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A B S T R A C T

This thesis develops computational and applied tools to study differ-
entiated products. The core of the thesis focuses on Berry, Levinsohn,
and Pakes’s [1995] (BLP hereafter) model of differentiated products.
First, I examine how polynomial-based methods for multi-dimensional
numerical integration improve the performance of the model. Unlike
Monte Carlo integration, these rules produce reliable point estimates
and standard errors as well as increasing the accuracy and execution
speed of the estimation software. Next, I conduct a large scale sim-
ulation study to investigate both the asymptotic and finite sample
behavior of the BLP model using the traditional instruments formed
from characteristics of rival goods and also supply-side cost shifters,
which are necessary for asymptotic identification. The final part of the
thesis evaluates the 2003 merger of Morrisons and Safeway by combin-
ing a discrete/continuous choice model of demand with census data to
construct a geographic distribution of demand. I use this distribution
to model the interaction between the location of consumers and stores,
focusing on the welfare implications of the merger.
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assistant for Beckert et al. [2009] influenced my thinking in Chapter 4,
however I analyze and apply their data in a novel manner to model
the geographic nature of competition in the 2003 Morrisons-Safeway
merger as well as its impact on welfare. All errors are my own.
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1
I N T R O D U C T I O N : C O M P U TAT I O N A L T O O L S A N D
P R O D U C T D I F F E R E N T I AT I O N

Two themes unite this thesis: computational tools and product differ-
entiation. In Chapter 2 and Chapter 3, I demonstrate the benefits of
polynomial-based quadrature rules for numerical approximation of
multi-dimensional integrals (Chapter 2) and of large-scale simulation
methods to characterize the behavior of an estimator (Chapter 3). Both
of these tools are applicable to a range of problems in theoretical
and applied Economics. Furthermore, these methods are particularly
useful for computing accurate answers to practical questions, such
as evaluating welfare consequences or the properties of an estimator
for realistically-sized datasets where asymptotic results may not hold.
To illustrate the power of these tools, I analyze the Berry et al. [1995]
model of differentiated products, now a mainstay of the Industrial
Organization literature, using these methods. The final chapter of this
thesis uses better data and computational resources to construct a
model of the geographic interactions between supermarkets and their
customers in order to evaluate the 2003 merger between Morrisons,
plc, and Safeway, plc, in the United Kingdom.

Chapter 2 studies how the interaction between different quadrature
rules and a solver affects estimation results. I focus on Monte Carlo
and polynomial-based rules. Monte Carlo methods of one form or
another have become the most popular technique for approximating
integrals after a series of research on simulation-based estimators
(E.g. McFadden 1984, 1989, Pakes and Pollard 1989). These methods
are appealing because they are easy to implement and can be justi-
fied by familiar, statistical arguments. I show that polynomial-based
quadrature methods such as monomial rules [Stroud, 1971] are better
in all respects: they are typically a factor of 10 more accurate for a
given number of nodes and a factor of 10 less costly to compute for
a given accuracy. I use Monte Carlo experiments to show the conse-
quence of using pseudo-Monte Carlo (pMC) integration rules instead
of monomial rules in the context of the BLP model. The extra accuracy
of the monomial rules produces much more reliable point estimates
and larger standard errors when a parameter is not precisely esti-
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mated. pMC methods can mask identification problems because pMC

rules introduce false local optima with artificially high curvature due
to simulation error which produce artificially tight standard errors.
In addition, simulation studies show, using the infrastructure from
Chapter 3, that polynomial-based rules have much less bias than pMC

rules. Finally, polynomial-based rules are almost as easy to use as pMC

methods – all that is required is a table lookup or a call to a library
function. Consequently, there is no adverse tradeoff to using better
quadrature methods.

Chapter 3 computes the finite sample bias of the BLP estimator
on a much larger scale than any previous Monte Carlo studies of
the BLP model, including Berry et al. [2004b] and Armstrong [2011].
This research shows that modern High Throughput Computing (HTC)1

enables simulation2 of complex problems.3 In order to harness the
power of HTC, I develop a robust implementation of the BLP model
which uses current best practice for optimization [Su and Judd, 2010]
and quadrature rules (Chapter 2). To make the experiments realistic,
I generate data from a fully-specified structural model. I compute
several measures of bias for different numbers of markets, ranging
from 1 to 50, and numbers of products, ranging from 12 to 100. In
addition, I compare the performance of two different types of instru-
mental variables: the characteristics of rival products (the traditional
‘BLP’ instruments) and supply-side cost shifters. I find that for these
experiments, the BLP instruments produce biased point estimates and
elasticities. Cost shifter IV provides a small improvement, but the
results show that even for 50 markets and 100 products asymptotics
have not yet begun to take effect. In short, applied practitioners should
exercise considerable care to reduce bias before basing welfare calcula-
tions and policy decisions on this model. Further research is required
to find better ways to estimate demand for differentiated products.

1High Throughput Computing provides massive computational power for jobs
which are readily parallelized by gathering many low-powered CPUs – typically no
more powerful than a desktop CPU – into nodes which are in turn linked by fast
interconnects. This allows a complex problem to be accelerated by breaking it up into
chunks which can be run simultaneously on many processors. High Performance
Computing (HPC) is similar to HTC but focuses on providing massive computing
power on much shorter timescales – i.e., days or weeks instead of months or years.

2The term simulation is potentially confusing because it could refer either to a va-
riety of pseudo- or quasi-Monte Carlo rules for approximating numerical integration
or to the use of Monte Carlo experiments to study problems which are otherwise too
costly or complex to study in another manner. The meaning of the term should be
clear from the context.

3Natural scientists increasingly view simulation as a third method of research
with equal merit to theory and experiment [U.S. National Science Foundation, 2007].
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Finally, in Chapter 4, continuing the theme of product differentiation,
I evaluate the welfare consequences of the 2003 acquisition of Safeway
plc by Wm Morrisons plc by modeling how the location of stores both
in geographic and characteristic space affects firms’ market power. In
order to compute the welfare consequences of this merger as well as
counter-factual policy experiments – such as preventing the merger
or allowing Tesco plc to acquire Safeway – I model the geographic
distribution of consumer demand for units of groceries. I construct
this distribution by combining a discrete/continuous structural model
of demand with disaggregate census data. The demand estimation
captures both store choice and conditional expenditure, similar to
Smith [2004], however, I use the TNS Worldpanel, a high quality panel
of 40,000 households’ grocery purchases. I then use the geographic
distribution of demand to compute the impact of different (counter-
factual) policy decisions on both consumer welfare and firm profits. I
find that for most regions and household types, the merger had little
impact on consumer welfare because Morrisons’ and Safeway’s stores
rarely compete in the same geographic markets.
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Part I

C O M P U TAT I O N A L T O O L S F O R A P P L I E D
E C O N O M I C S

The first Part of the thesis examines several computational
tools which are applicable for a wide class of problems in
Economics. In Chapter 2, I demonstrate that polynomial-
based quadrature methods outperform traditional simula-
tion methods even for high dimensions. In the context of
Berry et al. [1995]’s (BLP) model of differentiated products, I
show that monomial rules and sparse grids integration pro-
vide both more reliable point estimates and more reliable
asymptotic standard errors than Monte Carlo integration.
In addition, the polynomial methods provide superior ac-
curacy at much lower cost. Next in Chapter 3, I perform a
large scale Monte Carlo experiment to study the finite sam-
ple performance (bias, Root Mean Squared Error (RMSE))
of the BLP estimator for data generated from a structural
model. I find that the estimator has persistant finite sam-
ple bias for several instrumentation strategies and that the
estimator’s behavior is far from asymptotic for the sample
sizes often encountered in practice.



2
H I G H P E R F O R M A N C E Q U A D R AT U R E R U L E S : H O W
N U M E R I C A L I N T E G R AT I O N A F F E C T S A P O P U L A R
M O D E L O F P R O D U C T D I F F E R E N T I AT I O N1

Efficient, accurate, multi-dimensional, numerical integration has be-
come an important tool for approximating the integrals which arise
in modern economic models built on unobserved heterogeneity, in-
complete information, and uncertainty. In this chapter, we examine
the interaction between the solver and several quadrature rules. Using
a series of Monte Carlo experiments, we demonstrate that polynomial-
based rules out-perform pseudo-Monte Carlo rules both in terms of
efficiency and accuracy for many types of integrals with standard ker-
nels and domains, such as normal, uniform, or exponential. To show
the impact a quadrature method can have on results, we compare
the performance of these rules in the context of Berry et al. [1995]’s
model of product differentiation (BLP hereafter) and find that Monte
Carlo methods introduce considerable numerical error and instability
into the computations. We find that the interaction between the solver
and the quadrature rule matters: inaccurate rules produce unreliable
point estimates, excessively tight standard errors, instability of the
inner loop ‘contraction’ mapping for inverting the market share equa-
tion, and poor convergence of several of the best available solvers.
Both monomial rules and sparse grids methods lack these problems
and provide more accurate, cheaper methods for quadrature. We also
show that polynomial-based rules are superior for high dimensional
integrals.

1This chapter is essentially Skrainka and Judd [2011] with few modifications.
Che-Lin Su and JP Dube aided my research for this chapter by graciously sharing their
knowledge of BLP and their MATLAB code. This project was supported by the UK
Economic and Social Research Council grant (RES-589-28-0001) to the ESRC Centre
for Microdata Methods and Practice (Cemmap) and Ian Foster at the Computation
Institute at the University of Chicago. Although my co-author was instrumental in
developing these ideas, I wrote this paper in its entirety.
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2.1 introduction

In this chapter, we demonstrate that the twin goals of computational
efficiency and accuracy can be achieved by using monomial rules
instead of simulation, even in higher dimensions. We compare mono-
mial2 rules to several popular methods of numerical integration – both
polynomial-based (Sparse Grids Integration (SGI), and Gaussian prod-
uct rules) and Monte Carlo – and show that monomial rules are both
more accurate and often an order of magnitude cheaper to compute
for a variety of integrands, including low and high order polyno-
mials as well as the market share integrals in Berry et al. [1995]’s
model of product differentiation. In addition, we also demonstrate
that polynomial-based rules produce more stable estimation results
because pseudo-Monte Carlo integration introduces numerical error
into the BLP model which produces multiple local optima, artificially
tight standard errors, instability of the inner loop ‘contraction’ map-
ping for inverting market shares, and poor convergence even with
some of the best solvers currently available.

A good quadrature rule delivers high accuracy at low computational
cost. High accuracy comes from either using more points and/or
choosing those points more cleverly. Cost depends on minimizing
evaluations of the integrand – i.e. decreasing the number of nodes. A
good numerical approximation to an integral should use few nodes
yet sacrifice as little accuracy as possible. Fortunately, researchers now
have access to a variety of high performance quadrature3 methods,
one or more of which should suit the problem at hand. Monte Carlo
methods are the primary option for very high dimensional problems,
but for many multi-dimensional problems, the analyst can often obtain
a cheaper, more accurate approximation by choosing a polynomial-
based quadrature rule – even for ten, 15, or more dimensions.4 Because
most integrals in economics are analytic, polynomial-based methods
should provide accurate, efficient numerical approximations.

2Monomials are the simplest possible basis for multidimensional polynomials.
Each basis function is simply a product of the coordinates, each raised to some power.
E.g., x3

1x2
2x1

5. A formal definition follows below on page 32.
3Some authors (e.g. Cools [2002]) use quadrature to refer to one dimensional

integrals and cubature to refer to integrals of dimension ≥ 2. We will always use
quadrature to refer to any integration rule, regardless of the dimension.

4What actually constitutes a high dimensional problem will depend on the
computing resources and numerically properties of the integral.
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Our paper builds on Heiss and Winschel [2008] which showed that
sparse grids integration outperforms simulation for likelihood estima-
tion of a mixed logit model of multiple alternatives. However, we make
several new contributions including that simulation introduces false
local optima and excessively tight standard errors; that polynomial-
based rules approximate both the level and derivatives of integrals
better than pMC; that quadrature rules affect solver convergence; that
polynomial rules outperform Monte Carlo for low to moderate degree
monomials but both are poor for higher degrees; and that monomial
rules provide a low cost alternative to SGI.

We obtain these results by comparing the performance of different
quadrature rules (pMC, Gaussian-Hermite product rule, monomial
rule, and sparse grids integration. ) when estimating the BLP model of
differentiated products for several synthetic datasets.5 BLP’s paper de-
veloped an innovative method for studying both vertical and horizon-
tal aspects of product differentiation by using a random coefficients
multinomial logit with unobserved product-market characteristics.
But, the model’s results depend heavily on the numerical techniques
used to approximate the market share integrals: any errors in comput-
ing these integrals – and, more importantly, the gradient of the the
GMM objective function – have far reaching consequences, rippling
through the model, affecting the point estimates, the standard errors,
the convergence of the inner loop mapping, and even the convergence
of the solver used to compute the parameter estimates. Although,
the original BLP papers use importance sampling [Berry et al., 1995,
2004a], an informal survey of the BLP literature shows, with few ex-
ceptions [Conlon, 2010], most BLP practitioners [Nevo, 2000b,a, 2001]
use pseudo-Monte Carlo integration without any variance reduction
methods. Thus, errors from inaccurate (pMC) quadrature rules could
potentially affect much of the BLP literature.

In addition, the failure of a modern solver such as KNITRO Byrd
et al. [2006] or SNOPT [Gill et al., 2002] often means that the Hessian is
ill-conditioned or that a problem is numerically unstable. The former
usually indicates that a model is not precisely estimated because
the mapping from data to parameters is nearly singular to working
precision. Using an inferior quadrature rule, such as Monte-Carlo, can
mask these problems because the noisiness of pMC creates false basins

5We often refer to Monte Carlo rules as pseudo-Monte Carlo or pMC because of
the pseudo random numbers used to generate these nodes. Quasi-Monte Carlo is an
alternative, number-theoretic method. See Section 2.2.2 and Judd [1998].
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of attraction where the solver converges and, thus, multiple optima.
By combining a high-quality solver and quadrature rule a researcher
can get early feedback that such problems may be present.

