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Abstract

The role of the organic template has been at the centre of research into zeolite

synthesis since its first inclusion in synthesis in the 1950s. Since then research has

shown that the template plays many roles in the synthesis starting from ordering

species in the prenucleation stage, right through to controlling the final crystal

morphology. However, there currently exists no way of predicting what effects a

particular template will have on either the zeolite topology or morphology.

The ZEBEDDE code has been expanded to automate the building and dock-

ing processes. This allows large numbers of templates to be screened as part of

systematic studies. This improved code has been used to design templates for the

zeolite Boggsite. Two templates have been proposed for this role through a series

of building and docking calculations starting from a methane seed.

The role of the template on the morphology of zeolite crystals has been inves-

tigated. Using docking calculations, 21-crown-7 was predicted to fit well inside the

cavity within zeolite L and as such may template the cancrinite columns and so pro-

mote growth in the normally frustrated a-direction. Experimental work confirmed

that this was the case, and yielded crystals with a lower aspect ratio than had pre-

viously been made. The role of long chain amines on the crystal morphology of

AlPO-11 was also investigated as when long chain surfactants are included in the

synthesis, the length of the crystals is reduced. On the {001} and {010} surface the

amine can be incorporated into the framework, but on the {001} this is not possible

and so hinders growth giving the observed morphology.

Building on previous work, a systematic study of the effects of some small organic

templates as well as two series of diquaternary ammonium cations commonly used

in synthesis has been carried out. Ab initio molecular dynamics simulations have

been carried out on the templates in the presence of water. Using a code specifically

written for the task, the ring structures present in the hydration layer around the

template have been analysed. These ring structures have been compared to the rings

found in the zeolites which they eventually form, with some links being found.

This work has been supported by the Engineering and Physical Sciences Research

Council, and by ExxonMobil Research and Engineering. Simulations in chapter

five were possible due to computer time on the national super computer HeCTOR,

provided by the Materials Chemistry Consortium.
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CHAPTER 1

Introduction

1.1 Zeolites

The first zeolite was discovered in 1756 by the Swedish mineralogist Cronstedt [1]

as a minor constituent in vugs or cavities in basaltic and volcanic rock. He observed

that when heated, the mineral appeared to boil as it released large amounts of steam,

which we now know was the water escaping from the cavities and pores of the zeolite.

He named these materials “zeolites” which is derived from the ancient Greek words

“zeo” meaning “to boil” and “lithos” meaning “a stone”, so literally translated as

“boiling stone”. For roughly the next 200 years zeolite science was restricted to

zeolites that were found naturally in rock. It was not until the pioneering work of

Barrer in the mid 1930s on adsorption and synthesis that the field of zeolite science

truly started. Over the following 70 years, the field has grown massively, with

zeolites being used on a multi-tonne scale in industry and new zeolite structures are

being discovered each year. However, the chemical processes which occur to yield a

zeolite are still not fully understood and the aim of zeolite science is to understand

the nucleation of these materials so that we can design and synthesise zeolites which

meet our requirements.

This thesis focuses on the role of the organic template molecule in synthesis in

an attempt to relate its structure to the zeolite that eventually forms. The template

and its role will be discussed in greater detail in the following chapter, with this

chapter serving to introduce the nature of zeolites and some of the basic properties

they possess. Each chapter contains further details as to the methods utilised and
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1.2. Structure and Composition of Zeolites

Figure 1.1: Examples of zeolite topologies: ZSM-5 (left) and Boggsite (right), each
SiO4 is represented by a tetrahedron.

the fundamental technicalities of the questions which it aims to answer.

1.2 Structure and Composition of Zeolites

Zeolites are microporous crystalline materials made of corner-sharing tetrahedra

with pore dimensions typically ranging from 5-15 Å[2]. The fundamental building

units of a zeolite are [SiO4]
4– and [AlO4]

5– tetrahedra. Although the chemical com-

position is limited to silicon, aluminium and oxygen, there are numerous ways that

these fundamental units can be linked together giving a wide variety of topologies

(see Figure 1.1 for examples) and properties. There are also a large number of

materials isomorphic to zeolites such as aluminophosphates (ALPOs) and silicoalu-

minophosphates (SAPOs). Although not technically zeolites other elements such as

Ti, Fe, V, Ge, Cr and Mn have also been incorporated into the framework in order

to alter chemical properties [3].

1.2.1 Framework Types and Fundamental Building Units

The fundamental building units can be linked together in a huge number of ways

which yield zeolites with different structural properties. It is these unique struc-

tural properties which give zeolites their industrial applications, and the variety of

structures which are theoretically possible make the desire to find new topologies

particularly appealing. Zeolite frameworks are classified by a three letter code which

is assigned by the International Zeolite Association (IZA) [4] for each unique frame-

work topology. This three letter code only refers to the framework type and not to

a specific material. For example, Linde Type A [5], ZK-5 [6] and ITQ-29 [7] all have

framework code LTA but have different chemical compositions. Currently there are

201 different frameworks listed on the IZA website [4] and this number has been
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1.2. Structure and Composition of Zeolites

Figure 1.2: Examples of ring units found in zeolites. Left to right: 4 ring, 5 ring, 6
ring.

steadily increasing.

1.2.2 Composite Building Units

The fundamental tetrahedral building units can be linked together to form com-

posite building units. The simplest composite building units are rings which are

constructed from n fundamental tetrahedral units. Most commonly in zeolites n =

4, 5, 6, 8, 10 and 12, but rings of up to n = 30 have been found [8]. It is rare to find

zeolites containing 3, 9 and 11 ring structures [9]. Some common ring structures

can be seen in Figure 1.2.

Rings can be combined together to form larger composite units, examples of

which can be seen in Figure 1.3. Cage composite building units are usually consid-

ered to have rings (usually 6 ring) which are small enough to restrict the passage

of all molecules larger than water. These cages can be described by the following

notation [nm] where n is the order of the ring and m is the frequency with which

that ring occurs. For example a SOD cage is referred to as a [4668] polyhedron,

because it has 6 4-rings and 8 6-rings (Figure ??).

Larger composite building units can also be made. Chains are one dimensional,

for example, made of 4 rings (Figure ??). Even larger are cavities which are similar

to cages but contain rings which are large enough to allow the passage of molecules

bigger than water such as long chain hydrocarbons. Like cages, cavities can also

be described by the [nm] notation, for example the LTA cavity is referred to as

a [4126886] polyhedron. These units contain 8 rings and so allow the diffusion of

molecules such as carbon dioxide.

Lastly when we link composite building units together a larger channel may

form. A channel is a pore which runs indefinitely in one dimension, and is described

by the smallest ring of T-atoms (where T is a vertex atom, Si or Al) within the

structure. For example zeolite L (LTL) has a 12 ring channel despite the channel

being undulating and therefore wider at certain points. Most commonly channels
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1.3. Naturally Occurring Zeolites

Figure 1.3: Figure Removed.

Figure 1.4: Figure Removed.

are 8, 10 or 12 ring but recently zeolites with channels much larger than this have

been synthesised and these will be discussed in greater detail in Chapter 2. It is

often the case that channels intersect to give two or three dimensional pores, and

frequently it is these structures which have the more interesting properties.

1.2.3 Secondary Building Units

The last type of building unit is the secondary building unit. It is these types of

unit which are most commonly used to describe a zeolite and it dates back to the

work of Meier in 1967 [10]. These units have been proposed to be important species

in the growth of zeolites, and are the smallest entities from which zeolites may be

built. The current list of secondary building units can be seen in Figure 1.4.

1.3 Naturally Occurring Zeolites

As mentioned in Section 1.1 the early history of zeolite science was founded on

naturally occurring zeolites that had been discovered in cavities and vugs of basalts.

In the 19th century zeolites were discovered in sedimentary rocks and this led to

further geological explorations which culminated in the proposal of zeolite formation

[10]:

� Crystals resulting from hydrothermal or hot spring activity, involving reactions

between solutions and basaltic lava flows.

� Deposits formed from volcanic sediments in closed alkaline and saline lake-

systems.

� Similar formations from open fresh-water and ground-water systems acting on

volcanic sediments.

� Deposits formed from volcanic minerals in alkaline soils.

� Deposits formed from hydrothermal or low-temperature alterations of marine

sediments.

� Formations as the result of low-grade burial metamorphism.
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1.4. Applications of Zeolites

It was these observations that zeolites form in sedimentary rock that led to the

theory that zeolites do not require high temperatures and pressures to form as was

previously thought. This forms the basis of hydrothermal synthesis which will be

discussed in greater detail in Chapter 2.

To date, geological exploration has led to the discovery of over 40 types of nat-

urally occurring zeolites, although only 30 of these have had their structures solved

[11]. Although this thesis focuses on synthetic zeolites, naturally occurring zeolites

have their place within industry. This is usually where purity and uniformity in

pore size is not an issue as some naturally occurring zeolites have the advantage of

being available in large quantities. Due to the fact they are found relatively near

the Earth’s surface in sedimentary rock the cost of extraction is not prohibitively

high. This has led to their use in water treatment, water softening, and the drying

and separation of gases [1].

1.4 Applications of Zeolites

The applications of zeolites are wide ranging and some are used on a multi-tonne

scale. The three main uses are catalysts, ion exchangers and molecular sieves. The

reason zeolites have these broad applications is the properties of the zeolite are

tunable by modifying the chemical composition and by changing the framework

topology.

The fact that in a zeolite some of the silicon has been exchanged with alu-

minium means that there is an overall negative charge on the framework. In order

to balance this charge, the framework incorporates small inorganic cations such as

sodium, potassium and lithium. These are often loosely bound and as such can be

exchanged. It is this property that makes zeolites useful as materials for nuclear

waste cleanup after incidents such as Three Mile Island, Chernobyl and more re-

cently the Fukushima disaster in Japan. However, the first large scale use of zeolites

as an ion exchanger was in washing powder. The loosely bound sodium in zeolite A

exchanges with the calcium in water thereby softening it. This had huge environ-

mental impacts as previously the removal had been achieved using phosphates which

are known to cause eutrophication. Zeolites also have a high affinity for water which

has made them useful in the drying of gas streams whether in small scale columns or

in large industrial reactors. Furthermore, they have been used to separate molecules

by size, which has led to zeolites being referred to as molecular sieves. A particularly

important use is the separation of more valuable branched hydrocarbons from linear

hydrocarbons in hydro-isomerisation reactions [1].
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1.5. Computational Methods

The growth in the use of zeolites as catalysts, especially in the petrochemical

industry occurred around 30 years ago with the discovery of ZSM-5 [12]. ZSM-5 is

widely used for a variety of applications such as fluid catalytic cracking (FCC) [13],

conversion of methanol to gasoline [14, 15], and isomerisation of xylenes [16]. The

location of the Brønsted acid sites within the zeolite, drive the formation of particular

products through size selectivity, whether it be selective on the reactant, product

or transition state. Very recently zeolites have found applications in medicine for

controlled drug release and as membranes for gas sensors [17].

1.5 Computational Methods

The computational methods used in this thesis are discussed in Chapter 3, however,

it seems sensible to provide a brief introduction to the field as some of the methods

are discussed in Chapter 2. Broadly there are two different methods by which the

energy of a system can be calculated. The first is using molecular mechanics where

a potential function is fitted to a molecular interaction. Using a set of potentials we

can model a chemical system and derive properties from the simulations. The second

method is known as ab initio or electronic structure calculations. Here we assume

nothing about the atom and calculate the energy based on quantum mechanics. In

order to carry out these calculations several approximations must be made which

are discussed in detail in Section 3.3.

1.6 Aims of This Study

This study aims firstly to improve the ZEBEDDE code by developing the template

building routines to have more chemical “sense” and also to automate many of

the processes to speed up the generation of templates. This improved code will

be used to design templates for use in zeolite synthesis. As well as designing new

templates, modelling techniques will be used to gain an understanding of the role

of the template on a molecular level. That is, how the template affects the initial

synthesis gel in order to direct a particular zeolite structure. Furthermore, the role

of the template on the overall morphology of the zeolite will be investigated. By

combining these roles it is hoped that templates can be designed to yield selectively

a particular zeolite morphology and topology.

24



CHAPTER 2

Zeolite Synthesis

2.1 Introduction

This chapter introduces the common methods used to synthesise zeolites and the

current understanding of the processes involved.

2.2 Hydrothermal Synthesis

The first hydrothermal synthesis of a zeolite was carried out by Barrer at Imperial

College London the late 1940s [18], although it had been claimed many years previ-

ously [19]. At the time the structure was unknown but it was later identified by Kerr

[6, 20] as ZK-5 (KFI). A typical hydrothermal synthesis at the time was carried out

at high temperature (170◦C – 270◦C) in strong salt solutions. Subsequently many

other zeolites were synthesised, and during the early 1950s a limited number of new

zeolites were discovered with no natural analogue including, Zeolites A [21], B, C

and X [22]. Arguably the biggest leap in zeolite synthesis came in 1961 when Barrer

and Denny [23] replaced the inorganic cations with small organic ammonium cations

and synthesised zeolite A. This discovery led to the synthesis of many new zeolites.

What was becoming clear was that the final zeolite structure obtained is highly

dependent on the initial synthesis conditions such as Si/Al ratio, temperature, syn-

thesis duration and cations. Since zeolites are metastable with respect to α-quartz

and α-Al2O3 the zeolite obtained is the kinetic rather than the thermodynamic prod-

uct. Increasingly, attempts at synthesising new zeolites since these initial discoveries
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2.3. Structure Directing Agents

have focused on a trial and error approach, lately using high-throughput techniques

to scan a range of synthesis conditions in the hope of discovering a new structure.

The processes that occur in zeolite synthesis have been widely studied with the

first work being carried out by Barrer et al [24]. It is now generally accepted that

there are three stages in a zeolite synthesis [25]. The first is where the solution

reaches supersaturation as the concentration of dissolved aluminosilicate species

increases and the first nuclei appear. This stage is followed by nucleation of the

species present. Initially the solids formed are amorphous but slowly become ordered

as the synthesis proceeds. The third stage is crystal growth when the nuclei have

reached a critical size and the species from solution add to the zeolite crystal surface.

Each of the stages will be discussed in greater detail in the following sections.

2.3 Structure Directing Agents

Templates, or more accurately structure directing agents (SDAs), have been at the

centre of zeolite synthesis since their discovery [23]. In this section their uses, de-

velopment and role will be discussed.

2.3.1 Early Templates

The simplest, and first, template used in zeolite synthesis was the singly charged

tetramethylammonium (TMA) [23]. Since then a number of zeolites have been

made using this template such as Gismondine (GIS) and Sodalite (SOD) [26, 27].

In a review by Lok, Cannan and Messina in 1983 they state that there are 17

different structures made using TMA [28]. However, this is where some ambiguity is

introduced into the assignment of structures and the definition of a zeolite material.

This point was highlighted by Meier [29] in a comment relating to a review by Lok et

al. where zeolites should be described by their topology rather than by the specific

material e.g. zeolite N which has framework type EDI (Edingtonite). To avoid this

confusion, the zeolites discussed herein will also be described by their framework

code as assigned by the IZA [4].

After TMA, the next logical step was to use larger tetraalkylammonium (TAA)

cations in the synthesis. Those used have included tetraethylammonium (TEA),

tetrapropylammonium (TPA) and tetrabutylammonium (TBA) along with mixed

variations on these such a dimethyldiethylammonium [28]. A number of new topolo-

gies were discovered, including one of the most widely studied and industrially used

zeolites, ZSM-5(MFI) [30, 31, 32], which was synthesised using TPA. As well as

giving a number of new topologies, the inclusion of the template gave zeolites with
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2.3. Structure Directing Agents

Organic SDA Zeolite
Me6-diquat-3 NON, ZSM-48, FER
Me6-diquat-4 ZSM-12, FER
Me6-diquat-5 EU-1, ZSM-12, ZSM-48, Mordenite, MCM-22
Me6-diquat-6 EU-1, Mordenite, Analcime, ZSM-48
Me6-diquat-7 EU-1, ZSM-23
Me6-diquat-8 ZSM-5, ZSM-48
Me6-diquat-9 ZSM-5, ZSM-48
Me6-diquat-10 ZSM-48, Mordenite

Table 2.1: List of zeolites made using Me6-diquat-n series with n = 3− 10 [39].

much higher silicon to aluminium ratios. The first high silica zeolite was zeolite beta

(*BEA) [33] synthesised using TEA, closely followed by ZSM-11 (MEL) [34] using

TPA and ZSM-5. Indeed, both ZSM-5 and ZSM-11 have since been synthesised in

purely siliceous forms, silicalite-1 (MFI) [35] and silicalite-2 (MEL) [36].

2.3.2 Diquaternary Ammonium Cations

The discussion so far has been related to singly charged organic cations. Doubly

charged, or diquaternary cations, were first used in the mid-80s, with EU-1 (EUO)

[37] formed with hexamethonium ((CH3)3N
+(CH2)6N

+(CH3)3) as the template. Af-

ter this initial discovery, a number of new zeolites were discovered using relatively

simple diquaternary ammonium cations. NU-87 (NES) was synthesised using de-

camethonium ((CH3)3N
+(CH2)10N

+(CH3)3) as the template and was the first new

multidimensional high-silica zeolite to be made for nearly 20 years [38]. Following

on from this work a number of systematic studies were carried out on diquaternary

ammonium cations. Lee et al. studied the methyl series (CH3)3N
+(CH2)nN+(CH3)3

(abbreviated here to Me6-diquat-n) with n = 3−10 [39]. The results from this work

highlight how complex the synthesis is.

From Table 2.1 we can see that a large number of different zeolites are made by

each template. However, there are some which occur more often. It also seems that

Me6-diquat-5 is ‘special’ in some way as five different zeolites are made with this

template.

The ethyl diquaternary ammonium cation series, abbreviated here to Et6-diquat-

n, (CH3CH2)3N
+(CH2)nN+(CH3CH2)3 with n = 3 − 10 was also studied by the

same group [40]. They once again find that there is a wide range of zeolite prod-

ucts formed, with n = 5 yielding five structures (ZSM-57 (MFS), P1 (GIS), SSZ-16

(AFX), SUZ-4 (SZR) and Mordenite (MOR)). Of particular interest in this series is
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Organic SDA Zeolite
Et6-diquat-3 ZSM-5, Mordenite
Et6-diquat-4 Mordenite, ZSM-5, Analcime
Et6-diquat-5 ZSM-57, P1, SSZ-16, Mordenite, SUZ-4
Et6-diquat-6 Mordenite, ZSM-5
Et6-diquat-7 ZSM-5, Mordenite
Et6-diquat-8 ZSM-5, Mordenite
Et6-diquat-9 ZSM-5, Mordenite
Et6-diquat-10 ZSM-5, Mordenite

Table 2.2: List of zeolites made using Et6-diquat-n series with n = 3− 10 [40].

ZSM-57 (MFS) as currently Et6-diquat-5 is the only known template for this zeolite.

As well as requiring this template, there is also a narrow range of conditions which

give this zeolite, a SiO2/Al2O3 ratio of 60 and a NaOH/SiO2 ratio of 0.60. Vary-

ing these even slightly gave a different zeolite, as did changing the inorganic cation.

ZSM-57 forms best, in terms of purity and yield, with sodium, although it was found

as a minor product when lithium was used. As well as carrying out X-ray diffraction

(XRD) in order to determine the crystal structures of the products, further spectro-

scopic techniques were used in order to gain an understanding of where the template

(if at all) was incorporated in the zeolite. The TGA/DTA (thermogravimetric anal-

ysis/differential thermal analysis) show that Et6-diquat-5 is incorporated into the

framework. Raman and 1H−13C CP MAS NMR (cross polarised magic angle spin-

ning nuclear magnetic resonance) show very different chemical environments from

the solution spectrum. This suggests the template is in a very different conformation

in the zeolite than in solution.

A few years before the work of Lee et al. another study of the conformations

adopted by Et6-diquat-5, this time in zeolite P1, ZSM-57 and SUZ-4 was carried

out using NMR [41]. This work proposed a strong link between the conformation

of Et6-diquat-5 and the eventual zeolite formed. In the case of SUZ-4 there are two

signals for the methyl groups, and it was proposed that like TPA in ZSM-5 [42]

these are due to four ethyl groups lying down the 8 MR (member ring) channel,

and two along the 10 MR channel. However, in ZSM-57 there is no splitting of the

methyl signals and it is inferred that this is because the intersection in ZSM-57 is

larger than that of SUZ-4. In the case of P1 the Et6-diquat-5 is so tightly bound

inside the framework that the methyl groups in the chain, and those on the ethyl

groups are indistinguishable so a broad signal is observed in the NMR spectrum.

ZSM-57 gives just one methyl signal which is almost the same as that for solution

phase Et6-diquat-5.
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2.3.3 Large Pore Zeolites

As well as the relatively flexible diquaternary ammonium cations discussed in detail

so far, a number of rigid molecules have also been trialled. Corma, ExxonMobil

and Chevron amongst others use high-throughput [43] techniques to study a wide

range of compositions, thus increasing the chances of a particular template making a

new zeolite. The aim has been to make zeolites containing “large” pores, defined as

containing channels with greater than 12 MR using templates formed of a number

of fused rings. The first of these1 was UTD-1 (DON) which is a one-dimensional

zeolite with a 14 MR channel [46]. UTD-1 was synthesised with the organometal-

lic bis−(pentamethyl−cyclopentadienyl)−cobalt(III)hydroxide, which is a relatively

unusual template [47]. Soon after UTD-1 followed CIT-5 (CFI) [48], which is also a

one-dimensional zeolite with a 14 MR channel. However, this was synthesised with

N–methylsparteinium, a more conventional quaternary ammonium compound. Over

the next few years several other large pore zeolites were discovered: SSZ-53(SFH),

SSZ-59(SFN) [49], OSB-1(OSO) [50] and the 18 MR channel zeolite ECR-34(ETR)

[51], however, they are all one-dimensional zeolites.

The first multidimensional large pore zeolite was synthesised by Corma et al. in

2006. ITQ-15(UTL) has intersecting 14 MR and 12 MR channels, and is syn-

thesised using 1,3,3-trimethyl-6-azonium-tricyclo-[3.2.1.46,6]dodecane hydroxide, a

large rigid multi-ring organic compound [52]. However, this zeolite can only be

formed with germanium, which is required to form the D4Rs. Recently, the size

of the channel has been expanded by Corma et al. in the three-dimensional zeolite

ITQ-33 which has intersecting 10 MR and 18 MR channels [53]. Interestingly this

zeolite is made with the relatively small template Me6-diquat-6 which was discussed

in section 2.3.2. In 2009 Corma et al. synthesised the silicogermanate ITQ-37 (ITV)

which has 30 MR channels [8]. Although ITQ-37 has the largest channels of any

currently known zeolite, it is not the least dense framework. A year later Corma et

al. synthesised ITQ-40 which has a three-dimensional 16 x 15 x 15 MR channel net-

work. Although these channels are not larger than those found in ITQ-37, ITQ-40

(OSO) has a lower framework density at 10.1 T/1000 Å3 (compared to 10.3 T/1, 000

Å3 for ITQ-37) [54]. Both ITQ-37 and ITQ-40 were the first observed structures to

contain 3 MR, but since ITQ-40 is a germanosilicate it is not technically a zeolite

which is also the case with ITQ-37. The drive now is to synthesise these materials

as aluminosilicates.

1This relates to the first large pore aluminosilicate. Large pore aluminophosphates had been
synthesised a few years previously. See references [44, 45] for examples.
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2.3.4 Other Template Types

So far the discussion has focused on ammonium cation templates which are the most

common. However, a wide variety of organic molecules have also been tested with

varying success. A number are now highlighted.

2.3.4.1 Phosphorus Based Templates

In the last few years tetraalkylphosphonium (TAP) cations have been used in zeolite

synthesis. TAP cations have the advantage of not being susceptible (as with ammo-

nium cations) to degradation via a Hoffman mechanism and being more thermally

stable. Thus more severe crystallisation conditions are accessible when using TAP

cations [55]. ITQ-27 was the first new zeolite to be synthesised using a TAP cation

[55], which is a two-dimensional zeolite with intersecting 12 MR channels, but the

channels are connected by 14 MR windows. ITQ-27 has also been synthesised as an

aluminosilicate. TAP cations have lead to a number of new zeolite structures in the

last few years, ITQ-26(IWS) [56], ITQ-34 (ITR) [57], and recently a phosphazene

based template was used in the first synthesis of the naturally occurring zeolite Bog-

gsite (BOG) [58]. Clearly, this is a growing area of zeolite synthesis and is sure to

produce further new zeolites in the future.

2.3.4.2 Macrocycles

Until relatively recently macrocycles have not been used much in zeolite synthesis.

However, they do possess some of the useful properties which make an effective

template [59]. The first macrocycles to be used in zeolite synthesis were crown

ethers. A crown ether is a heterocyclic compound containing repeating alkoxide

units. The most common is ethylene oxide −CH2CH2O− which forms compounds

such as 18-crown-6. In 1990 Delprato et al. used a variety of crown ethers as the

template in the synthesis of zeolite Y. They were able to improve the crystallinity

and increase the Si/Al ratio from about 3 to 5. When using 15-crown-5 as the

template, the cubic polymorph of zeolite Y (FAU) is formed whilst 18-crown-6 gives

the hexagonal polymorph (EMT) [60]. It is thought that the crown ethers complex

with the sodium cations, and then these are incorporated into the framework. EMT

has slightly larger pores and so this is why the larger 18-crown-6 templates this

structure. The increase in Si/Al ratio is thought to occur due to the sodium crown

ether complex reducing the dissolution of alumina [61].

18-crown-6 has also been used to prepare high-silica versions of zeolite Rho(RHO)

[62] and ZK-5(KFI) [63]. Whilst both these zeolites can be prepared without the
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use of a template, when 18-crown-6 is used the Si/Al ratio increases from 3 to 4.9

in the case of RHO and from 3 to 4 in the case of KFI. As well as increasing the

Si/Al ratio the presence of the crown ethers appear to stabilise the zeolite. RHO

synthesised in the absence of crown ether undergoes a reverseable phase transition

when heated: not the case for RHO synthesised with crown ether. As with zeolite Y,

the crystallinity of the zeolite is also improved when using crown ethers, suggesting

it is assisting either at the crystal growth stage, or in stabilising the final structure.

MCM-61(MSO) is a novel zeolite that was synthesised using 18-crown-6 as the

template [64]. Although the pore volume is inaccessible, this zeolite contains some

unusual structural features, comprising solely of 4 MR and 6 MR. These join together

to form a large cage which is a similar size and shape to 18-crown-6, suggesting that

the crown ether has a strong templating role.

As well as crown ethers, other macrocycles have been used in zeolite syntheses.

Replacing some of the oxygens in crown ethers give oxa-aza macrocycles such as

kryptofix 22 (1,7,10,16-tetraoxa-4,13-diazacyclooctadecane). Alternatively, all the

oxygens can be replaced giving aza macrocycles which are similar to amine-based

templates which have already been discussed in great detail in sections 2.3.1, 2.3.2

and 2.3.3. Aza macrocycles have lead to some new frameworks which are STA-

6 (SAS) [65] and STA-7 (SAV) [66] both of which are metal aluminophosphates,

where the metal is a divalent cation such as cobalt, zinc or magnesium. Generally,

macrocycles have had limited success in templating novel zeolite frameworks, but

as with phosphonium cations, there has been relatively little synthetic work carried

out.

2.3.5 Seed Assisted and Template Free Synthesis

Ideally zeolites would be synthesised without templates. The template is often

the most expensive component in the synthesis and once the zeolite has formed

the template must be removed for it to be useful. This is achieved by a process

called calcination, where the zeolite is heated in an oxygen flow, leading essentially

to combustion of the template. Of course, the first synthetic zeolites were made

without templates but these were low silica and so not selective catalysts. For these

reasons there is a drive to remove the template from synthesis, thus making zeolites

which have shown good catalytic activity, but currently require expensive templates,

commercially feasible. An alternative to using a template is to include seeds in the

synthesis. A seed is a small amount of the target zeolite which is added to the

initial gel, with the aim of encouraging (in some ways analogous to the role of the

template) the formation of that zeolite. Since only small amounts of the seed are
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required, these can be synthesised using the expensive template.

ZSM-5 was the first zeolite that, although initially discovered via a templated

synthesis, was then made in a template-free synthesis [67]; although much of the

work was published in the patent literature [68]. From work published by Shiralkar

and Clearfield [67], making ZSM-5 in the absence of an organic template is relatively

straightforward. As ZSM-5 is like any other sodium zeolite (zeolite A or zeolite X

[2]) it just requires the correct sodium-to-silica ratio.

More recently, Song et al. have synthesised ECR-1 (EON) in the absence of

a template [69]. They note that ECR-1 is similar to Mordenite, and that it had

previously been made as a gallosilicate (TNU-7) [70] without a template. In forming

the gallosilicate there appears to be a strong link between the Na2O/SiO2 ratio

suggesting that this plays an important role in the synthesis of ECR-1 [69]. Over

the following few years a number of industrially important zeolites were synthesised

in the absence of an organic template, such as ZSM-34 [71, 72] an intergrowth of

offretite and erionite, RUB-13 (RTH) [73] and ZSM-12 (MTW) [74].

Kamimura et al. studied seed assisted zeolite beta synthesis. By including zeolite

beta seeds they were able to synthesise zeolite beta over a wide range of compositions

[75]. Analysis of the amorphous aluminosilicate by 23Na and 27Al MAS NMR and

XRD showed that the seeds induced no change in the amorphous structure. When

the beta seeds are added part way through the synthesis new beta crystals are

seen to crystallise around existing beta crystals, and so the seeds are providing a

surface for nucleation. They also note that when seeds are not included, mordenite

is the zeolite obtained and so to understand this they analysed these zeolites to find

common structural features. These two zeolites, along with ferrierite which is also

obtained from the same composition [76], have 5 MR and 12 MR in common. These

structural features are also common to the building units in the frameworks and so

it is hoped that this will allow the synthesis of other pentasil zeolites [77].

2.3.6 Role of the Organic Template

Discussion so far has focused on the types of template which are used to synthesise

zeolites. Some broad links have been discussed, for example the case of Et6-diquat-

5, but so far what exactly happens on the molecular level in the synthesis is not

well understood. This is an area in which computational methods have seen great

success as it is possible to follow species on the molecular level which for the most

part is not possible with experimental techniques.

The most successful monocationic templates have C/N ratios of between 10 and

14 [78]. In order for a template to be used in synthesis purely from a practical
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point of view, it must not degrade at high temperatures and pressures as found in

an autoclave. It must also not degrade via Hofmann elimination reactions that are

favoured by the highly alkaline conditions used in synthesis [79]. Along with practical

considerations, the template should also have strong non-bonded interactions with

the framework. These will of course be a function of how tight the fit is within

the framework and have been studied extensively by computational methods which

will be discussed later in this section and in section 2.4.3.1. Gies and Marler [80]

established a series of conditions that an organic molecule should satisfy in order to

be a successful template for clathrasils:

1. The molecule must be stable under synthesis conditions.

2. The molecule should fit in the desired cage.

3. The molecule should form as many van der Waals contacts as possible with

the inner surface.

4. The molecule should only have weak a tendency to form complexes with the

solvent.

5. The molecule should be rigid as they will tend to form clathrasils more easily

than flexible molecules.

6. The tendency to form a clathrasil will increase with the increase in basicity or

polarisability.

Gies and Marler use the terms ‘host’ and ‘guest’ to describe the framework and

template respectively. Clearly, some of these conclusions could be considered as

intuitive such as the fact the molecule must be stable under synthesis conditions.

However, others are far harder to measure, for example the relationship between the

ability to form a clathrasil and the template’s flexibility.

One of the easiest of these criteria to study is location and template fit, using X-

ray diffraction methods to determine the location of the template within the zeolite

framework. The first of these studies by Price et al. determined from XRD that

the TPA in ZSM-5 sits at the tetrahedral channel intersection, but also noted that

the separation between the one propyl limb and the next limb from the TPA in the

neighbouring intersection is only ∼3 Å and so it is not possible to accommodate

TBA [81, 82]. A combined TGA and mass spectrometry (MS) study by Parker et

al. showed that there are two unique TPA sites in ZSM-5 [83]. One is associated

with an acid site, balancing the charge from Al, and the other is not associated

to an acid site. These sites were differentiated by the greater thermal stability of
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Figure 2.1: 1: The original ZSM-18 template. 2 and 3: Templates designed by
modelling studies. Reprinted from reference [86], Copyright (1994), with permission
from Elsevier.

TPA confined in the acid site which therefore decomposes at a higher temperature.

They also note that the number of TPA occluded within the framework varies with

alumina content.

Since these early studies, more detailed work has been carried out, for example

the XRD study by van Koningsveld [84] and this has given theoretical chemists

experimental data which can be used to validate their models. Some of the ear-

liest theoretical work related to TMA occluded in the sodalite β-cage [85]. Here

interatomic potentials were used to study the fit of TMA within the β-cage. It was

found that there is considerable mobility of TMA within the cage. As well as using

theoretical methods, the results were compared to NMR data, which also show sim-

ilar results. It is this agreement between spectroscopic and computational results

that showed that this kind of method can provide useful insights. The ability of the

TMA to move rapidly within the cage means that it may not stabilise the zeolite as

much as previously thought. The authors note that it this raises questions over the

classic “hand in glove” idea of a template which fits tightly inside a pore.

