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Traffic fluctuation has so far been studied on unweighted networks. However many real traffic
systems are better represented as weighted networks, where nodes and links are assigned a weight
value representing their physical properties such as capacity and delay. Here we introduce a general
random diffusion (GRD) model to investigate the traffic fluctuation in weighted networks, where a
random walk’s choice of route is affected not only by the number of links a node has, but also by
the weight of individual links. We obtain analytical solutions that characterise the relation between
the average traffic and the fluctuation through nodes and links. Our analysis is supported by the
results of numerical simulations. We observe that the value ranges of the average traffic and the
fluctuation, through nodes or links, increase dramatically with the level of heterogeneity in link
weight. This highlights the key role that link weight plays in traffic fluctuation and the necessity to
study traffic fluctuation on weighted networks.

PACS numbers: 89.75.Hc, 89.20.Hh, 89.75.Da

I. INTRODUCTION

In nature and society, many complex systems can be
represented as graphs or networks, where nodes represent
the elementary units of a system and links stand for the
interactions between the nodes. Complex networks have
been a research focus in the last decade [1–10].

Recently attention has been given to the traffic fluctu-
ation problem in networks. It is associated with an addi-
tive quantity representing the volume of traffic travelling
through a node (or a link) in a time interval, and the de-
pendence between its mean and standard deviation [11].
Knowledge on traffic fluctuation is relevant to the design
and engineering of real systems such as air transport net-
work, highway network, power-grid network and the In-
ternet, for example how to deploy network resources, how
to route traffic efficiently and how to mitigate congestion.

In recent years there has been a strong research in-
terest in the traffic fluctuation problem, which is rele-
vant to a wide range of applications in various networked
systems [12–17]. In particular researchers are interested
in the relation between the mean of traffic 〈f〉 and the
standard deviation σ at a given node. This is because
various problems of immediate social and economical in-
terests are ultimately constrained by the extent to which
the assignment of resources matches supply and demand
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under realistic conditions, and the resource assignment
is essentially governed by the ‘normal’ traffic behaviour
characterised by large fluctuations.

In many real systems, traffic fluctuations are often
affected by specific physical properties of network ele-
ments, such as the bandwidth of a cable or the compu-
tational power of an Internet router. Such systems are
much better described as a more sophisticate form of net-
work graphs, the weighted networks, where the physical
properties of network elements are represented by link’s
weight and node’s strength.

In this paper we investigate the traffic fluctuation prob-
lem in weighted networks. In Section II, we review the
previous works on traffic fluctuations in unweighted net-
works. In Section III, we introduce some network proper-
ties related to our work and define a number of variables
that are used in the study of traffic fluctuation. We in-
troduce a general random diffusion (GRD) model, where
a general random walker’s choice of path is affected by
link’s weight. In Section IV and V, we analyse the fluc-
tuation of traffic in weighted networks. We provide ana-
lytical solutions on the relation between the fluctuation
and the average traffic at nodes in section IV and on links
in section V. We also run numerical simulations, which
confirm our analysis and illustrate its physical meaning.
We summarize our work in Section VI.
Our contributions are four folders. Firstly, we intro-

duce a more general analytical law which characterises
the traffic fluctuation on weighted networks. Previous
works are a special case of our law. Secondly, our results
show that traffic fluctuations on a weighted network can
be dramatically different from that on the equivalent un-
weighted network. This highlights the necessity of study-
ing real systems as weighted networks when network el-
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ements have a non trivial impact on traffic dynamics.
Thirdly, in addition to traffic fluctuation through nodes,
we also analytically study traffic fluctuations through
links. We show that on weighted networks the traffic
fluctuation on links is significant and should be consid-
ered when designing real systems. Finally, we reveal the
dependence between a link’s traffic properties and the
connectivity of the link’s two end nodes.

II. PREVIOUS STUDIES ON TRAFFIC
FLUCTUATIONS

The early discovery was that the average volume of
traffic arriving at a node, 〈f〉, and the fluctuation (stan-
dard deviation) of the traffic, σ, follow a power-law rela-
tion, i.e. σ ∼ 〈f〉α, where the exponent α has two univer-
sal values, 1/2 and 1 [12, 13]. This result has attracted
a lot of interest from the network research community
and it also generated debates. Subsequently, it has been
shown numerically that there is a wide spectrum of pos-
sible values within the range of [1/2, 1] for α [14].