Furthermore, the logit-class of models is prone to numerical insta-
bility because the exponential function quickly becomes large. Conse-
quently, poorly implemented code will suffer from a variety of floating
point exceptions, including overflow, underflow, and NaNs6. These
problems are exacerbated by the long tails of the normal pdf and
typically cause a solver to abort. Some researchers attempt to address
these issues by setting the objective function to a large constant on
overflow or by using a set of draws which avoids the problem regions
of parameter space. A better approach is to address the underlying
problem with robust code, hand-coded derivatives, and proper box
constraints.

We begin the chapter by surveying current best practice for numer-
ical integration, explaining the strengths and weaknesses of several
popular methods for computing multi-dimensional integrals. In ad-
dition, we compute several metrics to illustrate the superiority of
polynomial-based quadrature rules to simulation. Next, we briefly
review the BLP model of product differentiation. Then, we estimate
the BLP model using monomial, sparse grids integration, and pseudo-
Monte Carlo methods. After comparing the point estimates, standard
errors, and convergence properties under these different rules, we find
that monomial rules provide correct point estimates unlike simulation
methods. Finally, we conclude.

2.2 multi-dimensional numerical integration

All quadrature methods approximate an integral as a weighted sum
of the integrand evaluated at a finite set of well-specified points called
nodes. I.e., a quadrature method approximates the integral

I [ f ] :=
�

Ω
w (x) f (x) dx, Ω ⊂ Rd, w (x) ≥ 0 ∀x ∈ Ω

as

6NaN means ‘not a number’ and indicates that a floating point computation
produced an undefined or unrepresented value such as ∞/∞, ∞ · 0, or ∞ − ∞ per the
IEEE-754 floating point standard. What happens when a program generates a NaN
depends on the platform, typically either the process receives a signal to abort or the
operating system silently handles the floating point exception and the computation
produces the special floating point value NaN.
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QR [ f ] :=
R

∑
k=1

wk f (yk) , yk ∈ Ω,

where w (x) is the weight function such as 1, exp (−x), or exp
�
−x�x

�

depending on the problem [Stroud, 1971]. The region of integration, Ω,
is also problem dependent. {wk} and {yk} are the quadrature weights
and nodes, respectively, R refers to the number of nodes (or draws),
and d is the dimension of the integral. We use N below for the number
of replications of each simulation experiment. Thus, N = 100 and
R = 1, 500 means that we computed the integral 100 times using a
different set of 1, 500 draws for each replication.7

A simple Monte Carlo rule would set wk = 1/R, ∀k, and draw yk

from a suitable probability distribution, namely w (x). For example, if
the integral is the mixed, or random-coefficients, logit with Ω = Rd,
f (x) the multinomial logit for some taste coefficient, and w (x) =

exp
�
−x�x

�
. Then, assuming a pMC rule, yk is drawn from the normal

distribution for the coefficients.8 To use a polynomial-based rule, a
researcher would simple look up the nodes and weights in a reference
such as Stroud [1971] or call a library function such as those provided
by Heiss and Winschel [2008].

The art of numerical integration lies in choosing these nodes and
weights strategically so that the approximation achieves the desired
accuracy with few points and, thus, minimal computational expense.
A solution is said to be exact when I [ f ] = QR [ f ]: i.e., the approxima-
tion has no error. Many rules give an exact result for all polynomials
below a certain degree. Because polynomials span the vector space of
‘well-behaved’ functions, any integral of a function which is smooth
and differentiable – or better yet analytic – should have a good nu-
merical approximation. More often, though, the approximation will
not be exact. The quality of the approximation also depends on other
properties of the integrand such as the presence of sharp peaks, kinks,
high frequency oscillations, high curvature, symmetry, and the thick-
ness of the tails all of which can lead to non-vanishing, high order

7This notation is based on Cools [2002].
8If you are integrating over a normal density, w̃ (u) =

(2π |Ω|)
−

d
2 exp

�
−1

2
(u − u)T Ω−1 (u − u)

�
, you must transform the problem

to one with the Gaussian weighting function w (x) = exp (−x�x) by perform-
ing a change of variables based on the Cholesky decomposition. In this case,
x = C−1 (u − u) and CC�

= 2Ω. See Section 2.2.1.

26



terms in a Taylor series expansion. A good approximation, as well as
minimizing error and the number of (expensive) function evaluations,
should converge to the true value of the integral as the number of
nodes approaches infinity [Stroud, 1971].

The two primary methods for choosing the quadrature nodes and
weights are number theoretic and polynomial-based methods [Cools,
2002]. The former refers to Monte Carlo (or simulation) methods
whereas the later includes product rules based on the Gaussian quadra-
ture family of methods as well as monomial rules and sparse grids
integration. In general, polynomial-based methods are both more
efficient and more accurate. Heiss and Winschel [2008] warn that
polynomial-based methods poorly approximate functions with large
flat regions or sharp peaks, and, by extension, regions with high fre-
quency oscillations. The later two problems are also likely to affect
Monte Carlo (MC) methods as we show in Section 2.2.4. In the BLP
example below, monomial rules have no trouble in the tails because of
the Gaussian kernel. However, for very high dimensional integration
MC rules may be the only option because the ‘curse of dimensionality’
makes even the most efficient polynomial rule intractable. MC meth-
ods can also be superior when integrating over irregularly shaped
regions, unless there is a clever change of variables. If the integrand
has kinks, jumps, or other singularities more work is usually required,
such as performing separate integrations on the different sides of
the kink or using an adaptive rule. Many economic applications,
however, have ten or fewer dimensions and well-behaved integrands
(analytic, smooth, and bounded), making these problems well-suited
for polynomial-based rules.

2.2.1 A One-Dimensional Example

To illustrate these issues, consider a one-dimensional random coeffi-
cients multinomial logit (MNL) model. An agent i chooses the alter-
native j ∈ J which yields the highest utility Uij = αi

�
log yi − log pj

�
+

zT
j β + �ij, where �ij follows a Type 1 Extreme Value distribution and

the taste shock is a one dimensional random coefficient on price,
αi ∼ N

�
ᾱ, σ2�. Because of the distributional assumption on �ij, the

market shares conditional on type αi are
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sij (αi) =
exp

�
−αi log pj + zT

j β
�

∑
k

exp
�
−αi log pk + zT

k β
�

(See Train [2009] for details.). Consequently, the total market share of
good j is just the expectation of the conditional market share integral
for j:

sj =
�

Ω

sij (αi) g (αi) dαi

=

∞�

−∞

sij (αi)
1√

2πσ2
exp

�
− 1

2σ2 (αi − ᾱ)2
�

dαi

=
1√
π

∞�

−∞

sij

�√
2σu + ᾱ

�
exp

�
−u2� du

≈ 1√
π

R

∑
k=1

wksij

�√
2σyk + ᾱ

�
,

where a one-dimensional ‘Cholesky’ transformation was used to con-
vert from the economic problem to the mathematical formula and
g (·) is the normal probability density function for αi. {wk} and {yk}
are the R weights and nodes for a Gauss-Hermite quadrature rule,
which is the appropriate rule for this weighting function and domain
of integration. A nice feature of this type of rule is that the normal
density disappears from the sum used to approximate the integral by
construction of the weights.

In the following two sections, we survey the two main types of rules:
Monte Carlo and polynomial-based.

2.2.2 Monte Carlo Integration

Monte Carlo integration is one of the most popular choices for nu-
merical integration because it is easy to implement and conceptually
simple. This method computes the integral by taking draws from an
appropriate distribution and may include other techniques to increase
accuracy and speed, such as importance sampling, Halton draws, and
antithetic draws [Train, 2009]. In its simplest form, simulation weights
all nodes equally by setting the weights ωk = 1/R, where R = |{yk}|,
and the nodes are drawn from a suitable distribution. The weight
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function is set to 1/R because the draws come from the corresponding
distribution. Consequently, simulation is easy to implement and also
works over irregular-shaped regions or with functions which are not
smooth, even if MC methods do not always produce the most accurate
approximations.

The Law of Large Numbers is used to justify MC rules: draw enough
points and the result must converge to the ‘truth’ without bias. Un-
fortunately, accuracy only improves as

√
R – so the number of nodes

must be increased by a factor of 100 for each additional digit of accu-
racy. Consequently, a more sophisticated quadrature rule will usually
outperform Monte Carlo for moderate-sized problems because adding
well-chosen nodes improves the integral approximation more quickly
than the same number of randomly-chosen points. In practice, Monte
Carlo draws are created using an algorithm for generating appar-
ently random numbers, such as Mersenne twister [Matsumoto and
Nishimura, 1998], which can pass the statistical tests associated with
random numbers. These numbers are known as pseudo random and
the corresponding Monte Carlo method is known as pseudo-Monte
Carlo (pMC) integration. Because pseudo-random numbers are not
truly random, the Law of Large Numbers only applies to theoretical
discussions of MC methods based on true random numbers, not the
pseudo-random implementations commonly used for numerical inte-
gration. A poor random number generator can compromise results.
See Judd [1998] for further discussion of the potential pitfalls.

More sophisticated methods of taking draws – quasi-Monte Carlo
methods, importance sampling, and antithetic draws – remedy some
of the deficiencies of simple pMC. Quasi-Monte Carlo (qMC) rules use
a non-random algorithm which will not pass all of the statistical tests
of randomness but, instead, provides better coverage of the parameter
space by constructing equidistributed nodes, resulting in convergence
which is often much faster than pMC methods. The weights, as in
the case of pMC, are wj = 1/R. In an earlier draft, we used a qMC
quadrature rule with Niederreiter sequences9 to estimate the BLP
model. In theory, it should considerably out-perform a pMC rule. We
chose a Niederreiter rule which produces good results for a variety of
problems while retaining the simplicity of pMC rules [Judd, 1998]. In
practice, we found that using even 5,000 nodes for the 5 dimensional

9The current standard in Economics is to use Halton draws and Kenneth Train’s
code, which is available on his website [Train, 1999]. Niederreiter sequences are an
alternative quasi-Monte Carlo (qMC) algorithm [Judd, 1998].
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integrals we consider below, qMC was not a significant improvement
on pMC. Consequently, we do not discuss qMC further. Nevertheless,
qMC is easy to implement and performs at least as well as pMC.

Another common mistake is to use the same set of draws for each
integral. For example, in BLP, there are J × T market share integrals,
where J is the number of products per market and T is the number of
markets. Instead of taking J × T sets of draws (J × T × R total draws),
some researchers take only R draws and use the same R draws for
each of the J × T integrals. By taking a new set of draws for each
integral, the simulation errors will cancel to some extent, which can
considerably improve the quality of the point estimates because the
individual integrals are no longer correlated [McFadden, 1989]. 10

In summary, the basic problems of simulation remain regardless of
the simulation rule: it is noisy and can produce inaccurate results, as
Berry et al. [1995] point out:

... we are concerned about the variance due to simulation
error. Section 6 develops variance reduction techniques that
enable us to use relatively efficient simulation techniques
for our problem. Even so, we found that with a reasonable
number of simulation draws the contribution of the sim-
ulation error to the variance in our estimates (V3) is not
negligible.

2.2.3 Polynomial-based Methods

We compare simulation to three multi-dimensional polynomial-based
rules: Gaussian product rules, sparse grids integration, and mono-
mial rules. Often these rules are said to be exact for degree d because
they integrate any polynomial of degree d or less without error.11 A
common example in one-dimension is the Gaussian-family of rules:
with R nodes they exactly integrate any polynomial of degree 2R − 1
or less. Consequently, polynomial rules require many fewer nodes
than pMC, making them both parsimonious and highly accurate for
most integrands. The higher the degree for which the rule is exact,
the more accurate the approximation of the integral but the greater
the cost because of the increase in nodes. The actual choice of nodes

10Quantifying the actual benefit of separate draws is an open research question
which merits further investigation.

11At least, theoretically. With finite precision of arithmetic there may be extremely
small errors from truncation and round off.
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and weights depends on the the rule and the weighting function in
the integral. For smooth functions which are well approximated by
polynomials – such as analytic functions – a good quadrature rule
should always outperform simulation, except perhaps in extremely
high dimensions. Like MC rules, polynomial approximations of inte-
grals converge to the true value of the integral as the number of nodes
approaches infinity, i.e. lim

R→∞
QR [ f ] = I [ f ].

To use a Gaussian rule, simply determine which rule corresponds to
the weighting function and parameter space of the integral in question.
Then look up the nodes and weights in a table or use the appropriate
algorithm to calculate them. Judd [1998] discusses the most common
rules.

2.2.3.1 Gaussian Product Rule

The Gaussian product rule uses a straight-forward method to con-
struct nodes and weights: compute nodes by forming all possible
tensor products of the nodes and weights of the one dimensional
rule which is appropriate for the integral’s domain and weighting
function. I.e., each of the d-dimensional node zk’s individual coordi-
nates are one of the one-dimensional nodes. The set of nodes, then,
is all possible zs which are on the lattice formed from the Kronecker
product of the one-dimensional nodes. See Figure 1 in Heiss and
Winschel [2008]. The weights are the product of the weights which
correspond to the one-dimensional nodes. For example, consider
a two-dimensional rule with one dimensional nodes and weights
{y1, y2, y3} and {w1, w2, w3}, respectively. Then the product rule has
nodes Y = {(y1, y1) , (y1, y2) , (y1, y3) , . . . , (y3, y3)}. The correspond-
ing weights are W = {w1 · w1, w1 · w2, w1 · w3, . . . , w3 · w3}. And the
approximation for the integral is Q [ f ] = ∑

k∈I
w̃k f (ỹk), where I indexes

W and Y , and ỹk ∈ Y and w̃k ∈ W .12 See the example code in Listing 1
for the actual algorithm.