The idea that if a template fits within the pore space then it will be a

good structure director was tested by Schmitt and Kennedy with the synthesis

of ZSM-18 (MEI) [86]. ZSM-18 had previously only been prepared with a triqua-

ternary ammonium compound 2,3,4,5,6,7,8,9-octahydro-2,2,5,5,8,8-hexamethyl-lH-

benzo[1,2-c:3,4-c’:5,6-c”]tripyrrolium. Using molecular modelling they were able to

narrow down twenty templates to just two (shown in Figure 2.1) based on van der

Waals interactions with the framework. When templates 2 and 3 were used in syn-

thesis, template 2 produced ZSM-18, but template 3 only yielded ZSM-18 when

seeded. The modelling to a certain extent predicted this as template 3 was found

to have a poorer fit than the original template due to the central carbon being

tetrahedral and so making the molecule less flat.
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Figure 2.2: Surfactant molecule used to make MFI thin films. Reprinted by per-
mission from Macmillan Publishers Ltd: Nature (reference [87]), copyright (2009).

Perhaps one of the best examples of an organic template molecule performing a

templating role has been the work of Ryoo et al. making monolayers of zeolite [87].

Here Ryoo et al. use functionalised surfactant molecules to synthesise monolayers of

MFI. The theory being that the head portion of the molecule directs the formation

of MFI (see Figure 2.2), whilst the tail separates the layers. This led to 2 nm thick

layers of MFI i.e. one unit cell thick, separated by a surfactant micelle layer 2.8 nm

thick. The template portion of the molecule resides in the straight channel, with

one ammonium group at the intersection, and the other at the channel entrance.

Along with being interesting structures, the catalytic activity of these zeolite mono-

layers material has been measured and shown to be dramatically better than its

conventional counterpart.

Another way to think about the role of the template is to consider the phase

space of the synthesis. In theory if each variable is optimised, i.e. concentrations

of reactants, temperature, duration etc, then it should be possible to synthesise the

zeolite without a template, as is the case with ZSM-5. But including the template

we expand the phase space where a particular zeolite will form, as is illustrated

in Figure 2.3. In this case we plot concentration of SiO2 against concentration of

NaOH, (we could of course consider any variable) and by altering the concentrations

of both we expand the range of points where the zeolite forms.

2.3.6.1 Role of Fluoride

The first use of fluoride in zeolite synthesis was reported by Flanigen and Patton

in 1978 [88]. However, it was not until some years later in the work of Camblor et

al. that it was shown how useful including fluoride in synthesis can be [89]. Camblor

and co-workers used gels with F– anions to synthesise zeolite beta with a wide range

of Si/Al ratios. Fluoride has been shown to act as a structure director for D4Rs

[90]. This has been supported by theoretical calculations by George and Catlow

where they show that although the fluoride is not essential to form the D4R, it does

stabilise the structure [91].

As well as a structure directing role, fluoride also has been shown to stabilise
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Figure 2.3: We can think of the template expanding the phase space where a zeolite
(hatched circle) will form. Without a template the reaction conditions must be exactly
correct. With a template, the phase space where a particular zeolite forms is expanded
making it easier to form that zeolite. Although here the concentrations of NaOH and
SiO2 are plotted, we could of course consider any variable.

other building units via electron density transfer into Si atoms. This occurs through

a pentacoordinated complex [92], and is stabilised by coordination to the positively

charged template. Of course there are drawbacks to using fluoride in synthesis,

mostly due to handling HF, which is highly toxic.

2.3.6.2 Role of Germanium

New-large pore silicates tend to be germanosilicates, for example the recent ITQ-

40 [54] and usually contain D4Rs. This also became apparent in germanates such

as those synthesised by Li et al. [93], and Conradsson et al. [94]. In a siliceous

structure the Si−O−Si bond angle is around 148◦. When in a silica D4R, the angle

is much smaller due to the Si−Si−Si needing to be 90◦. On average Ge−O−Ge and

Si−O−Ge angles are smaller and so germanium is more easily incorporated into a

D4R.

Computational work by Blasco et al. showed that including germanium into the

D4R stabilises the structure [95, 96]. This is reflected in the faster synthesis of ITQ-7

(ISV) which is an all-silica zeolite containing D4Rs. When including germanium in

the synthesis the reaction time drops from seven days to just one [97]. It is for this

reason that including germanium in zeolite synthesis has led to less dense structures

as it is more easily able to form 3R and 4R which are required for low density

frameworks. However, from a commercial point of view, germanium is undesirable

as it is significantly more expensive than silica or alumina. Moreover, germanium
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containing zeolites tend to be less thermally stable, although only at Si/Ge ratios

below 20. At ratios above 20, it is possible to recover the germanium via post-

synthesis treatments [98].

2.3.7 Hypothetical Frameworks

Early work on structure prediction was carried out by Breck [99]. He predicted the

existence of a polytype of the FAU framework which he named “Breck structure 6”

[99]. This structure was later synthesised by Delprato et al. and is known as EMT

[60].

More recently, there has been much progress in the prediction of hypothetical

zeolite frameworks. This has largely been due to the use of computational methods

and a number of groups have generated millions of hypothetical structures. Deem

and Earl used a simulated annealing method to search through the 230 crystal

space groups and generate hypothetical structures by adding Si atoms to an empty

unit cell. A number of factors were explored such as unit cell dimensions, density

of T-atoms, and number of unique T-sites [100]. Using this, they were able to

generate 3.3 million hypothetical frameworks [101]. Once generated the structures

were optimised using interatomic potentials and their stability compared relative

to quartz. This yielded 1,120 structures that were lower or within +30 kJ mol−1

Si in energy of quartz, and a overall database size 2.2 million structures. The

authors note that when using a different set of interatomic potentials, the figure

drops from 1,120 to just 81, but they do believe that these are not artefacts (some

structures had overlapping shells causing the energy to be lower than expected) and

are viable synthetic targets. The database contains 2.2 million structures overall.

When comparing the number of known topologies [4] to even just the number with

energies less than quartz (1,120) only a fraction of what is theoretically possible

have been made synthetically.

Another database of hypothetical frameworks has been designed by Klinowski

et al., this time using a tiling method [102]. This has the advantage that it is

systematic rather than random as is the case with the Monte Carlo method of Deem

and Earl. As with the hypothetical frameworks of Deem and Earl, Klinowski et

al. also compare the energies of their frameworks to quartz [103, 104], and arrive at

a similar number of frameworks that are chemically feasible. Later these frameworks

were tested for potential use as catalysts using a feasibility factor. The feasibility

factor was first determined by plotting the framework energy of the known zeolites

(176 at the time) against framework density. The feasibility factor is then just the

distance the hypothetical framework falls from the line of best fit through the data
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points of these known frameworks [105].

Other groups have also generated databases of hypothetical frameworks. Treacy

et al. have developed an online database [106] with over 5 million structures. How-

ever, many are high in energy, or contain 3 MR. Treacy uses a symmetry constrained

bond searching method to generate the structures [107, 108]. Treacy also proposed

a flexibility criteria for zeolites and postulate that an ideal zeolite should be “stress

free” [109]. Another database of hypothetical frameworks by Li et al. where they

define a forbidden zone where framework atoms are not allowed to exist, and so are

able to generate frameworks with specific pore geometries [110].

We can see there has been a great deal of research carried out on hypothetical

frameworks, and millions have been identified. Currently the databases of hypo-

thetical structures only provide information to aid structure determination of newly

synthesised zeolites as unit cell dimensions, and powder patterns can be generated

from the theoretical data. However, the aim is to be able to generate a structure

and then be able to synthesise it.

2.4 Zeolite Nucleation

2.4.1 Introduction

This section focuses how zeolites form on a chemical level. Starting from sources of

silica and alumina and reacting to form networks and eventually zeolite frameworks.

There has been much controversy over the exact processes which occur and a number

of theories have been proposed.

2.4.2 Prenucleation

During the prenucleation stage, the synthesis gel moves towards supersaturation, as

larger solution species form. This stage continues until nucleation when crystalline

products are detected. The silica and alumina sources are dissolved and Si-O and

Al-O bonds are broken. Condensation reactions then occur to form small silicate

species known as zeolite precursors:

(OH)3Si−O−H + H−O−Si(OH)3 −−⇀↽−− (OH)3Si−O−Si(OH)3 + H2O

and with alumina:

[(OH)3Al−O−H]– + H−O−Si(OH)3 −−⇀↽−− [(OH)3Al−O−Si(OH)3]
– + H2O.
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In a typical zeolite synthesis there is a high concentration of OH– from mineralisers

such as NaOH or KOH and so it would be expected that the reaction mechanism

would be ionic:

(OH)3Si−O– + H−O−Si(OH)3 −−⇀↽−− (OH)3Si−O−Si(OH)2O
– + H2O

and with alumina

(OH)3Si−O– + [(OH)3Al−O−H]– −−⇀↽−− [(OH)3Al−O−Si(OH)2O
–]− + H2O.

Although the condensation reactions are straightforward, there is much controversy

over the species present in the synthesis mixture. There are both kinetic and thermo-

dynamic factors which affect the precursor species that are present. These factors

will in turn depend on the synthesis conditions and these may not be the same

throughout the synthesis. An understanding of the precursor species will, however,

give an insight into zeolite growth mechanisms. There now follows a discussion of

some of the early work carried out in order to understand the prenucleation stage.

Barrer et al [24] proposed that the growth of zeolites was solution mediated.

Barrer suggested that secondary building units in the form of small tetrahedra or

polyhedra link together to form the zeolite crystal. From this two different mech-

anisms were proposed. Firstly, that the zeolite grew by the condensation of these

small precursor species from solution and second that an amorphous solid formed

first which then becomes more ordered through dissolution and transport processes.

The second of these processes is now generally accepted to be the mechanism of

growth.

Building on the early work of Barrer, Breck and Flanigen used X-ray diffraction

(XRD) to study the crystallisation of zeolite A [25]. They concluded that initially

there is extensive heterogeneous nucleation to form a highly supersaturated gel. The

nuclei that are formed are not all zeolite-like, but instead are like those described by

Barrer [24]. These nuclei then develop until reaching a critical size where there is

rapid formation of small uniformly sized crystals. This occurs before crystal growth

which proceeds through polymerisation and depolymerisation processes catalysed

by OH–. This mechanism involves both the solid and liquid phases.

In 1966, Kerr [111] carried out an experiment where sodium hydroxide was circu-

lated round an apparatus containing two filters (see Figure 2.4), one with amorphous

aluminosilicate and the other with crystalline zeolite A. Once the experiment was

complete, the mass of zeolite A crystal had doubled and nearly all the amorphous

aluminosilicate had been dissolved. This led to the conclusion that the process

occurs via the amorphous material dissolving to form active species which then
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2.4. Zeolite Nucleation

Figure 2.4: Schematic diagram of the apparatus used by Kerr. Reprinted with
permission from ([2]). Copyright (2003) American Chemical Society.

nucleated on the zeolite A crystal, essentially providing evidence for the first mech-

anism described above. Some years later, Kerr stressed that this may not be the

only mechanism involved in the formation of zeolites [112].

The discussion so far has focused on using simple experiments to infer what may

be happening in the solution. In recent years multiple characterisation techniques

have been used to analyse the sample. Ideally these are carried out in situ to follow

the reaction as it proceeds. The most common technique is 29Si NMR spectroscopy

which can be used to obtain structural information by measuring the chemical shift.

The chemical shift varies due to changes in the nuclear magnetic resonance frequency

caused by the local geometry of nuclear spins. Much of the work has focused on

the silicalite-1(MFI) system which is synthesised from dilute solutions containing

TPA. The first of these experiments was by Harris et al. [113] who used 29Si NMR

to analyse the structure of precursors present in solution. They were able to assign

signals to species containing up to 6 silicon atoms. This is a complex process espe-

cially if the silicon is not enriched with 29Si. Subsequent extensive work by Kinrade

and Knight [114, 115, 116, 117] which culminated in the identification of 48 distinct

silicate oligomers (see Figure 2.5) present in solution. From this it was determined

that the most likely silicate precursors to zeolites are D3Rs and D4Rs. The work of

Kinrade and Knight also contradicted some previous results by Kirschhock et al. in

which they proposed the existence of ‘nanoslabs’ in solution which have the MFI

structure and aggregate to form the zeolite [118].

As well as NMR spectroscopy, ESI-MS (Electron Spray Ionisation-Mass Spec-

trometry) has also proved a useful tool to elucidate precursor species. This technique
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2.4. Zeolite Nucleation

Figure 2.5: Aqueous silicate structures identified by Kinrade and Knight by 29Si
COSY NMR spectroscopy. Each solid line represents a Si−O−Si link and dashed
lines represent OHSi(OH)3 units. Reprinted with permission from ([117]). Copyright
(2007) John Wiley and Sons.
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works by first ionising the precursors before passing them through a charged field to

calculate the mass to charge ratio (m/z ). The main drawback of ESI-MS over NMR

spectroscopy is that it provides less structural information. However, it is possible

to study the time evolution of species. ESI-MS has been used with great success

by the group of Schüth [119, 120, 121, 122, 123, 124]. Initially, the species present

are monomers, dimers and D3Rs. With time, these grow to form larger species, and

by the end the solution contains almost exclusively D4Rs. Although larger species

were detected, none were in the range proposed by Kirschhock et al. , and the re-

sults of Schüth et al. are in good agreement with those of Kinrade and Knight. By

isotopic labelling of silicates a mechanism for the interconversion of D3Rs and D4Rs

was found. The study showed that rather than happening by a single substitution

mechanism, it was in fact concerted between two units, realising two single rings. As

well as studying pure silicate systems, Schüth et al. also studied a germanosilicate

system [125, 126, 127], namely ITQ-21 [128]. By combining ESI-MS with MS/MS it

was possible to determine the structure of the germanosilicate species. It was found

that the oligomers present in the solution have zeolite-like structural characteristics,

for example, a D4R connected by a bridge to a S4R. So far these techniques have

not solved the problem of zeolite nucleation, but they are providing important clues

to the mechanisms and building units that exist in solution which will go on to

form the zeolite crystal. The idea of building units has been far more successful in

aluminophosphate chemistry [129] where there appears to be a more distinct path,

starting from precursor nucleation building units (PNUBUs) which then go on to

form the SBUs and finally link together to form the framework [130]. As already

discussed, however, the picture for (alumino)silicates seems to be far more complex.

2.4.3 Nucleation

The second stage in a zeolite synthesis is nucleation. Similar to the prenucleation

stage, the actual mechanism is still a matter of controversy. At this stage the synthe-

sis gel will contain amorphous silica along with a solution phase. There is continuous

hydrolysis of the Si−O−Si bonds and the amorphous phase slowly becomes more

ordered. Once these nanocrystals are large enough to self-propagate [2], the crystal

will grow into a zeolite structure. As with prenucleation, the silicalite/TPA system is

the test case for most work. de Moor et al. conducted a series of SAXS (small angle

X-ray scattering) experiments, which uses X-rays at low angles (typically 0.1◦-10◦),

allowing particles on the scale of nanometres to be detected. The work of de Moor

et al. show the presence of particles ranging in size from 2.8 nm to 10 nm [131]. It

is believed that the smaller 2.8 nm particles are primary units of silica around TPA,
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2.4. Zeolite Nucleation

while the 10 nm particles are simply aggregates of these smaller particles.

The template has already been discussed in great detail in previous sections, but

as with the precursor species present in solution, the exact action of the template

is still a point of much controversy. As with the silicate species, the study of the

template and its interactions in the early stages of synthesis have proved challenging.

As in the NMR and ESI-MS work, the silicalite/TPA system is the one of choice.

Some of the earliest work was by Chang and Bell [132] which concluded that the

nucleation of silicalite occurs in three steps:

1. the formation of clathrate-like water structure around the template,

2. isomorphic substitution of silicate for water in these cages which resemble

ZSM-5 channel intersections,

3. progressive ordering of these structures into the final crystal structure.

These steps are in agreement with the mechanism proposed by Breck and Flanigen

[133]. But Chang and Bell also noted that the structure around the hydration

layer will be affected by other factors such as temperature, pH, inorganic cations

etc. Building on this work, Burkett and Davis published possibly one of the most

significant papers in the field where they use 1H−29Si CP MAS NMR spectroscopy

on the same silicalite/TPA system to probe the relationship between the inorganic

and organic components (see Figure 2.6) [134]. From these experiments, it was found

there was a greater degree of cross-polarisation when TPA is used as the template

rather than TMA. This suggests that there is a difference between the strength of

interactions and proximity of the templates to the silicate species. In addition to

the proton-silicon NMR spectroscopy, 1H−13C CP MAS NMR was used to gain

information on the conformation of the TPA molecules. Although there is some

ambiguity in the assignment of the spectra, it is thought that the TPA in solution

adopts a similar conformation to that occluded in the framework. The differences

between TPA and TMA were attributed to the greater hydrophobicity of TPA and

so would interact more strongly with the hydrophobic silica. Burkett and Davis

also proposed a modified version of the growth mechanism proposed by Chang and

Bell [132] where there is diffusion of the growth species to the surface of a growing

crystal. This accounts for observed intergrowths e.g. ZSM-5/ZSM-11, which must

occur by a layer-by-layer growth mechanism.

Fourier transform infrared (FT-IR) spectroscopy has also been used as a tool to

study the species present in solution. Jacobs et al. carried out FTIR spectroscopy on

a number of high silica zeolites that all contain different arrangements of 5 rings [135].

Based on previous work by Flanigen et al. [136] they were able to assign some bands
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2.4. Zeolite Nucleation

Figure 2.6: Schematic of the mechanism of structure direction proposed by Burkett
and Davis. TPA silica interactions are in the upper portion of the diagram. Reprinted
with permission from ([134]). Copyright (1994) American Chemical Society.
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to the vibrations of internal tetrahedra, and then they noted that the remaining

bands vary in intensity and this can be related to the external environment. For

example, a peak at 1225 cm−1 can be attributed to a Si−O symmetric stretch that

is unique to a zeolite containing chains of 5 member rings. With further study of the

spectra obtained it was determined that a peak at 540 - 550 cm−1 is characteristic

to D5R in MFI-type zeolites [135, 137, 138] and so this allows structures present in

solutions to be identified from FT-IR. It is noted by the authors however that this

peak is very similar to that found in ZSM-11 [135].

2.4.3.1 Computational Studies

Clearly, studying prenucleation and nucleation stages by experimental methods is

challenging. Computational methods are ideal for these kinds of systems, and with

experimental data to validate the models it is possible to expand to the systems

studied. Most computational work on the prenucleation stage has focused on bar-

riers to reactions, and on calculating exact geometries of precursors. The reader is

directed to an excellent review on the subject by Catlow et al. [139]. Some of the

earliest work used forcefield methods, Feuston and Garofalini [140] derived a new

interatomic potential for silicate/water interactions that was then used to study

small silicates. A few years later Hill and Sauer also derived a potential for the

same interactions and used it to study larger silicate clusters [141]. However, it

quickly became clear that because of the complexity of the potential energy surface

due to conformational flexibility of silicates, and because these clusters are strongly

affected by hydrogen bonding, that ab initio calculations would be a better choice

for obtaining accurate conformations and properties.

In recent years, there has been increased interest in the prenucleation stages

and a large amount of research has been carried out. Initial work by Trinh et

al. focused on the mechanism of the silica oligomerisation reaction [142]. Using DFT

(density functional theory) they studied both the anionic and neutral mechanisms

(see Figures 2.7 and 2.8). They included solvation using the conductor-like screening

model (COSMO) and studied the condensation reactions which led to the dimer,

trimer, tetramer, 3MR and 4MR. The reaction mechanism for the neutral species is

studied as a single step process with a concerted mechanism releasing water. The

anionic mechanism on the other hand is a two step process, first forming a penta-

coordinated silicon, followed by loss of water by removal of a proton by the leaving

OH– group. This is the same mechanism as proposed by Xiao et al. [143].

Further work by Trinh et al. , this time including explicit water, was done to

understand the role of water in the oligomerisation reaction [144]. Using a different
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Figure 2.7: Schematic of the neutral reaction mechanism. Reprinted with permission
from ([142]). Copyright (2006) American Chemical Society.

Figure 2.8: Schematic of the anionic reaction mechanism. Reprinted with permission
from ([142]). Copyright (2006) American Chemical Society.
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function with the Car-Parrinello [145] method of molecular dynamics, the formation

of the dimer, trimer, tetramer, 3MR and 4MR was investigated but only via the

preferred anionic pathway. Trinh et al. concluded that it is essential to include

explicit water molecules in the simulation as this captures chemical properties of

silica in solution better.

Mora-Fonz et al. studied anionic species which are the more likely species in the

high pH conditions of a zeolite synthesis [146, 147] and found the 3MR is highly

favourable. This then raises the question as to why these rings, until very recently,

have not been seen in zeolites. However, the authors note that it is more favourable

to form the tetramer from the trimer than to close the ring. When they move to a

more complex system, include explicit solvation and sodium to balance the charge

from the anionic silicate, they find that there is very little change in the geometry.

A similar study by Schaffer and Thomson [148] examine, the neutral, anionic and

acidic mechanism, finding the same pathways as previous work. They also confirmed

that the barriers to the formation of small oligomers are greater, than to form larger

oligomers.

2.5 Crystal Growth

Crystal growth is the final stage of a zeolite synthesis. By now there are small

crystalline nuclei [79] of zeolite and there is rapid growth of the crystalline zeolite.

As with the other stages of crystal growth there is still controversy over the exact

growth units. It is possible that any of the units discussed so far, monomer, dimers

and other primary building units right through to larger silicate oligomers may be

present. We do know that the growth is typically a layer-by-layer mechanism, and

is thought to be controlled by the kinetics of the reactions involved rather than by

diffusion of silicate species to the surface [149].

The experimental study of crystal growth has been focused around atomic force

microscopy (AFM) and more recently high resolution transmission electron mi-

croscopy (HRTEM). AFM is a relatively new technique [150] that uses a probe

with a tip of atomic dimension to scan over the surface. The probe interacts with

the surface and this deflects the tip. This deflection can be measured, usually by

an optical technique and then the force derived form this. These techniques pro-

vide information about the surface of the zeolite crystal often to an atomic level,

but they cannot provide insight into the microscopic processes occurring. The first

studies on crystal growth used XRD to monitor the growth of the zeolite crystal.

Kacirek et al. [151, 152] followed the growth of Na zeolite X and Y, and concluded
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that the rate of zeolite growth is related to the degree of supersaturation. As the

degree of supersaturation increases, the rate of growth increases, as there is a greater

concentration of nutrients available to the growing crystal.

Since monitoring growth is difficult, much of the work has focused on monitoring

dissolution as it is inferred that this can be considered as the reverse of growth. In

this case the surface is first imaged via AFM, HRTEM etc., followed by a controlled

dissolution of the crystal, and then re-imaging of the crystal. Although dissolution

can be thought of as growth in reverse there is no firm evidence for the processes

being identical. By running AFM in constant force mode, that is the force on the

tip is kept constant, which is achieved by moving the tip up and down relative to

the surface [153], surface features can be imaged. The first use of AFM to image a

zeolite was reported by Weisenhorn et al. in 1990 [154] who imaged the surface of

clinoptilolite and were also able to ‘etch’ an X into the surface by applying a force

to the surface via the tip. Around the same time Gratz et al. studied quartz using

AFM [155]. Their aim was to study the dissolution of the crystals in KOH and gain

an understanding of the kinetics of the process.

Building on these early experiments, Anderson et al. carried out AFM experi-

ments on zeolite Y and zeolite A [156, 157], with similar experiments by Yamamoto

et al. on Heulandite published simultaneously [158]. These experiments confirmed

by AFM the layer-by-layer growth previously proposed by Vaughan [159], and sup-

ported HRTEM experiments a few years previous by Terasaki and Alfredsson et

al. [160, 161]. In these HRTEM experiments, on intergrowth in zeolite Y, the sur-

face of the zeolite showed steps with heights of around 14.2 Å with this step height

corresponding to the height of a complete faujasite cage, and as no other steps were

found it can be inferred that the zeolite grows by forming complete faujasite layers.

AFM studies by Anderson et al. on zeolite A also showed the same features with

the steps on the surface consisting of complete sodalite cages [157]. Although these

experiments confirmed the layer-by-layer growth mechanism, they still did not give

information on which units are condensing onto the surface. It is quite possible

that complete faujasite or sodalite cages attach to the surface, or more likely that

smaller units condense to form an intermediate which then rapidly grows to the

complete cage structure. Since these experiments are carried out ex situ only the

final structures are observed, and there may be many different processes occurring

throughout the crystal growth which may even change as the reaction proceeds.

The first in situ AFM experiments were carried out by Anderson et al. in 2007

[162] of the dissolution of zeolite A. They found that the dissolution first occurs with

removal of the S4R capping the β-cage, in an uncorrelated manner, which precedes
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the removal of the β-cages in a correlated manner by terrace retreat.

A technique which has recently been been employed to study zeolite crystal

morphology is high resolution scanning electron microscopy (HRSEM). Although

not a new technique, until the last few years it was not possible to achieve the

highest resolution due to charge effects on the sample [163]. Recent development

have allowed the use of low current and voltages to give nanometre resolution. With

this kind of resolution it is possible to image the surface structure as shown by

the work of Che et al. on SBA-15 [164], where the surface terminations on SBA-

15 (a mesoporous ordered material) were determined. Recent work by Cubillas et

al. combined AFM and HRSEM to study the growth of zeolite A [165]. They were

able to follow the growth by AFM of the crystals, and subsequent HRSEM of the

same crystal proved that zeolite A crystals form at the surface of the amorphous

gel and that observed intergrowths occur when the crystals aggregate in the early

stages of crystal growth.

2.5.1 Templates in Zeolite Crystal Growth

As well as having an effect in the early stages of the synthesis in controlling the

topology, the template can also impact the final crystal morphology. This occurs

due to the template altering the growth rates of some crystal surfaces and so a

particular surface may grow more rapidly, hence altering the crystal morphology.

Early work by Charnell on zeolite A and zeolite X showed that triethanolamine

increased the crystal size of both zeolites [166]. Once again, the TPA/silicalite-1

system is often chosen for the study of the effect of templates on crystal morphology

[167]. It is not just the inclusion of a template which can affect the growth, but

also the concentration of the template. Romannikov et al. studied the effect of the

concentration of TPA on the crystal size of ZSM-5 [168]. They find that increasing

the concentration of TPA gives larger crystals of silicalite-1, which they propose is

due to the TPA forming clathrates in the solution phase. The TPAs role in forming

these clathrates both speeds up the rate of crystallisation and increases the size of

the crystals. A few years later Cundy et al. carried out a similar study on silicalite-1

and found similar trends with respect to the concentration of TPA [169].

A landmark paper in 1993 by de Vos Burchart et al. included a diquat of TPA (di-

TPA) in their synthesis of silicalite-1 [170]. They found this decreased the aspect

ratio of the crystals. Using molecular modelling, they proposed that the di-TPA

lies preferentially on the straight 10MR channel. Consequently de Vos Burchart et

al. proposed that the effect of the template on crystal morphology can be separated

as follows:
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Figure 2.9: Schematic of an MFI crystal indicating the lattice directions of a stan-
dard coffin shaped MFI crystal. Reprinted with permission from ([171]). Copyright
(2004) American Chemical Society.

Location effect: The template may prefer a particular location on the zeolite such

as one of the surfaces.

Growth direction effect: Once the location has been chosen it may influence the

crystal growth direction.

Using these two template effects they propose that there are two possible location

effects. The di-TPA initially locates with one propyl group into a channel. The

propyl groups on the other end can then locate in either the straight channel, or the

sinusoidal channel. It was proposed that although locating the propyl groups is not

a rate limiting step, when it is inside the sinusioidal channel it is less favoured and

hence there is a greater rate of growth in the b direction (see Figure 2.9).

Building on the work of de Vos Burchart et al. , Bonilla et al. studied the effect

of a number of other diquats on the crystal morphology of silicalite. They were able

to make a variety of different crystal morphologies, by using templates to control

growth rates along any of the axes (unlike the crystals previously seen) [171]. More

recent work by Chen et al. has used microwave assisted synthesis (where the solvent

acts as the template) and they show that it is possible to tune the aspect ratio of

the crystals [172].

The discussion so far has focused on organic templates. However, it has been

shown that inorganic cations also affect zeolite crystal morphology. Warzywoda

and Thompson [173] carried out experiments on sodium zeolite A where a percent-

age of potassium was added. Initially larger crystals of zeolite A formed but once

the concentration of potassium reached 20% zeolite K-F began to contaminate the

product. Beyond 80% potassium zeolite A no longer formed. Clearly this indicates
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Figure 2.10: Schematic which shows the effect a template (red circle) could have on
the growth of the crystal when adsorbed on the top surface.

that sodium is required for zeolite A nucleation. However, it is interesting that low

concentrations of potassium changed the crystal morphology. At the same time a

similar study by Camblor and Perez-Pariente, again on the role of potassium in

zeolite beta, showed that crystal size increased as the concentration of potassium

was increased [174].

We can summarise these findings and say that once a template has adsorbed on

the surface it can either promote growth on that surface by assisting condensation,

or slow its growth by sterically hindering the surface to silicate condensation (see

Figure 2.10). The reader is referred to recent reviews and references within for more

on the subject of template effects on crystal growth [175].

2.5.2 Computational Studies on Crystal Growth

As with other areas of zeolite growth, computer modelling provides an excellent

method to gain an understanding into the crystallisation processes. The first re-

ported atomistic calculations on zeolite surfaces were by Loades et al. which repro-

duced the crystal morphology of zeolite A [176]. Baram and Parker built upon this

work by including the energetics of water dissociation to hydroxylate the surface

which gave more accurate surface energies than those derived by Loades et al. , and

matched better with experimentally derived energies [177]. More recent work by

Slater et al. also focuses on calculating accurate surface energies [178, 179]. They

studied zeolite A and zeolite β-C and were able to reproduce the surfaces observed

in HRTEM. However, as with the work of Baram and Parker [177], the inclusion of

a solvent is essential when calculating the surface energies.
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In a combined in situ AFM and modelling study on Zeolite A, Anderson et

al. found that a D4R terminated surface is most stable in hydrated conditions and

so most resistant to dissolution [180]. Chiu et al. went deeper into the mechanisms

of zeolite growth at the surface by studying the relative energies of adding different

sized silicate species in dissolution simulations. It was determined that the most

stable surfaces are those with the least number of dangling OH bonds [181], and it

is the growth of this surface that is the rate determining step for the growth. For

zeolite β-C the growth of this step is closing the 12MR channel that runs parallel

to the surface. A similar study by Agger et al. on analcime also came to similar

conclusions to the growth mechanisms of zeolites [182]. Very recent work by Gren

et al. extensively characterises zeolite A surfaces. As well as determining surface

structures, they also study the effect of water on the surface by including explicit

water. They find that the structure of the water is strongly influenced by the surface

terminations. For example when D4Rs are parallel to the {100} surface there is

strong ordering of the water, but when they are perpendicular there is almost no

ordering of the water.
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CHAPTER 3

Theoretical Methods

3.1 Introduction

The vast increase in processor speed over the last few years along with the emergence

of national supercomputers such as HECToR [183] has allowed the expansion of the

computational sciences. Combined with the increase in computational power there

are also an increasing number of programs available which allow the modelling of

chemical systems and the field of computational chemistry has expanded rapidly.

The aim of computational chemistry is to calculate the energy of a system as a

function of its coordinates. From this a number of properties can be derived. Broadly

speaking, the energy of the system can be calculated by two different methods.

Molecular mechanics which ignores all electronic structure of the atoms and uses a

potential function which is fitted to a particular molecular interaction and electronic

structure methods which are based on quantum mechanical principles. Each method

has a subset of methods some of which combine these two fundamental methods.

The advantages and disadvantages of each will be discussed in this chapter.

3.2 Molecular Mechanics

As already mentioned force field or Molecular Mechanics (MM) methods ignore the

motion of the electrons around an atom and instead treat the atom as a classi-

cal particle [184]. This application of the Born-Oppenheimer approximation [185]

where the motion of the nuclei can be considered slow compared to the motion of
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the electrons and as such only the positions of the nucleus need be considered as

the motion of the electrons adapt instantly to nuclear movement. By making this

approximation systems of many thousands or even millions of atoms can be consid-

ered. In MM a forcefield is utilised to model the interactions of the atoms in the

system. The forcefield is broken down into intramolecular components such as bond

stretches and bending and intermolecular interactions such as van der Waals (vdW)

forces. A typical forcefield has the form:

Esys = Eelec + EvdW + Ebond + Eangle + Etorsion (3.1)

where Esys is the total system energy, Eelec is the energy contribution from elec-

trostatic interactions, EvdW is the energy contribution from vdW interactions. The

final three terms are intramolecular contributions for the bond stretch (Ebond), angle

deformation (Eangle) and bond torsion (Etorsion). These energies are calculated from

a potential which is fitted either to experimental data or to ab initio models. The

functional forms of the intra- and intermolecular interactions will now be discussed

in greater detail.

3.2.1 Intramolecular Interactions

Intramolecular interactions are concerned with keeping the molecule in a chemi-

cally accurate structure. Generally this is achieved by applying energy penalties to

deviations away from standard or equilibrium values.

