidovudine and neviripine resistance. PLos. Med. 4: e335.  

358. Yokomaku Y, Miura H, Tomiyama H, Kawana-Tachikawa A, Takiguchi M, Kojima A, 

Nagai Y, Iwamoto A, Matsuda Z and Ariyoshi K. 2004. Impaired processing and presentation of 

cytotoxic-T-lymphocyte (CTL) epitopes are major escape mechanisms from CTL immune 

pressure in human immunodeficiency virus type 1 infection. J. Virol. 78: 1324-32. 

359. Yoshimura FK, Diem K, Leran GH, Riddell S and Corey L. 1996. Intrapatient sequence 

variation of the gag gene of human immunodefiency virus type 1 plasma virions.  J. Virol. 70: 

8879-87.  

360. Yu X, Yu QC, Lee TH and Essex M. 1992.  The C terminus of human immunodeficiency 

virus type 1 matrix protein is involved in early steps of the virus life cycle. J. Virol. 66:  5667-70.  

361. Yuan X, Yu X, Lee TH and Essex M. 1993. Mutations in the N-terminal region of human 

immunodeficiency virus type 1 matrix protein block intracellular transport of the gag precursor. J 

Virol. 67: 6387-94.  

362. Zaccarelli M, Tozzi V, Lorenzini P, Trotta MP, Forbici F, Visco-Comandini U, Gori C, 

Narcisso P, Perno CF, Antinori A; Collaborative group for clinical use of HIV Genotype 

Resistance Test (GRT) at national institute for infectious diseases Lazzaro Spallanzini. 2005. 

AIDS. 19: 1081-9. 

363. Zdanowicz  MM. 2006. The pharmacology of HIV drug resistance. Am. J. Pharm. Educ. 

70: 100.  

364. Zennou V, Mammano F, Paulous S, Mathez D and Clavel F. 1998. Loss of viral fitness 

associated with multiple Gag and Gag-pol processing defects in human immunodeficiency virus 

type 1 variants selected for resistance to protease inhibitors in vivo. J. Virol. 72: 3300-6. 

365. Zennou V, Pettit C, Guetard D, Nerhbass U, Montagnier L, and Charneu P. 2000. HIV-1 

genome nuclear import is mediated by a central DNA flap. Cell. 101: 173-85. 



348 

 

366. Zhang YM, Imamichi H, Imamichi t, Lane H C, Falloon J, Vasudevarachi M B and 

Salzman N P. 1997. Drug resistance during indinavir therapy is caused by mutations in the 

protease gene and its gag substrate clevage sites. J. Virol. 7: 6662-70. 

367. Zhou W, Parent LJ, Wills J and Rehs MD. 1994. Identification of membrane binding 

domain within the amino-terminal region of human immunodeficiency virus type 1 Gag protein 

which interacts with acidic phospholipids. J. Virol. 68: 2556-69. 