Next, Kujawski et al [18] revealed some scaling prop-
erties of traffic fluctuation by conducting simulations on
unweighted scale-free networks, where a navigation al-
gorithm is used to give a preference for less used edges
in the traffic history. However the scenario considered
in [18] is unrealistic. because if an edge is less used in
a network’s traffic history, it indicates that the edge is
indeed not preferred, for reasons like smaller capacity,
longer delay or more expensive.

Recently, Meloni et al [15] derive an analytical law
showing that the dependence of fluctuations with the
mean traffic on unweighted networks. They point out the
dependence of fluctuations with the mean traffic is gov-
erned by the delicate interplay of three factors: the size of
observation window; the noise associated to the fluctua-
tions in the number of packets from time window to time
window; the degree of the node. However, unweighted
networks are relatively simple and widely used to repre-
sent the connectivity structure of a network system. On
an unweighted network, physical properties of links (and
nodes) are removed such that all links are equal, i.e. each
link only represents the existence of a topological con-
nection between two nodes.

As is known, many real systems display different inter-
action strengths between nodes, which reveal unweighted
networks’ drawback in link definition. In this case, it is
easy to realize that traffic path is rarely randomly cho-
sen. This is because links have different physical proper-
ties (bandwidth, delay or cost) and naturally traffic tends
to choose a path to achieve better performance, higher
efficiency or less cost.

III. TRAFFIC FLUCTUATION ON WEIGHTED
NETWORKS

A. Weighted Networks

A more realistic form of networks is the weighted net-
works [19–21], where each link is assigned a weight value
to denote a physical property of interest, e.g. the band-
width of a cable or the length of a road; and similarly,
each node is assigned a strength, for example, to rep-
resent the computational capacity of an Internet router.
Weighted networks encode more information and they
are a more realistic representation of real systems where
individual links (and nodes) are vastly different.
Weighted networks have the advantage to encode in-

formation of physical properties of links and nodes. For
example in a weighted social network, a link can indicate
that two people know each other while the weight of the
link can denote how often they meet each other [21]; in
a weighted Internet router network, link weight can rep-
resent the bandwidth of a cable and node strength can
represent the process power of a router [22]; in a weighted
aviation network, link weight can denote the annual vol-
ume of passengers travelling between two airports [21];
and in the weighed metabolic network E. coli, link weight
can encode the optimal metabolic fluxes between two
metabolites [23]. On the other hand, recently there are
some works on random walk based on weighted networks,
but they only considered a single random walker [24, 25].
In this work we study the traffic fluctuation problem in

weighted networks and investigate critical questions such
as ‘what are the impact of different capacity of nodes
and links on the fluctuation of traffic passing through
them?’ ‘can we predict the fluctuation?’ and ‘what are
the implications for network resource assignment?’

1. Link Weight

In network research the degree, k, is defined as the
number of links a node has. When representing real sys-
tems as weighted networks, the weight of a link is often
related to degrees of the two end nodes of the link. For
example the number of scheduled flights between two air-
ports increases with the number of flights each of the two
airports has.
In this case, we define the weight of a link between

nodes i and j as

wij = wji = (kikj)
θ, (1)

where ki and kj are degrees of the two nodes, and θ is
the network’s weightiness parameter which characterises
the dependence between link weight and the node de-
grees [21, 23, 26]. This definition is well supported by em-
pirical studies [21, 23, 26] and is widely used in researches
on weighted networks. It introduces the weightiness pa-
rameter which conveniently determines the level of link
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heterogeneity in a weighted network. When θ = 0 there
is no dependence between link weight and node degree,
all links are equal with w = 1, and the network becomes
an unweighted network. When θ > 0, it is a weighted
network where links have different weights. The larger θ,
and the wider difference between links.