The simplest method of describing the potential energy curve of a bond is Hooke’s

law where the energy varies with the square of the displacement from the the refer-

ence bond length.

Ebond =
k

2
(lij − l0)2 (3.2)

where l0 is the equilibrium bond length and k is the force constant for the particular

bond. Generally Hooke’s law is sufficient for describing bonds in chemical systems

as it is unusual for them to deviate far from equilibrium. However, on occasion it

is necessary to use a more complex functional form. The Morse potential is able

to describe a wide range of behaviour from equilibrium to dissociation. The Morse

potential has the form:

Ebond(morse) = De{(1− exp[−a(lij − l0)])}2 (3.3)

where De is the the depth of the potential energy minimum and a = ω
√

µ
2De

, where
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µ is the reduced mass and ω is the frequency of the bond vibration. ω is related to

the stretching frequency of the bond k by ω =
√

k
µ
. Clearly this can describe the

bond more accurately than the harmonic function but the extra term in the Morse

potential adds computational expense.

Angle deviations from their equilibrium can also be described using Hooke’s law:

Eangle =
k

2
(θijk − θ0)2 (3.4)

where θ0 is the equilibrium bond angle and k is the force constant. Since less energy

is required to deform an angle, than is required to stretch a bond, the force constants

associated with angle deformations are far smaller.

The final type of deformation that will be discussed are the torsional terms. Not

all forcefields use torsional terms (although those used within this thesis do) as often

it is possible to rely on nonbonded interactions with atoms at the end of each torsion

i.e. at the 1,4 positions to describe the energy profile. A common form of torsional

potential is the harmonic potential:

Etorsion =
k

2
(φijkl − φ0)

2 (3.5)

where φ0 is the equilibrium dihedral angle and k is force constant for the deformation.

3.2.2 Intermolecular Interactions

Intermolecular or nonbonded interactions do not depend on a specific bonded rela-

tionship between atoms and act throughout. As already mentioned these, are broken

down into two types. Electrostatic interactions are calculated using Coulomb’s law:

V =

NA∑
i=1

NB∑
j=1

qiqj
4πε0rij

(3.6)

where NA and NB are the numbers of point charges in each molecule, qi and qj are

the values of the point charges, rij is the separation between the point charges and

ε0 is the permittivity of free space. An issue arises when using Coulomb’s law in

periodic systems as it may not converge. A method of overcoming this is to use

the Ewald summation [186] where the charges are considered in real and reciprocal

space (see Section 3.2.4).

Finally there are van der Waals (vdW) interactions. vdW forces include the
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long range dispersive forces and short range repulsive forces. The long range forces

result from instantaneous dipoles forming on particles which then induce a dipole in

a neighbouring particle. This results in an attraction between the particles. Short

range repulsive forces arise due to the Pauli exclusion principle where two electrons

in a system are not allowed to have the same quantum number. This results in the

electrons of two nearby nuclei dispersing and hence reducing the density of electrons

in the internuclear region. This leads to a repulsion between the now less shielded

nuclei. The most common form of potential used to represent vdW forces is the

Lennard-Jones 12-6 potential:

V (r) = 4ε
[(σ
r

)12
−
(σ
r

)6]
(3.7)

where σ is the collision diameter, the point at which the vdW energy is zero and ε is

the well depth. The Lennard-Jones 12-6 potential is characterised by a r−6 attractive

part and a r−12 repulsive part. The r−6 variation is the same power-law relationship

that is found in the leading term for theoretical dispersive models such as the Drude

model. On the other hand the r−12 has no theoretical basis especially as quantum

mechanical calculations suggest an exponential term. In terms of computational

expense the Lennard-Jones 12-6 potential is useful for large systems as r−12 can be

calculated by squaring r−6. Alternatively a slightly modified version of the Lennard-

Jones potential can be used:

V (r) = kε
[(σ
r

)n
−
(σ
r

)m]
; k =

n

n−m

( n
m

)m/(n−m)

(3.8)

This of course returns to the Lennard-Jones 12-6 potential when n = 12 and m = 6.

A value of n of 9 or 10 gives a less steep repulsive curve. A further improvement to

equation 3.8 is the Buckingham potential:

V (r) = ε
[ 6

α− 6
exp[−α(r/rm − 1]− α

α− 6

(rm
r

)6]
(3.9)

This replaces the repulsive r−12 term with an exponential term which better rep-

resents the repulsions at short range. However, care must be taken when running

simulations as at very short separations the potential becomes strongly attractive

which can result in fused nuclei. It is therefore common in simulations to employ a

cutoff below which the Buckingham potential does not apply.
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Figure 3.1: Shell Model: The core and shell are held together by a harmonic spring.

3.2.2.1 Shell Model

It was previously stated that electrons are essentially ignored in MM. However,

in some systems the polarisation of atoms, oxygen being an excellent example, is

very important to the structure and hence derived properties. The shell model of

Dick and Overhauser [187] models polarisation by representing the ion as a core

containing the mass connected to a massless shell (see Figure 3.1) representing the

electrons by a harmonic spring. Both the shell and the core have a charge the sum

of which is the total charge on the ion.

Vspring =
kspring

2
(l − l0)2 (3.10)

where l0 is the equilibrium spring distance, and kspring is the force constant for the

spring. Modelling the polarisation of oxygen ions is extremely important in zeolites

as this is necessary to give the correct T-O-T angle [188].

3.2.3 Periodic Boundary Conditions

Periodic Boundary Conditions (PBC) allow simulations of bulk solids to be per-

formed where they would otherwise require a large number of atoms. The simulation

cell is surrounded by an infinite number of images of itself. If a particle leaves the

simulation cell an image of this particle appears on the opposite side (see Figure

3.2) keeping the number of particles constant. Since this means we have an infinite

number of non-bonded interactions a cutoff is applied: generally we apply the min-

imum image convention where each particle only interacts with each other particle

once, whether it be in the actual simulation cell or one of the images.
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3.3. Electronic Structure Methods

Figure 3.2: Image to illustrate periodic boundary conditions. Figure reproduced
with kind permission from Dr. Sébastien Le Roux from reference [189].

3.2.4 Ewald Summation

The 1/r dependence of long range electrostatic forces means a cutoff can not simply

be used to terminate the forces as this would mean the magnitude of the electrostatic

force would depend on the cutoff distance. As mentioned previously, the Ewald

summation method overcomes this [186]. The Ewald summation works by converting

the sum into two series which converge more rapidly: one in real space and one in

reciprocal space. Although this method means that the electrostatic energy can now

be computed, the method is still computationally expensive and as such calculating

electrostatic forces will be the most time consuming part.

3.2.5 Summary

The molecular interactions described in this section are by no means an exhaustive

list, but are the most commonly used functional forms, and are the ones used in

this thesis. An interesting point to note, is that sometimes a chemical interaction

which we would consider to be covalent, for example a Si−O bond in a zeolite,

will actually be described by a long range Buckingham potential combined with a

Coulomb potential.

3.3 Electronic Structure Methods

Electronic structure methods are sometimes referred to as ab initio which is a Latin

term meaning “from the beginning”. These calculations are derived from theoretical

principles, and not from experimental data as is most often the case with molecular
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mechanics. The drawback of these methods is they are far more computationally

expensive than classical molecular mechanics methods. To illustrate this, classical

methods scale roughly to O(N2), that is as we increase the number of particles the

time for the calculation will scale roughly square. However, for ab initio methods

the scaling factor is somewhere between two and eight depending on the level of

theory. It is clear therefore that once we get to systems containing more than a few

hundred particles, the simulation time can be prohibitively long.

However, there are significant advantages of using ab initio methods. Molecular

mechanics uses a potential which is fitted to a set of data, be it experimental or

calculated using ab initio methods. If the potentials are used to simulate systems

far from those in which they were derived e.g. high pressure, they may not perform

well and yield inaccurate results. Similarly, potentials are unable to model chemical

reactions (bond breaking, electron transfer), although recent methods have sought

to overcome this disadvantage [190].

Electronic structure methods assume nothing about the system in question and

solve the electronic state of the system in order to calculate the desired properties.

This is achieved by applying the laws of quantum mechanics, the basis of which is

the Schrödinger equation [191]:{
− ~2

2m

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
+ V

}
Ψ(r, t) = i~

∂

∂t
Ψ(r, t) (3.11)

where Ψ is the wavefunction, V is the external potential, and the first section in

braces is the Hamiltonian operator, often abbreviated to Ĥ. When the external

potential is time independent we can rewrite the Schrödinger equation in its more

common time-independent form:

ĤΨ = EΨ (3.12)

where E is the energy of the particle. It is only possible to solve the Schrödinger

equation exactly for a few simple problems such as the particle in a box.

Although it is not possible to solve the Schrödinger equation exactly for many-

body systems, we can make a series of approximations in order to derive a solution.

One of these is the Hartree-Fock method. This method calculates the N-electron

wavefunction by assuming that it is the sum of the individual one electron wave-

functions in the form of a single Slater determinant in order to obey the Pauli

principle. However, the disadvantage of the method is electron correlation is com-

pletely ignored. That is, a particular electron is assumed to be moving in an average
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potential of all the other electrons, which of course is not the case as electronic mo-

tion is correlated and electrons will tend to avoid each other. This causes the energy

calculated using Hartree-Fock methods to be higher than the actual value. Methods

have been derived for correcting for electron correlations, but they are extremely

computationally demanding and so only feasible for the smallest of systems.

3.3.1 Density Functional Theory

Density Functional Theory (DFT) gained popularity in the late 1980s [184] and as

computational power has increased so has the use of DFT. In contrast to Hartree-

Fock methods where the the full N-electron wavefunctions are calculated, DFT only

calculates the total electronic energy and overall electronic density distribution. This

is based on the idea that there is a relationship between the total electronic energy

and the overall electronic density. Hohenberg and Kohn [192] showed in a reductio ad

absurdum proof that the ground-state energy and other properties are defined by the

electron density and there is a 1:1 correspondence between the wavefunction and the

density. The Hohenberg and Kohn theorem also states that the functional delivers

the ground state if the input density is the true ground state i.e. the variational

principle. The DFT energy functional is written as follows:

E[ρ(r)] =

∫
Vext(r)ρ(r)dr + F [ρ(r)] (3.13)

where ρ(r) is the electronic density, Vext is an external potential which arises due

to the electrons interacting with the nuclei. The F [ρ(r)] term is the sum of the

kinetic energy of the electrons and interelectronic interactions. Kohn and Sham

[193] showed that F [ρ(r)] should be approximated to the sum of three terms:

F [ρ(r)] = EKE[ρ(r)] + EH [ρ(r)] + EXC [ρ(r)] (3.14)

where EKE[ρ(r)] is the kinetic energy, EH [ρ(r)] is the electron-electron Coulombic

energy, and EXC [ρ(r)] is the contribution from exchange and correlation. Of these

three terms, the Coulombic (or Hartree electrostatic) energy can be calculated using

the equation:

EH [ρ(r)] =
1

2

∫ ∫
ρ(r1)ρ(r2)

|r1 − r2|
dr1dr2 (3.15)

The other two terms are not as easily calculated and approximations must be made.

The kinetic energy term is written in terms of the one-electron Kohn-Sham orbitals,
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Figure 3.3: Schematic of the SCF process in density function theory.

ψi(r):

EKE[ρ(r)] =
N∑
i=1

∫
ψi(r)

(
− ∇

2

2

)
ψi(r)dr (3.16)

This equation for the kinetic energy is for a system of non-interacting particles

and the difference between this and the real kinetic energy is incorporated into the

exchange-correlation energy functional EXC [(r)]. Combining the above equations

yields the final form of the Kohn-Sham expression for the energy of the N-electron

system:

E[ρ(r)] =
N∑
i=1

∫
ψi(r)

(
− ∇

2

2

)
ψi(r)dr + EH [ρ(r)] +

1

2

∫ ∫
ρ(r1)ρ(r2)

|r1 − r2|
dr1dr2

+ EXC [(r)] −
M∑
A=1

∫
ZA

|r−RA|
(3.17)

where the final term is the electron-nuclear interaction term. This equation is in the-

ory exact, if we knew the exact form the exchange-correlation functional. However,

as mentioned before, this is impossible so approximations must be made. Many

forms of the exchange-correlation functional exist and these are discussed in the

next section.

In order to solve the above equations, an iterative procedure is carried out as
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illustrated in Figure 3.3. Guesses are made at the Kohn-Sham orbitals and from

these the electron density is then calculated. This density is in turn used to calculate

the Kohn-Sham potential and finally building a new set of orbitals from which a new

density can be calculated. This process is iterated until the Kohn-Sham density and

electron densities are self-consistent.

3.3.1.1 Exchange-Correlation Functional

The most important part of a DFT calculation is the choice of exchange-correlation

functional. This functional contains the exchange energy, correlation energy and the

difference between the non-interacting and interacting kinetic energies. The exact

functional form is known only for a homogeneous electron gas [194] so approxima-

tions must be made in order to solve more complex systems. The first approximation

was called the local density approximation (LDA) and was used by Kohn and Sham

in their original paper [193].

A point in the inhomogeneous electron distribution is considered locally homo-

geneous and the exchange-correlation functional of a homogeneous electron gas can

be used as it is known exactly. Generally LDA is good for systems such as metals

where the electron density is relatively uniform. It has been shown to result in

overbinding, shortening of bonds, and to poorly represent hydrogen bonds [195].

An improvement to the local density approximation is the generalised gradient

approximation (GGA). Here, we consider the gradient and higher derivatives of the

of the density rather than just the local density. There have been a number of GGA

functionals developed and these usually give improved energies and geometries of

the systems modelled. Typically these gradient corrected functionals are divided

into separate exchange and correlation contributions. A commonly used correction

to the gradient functional was proposed by Becke [196] by fitting to experimental

data. This is often combined with the correlation functional of Lee, Yang and Parr

(LYP) [197] and is abbreviated to BLYP.

3.3.2 Basis Sets

Basis sets are used in quantum mechanical calculations to define molecular orbitals

in the form of atomic functions. There are two main types of basis sets, atom centred

and plane wave. An atom centred basis set consists of a number of atomic functions

which define the electron population at a given distance from the nucleus. There

are a number of different functions available and the most common ones will be

discussed now. The first is a Slater type orbital (STO) which has the functional
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form:

R(r) = Nrn−1e−ζr
2

(3.18)

where r is the distance from the nucleus, n is the principle quantum number, N is

a normalisation constant and ζ is the effective charge of the nucleus as there is a

partial shielding of the core due to the electrons. The drawback with using STOs

in molecular orbital calculations is that some of the integrals are extremely difficult

to evaluate especially when the orbitals are centred on different nuclei.

A more commonly used function is one based on Gaussians. Gaussian type

orbitals (GTO) have the form:

R(r) = xaybzce−αr
2

(3.19)

where α determines the radial extent of the orbital, a, b and c determine the order

and x, y and z are Cartesian variables, of the Gaussian function. A function with

a+ b+ c = 0 is a zeroth order function and can be compared to a s orbital. A first

order function has a + b + c = 1 and can be related to the px, py and pz orbitals,

and so forth up the orders.

It is unlikely that simply representing the occupied atomic orbitals in a quantum

calculation will be sufficient, and it is common to include higher unoccupied orbitals

in order to improve the accuracy of the calculation. The basis set can be split into

two basis functions (double zeta) that correspond to the valence orbitals. Further

splitting gives triple zeta, quadruple zeta etc. functions, although it is uncommon

to go further than quadruple zeta. An alternative method is to double the number

of functions used for the valence electrons but keep single functions for the inner

shells. The logic behind this is that the properties of interest will be defined by

the valence electrons as these are the ones that will interact. This method is so

popular that is has been given its own notation. For example the 3-21G basis set

has three Gaussian functions to describe the core electrons and the valence electrons

are described by two contracted and one diffuse Gaussian.

Further improvements can be made by including a polarisation function. For

example a hydrogen atom will have a spherical electron cloud when in isolation.

When however, it is in a molecule there will be a perturbation of the electron cloud

towards the other nuclei and give a sp hybrid. The solution to this problem is to

introduce polarisation functions to the basis set. A polarisation function has a higher

angular quantum number and so will correspond to p orbitals in our hydrogen atom

example. The polarisation function is denoted by an asterisk *. A 6-31G* basis set
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has polarisation functions on the heavy atoms and a 6-31G** basis set also includes

polarisation functions on the light (hydrogen and helium) atoms.

The final addition that can be made to a basis set is to deal with atoms which

have a significant amount of electron density far away from the nucleus. This occurs

for example when an atom has a lone pair. In this case a highly diffuse function is

added to the basis set and a basis set with this included is given the ‘+’ notation.

A 6-31+G basis set has a single set of diffuse functions s- and p-type Gaussian

functions. In a manner analogous to the polarisation functions, a double plus (6-

31++G) means that the diffuse functions are included on the light atoms as well.

3.3.2.1 Plane Wave Basis Sets

When the system being studied is periodic, as if often the case in solid state systems,

the basis set of choice is a plane waves. This is the equivalent representation to a

Fourier series and represents each orbital wavefunction as a linear combination of

plane waves which differ by reciprocal lattice vectors.

ψ(r) =
∑
G

aG exp(i(k +G)r) (3.20)

3.3.2.2 Pseudopotentials

Generally speaking the properties of interest depend only on the valence electrons

[198] as these are the ones involved in bonding. The core electrons are not affected

much by the atomic environment and so we can make an approximation and only

consider valence electrons explicitly. Pseudopotentials [194] aim to replace the core

electrons by representing the way valence electrons interact with the core electrons

plus nucleus. The potential function gives wavefunctions with the same shape out-

side the core region, but with fewer nodes inside the core region, thus reducing the

number of terms required for plane wave expansion, and so reducing computational

expense.

Pseudopotentials were initially derived by fitting to empirical data, however it is

now more common to fit to all-electron ab initio calculations. The pseudopotential

is fitted to the data (in a manner analogous to a classical potential) in order to

accurately reproduce the behaviour and properties. Ideally pseudopotentials will be

norm-conserving: that is the valence electron density within the core radius equals

that for the all-electron situations.
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3.4 Energy Minimisation

Unless the system we are studying is very simple, i.e. a few atoms, the potential

energy surface is extremely complicated, and even for simple molecules finding the

absolute minimum energy configuration is not a trivial problem. We can formally

state the minimisation problem as follows:

∂E

∂xi
= 0;

∂2E

∂x2i
> 0 (3.21)

where the function E represents the energy of the system and depends on one or

more independent variables x1, x2, . . . , xi. The aim is to find values of those variables

where E has a minimum value. In the case of chemical systems, the variables xi

will be Cartesian or internal coordinates. For an analytical function finding the

minimum is relatively straightforward and can be achieved using calculus methods.

For a molecular system however this is not the case and numerical methods must be

used since the energy varies in a complicated way with respect to the coordinates

of the atoms. A system with N atoms will have 3N − 6 internal coordinated of 3N

Cartesian coordinates. The numerical methods locate minima by gradually changing

the coordinates until the minimum is reached.

Although initially this seems straightforward another question arises when

searching for the minimum. That is, how do we know if we have found the ab-

solute or global minimum or if we are stuck in a local minimum?

3.4.1 Minimisation Methods

The most common methods for finding the minimum on a potential energy surface

use derivatives, where the first derivative of the energy, i.e. the gradient, indicates

where the minimum is, and the magnitude indicates the steepness of the slope.

3.4.1.1 The Steepest Descent Method

The steepest descent method [184] is one of the simplest and moves in the direction

parallel to the net force. For the 3N Cartesian coordinates this can be represented

using a 3N -dimensional unit vector sk:

sk = − gk
|gk|

(3.22)

where gk is the gradient vector. Once the direction of the step has been found the

next stage is to decide the size of the step. This can be an arbitrary step along the
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gradient unit vector sk,

xk+1 = xk + λks (3.23)

where λk is the step size. The step size has a predetermined value and if the first

iteration leads to a reduction in energy then the step size is increased by a factor

for the next iteration. This continues until there is an increase in energy and then

the step size is reduced by a multiplicative factor to narrow in on the minimum.

A more robust, but computationally more expensive approach, is the line search

method. This method first brackets the minimum by finding three points along the

search direction where the middle point is lower in energy than the two either side.

The minimum must then lie between these two outer points. The procedure then

iterates narrowing the minimum to a smaller region.

3.4.1.2 Conjugate Gradient Method

The major disadvantage of the steepest descent method is that it will oscillate

around the minimum value if the minimum is located along a narrow valley. With

the conjugate gradient methods [184] the gradients are orthogonal at each point but

the directions are conjugate. The search will move in direction vk from point xk

where vk is calculated from the gradient at the previous direction vector vk−1

vk = −gk + γkvk−1 (3.24)

where γk is given by

γk =
gk · gk

gk−1 · gk−1
(3.25)

The directions and gradients must then satisfy the following relationships:

gi · gj = 0 (3.26)

vi · V′′ij · vj = 0 (3.27)

gi · vj = 0 (3.28)
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where V′′ij is a matrix of the second derivatives of the potential in the direction of

i and j. Since the method requires a previous set of gradients to work from, this

method can only be used from the second step onwards and the first step is the

same as the steepest descent method.

3.4.1.3 Newton-Raphson Method

The Newton-Raphson method is a second derivative method. The second deriva-

tive of a function provides information about the curvature of the function. The

advantage of using second derivative methods is that it gives more information on

the potential energy surface and so will lead to the minimum more efficiently. The

main disadvantage is the extra computational expense. Calculating second deriva-

tives is both computationally demanding and requires large amount of storage space,

especially for large systems.

Generally, when carrying out a minimisation two or more of these methods

are combined. For example the minimisation will start with the steepest descent

method, before moving to the conjugate gradients method as the system approaches

the minimum.

3.5 Molecular Dynamics

In molecular dynamics (MD) the system configurations are generated by integrating

Newton’s laws of motion. These can be summarised as follows:

1. A body continues to move in a straight line at a constant velocity unless a

force acts upon it.

2. Force equals the rate of change of momentum.

3. To every action there is an equal and opposite reaction.

The result is a trajectory of how the position and velocity of the atoms vary with

time and is obtained by solving the differential equations derived from Newton’s

second law, F = ma.

d2xi
dt2

=
Fxi
mi

(3.29)

where F is the force, m is the mass and a is acceleration. Equation 3.29 describes

the motion of a particle of mass mi along one coordinate, xi, and has a force, Fxi
on the particle in that direction.
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We can solve Newton’s laws of motion for a system of interacting bodies, i.e. our

chemical system of interest, and generate a trajectory which can then be analysed

and the relevant chemical properties extracted. The difficulty arises because we have

many bodies interacting under a continuous potential with their motion coupled

together. Several methods have been derived to solve these problems, the most

relevant of which will now be discussed.

3.5.1 Finite Difference Methods

Finite difference methods are used to generate trajectories with continuous poten-

tials. The integration is broken down into many small steps, separated by a fixed

time step δt. The force on each particle is calculated at time t as a vector sum of its

interactions with other particles. From the forces the accelerations can be calculated

and these used with the positions and velocities at time t to calculate the positions

and velocities at time δt.

All of the algorithms for integrating the equations of motion using finite difference

methods assume that the dynamic properties can be approximated to Taylor series

expansions:

r(t+ δt) = r(t) + δtv(t) +
1

2
δt2a(t) +

1

6
δt3b(t) +

1

24
δt4c(t) + . . . (3.30)

v(t+ δt) = v(t) + δta(t) +
1

2
δt2b(t) +

1

6
δt3c(t) + . . . (3.31)

a(t+ δt) = a(t) + δtb(t) +
1

2
δt2c(t) + . . . (3.32)

where v is the velocity (first derivative of the positions with respect to time, a is the

acceleration (2nd derivative) and b is the third derivative etc. The Verlet algorithm

[199] is one of the most popular for integrating the equations of motion. The Verlet

algorithm uses the positions and accelerations at time t and the positions from the

previous step r(t−δt) to calculate the positions at t+δt. This leads to the following

equations:

r(t+ δt) = r(t) + δtv(t) +
1

2
δt2a(t) + . . . (3.33)
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r(t− δt) = r(t)− δtv(t) +
1

2
δt2a(t) + . . . (3.34)

These two equations can then be added to give:

r(t+ δt) = 2r(t)− r(t− δt) + δt2a(t) (3.35)

Clearly, the velocities do not appear in the above equations, and so when using the

Verlet algorithm, velocities must be calculated retrospectively:

v(t) = [r(t+ δt)− r(t− δt)]/2δt (3.36)

The advantage of the Verlet algorithm is that it is straightforward and the mem-

ory requirements are modest. However, there are a few drawbacks to the method,

particularly that position r(t+ δt) is obtained by adding δt2a(t), which is small, to

the difference of two large terms, r(t + δt) − r(t − δt), which can lead to a loss of

precision.

A variation of the Verlet algorithm is the velocity Verlet method [200]. The

velocity Verlet method is a three step process and is implemented as follows:

r(t+ δt) = r(t) + δtv(t) +
1

2
δt2a(t) (3.37)

v(t+ δt) = v(t) +
1

2
δt[a(t) + a(t+ δt)] (3.38)

To calculate the new velocities, the accelerations at t and t + δt are required, and

so the first step in the velocity Verlet method is to calculate the positions at t+ δt

using the velocities and accelerations at time t. Velocities at time t+ 1
2
δt are found

using:

v(t+
1

2
δt) = v(t) +

1

2
δta(t) (3.39)

Forces from the current positions are calculated which in turn give the accelerations

at t+ δt and finally the velocities at t+ δt can be calculated:

v(t+ δt) = v(t+
1

2
δt) +

1

2
δta(t+ δt) (3.40)

The velocity Verlet method has the advantage over the standard Verlet algorithm
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in that it gives positions, velocities, and accelerations at the same time without

compromising precision.

3.5.2 Temperature and Pressure Control

Molecular dynamics is usually performed under the NVE ensemble. That is the

number of particles, the volume and energy are kept constant. It is possible to

transform results between different ensembles but only at the thermodynamic limit,

that is, when we have an infinite number of particles. Clearly this is not achiev-

able in a computational simulation so we perform the simulation under different

ensembles depending on the properties we wish to derive. The two most commonly

used ensembles are NVT, with a constant number of particles, constant volume

and constant temperature, and NPT, with a constant number of particles, constant

pressure, and constant temperature.

3.5.2.1 Constant Temperature

The temperature of the system is related to the time averaged kinetic energy which

for an unconstrained system, is given by:

〈K 〉NV T =
3

2
NkBT (3.41)

where 〈K 〉NV T is the average kinetic energy, N is the number of particles, kB is

the Boltzmann constant and T is the temperature. The simplest way to change

the temperature of the system is to scale the kinetic energy i.e. scale the velocities.

So, if the temperature multiplied by a factor λ at time t, the temperature change

associated with this can be found as follows [201]:

∆T =
1

2

N∑
i=1

2

3

mi(λνi)
2

NkB
− 1

2

N∑
i=1

2

3

miν
2
i

NkB
(3.42)

∆T = (λ2 − 1)T (t) (3.43)

λ =
√
Tnew/T (t) (3.44)
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where T (t) is the temperature at time t. Therefore, by multiplying the velocities at

each time step by a factor λ =
√
Treq/Tcurr, where Treq is the desired temperature

for the system and Tcurr is the current temperature of the system, the overall system

temperature can be kept constant.

Clearly this method is not physical as it does not allow for fluctuations in system

temperature. An improvement on this method was made by Berendsen et al [202]

where the system is coupled to an external heat bath that is fixed at the desired

temperature. Heat is then supplied or removed from the system by using the bath as

a source of thermal energy. Velocities are scaled at each step by a factor proportional

to the difference between the system temperature and the bath temperature:

dT (t)

dt
=

1

τ
(Tbath − T (t)) (3.45)

This leads to the scaling factor for velocities:

λ2 = 1 +
δt

τ

(Tbath
T (t)

− 1
)

(3.46)

where τ is a coupling constant which determines how strongly the bath and system

are coupled together and δt is the time step. When τ = δt the method is equal to

the velocity scaling method discussed previously.

Although the Berendsen algorithm is an improvement over velocity scaling, nei-

ther generate canonical averages and as such are only used in the initial equilibration

stages of a MD simulation. The extended system method, an alternative method

which does give rigorous canonical ensembles, was developed by Nosé [203, 204] and

Hoover [205]. The Nosé-Hoover method has the thermal reservoir as an integral

part of the system with its own degree of freedom, s. This reservoir has potential

energy:

V = (f + 1)kBT ln s (3.47)

where f is the number of degrees of freedom in the physical system and T is the

desired temperature. The kinetic energy of the system, is given by:

K =
Q

2

(ds
dt

)2
(3.48)

where Q is the fictitious mass of the extra degree of freedom. The size of Q deter-

mines the strength of the coupling between the reservoir and the real system. If Q is

small then the flow of energy is large, and when Q approaches infinity, conventional
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MD is regained, as the reservoir and real system are no longer coupled.

The extended system generated by the MD simulation corresponds to a unique

state of the real system, however there is no direct relation between the velocities

and time. The time step δt′ is related to the ’real time’ time step δt by:

δt = sδt′ (3.49)

and as such the regular time intervals in extended space are related to the trajectory

of the real system which is unevenly spaced.

3.5.2.2 Pressure Control

As with temperature control, it is sometimes desirable to control the pressure to

study effects such as phase transitions. The methods used to control pressure are

analogous to those used to control temperature, however instead of velocities we

now scale the volume. Berendsen [202] also derived an algorithm to control pressure

analogous to that used to control temperature. The volume of the system is scaled

by a factor λ:

λ = 1− κδt
τp

(P − Pbath) (3.50)

where τp is the coupling constant, Pbath is the pressure of the external bath, and κ is

the isothermal compressibility. κ and τp can be combined into a single constant and

this expression applied directly to the volume or by scaling the atomic coordinates:

r′i = λ
1
3 ri (3.51)

where r is the new coordinate. Similar to the Nosé-Hoover extended system method,

Andersen [206] added an extra degree of freedom to the system that corresponds to

the volume. The kinetic energy associated with this degree of freedom, which can

be considered as a piston acting on the system, is given by:

K =
1

2
Q
(dV
dt

)2
(3.52)

where Q is the mass of the piston. The potential energy of the system is given by:

T = PV (3.53)
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where P is the desired pressure and V is the system volume. A small value of Q (a

piston with small mass) will allow the volume to vary rapidly, conversely a large Q

will slow fluctuations with the system returning to normal molecular dynamics as

Q approaches infinity.

3.5.3 Constrained Dynamics

MD simulations are often unfeasible when the aim is to sample a certain region of

the phase space. This may be the case when searching for a transition state, or

along a reaction coordinate. Potential of mean force (PMF) [207, 208] calculations

can be used to find how the free energy changes as a function of a particular reaction

coordinate. The reaction coordinate could be a bond angle, bond length, or torsion.

If, in a MD simulation we were able to sample the whole potential energy surface,

then it is possible to calculate the free energy from the radial distribution function

g(r):

A(r) = kBT ln[g(r)] + C (3.54)

where r is the reaction coordinate being studied, for example the separation between

two particles, kB is the Boltzmann constant, and A(r) is the Helmholtz free energy.

The constant C is chosen so that the most probable distribution corresponds to a

free energy of zero. In practice, a PMF calculation is carried out by running a series

of simulations at regular points on the reaction coordinate. There is a constraint

applied between the two units of interest, and the average force required to keep

these two units in place is the quantity of interest. If we select sufficiently small

steps along the reaction coordinate then the average force can be integrated in order

to obtain the free energy profile.

3.6 Monte Carlo

Monte Carlo (MC) methods generate system configurations by making random

changes to the species in the system. Unlike molecular dynamics where only a

small portion of the phase space is sampled, MC methods allow the whole space to

be explored. In its simplest form MC methods simply accept a configuration if it is

lower in energy than the previous configuration. Clearly high and low energy states

will be generated with equal probability which leads to an extremely inefficient sam-

plings. Methods such as the Metropolis algorithm [209] weight configurations based

on the Boltzmann factor exp(−ν(r)N/kBT ) where ν is the potential energy. The
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state is then weighted by the Boltzmann factor and so lower energy states will be

favoured. This method has obvious advantages over molecular dynamics as we can

sample more of the potential energy surface, and also make ‘uphill’ moves which is

not possible in molecular dynamics.

3.6.1 Metropolis Method

The Metropolis algorithm ensures that the generated state depends only on the

previous state and no other, by generating a Markov chain of states that satisfies

the following conditions.

1. The outcome of each trial depends only on upon the preceding trial and not

upon any previous trials.

2. Each trial belongs to a finite set of possible outcomes.

We can immediately see a difference between molecular dynamics and Monte Carlo

methods as condition (1) states that the outcome of each trial depends on only the

previous trial. In contrast to molecular dynamics where each state is connected in

time. For example, if we have a particle at position x then we can generate a new

position as follows:

xnew = xold + (2ξ − 1)δrmax (3.55)

A random number generator produces a number ξ which is between 0 and 1. The

new position is then generated and the change in energy calculated. If the energy is

lower in the new state then the move is accepted. If it is higher then another random

number is generated between 0 and 1, and compared to the Boltzmann factor. If

the Boltzmann factor is greater then the move is rejected. At higher temperatures,

the Boltzmann factor will of course be greater so there is an increased chance an

uphill move being accepted.