Consequently, we must evaluate the function at Rd points to ap-
proximate a d-dimensional integral, which quickly becomes much
larger than 10, 000, often a practical upper limit on the number of

12To be more formal, consider a set of one-dimensional nodes and weights,
{yk, wk}R

k=1. The d-dimensional product rule is the set of nodes zk ∈
�
×d

m=1yim

�
. Let

C (zk) be a function which returns an ordered list of the indexes (i1, i2, . . . , id) of the
one-dimensional nodes forming the coordinates of the d-dimensional vector zk. Then
each node zk =

�
yi1 , yi2 , . . . , yid

�
and has weight wi1 · wi2 · . . . · wid , the product of the

one-dimensional weights corresponding to the one dimensional nodes of zk.
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nodes which are feasible with current computer technology. We use
the product of formulas which have the same number of nodes in
each dimension – i.e. are exact for the same degree – so that we know
roughly what degree polynomial can be integrated exactly [Cools,
1997]. If the formulas are not exact to the same degree, then we know
only upper and lower bounds on what polynomial will integrate ex-
actly. One problem with product rules is that some higher degree
monomials will be integrated exactly because of the product between
the one-dimensional bases. For example, consider a problem with
three dimensions and five nodes per dimension. The one-dimensional
Gaussian formula is exact for all polynomials of degree 2 ∗ 5 − 1 = 9,
but the corresponding product rule is also exact for terms such as
x9

1x3
2x1

3, where xi is the variable for the i-th dimension. Thus, product
rules provide some indeterminate amount of extra accuracy, but also
impose additional computational costs.

2.2.3.2 Sparse grids Integration

We also consider SGI which is related to the Gaussian product rules.
SGI uses a subset of the nodes from the product rule and rescales
the weights appropriately. The advantage of SGI is that it exploits
symmetry so that it requires many fewer points, making it more
efficient to compute with little or no loss in accuracy. In addition, the
nodes and weights for higher levels of exactness are easier to compute
for SGI than for monomial rules. We use a Kronrod-Patterson rule
for choosing nodes as explained in Heiss and Winschel [2008]. Our
experiments show that SGI is very competitive with monomial rules in
many cases. However, when the lowest possible computational costs
matter, the monomial rule is the best option because it delivers the
highest accuracy with fewest nodes.

2.2.3.3 Monomial Rules

Monomial rules exploit symmetries even more effectively than SGI and
provide very accurate approximations with surprisingly few nodes,
even for moderate dimensions [Stroud, 1971, Cools, 2003]. Formally,

a monomial in x ∈ Rd is the product
d
Π
i=1

xpi
i where pi ∈ W and W ≡

{0, 1, 2, . . .} . Thus, monomials are the simplest possible basis for the
set of multi-dimensional polynomials. The total order is just the sum
of the exponents ∑

i
pi. xp is a compact notation which refers to the
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monomial
d
Π
i=1

xpi
i . For example, x1x3

2x2
3 is a three-dimensional monomial

with d = 3, p = (1, 3, 2), and total order 6. The monomial rules are
constructed so that they will exactly integrate all monomials less than
or equal to some total order. Monomial rules are more efficient than
product rules because they do not exactly integrate any higher order
terms.

The performance gains from monomial rules are clear, but the dif-
ficulty lies in computing the rule’s nodes and weights. Fortunately,
many efficient, accurate rules have already been computed for stan-
dard kernels and parameter spaces [Cools, 2003, Stroud, 1971]. A
practitioner only needs to look up the appropriate monomial rule in a
table 13,14 and can then compute the integral as the weighted sum of
the integrand at the nodes. Unfortunately, if the necessary rule doesn’t
exist you will have to consult a specialist (For example, see Cools
[1997]).

Section 2.4 provides an example of how to use Stroud monomial
rule 11-1 – which is exact for degree 11 polynomials in five dimensions
– to compute the BLP market share integrals.

2.2.4 Precision and Accuracy

While verifying that our implementation correctly approximated known
integrals of standard monomials, we were surprised by the results.15

As expected, the polynomial rules correctly integrate all monomials
less than or equal to their respective degrees and produce poor results
for monomials of higher degree. But despite using 100 replications
of a pMC rule with R = 10, 000 draws, pMC performed poorly for the
low order monomials, with error increasing with the degree of the
monomial. pMC also produced poor results for high order monomials
where we expected it would outperform the polynomial rules. We

13Typically, a small amount of computation is required because the table will only
provide each unique set of nodes and weights. A researcher must then calculate the
appropriate (symmetric) permutations of the unique nodes to generate all possible
nodes.

14A monomial rule may have several equivalent sets of nodes and weights because
the system of equations used to compute the monomial rule may have multiple
solutions. For example, Stroud rule 11-1 has two solutions, which we refer to as
’Left’ and ‘Right’ after the two columns in the table which list the different solutions.
The performance of these solutions will vary slightly depending on the shape of the
problem.

15The results should be the same up to the limits of standard arithmetic errors
such as truncation and round-off error.
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conjecture that pMC works well only when the high-order terms in a
Taylor series expansion are very small, something which is explicit in
the construction of monomial rules.

These results are summarized in Table 1 which shows the difference
between the theoretical value and the value computed with each
rule. The first three columns are the results for the Gaussian-Hermite
Product rule with 35, 55, and 75 nodes – i.e., 3, 5, and 7 nodes in each of
the 5 dimensions; next the sparse grids rule which is exact for degree
11; then, the left and right versions of rule 11-1 in Stroud [1971], also
exact for degree 11; and, finally, the two right most columns show the
mean absolute error and the standard error for the pMC rule with 100
replications. The monomials are listed by increasing degree. Note that
the Gauss-Hermite product rules will exactly integrate any monomial
rule as long as the coordinates in each dimension are raised to some
power less than or equal to 2R − 1 where R is the number of one
dimensional nodes used in the tensor product. For odd monomials,
the difference in performance is even more stark: the polynomial rules
are 0 to the limits of numerical precision whereas pMC has significant
error, especially as the degree of the monomial increases. These results,
in our opinion, considerably strengthen the case for using sparse grids
or monomial rules because pMC is never better.16

The values for |pMC| are surprisingly large. Further investigation
revealed that the set of draws in this experiment are particularly bad,
despite using 10,000 draws and 100 replications. The Central Limit
Theorem governs this behavior: there is always some probability of
choosing a bad set of draws. Consequently researchers should check
how sensitive their results are to a given set of draws.

2.2.4.1 Bias and Noise

When choosing which quadrature rule to use, a researcher should
consider how it will affect their results. Simulation methods have be-
come extremely popular because they are easy to implement. However
simulation can suffer from both bias as well as noise. The nature of
the bias depends on the type of estimator: for Method of Simulated
Moments (MSM) the bias is zero unlike Maximum Simulated Likeli-
hood (MSL) and Maximum Simulated Score (MSS). The bias occurs
because the bias term is only linear for MSM: consequently, Jensen’s

16We also computed these tests for Halton draws generated by MATLAB R2010b’s
qrandstream facility which did not perform significantly better than pMC.
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inequality shows that MSL and MSS must be biased. The normalized
bias term will approach zero asymptotically if R, the number of draws,
approaches infinity faster than

√
N, the number of observations, i.e.√

N/R → 0 as R, N → ∞. Consequently, researchers who use MSL or
MSS should remember to correct for this bias. Noise, however, will
disappear regardless of R as the sample size increases provided that
different draws are used for each observation. See Train [2009] for
further discussion.

Polynomial-rules, on the other hand, only suffer from approximation
error and that to a much lesser degree than Monte Carlo methods.
Thus, the error is much smaller for these methods, making them
much better suited for empirical and other problems than simulation
[Heiss and Winschel, 2008]. With polynomial rules, researchers can
also consider more efficient econometric methods such as MLE instead
of GMM.

2.2.4.2 Approximation of the Tails of the Normal

Polynomial-based rules approximate the entire distribution more accu-
rately than pMC rules, especially the tails. Extremal values in the tails
often cause numeric problems such as overflow at larger nodes, de-
spite their small quadrature weights. These problems are less common
with Monte Carlo methods because draws in the tails are infrequent
by definition. The source of the problem is not the correct weighting
of the tails, but the modeling decision to use the normal distribu-
tion for convenience. Most real-world distributions have bounded
support: consequently, the problem could be solved by using a more
representative distribution for the random coefficients.
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2.3 the basics of blp

We now quickly review the features and notation of Berry et al. [1995]’s
model before examining how different quadrature rules affect esti-
mation. BLP has become one of the most popular structural models
of product differentiation because it fits empirical data well by us-
ing a flexible form which combines both random coefficients and
unobserved product-market characteristics, ξ jt, enabling the model
to explain consumers’ tastes for both horizontal and vertical prod-
uct differentiation. The model produces more realistic substitution
patterns:17 the random coefficients can handle correlations between
different choices, overcoming the Independence from Irrelevant Al-
ternatives (IIA) problem that is a feature of logit models, and ξ jt

captures unobserved heterogeneity in product quality, preventing bias
in parameter estimates from product traits which the econometrician
cannot observe. Nevo [2000b] provides a detailed and accessible ex-
planation of the model. BLP is now sufficiently established that the
several recent textbooks [Train, 2009, Davis and Garcés, 2009] also
cover it.

Throughout this paper, we base our notation on a simplified version
of the notation in Dubé et al. [2011]. Thus, we consider T markets
which each have J products plus an outside good. Each product j ∈ J
in market t ∈ T has K characteristics, xjt, price, pjt, and an unobserved,
product-market shock, ξ jt. A market can be a time period, as in the
original BLP papers on automobiles, or a city, as in Nevo’s papers on
ready-to-eat breakfast cereal. The shock ξ jt is observed by consumers
and firms but not by the econometrician. This shock captures vertical
aspects of product differentiation whereas the random coefficients
model horizontal differentiation: all consumers value a larger ξ jt but
rank product characteristics differently according to their type. Lastly,
yi is consumer i’s expenditure and drops out of the model because it
is not interacted with any product-specific characteristics.

BLP assume consumers are rational, utility maximizers who choose
the good which maximizes their utility. Let consumer i’s utility from
purchasing product j in market t be18

17The substitution patterns will be incorrect if congestion in product space matters.
See Berry and Pakes [2007] and, for an application where congestion matters, Nosko
[2010].

18Some researchers specify log
�

yi − pjt

�
instead of

�
yi − pjt

�
to capture income

effects [Petrin, 2002].
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Uijt = Vijt + �ijt

with

Vijt = αi
�
yi − pjt

�
+ x�jtβi + ξ jt.

�ijt is an IID, Type I Extreme value shock, which leads to a simple
closed form solution for market shares, conditional on consumer types,
(αi, βi). In practice, yi and pjt are often the logarithm of the respective
quantities which ensures that the utility is homogeneous of degree
zero. Similarly, the utility of choosing the outside, ‘no purchase’ option
(j = 0 by convention) is19

Ui0t = αiyi+ �i0t.

The coefficients αi and βi are type-specific ‘random coefficients’ –
i.e., they depend on a consumer’s type and are drawn from some
distribution in order to capture unobserved differences in consumers’
tastes:20



 αi

βi



 =



 ᾱ

β̄



+ Σνi

where all consumers have the same mean taste preferences ᾱ and
β̄. The unobserved taste shock νi is a K + 1 column vector (because
there are K product characteristics plus price) and has distribution
νi ∼ Pν. The Cholesky factor of the variance of the taste shock is Σ,
a (K + 1)× (K + 1) matrix. Pν is usually assumed to be multivariate
normal. Following convention, we refer to the model’s parameters
as θ where θ = (θ1, θ2), θ1 =

�
ᾱ, β̄

�
, the parameters for mean utility,

and θ2 = vech (Σ), the parameters for the standard deviation of the
random coefficients. Thus, θ refers to all of the parameters to be
estimated.

It is convenient to partition the utility into the mean utility

19Berry et al. [1995] specify Ui0t = αiyi + ξ0t + σ0tνi0t + �i0t.
20Some researchers also include demographic information in the random coeffi-

cients. We ignore demographics in order to focus on the numerical properties of the
model.
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δjt
�
ξ jt; θ1

�
= x

�
jt β̄ − ᾱpjt + ξ jt,

which is the utility that any consumer type gains from choosing
product j in market t, regardless of type, and a type-specific preference
shock

µijt =
�
−pjt x

�
jt

�
(Σνi) .

µijt has mean zero and captures individual heterogeneity. Some re-
searchers permit αi < 0 which can produce a positive price coefficient
for some consumer types. A possible solution is to assume that αi is
log-normally distributed. In other applications αi < 0 may make sense
if price is a signal of quality.

Researchers typically assume that �ijt ∼ Type I Extreme Value so the
market shares, conditional on consumer type ν,21 have a closed-form
analytic solution, the multinomial logit:

sjt (δ (ξ, θ1) |ν ; θ2) =
exp

�
δjt + µijt (ν)

�

∑
k

exp [δkt + µikt (ν)]
.

Then the unconditional share integrals are the just the expectation of
the regular MNL choice probabilities with respect to ν:

sjt (δ (ξ, θ1) ; θ2) =
�

RK+1

exp
�
δjt + µijt (ν)

�

∑ exp [δkt + µikt (ν)]
φ (ν) dν.

Here φ (ν) is the standard multivariate normal probability density
function. We restrict Σ to be diagonal as in the original BLP papers.22

The random coefficients logit can in theory model any choice prob-
abilities given a suitable mixing distribution [McFadden and Train,

21Note: the consumer type, ν, is scaled by Σ, the Cholesky decomposition of the
variance matrix of the random coefficients.