2. Node Strength

On the other hand, the strength of node i is defined as

si =
∑

j∈Γ(i)

wij =
∑

j∈Γ(i)

(kikj)
θ, (2)

where Γ(i) is the set of neighbours of node i. In an un-
weighted network with θ = 0, si = ki node strength is the
same as node degree. In a weighted network with θ > 0,
a node’s strength is the sum of the weight of the links
connecting to the node. Two nodes with the same de-
gree may have different strength values depending on the
weight of their links. For example consider two airports
A and B, both have 4 flight connections, kA = kB = 4.
Airport A will have more ‘strength’ than airport B if the
former is connected with four well-connected hub airports
and the later is connected with four less-connected local
airports.

B. General Random Diffusion (GRD) Model

Random walk is a mathematical formalisation of a tra-
jectory that consists of taking successive random steps.
A familiar example is the random walk phenomenon in a
liquid or gas, known as Brownian motion [27, 28]. Ran-
dom walk is also a fundamental dynamic process on com-
plex networks [29]. Random walk in networks has many
practical applications, such as navigation and search of
information on the World Wide Web and routing on the
Internet [30–34]. Previous research on traffic fluctuation
either studied random walkers travelling on unweighted
networks where the choice of route is random as all links
are regarded as equal [12–15], or examined a single ran-
dom walker travelling on weighted networks [24, 25].

Before introducing our model, we firstly introduce the
general random walk on weighted networks. Let’s con-
sider a general random walker starting from node i at
time step t = 0 and denote Pim(t) as the probability of
finding the walker at node m at time t. The probability
of finding the walker at node j at the next time step is
Pij(t + 1) =

∑

m amj · Πm→j · Pim(t), where amj is an
element of the network’s adjacent matrix. Here, Πm→j

is defined as
wmj

sm
.

Thus the probability Pij(t) for the walker to travel

from node i to node j in t time steps is

Pij(t) =
∑

m1,...,mt−1

aim1
wim1

si
×
am1m2

wm1m2

sm1

× . . .×
amt−1jwmt−1j

smt−1

. (3)

In other words, Pij(t) =
∑

m1,...,mt−1
Pim1

Pm1m2
· · ·

Pmt−1j . Comparing the expressions for Pij and Pji one
can see that siPij(t) = sjPji(t). This is a direct conse-
quence of the undirectedness of the network. For the sta-
tionary solution, one obtains P∞

i = si/Z with Z =
∑

i si.
Note the stationary distribution is, up to normalization,
equal to si, the strength of the node i. This means the
higher strength a node has, the more often it will be vis-
ited by a walker.
Here we propose the general random diffusion (GRD)

model, which describes the traffic fluctuation problem as
a large number of independent random walkers travelling
simultaneously on a weighted network, where a walker’s
choice of path is based on the rule mentioned above.

1. Size of time window, M

We observe traffic arriving at a node (or passing
through a link) in time windows of equal size. Each time
window consists of M time units, which is defined as a
step for random walkers to hop from one node to another.

2. Preferential choice of path

A walker at node i chooses link i–j as the next leg of
travel according to the following preferential probability,

Πi→j =
wij

∑

j∈Γ(i) wij
=
wij

si
, (4)

which is proportional to the weight of the link.

3. Average traffic, 〈f〉

The traffic arriving at node i during a time window

is fi =
∑M

m=1 ∆i(m), where ∆i(m) is a random variable
representing the number of walkers arriving at node i at
the mth time unit. The average traffic, 〈fi〉, is the mean
traffic volume at node i over all time windows. Similarly,
fij is the traffic passing through a link between nodes i
and j during a time window, and 〈fij〉 is the average link
traffic.

4. Traffic fluctuation, σ

The standard deviation σi indicates the fluctuation of
traffic volume around the average traffic 〈fi〉 at node i
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over time windows. Similarly σij is the fluctuation of
link traffic fij on the link between nodes i and j.

The key interest on the traffic fluctuation problem is
the relation between the average traffic 〈f〉 (of a node or
link) and the fluctuation σ, and the impact of relevant
quantities (time window size M , weightiness parameter
θ and node degree k) on such relation. In the following
two sections we investigate traffic fluctuation of node and
link respectively.