δrmax is the maximum allowed size of a displacement and is adjusted so that the

probability of a step being accepted is equal to the probability of rejection. This

is so that the states generated will be sufficiently different. If the value for the

maximum displacement is too small the generated states will be similar and the

phase space will be explored slowly. Similarly, if the value is too large, many states

will be rejected. As well as moving random atoms, groups of atoms could be moved.

For example, a part of a molecule could be rotated through a torsional term. This

has the advantage of requiring fewer calls to the random number generator, and also

allows faster exploration of the phase space.
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Generally MC simulations are carried out in the NVT ensemble. However, it

is possible to carry them out in the NPT ensemble where random changes to the

volume are additional possible moves. Simulations can also be carried out in the µVT

ensemble (grand canonical ensemble) where we can adjust the chemical potential

i.e. the random addition or removal of particles is also an available move.

3.6.2 Random Number Generators

The random number generator is the centre of all Monte Carlo codes. It is used

to decide if a given move should be accepted and to generate new configurations.

The sequence of numbers produced by a random number generator is in fact not

random and is often referred to as a ‘pseudo-random’ number generator. When the

program is started, the random number generator is seeded, usually with the time.

This generates a starting point for the sequence, and unless instances of the program

start at exactly the same time, the sequence will always be different.

3.7 Solvation

Solvation is an important factor to consider when modelling systems, especially

when studying small clusters in solution as the solvent can have a large effect on

the stability of the molecule. There are two extremities of methods used to model

solvation: implicit, where the effect of solvation is modelled, and explicit where the

solvent molecules are included in the simulation. Both methods come with their own

advantages and disadvantages. Implicit solvation methods are based on continuum

representations of solvents and can be traced back as far as the 1920s [184]. Born

placed a charge within a spherical solvent cavity [210] and calculated the free energy.

This was later extended by Onsager to a dipole [211]. The Born model calculates

the work done in moving a point charge from a vacuum to a spherical cavity. Whilst

clearly a very simple idea, it remains a very effective method for modelling the

solvation of ions. One of the most commonly used implicit solvent models is the

conductor-like screening model (COSMO) [212].

Explicit solvation is a more realistic method of modelling solvation as we include

the actual molecules of solvent around the solute. This is of course more compu-

tationally expensive as we have increased the number of atoms in the simulation

and if the solute in question is particularly large then it may require an unfeasible

number of solvent molecules. The issue then becomes how many solvent molecules

is ‘enough’ for a realistic representation? A single layer may not be sufficient as the

solvent molecules will also interact with other solvent molecules and these effects
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could also be important. In order to reduce the number of solvent molecules used,

it can be useful to apply periodic boundary conditions (PBC) which were discussed

in Section 3.2.3. Specific issues arising from the use of implicit solvation methods

in this thesis are discussed in the relevant chapters.

3.8 Surfaces

Often the most interesting chemistry occurs at the surface and by studying only

bulk properties we will not gain an understanding of what is happening when the

materials interfaces with others. In the case of crystal growth the surface is of course

extremely important as the processes which occur here will control the eventual

crystal morphology. The surface energy γ is one quantity which we can measure,

and it gives us an idea of the stability of a particular surface. It is a measure of the

work done in cleaving a surface and is defined as follows:

γ =
Esurface − nEbulk

A
(3.56)

where Esurface is the energy of the surface which contains n bulk unit cells of energy

Ebulk. A is the area of the slab.

3.8.1 Building surfaces

A surface is built by cleaving the bulk optimised structure at the Miller plane index

of interest. After the surface has been cleaved, care must be taken in order to

make sure the surface is properly terminated, so that there is no dipole running

perpendicular to the surface. Tasker classified surfaces into three types.

Type 1 Non-polar surfaces that can be cleaved at any plane as each layer is charge

neutral

Type 2 Consists of charged planes but arranged symmetrically so that it is possible

to cleaves the surface into neutral blocks

Type 3 A series of alternately charged planes. It is not possible to cleave this type

to leave a neutral surface and so it must be reconstructed.

Often when a surface is cleaved it will leave dangling bonds. This is the case in

zeolites as dangling Si or O atoms will be left. In order to appropriately terminate

the surface, hydroxyls are added to the dangling Si, and H added to the dangling O

to form silanol groups.
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3.9 Summary

This chapter has aimed to give an overview of the computational methods used in

this thesis. Most of the methods discussed in this chapter will be used at some

point, and the details are discussed in the relevant chapters.
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CHAPTER 4

ZEBEDDE Developments and Template Design

4.1 Introduction

As already discussed one of the aims of zeolite science is to understand the role of

the template. ZEBEDDE [213] (ZEolites By Evolutionary De novo DEsign) is a

computer program written in the mid 1990s with the goal of designing a template

that would direct to a particular zeolite topology. The aim of the ZEBEDDE code

is to apply de novo techniques to microporous materials. ZEBEDDE “grows” an

organic molecule in a given pore space by starting from a seed molecule, which is

placed randomly or in a user defined location, and then adding organic fragments

on to this seed until the pore space is filled. As the molecule is growing a series of

actions can be carried out in order to improve the location of the template. These

are rotations (either of the molecule as a whole or fragments of it), translations,

and minimisation, which is carried out by the internal minimiser or can be sent to

an external minimiser such as the General Utility Lattice Program (GULP) [214]

or Discover [215]. If only the rotation, and translation actions are used then it is

possible to use ZEBEDDE to optimise the position and orientation of a template

within a zeolite pore. The ZEBEDDE building process is illustrated in Figure 4.1.

In order to illustrate the use of ZEBEDDE in template design, templates for zeolite

EU-1(EUO) [216]. In this work, Willock et al. design a number of templates for

EU-1, as well as optimising the existing template for Chabazite(CHA).

The role of the template in the synthesis was covered in the introduction to

this thesis and although there are examples where templates have been designed to
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Figure 4.1: The ZEBEDDE building process [213].

direct a particular zeolite structure, with ZSM-18 being one of the best examples [86],

generally they are found by a trial and error process. This is often achieved using

high throughput techniques where a wide variety of compositions and templates

are “screened” for new zeolites. This is both time consuming, and expensive so

designing templates using codes like ZEBEDDE would be useful as this can reduce

the search region which must be covered experimentally.

This chapter describes improvements to ZEBEDDE to improve its performance

at carrying out the building action, most specifically the ability to form rings. This

feature is desirable as many zeolites’ templates contain ring structures and previous

versions of ZEBEDDE did not account for this effectively. Several modifications

were also made to the docking routines. This improved code has been tested by

designing templates for the zeolite Boggsite.

4.2 Code Development

4.2.1 Introduction

Although over the last 15 years various alterations have been made to the ZEBEDDE

code, none focused on what the code was originally designed to do which is construct

templates. Therefore, in order to improve the code, a number of functions within

the code were selected for improvement. These were:

79



4.2. Code Development

� Ring building routine

� Docking routines

� Integration with external minimisers

� Integration with supercomputers

4.2.2 Ring Builder

Many templates that are used in zeolite synthesis contain ring structures, and more

recently fused ring structures in order to maintain the molecule’s rigidity. The

previous ring making routine was limited to six member rings and would often fail

because it randomly selected a pair of atoms from anywhere within the growing

template. These two issues have been addressed to allow the formation of any size

ring and allow the user to control which size rings are allowed in the template.

The ring making routine first generates a list of all atoms within a cutoff (user

definable) that could be connected. The next check is to confirm they are able to be

bonded. This implies the pair of atoms should have free hydrogen atoms, and not

be in the excluded connections list. If these criteria are fulfilled, then the order of

the two atoms is checked. Order refers to the number of connections separating the

two atoms. This is achieved by working through the neighbour lists and counting

the number of links required. This serves two purposes; the first is to ensure that

the two atoms are in fact connected, and the second is so that the ring size can

be controlled. By restricting only atoms to be connected if they are 5th order

neighbours i.e. could form a six ring, we can control the ring structures present in

the final generated template. This process is given schematically in Figure 4.2 and

an example of ZEBEDDE forming a five ring is shown in Figure 4.3.

4.2.3 Docking Routines

The docking routines in ZEBEDDE have been central to this thesis. It is therefore

appropriate to describe the improvements made to automate and streamline such

calculations. The existing process merely places the template within the frame-

work which results in a high chance that all or part of the template molecule will

be overlapping with the framework requiring extensive optimisation. Monte Carlo

docking in comparison is significantly less computationally expensive. In order to

speed this up, another keyword command was added which allows the user to define

a maximum interaction energy after the initial docking. If the interaction energy

of the template with the framework is above this cutoff value, the docked structure
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Figure 4.2: Flow diagram of the ring making process. Order refers to the number
of bonded atoms between the two atoms in question.
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Figure 4.3: ZEBEDDE forming a five ring starting from a methane seed.

is rejected immediately and the template re-docked. If it is below this threshold,

the template is then optimised by performing random rotations and translations.

Once completed, this structure is the output and optionally submitted to an exter-

nal minimiser such as Discover or GULP, or to a molecular dynamics code for a

simulated annealing though this is extremely computationally expensive and rarely

used. Figure 4.4 shows this process schematically.

4.2.4 Integration with External Minimisers and Supercom-

puters

Although ZEBEDDE was written to utilise external minimisers, these routines were

out of date and so were unable to output files for use in modern codes. The main

minimiser used for docking optimisations is Discover and so the routines to generate

input files for this code were written. The biggest challenge was outputting a suitable

MDF (molecular data file) which Discover uses to control the connectivity of the

molecule. ZEBEDDE already had some routines to run GULP and these were

streamlined. ZEBEDDE is now able to generate input files for both Discover and

GULP minimisers.

When running docking calculations a large number of single processor calcu-

lations are required. If these were run sequentially the docking process would be

inefficient and time consuming. Therefore we chose to incorporate routines to allow

ZEBEDDE to be run on both supercomputers and a Condor pool [217] automat-

ically with minimal input from the user. As the Monte Carlo docking is running,

each time it finds a structure below the user defined threshold discussed in section

4.2.3, instead of just outputting this structure for later optimisation, it can be sub-
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Figure 4.4: Diagram of the docking process in ZEBEDDE. The seed is the template
and the pore is the framework. Typically the external minimiser used is Discover,
but it is also possible to skip this step and take the docked structure straight from
ZEBEDDE.
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mitted to another computer resource where it can run whilst the initial job searches

for further structures. Once the ZEBEDDE optimisation is complete the required

files for submission to an external minimiser are generated automatically and again

execute on either a supercomputer or Condor pool. By automating this docking

process it is possible to scan a large number of templates for fit within a particular

framework efficiently with minimal input from the user.
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4.3 Boggsite Template Design

4.3.1 Introduction

Boggsite is a naturally occurring two dimensional zeolite with intersecting 12 and 10

member channels, which create a large cage. Boggsite was first discovered in Goble,

Columbia-county, Oregon, USA [218, 219] and later in Antarctica [220]. However,

it was only found in very small quantities and so its catalytic abilities could not

be properly evaluated. When the work presented in this chapter was carried out,

Boggsite had not been made synthetically, but in a recent paper by Simancas et

al. the first synthesis of this zeolite was proposed using a novel phosphazene template

[221].

4.3.2 Computational Methods

The improved ZEBEDDE code has been used for the majority of the calculations

presented here. Molecular interactions are modelled using the PCFF forcefield [222].

The Boggsite structure used in this work is that of Pluth and Smith [218], where

a siliceous framework was first optimised using the potentials of Sanders, Catlow

and Leslie [188] in the GULP code [214]. A 2x2x3 supercell was created which was

then kept fixed and used for all building, and docking calculations. When carrying

out the building of new templates it is possible to weight certain actions over others

meaning there is a higher chance of particular actions being selected. The building

process started from a methane seed and the only fragments which were added were

methane and ethane which were weighted equally. A number of different building

regimes were used and these are summarised in Table 4.1. The weighting factors

were heavily in favour of ring formation (with ring sizes limited to five and larger)

so that more clustered organics were grown rather than long chain hydrocarbons.

Regime Rotation Translation Build Ring formation Actions
A 20 20 1 40 5000
B 30 30 1 40 5500
C 50 50 1 100 10000
D 50 50 1 100 12000

Table 4.1: Docking regimes used for the Boggsite template building calculations.

For each regime 20 templates were generated. The generated templates were

examined by inspection for common structural ‘motifs’. A motif might be a recurring

ring structure for example two fused six rings, or two larger groups connected by a
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carbon chain. These motifs are taken and docked back into the target framework.

Since we are only considering space filling, the templates are constructed purely

from carbon (and hydrogen). The position of the nitrogen(s) can be considered at a

later stage, as we can imagine that the space occupied, and the geometry of groups

around a 4 coordinated nitrogen atom will be similar to a four coordinated carbon.

The interaction energies for the templates were also normalised by dividing by the

number of carbon atoms in the molecule. This is to try and separate significant

changes in interaction energy, that is interaction energy is more favourable because

that molecule fits better within the cavity, from changes purely because the molecule

is larger.

4.3.3 Results

Eighty templates were made using the four regimes described in Section 4.3.2. Gen-

erally, the templates comprised of bulky groups which resided in the channel inter-

sections connected by long chains in the channels. From the eighty templates, nine

were selected based on common recurring structural features, as starting motifs for

the subsequent docking calculations1. The majority of these templates contain some

kind of ring structure, either five or six, along with a chain. The templates made by

ZEBEDDE were optimised and then docked into Boggsite to gain an understanding

of which template structures work well within the framework. These templates can

be seen in Figure 4.5.

Some of these structures, Organic 2 and Organic 3 for example, are flexible

alkyl molecules with a small cross-section which are unlikely to have any structure

directing effect. Nevertheless, they were included as a comparison to the more

complex organics that were built by ZEBEDDE. Organic 7 is a relatively complex

structure in that it has a multiply substituted ring, but of course it is therefore

likely to be difficult to synthesise. Table 4.2 contains the interaction energies of

the nine templates made by ZEBEDDE within the Boggsite framework. In an

attempt to normalise the results as to more easily compare templates with one

another, the average interaction energy per carbon atom is also presented. Ideally,

a template should interact strongly with the framework [223], and have a high

average interaction energy per carbon. All the templates interact favourably with

the framework and as expected the simple alkyl molecules are the worst (but still

favourable) along with the bridged six member ring molecule Organic 1. Organic

5 has the strongest interaction energy with the Boggsite framework, although on

average per carbon it is the weakest. Organic 8 shows promise as it has a high

1For clarity two dimensional structures are provided in Appendix C
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(i) Organic 1 (ii) Organic 2

(iii) Organic 3 (iv) Organic 4

(v) Organic 5 (vi) Organic 6

(vii) Organic 7 (viii) Organic 8

(ix) Organic 9

Figure 4.5: The nine starting motifs made by ZEBEDDE.
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Template Interaction energy Number of Carbons I.E per carbon
Organic 1 -59 10 -5.9
Organic 2 -55 8 -6.9
Organic 3 -61 9 -6.8
Organic 4 -79 13 -6.1
Organic 5 -92 16 -5.7
Organic 6 -62 10 -6.2
Organic 7 -83 14 -6.0
Organic 8 -89 13 -6.8
Organic 9 -81 14 -5.8

Table 4.2: Interaction energies for the nine motifs made by ZEBEDDE. All energies
in kJ mol−1.

Template Interaction energy Number of Carbons I.E per carbon
Organic 10 -81 12 -6.8
Organic 11 -95 15 -6.4
Organic 12 -98 16 -6.0

Table 4.3: Interaction energies for the organic molecules derived from Organic 8.
All energies in kJ mol−1.

interaction energy and is the second highest on average per carbon. Currently this

stage must be carried out manually, but the aim for the future should be to automate

this using a comparison algorithm (see Chapter 7).

From the nine starting motifs, it was clear that there was a strong tendency to-

wards five member ring structures, presumably because there is a greater probability

of forming a five member ring. Organic 8 was then taken as a starting point and

some alkyl groups removed, one methyl group was left on the five ring which was in

turn connected to an alkyl chain comprised of six carbon atoms. This template was

named Organic 10 was first optimised, then docked into Boggsite using ZEBEDDE.

Given that organic templates are often quaternary ammonium compounds three

more methyl groups were added to the end of the chain to form an isopropyl group

(Organic 11 ). This forms a fully substituted carbon where a nitrogen can be inserted

to give a quaternary ammonium compound. Along with this, a second methyl was

added to the same carbon on the five ring (Organic 12 ) as to give a diquaternary

ammonium compound. These new organic molecules were optimised before dock-

ing into Boggsite. The interaction energies calculated from the ZEBEDDE docking

calculations, and structures and be found in Table 4.3 and Figure 4.6.

We can see that removing one of the methyl groups from the five ring causes a

favourable drop in interaction energy of about 8 kJ mol−1, but adding the isopropyl
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(i) Organic 10 (ii) Organic 11

(iii) Organic 12

Figure 4.6: Organic templates derived from the Organic 8 template.

group to the end significantly improved the interaction energy. Organic 12 now has

the strongest overall interaction energy. The location of the template within the

Boggsite framework is almost exclusively in the 12-MR channel, with the “head”

groups in the intersection with the 10-MR channel. It is therefore not surprising

that increasing the size of these head groups improves the interaction energy.

The next series of molecules aims to look at the effect of chain length on the

interaction energy. Organic 11 was taken and the methyl group on the five ring

removed to give Organic 13 which has (not counting the isopropyl head group) a

carbon chain length of five. Organic 14 has a chain length of four, Organic 15

has a chain length of six and Organic 16 a chain length of 7. Figure 4.7 shows

the structure of these templates and Table 4.4 contains the interaction energies for

these templates with the Boggsite framework. From the interaction energies it is

clear that the chain length of six is the most stable within the framework followed

by five then four. Although Organic 16 has an interaction energy very slightly more

favourable than Organic 15, the energy per carbon is also lower. This implies the

optimum is a chain length of six.

Organic 1 has a bridged six ring structure which previously had an interaction

energy of -59 kJ mol−1. This was taken and connected to an isopropyl group to give

Organic 17. Organics 18, 19, 20 and 21 are once again investigating the effect of
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(i) Organic 13 (ii) Organic 14

(iii) Organic 15 (iv) Organic 16

Figure 4.7: Organic templates derived from the Organic 11 template to investigate
the effect of chain length.

Template Interaction energy Number of Carbons I.E per carbon
Organic 13 -87 14 -6.2
Organic 14 -80 13 -6.2
Organic 15 -99 15 -6.6
Organic 16 -101 16 -6.3

Table 4.4: Interaction energies for the organic molecules derived from Organic 11
to investigate chain length. All energies in kJ mol−1.
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Template Interaction energy Number of Carbons I.E per carbon
Organic 17 -70 12 -5.9
Organic 18 -89 15 -5.9
Organic 19 -98 16 -6.1
Organic 20 -103 17 -6.1
Organic 21 -107 18 -5.9

Table 4.5: Interaction energies for the organic molecules derived from Organic 17
to investigate chain length. All energies in kJ mol−1

Template Interaction energy Number of Carbons I.E per carbon
Organic 22 -91 15 -6.1
Organic 23 -98 16 -6.2
Organic 24 -108 17 -6.3
Organic 25 -111 18 -6.2

Table 4.6: Interaction energies for the organic molecules derived from Organic 12
to investigate chain length. All energies in kJ mol−1.

chain length on the interaction energies with Boggsite. These can be seen in Figure

4.8 and the interaction energies in Table 4.5. Organic 21 has the most favourable

interaction energy at -107 kJ mol−1, approximately 4 kJ mol−1 better than Organic

20 which has a chain length of six. However, if we look at the average energy per

carbon we can see that this peaks at Organic 19, with Organic 20 having an identical

per carbon energy. Unlike the series of organics derived from Organic 11, there is

not as clear a peak in the average interaction energy per carbon, because the larger

bridged six ring filling more space within the channel intersections.

The final set of four templates trialled (Organics 22-25 ) were derived from Or-

ganic 12 and can be see in Figure 4.9. Once again, the chain length was altered to

find the optimum length. If we look only at the interaction energies in Table 4.6, we

notice the interaction energy becomes steadily more favourable as the chain is made

longer. We also notice that overall the energies are more favourable than for the

those obtained from the series derived from Organic 17. This is due to the five ring

head group being smaller than the bridged six ring in the previous series, and so

fitting better within the channels of Boggsite. As with the previous set of organics,

the chain length of six is most favourable.

4.3.3.1 Existing Templates

As well as the templates designed here, some existing templates were docked into

the Boggsite framework as a comparison. These were the templates that are used
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(i) Organic 17 (ii) Organic 18

(iii) Organic 19 (iv) Organic 20

(v) Organic 21

Figure 4.8: Organic templates derived from the Organic 17 template to investigate
the effect of chain length.
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(i) Organic 22 (ii) Organic 23

(iii) Organic 24 (iv) Organic 25

Figure 4.9: Organic templates derived from the Organic 12 template to investigate
the effect of chain length.

to synthesise the pentasil zeolite SSZ-56 (SFS) and CIT-1 (CON). Both of these

structures, like Boggsite, have 12-10 MR intersecting channels and so if these tem-

plates have an interaction energy less favourable than those designed for Boggsite,

we can be more certain that the templates designed with ZEBEDDE will direct

Boggsite. As well as these two templates, the template recently found by Corma

et al. to make Boggsite was also tested [58]. These templates are shown in Figure

4.10 with the interaction energies given in Table 4.7. We can see that Organic 26

which is used to make SSZ-56 has a strong interaction energy but still less than the

templates designed here. Interestingly the template which has been shown to make

Boggsite also has a weaker interaction energy (although still favourable) than the

templates designed here. When looking at the synthesis conditions used by Corma

it is interesting to note that germanium, known to assist in the formation of four

member rings, was used in the synthesis, whereas the natural Boggsite is found as

an aluminosilicate [220] with no germanium. Although it does appear that this tem-

plate is less favourable than those generated here we must also consider limitations

in the method. We have considered the central phosphorus atom in the Corma

template as a carbon and there may be framework-template interactions which are

not adequately represented by the forcefield. Similarly, the molecule was optimised
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(i) Organic 26 (ii) Organic 27

(iii) Organic 28

Figure 4.10: These templates are known to make 10-12 MR channel zeolites. Or-
ganic 26 makes SSZ-56 and Organic 27 makes CIT-1. Organic 28 is the template
used by Corma et al. to synthesise Boggsite. Note that the templates have been sim-
plified in order to make the results comparable. The nitrogen groups in SSZ-56 and
CIT-1 have been converted to carbons, and the central carbon in Organic 28 have
been converted from phosphorus.

with a carbon not a phosphorus and therefore bond lengths may be different.

4.3.4 Conclusions

The ZEBEDDE code has been used to design two organic templates that may direct

the zeolite Boggsite. These templates were designed by first building many struc-

tures using ZEBEDDE. These were then analysed by inspection for “motifs” which

are common structural features. Taking these motifs as initial starting points, tem-

plates were designed, using chemical intuition, around these using features which ze-

Template Interaction energy Number of Carbons I.E per carbon
Organic 26 -83 15 -5.5
Organic 27 -69 12 -5.7
Organic 28 -84 15 -5.6

Table 4.7: Organic templates used to make other pentasil zeolites, and the template
(Organic 28 ) used by Corma et al. to make Boggsite. All energies in kJ mol−1.

94



4.3. Boggsite Template Design

olite organic templates usually posses such as quaternary sites which can be changed

to nitrogen ammonium cations. By docking these back into the Boggsite framework

and analysing the interaction energies the template was improved upon. This led to

two asymmetrical templates that could be made as diquaternary ammonium com-

pounds which are shown in Figure 4.11 within the Boggsite structure. It is also

interesting to note that the template which has been shown to make Boggsite has

a lower interaction energy than some of the templates tested here, both overall,

and per carbon. This could either be because the simplification of the template,

or because of flaws in the method. Here we are treating the template as purely

space filling, meaning we will lose any electrostatic effects caused by the charged

phosphorus atom in the centre.

Although templates have been designed which may direct Boggsite, there are of

course many other synthesis parameters that can be adjusted. As was discussed in

the introduction to this thesis, the template expands the phase space (i.e. ratios of

SiO2/Al2O3, SiO2/NaOH etc.) where a particular zeolite can be found. This still

means careful selection of synthesis conditions are required, or more likely, a search

using high throughput techniques.
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4.3. Boggsite Template Design

Figure 4.11: Possible organic templates for the direction of the zeolite Boggsite
within the framework. Organic 20 (1-(7,7-dimethyloctyl)-bicyclo[2.2.1]heptane) (top)
and Organic 24 (3-(7,7-dimethyloctyl)-dimethylpentane) (bottom), viewed down the
12 MR channel (left) and 10 MR channel (right).
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4.4 MCM-68

4.4.1 Introduction

MCM-68 (MSE) was discovered in 1997 at Mobil by Weston and Dhingra with

the patent being released a few years later, [224, 225, 226, 227], MCM-68 was

the focus of much research over the next few years, owing to its catalytic prop-

erties [228, 229]. MCM-68 is a three dimensional zeolite, with a straight 12-ring

channel and two orthogonal tortuous 10-ring channels, see Figure 4.12. The 10-

ring channels intersect with each other forming an 18 x 12-ring cage with four

10-ring windows into the 12-ring straight channels. MCM-68 was originally syn-

thesised from a hydrogel containing N,N,N’,N’-tetraethylbicyclo[2.2.2]-oct-7-ene-

2R,3S:5R,6S-dipyrrolidinium diiodide, Bicyclo-NEt4-Diquat, (denoted SDA#1 here)

as the template with a SiO2/Al2O3 ratio of 18. Increasing the SiO2/Al2O3 ra-

tio leads to the formation of ZSM-12 (MTW) whilst decreasing the SiO2/Al2O3

ratio leads to Beta (BEA). Interest in this particular zeolite has recently been

renewed with the discovery of new template 1,1-dialkyl-4-cyclohexylpiperazin-1-

ium (SDA#2) which directs MCM-68 [230] but also expanded the compositional

space where the zeolite could be formed. Two new templates have recently

been identified as directing MCM-68, 3-hydroxy-1-(5-(1-methylpiperidin-1-ium-1-

yl)pentyl)quinuclidin-1-ium (SDA#3) and 3-hydroxy-1-[2-(1-methylpiperidinium-1-

yl)butyl]-1-azoniabicyclo[2.2.2]octane (SDA#4) [231]. During the course of this

work, 1,1’-pentane-1,2-diylbis(1-methylpiperidinium) (SDA#8) was also identified.

Figure 4.12: View along the 12 MR channel of MCM-68 (left) and along the tortuous
10 MR channel (right) into the cage at the intersection.
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4.4.2 This Study

The aim of this study is to compliment synthetic work being carried out at Exxon-

Mobil Research and Engineering on the zeolite MCM-68. Due to the excellent

catalytic activity of MCM-68, there is a drive to synthesise this zeolite with differ-

ent templates in order to make the material commercially viable. Computational

methods will be used to carry out docking calculations on organic templates which

have recently been found to direct the synthesis of MCM-68 [230]. It is hoped that

these simulations will provide insight into the reasons why these templates lead to

the formation of this zeolite. Moreover, it will serve as a guide as to whether some

templates which have already been screened but did not form MCM-68 should be

evaluated further. When carrying out screening of templates via high throughput

techniques some zeolites, such as Mordenite and ZSM-12, form more frequently than

others. Therefore in this study we also test how well a template fits within these

other frameworks as we can imagine that if the template has a stronger interaction

energy in ZSM-12 than in MCM-68 it is more likely that ZSM-12 will form. As

well as ZSM-12, Offretite (OFF) and Erionite (ERI) are also observed as competing

phases in synthesis from potassium containing gels with SiO2/Al2O3 ratios of 10-40

and so the templates were also docked into these frameworks.

4.4.3 Computational Methods

The following calculations were carried out on the high performance computing clus-

ter at ExxonMobil Research and Engineering . The coordinates for the frameworks

were taken from the IZA website [4] and optimised using the Discover module that

is part of the Accelrys Materials Studio package [215] with the energy contributions

being calculated using the PCFF forcefield [222]. Once optimised, the frameworks

were kept fixed for all subsequent calculations. The templates for the study were

built using the visualiser in Materials Studio, and optimised in the same way as

the frameworks. See Figure 4.13 for the template structures. The docking calcu-

lations were carried out using the improved ZEBEDDE code discussed in section

4.2.3. Twenty five docked structures were generated for each framework/template

combination. The average energy interaction energy for each combination was then

calculated. Note all energies were calculated with electrostatics turned off.

4.4.4 Results

The interaction energy per guest template molecule has been calculated for each of

the framework/template (host/guest) combinations and are shown in Table 4.9. For
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4.4. MCM-68

(i) SDA#1 (ii) SDA#2

(iii) SDA#3 (iv) SDA#4

(v) SDA#5 (vi) SDA#6

(vii) SDA#7 (viii) SDA#8

(ix) SDA#9 (x) SDA#10

(xi) SDA#11 (xii) SDA#12

Figure 4.13: Templates used in the study. SDA#1 is the original template used to
synthesise MCM-68. SDA#2 is the template recently reported make MCM-68 [230].
SDA#3, #4 and #8 are also also known to make MCM-68 [231].
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4.4. MCM-68

the one-dimensional frameworks only one position for the template is observed and

the energies of the 25 structures were averaged. However, some of the two- and three-

dimensional structures have multiple potential template locations and therefore each

structure was viewed and the interaction energies for the different template locations

were averaged separately. This is particularly clear for the locations in MSE. The

frequency a particular template docked into the three positions is presented in Table

4.8 and the average interaction energies are presented in Table 4.9. Each template is

discussed in turn, highlighting unusual, or significant features which may be related

to why a particular template does, or does not direct the formation of MCM-68.

Template Channel Cage Intersection
SDA#1 20 2 3
SDA#2 9 4 12
SDA#3 19 1 5
SDA#4 10 0 15
SDA#5 20 1 4
SDA#6 8 4 13
SDA#7 14 1 10
SDA#8 13 0 12
SDA#9 13 2 10
SDA#10 13 1 11
SDA#11 21 4 0
SDA#12 18 2 5

Table 4.8: Frequencies of the template in the three positions in MSE.
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4.4. MCM-68

Figure 4.14: Three different positions of SDA#1 at the cage-channel intersection.

4.4.4.1 SDA#1

In a previous study by Weston SDA#1 in MSE [232] was seen to occupy two lo-

cations. In this study a third location was found. This third location has SDA#1

sitting in the 10-ring channel intersection with the 12-ring cage. Three variations of

this are seen (Figure 4.14) where the template sits in the 10-ring channel;

1. It spans one 12-ring channel through the 18-ring cage into an adjacent 12-ring

channels.

2. It spans one 12-ring channel.

3. It sits half in the 18-ring cage and half in the 12-ring channel.

An interesting point which came from running multiple calculations was that we

could get an idea of how likely a guest would dock in a particular position. For

example the number of times a guest ends up in the intersection position in MSE

appears to be related to how flexible the organic molecule is. SDA#1 only docked

into the intersection 4 times out of 25, whereas SDA#8 which has a flexible chain

docked into the intersection 12 times out of 25. This is not a particularly surprising

result as clearly a more flexible molecule will be able to bend through the 10-ring

window. Figure 4.15 compares the cage, the 12-ring channel and the more stable

4b 10-ring channel. If we look at SDA#1, which is the original MSE template, the

interaction energy at the channel site is much lower than in all other frameworks.

The cage has a similar energy to MOR, however, MOR is not seen in the synthesis,

possibly due to other conditions preventing its formation. It is likely that MOR is

not formed because of the lack of sodium and thus potassium inhibits the formation

of MOR. The intersection position in MSE is far less favourable.

MFI and BEA also have multiple locations for SDA#1. In MFI it can sit along

the straight 10-ring channel, or in the sinusoidal channel. There is a great deal of
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4.4. MCM-68

Figure 4.15: Three docked positions of SDA#1 in MSE. Left - cage. Middle -
channel. Right - intersection.

Figure 4.16: The two orientations of SDA#1 in MTW. The position on the right is
more stable.

variation between these two positions with minimal difference in interaction energy,

and so an average over all 25 was still taken. In BEA SDA#1 can sit in the cage, or

bridge two cages, but the energies for each site are almost identical, so again these

were averaged over all 25. Although MTW has a uniform channel (there are no

cavities/channels leading off it), the cross section is actually oval. Hence rotating

the guest within the channel can actually give significantly different energies. This

occurs because the template is relatively planar and so the vdW interactions are

strongest when the template is orientated such that the greatest surface is presented

to the channel wall, see Figure 4.16.

4.4.4.2 SDA#2

The second template experimentally found for MCM-68 is SDA#2. It is only pos-

sible to make MCM-68 using this template if the synthesis is seeded with MCM-68

made using SDA#1. The same template locations are observed with SDA#2 as with
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Figure 4.17: SDA#2 in ERI. The template only just fits inside the cage of ERI.

SDA#1. However, due to the smaller size of SDA#2 more intersection locations are

seen. The interaction energies for all the other frameworks are nearly identical to

MSE with the exception of ERI. Figure 4.17 shows the location of SDA#2 in ERI.

The template sits in the 12-ring cage. These cages are relatively short hence the

larger molecules do not fit well within them. Given that it is only possible to make

MCM-68 with SDA#2 when seeds are incorporated into the synthesis it appears that

it is a non-specific template and is acting as a space filler rather than a structure

director.