22Nevo [2001] estimates the off-diagonal elements. We expect that the advantages
of monomial rules would be even greater when estimating a model with off-diagonal
elements.
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2000, Train, 2009].23,24 In practice, researchers choose a normal dis-
tribution for the random coefficients because it is tractable. Fiebig
et al. [2010] find that for several empirical datasets the mixing distribu-
tion is significantly non-normal. Nevertheless, logit + normal should
work well as long as the real-world mixing distribution is smooth
and single-peaked because the tails will not contribute much to the
integral.

Historically, a nested fixed point (NFP) algorithm based on Rust
[1987] is used to estimate the model: the outer loop computes the
point estimates of θ̂ by minimizing a GMM objective function whose
moments are constructed from ξ jt; the inner loop solves the nonlinear
system of equations equating predicted and observed shares for the
mean utilities, δjt = δjt

�
Sjt,xjt, pjt, θ2

�
, and, hence, ξ jt. The original im-

plementation [Berry et al., 1995, Nevo, 2000b] uses a contraction map-
ping to perform this inversion. Consequently, ξ jt = ξ jt

�
δjt, xjt, pjt, θ

�
is

a function of the mean utilities, covariates, and θ. Thus, the researcher
codes an outer loop to solve the program

θ̂ = arg max
θ

�
Z

�
ξ (θ)

��

W
�

Z
�
ξ (θ)

�

and an inner loop to recover δ by inverting the market share equation
via the contraction mapping

exp
�

δn+1
jt

�
= exp

�
δn

jt

�
× Sjt/sjt

�
δn

jt; θ2

�
,

where Sjt are the observed market shares, sjt the predicted market
shares, and δn

jt the n-th iterate in a sequence which hopefully converges
to the true mean utilities. Given the mean utilities, the product market
shock is simply

ξ jt = δjt −
�
−pjt xjt

�
θ1.

23McFadden and Train [2000] is a very general result and applies to elasticities
and moments as well as choice probabilities. Consequently, the mixed logit can
approximate general substitution patterns to arbitrary accuracy.

24It is worth emphasizing that you must use the correct mixing distribution for
McFadden and Train [2000]’s result to hold. Keane and Wasi [2009] provide evidence
from several empirical datasets that this is almost never the case.
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Berry et al. [1995] proves that this mapping is a contraction and Nevo
[2000b] advocates using this exponential form to improve performance
by avoiding computing logarithms which are more costly than expo-
nentiation.25 In addition, Gandhi [2010] shows that the market share
equations are invertible for a random utility model which satisfies
certain monotonicity and substitutability conditions. Reynaerts et al.
[2010] demonstrates that other methods for inverting the market share
equations are faster and more robust. They also discuss some of the
convergence problems of the contraction mapping.

The choice of rule to compute the market share integrals affects both
choice probabilities and the inversion of the market share equation be-
cause numerical errors can propagate through both of these channels.
With the above GMM specification, the gradient of the GMM objective
function depends on the gradient of δ, which in turn depends on
the gradient of the inverse of the market share equation, s−1 (S; θ).
Consequently, numerical errors in computing the gradient of the mar-
ket share integrals also propagate, affecting both the point estimates
and the standard errors. As discussed below, one big advantage of
polynomial-based rules over pMC is that they provide a more accurate
approximation for both an integral and its gradient.

When estimating the BLP model below, we use the same moment
conditions as Dubé et al. [2011]. These moment conditions depend on
the product of the unobserved product-market shock, ξ, and a matrix
of instruments. The matrix of instruments consists of various products
of product attributes and a set of synthetic instrumental variables
which are correlated with price but not ξ. See Dubé et al. [2011]’s code
for details.

In this paper, we use Mathematical Programming with Equilibrium
Constraints (MPEC) to estimate the BLP model because it is faster and
more robust than Nested Fixed Point (NFP) [Su and Judd, 2010]. MPEC

relies on a modern, high quality solver such as KNITRO or SNOPT
to solve the model in a single loop as a constrained optimization
problem:

25In simple heuristic tests, we find that the contraction mapping has poor conver-
gence properties, fails to satisfy the sufficiency conditions of the Berry et al. [1995]’s
theorem 10% of the time, and often has a contraction rate close to or exceeding 1.
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max
θ,δ,η

η
�
Wη

s.t. s (δ (ξ) ; θ) = S

η = Z
�
ξ.

By adding the extra variable η, we improve the sparseness pattern
which makes the problem easier to solve and more stable numeri-
cally.26 Furthermore, MPEC solves for the mean utilities implicitly via
the constraint that observed market shares equal predicted market
shares, increasing both speed and stability.

The asymptotic and finite sample properties of BLP are still not
well understood. Berry et al. [2004b] prove asymptotic normality as
J → ∞. Berry and Haile [2010] show the model is identified under the
‘Large Support’ assumption. Chapter 3 uses large scale simulations to
characterize finite sample performance.

2.3.1 Example: Computing BLP Product-Market Shares

Given the above assumptions, the monomial (or Gauss-Hermite or
sparse grid) approximation for the integral is

sjt ≈ 1
π(K+1)/2 ∑

k





exp

�
δjt + µijt (ψk)

�

∑
m

exp [δmt + µimt (ψk)]
ωk






where (ψk, ωk) are the nodes and weights for a suitable quadrature
rule with a Gaussian kernel and K + 1 is the dimension of νk.27 The
factor π−(K+1)/2 comes from the normalization of the normal density.
The choice of monomial rule depends on the number of dimensions
of the integral, desired level of exactness (accuracy), the domain of
integration, and the mixing distribution a.k.a. weighting function.

For a Monte Carlo method, the approximation is

sjt ≈ 1
R∑

k

exp
�
δjt + µijt (ψk)

�

∑
m

exp [δmt + µimt (ψk)]

26With modern solvers, the sparseness pattern and type of non-linearities are more
important than the number of variables.

27K + 1 for the K product characteristics plus price.
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for R nodes ψk drawn from the normal distribution. Note that these
two formulae have the same structure: a weighted sum of the integrand
evaluated at a set of nodes. For a Monte Carlo method, the weight
ωk = 1/R.

2.4 the experiments: simulation vs. quadrature

We compare how pMC, Gaussian product, sparse grid, and monomial
quadrature rules affect the computation of several key quantities in the
BLP model. We compare how these rules perform when computing
the market share integrals, point estimates, standard errors, and the
unobserved heterogeneity ξ jt, all of which are critical components of
the model. We use a high quality solver (KNITRO or SNOPT) and
algorithm (MPEC) for these experiments.28

2.4.1 Experimental Setup

Our experiments use five different synthetic datasets which we gener-
ated from unique seeds and the parameters shown in Table 2 using
MATLAB’s rand and randn functions. We use the same values as Dubé
et al. [2011] (DFS hereafter), except that we use fewer products and
markets and chose different seeds.29 We refer to these datasets via
their seeds, which we label 1 to 5. To ensure that there is some noise in
each dataset, as in real-world data, we compute the ‘observed’ market
share integrals using a pMC rule with R = 100 nodes.30 Currently,
these parameter values result in a market share of about 90% for the
outside good, which seems reasonable for a differentiated, durable
good such as an automobile. That many of the observed market shares
are exceedingly small could lead to inaccuracies in the corresponding
computed market shares because both types of quadrature rules can
be unreliable in large regions of flatness. We only consider diagonal

28Historically, point estimates were computed with BLP’s nested, fixed point
algorithm (NFP). We use MPEC to compute our point estimates because it is much
more robust and, in theory, both algorithms produce equivalent values at the global
optimum [Su and Judd, 2010, Dubé et al., 2011].

29Their code provided the starting point for the code which we de-
veloped to explore the impact of quadrature rules on BLP. We down-
loaded the code from JP Dubé’s website (http://faculty.chicagobooth.edu/jean-
pierre.dube/vita/MPEC%20code.htm), Fall 2009.

30For the rest of the paper, we use R to refer to the number of draws in a Monte
Carlo simulation and N as the number of replications.
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parameter value

J 25
T 50

θ1· ≡
�

β̄
� , ᾱ

� �
2 1.5 1.5 0.5 − 3

��

θ2· ≡ diag (Σ)1/2
� √

0.5
√

0.5
√

0.5
√

0.5
√

0.2
��

R 100

Table 2: Parameters Used to Generate Monte Carlo Datasets.

Σ to facilitate validation and to maintain consistency with most BLP
papers and DFS.

Although this approach of generating data with an inaccurate
quadrature rule is often the practice (See, for example, Dubé et al.
[2011]), this approach introduces false ‘sampling’ error into the syn-
thetic data and potentially confounds results. A better design would
use the most accurate possible integration method to ensure that er-
rors in the data and results are related to the data generating process
instead of this pseudo-sampling error. Berry et al. [1995] explains how
sampling error can affect results and shows that asymptotically it does
not compromise their results for their data. In Chapter 3, however, we
generate the synthetic data using a very accurate, SGI rule.31

We focus on how the interaction between the solver and each quadra-
ture rule affects the point estimates – i.e. whether the solver could con-
sistently and efficiently find a unique global optimum. For each dataset
and quadrature rule, we compute the optimum for the following ex-
periments: five randomly choose starts near the two-stage least squares
(2SLS) logit estimate, multiple starts taken about the average of the best
point estimates for θ̂ for the 55 Gauss-Hermite product rule, and multi-
ple Monte Carlo draws of nodes for the same starting value (pMC rules
only). In all cases, we compute standard errors using the standard

GMM sandwich formula Var
�
θ̂
�
=

�
Ĝ�WĜ

�−1
Ĝ�WΛ̂WĜ

�
Ĝ�WĜ

�

where Ĝ is the gradient of the moment conditions, W the weighting

matrix formed from the instruments,
�

Z�Z
�−1

, and Λ̂ the covariance

of the moment conditions, ∑
j∈J

∑
t∈T

zjtz
�
jtξ

2
jt. In addition, we compare the

level of the market share integrals calculated by the different rules.

31We only realized this error after completing the research for this chapter and
plan to rerun these experiments on a larger scale post-thesis using the infrastructure
of Chapter 3.
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Future research should also examine how quadrature rules affect the
approximation of the gradient and Hessian of the objective function,
which are more important than the level of the market shares in
determining the point estimates and standard errors.

In our computations, we use the following numerical integration
techniques: pseudo-Monte Carlo (pMC), Gaussian Hermite product
rule, SGI [Heiss and Winschel, 2008], and Stroud monomial rule 11-1
[Stroud, 1971]. Because we have assumed that the mixing distribution
of the random coefficients is normal, we compute the pMC nodes by
drawing between 1, 000 and 10, 000 nodes from a standard normal dis-
tribution using MATLAB’s randn function. We use the same draws for
each market share integral, sjt, as in DFS. Current ‘best practice’ seems
to be 5, 000 points so 10, 000 nodes will enable us to put reasonable
bounds on the accuracy of simulation-based BLP results. Berry et al.
[1995] use pMC with importance sampling in an attempt to reduce
variance, but importance sampling is just a non-linear change of vari-
ables and should not significantly improve the performance of pMC.
Although using different draws for each market share integral would
improve the point estimates, we use the same set of draws for each
integral because this appears to be common practice for estimating
BLP models.

For polynomial-based rules, we use quadrature rules which are de-
signed for a Gaussian kernel, exp−x2 , because the mixing distribution
is normal. Consequently, the correct one-dimensional rule to gener-
ate the nodes and weights for the multi-dimensional product rule is
Gaussian-Hermite. The product rule consists of all Kronecker products
of the one-dimensional nodes and the weights are the products of the
corresponding one dimensional weights. The algorithm is shown in
Listing 1:32

Listing 1: MATLAB code to generate a multi-dimensional rule from the
tensor product of one dimensional nodes and weights.

function [ Q_NODES, Q_WEIGHTS ] = GHQuadInit( nDim_, nNodes_ )

% Get one-dimensional Gauss-Hermite nodes and weights using

% algorithm in Numerical Recipies by Press et al (1992).

tmp = gauher( nDim_ ) ;

32The function gauher uses the algorithm in Press et al. [2007] to compute one
dimensional Gaussian-Hermite nodes and weights.
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% extract quadrature information for one dimension

vNodes = tmp( :, 1 ) ;

vWeights = tmp( :, 2 ) ;

% calculate three dimensional nodes and weights

Q_WEIGHTS = vWeights ;

for ix = 2 : nDim_

Q_WEIGHTS = kron( vWeights, Q_WEIGHTS ) ;

end

% Make sure that the right-most dimension (ixDim = nDim_)

% varies most quickly and the left-most (ixDim = 1) most slowly

Q_NODES = zeros( nDim_, nNodes_^nDim_ ) ;

for ixDim = 1 : nDim_

Q_NODES( ixDim, : ) = ...

kron( ones( nNodes_^(ixDim - 1), 1 ), ...

kron( vNodes, ones( nNodes_^(nDim_ - ixDim), 1 ) ) ) ;

end

% Correct for Gaussian kernel versus normal density

Q_WEIGHTS = Q_WEIGHTS / ( pi ^ ( nDim_ / 2 ) ) ;

Q_NODES = Q_NODES * sqrt( 2 ) ; ✆
Note that the normal density requires renormalization of the nodes

and weights because the Gaussian kernel, unlike the normal density,
lacks a factor of 1/2 in the exponent as well as the factors of π−1/2

used for normalization. We experimented with product rules for five
dimensions33 which used 3, 4, 5, 7, or 9 nodes in each dimension. We
found that using more nodes than 7 in each dimension did not improve
accuracy but greatly increased computational cost because of the curse
of dimensionality: for a five dimensional shock the product rule with
7 nodes per dimension requires 75 = 16, 807 nodes to compute a share
integral (whereas 9 nodes per dimension would require 95 = 59, 049.).