IV. NODE TRAFFIC FLUCTUATION ON
WEIGHTED NETWORKS

A. Analytical Solution

According to the GRD model’s preferential choice of
path (see 4), in the stationary regime the number of walk-
ers visit node i at a single time step can be estimated as

Φi(r) = r
si

∑N
i=1 si

, (5)

where r is the number of random walkers travelling on
the weighted network and N is the number of nodes. In
the GRD model random walkers are independent and the
arrival of walkers at a node is a Poisson process. Thus
the mean number of walkers visit node i in a window of
M time steps is

〈fi〉 = Φi(r)M, (6)

and the probability that exactly n walkers visit node i in
a time window is

Pi(n) = e−Φi(r)M
[Φi(r)M ]n

n!
. (7)

In a more general case, the number of walkers r ob-
served from time window to time window is uniformly
distributed in [R − δ, R+ δ], 0 < δ ≤ R, where R is the
average number of walkers and the noise constant δ is
the fluctuation. The probability of having r walkers in a
time window is

F (r) =
1

2δ + 1
. (8)

Then (7) becomes the following

ψi(n) =

2δ
∑

j=0

(
e−(si/

∑
N
i=1

si)(R−δ+j)M

2δ + 1
(9)

×
[(si/

∑N
i=1 si)(R − δ + j)M ]n

n!
).

Calculating the first and second moments of fi, we get

〈fi〉 =

∞
∑

n=0

nψi(n) =
si

∑N
i=1 si

RM (10)

and

〈f2
i 〉 =

∞
∑

n=0

n2ψi(n) = 〈fi〉
2

(

1 +
δ2 + δ

3R2

)

+ 〈fi〉. (11)

Then the standard deviation as a function of 〈fi〉 is

σ2
i = 〈fi〉

(

1 + 〈fi〉
δ2 + δ

3R2

)

. (12)

This indicates the relation between the traffic at nodes
and its scale doesn’t depend on the weight parameter
θ. The traffic fluctuation at node i can be given as
σ2
i = (σint

i )2 + (σext
i )2. This suggests that the driving

force of traffic fluctuation at node i can be ascribed to
two aspects: one is the internal randomness of the diffu-
sion process, σint

i =
√

〈fi〉; and the other is the change

in the external environment, σext
i = 〈fi〉

√

δ2+δ
3R2 , i.e. the

fluctuation of the number of walkers in the network in dif-
ferent time windows. To make it concrete, we will show a
class of specifical networks to testify its validity in what
follows.

1. For Neutral Weighted Networks

Networks exhibit different mixing patterns, or degree-
degree correlations [35, 36]. For example social networks
show the assortative mixing where high-degree nodes
tend to connect with other high-degree nodes and low-
degree nodes with low-degree ones. By contrast, biolog-
ical and technological networks show the disassortative
mixing where high-degree nodes tend to connect with
low-degree nodes and vice versa.
Neutral networks show neither assortative nor disas-

sortative mixing. Three popular examples are (1) the
Erdös-Rényi (ER) random graph [37], which is gener-
ated by random link attachment between nodes and is
characterised by a Poisson degree distribution; (2) the
Barabási-Albert (BA) scale-free graph [38], which is gen-
erated by the so-called preferential attachment and is
characterised by a power-law degree distribution; and (3)
the Watts-Strogatz (WS) small-world [39] is generated by
rewiring links on regular lattices and is characterised by
a high clustering [9] and a small average topological dis-
tance [40]. These three generic models have been widely
studied in network research.

2. Node Strength Expressed As Node Degree

P (kq|ki) is the conditional probability distribution
that a kq-degree node connects with a ki-degree node [35].
For neutral networks,

P (kq|ki) = P (kq|k) = kqP (kq)/〈k〉, (13)

where P (kq) is the probability of a node having degree
kq and 〈k〉 is the average degree [35].
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The nearest-neighbours average degree of node i can

be estimated as knn(ki) =
∑kmax

kq=kmin
kqP (kq|ki), where

suffix q stands for a neighbor of node i, kmin and kmax are
the minimum and maximal node degrees in the network,
respectively. By mean-field approximation we have

kθnn(ki) =

kmax
∑

kq=kmin

kθ+1
q P (kq)/〈k〉 = 〈kθ+1〉/〈k〉. (14)