4.4.4.3 SDA#3 and SDA#4

SDA#3 and SDA#4 are asymmetric diquaternary ammonium cations with quinu-

clidinol at one end and methyl piperidine at the other and both have been observed

to make MCM-68 [231]. SDA#3 has a chain length of 5 and SDA#4 has a chain

length of 4. SDA#4 gave favourable binding energies for MSE with the interac-

tion energies being slightly more negative (stronger interaction) than for SDA#1.

SDA#4 on the other hand is now approximately 41 kJ mol−1 less favourable in MSE

than SDA#3. This could be due to the longer chain positioning the head groups in

less favourable locations at the intersections.

There are a couple of interesting differences between the two templates. The

interaction energy of SDA#3 in OFF is far better than with SDA#4. This is due

to the longer chain length forcing the molecule into the channel where it is more

stable, and excluding it from the cavity, see Figure 4.18. By removing the cavity

docked structures of SDA#4 from the analysis the average interaction energy in

OFF becomes comparable to that of SDA#3 (which has no cavity docked structures

because it is too long).
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Figure 4.18: SDA#4 in OFF. The template only just fits inside the cage of OFF.

Framework/location SDA#1 SDA#5 SDA#1 → SDA#5
MSE channel -186.2 -185.6 -186.2
MSE pore -174.4 -182.4 -174.4
MOR -173.3 -181.1 -173.3

Table 4.10: The interaction energies from the initial docking run and the conversion
from SDA#1 to SDA#5

4.4.4.4 SDA#5

SDA#5 is the hydrogenated version of the original template (SDA#1). Based on

its good interaction with MSE it looks promising with only MOR near in energy.

It is therefore surprising that attempts to synthesize MSE with this template have

failed with only poorly crystalline ZSM-12 being observed [232], although only a few

experiments were carried out. These results suggest that SDA#5 should make MSE.

The interaction energies are very slightly lower than for SDA#1 ( 8 kJ mol−1) which

is only a few degrees of temperature in a synthesis. The difference between these

two molecules is very small, with just two extra hydrogen atoms on the bridge. This

does not significantly change the conformation, nor does it increase the volume,

and with the energy calculated with purely vdW interactions, it is therefore not

surprising that the energies are similar. As a test, the structures from SDA#1 were

hydrogenated and re-minimized. The interaction energies of these altered SDA#1s

are identical energies to the initial run with SDA#5 (see Table 4.10) and so we know

that the bridge does play a role as the interaction energy changes when the bridge

is hydrogenated.
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Figure 4.19: Pre (left) and post (right) simulated annealing of SDA#7. Note the
buckled chain conformation in the image on the right.

4.4.4.5 SDA#6, SDA#7 and SDA#8

SDA#6 has near identical binding energies for most of the frameworks. This would

mean that this template is unlikely to make MSE selectively over another material.

SDA#6 was not found to have the largest interaction energy with MSE contrary

to the previous computational study. SDAs #7 and #8 are symmetrical versions

of SDA#3. The most obvious difference is the cage energy observed in SDA#7

which is less stable than that for SDA#3 and SDA#8. Interestingly the asymmetric

diquaternary cation energies fall between the two energies for the symmetric cations.

This suggests that the larger quinuclidine group makes the molecule slightly too

large for the cage. A simulated annealing of this structure with the framework

fixed shows that the methylene chain in SDA#7 buckles to relieve the unfavourable

interactions at the end groups. The interaction energy also drops from -124 to -146

kJ mol−1 which brings it in line with SDA#3, see Figure 4.19. Although in this case

running a simulated annealing was useful, many of the templates studied here are

rigid and so running these templates would not be useful. While these calculations

were being carried out experiments were in progress with SDA#8 and these yielded

MCM-68 agreeing with the observed highly favourable interaction energy (better

than SDA#1).

4.4.4.6 SDA#9 and SDA#10

SDAs #9 and #10 were run to compare to SDA#2. SDA#9 has the second N in a

different position and SDA#10 is a protonated SDA#2. SDA#2 and #9 have similar

energies, but when we protonate SDA#2, as we would expect it to exist in solution,

to give SDA#10 we see the interaction energy for all frameworks improve, and spread

slightly further apart. This could be because the change in the conformation of the

molecule which is caused by the protonated nitrogen. In SDA#10 the two rings are in
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Figure 4.20: Two pictures to show the orthogonal ring conformation of SDA#2.

Figure 4.21: Two pictures to show the orthogonal ring conformation of SDA#9.

the same plane where as SDA#2 and #9 have very similar spiro-conformations, see

Figures 4.20, 4.21 and 4.22. The image on the right is a 90◦ rotation of the left image.

This drastic change arising from conformation changes mean that it is important to

treat amine groups carefully and possibly always consider the protonated version.

4.4.4.7 SDA#11 and SDA#12

SDA#11 was chosen since it is a subunit that appears in the original template, as

well as others trialled. The interaction energies for this organic are less favourable

than the others. This is probably due to its smaller size, and so the interactions

with the framework will be lower. If we consider SDA#11 to have roughly half the

number of atoms as the other templates and multiply the interaction energy by two

we do get interaction energies on a par with the other templates. This could be an

ideal cation to use as a space filler.

SDA#12 is identical to SDA#6 except that the methyl groups are replaced

with ethyl groups. The interaction energies for SDA#12 are generally better than

SDA#6. The interaction energies for SDA#12 are again clumped together suggest-

Figure 4.22: Two pictures to show the conformation of SDA#10 with the two rings
in the same plane. Note the proton on the middle nitrogen which is highlighted yellow.
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ing that this template would not selectively give MSE over another framework.

4.4.5 Discussion

The above calculations were also tried with the electrostatic interactions turned on

for the Discover minimisations (ZEBEDDE still works on purely vdW interactions).

When the host-guest interaction energies were calculated the values were very high,

approximately -650 kJ mol−1, and the ordering of the guests differed from the ex-

perimental evidence. On comparison to the previous work, it was thought that this

could be due to the use of PCFF forcefield instead of cff91 czeo forcefield.

Tests were carried out on a selected number of docked structures. Each was

re-minimized using cff91 czeo, and then the interaction energies calculated. The

absolute value of the energy changed slightly, which is expected with the use of a

different forcefield, but the ordering of the interaction energies remained the same

and so the choice of forcefield is unimportant.

The reason the energies are higher is due to the electrostatic interactions be-

ing strong, and hence we are trying to get a small interaction energy number by

subtracting two large numbers introducing a large error. What is more surprising

is that the ordering of the templates has changed. It would be expected that just

the absolute values would change on inclusion of the electrostatics but the ordering

would remain the same. The ordering difference is most likely due to how the overall

positive charge was being neutralized by Discover. It applies a homogeneous back-

ground negative charge to the cell. This is of course nothing like an actual zeolite

where the positive charge of the template is balanced by localised aluminium atom

in the framework, or extra framework anions.

4.4.5.1 Advantages and Disadvantages to the Approach

The advantage of using a Monte Carlo process to perform docking calculations over

manually docking templates is there is no bias toward any particular position. Had

each of these been docked manually by eye, the intersection position in MSE would

not have been found. The automation of the docking procedure has allowed large

numbers of calculations to be run, quickly. However, improvements need to be made

in the analysis process. Currently the analysis is carried out manually. Each docked

structure is opened, the bonds “fixed” and the energy calculated and copied into a

spreadsheet. For this study, 12 organics were docked into 7 frameworks producing

25 docked structures each, giving a theoretical total of 2,100 docked structures.

Although some frameworks, such as ERI, did not produce the full number of
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Figure 4.23: SDA#3 showing the slight curve of the main chain.

structures for each organic since the pores are small and therefore hard to dock into,

there was still a large number to analyse.

For the framework/template combinations below, ZEBEDDE produced no

docked structures even after 500,000 attempts:

� MSE cage for SDA#4 and #8

� MOR for SDA#3 and #8

� SDA#5 in ERI.

However, SDA#11 failing to dock in the intersection of MSE is probably due to

its small size, and so if it did dock there it would be quickly moved into the channel,

or into the cage by ZEBEDDE. For the MSE and MOR SDAs which failed to dock,

the template was inserted manually into the framework and a simulated annealing

run. Simulated annealing calculation was used instead of minimization because only

one structure was made for each framework/template combination and so an average

can not be taken. Interestingly, SDA#3, SDA#4 and #8 all dock favourably into

MSE and MOR, it is therefore surprising that these did not dock in the initial

ZEBEDDE run. It could be that the chain is slightly curved and so would not fall

below the threshold energy, see Figure 4.23.

A similar procedure was carried out for ERI and SDA#5, and this gave a very

poor interaction energy. This is a case where hydrogenating the double bond in

SDA#1 makes a significant difference to the energy. In the case of ERI and SDA#5

the extra hydrogens must make it slightly too large for the cage. SDA#1 in ERI

= -46 kJ mol−1, SDA#5 in ERI = -8 kJ mol−1. This highlights that sometimes

ZEBEDDE is correct and sometimes not. Results obtained from ZEBEDDE are not

foolproof and must be interpreted with care.

4.4.6 Summary

It is surprising that MOR is not seen in the synthesis of MSE, as the interaction

energy is often as good as, and on occasion better than MSE, or MTW. We must

therefore assume it is because Mordenite is normally found in a sodium system
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and MSE is made in a potassium system. However, the data clearly shows why

MTW is often formed during attempts to make MSE. SDA#5, the hydrogenated

version of the original template (SDA#5) is also a surprising case as this one appears

to interact with the framework better than the original template, and the other

frameworks observed are far worse.
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4.5 Tetraethylammonium in ZnAPO-34

4.5.1 Introduction

ZnAPO-34 (CHA) is a cage based zeolite, with 8 MR pore openings which connect

the cages in three dimensions. The zeolite Chabazite which is the type material is a

naturally occurring zeolite found in basaltic rocks, the structure first being solved in

1958 by Dent and Smith [233]. Chabazite has been synthesised with a wide variety

of compositions, including pure silica [234], silicoaluminophosphate [235], and more

recently a pure aluminophosphate [236]. A wide variety of transition metals have

also been incorporated in the structure. The work in this chapter focuses on the

zincoaluminophosphate version of Chabazite which was first synthesised in 1995 by

Tulsar et al. [237]. This work is in collaboration with an experimental group at

Utrecht University with the aim of gaining a deeper understanding of the effects of

the conformation of TEA on the assembly of ZnAPO-34.

Figure 4.24: The Chabazite cage (left) and AFI channel (right).

AlPO-5 (AFI) is a one dimensional aluminophosphate containing a straight 12

MR channel. It was first characterised in 1983 by Bennett et al. [238]. It is also

made using TEA as the organic template and so has been used as a comparison to

the values calculated for Chabazite. The calculations in this section were carried out

to explain observed experimental results where a particular conformation of TEA

appears to be key in the formation of ZnAPO-34 [239].

4.5.2 Experimental Results

ZnAPO-34 is made using tetraethylammonium (TEA) as the organic template. The

structure of TEA in solution has been studied in great detail in a combined theo-

retical and experimental study by Brand et al. Here they show TEA has four equi-

librium conformations [240]. The two most stable, the D2d (tt.tt) and the S4 (tg.tg)
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4.5. Tetraethylammonium in ZnAPO-34

are shown in Figure 4.25. Using these results an experimental study by O’Brien et

al. have shown there is an intimate link between the template conformation and the

Zn2+ substituted into the Al3+ [239]. In situ Raman spectroscopy shows that the

TEA preferentially locates in the tg.tg conformation near a Zn2+ substitution. It

was hypothesised that the Zn2+ interacts with the TEA stabilising the tg.tg confor-

mation, in contrast to the solution phase tt.tt, and this is the driving force behind

the formation of ZnAPO-34. This is supported by the fact that when no zinc is

included in the synthesis, AlPO-5 is the final aluminophosphate structure formed

which contains most TEA in the tt.tt conformation.

As mentioned in the Section 4.5.1 , this was a combined theoretical and experi-

mental study [241] which aims to understand further the growth of metal substituted

aluminophosphates (MeAPOs). A variety of experimental techniques were used to

study the crystallisation of ZnAPO-34. A number of different spectroscopic tech-

niques were used to characterise the initial gel and follow the crystallisation, along

with post-synthesis characterisation by NMR and Raman spectroscopy. It was es-

tablished from these experiments that crystallisation begins from a highly hetero-

geneous gel which becomes increasing homogeneous as the synthesis proceeds. The

in situ Raman measurements show an increase in concentration of TEA in the tg.tg

conformation in the presence of Zn2+. Furthermore, this is linked via WAXS data

to an increase in the amount of crystalline ZnAPO-34 present in the mixture. Both

these results imply the tg.tg conformation of TEA being essential to the formation

of ZnAPO-34. Ex situ Raman measurements made a few years previous [239] fur-

ther support this with tg.tg TEA being the dominant conformation present in the

ZnAPO-34 crystals.

4.5.3 Computational Methods

The improved ZEBEDDE code discussed in Section 4.2.3 was used for the docking

of TEA into the CHA framework, as well as into AFI (AlPO-5). The frameworks

for both CHA and AFI were optimised using GULP [214] with the Gale and Henson

potentials [242]. Once optimised the framework was kept fixed for all further calcu-

lations. The TEA was constructed in both the tt.tt and tg.tg conformations, opti-

mised using GULP, then also kept fixed for subsequent calculations. One molecule

of TEA was docked into the framework and the interaction energy calculated based

on the PCFF forcefield [222]. A total of 50 structures were generated for each

framework/TEA conformation combination and the interaction energy averaged.

The second TEA was added manually by taking the best i.e. most negative, struc-

ture from the singly docked calculations and positioning a second molecule in the

112
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Figure 4.25: The D2d(tt.tt) conformation of TEA (left) and the S4 (tg.tg) confor-
mation (right).

nearest possible position to the first. A simulated annealing calculation was then

carried out to optimise the location of the TEA molecules, starting from 300 K and

cooling in steps of 50 K to 0 K. Five annealed structures were generated for each

framework/TEA conformation combination and the interaction energy averaged.

4.5.4 Results

The interaction energies for TEA in the Chabazite cage are given in Table 4.11.

When we have one template in the Chabazite cage we see that the interaction energy

of the TEA with the framework is favourable, with the tt.tt conformation being 4 kJ

mol−1 more favourable showing a small preference for this conformation. However,

if we compare this to the gas phase energies (Table 4.12) we see that here we have

a difference in energy between the two conformations is 14 kJ mol−1 implying that

by including it in the Chabazite framework we have brought the tg.tg conformation

closer in energy by 10 kJ mol−1 to the tt.tt. When two templates are present in the

Chabazite cage, the interaction energies are highly unfavourable. The tt.tt/tt.tt pair

fits best, but when a tg.tg conformation is present the interaction energy increases

by nearly 1000 kJ mol−1. This result could suggest why it is not possible to prepare

highly substituted ZnAPO-34 (using TEA) with a concentration of Zn greater than

30 % [241], equating to one per cage.

Table 4.13 contains the interaction energies for TEA within the AFI structure.

Overall, these are less negative i.e. less favourable than in Chabazite. This is due to

the pore volume in Chabazite being formed of small cages rather than a large channel

as in AFI. As such, when one molecule of TEA is present in the Chabazite cage it can

interact more strongly with the framework (see Figure 4.26) as it sits in the centre

of the cage. Clearly, given that the pore in AFI is a channel, the TEA can only

interact with the channel walls (see Figure 4.27) and this leads to a slightly lower
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Conformer Configuration Number of Templates Interaction Energy
tt.tt 1 -102
tg.tg 1 -98
tt.tt/tt.tt 2 +632
tg.tg/tt.tt 2 +1596
tg.tg/tg.tg 2 +1587

Table 4.11: Interaction energies for TEA template within the cages of the CHA
structure. All energies are in kJ mol−1 and per TEA molecule.

Conformer Configuration Energy
tt.tt -6.1
tg.tg 8.1

Table 4.12: Gas phase energies of the two TEA conformations. All energies are in
kJ mol−1 and per TEA molecule.

interaction energy. However, it does mean that more template molecules can be

accommodated within the AFI framework as can be seen in the interaction energies

when multiple templates are included. There is an increase in the interaction energy

by 4 kJ mol−1 per template when a second template is included suggesting there are

favourable interactions between the two template molecules. It is also interesting

to note that the favoured conformation in Chabazite is the tt.tt but in AFI it

is the tg.tg. There are a number of simplifications in the calculations presented

here, we are comparing gas phase TEA with solution phase. We have also omitted

the zinc from the framework thereby removing potentially significant electrostatic

interactions which could explain why these calculations suggest a preference for the

tt.tt conformation in contrast to the experimentally observed tg.tg.

These results can be compared to the work of Lewis et al. on the same zeolite

frameworks although this time cobalt as the transition metal and triethylammonium

(TrEA) as the template [243]. In contrast to this work, where it is clear that only one

TEA can be accommodated in the CHA cage, it is possible to fit two TrEA molecules

due to their smaller cross section. This result was later backed up by diffraction

experiments by Sankar et al. where they observe two triethylamine molecules in

the cage of Chabazite [244]. The authors also propose a correlation between the

concentration of template and cobalt with the formation of Chabazite [243] where

there must be sufficient cobalt present in the gel to balance the charge of the template

i.e. one per template.
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Conformer Configuration Number of Templates Interaction Energy
tt.tt 1 -77
tg.tg 1 -81
tt.tt/tt.tt 2 -85
tg.tg/tt.tt 2 -85
tg.tg/tg.tg 2 -85

Table 4.13: Interaction energies for TEA template within the cages of the AFI
structure. All energies are in kJ mol−1 and per TEA molecule.

Figure 4.26: Images showing the location of TEA in CHA.
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Figure 4.27: Images showing the location of TEA in AFI.

4.5.5 Conclusions

The ZEBEDDE code has successfully been used to dock TEA in two conformations

into the cavities of both Chabazite and AlPO-5. The results suggest that only one

TEA molecule will fit into the CHA cage. The calculations presented here do not

agree with the experimental evidence. This is probably because of simplifications

in the model used. Zinc has been omitted from the framework and there will be

strong interactions between the template and the framework due to the negative

charge introduced. It could be that these are stronger when the template is in the

tg.tg conformation and this is why it is observed experimentally. Since it seems

specific conformations of TEA are required to make ZnAPO-34 we can say that

it must have more than a space filling role, but it is also difficult to say it had a

strong structure directing role as MeAPO-34 can also be synthesised in the presence

of other templates [245, 243]. What is clear, is that there is a strong interaction

between the template and the presence of the metal ion, and this leads to the

formation of MeAPO-34. However, that these calculated results do suggest the

template-framework combination would favour the conversion of solution tg.tg TEA

to the tt.tt form most favoured in the framework. Moreover, it is easy to rationalise

the experimental maximum in Zn content based on these (and previous) docking

calculations. However, the interactions between the template and metal cations are

not trivial, and are something not considered in the calculations presented here and

future work should focus on gaining insight into this.
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4.6 Conclusions

The ZEBEDDE code has been improved by rewriting the ring making routine. The

new routine allows rings to be formed more readily within the growing template

molecule producing more yielding more complex organic molecules. Along with

this the docking routines have been updated in order to automate the processes

allowing more systems to be analysed with less input from the user. In order to

further take advantage of these improved routines, ZEBEDDE can now be used on

a supercomputers allowing task farming. Using this enhanced code, and combining it

with high throughput techniques it could be possible to screen templates efficiently.

Using the improved ZEBEDDE code two candidate templates for the forma-

tion of Boggsite have been proposed. These are Organic 20 (1-(7,7-dimethyloctyl)-

bicyclo[2.2.1]heptane) and Organic 24 (3-(7,7-dimethyloctyl)-dimethylpentane).

These templates have been selected because they have favourable interactions within

the Boggsite framework, compared to other templates which were tested. Although

some aspects of the building process have been improved, it is still relatively time

consuming and requires input from the user. Future modifications to the code to

allow comparison of the growing template to know organic molecules would speed

the process as well as forming more chemically sensible structures. Something not

considered here is how well these organics fit within commonly formed synthetic

zeolites such as ZSM-5 or Mordenite. If the interaction energies are more favourable

in structures such as these then we can expect them to direct these over Boggsite.

The most successful use of the code relates to the work on MCM-68. The calcula-

tions explained the ‘fit’ of SDAs #1,#2,#3 and #4 and supported the experimental

hypothesis that SDA#8 and similar molecules could template MCM-68. During

the course of this work SDA#8 and two other similar organics were found to make

MCM-68. An interesting outcome from these results is how close the interaction en-

ergies are when the same template is docked in different zeolites. This suggests that

in some cases it may be difficult to force a particular zeolite structure over another,

although the role of the other components in the synthesis are not considered here.

The work on MCM-68 also provided an opportunity to investigate the inclusion of

electrostatic interactions when calculating the interaction energy. It was concluded

that inclusion of electrostatics is not necessary, at least for the initial screening of

molecules, partly due to extra computational expense, but mostly due to the fact we

are trying to fill a pore space and therefore van der Waals interactions are sufficient.

The accuracy of the simulations could be improved by including electrostatics but

we would need to know details such as aluminium location. If the location of the

aluminium atom is unknown, the negative charge caused by the aluminium must be
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balanced by smearing over the framework. This is of course unrealistic as it would,

in reality, be balanced by either the template or an extra framework cation.

The work on ZnAPO-34 highlights the way calculation can complement experi-

ment. Here, the calculations have confirmed that only one TEA molecule can fit in

the Chabazite cage and hence why ZnAPO-34 cannot be prepared with concentra-

tions of zinc greater than 30 %. The experimental work suggests that the tg.tg is the

more stable conformation and this is not confirmed by these calculations. However,

this is likely due to simplifications in the model used and by including the zinc in

the framework the ordering could easily be reversed.
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CHAPTER 5

Morphology Control

5.1 Introduction

In this chapter the influence of the template on zeolite morphology is investigated.

The first section considers attempts to form crystals of zeolite L with high aspect

ratio. A variety of common templates were tested for fit within the framework using

the ZEBEDDE [213] code. Once suitable templates had been found, experimental

work1 was then carried out to confirm the computational findings.

The second section investigates the role of surfactant molecules on morphology

of the aluminophosphate AlPO-11. Experimentally, it had been determined that

including long chain (molecules with carbon chains 10-16 atoms long) amine surfac-

tants can affect the crystal morphology of AlPO-11. Simulations have been carried

out on the role of the surfactant on the surface of AlPO-11, and how this may alter

the growth mechanisms.

5.1.1 Zeolite L

Zeolite L (LTL) was first characterised by Barrer and Villiger in 1969 [247] (the

synthesis was a few years previous [248]) and is a one-dimensional aluminosilicate

with a 12 member ring channel. The usual morphology for a zeolite L crystal is a

hexagonal (see Figure 5.1) with the 12 MR channel running along the long axis of

the crystal. In applications as a catalyst it is more desirable to form crystals with a

1All experimental work was carried out by Dr. Rhea Brent at the University of Manchester,
and has been published in reference [246] along with the computational results presented here.
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Figure 5.1: Diagram showing the usual crystal morphology of a zeolite L crystal.
The channel runs along the c-axis.

low aspect ratio (length/diameter) i.e. short wide crystals, as this will increase the

number of channel entrances and a shorter path will also reduce the diffusion time

of reactants and products in the zeolite [249].

Zeolite L is typically synthesised using potassium as the only templating species

and so its formation is not dependent on organic templates. Previous work has

shown that varying the proportions of alumina, silica, potassium hydroxide and

water [250, 251] can alter the crystal morphology of zeolite L. Specifically, Larlus

et al. [250] showed that having a higher potassium content in the synthesis yields

crystals with a smaller aspect ratio, whilst increasing water content has the opposite

effect.

5.1.1.1 Growth of Zeolite L

Zeolite L is constructed of columns of cancrinite cages which are linked together

by double six rings (D6R). These columns are connected by the four member rings

present in the cancrinite cages to form the 12 MR channel. We have already dis-

cussed that altering the composition of the starting mixture causes crystal morphol-

ogy changes, but what happens on a molecular level to cause these changes?

Brent and Anderson carried out an elegant AFM study in order to try and

understand the growth of zeolite L [252]. They made three different batches of

zeolite L by varying only the water content to give crystals with three different

aspect ratios. In the AFM images (see Figure 5.2) they observed sharp narrow

terraces on low aspect ratio crystals. However, at high aspect ratio they found that

the surfaces were more spread out. By studying these terraces in more detail it

was found that the narrow terraces had a height of 1.2 nm which corresponds to a

single cancrinite cage on the surface, whereas the larger terraces had heights of 1.6
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Figure 5.2: AFM of the zeolite L surface showing the terraces of cancrinite cages.
Reprinted with permission from ([246]). Copyright (2010) American Chemical Society.

nm corresponding to a stacking of three cancrinite columns (see Figure 5.3). For

the crystal to grow laterally, a cancrinite cage must be added to bridge the two

columns on the surface and complete the 12 MR channel. Given that when on low

aspect ratio crystals we observe narrow terraces, i.e. more terraces made of a single

column on cancrinite cages, growth in the lateral direction is severely frustrated. In

contrast, when we have crystals with a higher aspect ratio this growth becomes less

frustrated.

5.2 Modifying Zeolite L Crystal Morphology

In the introduction it was noted that the growth in the lateral direction (along the

a-direction) of a zeolite L crystal is frustrated. It was proposed that using an organic

additive as a space-filling molecule would enable the bridging of adjacent cancrinite

columns, which in turn would facilitate growth in the a-direction and create crys-
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Figure 5.3: Diagrams showing the growth mechanism on the zeolite L surface by
cancrinite cages. Growth is not possible when adding a cancrinite cage over a ditch
site as show in the diagram in the top left. Viewed along the c-axis. Reprinted with
permission from ([246]). Copyright (2010) American Chemical Society.

tals with a larger diameter. A number of organic templates were tested. Firstly, a

series of crown ethers, 18-crown-6, 21-crown-7 and 24-crown-8, was considered as it

was hoped these would fill the void within the channel. We also considered a series

of tetraalkylammonium zeolite templates, tetraethylammonium (TEA), tetrapropy-

lammonium (TPA) and tetrabutylammonium (TBA) along with a large cyclodextrin

molecule. The structure of α-cyclodextrin is “bung” like and it was hoped that this

would hinder growth in the c-direction. Growth modifications with both the crown

ether and α-cyclodextrin theoretically have the same outcome as shown in Figure

5.4.

The crown ether templates were selected as they are of a similar size to the

undulating channel in zeolite L which has a maximum diameter of 11 Å. Docking

calculations were carried out for all the templates mentioned above. Ideally the

template should interact strongly with the framework without being distorted from

its equilibrium conformation and so maximising the interaction of the molecule with

the framework. Thus calculation of interaction energy from docking calculations can

be used as a guide for the efficacy of the molecules as a crystal modifier.

5.2.1 Computational Details

Each template was built using Materials Studio 4.3 and optimised using the Dis-

cover minimiser engine and the PCFF forcefield [222]. The template structures and

approximate dimensions can be found in Figure 5.5. The Zeolite L structure is
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Figure 5.4: The standard growth of a zeolite L crystal (right) and the modified
growth (left). The blue spot is the α-cyclodextrin which it is hoped will hinder
growth in the c-direction, and the red spot is the crown ethers which it is hoped will
promote growth in the a-direction.

that of Barrer and Villiger [247] with the initial coordinates being taken from the

IZA website [4]. For computational ease the structure was converted to an entirely

siliceous form and then optimised using the GULP code [214] and the SiO2 poten-

tials of Sanders, Catlow and Leslie [188]. The framework was then kept fixed for

all subsequent calculations. The docking calculations were carried out using the

modified ZEBEDDE code [213] with the interactions being described by the PCFF

forcefield [222].

Each template was inserted into the optimised framework 10,000 times, with the

interaction energy of the template with the framework calculated as follows:

Einteraction = Ezeolite+template − (Etemplate + Ezeolite) (5.1)

where Einteraction is the interaction energy of the template with the framework,

Ezeolite+template is the total energy of the framework and template, Etemplate is the

energy of the template in the gas phase and Ezeolite is the energy of the optimised

framework. If this interaction energy falls below a pre-defined threshold (+2000 kJ

mol−1) this structure is then further optimised using a combination of Monte Carlo

steps, and finally energy minimisation using the Discover module.

The surfaces were generated using the visualisation program GDIS [253] starting

from the optimised bulk structure. The surface was cleaved, in the desired Miller

plane, so as to reduce the number of dangling oxygens atoms which were then

hydrogenated. The opposite surface was then hydroxylated to remove any dangling

silicon atoms. Both surfaces were then optimised using the potentials of Sanders,
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Catlow and Leslie [188] for the bulk zeolite along with the silanol potentials of

Schröder [254] using the GULP code [214]. Once the surface has been optimised

ZEBEDDEs Monte Carlo simulated annealing (MCSA) routine was used to dock

the template onto the surface. The MCSA calculation was started at a temperature

of 300 K which was reduced in steps of 50 K to 0 K. At each temperature step,

20,000 actions were carried out in order to optimise the location of the template.

The template was started at a location approximately 30 Å above the surface of the

zeolite.

Here we are interested in the location effect of the template, and hoping that this

will induce changes in the crystal growth. Generally speaking we can expect most

templates to have favourable interactions, i.e. negative interaction energies, and

we therefore are interested in differences in interaction energy between templates.

For example a difference in interaction energy between two templates of a few kJ

mol−1 is unlikely to be significant as small modifications to the templates location,

or conformation can remove this. However, 10 kJ mol−1 or more is considered

significant as it would be difficult to overcome this purely by adjusting the position

or conformation. Similarly, in this case we are attempting to bridge the cancrinite

columns so if the template frequently docks elsewhere (unlikely given the channel

structure in zeolite L) in the framework this would again mean the template may

not be an effective morphology modifier.

5.2.2 Results

5.2.2.1 Crown Ethers

The first set of templates are the crown ethers. From the structures (Figure 5.5)

it might be expected that these templates are relatively planar. However, it be-

came apparent from the Discover gas phase optimisations that this was not the

case. Whilst 18-crown-6 is almost planar, both 21-crown-7 and 24-crown-8 have

considerable flexibility and adopt a curved structure as can be seen in Figure 5.6.

On docking the crown ethers, it was noted that the ether can site in a number of

configurations with respect to the {0001} face. Either in the horizontal, vertical or

diagonal position as shown in Figure 5.7. These three positions were also observed

for 18-crown-6.

We can see from the interaction energies (in Table 5.1) the diagonal and vertical

positions are unfavourable, with the vertical position being least likely to occur.

Clearly the horizontal position is preferred, and by far the most stable is 18-crown-

6 with an interaction energy of -135 kJ mol−1. 21-crown-7 has a slightly weaker
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Figure 5.5: Templates tested in this study as a space filler in zeolite L. Dimensions
give approximate outer diameter.

Figure 5.6: Pictures of the optimised crown ethers in the gas phase taken from
“above” (top) and an orthogonal view Bottom. Left to right: 18-crown-6, 21-crown-
7, 24-crown-8.
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Figure 5.7: The three different positions for 21-crown-7 in zeolite L. Top: The
horizontal position; middle the vertical position; bottom the diagonal position.
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Template Position Interaction Energy
18-crown-6 horizontal -135

vertical +108
diagonal +41

21-crown-7 horizontal -122
vertical +161
diagonal +118

24-crown-8 +674

Table 5.1: Interaction energies with zeolite L for the crown ethers. All energies are
in kJ mol−1.

Figure 5.8: The most stable docked positions for the three crown ethers. Top row
looking onto the {0001} and bottom row an orthogonal view. Left to right 18-crown-6,
21-crown-7 and 24-crown-8.

interaction energy of -122 kJ mol−1. However, 24-crown-8 has a highly unfavourable

interaction energy, and this shows the molecule is too large to reside in the cavity

in the zeolite L channel. This suggests that 24-crown 8 will not have an affect on

the crystal morphology, it will simply not interact with the growing crystal. Figure

5.8 shows the locations of the ethers within the zeolite L cavity.

5.2.2.2 Tetraalkylammonium Cations

As a comparison, a series of tetraalkylammonium (TAA) compounds were also tested

for fit within the zeolite L cavity. The same docking procedure was carried out using

TEA, TPA, and TBA. The interaction energies for this series are in Table 5.2. Two

different positions were found for the TAA series which have been named “cavity”

and “intersection”. These two positions arise because of the undulating nature of

the channel in zeolite L. The cavity position is where the channel is at its widest,
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5.2. Modifying Zeolite L Crystal Morphology

Template Position Interaction Energy
TEA cavity -50

intersection -37
TPA cavity -71

intersection -61
TBA cavity -36

intersection -89

Table 5.2: Interaction energies with zeolite L for the tetraalkylammonium cations.
All energies are in kJ mol−1.

and the intersection where two cavities join. The crown ethers are too large to dock

at the intersection, and only the cavity position is observed. However, the smaller

size and greater flexibility of the TAAs allows a greater variety of docked positions

as illustrated in Figure 5.9 . Given the small size of TEA (∼8.0 Å) compared to the

cavity of zeolite L (∼11 Å) we can expect there to be a large number of locations in

which the template can dock, and this is indeed the case. The two positions shown in

Figure 5.9 are the extremes, and as we can see from the interaction energies neither

is unfavourable. However, the case where the template is located wholly within the

cavity is 13 kJ mol−1 more favourable than when it sits at the intersection of two

cavities in the channel.