Sparse grids integration rules function similarly to product rules
but exploit symmetry so that fewer points are required. We use the
Kronrod-Patterson algorithm for a Gaussian kernel, as described in
Heiss and Winschel [2008], and compute nodes and weights for a five-
dimensional problem which is exact for polynomials of total order 11
or less using their MATLAB code.34 We chose this configuration so that
SGI is exact for the same total order as the monomial rule. For this level

33The dimension is five because the synthetic data has four product characteristics
plus price.

34The code can be downloaded from http://www.sparse-grids.de/.
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of accuracy, 993 nodes are required, a substantial improvement on the
product rule and only 10 more than the monomial rule. However even
a small increase in accuracy requires a rapid increase in the number
of nodes, e.g. exactness for total order 13 requires 2, 033 nodes. See
their paper for the details.

Lastly, we use Stroud [1971]’s monomial rule 11-1 for a Gaussian
kernel. Stroud [1971] provides two solutions,35 both of which provide
comparable performance and integrate all five-dimensional monomials
of total order 11 or less exactly using only 983 nodes. To implement
the rule, we wrote a function which computed the nodes and weights
from the data in Stroud’s text. 36 This simply involves a lot of book-
keeping to compute the correct permutations of the node elements
using Stroud’s data.

Now we briefly discuss our choice of the SNOPT solver, how we
configured it, and numerical stability.

2.4.1.1 Solver Choice and Configuration

Because different solvers work better on different problems, we tried
both the KNITRO and SNOPT solvers on BLP. Both solvers use effi-
cient, modern algorithms: KNITRO supports active set and interior
point algorithms [Byrd et al., 2006] whereas SNOPT uses a Sequential
Quadratic Programming (SQP) method [Gill et al., 2002]. For details
about these algorithms see Nocedal and Wright [2000]. Although KNI-
TRO out performs MATLAB’s fmincon non-linear solver, we found
that SNOPT could often find an optimum when KNITRO would not
converge. We suspect SNOPT is more reliable because it uses a se-
quential quadratic programming algorithm which is more robust than
KNITRO’s interior point method when the objective function or con-
straints are non-convex. In addition, SNOPT 7 was recently upgraded
to handle rank deficient systems. Chapter 3 develops a C++ imple-
mentation of BLP which further exploits the robustness of SNOPT
when solving BLP models by enabling SNOPT’s LU rook pivoting
option.37 This is another indication of (near) rank deficiency and ill-
conditioning. Consequently, if the objective function is nearly flat – i.e.,

35We label the two versions of rule 11-1 as ‘Left’ or ‘Right’, according to whether
we use the set of nodes and weights in the left or right column of his Table Er2

n : 11-1
on pp. 322-323.

36Our monomial code is available at www.ucl.ac.uk/∼uctpbss/public/code/HighPerfQuad.
37The LU rook pivoting option uses a more stable LU decomposition scheme

which is roughly a factor of two slower.
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poorly identified – SNOPT should be more stable. In addition, interior
point methods, such as those used by KNITRO, do not work well on
nonconvex problems. SNOPT uses an SQP method which can handle
the local non-convexities caused by simulation for almost all of the
datasets which we generated.

To get the most out of the solver, we fine-tuned the solver’s op-
tions. In addition, for both solvers we specified the sparseness pattern
and supplied hand-coded derivatives (gradient and Hessian of the
objective function; Jacobian of the constraints) in order to increase
numerical stability and performance. We also set box constraints to
prevent the solver from searching bad regions of parameter space, as
discussed below in 2.4.1.2. Lastly, we set the tolerance to 1e − 6 which
is the default for SNOPT [Gill et al., 2002] and is a typical outer loop
tolerance for BLP.

2.4.1.2 Numerical Stability Considerations: Overflow and Underflow

During our initial experiments we soon became concerned that the
BLP model, despite some support for identification [Berry et al., 2004b,
Berry and Haile, 2010], was not identified – or at least could not be
precisely estimated given the limits of current computers. SNOPT
often terminated with error code EXIT=10 and INFORM=72. These
codes did not mean that the solver had failed to converge but that
it had encountered market shares which were indeterminate, i.e. the
computations produced a NaN.38 In some cases, the constraint that
log Sjt = log sjt, i.e. that the logs of the observed and calculated mar-
ket shares are equal, diverged to −∞ when the shares were nearly
zero. This problem occurs because the market share calculation is
numerically unstable when the utility from the chosen alternative is
extremely large.

This problem is common with logit-based models because the expo-
nential function diverges quickly to infinity for even moderately-sized
arguments. Consider the typical straight-forward implementation of

the logit where f (V; j) =
exp

�
Vj
�

∑
k

exp (Vk)
, for some vector of utilities, V,

and choice j. This implementation is unstable when Vj → ∞ because
38Many higher-level languages such as MATLAB treat these error conditions by

setting a variable’s value to Inf or NaN. However, the researcher must explicitly check
for these conditions using isinf() and isnan(). In general, the CPU generates a
floating point exception when these conditions occur. The operating system will then
raise the signal SIGFPE to the process and the process can either catch the signal by
installing a signal handler or ignore it, which is often the default.
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then f (V; j) → ∞
∞

≡ NaN. This situation can happen when evaluating
quadrature nodes which are in the tail of the distribution. However,
this formulation does allow one to compute a vector wk = exp (Vk)

and then compute choice probabilities from w, which greatly speeds
up computation because it decreases the number of evaluations of
exp (·), which is an expensive function to compute. We found that the
code was more than 10× slower without this optimization on a 2.53
GHz dual-core MacBook Pro with 4 GB of 1067 MHz DDR3 RAM.39

By re-expressing the logit as the difference in utilities, f̃ (V; j) =
1

∑
k

exp
�
Vk − Vj

� , we can solve the stability problem. This specification

is equivalent to f (V; j) but much more stable: the difference in utilities
are typically small whereas utility itself can be large and lead to
overflow. The cost is that we are no longer able to work in terms
of w = exp (V) and must perform more operations. See the code
for details. This is a common example of the engineering trade-off
between speed and robustness.

Because the BLP model uses an outside good with V0 = 0, the

choice probability is now f (V; j) =
exp

�
Vj
�

1 + ∑
k

exp (Vk)
and, consequently,

this trick no longer works. Instead, we impose box constraints which
are tight enough to prevent the solver from examining regions of
parameter space which lead to overflow yet loose enough to usually
include the global optimum. Typically, the box constraints are ±15 ×��θ̂

�� for θ1 and θ2 and ±108 for the other variables, δ and g = Z�
ξ.

Nevertheless, this does not fully address the underlying problem
of exceeding the limits of MATLAB’s numerical precision. Recently,
we developed a fast, robust implementation of BLP in C++ which
solves these issues: see Chapter 3 for more information.40 This imple-
mentation uses MPEC, high performance quadrature rules, and a high
quality solver (SNOPT). In addition the code uses higher precision
arithmetic, which has twice the precision of MATLAB, to overcome
problems with overflow and underflow. Initial investigations show
that higher precision completely solves these overflow and underflow
problems. This C++ implementation also computes the same huge
standard errors for all polynomial rules and resolves the difficulty in

39Test runs on an 8 core Mac Pro with 32 GB of RAM were considerably faster
although MATLAB used only two of the cores. Consequently, the bottleneck appears
to be swapping and not CPU cycles.

40This code is available upon request.
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reliably calculating standard errors which we report in 2.5.2.3: higher
precision arithmetic allows the solver to find a better optimum when
the objective function is nearly flat.

Lastly, we start the solver at multiple different points which are
randomly chosen about the average of the initial point estimates. If
the solver converges to the same point for all starts, then it is likely to
be the global optimum. On the other hand, if the solver converges to
many different points, there are multiple local optima.

2.5 results

The polynomial rules out-perform simulation in all respects: they
produce more accurate results at much lower computational cost. Of
all the rules, the Gauss-Hermite product rule with 75 nodes should
be considered the ‘gold standard’ and serves as our benchmark for
the other rules because it is exact for degree 13 monomials as well
as many higher moments. We obtained broadly similar results for all
five Monte Carlo datasets. All rules performed consistently well on
dataset 3. Estimates using datasets 4 and 5 varied considerably based
on the quadrature choice, especially the standard errors. Datasets 1
and 2 performed between these two extremes.

We now discuss how the different rules affect computed market
shares, point estimates, and standard errors.

2.5.1 Computation of Predicted Market Shares

One of the first experiments we performed was to compute the pre-
dicted BLP market share integrals for T = 50 markets and J = 25
products with each quadrature rule. These results provided both a
quick check that our code was performing correctly and a visual com-
parison of the rules. We computed the market share integrals for each
dataset at ten different parameter values near the MPEC point esti-
mates, θ̂MPEC. We selected these parameter values by first computing
the GMM estimates using MPEC and then computing an additional
nine parameter values where θ is drawn from a normal distribution
with θ ∼ N

�
θ̂MPEC, diag

�
(0.25)2

��θ̂MPEC
����, i.e. the standard errors

are 25% of the magnitude of the point estimates. Figure 1 plots relative
error of the market share integrals at θ̂MPEC versus mean market share.
These computations show a vertical cloud of points for the N = 100
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different pMC calculations of each integral (R = 1, 000 draws) with
the polynomial rules centered in the middle, as we would expect:
pMC is unbiased so the polynomial results should be near the average
of the Monte Carlo values. The relative error is with respect to the

mean pMC market share, spMC
jt =

N
∑

n=1
spMC(n)

jt , where spMC(n)
jt is the n-th

replication of (j, t) market share integral computed using pMC. The
green circles represent the pMC cloud of values calculated for different
replications of a specific (j, t) product-market pair; the magenta pen-
tagon the 75 node Gaussian-Hermite product rule; the red and blue
triangles the ‘Left’ and ‘Right’ Stroud rules; and the yellow diamond
the SGI. We only show this figure for dataset 1 at θ̂MPEC because the
story is essentially the same for other datasets.41 These plots clearly
show the simulation noise in the computation of market shares sjt:
the different MC share values form a green ‘pMC cloud’ in which the
polynomial based rules are located in the center of the cloud. This is
exactly where you would expect the true share value to be located be-
cause pMC is unbiased as N → ∞. Often, it was necessary to magnify
the figures many times in order to detect any difference between the
polynomial-based rules. This figure demonstrates the much higher
accuracy of the monomial and sparse grids rules. An example of a
close up for a market share integral is plotted in Figure 2, in this case
the largest computed share value, the the story is the same for the
other integrals. The noise in the pMC calculations and the consistency
of the polynomial rules are clearly evident.

The ‘Right’ Stroud rule did produce one share value which was
far outside the MC cloud and also far from the values for the other
polynomial rules. In addition, this rule also produced a negative
share value, as discussed in 2.5.1.2, and was more likely to generate
numerically undefined results during optimization.

To quantify the performance of the different rules, we computed
the maximum and average absolute deviation for the predicted share
values from the product rule with 75 nodes at θ̂MPEC over all shares.42

Although, it may not be the best representation of the ‘truth’, the
Gaussian product rule is the most precise rule which we compute
because of the additional, higher order terms. Consequently, we use it
as our benchmark. Table 3 shows that the maximum absolute errors

41One exception is dataset 5 which has extremely low variance for the integrals
computed with pMC.

42I.e., the maximum absolute error is max
j,t

����sjt
�
θ̂MPEC�− sProduct Rule

jt
�
θ̂MPEC�

���
�
.
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of polynomial rules are at least an order of magnitude more accurate
than pMC when comparing rules with a similar number of nodes. Even
with a large numbers of nodes by contemporary standards, such as
10, 000 draws, pMC produces much less accurate results. SGI’s results
may differ less from the product rule than the monomial rule’s because
SGI uses a subset of the nodes in the Gaussian product rule, whereas
the monomial rule uses entirely different nodes and weights. Because
the sparse grids rule drops extremal product rule nodes which have
very small weights, SGI should provide extra numerically stability.

The results in Table 3 only tell part of the story. The biggest differ-
ences between the Gauss-Hermite product rule with 75 nodes and the
other quadrature rules occur for the largest share values. For larger
shares an error of 10% or so appears as a huge maximum absolute
error whereas the maximum absolute error for smaller shares may
appear small even if a rule differs from the benchmark by several or-
ders of magnitude because the share value is essentially zero. In these
cases, relative error is a better measure of performance. Examining the
histograms for the maximum absolute error shows that for the poly-
nomial rules there are only a few integrals with significant differences
from the benchmark 75 node product rule whereas for pMC there is a
fat tail of shares which differ considerably. In addition, the Gaussian
product rule with 75 requires about ten times more nodes than the
other polynomial-based rules for insignificant gains in accuracy.

Tables 4 through 8 show the computational costs (seconds) of com-
puting the point estimates for the different rules.43 The CPU Time
column refers to the total time in seconds the solver took to compute
an optimum and hence depends on both the speed of the quadrature
rule and how quickly the solver converged. We see that the most effi-
cient polynomial rules – SGI and monomial rule 11-1 – are more than a
factor of ten faster than the pMC rule with R = 10, 000 draws and also
more accurate. pMC with R = 10, 000 draws and the Gauss-Hermite
product rule with 75 nodes are both much slower than the monomial
and sparse grids rules because they use many more nodes, which
primarily determines the increase in computational costs. We discuss
the other columns below in 2.5.2.