One can see that kθnn(ki) does not depend on the degree
ki, hence

∑

q∈Γ(i) k
θ
q = ki · k

θ
nn(ki). Using Eqs. (2) and

(14) we have

si = kθ+1
i 〈kθ+1〉/〈k〉. (15)

For neutral weighted networks, we can then
rewrite (10) as

〈fi〉 =
kθ+1
i

N〈kθ+1〉
RM. (16)

When the four quantities M , R, δ and θ satisfy the con-

dition that δ2+δ
3R ·

kθ+1

i

N〈kθ+1〉
M ≪ 1, the relation between

traffic fluctuation and average traffic as given in (12) is
reduced to a power-law scaling σ ∼ 〈f〉

α
with α = 1/2.

When δ2+δ
3R ·

kθ+1

i

N〈kθ+1〉M is not negligible, the exponent α

is in the range of [1/2, 1].

B. Numerical Simulation

We run numerical simulations for the following pur-
pose: (1) to verify the analytical solution; (2) to examine
the impact of parameters such as window size M and
node degree k on the power-law scaling of the traffic
fluctuation function; and (3) to contrast unweighted net-
works with θ = 0 against weighted networks with θ > 0.

1. Simulation Settings

Our simulation is based on network graphs generated
by the BA model [38], which is neutral mixing and
features a power-law degree distribution P (k) ∼ k−3.
We generate ten BA graphs, each of which has 5,000
nodes and 25,000 links. We assign link weight and node
strength as defined in (1) and (2) respectively. Initially,
we disperse r = R± δ = 10, 000± 1, 000 random walkers
uniformly on nodes. At each time step, all walkers travel
one hop according to (4). For a given time window size
of M , we observe traffic fluctuation at each node over a
large number of time windows.
For each given value of time window size M or weight-

iness parameter θ, we repeat the simulation for 50 times
(with different random seeds) on each of the ten BA net-
works. Each result shown below is averaged over the
10× 50 = 500 simulations.

FIG. 1: Traffic fluctuation σi as a function of average traffic
〈fi〉 at node i. (a) Observed in different time window sizes of
M = 1, 10, 100, 1000 and 5000; and (b) for nodes of different
degrees (with M = 100). The green dotted-line in (a) is the
analytical solution given in (12). The two black dotted-lines
in both (a) and (b) correspond to σi ∼ 〈fi〉

α with α = 0.5 and
1, respectively. Simulation results are obtained on weighted
BA networks having 5,000 nodes and 25,000 links with the
weightiness parameter θ = 0.5, the average number of random
walkers R = 104 and the noise constant of δ = 103. For clarity
we only show nodes with degrees smaller than 18. Note that
the minimal degree in the networks is 5 as m0 = 5 and m = 5
in the weighted BA networks.

2. Power-Law Relation Between σi and 〈fi〉

Figure 1(a) shows the relation between traffic fluctua-
tion σ and average traffic 〈f〉 for different time window
sizeM where the weightiness parameter is set as θ = 0.5.
The simulation results overlap with the analytical solu-
tion. Both the average traffic and the traffic fluctua-
tion increase with the size of window M . For any given
value ofM , the two quantities follow a power-law relation
σ ∼ 〈f〉α. WhenM is small, the power-law exponent α is
close to 1/2; and when M increases the exponent grows
towards 1.
Figure 1(b) shows the enlargement of the traffic fluc-

tuation function for the window size M = 100 as circled
out in Figure 1(a), where data dots are coloured by node
degrees. For nodes with the higher degree, the large val-
ues of σ and 〈f〉 are observed. For low-degree nodes
(e.g. k = 5) the power-law exponent is close to α = 1/2;
whereas for higher degree nodes (e.g. k = 18), the expo-
nent approaches to 1.

As predicted by Eq. (16), our simulation results con-
firm that the traffic fluctuation function σ ∼ 〈f〉

α
does

not follow a simple power-law. Rather, the power-law
scaling is in the range of [1/2, 1]. It is affected by a num-
ber of parameters including the window size M and the
degree of nodes under study. This echoes previous stud-
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ies as their random diffusion model based on unweighted
networks is a special case of our general random diffusion
model on weighted networks.