For TPA there is very little difference in energy between the template locations,

but the orientation of the template with respect to the c-axis does change. In the

“cavity” position, three of the propyl chains sit perpendicular to the c-axis within

the cavity, whereas in the “intersection” position two are aligned with the c-axis and

two are contained within the cavity. This leads to an energy difference of 10 kJ mol−1

with the cavity position being more favourable. TBA is the largest TAA studied

here. Once again there are two locations in which the TBA docks within the zeolite

L channel. However, the cavity position is now considerably less favourable than the

intersection position with an interaction energy of -36 kJ mol−1 compared to -89 kJ

mol−1 for the intersection position, although neither position is unfavourable. This

is due to it being relatively difficult to accommodate the large butyl groups within

the cavity and so in order to overcome this, the molecule spreads over two cavities.

In all cases the template remains in the same conformation, only template location

and orientation with respect to the channel axis change.

5.2.2.3 Cyclodextrin

The final molecule studied as a possible morphology modifier is α-cyclodextrin,

which is part of a family of cyclic oligosaccharides, and is made up of six glucose
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5.2. Modifying Zeolite L Crystal Morphology

Figure 5.9: The docked locations of the tetraalkylammonium cations within zeolite
L. Top row: In the cavity, bottom row: intersection. Left to right: TEA, TPA, TBA.

Figure 5.10: The optimised {0001} surface of zeolite L used for the ZEBEDDE
MCSA calculations with α-cyclodextrin.

molecules. It was postulated that this molecule would bind to the {0001} surface

and hinder growth in the c-direction. Using the method described previously, the

{0001} was generated and can be seen in Figure 5.10 along with α-cyclodextrin

in Figure 5.11. With a diameter of 16.3 Å α-cyclodextrin is clearly too large to

fit within the zeolite and so no bulk docking calculations were carried out for this

template.

The interaction energy was calculated as +2000 kJ mol−1 which is clearly highly

unfavourable. The α-cyclodextrin does bind in the desired location, but not in the

Figure 5.11: The optimised α-cyclodextrin molecule.
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5.2. Modifying Zeolite L Crystal Morphology

Figure 5.12: Docked locations of α-cyclodextrin on the {0001} surface of zeolite L.

expected orientation as it lands at an angle to the {0001} surface as can been seen

in Figure 5.12.

5.2.2.4 Discussion

We are equating the strength of the interaction energy to the “fit” of the template

within the zeolite. A more negative interaction energy should imply a better fit,

and so that template is more likely to have an affect on the crystal morphology

of zeolite L. Based on this we can expect the crown ethers, specifically 18-crown-6

and 21-crown-7, are most likely to affect the growth of zeolite L. 24-crown-8 has

an unfavourable interaction energy and so we would not expect this template to

affect the growing crystal. Although the TAAs studied have favourable interaction

energies, they are not as favourable as the crown ethers. If we consider their size

(especially TEA and TPA) with respect to the diameter of the zeolite L channel we

can also expect them to diffuse and so also be poor crystal modifiers. By far the

worst template is α-cyclodextrin which has a highly unfavourable interaction energy

with the surface of zeolite L and again would have no affect on crystal morphology.

5.2.3 Experimental Results

As was mentioned in the introduction to this chapter, this was a combined compu-

tational and experimental study. The full experimental details and discussion can

be found in reference [246] and only the final results are presented here in order to

compare to the computational results. Based on the calculations, 18-crown-6 and

21-crown-7 were selected as possible crystal morphology modifiers. When 1 mole

equivalent (see equation 5.2 for starting gel composition, where x is the mole equiv-

alents of template) of 18-crown-6 was included in the synthesis, no zeolite L formed.
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Amount of Crown
Wther/
Mole Equivalents

Crystal
Length/
µm

Crystal
Diameter/
µm

Aspect
Ratio

Si/Al
(average)

K/Si
(average)

0 3.8 1.5 2.5 3.47 0.35
1 2.0 1.6 1.3 3.50 0.35
2 1.8 1.5 1.2 3.49 0.34
4 1.8 2.3 0.8 3.50 0.33
1+ Cs 3.0 1.2 2.5 3.40 0.20

Table 5.3: Experimental results for zeolite L synthesis using 21-crown-7. Taken from
reference [246].

However, when using 21-crown-7 in the synthesis zeolite L was formed, and altering

the quantities included in the synthesis did induce a morphology change. These

results are presented in Table 5.3 along with SEM images of the crystals in Figure

5.13.

10.2K2O : 1Al2O3 : 20SiO2 : 1030H2O : x− template (5.2)

From the table we can see there is a decrease in the aspect ratio as the amount

of 21-crown-7 used in the synthesis is increased. The SEM images also confirm this.

Thermogravimetric analysis confirmed the presence of 21-crown-7 in the synthesised

zeolite, correlating well with the amount in the gel.

5.2.3.1 Further Calculations

This work successfully identified 21-crown-7 as a morphology modifier for zeolite

L, initially by calculations then and by experiment. We now consider the exact

mechanism by which this occurs. Previous simulations only included one crown

ether so a packing study was carried out in order to determine whether addition

of more 21-crown-7 was favourable, or what the expected level of uptake of 21-

crown-7 would be for the as synthesised material. Figure 5.14 shows the levels of

packing tested. Although not an exhaustive list of the combinations it should provide

some idea of the degree to which filling the framework with 21-crown-7 affects the

interaction energy. Note that in Figure 5.14 only one molecule is shown per layer,

there were actually four present in each layer. Interaction energies were calculated

per molecule.

We can see from Table 5.4 that there is a slight advantage to filling the structure.

If we compare the two half filled results we can see that there is a preference for

the template to locate next each other. From these calculations we would expect
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5.2. Modifying Zeolite L Crystal Morphology

Figure 5.13: SEM image of the as synthesised zeolite L crystals. Reprinted with
permission from ([246]). Copyright (2010) American Chemical Society.

Packing Level Interaction Energy (per molecule) Change
quarter -122.59 -0.29
half (alternating) -122.88 -1.02
half (together) -123.61 -1.97
three quarters -124.56 -2.87
full -125.69 -4.01

Table 5.4: Interaction energies from the packing study with zeolite L and 21-crown-
7. All energies are in kJ mol−1 per 21-crown-7 molecule. Change is the difference
in energy from the single molecule calculated previously and these results presented
here.
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5.2. Modifying Zeolite L Crystal Morphology

Figure 5.14: Images of the levels of packing. Left to right; Top: quarter packed,
half alternating packed, half packed together. Bottom: three quarters packed, fully
packed. Note only one molecule per layer is show in the pictures for clarity. In the
actual simulation there were four molecules per layer.
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the zeolite L to be packed full of crown ether giving a theoretical mass loss of 9.9%

upon calculation. Experimental mass loss was found to be equivalent to three-

quarters filled [246]. This discrepancy could be because the crown ether is bound to

a potassium ion it would lead to less favourable interaction if two more molecules

were placed close together and also the crown ether conformation would be more

planar.

5.2.4 Conclusions

The calculations presented here were carried out to complement experimental work

where the aim was to alter the crystal morphology of zeolite L. Calculations found

that 21-crown-7, and 18-crown-6 fit well into the cavity in the zeolite L channel.

24-crown-8 is too large to fit inside this cavity and so was deemed unlikely to alter

the crystal morphology. Other common zeolite templates, in this case small alky-

lammonium cations were tested as well. Although these did interact favourably with

the framework, because of the their small size, they are likely to be able to diffuse

through the channel and so once again are unlikely to alter the morphology of the

crystal. Once experimental work had been carried out and it was determined that

21-crown-7 did alter the crystal morphology further calculations were carried out in

order to better understand this effect.

There are two possible explanations that could lead to the observed morphology

change in zeolite L. The first is that the crown-ether is having the desired effect and

stabilising the bridging of the cancrinite columns and poisoning growth in the c-

direction. The second is that the crown ether is in some way affecting the synthesis

gel, and so it indirectly caused the change in morphology. It is suggested that

the effect is actually a combination of the two [246]. The crown ether binds the

potassium and this complex positions itself in the predicted location in the cavity

in the zeolite L channel. Once here, it templates the cancrinite columns and so the

crystal grows in the normally frustrated a-direction.
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5.3. Morphology Control of AlPO-11

5.3 Morphology Control of AlPO-11

This section aims to understand why when a surfactant amine molecule is added

to the synthesis of AlPO-11 the crystal morphology is altered. It is hoped that

by studying the locations and interaction energies of the amine surfactant with the

AlPO-11 surface it will be come evident that the amine has an effect on one or more

of the surfaces and so alters the growth mechanism.

5.3.1 Introduction

AlPO-11 (AEL) is a one dimensional aluminophosphate with a straight 10 member

ring channel (see Figure 5.15) whose structure was partially solved in 1987 [255]

with the complete refinement being achieved a year later [256]. Initially it was made

as a silicon substituted aluminophosphate (SAPO) [257] but has subsequently been

synthesised as a pure aluminophosphate [255] and more recently as a germanium

substituted aluminophosphate [258] Although not strictly a zeolite, the synthesis

methods are nearly identical and the mechanisms of formation are thought to be

similar.

Figure 5.15: View of the {001} face of the AEL structure showing the 10 MR
channels.

AlPO-11 is synthesised using N,N-dipropylamine as the template and is used as

a catalyst for the transformation of linear alkanes into monobranched alkanes [258].

In a patent published in 2003, Strohmaier and Vaughan have shown that adding

long chain surfactant amines, with carbon chains of length 10 to 18 alter the crystal

morphology [259]. Standard crystals of AlPO-11 have their longest dimension in the

direction on the channel and addition of the surfactant reduces this dimension.
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5.3.2 Computational Details

The AlPO-11 structure used for these simulations is that of Richardson et al. and

it was converted to the entirely siliceous form for computational simplicity [256]

and as such subsequently is referred to by its three letter code AEL. This structure

was optimised using the GULP code [214] with the Sanders, Catlow, Leslie SiO2

potentials [188]. The optimised structure was then cleaved along the desired Miller

plane using the GDIS visualiser [253]. The surfaces were cleaved in order to expose

the minimum number of dangling bonds. Once cleaved, any dangling oxygen atoms

were hydrogenated, and dangling silicon atoms were converted to silanols. These

structures were then optimised again in GULP using the Sanders, Catlow, Leslie

SiO2 potentials [188] for the bulk and the silanol potentials of Schröder [254]. The

unit cell was extended by 100 Å as to create a vacuum gap between the two sur-

faces in a three dimensional periodic structure. For computational simplicity the

framework was kept fixed for all subsequent calculations.

The surface docking calculations were carried out using ZEBEDDE’s Monte

Carlo simulated annealing (MCSA) routines with the interactions being described

by the PCFF forcefield [222]. The initial temperature of the system was set to 300

K and was reduced in steps of 50 K carrying out 20,000 actions at each tempera-

ture step until the temperature reached 0 K. This process was repeated fifty times

and then plotted as a histogram of adsorption energies. The surfactant molecule,

hexadecylamine, was built using Accelrys Materials Studio 4.3 and optimised using

the Discover module and the PCFF forcefield [222]. For each of the AEL surfaces,

the surfactant was initially positioned approximately 30 Å above the surface.

Molecular dynamics (MD) calculations were carried out using the DL POLY4

code [260]. The Oie potentials [261] were used for the intramolecular template

interactions along with the Kiselev [262] potentials for the intermolecular and zeolite-

template interactions. The bulk zeolite uses the potentials of Sanders, Catlow and

Leslie [188] and the surface silanols are modelled using the potentials of Butler [263].

The water potentials are those of deLeeuw and Parker [264]. These potentials have

successfully been used in similar simulations of zeolite surfaces. In order to stop the

amine surfactant diffusing down the channel the “tail” carbon was fixed, with the

remainder of the molecule being free to move. For the simulation with water, the

cell was filled with water using one of the utilities that comes with the DL POLY4

code written by W. Smith [260]. The timestep for the simulation was 0.2 fs and

the potential cutoff was set to 8 Å. The MD cell was first equilibrated by running

under NPT ensemble for 100 ps using the Berendsen barostat and thermostats with

relaxations constants of 0.2 fs and 1 fs, and then for a further 100 ps under the NVT
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Figure 5.16: Diagram showing the measurements made by the code written to
analyse the MD trajectories. It measures the “distance” between the nitrogen group
and the surface, and the number of atoms outside the channel volume (shaded yellow).

ensemble. The production run was carried out using the Hoover thermostat with a

relaxation constant of 0.5 fs under the NVT ensemble for 120 ps.

A bespoke code was written to analyse the MD trajectories which extracted the

distance of the “head” nitrogen from the nearest surface hydrogen of a silanol. As

well as calculating this distance, it also calculates the number of carbon or nitrogen

atoms which are outside the channel volume (see Figure 5.16). Both these measures

should give an indication of how much the amine interferes with the surface of the

zeolite, and as such, how much it will affect growth.

5.3.3 Results

5.3.3.1 Surface MCSA Calculations

The results from the surface MCSA calculations are presented in Figure 5.17 as a

histogram of adsorption energies. The first point to note is that there is a general

distribution of energies for each of the surfaces suggesting there is no real preference

for a particular face. The stronger interactions on the {001} surface at -110 kJ mol−1

can be attributed to the template entering into the bulk via the channel entrances

(see Figure 5.18) and so these can be discounted. The distribution of energies on the

{010} surface are at slightly higher values meaning the average adsorption energy

would be higher on this face, than the {100} where we can see the distribution peaks

at approximately -50 kJ mol−1. However, the most stable position on each face has

an almost identical energy at just below -100 kJ mol−1.
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Figure 5.17: Histogram of the adsorption energies of the amine surfactant hexade-
cylamine on the three AEL surfaces. We can see there is no real preference for a
particular location in that there is a wide distribution of energies over all the surfaces
. The {010} does have a higher proportion at higher energy than the other two faces.
There are some peaks for the {001} face at approximately -110 kJ mol−1 which can
be attributed to the template entering the bulk.
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Since there is no particular preference for a face the change in morphology may be

due to the location of the amine on the surface, preventing or enhancing growth on

the surface. By inspection of the docked locations it comes apparent that there are

locations on the surface which are preferred by the template. Figure 5.19 shows the

most favourable locations on the {100} surface. We can see there are two possible

locations for the template. The first is in what will become a 6 MR. Clearly, in this

position, the template will not be easily incorporated into the framework. However,

we can imagine that the energy barrier which must be overcome in order for it to

“roll” into the second position will be relatively small. This second position is the

precursor to the 10 MR, and here the template can be easily incorporated into the

framework.

Figure 5.20 shows the most stable position on the {010} surface. As we can

see, the surface already has in place six of the ten silicon atoms which will form

the 10 MR channel. The creates a trough in the surface into which the template

can dock. It is for this reason we see in the histogram of adsorption energies the

{001} surface has a higher average docking energy, because we have fewer possible

template locations (as compared to the other two surfaces). Whilst it is possible

on this surface to cleave in two different locations and create a surface with the

same number of silanol groups, it is expected however that the final location of the

template would be the same.

The {001} surface is the most complex. We have the situation where the hexade-

cylamine enters into the channel which has already been discussed. On the surface

itself we have two possible locations. One completely on the surface as can be seen in

Figure 5.21 and one where the template has partially entered the channel as shown

in Figure 5.22. The difference in energy between the two is relatively small (4-5 kJ

mol−1). In both cases we can expect that the growth on the surface will be hindered

by the presence of the template. In the first case the template blocks growth on the

{001} surface as it cannot be incorporated into the structure. In the second case

we can expect the motion of the “tail” of the hexadecylamine to interfere with the

surface region around the template as it diffuses into the channel. The next section

explores how much the amine will hinder the surface of the growing crystal when it

is partially docked in the channel.

5.3.3.2 Molecular Dynamics Simulations

MD simulations were carried out in order to gain an understanding of how much time

the hexadecylamine would spend hindering the surface as it enters the channel. The

“tail” carbon has been fixed in the channel such that half of the molecule is within

139



5.3. Morphology Control of AlPO-11

Figure 5.18: Bulk docked position with the amine in the 10 MR channel.

Figure 5.19: The two locations on the {100} surface which the hexadecylamine
chooses to sit. The position in what will become the 10 MR channel (left) is most
stable.

Figure 5.20: The location on the {010} surface which the hexadecylamine chooses
to sit. The location is in what will become the the 10 MR channel.
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Figure 5.21: Adsorption sites on the {001} surface. Here the template completely
obstructs the surface, preventing growth.

Figure 5.22: The location on the {001} surface where the template partially enters
the channel. Once again the surface is partially obstructed preventing growth.
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the channel, and half exposed, and orientated such that the chain is parallel to the

channel. Initially the calculations were run without any water present. However, it

was immediately obvious that this unrealistic as the template immediately moved

to the surface and remained in the same position for the duration of the simulation.

On reflection, this is not a surprising result as we would expect water on the surface,

and the lack of water means the only possible outcome is for the amine to bind to

the surface.

For the subsequent calculation the cell was generated from the ZEBEDDE an-

nealed structure as shown in Figure 5.22 and the vacuum gap of the cell reduced

from 100 Å to 50 Å in order to reduce the number of water molecules required.

This cell was then filled with water molecules (totalling 5,450 molecules) before be-

ing optimised as discussed in Section 5.3.2. The MD trajectory was analysed for the

number of carbon atoms which are outside the channel volume and the distance the

“head” nitrogen is from the surface for the length of the simulation. These results

are presented in figures 5.23 and 5.24. If we look at the distance of the nitrogen

from the surface in Figure 5.23 we can see that the nitrogen starts at approximately

10 Å from the AEL surface. At this distance the template is orientated almost

completely parallel to the channel i.e. perpendicular to the surface. It moves toward

the surface over the next ∼30 ps and remains on the surface2 for the next ∼50 ps.

It leaves the surface briefly at ∼70 ps before returning. If we consider the number

of carbon atoms outside the channel volume, this mirrors the nitrogen-surface dis-

tance. At the start of the simulation we have zero atoms outside and this increases

to six before settling between four and five. It stays at this level until 75 ps into the

simulation when it decreases to zero which implies that the template is contained

within the pore volume again.

Both these measures show that for a large part of the simulation (approximately

80 ps) the template would be in a location which would hinder any building units

attempting to react with the surface and so hinder growth in this direction. These

results give an indication as to why long chain amines have this effect on the growth

of AlPO-11 crystals. On the {100} and {010} surfaces the amine can be incorporated

easily into the growing crystal and may even be assisting in the growth. However,

on the {001} surface there are two mechanisms which block growth. The first is

when the amine binds to the surface preventing growth, and the second is where the

rotations of the molecule as it enters the channel cause hindering of the surface.

2The distance cannot be 0 Å because we are measuring from the nitrogen and therefore have
the hydrogen that is attached to the nitrogen in between the nitrogen and the surface.
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Figure 5.23: Distance between the nitrogen atom in hexadecylamine and the surface
of AEL.

Figure 5.24: Number of carbon atoms outside the channel volume.
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5.3.3.3 Conclusions

Experimentally it was known that surfactant molecules such as hexadecylamine had

an effect on the crystal morphology [259] and so the work presented here was carried

out in order to understand why this type of molecule has this effect. Simple Monte

Carlo simulated annealing calculations show that there is no energetic preference for

a particular face of the crystal and so we can expect the amine to bind to all faces

equally. However, if we consider the templates location on the surface then we can see

from that on both the {100} and {010} the template can easily be incorporated into

the growing crystal inside the channel. On the other hand, when on the {001} face

this is not the case. Constrained molecular dynamics simulations of the template on

the {001} surface also show that any molecules partially incorporated on the surface

will hinder growth as well.

5.4 Conclusions

In this chapter we consider how organic additives can be used to modify crystal mor-

phology. The ZEBEDDE code has been used to screen molecules that would alter

the morphology of zeolite L. Although the experimental result that when prebinding

the 21-crown-7 ether molecule with caesium, there was no effect on the morphology

mean that the crown ether itself did not directly affect morphology, it is clear from

experimental work that the molecule was incorporated into the framework, and in

the predicted location. Combined with the fact that a typical zeolite L synthesis re-

quires only potassium as the templating species we can infer that it is a combination

of the potassium binding to the crown-ether and the template docking in the loca-

tion predicted by simulations that causes the morphology change. This combination

provided more cations in the pore cavity and hence a template which the cancrinite

columns can incorporate in the normally frustrated a-direction and this resulted in

the desired lowering of the aspect ratio of the final crystals. Very recently Gomez et

al. also achieved a similar result using small chain alcohols as a co-solvent although

they did not propose a mechanism for the change in morphology of the zeolite L

crystals [265].

The case of AlPO-11 is more straightforward than that of zeolite L where we

simply have the large hexadecylamine surfactant hindering the AlPO-11 {001} sur-

face. On the other two surfaces this molecule is easily incorporated into the growing

crystal and so does not affect growth on this face, and indeed could be promot-

ing growth in this direction. Although it is difficult to say for certain that growth

promotion is occurring in the other two directions.
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These results do show that simulations can provide insight into the mechanisms

that cause templates to alter crystal morphology. The zeolite L work is an exam-

ple where simulations were able to predict which templates may influence crystal

morphology. This was achieved first through careful AFM studies on the growth

mechanisms [252]. Once this was understood considered how it could be affected.

Using the interaction energies calculated from docking simulations we were success-

fully able to predict which organic molecules were likely to influence the growth, as

was proved by the experimental work [246]. This result in itself is very encouraging

as one of the goals set out in the introduction to this thesis, and indeed for zeolite

science as a whole, is to predict the synthetic outcomes. This would enable zeolites

to be designed for specific purposes.
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CHAPTER 6

Templates and Water

6.1 Introduction

In Section 2.4 the mechanism for nucleation was considered. It was discussed that

the formation of water clathrate structures around the template which are then sub-

stituted for silica. This idea stems from work by Mootz and Siedel where they ob-

served that clathrates isomorphic with Sodalite form around tetramethylammonium

(TMA) [266, 267]. However, it is difficult to observe these structures experimentally

in the liquid phase under zeolite synthesis conditions which are considerably higher

in both temperature and pressure than the experiments of Mootz and Siedel, as well

as synthesis vessels being impenetrable to spectroscopic techniques such as infra-red.

This chapter builds on previous work where the hydration layers of some com-

mon small organic templates were studied [263]. The water structures around some

larger templates, specifically diquaternary ammonium compounds, are studied and

analysed for the clathrate-like structures. It is hoped that this will explain the ex-

perimental observations, that altering the chain length, changes the zeolite structure

formed. The analysis code used previously [263] has been completely rewritten in

order to analyse non-spherical templates. The reasons behind this will be discussed

later.
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6.1.1 Water Structure

The structure of water has been widely studied, and it is known to be a highly

structured liquid [268]. But problems arise when this order is required to be quan-

tified. Most commonly, X-ray and neutron diffraction are used to determine water

structure. From the total diffraction data we can derive structure factors and pair

correlation functions (PCF) by Fourier transform [268]. However, this analysis of

the total diffraction data leads to a structure of liquid water that resembles non-

structured liquids such as liquid argon [269]. Therefore it is necessary to quantify

the ordering of water using more than just the radial dependence. It was proposed

by Bennetto and Caldin [270] that the general “order”, and later by Marcus [271]

that factors such as the “stiffness” and “openness” would serve as better measures.

Here, “stiffness” relates to the work necessary to create a cavity within the water,

“openness” is the difference between bulk molar and intrinsic molar volumes. “Or-

der” is the deficit in molar entropy with respect to the gas phase. Breaking the pair

correlation functions into partial functions, i.e. those between oxygen and hydrogen,

as opposed to just the total PCF, has also been shown to yield more information

[272].

Order in water is of course governed by hydrogen bonding. Therefore the net-

work of hydrogen bonds provides a useful measure of the effects of a solute on the

water structure because we can measure the disruption (or lack thereof) caused to

the network. The hydrogen bond network of pure water has been studied experi-

mentally using X-ray absorption spectroscopy (XAS) and X-ray Raman scattering

spectroscopy (XRS). Nilsson et al. take the view that most of the water forms two

strong hydrogen bonds with water, with a minority ( 20%) in an ice-like tetrahedral

form [273, 274]. However, Saykally and co-workers interpret the results of similar

experiments differently, finding that most of the water is in the tetrahedral ice-like

form with a minority in the other form [275, 276].

Extensive neutron diffraction studies by Turner et al. of TMA in water show

little change in the PCFs between water hydrogens, the water hydrogens and other

atoms, and between other atom types [277]. They concluded that TMA has no effect

on the structure of the water compared to bulk solution, and the TMA also did not

sharpen the H-H peak as may be expected. However, the authors do note this could

be due to the TMA not being as hydrophobic as larger tetraalkylammonium cations.

A later study from the same group, this time on tetrapropylammonium (TPA) and

tetrabutylammonium (TBA), does conclude that there is a small, but probably

significant increase in the structuring of the water in the hydration layers compared

to bulk water. This is highlighted by the increase in height and change in position
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of the second H-H peak, i.e. the first intermolecular peak, which suggests there is

an increase in the number of ideal hydrogen bonds. The first O-H intermolecular

peak was also sharpened, suggesting there is a decrease in the number of possible

conformations for the water. Turner et al. also conclude the average number of

hydrogen bonds remains constant, supporting the hypothesis where the solute is in

a cage maintaining the bulk water structure around it.

NMR studies of TMA, TPA and TBA in water by Bradl and Lang [278] show

there is reduced mobility of the water around the alkyl chains for all solutes ex-

cept TMA. This is the same for most experimental findings where TMA disrupts

water networks, and larger more hydrophobic molecules enhance the water network

structure.

6.1.1.1 Computational Studies

Computer simulations clearly have an advantage over spectroscopic techniques in

that the exact positions of the particles are known. However, ambiguity still exists,

in the exact definition of a hydrogen bond. Geometrically it is generally accepted

that the distance between oxygen and hydrogen, i.e. O · · · H−O and the angle of

this bond are used to define a hydrogen bond in a liquid [279]. Using this criteria,

Xenides et al. conclude from ab initio simulations on pure water that there are

on average 2.8 hydrogen bonds per water molecule [280]. A molecular dynamics

study by Madan and Sharp on TMA in water, utilising the TIP4P model of water,

shows the H-H and O-O RDF first peak-to-trough ratio increases. An increase in

the peak-to-trough ratio implies that the water is becoming more ordered [281].

Madan and Sharp also state that the changes induced in the water structure are

similar to a temperature drop of 20◦C in pure water, again implying that there

is an increase in the water structuring. By comparison with neutron diffraction

data they find their results compare well for the pure water simulations, but when

comparing to experiments including TMA, they note that although there are water

structure altering effects apparent in the experiments, they are not as large as in the

simulations. These suggest that there is a masking of these effects by bulk water, or

by water coordinating to other cations which are of course indistinguishable in the

experiments.

Recently, work by Szyja et al. have investigated the stability of

tetraalkylammonium-silicate species [282, 283]. Stemming from previous experi-

mental work in which Kirchhock et al. propose a Si11 oligomer that is essential to

the formation of zeolites MFI and MEL [284]. Depending on orientation these Si11

units can be combined to form the Si33 MFI/MEL precursor. Szyja et al. build
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Figure 6.1: Ring statistics (left) and ring lifetimes (right) for water, TMA, TEA
and neopentane. Reproduced from reference [263].

upon this by taking the Si22 precursor which is the smallest oligomer to have a

cavity and study the relative stabilities of this structure in the presence of TPA

and TBA [283]. The results suggest that TPA stabilises the MFI precursor cage,

and TBA the MEL precursor cage which corresponds to the experimental results by

Kirschhock et al. [284]. However, the most interesting the result for comparison to

this work is that TPA stabilises a silica five ring and TBA the four ring.

Previous calculations by Butler investigated the affects of a number of template

features on the ring structures in water within the first hydration layer of the organic

molecule [263]. TMA was compared to tetraethylammonium (TEA) to study the

affect of hydrophobicity, and TMA with neopentane (replacing the N+ in TMA

with carbon creates neopentane which has the same space filling properties but

uncharged) to study the effect of charge. These results (see Figure 6.1) show a

dramatic increase in the number of five and six rings (in pure water we observe

only three and four rings) in the first hydration layer around the template. Charge

appears to stabilise four member rings whilst more hydrophobic surfaces promote

five rings. As well as investigating the frequency a particular ring structure appears,

the lifetime of the rings was also studied. The lifetimes of the rings in the first

hydration layer also increase compared to bulk water with the charge appearing

to play an important role in this. We already see therefore a correlation between

the effect of the templates on the structure of water and their effect on stabilising

specific zeolite precursors [282, 283, 284].
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6.2 Methods

6.2.1 Radial Distribution Functions

In order to analyse fully the water structure, radial distribution functions (RDF)

were calculated. From the discussion of previous work in Section 6.1.1 it is clear that

this provides an excellent measure of the extent with which the solutes are affecting

the water network. Radial distribution functions were calculated between a pair of

species from the molecular dynamics trajectories. The bins for the collection of the

histogram data were set to 0.03 Å. We calculate a radial distribution function for

two atom types, A and B using the following:

gab(r) = nab(r)/V (r)ρb = ρab/ρb (6.1)

where nab(r) is the frequency of finding atom type B at a distance between r and

r + δr from atom type A. ρb is the bulk density of atom type B, ρab is the local

density at a distance r from A. V (r) is the volume of the spherical shell around A

between r and r + δr. In the case of a simulation involving a homogeneous solvent

this is simply:

V (r) = 4πr2δr (6.2)

We have to correct the volume of the annulus as we have a solute in the solvent. This

means that a significant portion of any annulus which we are calculating may pass

through the volume occupied by the solute and thus represents a volume in which

it is impossible to find solvent molecules. This will lead to the pair correlation

density being lower for no intrinsic reason. Therefore when calculating the radial

distribution function we must take this effect, which is known as the excluded volume

effect (see Figure 6.2), into account [285]. The effect is of course smaller for small

solutes, but increases for larger solutes, or at high solute concentration as is the case

with the calculations presented here.

Experimentally the excluded volume is taken into account by assuming the solute

occupies a spherical cavity in the solvent. The RDF for A and B is then multiplied

by the Fourier transform of the calculated scattering function for the spherical cavity.

In a computational simulation it is much easier to account for the effect given we

know the exact positions of the molecules. If we again assume the solute molecule

occupies a spherical cavity then we can calculate any given volume (Vs) of an annulus
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Figure 6.2: Diagram showing the excluded volume when a solute is present. The
shaded region represents the excluded volume.

that falls within the solute as follows:

Vs = 2πrδr(r − (r2 − r2s + r2a)/2ra) for |rs − r| < ra < (rs + r)

= 0 for ra > (rs + r) or ra > |rs − r|; r > rs (6.3)

where r is the radius of the annulus, rs is the solute radius, ra is the distance from

atom A to the centre of the solute. Once Vs has been calculated the density of atoms

of type B within the annulus is weighted by the ratio of the total volume outside

the solute to the total annulus volume (V − Vs)/V .

We can see that calculating the excluded volume for a spherical solute is relatively

trivial. However, for many solutes in this work, the solute can not be approximated

to a sphere (see Figure 6.3). In this case it is far more complex to obtain the excluded

volume and in order to overcome this a Monte Carlo method was used. Each atom

in the solute is modelled as a sphere with radius equal to the van der Waals atomic

radius. A random point is then placed within the annulus and the point is checked

against all the spheres. The volume of the annulus V is then weighted by the ratio

of the number of points that fall within the spheres to the total number of points

ni/N) in order to give the excluded volume Vs.
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Figure 6.3: Diagram showing the correction to the RDF for solute excluded volume
when the solute is not spherical.

6.2.2 Ring Searching

In order to analyse the structuring of the water a code was written to analyse the

molecular dynamics, searching for rings within the first hydration layer. In this

case we define a “ring” as the shortest path back to the original water molecule

W0. The code assigns each water molecule (in practice the water molecule is defined

by its oxygen) a unique index and using these builds a neighbour list by searching

for water molecules that are “connected” to it. That is they fall within the first

oxygen-oxygen peak of the water radial distribution function.

Once the neighbour list is constructed the code then searches for paths back to

the origin by moving outwards. First the code selects the first neighbour in the list

of the neighbours of W0 which will be W1 followed by the first neighbour of W1 which

will be W2. W3 is then the first neighbour of W2 and this is then checked against

W0. If W0 has the same index as W3 (i.e. W3 is W0) then we have found a three ring

and the unique indices of the atoms are stored. If W3 is not the same molecule as

W0 then the first neighbour of W3 is selected which will be W4. Once again if W4 is

the same molecule as W0 then we have a four ring and the unique indices are stored.

This process continues to W6 which will equal a six ring. If no rings are found then

we drop back to W5 and select the second neighbour and repeat for all neighbours of

this new W5. Once exhausted we fall back further and select the second neighbour

of W4 and repeat the process. This continues until we have exhausted all neighbours
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of W0. Each water is assigned as W0 in turn and the process repeats.

Once all the rings have been identified the ring lists are checked for any rings

which have been double counted. At the same time, the code checks that there is

not a shorter ring within the larger ring, in which case the larger ring is rejected.