Increasing the number of simulation draws from 100 to 10, 000 does
little to improve the accuracy of the integral because pMC convergence

43Quoted CPU times are for a 2.53 GHz Intel Core 2 Duo MacBook Pro running
OS/X 10.6.4 in 64-bit mode with 4 GB of 1067 MHz DDR3 RAM, 6MB L2 cache, and
1.07 GHz bus.
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improves as
√

R. Because most of the products have very small market
share – for the five synthetic datasets, about 90% of predicted shares
are less than 0.01 – we conjecture that only a few products in each
market determine the parameter values and that estimating these
market shares correctly is necessary in order to obtain accurate point
estimates for θ̂. The larger predicted market shares also have larger
standard error, where standard error is computed over the N different
pMC share replications . The small market shares have smaller errors
not because they are calculated more accurately but because they are
essentially zero. This effect becomes starker with more simulation
draws. Another issue is that the parameter value used to compute the
shares will affect which combinations of product and market produce
the largest shares. Simple experiments show that 10% or more of
shares can move into or out of the top decile of predicted share values.

When comparing the own-price elasticities computed with pMC

(R = 1, 000) and SGI, the values appear very similar (See Figure 3),
with most of the difference in elasticities clumped at zero. But, most
market share integrals are extremely close to zero. Consequently, we
expect elasticities of small shares to be nearly the same for both rules,
based on the following argument. With linear utility and a simple
logit, the own price elasticity is ejt = −αpjt

�
1 − sjt

�
. If sjt ≈ 0 then

ejt ≈ −αpjt and the residual should be close to zero. Using this
intuition for the mixed logit, even with random coefficients, if the
market shares are small then the elasticities are likely to agree. For the
larger product-market shares, the deviations in elasticity can be 10%
or more, showing that pMC does not approximate the derivatives of
the integrals as well as SGI. Results for the monomial rule are identical.

2.5.1.1 Simulation Error and Bias

Numerical integration is an approximation and like all approximations
has error. The quality of a quadrature rule depends on how quickly
the rule converges as R → ∞ and the bounds on its error. Because pMC

rules converge as R−1/2 [Judd, 1998], you must increase the number
of nodes R by a factor of 100 to gain an extra decimal place with pMC.
For polynomial-based rules, if the Riemann–Stieltjes integral exists,
the product rule will converge [Stroud, 1971]. Multi-dimensional error
bounds formulas do exist but they are sufficiently complicated that
Stroud [1971] only states very simplified versions of the theorems. The
key point is that the polynomial rules should converge more quickly
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Figure 3: Comparison of Computed Own-Price Elasticities for Sparse Grids
and pMC

Figure 3 shows the distribution of residuals which are the difference
between the elasticities calculated with polynomial rules and the
mean of the pMC share computations for N = 100 replications with
R = 1, 000 draws.

and have much tighter error bounds than MC methods because their
error depends on higher order terms in a Taylor series expansion.
Initially, we thought that pMC could out perform polynomial rules
when high order terms of the Taylor series of the integrand did not
vanish quickly. As we discussed in 2.2.4, simulation does not preform
significantly better than polynomial rules when these high order terms
are significant.

Section 2.3 explained how integration errors can propagate through
the model either via the choice probabilities or the gradient of δ (i.e. the
inverse of the market shares, s−1 (S; θ). Error enters the share integrals
from integrating over the distribution of the random coefficients which
affect the BLP model via the mean zero, type-specific preference shock
µijt. Errors in computing this shock propagate through the model
and are further distorted by the multinomial logit transformation
which can be flat, concave, or convex depending on parameter values.
From Jensen’s inequality we know that the expectation of a concave
(convex) function is less (more) than the function of the expectation.
Consequently, simulation error percolates through the multinomial
logit form to produce either positive or negative error. Two facts
suggest that pMC causes much more error and bias than the monomial
rule: (1) the expectation of µijt with a pMC rule is on the order of
10−3 even with R = 10, 000 draws but about 10−17 for the monomial
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rule; and (2) the correlation coefficient of µijt and the simulation error,
ejt = sMC

jt − sMonomial
jt , is about −0.2 conditional on

��ejt
�� > 10−4.44

2.5.1.2 Negative Market Shares

Because some weights for monomial and sparse grids rules are nega-
tive, the approximation for a market share integral could be negative.
However, this is only likely for extremely small shares where the poly-
nomial approximation is poor in a region of parameter space where
the integral is essential zero everywhere, i.e. flat. We only observed
one negative value out of the 625, 000 integrals calculated.45 This value
was approximately −10−9 (i.e. effectively zero) and occurred with the
‘Right’ version of the monomial rule.

2.5.2 Robustness of Point Estimates and Standard Errors

We computed the point estimates and standard errors for each syn-
thetic dataset at five starting values.46 Tables 4-8 show f _k, the value
of the GMM objective function at the optimum, as well as the CPU
time in seconds required for SNOPT to converge to the point esti-
mate.47 If the value of f _k is the same for all starts, then the solver
has likely found a unique global optimum. For the most accurate
rule, the Gauss-Hermite product rule with 75 nodes, the solver always
finds the same f _k for each start. For SGI and the monomial rule,
the solver always found the same optimum for every starting value
and dataset except for one start for dataset 5. Furthermore, both SGI

and the monomial rule had the same problematic starting value. pMC,
however, typically finds two or three different optima for each dataset,
even when R = 10, 000 draws, because Monte Carlo noise creates
spurious local optima. In addition these tables show that sparse grids

44Here, mean
�

µijt

�
≡ 1

R ∑
i

µijt.
45Five Monte Carlo datasets, each with R = 100 replications of the J × T = 1250

share integrals results in 5 × 100 × 1, 250 = 625, 000.
46Initially, we simply computed these optima for the same five starting values for

each rule and dataset. However, the solver often aborted with numerical problems.
Imposing box constraints which were sufficiently loose to include a large region
of parameter space yet rule out extremal regions of parameter space solved this
problem for most quadrature rules and datasets. Many of these numerical problems
are caused by floating point underflow/overflow. Ultimately, we resolved the problem
by rewriting our code in C++ and using higher precision arithmetic. See 2.4.1.2.

47Quoted CPU times are for a 2.53 GHz Intel Core 2 Duo MacBook Pro running
OS/X 10.6.4 in 64-bit mode with 4 GB of 1067 MHz DDR3 RAM, 6MB L2 cache, and
1.07 GHz bus.
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integration (993 nodes) and the monomial rule (983 nodes) require the
same amount of CPU time as pMC with R = 1, 000 despite being more
accurate than pMC with R = 10, 000. Both of these polynomial rules
are also a factor of ten faster than pMC with R = 10, 000 draws.

Dataset EXIT INFORM f_k CPU Time
1 0 1 33.23675 366.80
1 0 1 33.23675 753.15
1 0 1 33.85679 632.36
1 0 1 33.23681 687.31
1 0 1 38.53239 740.08
2 0 1 26.05084 457.01
2 0 1 24.60745 444.16
2 0 1 26.05084 526.40
2 0 1 26.05084 802.80
2 0 1 23.27163 855.66
3 0 1 19.76525 1071.80
3 0 1 19.76526 420.09
3 0 1 19.76524 783.48
3 0 1 19.76528 641.23
3 0 1 19.76524 635.87
4 0 1 28.19951 654.80
4 0 1 28.19951 1081.98
4 0 1 28.19951 820.40
4 0 1 28.19951 810.95
4 0 1 28.19951 796.42
5 0 1 203.50784 668.71
5 0 1 213.97591 503.92
5 0 1 203.50784 626.74
5 0 1 208.76144 489.06
5 0 1 208.76144 696.81

Table 4: Point Estimates: pMC with first 5 good starts and R = 1, 000 draws.
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The point estimates48 (Tables 9-13) also indicate that pMC rules
cause false local maxima: by comparing θ̂ for different starts for a
given dataset, the estimates which have the same value for f _k agree
to three or more digits while those with different f _k do not agree
at all. On the other hand, the polynomial rules – with the exception
of dataset 5’s fifth start – agree to many decimal places. pMC point
estimates also suffer from increased variation in θ̂, excessively tight
standard errors (See 2.5.2.3), and confidence intervals which do not
contain the point estimates from the polynomial rules. In general, the
point estimates for θ̂1 are more often significant than those for θ̂2, the
square root of the diagonal elements of the variance of the random
coefficients.

48Note: sometimes the solver finds negative values for θ2, which is the square root
of the diagonal elements of the variance matrix, Σ, for the random coefficients. In our
code θ2 acts as the scale on the quadrature nodes because we have assumed that Σ is
diagonal. The symmetry of the Gaussian kernel means that only the magnitude of θ2
matters, not the sign. To avoid this confusion, we report

��θ̂2
�� for the point estimates

of θ̂2.
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Dataset EXIT INFORM f_k CPU Time
1 0 1 34.75771 8035.81
1 0 1 34.75772 5744.15
1 0 1 34.75771 3308.05
1 0 1 33.71660 3341.52
1 0 1 34.75776 7782.77
2 0 1 23.33186 7666.86
2 0 1 23.13213 6793.78
2 0 1 22.66818 7161.72
2 0 1 23.24129 7053.06
2 0 1 23.76645 8901.79
3 0 1 21.64541 8376.50
3 0 1 21.58369 8265.87
3 10 72 294.95326 178.32
3 0 1 21.69790 6567.52
3 0 1 21.95653 7835.28
4 0 1 22.49406 7955.48
4 0 1 22.49407 5446.51
4 0 1 26.12617 6544.76
4 0 1 26.12617 7427.27
4 0 1 26.22725 6852.28
5 0 1 260.57447 5450.45
5 0 1 279.95232 6514.08
5 0 1 299.22156 5555.86
5 0 1 299.22156 5444.99
5 0 1 279.95232 4403.82

Table 5: Point Estimates: pMC with R = 10, 000 draws.
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Dataset EXIT INFORM f_k CPU Time
1 0 1 35.05646 7083.95
1 0 1 35.05639 9142.16
1 0 1 35.05644 4940.91
1 0 1 35.05639 6184.56
1 0 1 35.05651 5952.06
2 0 1 22.98928 15317.16
2 0 1 22.98929 14141.56
2 0 1 22.98927 14354.17
2 0 1 22.98928 9736.57
2 0 1 22.98928 10742.86
3 0 1 21.77869 7306.40
3 0 1 21.77873 6992.33
3 0 1 21.77872 5968.52
3 0 1 21.77869 5154.03
3 0 1 21.77870 6979.46
4 0 1 25.63232 7653.30
4 0 1 25.63232 6574.78
4 0 1 25.63232 8695.48
4 0 1 25.63232 6739.00
4 0 1 25.63232 9277.51
5 0 1 288.69920 6334.33
5 0 1 288.69920 7553.43
5 0 1 288.69920 7164.02
5 0 1 288.69920 8156.16
5 0 1 288.69920 5521.13

Table 6: Point Estimates: Gauss-Hermite with first 5 good starts and 75 nodes.
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Dataset EXIT INFORM f_k CPU Time
1 0 1 35.27236 616.63
1 0 1 35.27217 549.22
1 0 1 35.27212 269.22
1 0 1 35.27216 414.71
1 0 1 35.27212 432.32
2 0 1 22.97539 980.88
2 0 1 22.97541 910.89
2 0 1 22.97539 724.68
2 0 1 22.97539 865.45
2 0 1 22.97540 1026.54
3 0 1 21.78433 433.50
3 0 1 21.78430 557.89
3 0 1 21.78432 610.45
3 0 1 21.78437 352.71
3 0 1 21.78434 604.79
4 0 1 25.59501 515.58
4 0 1 25.59501 388.67
4 0 1 25.59501 496.07
4 0 1 25.59501 439.85
4 0 1 25.59501 586.94
5 0 1 293.89029 494.45
5 0 1 293.89029 571.11
5 0 1 293.89029 481.82
5 0 1 293.89029 556.80
5 0 1 487.40742 6535.28

Table 7: Point Estimates: SGI with first 5 good starts and 993 nodes (exact for
degree ≤ 11).
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Dataset EXIT INFORM f_k CPU Time
1 0 1 34.63546 644.52
1 0 1 34.63550 578.42
1 0 1 34.63556 449.30
1 0 1 34.63552 294.48
1 0 1 34.63548 443.86
2 0 1 23.24928 1174.66
2 0 1 23.24928 660.97
2 0 1 23.24928 922.52
2 0 1 23.24928 1150.00
2 0 1 23.24928 1022.48
3 0 1 21.79928 688.71
3 0 1 21.79931 373.36
3 0 1 21.79926 669.28
3 0 1 21.79926 483.89
3 0 1 21.79926 573.57
4 0 1 24.72862 435.54
4 0 1 24.72862 587.55
4 0 1 24.72862 739.98
4 0 1 24.72862 613.63
4 0 1 24.72862 657.03
5 0 1 277.89463 441.45
5 0 1 278.03790 441.77
5 0 1 277.89463 548.75
5 0 1 277.89463 1134.53
5 0 1 278.03790 656.13

Table 8: Point Estimates: Monomial with first 5 good starts and 983 nodes
(exact for degree ≤ 11).
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Furthermore, for each rule there are several datasets where the true
data generating process (Table 2.) is not within the confidence interval
formed from the point estimates and standard errors. For example,
the true value of θ11 is 2, but the point estimates for datasets 2, 3, and
5 are never close for any of the rules. The point estimates for θ̂2 are
further from the ‘truth’ more often than those for θ̂1. Consequently,
the BLP model appears to suffer from finite sample bias, as shown
in Chapter 3. This problem could also be exacerbated because we
estimate the model without a pricing equation. Increasing the number
of markets, T, will only improve the identification of θ2 if product
characteristics vary across markets. It would also be useful to compare
the GMM standard errors to bootstrap standard errors.

We now look at these issues in more detail in 2.5.2.1 and 2.5.2.3.

2.5.2.1 Impact of Quadrature on Optimization

One encouraging result of our experiments is that the point estimates
computed via MPEC + SNOPT for the polynomial-based rules are al-
ways the same for all starting values when the solver found a valid
solution, unlike the pMC rules whose point estimates varied widely
depending on the starting value. In general, SNOPT and KNITRO
encountered numerical difficulties – typically an undefined compu-
tation for a conditional logit share of the form ∞/∞ – more often
with the polynomial-based rules than pMC because the polynomial
rules provide better coverage of extreme areas of the parameter space,
even though the weights are quite small.49 That the pMC point esti-
mates vary widely depending on starting values indicates that the
solver is finding false local maxima because of the inaccuracies of the
pseudo-Monte Carlo approximation to the integral.