3. Impact of Weightiness Parameter θ

Figure 2(a) illustrates the solutions of (12) for the
weightiness parameter θ = 0, 0.5 and 1 with the time
window size is set as M = 100. Figure 2(b), (c), (d),
(e) and (f) show the simulation results for θ = 0, 0.25,
0.5, 0.75, and 1 respectively. For different θ values, the
traffic fluctuation curves overlap with each other, and
in all cases the high-degree nodes are concentrated at
the upper-right end of the curves whereas the low-degree
nodes are dispersed alone the lower-left part of the curve.
The remarkable difference, however, is that with the in-
crease of θ the value ranges of 〈fi〉 and σi expand signif-
icantly towards both directions. This means that com-
paring with an unweighted network, traffic fluctuation in
a weighted network is more acute at high-degree nodes
and more stable at low-degree nodes. This is because in
a weighted network the node strength s ∼ kθ+1 (see (15))
and therefore high-degree nodes deprive more traffic from
low-degree ones than in an unweighted network.

4. For Neutral Weighted Networks

Figure 3 shows the simulation results on weighted BA,
Watts-Strogatz small-world [39] networks and Erdös-
Rényi random graphs with θ = 0.5. As shown in the
panels (a) and (c), the simulation results on the scale
of fi is remarkably consistent with the solution given by
Eq. 12. However, one can find that the numerical results
in the panel (b) deviate from Eq. 12 apparently. This
deviation is due to most of the links (at least 80% in our
simulations) in the small-world networks are still regu-
larly connected. 80% is predicted by the small rewiring
probability 0.1. Obviously, the conditional probability
distribution P (kq|ki) doesn’t completely match Eq. 13.
Our results suggest that if a real system should be

described as a weighted network with θ = 1 but in-
stead an unweighted network with θ = 0 is used, then
we would underestimate the 〈fi〉 and σi values for high-
degree nodes and overestimates the values for low-degree
nodes by as large as one order of magnitude. This high-
lights the importance of choosing a proper network model
for traffic fluctuation research.

V. LINK TRAFFIC FLUCTUATION ON
WEIGHTED NETWORKS

A. Analytical Solution

In GRD model, random walkers on a weighted network
travel independently and therefore the number of walkers

passing through a link is a Poisson process. As given
in (4), the probability that a walker at node i chooses link
i–j as the next leg of travel is wij/si. Thus for r random
walkers in a weighted network, the average number of
walkers passing through link i–j (from node i to node j
as well as from node j to node i) during a time window
M is

〈fij〉 = Ωij(r)M

where

Ωij(r) = r

(

si
∑N

i=1 si
·
wij

si
+

sj
∑N

i=1 si
·
wij

sj

)

, (17)

and the probability of fij = n in a time window is

Qij(n) = e−Ωij(r)M
[Ωij(r)M ]n

n!
. (18)

Similar as the above analysis on node traffic fluctua-
tion, for a more general case where the number of random
walkers r from time window to time window is distributed
in [R− δ, R+ δ], the probability of fij = n in a time win-
dow is

Γij(n) =

2δ
∑

j=0

(
e

2wij

〈kθ+1〉2N
(R−δ+j)M

2δ + 1
(19)

×
e

2wij

〈kθ+1〉
2
N

(R−δ+j)M

n!
).

Calculating the first and second moments of fij , we ob-
tain

〈fij〉 =
∞
∑

n=0

nΓij(n) =
2wij
∑N

i=1 si
RM, (20)

and

〈f2
ij〉 =

∞
∑

n=0

n2Γij(n) = 〈fij〉
2

(

1 +
δ2 + δ

3R2

)

+〈fij〉. (21)

Thus the standard deviation as a function of the average
traffic 〈fij〉 is

σ2
ij = 〈fij〉

(

1 + 〈fij〉
δ2 + δ

3R2

)

. (22)

This indicates the relation between the traffic on links
and its scale is irrelevant to θ as well. For neutral
weighted networks, using Eqs. (1) and (15), we can
rewrite (20) as

〈fij〉 =
2(kikj)

θ〈k〉MR

〈kθ+1〉
2
N

. (23)