This set of unique rings are stored along with a counter which is initially set to zero,

and the same analysis is carried out on the next step in the molecular dynamics

trajectory. The unique set of rings from this set are then compared to the previous

step. If a ring already appears then the counter is incremented. If it does not, it

is added to the list and the analysis continues until all steps in the simulation have

been analysed. The final output from the code is the number of three, four, five,

and six member rings, along with the average lifetime of each ring type.

6.2.3 Hydration Layers

As already mentioned we no longer consider our solute (the templates) to be reason-

ably approximated as spherical which had implications when it came to calculating

the excluded volume. We must also consider the solute shape when calculating the

hydration layers, as we can no longer just take the centre of mass of the solute and

simply calculate the water molecules that fall within the hydration layer radius. As

the diquaternary ammonium compounds have a mirror plane (or centre of inversion)

in the centre it seems reasonable to break the hydration layer down into two compo-

nents. The first as two hemispheres around the nitrogen head groups and the second

a cylinder along the chain. This allows each section to be analysed separately.

6.3 This Study

This study builds on previous work by Butler [263] by extending the calculations

into more complex and flexible templates. Using ab initio molecular dynamics the

effect of chain length, and head group on the water structure is investigated for a

series of diquaternary ammonium compounds. As well as this series of templates,

these results are compared back the the previous computational work, and also to

the secondary building units of the zeolites which the template forms. We also

consider the docking of each template into the zeolite it forms as this can provide

useful information as to why some templates form specific structures.

As well as the analysis of the hydration layers, the energetic barriers to a tem-

plate, specifically TMA, approaching a silica monomer are investigated using a po-

tential of mean force (PMF) calculation in order to gain an understanding of en-

tropic effects and what barriers (if any) exist to a monomer approaching an organic
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template. If the barriers to this are high then we would expect the substitution

mechanism proposed by Burkett and Davis [134] not to occur.

6.4 Computational Methods

The hydration layer calculations were carried out using the Quickstep module that

is part of the CP2K code [286]. GTH pseudopotentials [287, 288, 289] were used

with a DZVP basis set and an energy cutoff of 280 Ry. These have previously been

shown to reproduce water adequately [290, 144]. The templates were hydrated by

cutting a cavity just large enough for the template in a pre-equilibrated box of water.

These systems were then run in a NPT ensemble for 5 ps to equilibrate the volume

in the case of the methyl systems and 3.5 ps in the case of the ethyl systems for a

chain length of four and up. The systems were then run for a further 1 ps under

the NVT ensemble using the Hoover thermostat to make sure the temperature

was equilibrated. During the NPT temperature was initially controlled using a

temperature re-scaling thermostat set to 350 K. A timestep of 1 fs was used for

all simulations and the positive charge on the framework was neutralised with a

background negative change. The production run was executed under NVE for 15

ps, and only the trajectories obtained from this portion were used to calculate the

RDFs and for the ring analysis. The final compositions used for the collection runs

can be found in Table 6.1. Figures 6.5 and 6.6 contain plots of the simulation volumes

for the NPT run. Figures 6.4, 6.7 and 6.8 contain the simulation temperatures for

the production runs. The pure water simulation consisted of 32 water molecules

with the a cell parameter set to 9.852 Å in order to maintain the water density at

0.96 g dm−3.

These simulations were run predominantly on the national supercomputer HeC-

TOR, as well as UCLs’ supercomputer Legion. A 15 ps run took approximately 200

hours to complete running on 384 cores.
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Solute Volume Å3 Number of waters
TPA 3711 104
TBA 4812 127
Pyrrolidinium 1824 61
Piperidinium 2135 62
Me6-diquat-3 2464 75
Me6-diquat-4 2869 89
Me6-diquat-5 3325 94
Me6-diquat-6 3420 100
Me6-diquat-7 4380 123
Et6-diquat-3 3985 111
Et6-diquat-4 4073 115
Et6-diquat-5 4307 122
Et6-diquat-6 4768 133

Table 6.1: Cell compositions after the NPT run.

Figure 6.4: Volume (top)/temperature (bottom) vs simulation time for TPA and
TBA.
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Figure 6.5: Volume vs simulation time for the methyl diquaternary ammonium
cation series.
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Figure 6.6: Volume vs simulation time for the ethyl diquaternary ammonium cation
series.
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Figure 6.7: Temperature vs simulation time for the methyl diquaternary ammonium
cation series NVE runs.
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Figure 6.8: Temperature vs simulation time for the ethyl diquaternary ammonium
cation series NVE runs.
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6.4.1 Radial Distribution Functions

The theory behind measuring and calculating RDFs was discussed in section 6.2.1

and the correction for the solute excluded volume has been applied to all calcu-

lated RDFs. The hydrogen-hydrogen (H-H), oxygen-oxygen(O-O) and the oxygen-

hydrogen(O-H) RDFs have been calculated for all the organic molecules studied here

and compared to bulk water. Using the RDFs it is possible to determine structural

features by comparing the degree of structuring of a peak, that is the peak height

ratio and the peak width. In order to determine the peak height ratio the first

non-zero minimum is used along with the first maximum. The peak-to-trough ratio

Rc can be a very useful measurement. This is a measure of peak sharpness and this

indicates the number of conformations the hydrogens in water may adopt. The O-O

RDF is a measure less commonly seen experimentally as all that can be determined

from neutron scattering experiments are D-X correlations, where D is deuterium

and X is all other atoms. Therefore, when calculating an O-O RDF we will actually

be taking into account other correlations from atoms present in the solution. Note

that for the H-H and O-H RDFs the intra-molecular peak has been suppressed for

clarity.

Along with the RDF, the corresponding coordination numbers have also been

calculated. Coordination number is calculated by integrating the relevant peak, then

weighting the result by the number density of the solution, followed by multiplication

by the number concentration of the atom in question:

Nab(r) = 4πCbρ

∫ r2

r1

r2gab(r)dr (6.4)

where Nab is the coordination number of atom B to atom A, Cb is the number

concentration of atom B, ρ is the number density and gab is the radial distribution

function at r. Note that the peak was integrated by calculating the area under half

the peak then multiplying by two.

6.4.2 Ring Analysis

The ring statistics have been calculated using the code discussed in Section 6.2.2.

In the case of the diquaternary ammonium cations the hydration layer has been

broken down into separate components (see Figure 6.9) which we can relate back to
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Figure 6.9: Diagram showing the two parts of the hydration layer. The nitrogen
head groups in blue and the chain in yellow.

the zeolite which they form. The y-axis has been normalised as follows:

Nr =
N

sNw

(6.5)

where Nr is the normalised number of rings, N is the total number of rings found

during the course of the simulation, s is the number of steps and Nw is the average

number of water molecules in the hydration layer for that template. By normalising

the number of rings in this manner it ensures that there is no skew of results simply

because the template has a larger hydration layer.
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Zeolite
Template NON MRE FER ZSM-12 EUO MOR MWW ANA
Me6-diquat-3 -87 -51 +49 -77 -84 -153 -71 -
Me6-diquat-4 802 -81 -27 -82 -98 -170 -91 -
Me6-diquat-5 - -108 -12 -90 -99 -193 -106 -
Me6-diquat-6 - -101 +80 -97 -98 -196 -82 -
Me6-diquat-7 - -87 +7.4 -97 -101 -215 -92 -

Table 6.2: Methyl series interaction energies with the frameworks they template.
The (-) indicates no docked structures were obtained. Energies in kJ mol−1.

Zeolite
Template MFI MOR MFS GIS AFX SZR
Et6-diquat-3 -87 -51 -174 -77 -84 +15
Et6-diquat-4 +802 -81 -147 -82 -98 +196
Et6-diquat-5 +726 -108 -171 -90 -99 +216
Et6-diquat-6 +721 -101 288 -97 -98 +674

Table 6.3: Ethyl series interaction energies with the frameworks they template.
Energies in kJ mol−1.

6.5 Results

6.5.1 Docking Calculations

The docking calculations presented here were carried out using the modified

ZEBEDDE code. The framework structures were taken from the IZA website [4]

and converted (where necessary) to their entirely siliceous forms before being opti-

mised using the GULP code [214] with the SiO2 potentials of Sanders, Leslie and

Catlow [188]. The docking procedure which has been discussed previously (see sec-

tion 4.2.3) was then used to generate fifty docked structures. The best i.e. most

negative, energy was then extracted from these and is presented in Table 6.2 for the

methyl series and Table 6.3 for ethyl.

From Tables 6.2 and 6.3 it is immediately clear that zeolites with straight chan-

nels (MTW, MOR) generally have favourable interaction energies and the interaction

energy increases as a function of chain length. Indeed most results fit well with the

experiments of Lee et al. [291, 40]. MFI is only found for n = 3, 7− 10 in significant

quantities and as minor products at n = 4, 5, 6, we can see that only Et6-diquat-3

has a favourable interaction energy. However, there are some surprising results. For

example, that SUZ-4 (SZR) is obtained at all when using Et6-diquat-5 templates

since the interaction energy is very high, although this in in contrast to previous

studies which found Et6-diquat-5 docked with an interaction energy of -85 kJ mol−1
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[41]. This discrepancy occurs as the chain of Et6-diquat-5 must contort to allow the

head nitrogen groups to sit in the channel intersection which is clearly due to flaws

in the calculation methodology as Monte Carlo simulation do not allow for these

kind of actions. It is worth noting here that that all the Et6-diquat-n templates,

with the exception of Et6-diquat-6 fit exceptionally well within ZSM-57(MFS). It is

therefore surprising that Et6-diquat-5 is the sole template currently known to direct

the synthesis of this particular framework.

6.5.2 Large Tetraalkylammonium Compounds

6.5.2.1 RDFs

In previous work [263], solutions with TMA and tetraethylammonium (TEA) were

compared to simulations of bulk water. To continue this, the next two members of

the series, TPA and TBA, (see Figure 6.10) have been studied. Presented in Table

6.4 are the important peaks from the RDFs with the full graphs in Figure 6.11.

Focusing on the H-H RDF we notice that this peak has been shifted further

out by 0.06 Å compared to pure water. We can see from the ratios that there is a

sharpening of this peak when TPA is present but when TBA is present there is a

slight reduction in the ratio. The first peak in the O-O RDF is in the same position

for all species. However, both TPA and TBA have increased peak to trough ratios

suggesting the water is more tightly held. The O-H RDF on the other hand, suggests

that although the first peak is in almost the same place, the difference in peak to

trough ratio implies that TBA is disrupting the hydrogen bond network, where

as TPA is promoting it compared to pure water. If we consider the coordination

numbers, we notice that compared to pure water there is a decrease in structuring

on inclusion of the template. The O-O coordination number has decreased from 4.13

in pure water, suggesting ideal tetrahedral coordination, to 2.85 and 3.13 in TPA

and TBA respectively. This is in line with previous work [272, 263] where disruption

of the water network is observed. Furthermore, we can see from the decrease in O-H

coordination number that the hydrogen bond network is also being disrupted.

6.5.2.2 Ring Analysis

The ring statistics for TPA and TBA compared to pure water are presented in

Figure 6.12. As was observed with TMA and TEA in previous work [263] and with

the organic ring molecules studied in this work we can immediately see there is a

dramatic increase in the numbers of all types of rings, with five and six rings having

the largest increase. Comparing these to the results for TMA and TEA we see the
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Figure 6.10: Structure of TPA and TBA.

Species RDF Peak Ms Mf Rc Nx

Water HH 2.31 1.77 2.85 2.16 4.95
OO 2.76 2.46 2.22 3.81 4.13
OH 1.77 1.41 2.40 8.35 1.85

TPA HH 2.37 1.80 2.97 2.29 4.18
OO 2.76 2.40 3.36 4.65 2.85
OH 1.80 1.38 2.46 9.27 1.44

TBA HH 2.37 1.89 2.88 2.12 4.30
OO 2.76 2.40 3.42 4.44 3.13
OH 1.77 1.47 2.46 6.48 1.20

Table 6.4: Important peaks from the radial distribution functions for TPA and
TBA compared to water. Peak is the position of the first peak. Ms is the start of the
peak, Mf is the end, Rc is the ratio of the peak maximum to trough and Nx is the
coordination number.
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Figure 6.11: The radial distribution functions for pure water, TPA and TBA.
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four ring is more prominent than for TEA but as was seen before we have an increase

in the number of five rings as we make a more hydrophobic molecule.

The lifetimes of the rings around TPA/TBA are very low compared to water

and relative to TMA/TEA. In fact, these are the lowest lifetimes observed for any

of the rings with each type of ring only living for on average around 3.5 fs. This

could be due to the flexibility of both TPA and TBA which are more flexible than

TMA and TEA. This does link back to the lifetime drop observed in the rings

around neopentane [263] and so this could also be a function of hydrophobicity.

An alternative explanation is that lifetime is linked to charge density. Increasing

the chain length screens the charge and so the larger TPA and TBA are unable to

hold the water as firmly. This hypothesis also ties in with the results obtained for

neopentane.

6.5.3 Cyclic Amines

6.5.3.1 RDFs

Studying the RDFs for pyrrolidinium and piperidinium (see Figure 6.13) compared

to pure water (see Table 6.5 and Figure 6.14) we see that the ring structures induce

ordering within the water. The first peak for pyrrolidinium in the H-H RDF has

been shifted slightly from 2.31 Å in water to 2.25 Å, although the peak ratio remains

the same. Piperidinium shifts the first peak further away and also causes a decrease

in the ratio suggesting this molecule does not hold the water as rigidly. A similar

pattern emerges for the O-O RDF, where the first peak for pyrrolidinium is shifted

by -0.06 Å compared to water. This same peak for piperidinium is in the same

position as for pure water. However, if we compare the peak ratio we see a dramatic

increase from 3.81 to 4.65 and 4.45 for pyrrolidinium and piperidinium respectively,

suggesting more rigidly held water. The O-H RDF shows similar effects, and al-

though the peak position is almost identical both organics have an increased peak

to trough ratio, piperidinium showing a slight increase of 0.31 and pyrrolidinium

a much larger increase of 0.92. Like TPA/TBA the coordination numbers for the

cyclic amines studied here also show a decrease in water structure, although it is less

pronounced. Unusually, the hydrogen bond network in pyrrolidinium appears to be

almost the same as water, but the water has been disrupted out of the tetrahedral

conformation as is shown by the decrease in the O-O coordination number. We

would expect large errors in calculating the coordination numbers from RDFs as

there is ambiguity in assigning the peak minima and maxima and so this low O-O

coordination number could be due to this.
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Figure 6.12: Numbers and lifetimes of rings present in the hydration layer of TPA
and TBA compared to pure water.
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Figure 6.13: The two ring organics used in this study. Pyrrolidinium (left) and
piperidinium (right).

Species RDF Peak Ms Mf Rc Nx

Water HH 2.31 1.77 2.85 2.16 4.95
OO 2.76 2.46 2.22 3.81 4.13
OH 1.77 1.41 2.40 8.35 1.85

Pyrrolidinium HH 2.25 1.80 2.82 2.16 3.41
OO 2.70 2.43 3.30 4.65 2.51
OH 1.80 1.38 2.46 9.27 1.89

Piperidinium HH 2.37 1.89 2.91 1.91 4.83
OO 2.76 2.40 3.42 4.45 3.31
OH 1.77 1.47 2.46 8.66 1.40

Table 6.5: Important peaks from the radial distribution functions for TPA and
TBA compared to water. Peak is the position of the first peak. Ms is the start of the
peak, Mf is the end, Rc is the ratio of the peak maximum to trough and Nx is the
coordination number.
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Figure 6.14: The radial distribution functions for pure water, pyrrolidinium and
piperidinium.
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Figure 6.15: Number and lifetimes of the rings present in the hydration layer of
small cyclic organics compared to pure water.

6.5.3.2 Ring Analysis

We have seen from the RDFs that there in an increase in the ordering of the water

and this is reflected in the ring statistics. Figure 6.15 has the ring analysis for the

two organic ring molecules studied here. For pyrrolidinium there are approximately

twice as many four rings than in pure water. However, the most significant increases

are in the number of five and six rings which are almost non-existent in pure water.

Looking at pyrrolidinium, we still see an increase in the number of five and six rings

but the number of four rings remains almost the same. This also corresponds to the

RDFs where although we observe an increase in the ordering of the water, it is not

as strong as in pyrrolidinium.

When comparing the lifetimes of the rings with water, we can see there is a

decrease in the lifetimes of each type of ring by approximately a third. The lifetime

of four rings is almost identical for both organic species. However, there is some

variation in the lifetime of five rings which are longer lived in the hydration layer

of pyrrolidinium. Six rings on the other hand are longer lived around piperidinium.

Given that the charge on both species is the same, and just as exposed we can infer

that this stabilises the four ring (as was seen in previous work [263]) and the extra

carbon in the ring only disrupts ring formation, but it is interesting to note that the

five member ring organic supports five rings and the six member ring supports six

rings, although overall the stabilising effects are weaker.
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(i) Me6-diquat-3 (ii) Me6-diquat-4 (iii) Me6-diquat-5

(iv) Me6-diquat-6 (v) Me6-diquat-7

Figure 6.16: The methyl diquaternary ammonium compounds studied.

6.5.4 Methyl Diquaternary Ammonium Series

6.5.4.1 RDFs

The first series of diquaternary ammonium compounds studied were the methyl

series, (see Figure 6.16) Me6-diquat-n, with n = 3 − 7. Table 6.6 contains the

important measurements taken from the calculated RDFs. The H-H, O-O, and O-H

RDFs of Me6-diquat-3 are first compared to pure water (see Figure 6.17) before

comparing to the whole diquaternary ammonium series in Figures 6.18, 6.19 and

6.20.

First comparing the RDFs of Me6-diquat-3 to those of pure water, we can see

that the overall shape is similar with the exception of the O-H RDF where we lose

some of the intermediate range order. Focusing on the H-H RDF we see that the

first inter-molecular peak is shifted slightly (0.06 Å) when in the presence of Me6-

diquat-3. We see almost no change (0.01) in this ratio suggesting that the degree

of structure is almost identical. In the O-O RDF for Me6-diquat-3 and pure water

we see no change in the first inter-molecular peak. However, there is an increase in

the peak ratio from 3.81 in pure water to 3.98 in Me6-diquat-3. This suggests that

although the water is not closer in to the Me6-diquat-3 it is more restricted.

Finally, we consider the O-H RDF, which provides information on the hydrogen

bond structure. The peak for both water and Me6-diquat-3 falls at 1.77 Å which

is slightly lower than the ideal hydrogen bond length observed experimentally of

about 1.9 Å[292]. However, there is once again an increase in the peak-to-trough

ratio from 8.35 for pure water to 8.70 in Me6-diquat-3. Once again this suggests a

slightly more restricted mobility within the hydration layer of Me6-diquat-3. Overall

this suggests that the structure of the water network around Me6-diquat-3 is not
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Species RDF Peak Ms Mf Rc Nx

Water HH 2.31 1.77 2.85 2.16 4.95
OO 2.76 2.46 3.15 3.81 4.13
OH 1.77 1.41 2.40 8.35 1.85

Me6-diquat-3 HH 2.37 1.80 3.00 2.15 4.76
OO 2.76 2.37 3.36 3.98 3.25
OH 1.77 1.41 2.43 8.70 1.41

Me6-diquat-4 HH 2.28 1.80 2.91 2.11 3.56
OO 2.79 2.40 3.27 3.83 4.00
OH 1.77 1.47 2.43 7.83 1.43

Me6-diquat-5 HH 2.31 1.80 2.94 2.60 3.62
OO 2.79 2.46 3.42 6.28 3.61
OH 1.80 1.47 2.46 11.14 1.60

Me6-diquat-6 HH 2.31 1.80 2.97 2.43 3.63
OO 2.79 2.46 3.39 4.71 3.69
OH 1.80 1.47 2.52 9.54 1.61

Me6-diquat-7 HH 2.31 1.80 2.97 2.25 3.23
OO 2.79 2.46 3.33 4.59 3.43
OH 1.80 1.47 2.55 7.88 1.40

Table 6.6: Important peaks from the radial distribution functions for Me6-diquat-n
with n = 3− 7. Peak is the position of the first peak. Ms is the start of the peak, Mf

is the end, Rc is the ratio of the peak maximum to trough and Nx is the coordination
number.
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Figure 6.17: The radial distribution functions for pure water and Me6-diquat-3.
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Figure 6.18: The H-H radial distribution function for Me6-diquat-n with n = 3− 7.

very different to that of bulk water, but what we can say is that the motion of the

water is more restricted.

The results for the remaining methyl diquaternary ammonium cations are now

compared to Me6-diquat-3. On visual inspection we can see that the RDFs look

remarkably similar. However, on closer inspection we observe some important dif-

ferences. First, in the H-H RDF (Figure 6.18), there is small shift (-0.09 Å) in

the first peak between Me6-diquat-3 and Me6-diquat-4. However, for Me6-diquat-5,

Me6-diquat-6 and Me6-diquat-7 the first peak shifts slightly further out to 2.31 Å.

These results suggest that the chain length of four holds the water slightly closer.

Comparing the ratios we see that there is a slight drop of 0.04 between Me6-diquat-3

and Me6-diquat-4, but this is followed by a dramatic increase (+0.49) to Me6-diquat-

5. There is then a drop in the ratio by 0.17 between Me6-diquat-5 and Me6-diquat-6

and finally to 2.25 for Me6-diquat-7. These results suggest the structure of water

around Me6-diquat-5 is unique, having less flexibility than the water around the

other templates considered.

In the O-O RDFs (Figure 6.19) we see almost no change in the position of the

first peak. There is a slight change (0.03 Å) when moving from Me6-diquat-3 to Me6-

diquat-4 but this remains constant at 2.79 Å for the remaining chain lengths. For

the ratios we see a similar trend to the H-H RDF where there is a maximum for Me6-

diquat-5, and a minimum at Me6-diquat-4. These same trends are also seen in the
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Figure 6.19: The O-O radial distribution function for Me6-diquat-n with n = 3− 7.

Figure 6.20: The O-H radial distribution function for Me6-diquat-n with n = 3− 7.
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O-H RDF (Figure 6.20) where once again the highest ratio is seen for Me6-diquat-5

at 11.14, and the lowest for Me6-diquat-4 at 7.83, although Me6-diquat-7 has almost

the same value. Thus, regardless of RDF considered Me6-diquat-5 appears to behave

differently to the remainder of the series.

Comparing the coordination numbers we notice Me6-diquat-5 and Me6-diquat-

6 have the greatest number of hydrogen bonds. However, given the reduced O-O

coordination number, the water has been distorted from the tetrahedral configura-

tion. Interestingly, the O-O coordination number is exactly 4.0 for Me6-diquat-4

suggesting that the water is tetrahedral, but the O-H coordination number is low

(1.43) which indicates there is a lot of movement in the hydration layer. The co-

ordination numbers for Me6-diquat-3 and Me6-diquat-7 show the weakest ordering

with low numbers of hydrogen bonds, and water shifted out of the bulk tetrahedral

coordination.

6.5.4.2 Ring Analysis

The ring statistics for the methyl series of diquaternary ammonium compounds can

be found in Figure 6.21. As with the previously studied templates [263] there is

a significant increase in the number of five and six rings compared to pure water.

The number of five rings in the total hydration layer remains relatively constant for

all values of n, with only a slight decrease at n = 4 and 5, with the same trend

observed for the six rings. However the number of four rings fluctuates as the chain

length is made longer. This appears to follow a pattern and possibly linked to the

conformation of the template, since when the number of carbons is odd the methyls

on the nitrogen are on the same “side”.

When we partition the water, it is interesting to note that the Me6-diquat-3 is

almost identical to TMA where four rings are most stable followed by five, then six.

As we move though the series, there is a steep decline in the number of four rings

present, and five rings become more dominant. The number of five rings appears

to peak at a chain length of five. The six rings again follow the same trend as four

rings. Around the chain, there are almost no five and six rings in the hydration

layer of Me6-diquat-3. This is due to the hydration layer being too small and so

there are simply too few water molecules present to form any large rings. Moving

to Me6-diquat-4 there is a dramatic increase in the number of five rings. However

there are still almost no six rings until we reach a chain length of five carbons.

Once again there is an alternation in the number of four rings which ties into the

orientation of the nitrogen head groups although this appears to break down one we

reach Me6-diquat-7.
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Figure 6.21: Average number of rings in the whole hydration layer (top), around
the end nitrogen groups (middle) and around the chain (bottom) for Me6-diquat-n
series.
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Figure 6.22: Average lifetime of rings in the whole solvation layer (top), around the
end nitrogen groups (middle) and around the chain (bottom) for Me6-diquat series.
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The average lifetimes for the rings are in Figure 6.22. Starting with the total

solvation layer we can see that the trend is the same for each template where the four

ring is longest lived, followed by five then six. An interesting feature is the general

increase in lifetimes as we increase the chain length which suggests that the chain

that the hydrophobic nature of the chain has a stabilising effect on the hydration

layer. Focusing on the lifetimes of the rings which form around the nitrogen head

groups, we again see a general increase in the lifetimes. However, unlike for the total

hydration layer, the five ring becomes dominant once the chain length reaches five.

Interestingly, around the chain of Me6-diquat-3 despite the number of five and

six rings present being extremely low, the rings that do exist are relatively long

lived. The lifetime of the four ring stays relatively constant, but the lifetime of the

five and six rings increases as the chain length increases.

6.5.5 Ethyl Diquaternary Ammonium Series

6.5.5.1 RDFs

A similar analysis has been carried out for the ethyl series (see Figure 6.23), Et6-

diquat-n with n = 3 − 6. Once again the excluded volume has been applied when

calculating the RDFs and the intra-molecular peak has been removed for clarity.

Figure 6.24 compares the RDF of pure water to Et6-diquat-3, with the important

peaks from all RDFs listed in Table 6.7. From a visual inspection we can immediately

see there is a much greater ordering of the water around the templates than in pure

water, and indeed more than with the methyl diquaternary compounds: all the

peaks are more defined.

If we look first in detail at the H-H RDF for pure water and Et6-diquat-3 we

see that although the first intermolecular peak is in the same position the peak to

trough ratio has increased by 0.51 which implies the water has far less freedom.

We see similar results with the O-O RDF. The first peak in the Et6-diquat-3 O-

O RDF is shifted very slightly (-0.03) nearer suggesting that the water is slightly

closer together but once again there is a more dramatic change (+2.25) in the peak

to trough ratio. The O-H RDF is also well defined, and again the first peak is in

the same position but has a greater ratio suggesting the hydrogen bond network is

more stable.

Figures 6.25, 6.26 and 6.27 compare the RDFs for the full ethyl series studied.

By inspection we can clearly see that Et6-diquat-3 orders the water most. The first

peak on the H-H RDF remains in the same place, with the exception of Et6-diquat-

5 where it is shifted very slightly (+0.03). The ratio Rc is considerably larger for
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(i) Et6-diquat-3 (ii) Et6-diquat-4

(iii) Et6-diquat-5 (iv) Et6-diquat-6

Figure 6.23: The ethyl diquaternary ammonium compounds studied.

Species RDF Peak Ms Mf Rc Nx

Water HH 2.31 1.77 2.85 2.16 4.95
OO 2.76 2.46 2.22 3.81 4.13
OH 1.77 1.41 2.40 8.35 1.85

Et6-diquat-3 HH 2.31 1.80 2.94 2.67 3.96
OO 2.73 2.46 3.39 6.06 2.81
OH 1.77 1.44 2.49 12.32 1.48

Et6-diquat-4 HH 2.31 1.80 2.94 2.07 3.69
OO 2.73 2.37 3.36 3.75 2.49
OH 1.80 1.47 2.46 6.56 1.50

Et6-diquat-5 HH 2.34 1.77 2.97 2.24 4.15
OO 2.76 2.40 3.39 4.29 3.31
OH 1.80 1.47 2.49 8.32 1.60

Et6-diquat-6 HH 2.31 1.77 2.97 2.15 3.71
OO 2.79 2.46 3.39 4.40 3.74
OH 1.80 1.47 2.46 7.52 1.56

Table 6.7: Important peaks from the radial distribution functions for Me6-diquat-n
with n = 3− 6. Peak is the position of the first peak. Ms is the start of the peak, Mf

is the end, Rc is the ratio of the peak maximum to trough and Nx is the coordination
number.
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Figure 6.24: The radial distribution functions for pure water and Et6-diquat-3.
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Figure 6.25: The H-H radial distribution function for Et6-diquat-n with n = 3− 6.

Et6-diquat-3 than any other template at 12.32.

The first peak in the O-O RDF shifts slightly from 2.73 Å in Et6-diquat-3 to 2.79

Å for Et6-diquat-6 suggesting the hydration layer is further away from the organic.

As with the H-H RDF the ratio of the peak for Et6-diquat-3 is much larger than

the other templates at 6.06 with Et6-diquat-5 next highest at 4.29. The O-H RDF

is similar to the O-O RDF with once again Et6-diquat-3 having the highest peak

ratio at 12.32 suggesting that this template promotes hydrogen bonding within the

water. Et6-diquat-5 is again second but we see very little shift in the peak position.

If we consider the coordination numbers, it is interesting to note that the highest

degree of hydrogen bonding is found in the water surrounding Et6-diquat-5, which

is known to direct a number of frameworks. As with the methyl series, the short-

est chain length (n = 3), has the lowest coordination number of O-H. This could

be a factor of charge density, as this decrease was also observed when studying

TMA/TEA [263]. Similarly, at long chain length, flexibility of the template may

play a role in disrupting this network, implying there is an optimum chain length-

/charge density. The O-O coordination number increases as the chain length is made

longer also suggesting that charge causes disruption to the water network, breaking

the tetrahedral structure.
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Figure 6.26: The O-O radial distribution function for Et6-diquat-n with n = 3− 6.

Figure 6.27: The O-H radial distribution function for Et6-diquat-n with n = 3− 6.
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6.5.5.2 Ring Analysis

The second series studied was the ethyl diquaternary ammonium cation series with

chain lengths of three to six. These templates can be seen in Figure 6.23. First

looking at the whole hydration layer we can see there is far more variation in struc-

ture than was seen for the methyl compounds. The five ring is now more dominant,

which correlates with previous work where it was determined that more hydrophobic

surfaces promote five ring formation [263]. However, in contrast, six rings appear

to be very unfavourable whilst four rings increase in number as the chain length is

made longer.

Looking at the hydration layer around the end groups we do not see a similarity

between the rings formed around Et6-diquat-3 and those around TEA as was seen

in Me6-diquat-3/TMA. An interesting feature is the difference between Et6-diquat-4

and the other diquats where the distribution of rings is quite different. There are

almost half as many five rings in the hydration layer around the head groups of

Et6-diquat-4 as there are around Et6-diquat-3. There is also a dramatic increase

in the number of four rings for the chain length of four, and comparatively few six

rings. For the Et6-diquat-5 and Et6-diquat-6 the five ring is again most stable.

However, the number of rings in the hydration layer around the chain look re-

markably similar to that of the methyl series. Once again for the shortest chain

the overall number of rings is low with four rings being most prevalent. There are

about a quarter as many five rings and almost no six rings. Again we consider this

to be the result of the hydration layer in this section being too small to support

ring formation. As was seen for the methyl series there is an increase in the num-

bers of all rings formed with increasing chain length. However, the number of four

rings appears to plateau whereas the number of five and six rings increases relatively

linearly.

As with the methyl series, the average lifetime of the various rings are remarkably

similar. For the whole solvation layer four rings are the most long lived, followed

by five then six. This is the case for all chain lengths, but we again see the average

lifetime increase with chain length. Around the head groups the same trend is

maintained until Et6-diquat-5 where five rings become most stable. However, unlike

the Me6-diquat-6 series this is not the case for Et6-diquat-6. There is once again a

general upward trend in average lifetimes. Finally around the the chain we see a

decrease in the lifetime of four rings. Five and six rings seem to peak in the middle

before dropping off again for Et6-diquat-6: although we have not considered longer

chains.
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Figure 6.28: Average number of rings in the whole hydration layer (top), around the
end nitrogen groups (middle) and around the chain (bottom) for Et6-diquat series.
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Figure 6.29: Average lifetime of rings in the whole hydration layer (top), around the
end nitrogen groups (middle) and around the chain (bottom) for Et6-diquat series.

186



6.5. Results

6.5.6 Discussion

The simulations carried out on the TPA/TBA system yielded interesting results,

whereby the lifetime of the rings in the hydration layer are dramatically reduced

compared to pure water. However, as was seen in TMA/TEA, the numbers of both

five and six rings has increased over pure water, with the most significant increases in

five rings. If we consider the RDFs, we note that these templates disrupt the water

structure as we see decreases in all the coordination numbers compared to pure

water. The calculations on the cyclic amines also provided insight into how cyclic

templates affect the water structure with pyrrolidinium far exceeding piperidinium in

terms of altering the structure of the water. The O-H coordination number increases

compared to bulk water and this increase is mirrored in the greater number of rings

present in the hydration layer. Interestingly, the lifetime of these rings is almost

identical suggesting that it may be charge which promotes longer lifetimes.