Another important issue is that approximating the share integrals is
less important than accurately computing the gradient and Hessian
of the GMM objective function and the Jacobian of the constraints
which the solver uses to find a local optimum. The product rule and
SGI affect solver convergence similarly, which is unsurprising because
the SGI nodes, as mentioned in 2.2.3.2, are a subset of the product
rule nodes. By omitting the nodes in the corners of the product rule

49Dubé et al. [2011] side-step these issues to some extent by using the MC draws
which were used to generated their synthetic data to compute the market share
integrals. Clearly, in a real world problem these shocks would not be observed by the
econometrician. When we redraw these shocks, their code produces NaNs for some
starting values. In addition, they use the same set of draws for each market share
integral, sjt.
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lattice, SGI is less likely to evaluate the objective function, constraints,
or the gradients at extremal points which produce NaNs and cause
the solver to abort.50

Note that increasing the number of draws to R = 10, 000 does
not significantly improve the optimum found by SNOPT with a pMC

rule (Tables 9 and 10). Many of the point estimates and values of
the optimum at the solution still vary considerably depending on
the starting value even when the solver reports that it has found a
local optimum. Clearly, even with 10, 000 draws, pMC still introduces
spurious local optima.

In the MPEC formulation of BLP, quadrature only affects the problem
via the constraint equating observed and predicted market shares.
With simulation, this constraint will be noisier and have local areas
where simulation errors make it possible to find a local optima. Gandhi
[2010]’s proof that the market share equation is invertible requires
monotonicity which fails in this case. Furthermore, the optimizer
adjusts parameters so that the spectrum of the mapping is less singular
and has local basins of attraction. The different sizes of these basins
affect how often solver finds them when searching for a local minimum
of the GMM objective function.

2.5.2.2 Differences in Objective Function Values

We were initially surprised to discover in Tables 4-8 that the objective
function values, f _k, do not agree at the optimal point estimates.
This occurs because the value of the objective function in the MPEC

formulation is g�Wg where g = Z�
ξ are the moment conditions. Using

MPEC, we solve for g as part of the optimization program: consequently,
differences in g across quadrature rules at the local optimum found
by the solver produce different values of the objective function. Initial
investigations with a new C++ implementation using quad precision
arithmetic and LU rook pivoting to increase solver stability appear to
eliminate these differences so that only about 10 out 1302 values of
the solver solution (θ1, θ2, δ, g) differ by more than 2%. However when
using MATLAB, ξ̂ varies considerably at the optima found by SNOPT
even when θ̂ does not.

50If SNOPT encounters a NaN it will abort with EXIT=10 and INFO=72.
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2.5.2.3 Simulation, Identification, and Standard Errors

When computing standard errors, we found that simulation – unlike
the polynomial rules – produces excessively tight values and will
lead researchers to think that some parameters are estimated precisely
when they are not. Examining the standard errors (Tables 9-13) shows
that, in general, the pMC standard errors are much smaller than those
computed with polynomial rules. For some datasets, such as datasets
4 and 5, the polynomial rules produce standard errors on the order
of 104 or larger vs. pMC errors of 10−1 even with R = 10, 000 draws.
For example, compare the results for θ̂21 and θ̂24 for dataset 4 and θ̂21

and θ̂23 for dataset 5. Standard errors computed using pMC show ap-
parently precise estimates when in fact the Hessian is ill-conditioned.
Because pMC introduces spurious local optima and, concomitantly,
pockets of higher curvature it produces standard errors which are
too tight. Consequently, pMC can mask poor identification and practi-
tioners will miss an important diagnostic that the objective function
is nearly flat. In fact, as the order of differentiation increases, pMC

performs increasingly poorly. Polynomial-based rules do not suffer
from this problem because they approximate the level, gradient, and
Hessian correctly: if a parameter had huge standard errors for one
dataset and rule, then it had huge standard errors for all rules and
starts. Nevertheless, the quadrature rules did not reliably detect large
standard errors: the Gauss-Hermite product rule with 75 nodes de-
tected 4 cases out of 10 × 5 = 50 parameters estimated;51 SGI and the
monomial rule found 3 of the 4 found by the product rule; and, pMC,
even with R = 10, 000 draws, failed to find any. Recently, we began
replicating these results using the higher precision implementation dis-
cussed in Chapter 3. Our initial results show that when using higher
precision arithmetic, we can reliably compute the same large standard
errors for the same datasets and parameters, θ, when using any of the
polynomial rules. Even with this BLP implementation, the pMC rules
still produce anomalously tight standard errors. Consequently, pMC

quadrature rules will cause a downward bias in standard errors and
mask identification problems.

In BLP, the substitution patterns are ‘diffuse’ and all goods are
substitutes for each other as opposed to the ‘local’ substitution patterns
in pure characteristics models, where cross-price elasticities are non-
zero for only a finite set of products (E.g., Berry and Pakes [2007],

51I.e., we estimated ten parameters, θ̂, for five starts for each rule and dataset
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Shaked and Sutton [1982]). Consequently, the model is very sensitive to
both sampling error in the observed market shares, Sjt, and simulation
error in the computation of predicted market shares, sjt [Berry et al.,
2004b]. Particularly as J increases (And, Berry et al. [2004b] require
J → ∞ to prove that BLP is consistent and asymptotically normal)
small simulation or sampling errors considerably affect the value of ξ

which is computed in the traditional NFP BLP implementations.
The small sample properties of GMM is another potential source of

difficulty in estimating θ2 parameters well. Altonji and Segal [1996]
show that optimal minimum distance (OMD) estimators – i.e. GMM
with the optimal weighting matrix – perform poorly in small sample
estimates of the variance because the shocks which make the variance
large also tend to increase the variance of the variance. Consequently,
because θ2 measures the standard error of the random coefficients it is
probably estimated with downward bias. This correlation could also
explain why Var (θ2) is often surprisingly large: when estimation uses
more accurate, polynomial rules, the correlation caused by simulation
is no longer an issue.

2.5.3 Bias of Point Estimates

Subsequent to completing the research for this chapter, I developed
infrastructure in Chapter 3 to compute a variety of statistics to charac-
terize the finite sample performance of the BLP estimator. Using these
tools, I computed these metrics for both traditional BLP instruments,
which use the characteristics of rival products, and supply-side cost
shifters. Table 33 compares the results using pMC and SGI for the
Data Generating Process (DGP) described in Chapter 3 for 2 markets
and 24 products. The SGI rule is accurate for monomials of degree 11
or less. To ensure that comparisons were fair – i.e. the computational
cost was roughly the same for both rules – I used the same number
of nodes for SGI and pMC. SGI is clearly superior to pMC for all pa-
rameter estimates and metrics: bias, mean absolute deviation, median
absolute deviation, and RMSE. This result shows that finite sample bias
is actually worse for pMC than SGI.
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2.5.4 Computational Burden

Figure 4 shows the costs of the different quadrature rules and how
they vary across replications and experiments. Execution time scales
as the number of nodes, although the accuracy of the approximation of
the integrals can affect how many major and minor iterations SNOPT
requires to find an optimum. Note that the Gaussian-Hermite product
rule uses 75 = 16, 807 nodes but have only slightly larger median and
mean run times compared to the pMC rule with 10, 000 nodes because
better rules seem to facilitate solver convergence.

2.6 conclusion

A head-to-head comparison of Monte Carlo and polynomial-based
quadrature rules for approximating multi-dimensional integrals of
moderate size shows that monomial rules provide superior accuracy
at a computational cost which is at least an order of magnitude smaller.
Monomial rules are marginally more difficult to implement than pMC,
requiring a few well-defined permutations of the nodes and weights
found in a table look-up. An even easier option is to use sparse grids
integration which can generate a set of nodes and weights that provide
comparable accuracy, often with only a few more nodes. An important
area for future research is to develop monomial rules which exploit
the fact that many functional forms in Economics are well-behaved.

When we applied these quadrature methods to BLP, it became clear
that the choice of quadrature rule affects the model’s results, including
the computed value of product-market share integrals, the values of
the point estimates, and the standard errors. In particular, pseudo-
Monte Carlo rules produce very different point estimates for different
starting values – even with very large numbers of draws – unlike
the polynomial rules which always produce the same optimum. pMC

rules also generate excessively tight standard errors, hiding potential
identification problems in the local basins of attraction created by
simulation noise.

Using a high-quality quadrature rule, then, provides an easy way to
improve the accuracy and efficiency of many numerical projects.
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3
A L A R G E - S C A L E S T U D Y O F T H E S M A L L S A M P L E
P E R F O R M A N C E O F R A N D O M C O E F F I C I E N T
M O D E L S O F D E M A N D

Berry et al. [1995]’s model of demand for differentiated products
(BLP, hereafter) developed a flexible approach to modeling demand by
allowing for consumer heterogeneity as well as unobserved product-
market quality – especially while working with aggregate, market
share data. Despite BLP’s importance, there are few results about its
finite sample behavior. Simulation experiments, in theory, provide a
tool to answer such questions but the computational and numerical
difficulties have prevented researchers from performing any realistic
studies. Nevertheless, by utilizing recent advances in High Throughput
Computer (HTC) systems1 and a fast, reliable implementation of BLP,
I show that a large-scale simulation approach is now feasible and
compute the finite sample bias for a variety of scenarios.

Recent computational results on optimization [Su and Judd, 2010,
Dubé et al., 2011] and numerical integration (See Chapter 2.) show
that the model has subtle numerical problems and that considerable
care is required to obtain reliable estimates. A careful practitioner
must worry about optimization with many non-linear constraints, ac-
curate numerical approximation of high dimensional integrals, solving
non-linear systems of equations, and numerical overflow/underflow.
When estimation is scaled up for a series of Monte Carlo experiments
these problems can become prohibitively difficult – both in terms of
numerical stability and computational cost – even when computing a
limited number of replications.2 Those Monte Carlo studies that exist
focus on only one market and often take computational short-cuts.3

1Computer scientists refer to computer clusters designed for moderate or large-
scale parallel computing as either High Performance Computing (HPC) or High Through-
put Computing (HTC). HPC systems typically run jobs of up to several hours which
are often tightly coupled (synchronous) whereas HTC clusters run much longer serial
jobs which are independent of each other.

2For example, this study estimated BLP over 320,000 times and used 94,325
CPU-hours – not counting jobs which failed – once all the experiments, replications,
multiple starts, and instrumentation strategies were accounted for. See Section 3.5.5
for a discussion of computational cost.

3For example, Armstrong [2011] uses only 10 pMC quadrature nodes and fixes
the scale of the random coefficients.
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Consequently, a large-scale, numerically rigorous simulation study
with data generated from a structural model has appeared infeasi-
ble, especially given that estimation can push the limits of desktop
computing.4

My implementation overcomes previous numerical difficulties –
especially those of the traditional Nested Fixed Point (NFP) estimation
strategy – by exploiting current best practice in optimization [Su
and Judd, 2010] and multi-dimensional numerical integration (See
Chapter 2.). I conduct a series of simulation experiments to quantify
the finite sample performance of the BLP model for realistic numbers
of markets, numbers of products, and instrumentation strategies. This
chapter, then, has two objectives: to demonstrate the power of modern
computational technology for solving previously intractable problems
in Economics via massive parallelization and to characterize the finite
sample behavior of the BLP estimator.

3.1 overview

Berry et al. [1995] has influenced Industrial Organization and applied
Economics considerably. Their insight was to combine a flexible model
of heterogeneity and unobserved product-market characteristics with
an GMM-based estimation strategy which controlled for price endo-
geneity. Despite the model’s ubiquity, there are few results on BLP’s
finite sample behavior or the impact of instrument type and quality.
Furthermore, the complexity of the model has made it difficult to
implement reliably [Dubé et al., 2011], let alone study via simulation.
Consequently, there are few papers which examine the theoretical
properties of the model [Berry et al., 2004b, Armstrong, 2011] and
previous Monte Carlo experiments only consider one market.5

In this paper, I develop an implementation of BLP which makes
a large-scale simulation study possible and quantify how the BLP
model performs for a variety of market sizes, numbers of products,
and instrument choices. I examine both how market size affects bias
and the effectiveness of different instrumentation strategies.

4Generating synthetic data from a structural model faces similar numerical issues
and, consequently, is at least as challenging as estimating the BLP model.

5Researchers focus on the case with one market because for most BLP datasets
the variation is primarily with-in market. Consequently, identification must come
from J → ∞.
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Only a few asymptotic results currently exist. Berry et al. [2004b]
proves consistency and asymptotic normality for one market as the
number of products J → ∞, given some high level regularity condi-
tions. But, these conditions do not prove exactly which price setting
mechanisms produce consistent and asymptotically normal (CAN)
estimators. Armstrong [2011] solves this problem for Bertrand-Nash
price equilibrium using a similar setup plus a fully-specified structural
model of supply and demand. He proves that the BLP model cannot be
identified from the traditional product characteristics instruments, but
that the model is identified with exogenous, supply-side cost shifters.6

The intuition for Armstrong’s result comes from the Bertrand-Nash
first order conditions (FOCs):

0 = sjt +
�

pjt − mcjt
� ∂sjt

∂pjt

for market shares sjt, price pjt, marginal cost mcjt, product j ∈ J,
and market t ∈ T. For logit demand with linear utility this equation
simplifies to

pjt = mcjt −
sjt

∂sjt/∂pjt

= mcjt −
1

βprice
�
1 − sjt

�

where βprice < 0 is the coefficient on price in the utility. As the number
of products goes to infinity, market shares approach zero (assuming
there are no mass points), and the price equation becomes indistin-
guishable from marginal cost plus a constant markup. Without the
non-linearities of the markup term, the matrix of product charac-
teristics instruments becomes perfectly collinear – i.e. the model is
unidentified [Armstrong, 2011]. Armstrong [2011] also proves that
there is less bias when a firm produces more products. He closes
by arguing that simulation studies must use a structural model to
generate data instead of the more common reduced form approach or
the data will lack the correct statistical properties.