If δ2+δ
3R ·

2(kikj)
θ〈k〉M

〈kθ+1〉2N
≪ 1, (22) is reduced to a power-

law scaling σij ∼ 〈fij〉
α
with α = 1/2. Conversely, as

δ2+δ
3R ·

2(kikj)
θ〈k〉M

〈kθ+1〉2N
increases to 1, the exponent α will

leave 1/2 for 1.
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FIG. 2: Traffic fluctuation σi as a function of average traffic volume 〈fi〉 at node i for different values of weightiness parameter
θ. (a) shows analytical solutions of (12) for θ = 0, 0.5, and 1; and (b), (c), (d), (e) and (f) show simulation results for θ = 0,
0.25, 0.5, 0.75, and 1 respectively, where results are shown for all nodes and coloured by node degree ki, and the black dotted
lines are the analytical solutions. Time window size M is set as 100 and other parameters are as before. The insets of (b), (c)
and (d) show 〈fi〉 as a function of ki on a log-log scale, which is predicted by (16).
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(b) Watts-Strogatz small-world network

(c) Erdos-Renyi random graph

(a) Barabasi-Albert scale-free network

5 227 375

FIG. 3: Traffic fluctuation σi as a function of average traf-
fic volume 〈fi〉 at node i for neutral networks with θ = 0.5,
M = 100, R = 104 and δ = 103. The black dotted lines
are the analytical solution given by (12) and (16). (a) shows
the simulation obtained on weighted BA networks with 5,000
nodes and 25,000 links. (b) shows the simulation obtained on
weighted Watts-Strogatz small-world networks with rewiring
probability 0.1, 5,000 nodes and 25,000 links. (c) shows the
simulation obtained on weighted Erdös-Rényi random graphs
with connected probability 0.002, 5,000 nodes and 25,000
links.

B. Numerical Simulation

Here we use the same simulation settings as Sec-
tion IV(B).

1. Power-Law Relation Between σij and 〈fij〉

In Figure 4 we plot the relation between the traffic
fluctuation σij and the average traffic 〈fij〉 on link i–j
for three different values of time window size M . The
simulation results are in agreement with our analytical
solution. As predicted by Eqs. (22) and (23), the av-
erage traffic and the fluctuation increase with M . The
two quantities follow a power-law scaling σij ∼ 〈fij〉

α
,

where the exponent α is 1/2 for small value of M and
approaches to 1 with larger M . Such behaviour is simi-
lar as the traffic fluctuation on nodes.

100 101 102 103
100

101

102

=1

 

 

 M = 10
 M = 100
 M = 1000

 < f  >ij

ij

=0.5

FIG. 4: Traffic fluctuation σij as a function of average traffic
〈fij〉 on link i–j between nodes i and j with time window size
of M = 10, 100 and 1000. The green line is the analytical
solution given by (22). The black dotted lines correspond to
σij ∼ 〈fij〉

α with α = 0.5 and 1, respectively. The simula-
tion results are obtained on weighted BA networks with 5,000
nodes and 25,000 links with θ = 0.5, R = 104 and δ = 103.

2. Impact of Weightiness Parameter θ

In Figure 5(a), the range of scale for θ = 1 is
[0.5031, 0.9602] while for θ = 0 it is nearly 0. For θ = 0,
the links in the simulation form a dense group on the
plot [18], representing almost equal fluctuation proper-
ties. This unaccounted fact can be explained by the so-
lutions of (22) and (23). The dashed lines are guides to
the eyes and correspond to σi ∼ 〈fi〉

α
, with α = 1/2

and α = 1. The comparison among unweighted networks
(θ = 0) and weighted ones (θ > 0) can be observed in
this figure in panel (b). Note that the green and red dots
reflect the solution of (22). As shown in the figure, the
differences of fij and σij for different nodes pairs crop up
when θ = 1. In fact, this process is not as sudden as it
looks.