If we compare the results from the RDFs to the ring and lifetime statistics we

see a distinct correlation. In the case of the methyl series, the RDF show that Me6-

diquat-5 has the most ordered water around it closely followed by Me6-diquat-6. In

the ring lifetime statistics these diquat templates show the longest lifetimes. In the

ethyl series Et6-diquat-3 shows the strongest ordering in the RDFs, but the correla-

tion with lifetime is not as clear as for the methyl series. The lifetimes are generally

quite similar, and there is a correlation with the ring statistics, where the four and

five rings are most frequent. There is possibly a clearer link between the RDFs of

Et6-diquat-4 which shows weakest water ordering, where the lowest ring counts are

found, and the ring and lifetime statistics, which are again short. Although the

errors in the coordination numbers obtained form the RDFs are high, there appears

to be a link between charge density and disruption of the hydrogen bond network in

the water, as well as movement away from the tetrahedral configuration. However,

it is also possible that this is a factor of hydrophobicity as longer chain length rather

than charge density as in this case they are intrinsically linked. What we can say

though is there is an optimum point where n = 5.

It was hoped that the structures formed in the water in the hydration layers of

these templates could be linked to the zeolite structures they eventually form. To

highlight the features that will be discussed, Figure 6.30 shows the first hydration

layer around Et6-diquat-5 within this hydration layer Figure 6.31 shows some of

the different ring sizes which are present and a double five ring structure around

the chain which is similar to that found in ZSM-57. We begin by considering the

frequency that a particular ring occurs by summing the numbers of each type of

ring (up to six) which form the composite building units. Table 6.8 contains the
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Framework 4-rings 5-rings 6-rings
NON 2 32 16
MRE 2 8 30
MTW 2 16 24
FER 0 40 2
EUO 4 40 22
MWW 48 96 74
MTT 0 10 10

Table 6.8: Ring counts for zeolites made by Me6-diquat-n with n = 3−7 taken from
the IZA website [4].

frequencies for zeolites formed using methyl diquaternary ammonium series studied

here. Although a number of different frameworks are made using these templates, it

is interesting to note that when using Me6-diquat-5 a very diverse range of framework

topologies is made. The absolute values for the numbers of each ring type is not

significant, but if we compare the relative numbers we can see that all have a large

portion of five rings. If we now consider which template is “best” at directing the

formation of five rings in water we can see that this peaks at Me6-diquat-5 where

relative to the others there is a larger proportion (around the head group) of five

rings compared to the others.

Doing a similar analysis for the zeolites made by the ethyl diquaternary ammo-

nium series, we can see similar trends where there are large proportions of five rings.

However, within this series there are exceptions. Analcime (ANA), SSZ-16 (AFX)

and P1 (GIS) all have zero five rings. However, if we look back to the ring statistics

we can see that Et6-diquat-4 (the template which forms Analcime) has an unusually

large number of four rings present in the hydration layer. Both SSZ-16 and P1 are

made using Et6-diquat-5 but only when the MOH/SiO2 (where M is Na+ in the

case of P1 and K+ in the case of SSZ-16) ratio is increased. This suggests that

here the main structure director may be the inorganic cation or as was suggested by

Paik et al. , the inorganic cations influence the conformation of the template [41].

It is interesting to note here that Et6-diquat-5 is the only template which can be

used to form ZSM-57, and it is this template which appears to be the optimum for

supporting five ring formation.

Another interesting feature of the analysis is the general increase in lifetime of

the rings as we increased the chain length, with the exception of the rings around

the chain of the ethyl compounds. This, coupled with the similarity in the ring

statistics suggests that the structure around the chain is stable, and it is the head

groups which disrupt the structure around the chain. In the case of the methyl
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Figure 6.30: Picture of the first hydration layer around Et6-diquat-5.

(i) Four ring (ii) Five ring

(iii) Six ring (iv) Double five ring

(v) MTT unit
from ZSM-57

Figure 6.31: Pictures showing the various ring sizes formed around the template
and an image showing two linked five rings around the chain which is similar to the
ring structure found in ZSM-57.
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Framework 4-rings 5-rings 6-rings
ANA 6 0 4
MOR 2 24 0
MFI 2 40 18
GIS 6 0 0
MFS 4 26 4
SZR 12 16 8
AFX 36 0 8

Table 6.9: Ring counts for zeolites made by Et6-diquat-n with n = 3− 6 taken from
the IZA website [4].

series, the head groups are relatively small and so the influence is reduced and as

such the lifetime of the rings increases. However, in the case of the ethyl series the

more flexible ethyl groups can exert a greater influence on the chain and so we see

the decrease in lifetimes. Attempts were made to explore the relationship between

chain flexibility and lifetimes by plotting the nitrogen-nitrogen separation vs ring

count over time. However, the relatively short production run meant the chain did

not flex much. Combining this with noisy results meant no link was found.

6.6 PMF Calculation of Silica Approaching TMA

6.6.1 Introduction

In Chapter 2 the role of the template was introduced and the formation of a zeolite

was hypothesised to proceed by the template first ordering the water in the hydration

layer into a clathrate like structure which is followed by substitution of water for

silica. In order to investigate the energetic barriers to this substitution, potential of

mean force (PMF) calculations were carried out on a silica monomer approaching

TMA. If large energetic barriers exist to this process then we might expect that the

silica would be unable to break the hydration layer around the template.

6.6.2 Computational Details

PMF calculations were carried out using constrained molecular dynamics simulations

in DLPOLY4 [260]. Images were created with TMA and silica monomer separations

of 7 Å, 9 Å, 11 Å and 13 Å. These simulation cells were then filled with water

which totalled 2,028 water molecules before running each cell under NPT for 200

ps. The final cell parameters were then averaged and these used for the following

NVT simulations. Starting from the previously optimised images constrained MD
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simulations were carried out with the separation being held fixed. Here separation is

the distance between the centre of mass of two species which are ‘connected’ in the

PMF simulation. In the case of the system studied here this will be the N-Si distance.

The temperature was maintained at 350 K using a Nosé-Hoover thermostat with a

relaxation constant of 0.5 fs. The simulation was carried out for 800 ps with a time

step of 0.0002 ps. The separation of TMA and silica monomer was then adjusted

by 0.1 Å and the simulation run again to give 100 images over a range of 5 Å to 15

Å. Given that to generate 800 ps of data takes approximately 40 hours on 16 cores,

these calculations are extremely computationally expensive.

6.6.3 Results

Figure 6.32 is the approach profile of the TMA moving towards a silicate monomer.

It is interesting to note that there are small barriers once we get to within approxi-

mately 13 Å of the monomer. There is a gentle rise in the free energy as we ’drag’

the two species together. There are two distinct peaks at 8.2 Å where the species

are separated by two hydration layers, i.e. one each, and at 6.2 Å where the species

are separated by one hydration layer. The barrier to remove this final hydration

layer is slightly higher at approximately 2.9 kJ mol−1.

Figure 6.33 contains snapshots taken from the dynamics at 8.2 Å, 7.5 Å, 6.2Å and

5.0 Å. Here we can clearly see that at 8.2 Å there are two layers of water between the

monomer and TMA. At 7.5 Å this has been reduced to one which is then compressed

as we move to a separation of 6.2 Å, and finally removed completely at 5.1 Å. At

a separation of 5 Å the TMA and monomer are just touching, and so after this we

would expect to see a steep increase in the free energy as the molecules are forced

together. To further illustrate this point, typical distances from shared hydration

layer to the respective solvent molecules were taken. In the case of a separation of

6.2Å we find that the average distance to the silicon atom in the monomer is 3.98 Å,

and 3.95 Åto the nitrogen in TMA. At a separation of 7.5 Å the average distance to

silicon is again 3.98 Å but the distance to TMA has increased to 4.8 Å. This backs

up the conclusion that the water layer is compressed at a separation of 6.2 Å.

6.6.4 Discussion

From Figure 6.32 we can see there are two distinct energetic barriers for a monomer

to enter the first hydration layer of the TMA. It appears that both TMA and

the monomer have one hydration layer which must be broken, with the removal of

the final layer requiring approximately 2.9 kJ mol−1. This is of course relatively
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Figure 6.32: Approach profile for TMA moving toward a silica monomer calculated
using a Potential of Mean Force calculation.

small, and under zeolite synthesis conditions we can expect this to proceed without

hindrance. This lends credibility to the hypothesis that zeolites form by exchange

of water for silica. However, this result alone does not give information on how the

silica is structurally affecting the hydration layer, and this should be the focus of

future calculations.
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(i) Separation: 8.2Å (ii) Separation: 7.5Å

(iii) Separation: 6.2Å (iv) Separation: 5.1Å

Figure 6.33: Snapshots from the potential of mean force calculations at separation
of: 8.2 Å (i), 7.5 Å (ii), 6.2 Å (iii) and 5.1 Å (iv). Note how at 8.2 Å there are
two layers of water, which as we reduce the separation gets compressed and finally
removed at 5.1 Å.
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6.7. Conclusions

6.7 Conclusions

In this chapter we have studied how some organic molecules which are commonly

used in zeolite synthesis affect the ring structures in their hydration layers. We have

seen that small organic rings increase the number of four, five and six rings with

the five member ring pyrrolidinium stabilising rings better than the six member

ring piperidinium. Similarly, TPA and TBA have been shown to affect the water

structure in ways similar to their smaller counterparts, TMA and TEA. An unusual

result which arose from this work was the low lifetimes observed for TPA and TBA,

which could be a result of either hydrophobicity or template flexibility. Considering

the study by Szyja et al. [283] where they observed TPA stabilising five rings and

TBA six rings, we observe the opposite trend. However, we have not included

silica in these simulations which could completely change the ring statistics. In the

simulations by Szyja et al. they just study preformed silicate oligomers and we can

imagine that these units will interact differently with the template than a solution

of water.

It was hoped that the ring statistics of the diquaternary ammonium templates

studied here could be linked to the zeolites which they form. Although no clear link

was found, these results do point to certain structures having a stronger ability to

stabilise rings. Previous studies searched for zeolite “motifs” within the hydration

layer and this proved extremely successful, highlighting the presence of the sodalite

motif around TMA. The intention was to carry out a similar search in this work

but the issue was which motif to search for. The zeolites here are formed of far

more complex building units and a far larger variety and therefore a search was not

attempted. Although, this kind of analysis was not carried out, it appears that the

ability for the template to stabilise five rings is critical. When we have n = 5, there

is an increase in the frequency of five rings, which may be linked to this templates

ability to direct a wider variety of zeolites. The coordination number obtained from

the RDFs also confirm this with the O-H coordination numbers peaking around

n = 5.

An issue with this work is the templates are very concentrated. If we consider

the experimental conditions used by Lee et al. [291] the water to template ratio is

1200:1 compared to around 100:1 for this work. This is a limitation in the method

and future work should aim to use molecular mechanics methods. This will allow

larger systems to be studied, and remove any template to water concentration issues.

This of course produces its own problems where care must be taken to ensure the

potentials used replicate well the structure of bulk water. It would also be desirable

for further work to include silica monomers and eventually alumina as well.
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CHAPTER 7

Conclusions

The initial aims of this thesis were to improve our understanding of the role of the

template in zeolite synthesis, on both the topology and morphology. Knowledge of

this, along with the effects of other species in the synthesis will allow zeolites to

be designed and synthesised with a desirable set of properties. In order to do this,

the problem has been broken down and analysed from both ‘top down’ and ‘bottom

up’ approaches. The top down approach studies the influence of a template on the

final zeolite structure in order to understand how and why a template leads to a

particular framework, and how it affects the final crystal morphology. The bottom

up approach studies the role of the template in the early stages of the synthesis to

understand how it affects the initial gel.

In Chapter 4 the ZEBEDDE code has been further developed to give it more

chemical knowledge. The ring making algorithm was modified to enable rings of any

size to be formed in the growing molecule. Other major developments include the

automation of the building and docking processes to enable ZEBEDDE to be run on

supercomputers, but also to allow screening of molecules in much the same way as

synthetic high throughput techniques, with minimal interaction for the user. Using

the modified ZEBEDDE code, templates were designed for the zeolite Boggsite.

The two templates meet many of the requirements set out by Gies and Marler [80],

but synthetic testing is still required. At ExxonMobil Research and Engineering an

extensive study on the zeolite MCM-68 was carried out to understand why three

newly discovered templates are able to synthesise the zeolite which had for a decade

been limited to only one template. A series of templates were docked into MCM-68,
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along with a number of other zeolite frameworks commonly observed in synthesis.

Based purely on van der Waals interactions with the framework, it was clear that

the original template fitted extremely well, and has stronger interaction energies

within MCM-68 than in all other frameworks tested. This was also the case for

the hydrogenated version and the two newly discovered templates. These results

validate the condition proposed by Gies and Marler that “the molecule should form

as many van der Waals contacts as possible” [80]. The work here also validated the

hypothesis that simpler templates should work and this was experimentally realised

during the computational work.

In Chapter 5 the effects of template on the crystal morphology of zeolite L and

AlPO-11 were investigated. The aim of the study on zeolite L was to alter the crystal

morphology such that it had a lower aspect ratio, length/width. A series of crown

ether and common template molecules were selected and docked into zeolite L. By

analysing the interaction energies for each molecule, 21-crown-7 and 18-crown-6 were

selected as possible structure modifiers. When these molecules were added to the

synthesis, the zeolite L morphology was changed, but more detailed examination

suggests that this modification occurs due to repositioning of the potassium into the

channel. This provides support for the growing cancrinite columns in the normally

frustrated a-direction. By understanding the growth of zeolite L, and with an un-

derstanding gained from the modelling results, of the likely location of the template

within the final crystal it has been possible to influence the crystal growth. In a

similar fashion, the role of large amine surfactants on the growth of AlPO-11 has

been rationalised by an understanding of the location in which it most likely adsorbs

on the surface.

In Chapter 6 the influence of the template on the structure of the water sur-

rounding it was studied. The templates studied were TPA, TBA, pyrrolidinium,

piperdinium and two series of diquaternary cations Me6-diquat-n with n = 3 − 7

and Me6-diquat-n with n = 3−6. The two quaternary cations, TPA and TBA were

studied to build on previous work and also with hopes of linking to another study

on the stabilising effects of TPA and TBA on silicate ring units in MFI and MEL.

The results obtained suggest that TPA favours four rings, and TBA five. This is

opposite to the results obtained by Szyja [283]. Although we are studying slightly

different units (water as opposed to silicate) an agreement here would have provided

a solid link between ring structures stabilised by templates in both the prenucleation

stage, and in larger building units. The ring structures around small organic rings

were also analysed and it is interesting to see that these templates generally have

fewer rings around them, but the rings that are present are much longer lived than
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7.1. Future Work

the TAAs. Finally two series of diquaternary ammonium compounds were analysed,

and compared back to the zeolite which they form. The main driving force appears

to be the ability for it to form five rings, as in both cases the molecules with chain

lengths of five most strongly promoted this. There also appears to be a complex

interaction between the flexibility of hydrophobic chain and the head groups which

come into balance at this chain length.

7.1 Future Work

Although improvements have been made to the building routines in ZEBEDDE,

further modifications would be desirable. The templates generated, although chem-

ically accurate, often have branched alkyl chains, or heavily substituted ring systems

meaning in reality that they would be difficult to synthesise. By comparing these

units to readily available organic molecules possibly via a space filling method, these

chemically complicated units could be replaced with simpler structures. This would

further automate the process and remove the most time consuming part of the cal-

culation which was the manual inspection of the generated templates.

The zeolite L study showed that it is possible to predict the role of a template a

priori by examining the location of the template in the final framework. Similarly,

examining the location of long chain amine templates on the AlPO-11 structure gave

clear reasons behind the observed crystal morphology. Computational methods can

clearly play an important role in understanding how templates influence crystal

morphology. However, overall what is lacking is detailed experimental evidence for

the role of the templates. Of course this is not trivial to obtain, but it is essential in

completing our understanding of the templates role during the growth of a zeolite.

The work on the structuring of water has yielded interesting results. There does

appear to be a link between the numbers of rings present in the hydration layer and

zeolite formed. However, a computational limit has been reached with respect to

the size of system we are able to study. Future work should focus on comparing

the results obtained here with simulations run using molecular mechanics. This will

allow larger and more complex systems to be studied. It would also be desirable

to include silicate monomers in the calculations to understand what effect these

have on the water ring structures, moving eventually to a simulation cell with a

composition comparable to a synthetic system. If a link between the structure of

the water, and the eventual zeolite formed can be found, then combining this with

the template design could allow complete design of a zeolite synthesis.
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APPENDIX A

Interatomic Potential Parameters

The potentials used in this thesis are described here. For the zeolite the potentials

of Sanders, Catlow and Leslie [188] were used, and the potentials for aluminophos-

phates are those of Gale and Henson [242]. The intramolecular potentials used to

control the geometry of the organics are those of Oie et al. [261] with the intermolec-

ular interactions being described by Kiselev [262]. The silanol potentials used here

are those of Butler[263].

The atom types used here are, Of for an oxygen in the bulk framework, OH

for an oxygen in a silanol, Ow is an oxygen in water. H is hydrogen in silanol,

Hw is hydrogen in water, Ho is a hydrogen attached to carbon and Hn is hydrogen

connected to a nitrogen. C1 is a carbon attached to one “heavy” (non hydrogen)

element, and C2 is carbon attached to two heavy elements. Unless suffixed with the

word “shell”, the interaction takes places between the cores. Potential cut-offs are

described in the relevant computational section within each chapter of this thesis.
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atom 1 atom 2 A (eVÅ12) B (eVÅ6)
Ho Of (shell) 1556.4 5.5717
C1 Of (shell) 11000 17.654
N Of (shell) 8829.6998 19.8978
Hn Of (shell) 1556.4 5.5717
C2 Of (shell) 11000 17.654
Ho OH (shell) 1556.4 5.5717
C1 OH (shell) 11000 17.654
N OH (shell) 8829.6998 19.8978
Hn OH (shell) 1556.4 5.5717
C2 OH (shell) 11000 17.654

Table A.1: Values Lennard-Jones 12-6 potential parameters.

atom 1 atom 2 A (eV) B (Å) C(eVÅ6)
Si (core) Of (shell) 1283.9073 0.3205 10.6616
Si (core) OH (shell) 1283.9073 0.3205 5.3308
Si (core) Ow (shell) 1283.9073 0.3205 10.6616
Of (shell Ow (shell) 22764.000 0.1490 15.4600
Of (shell) Of (shell) 22764.000 0.1490 27.88
OH (shell) OH (shell) 22764.300 0.1490 6.9700
Al Of (shell) 1460.3 0.2991 0.0
P Of (shell) 877.34 0.3594 0.0
Ho C1 211.371328 0.279173 3.67259
Ho N 880.208000 0.275482 11.0568
C1 C1 670.601424 0.320821 26.8355
C1 N 1356.04064 0.302114 29.7233
Ho Ho 282.507744 0.266667 3.727659
Ho C2 211.371328 0.279173 3.67259
C2 C2 670.601424 0.320821 26.8355
C2 N 1356.04064 0.302114 29.7233
Hn Hn 282.507744 0.266667 3.727659
Hn N 880.208000 0.275482 11.0568
Hn C2 211.371328 0.279173 3.67259
Hn C1 211.371328 0.279173 3.67259

Table A.2: Values for the Buckingham potentials.

atom k2 (eV)
Of 74.9204
OH 74.9204
Ow 209.449602

Table A.3: Values for the core-shell springs.
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atom 1 atom 2 atom 3 k (eV rad−2) θ0
Hf (shell) Si Of (shell) 5.496300 109.4666667
OH (shell) Si Of (shell) 5.496300 109.4666667
OH (shell) Si OH (shell) 5.496300 109.4666667
Hf (shell) Al Of (shell) 2.097240 109.4666667

Table A.4: Three body terms. Note: Atom 2 is the central atom.

Atom Charge
Of 0.860
Of (shell) -2.860
Ow 1.25
Ow (shell) 2.05
OH 0.90
OH (shell) -2.30
H 0.40
Hw 0.40
Si 4.00
Al 3.00
P 5.00

Table A.5: Charges for zeolite framework and water.

Atom Charge
C1 -0.200
N -0.440
Ho 0.180

Table A.6: Charges for TMA.

Atom Charge
C1 -0.180
C2 -0.120
N -0.920
Ho 0.060
Hn 0.360

Table A.7: Charges for hexadecylamine.

atom 1 atom 2 E0 r0 k (eV)
Ow Hw 6.203713 0.92367 2.22003
OH (shell) H 7.05250 0.92580 3.17490

Table A.8: Interatomic Morse potentials.
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atom 1 atom 2 atom 3 atom 4 k (eV)
C1 N1 C1 Ho 0.0175
Ho C2 C2 Ho 0.053
Ho C1 C2 Ho 0.053
C2 C2 C2 N 0.035
C2 C2 C2 C1 0.032
Ho C2 C2 C2 0.053

Table A.9: Torsional potentials.

atom 1 atom 2 k (eV) l0 (Å)
C1 Ho 28.71 1.095
N Ho 18.81 1.0105
C1 N 28.75 1.495
C1 C1 27.46 1.52
C1 C2 27.46 1.52

Table A.10: Harmonic bond parameters.

atom 1 atom 2 atom 3 k (eV) θ0 (◦)
Hn N Hn 5.00 110.0
Hn N C2 2.50 109.5
Ho C2 Ho 2.06 109.2
Ho C2 C2 2.50 109.0
C2 C2 C2 3.56 110.4
C2 N C2 6.87 109.0
Ho C1 Ho 2.06 109.2
Hw Ow (shell) Hw 4.19978 108.693195

Table A.11: Harmonic angle parameters.

atom 1 atom 2 Subtraction
Ow (shell) Hw 50%
Hw Hw 50%

Table A.12: Intramolecular coulombic subtraction.
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APPENDIX B

ZEBEDDE Code

The modified ZEBEDDE routines which were discussed in Chapter 4 are given here.

B.1 Ring Maker

This section contains the modified ring counting code. The routines selects the first

atom in the growing organic molecule checking if it is able to bond to another atom,

i.e. it has free hydrogens. If this check returns true (it does have free hydrogens) it

will then loop over all the atoms in the molecule searching for a second atom which

is able to bond. Once a pair is found it then checks that the pair fall within the

user defined ring cutoff, and calculates the order (also user definable). If all these

conditions are satisfied the pair are stored in the array near neighs. Once all the

atoms have been tested, one pair is selected at random from the list and the bond

created.
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B.1. Ring Maker

/*************************************************************/

/**** Loop over all atoms to find atoms which are within *****/

/**** the cutoff and are able to form a ring *****/

/*************************************************************/

have_made_ring = FALSE;

for (atom1=0; atom1 < *p_num_atoms; atom1++)

{

allowed_bond1 = FALSE;

p_atom1= p_molecule+atom1;

if (atom_has_hyds(p_molecule, atom1)

&& p_atom1->num_neigh > 0) allowed_bond1 = TRUE;

for (atom2=atom1+1; atom2 <= *p_num_atoms; atom2++)

{

p_atom2= p_molecule+atom2;

can_bond = FALSE;

allowed_bond2 = FALSE;

if (atom_has_hyds(p_molecule, atom2)

&& p_atom2->num_neigh > 0) allowed_bond2 = TRUE;

r2=atom_separation_squared(p_atom1, p_atom2, pbc);

r=sqrt(r2);

can_bond = !forbid_bond(p_atom1->elem,

p_atom2->elem,

p_forbidden_bond);

order= neighbour_order(p_molecule, *p_num_atoms, atom1, atom2);

if (r2 <= ring_ctf_2 && can_bond && allowed_bond1

&& allowed_bond2 && order >=4) //store that pair of atoms

{

printf("DB>> Atom 1: %i, atom 2: %i\n",atom1,atom2);

near_neighs[i][0]=atom1;

near_neighs[j][1]=atom2;

i++;

j++;

num_pairs++;

}

}

}

\\Check that we have pairs, if not return.
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B.1. Ring Maker

if (num_pairs == 0)

{

printf("No pairs of atoms available to make rings. Returning\n");

return FALSE;

}

\\If we have a pairs, select one at random.

rand_no = get_random_int(0, num_pairs);

printf("The Random number is %i\n",rand_no);

i=0;

j=0;

for (this_pair=0;this_pair < num_pairs; this_pair++)

{

atom1 = near_neighs[i][0];

atom2 = near_neighs[j][1];

if (this_pair == rand_no)

{

printf("Pair to bind will be %i %i \n", atom1,atom2);

break;

}

else

{

printf("Not this pair %i %i \n", atom1, atom2);

}

i++;

j++;

}

The code which actually alters the neighbours list is unchanged from the original

version.
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APPENDIX C

Boggsite Organics

C.1 Organic Molecules

This chapter lists two dimensional stick drawings of the templates generated to

direct the synthesis of Boggsite in Section 4.3.
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C.1. Organic Molecules

(i) Organic 1 (ii) Organic 2

(iii) Organic 3 (iv) Organic 4

Figure C.1: Organic 1 to Organic 4
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C.1. Organic Molecules

(v) Organic 5 (vi) Organic 6

(vii) Organic 7 (viii) Organic 8

(ix) Organic 9

(x) Organic 10

Figure C.1: Organic 5 to Organic 10
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C.1. Organic Molecules

(xi) Organic 11

(xii) Organic 12

(xiii) Organic 13

(xiv) Organic 14

(xv) Organic 15

(xvi) Organic 16

Figure C.1: Organic 11 to Organic 16
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C.1. Organic Molecules

(xvii) Organic 17

(xviii) Organic 18

(xix) Organic 19

(xx) Organic 20

(xxi) Organic 21

(xxii) Organic 22

Figure C.1: Organic 17 to Organic 22
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C.1. Organic Molecules

(xxiii) Organic 23

(xxiv) Organic 24

(xxv) Organic 25

(xxvi) Organic 26 (xxvii) Organic 27

(xxviii) Organic 28 with car-
bon instead of phosphorus

Figure C.1: Organic 23 to Organic 28
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APPENDIX D

Ring Searching Program

The ring searching program has been written in C++ and can be compiled and

run on any Unix based machine which has a suitable C++ compiler. The program

is easily compiled using the included makefile with minor alterations to direct to

the C++ compiler. It is recommended that the code is compiled with the ‘O2’

optimisation flag as this greatly improves performance. The program requires an

input file in order to run. This file contains the relevant information about the

system being studied. These options are summarised below:

� System parameters Requires three integers on the first line. These are

<number of MD steps>, <number of atoms>, <number of solute atoms>.

� Cell Dimensions Requires three real numbers corresponding to the cell x, y

and z dimensions.

� Trajectory file The name of the trajectory file.

� RDF Select TRUE or FALSE depending on whether a RDF is desired.

� Sphere Select TRUE or FALSE depending on whether the solute can be

approximated to a sphere. This causes the hydration layer to be calculated

based on the centre of gravity of the solute.

The trajectory file should be in XYZ format as is output by the CP2K program.

The solute coordinates must be the first at the start of each frame. The water

molecules are then automatically sorted. It may be necessary to alter the value
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of SOLUTE RADIUS in the file “header.h” to a value suitable for the solute in

question. To execute the program simply type “./analysis <input filename>”. The

code with then start to analyse the supplied trajectory file. The results will be

output into the current working directory. Many of the files are for debugging

purposes only and so just the relevant files are listed here.

� rings.csv

This file contains the total number of rings of size 3-6 in the hydration later

around the solute. Along with this is the average number of oxygen atoms

in the hydration layer. This can be imported into a spreadsheet for further

analysis.

� hemi rings.csv

This file contains the number of rings of size 3-6 in the hydration layer around

the head groups of a diquaternary ammonium cation.

� cylinder.csv

This file contains the number of rings of size 3-6 in the hydration layer around

the chain section of a diquaternary ammonium cation.

� lifetime<n>.out

Lifetimes of ring size n where n=3-6.

� rdf XX

Where XX is HH, OO, or OH. These files contain the radial distribution func-

tions, if requested.

212



Bibliography

[1] van Bekkum, H.; Flanigen, E. M.; Jacobs, P. A.; Jansen, J. C. Introduction to

Zeolite Science and Practice; Elsevier, 2001.

[2] Cundy, C. S.; Cox, P. A. Chemical Reviews 2003, 103, 663–701.

[3] Serrano, D.; van Grieken, R. J. of Mater. Chem. 2001, 11, 2391–2407.

[4] http://www.iza-structure.org/databases/.

[5] Reed, T. B.; Breck, D. W. J. Am. Chem. Soc. 1956, 78, 5972–5977.

[6] Kerr, G. T. Inorg. Chem. 1966, 5, 1539.

[7] Corma, A.; Rey, F.; Ruis, J.; Sabater, M. J.; Valencia, S. Nature 2004, 431,

287–290.

[8] Sun, J.; Bonneau, C.; Cantin, A.; Corma, A.; Diaz-Cabanas, M. J.; Moliner,

M.; Zhang, D.; Li, M.; Zou, X. Nature 2009, 458, 1154.

[9] Rohrig, C.; Gies, H.; Marler, B. Zeolites 1994, 14, 498–503.

[10] Barrer, R. M. Hydrothermal Chemistry of Zeolites ; Academic Press, 1982.

[11] Ju, R.; Pang, W.; Yu, J.; Huo, Q.; Chen, J. Chemistry of Zeolites and Related

Porous Materials : Synthesis and Structure; Wiley : Singapore, 2007.

[12] Olson, D. H.; Kokotailo, G. T.; Lawton, S. L.; Meier, W. M. J. Phys. Chem.

1981, 85, 2238–2243.

213

http://www.iza-structure.org/databases/


Bibliography

[13] Mater, S.; Hatch., L. Chemistry of Petrochemical Processes: Second Edition.;

Butterworth-Heinemann, 2001.

[14] Chang, C. D.; Chu, C. T. W.; Socha, R. F. J. Catal. 1984, 86, 289–296.

[15] Chu, C. T. W.; Chang, C. D. J. Catal. 1984, 86, 297–300.

[16] Ratnasamy, P.; Babu, G. P.; Chanwadkar, A. J.; Kulikarni, S. B. Zeolites

1986, 6, 98–100.

[17] Xu, X.; Wang, J.; Long, Y. Sensors 2006, 6, 1751–1764.

[18] Barrer, R. M. J. Chem. Soc. 1948, 127.

[19] de Sainte Claire Deville, H. C. R., Acad. Sci. 1862, 324–327.

[20] Kerr, G. T. Science 1963, 140, 1412.

[21] Breck, D. W.; Eversole, W. G.; Milton, R. M.; Reed, T. B.; Thomas, T. L. J.

Am. Chem. Soc. 1956, 78, 5963–5971.

[22] Bergerhoff, G. Angew. Chem.-Int. Edit. 1958, 70, 402.

[23] Barrer, R. M.; Denny, P. J. J. Chem. Soc. 1961, 971.

[24] Barrer, R. M.; Baynham, J. W.; Bultitude, F. W.; Meier, W. M. J. Chem.

Soc. 1959, 195.

[25] Cundy, C. S.; Cox, P. A. Micro. Meso. Mater. 2005, 82, 1–78.

[26] Aiello, R.; Barrer, R. M. J. Chem. Soc. 1970, 1470–&.

[27] Baerlocher, C.; Meier, W. M. Helv. Chim. Acta 1970, 53, 1285–&.

[28] Lok, B. M.; Cannan, T. R.; Messina, C. A. Zeolites 1983, 3, 282–291.

[29] Meier, W. M. Zeolites 1984, 4, 402.

[30] Argauer, R. J.; Landolt, G. R.; 1972; US Patent 3702886.

[31] Kokotailo, G. T.; Lawton, S. L.; Olson, D. H.; Meier, W. M. 1978, 272,

437–438.

[32] Olson, D. H.; Kokotailo, G. T.; Lawton, S. L.; Meier, W. M. 1981, 85, 2238–

2243.

214



Bibliography

[33] Wadlinger, R. L.; Kerr, G. T.; Rosinski, E. J.; Catalytic composition of a crys-

talline zeolite; 1967; US Patent 3308069. http://www.freepatentsonline.

com/3308069.html.

[34] Fyfe, C. A.; Gies, H.; Kokotailo, G. T.; Pasztor, C.; Strobl, H.; Cox, D. E. J.

Am. Chem. Soc. 1989, 111, 2470–2474.

[35] Flanigen, E. M.; Bennett, J. M.; Grose, R. W.; Cohen, J. P.; Patton, R. L.;

KIRCHNER, R.; SMITH, J. Nature 1978, 271, 512–516.

[36] Bibby, D. M.; Milestone, N. B.; Aldridge, L. P. Nature 1979, 280, 664–665.

[37] Dodwell, G. W.; Denkewicz, R. P.; Sand, L. B. Zeolites 1985, 5, 153–157.

[38] Shannon, M. D.; Casci, J. L.; Cox, P. A.; Andrews, S. J. Nature 1991, 353,

417–420.

[39] Lee, S. H.; Shin, C. H.; Yang, D. K.; Ahn, S. D.; Nam, I. S.; Hong, S. B.

Microporous Mesoporous Mat. 2004, 68, 97–104.

[40] Lee, S. H.; Shin, C. H.; Choi, G. J.; Park, T. J.; Nam, I. S.; Han, B.; Hong,

S. B. Microporous Mesoporous Mat. 2003, 60, 237–249.

[41] Paik, W. C.; Shin, C. H.; Lee, J. M.; Ahn, B. J.; Hong, S. B. J. Phys. Chem.

B 2001, 105, 9994–10000.

[42] Boxhoorn, G.; van Santen, R. A.; van Erp, W. A.; Hays, G. R.; Huis, R.;

Clague, D. J. Chem. Soc.-Chem. Commun. 1982, 264–265.
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