3. Node Degree k

In Figure 5(c) and (d), we show the middle case of
θ = 0.5 numerically for different node pairs. As shown
in the panel (c), the plots are colored by fij . For all the
links, we only focus on the results obtained for pairs of ki
and kj (restrict kj > 10 to enhance the speed of loading
figures), where ki > kj . One can easily find that fij is
directly proportional to the product of two ends’ degrees
ki and kj when θ > 0, while they are almost a constant
when θ = 0. Likewise, σij ’s are directly proportional to
kikj when θ = 0.5 as well, but they are rather stable
when θ = 0 (see panel (b)).
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FIG. 5: Traffic fluctuation σij and average traffic 〈fij〉 on link i–j with parameters M = 100, R = 104 and δ = 103. (a)
Shows analytical solutions of (22) for θ = 0, 0.5 and 1, respectively. (b), (c) and (d) are simulation results. (b) shows σij as a
function of 〈fij〉 for θ = 0 and 1. (c) shows the average traffic 〈fij〉 on link i–j as a function of degrees of the two end nodes of
the link, ki and kj , where θ = 0.5, the value of 〈fij〉 is given by a colour bar, and the guideline is given by (23). Similarly (d)
shows the traffic fluctuation σij as a function of ki and kj .

4. For Neutral Weighted Networks

Figure 6 shows the simulation results on weighted BA,
Watts-Strogatz small-world networks and Erdös-Rényi
random graphs with θ = 0.5. As shown in the panels
(a) and (c), the simulation results on the scale of fij is
consistent with the solution given by Eq. 22. In the panel
(b), one can find that the numerical results deviate from
Eq. 22 again. The behavior confirms our observations
in Fig. 6 and the discussion in Section IVB4 in another
light.

C. Discussion

One simple example for the result is that for a traffic
network, the traffics on different roads differ, the wider
of which can have the larger traffic. At the same time,

the roads with heavy loads fluctuate more dramatically,
depending on whether it is a rush hour or not. Indeed,
the interactions among walkers should not be ignored in
the realistic scenarios, e.g., the transport of information
packets, signals, molecules, rumours, diseases, to name
but a few. Whereas, these interactions vary widely from
case to case. For generality, we begin with this simple
model to take a step forward in the analytical investi-
gation of the corresponding problems. We believe our
rigorous solutions are capable of prompting related stud-
ies on interacting walkers in the near future.

VI. CONCLUSION

In summary, we investigate the traffic fluctuation prob-
lem on weighted networks, which is a more general and
realistic representation of real systems. Previous re-
sults on nodes are the most simple case of our result.
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(a) Barabasi-Albert scale-free network
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(b) Watts-Strogatz small-world network

ij

FIG. 6: Traffic fluctuation σij and average traffic 〈fij〉 on link
i–j with parameters M = 100, R = 104 and δ = 103. The
black dotted lines are the analytical solution given by (22)
and (23). (a) shows the simulation obtained on weighted BA
networks with 5,000 nodes and 25,000 links with θ = 0.5,
R = 104 and δ = 103. (b) shows the simulation ob-
tained on weighted Watts-Strogatz small-world networks with
a rewiring probability 0.1, 5,000 nodes and 25,000 links. (c)
shows the simulation obtained on weighted Erdös-Rényi ran-
dom graphs with connected probability 0.002, 5,000 nodes
and 25,000 links.

Moreover, comparatively few investigations have been
recorded in the literature relative to the fluctuation on
links both for unweighted and weighted networks yet.
In this paper, we introduce the general random diffu-

sion (GRD) model, which describe a swarm of random

walkers traveling simultaneously on the weighted net-
works. Based on the model we provide analytic solutions
to characterise the relation between the mean traffic and
its fluctuation for nodes and for links. We discuss the
impact of key parameters on the traffic fluctuation. Key
observations include size of time window, node strength,
and link weight. To prove the results, we take neutral
networks with a specifical link weight definition for exam-
ple. Our analysis indicates the relation between the traf-
fic and its scale is irrelevant to the weight parameter θ.
Simultaneously, we find the scales of traffic on weighted
links with θ > 0 are much wider than unweighted ones,
on which the traffic are rather stable, which is confirmed
by analytical prediction with remarkable accuracy. Thus,
both simulations and analytic work have suggested that
the weight could have an impact on the way in which
networks operate, including the way information travels
through the network and resource assignment for an ef-
ficient performance of communication networks.

One significant observation is that study based on un-
weighted networks could lead to unrealistic, misleading
results, such as same link traffic and fluctuation for all
links. Therefore, the GRD model based on weighted net-
work provides a proper platform for future such research.
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