I would expect that increasing the number of markets could help
offset the lack of identification as J → ∞ if there is sufficient variation

6The traditional ‘BLP’ instruments use either characteristics of other goods pro-
duced by the same firm or characteristics of goods produced by rival firms.
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across markets. In practice, product characteristics for differentiated
consumer products are often fixed for all markets, in which case results
on dual asymptotics in panel data, such as Phillips and Moon [1999]
and Phillips and Moon [2000], are unlikely to provide useful intuition
for the properties of the BLP estimator.

For some time researchers have been concerned about finite sample
bias in GMM (E.g. Altonji and Segal [1996]). Recent developments such
as Empirical Likelihood [Kitamura, 2006] have made some progress.
Conlon [2010], for example, uses empirical likelihood (EL) to estimate
a dynamic BLP-style model of demand and reports that it performs
much better for small samples than the traditional BLP Nested Fixed
Point GMM estimator.

Simulation experiments of the scope and scale needed to study the
BLP model require fast, reliable hardware and software. Using recent
advances in software algorithms, software engineering, and computer
hardware, I develop a suitable implementation which can run multiple
replications in parallel on a modern cluster. I use Mathematical Pro-
gramming with Equilibrium Constraints (MPEC) [Su and Judd, 2010]
and SNOPT, one of the best solvers currently available, to overcome
the limitations of the NFP approach, especially the slow and unreliable
convergence of the inner loop contraction mapping.7 In addition, I
also use a polynomial-based quadrature rule to correct the deficiencies
of pMC integration: this quadrature rule produces more accurate point
estimates and standard errors as well as much faster software (See
Chapter 2.). Finally, modern High Throughput Computing infrastruc-
ture enabled me to estimate the model thousands of times in parallel
on the Petascale Active Data Store (PADS) cluster at the Computation
Institute at the University of Chicago.

Like many simulation studies, I rely on synthetic data and, follow-
ing Armstrong [2011], generate data from a structural model. The
data generating process includes exogenous cost shifters as well as
correlation between the unobserved product-market shock, ξ jt, and
the marginal cost shock, ηjt. Generating this data is non-trivial be-
cause the technical challenges are the same as estimating the BLP
model; in addition, it is necessary to solve for the Bertrand-Nash price
equilibrium.

7The traditional NFP implementation of the model relies on an outer loop to
perform GMM and an inner loop ‘contraction mapping’ to recover parameters by
inverting the market share equation.
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This chapter proceeds as follows. First, I quickly review the Berry
et al. [1995] model of demand and how to estimate it using MPEC;
then, I explain the details of my implementation of BLP; Section 3.3
describes the synthetic data set; in Section 3.4, I describe the Monte
Carlo experiments and results; finally, I conclude.

3.2 review of the blp model

To provide a common ground for readers and introduce notation, I
provide a quick review of Berry et al. [1995]’s model of demand for
differentiated products. Their model augments a mixed logit (random
coefficient) functional form with an unobserved product-market shock,
ξ jt, which makes it possible to fit predicted shares to observed shares.
The original estimation strategy uses a GMM-based, NFP algorithm to
estimate the model from aggregate market share data for T markets
and J products. For a more thorough introduction, see Nevo [2000b]
or Train [2009].

3.2.1 Demand

The demand side of the model assumes that consumer i receives
utility uijt when he purchases product j ∈ J in market t ∈ T with
characteristics xjt:

uijt = vijt + �ijt

vijt (βi) = x
�
jtβi + ξ jt

where the coefficients βi depend on each consumer’s type. The prod-
uct characteristics, xjt, include price pjt to simplify the notation. Re-
searchers in Economics typically assume that βi is normally distributed
as N (0, Ω) and that �ijt is Type I Extreme value.8 ξ jt, the product-
market shock, is observed by consumers and firms but not the econo-
metrician. A consumer’s taste parameters βi = β + Σνi, where β is the
mean preference parameter and νi ∼ N (0, 1) is i’s taste shock, scaled
by Σ, the Cholesky factor of Ω = ΣΣ� . BLP researchers often define

8To focus on the key features of the model, I ignore more general formulations
where βi may depend on consumer characteristics. See Berry et al. [2004a], Nevo
[2000a], and Nevo [2001] for examples with microdata.

90



θ1 = β, θ2 = vech (Σ), and θ = (θ1, θ2). The parameters θ are what we
as econometricians hope to recover.

By convention, utility is repackaged into mean utility

δjt (ξ; θ1) = x
�
jtβ + ξ jt

which is constant for all consumers and the total type-specific shock

µijt = x
�
jtΣνi.

Then utility is uijt = δjt (ξ; θ1) + µijt + �ijt.
These assumptions produce a convenient, closed form solution for

market shares conditional on consumer type:

sjt (x |β ) =
exp

�
vjt (β)

�

1 + ∑
k∈J

exp (vkt (β))
,

where I have assumed that the utility of the outside good is 0: i.e.,
ui0t = 0 + �i0t. Note, I have dropped the suffix i which is implied
because the conditional shares are a function of the taste parameters,
β. Also, βprice is −α in standard BLP notation. Thus, aggregate demand
is

sjt (x |θ ) =
�

sjt (x |β ) dF (β |θ )

where θ parametrizes the distribution of individual preferences. As-
suming a normal distribution for preferences,

sjt (x |θ ) =
�

sjt (x |β ) dΦ (β |θ )

sjt (x |θ ) =
�

sjt (x |β ) 1
det (Σ)

φ
�

Σ−1 �β − β
��

dβ.

Berry [1994] observes that the mean utilities, and hence ξ jt, can be
obtained by inverting the market share equation

Sjt = sjt (δ; θ2) ,

91



which equates observed market shares, Sjt, and predicted market
shares, sjt. BLP recover ξ jt from the mean utilities, δjt, and use it to
estimate the model’s parameters via GMM.

Sampling error is a concern in these models. BLP provide statistical
arguments to support their claim that they observe market shares with
sufficient accuracy to ignore sampling error. In this paper, I assume
that there is no sampling error in order to focus on the core issues of
their model. See Section 3.4.3 for further discussion.

3.2.2 Supply Side

Following Berry et al. [1995], I assume that marginal cost is linear in
cost shifters zjt:

log
�
mcjt

�
= z

�
jtγ + ηjt.

In practice, the cost shifters include product characteristics, xjt, as
in BLP, as well as other factors affecting cost such as the wages and
commercial rental rates. Because the profit first order conditions show
that price is marginal cost plus a mark-up,

pjt = mcjt −
sjt

∂sjt/∂pjt
,

cost shifters should help identify prices, which are surely endogenous
because of correlation between pjt and ξ jt, especially when the mark-
up term approaches 0 as Armstrong [2011] proved. Another important
benefit of specifying a supply side is that including it in the GMM
moments helps estimate structural parameters more precisely. Of
course the risk of using a full structural model is that the supply-side
could be misspecified.9

9Which supply-side specifications satisfy Berry et al. [2004b] is an open question.
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3.3 implementing reliable , high performance estimation
software

Implementing the BLP model is a formidable engineering challenge.
Estimation results are quite sensitive to optimization software,10 cod-
ing the NFP algorithm correctly, and using tight inner loop tolerances
[Dubé et al., 2011]. An implementation must also handle the numer-
ical instabilities inherent in the underlying logit form, approximate
multidimensional integrals accurately, and deal with (a few) weak
instruments. Furthermore, running hundreds of thousands of simula-
tion experiments requires fast and reliable estimation software because
the scale of the experiments ensures that the estimation software will
inevitably encounter cases which expose defects in the code. To over-
come these issues, I utilize the current best practices for estimation,
numerical integration, and parallelization. In addition, I use modern
software engineering techniques to produce code which is fast, robust,
and easy to write as well as to verify. The following sections describe
these issues in more detail.

3.3.1 Estimation of the BLP Model using MPEC

My implementation uses the MPEC algorithm advocated by Su and
Judd [2010] and further refined in Dubé et al. [2011] (DFS hereafter).
MPEC is easier to code and more robust than the traditional nested
fixed point strategy because MPEC expresses the entire problem in
more intuitive terms than NFP, i.e. as the minimization of a GMM
objective function subject to constraints.11 Dubé et al. [2011] prove
that these two approaches are equivalent; consequently, there are no
adverse tradeoffs in using MPEC.

Accordingly, I solve

max
θ,δ,ψ

ψ
�
Wψ

s.t. s (δ (ξ) ; θ) = S

ψ = Z
�
ξ.

10Currently, the best constrained optimizers for non-linear problems include
CONOPT, KNITRO, and SNOPT, but this is an area of active research.

11The NFP algorithm consists of an outer loop to perform GMM and an inner loop
to invert the market share equation.
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To get trustworthy point estimates, researchers must use good
quadrature rules (See Chapter 2) and a high-quality solver. Although
Dubé et al. [2011] use the KNITRO solver [Byrd et al., 2006], I prefer
SNOPT 7.0 [Gill et al., 2002] because it is more robust than KNITRO
for BLP-type problems (See Chapter 2.).12 With its default settings,
SNOPT still struggles with some rank deficient regions. Enabling LU
rook pivoting, a slower but more reliable pivoting algorithm for factor-
ing the basis matrix, considerably improves SNOPT’s ability to find a
local optimum.13 Researchers should weigh these issues carefully in
order to choose a solver that is appropriate for their problem.14

The above comments are based on a prior version of DFS’s code
which used KNITRO 6.0.0. DFS report that the latest version of their
code, which now uses an analytic Hessian, is considerably faster
than the previous version. KNITRO 7.0.0, the current version, also
has improved support for dense linear algebra. As the number of
markets and products grows, as discussed in Section 3.5.3, SNOPT
has increasing difficulty finding a feasible point. KNITRO may be
more successful at finding points which satisfy constraints prior to
commencing optimization. Consequently, KNITRO may now be a
better choice than SNOPT for BLP, but more research is required.

3.3.2 Quadrature

Poor numerical integration adds instability and unreliability to the
BLP model even when using MPEC. Chapter 2, building on work by
Heiss and Winschel [2008], discusses how pMC integration is inferior
to polynomial-based methods such as monomial rules and sparse
grids. Polynomial rules are much faster and approximate the market
share integrals and their gradients more accurately. pMC produces
multiple local optima and, hence, point estimates as well as artificially
tight standard errors, masking identification problems. Polynomial
based rules produce the same point estimates – even when passing
different starting values to the solver – more often than pMC. In these
experiments, I use a 165 node SGI rule which is exact for all three-
dimensional polynomials whose total order (sum of the exponents of

12SNOPT uses an SQP algorithm which can overcome some non-convexity unlike
KNITRO’s Interior Point (IP) algorithm. In addition, SNOPT 7.0 has support for rank
deficient systems.

13I found that LU rook pivoting increased computation time by a factor of 2.
14In practice, it is worth experimenting with different algorithms as well as the

tuning parameters of the solver.
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each term) is less than degree 11. This rule provides a fast, accurate
approximation for the BLP market share integrals.

Many applied studies fail to take enough draws when using pMC

methods to approximate integrals. Using the machinery of this project,
I actually compute the bias of using pMC instead of a sparse grids rule
in Section 3.5.4. These results show that sloppy quadrature can induce
considerable bias into estimates and that SGI is much less biased than
pMC by all metrics.

3.3.3 Numerical Stability and Software Engineering

The shape of the BLP optimization problem and functional form
choices often produce numerical instabilities including overflow and
underflow, although the extent of these problems depends on the
actual data. Consequently, I use the SNOPT solver (See Section 3.3.1,
above.), careful implementation, and higher precision arithmetic to
minimize numerical problems.

Using the logit distribution for the market shares conditional on
consumer type makes the model susceptible to arithmetic overflow
and underflow, when software generates numbers which are, respec-
tively, too big or small in magnitude to represent.15 The IEEE-754
floating-point specification requires that overflow produce the value
Inf. Unfortunately, many researchers follow the common practice
of setting the objective function to some very large value such as
1020 when overflow occurs which makes the objective function non-
differentiable and flat for certain values and can prevent the solver
from making progress. In some cases, it is possible to transform the
logit by renormalizing utility with respect to the largest utility in the
choice set. When there is an outside good this approach often converts
overflow into underflow, leading to problems with zero share values.

To solve problems with overflow yet guarantee code which executed
quickly, I implemented the BLP model in C++ and used higher pre-
cision floating point arithmetic (long double instead of double, i.e.
128-bit instead of the default 64-bit representation). In most cases, I
found that this was sufficient, but it is possible to work in even higher
precision if necessary. The extra robustness from switching to the
128-bit representation only cost a factor of two in execution speed.

15Goldberg [1991] provides a review of essential knowledge about floating-point
arithmetic for scientists.
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The difficulty in identifying the scale parameters for the random
coefficients provides another example of the numerical challenges in
developing a reliable implementation. In simulations for both this
project and for Chapter 2, high quality quadrature rules lead to huge
asymptotic standard errors, indicating that these parameters cannot
be estimated precisely. Furthermore, the results of the experiments in
this Chapter show that asymptotic inference is not yet valid for the
experiments I consider. Armstrong [2011] sidesteps this issue by fixing
the variance matrix:

For both tables, I treat the variance of the random coef-
ficients, σ�, as known and solve for the IV estimates of the
other parameters with σ� fixed at its true value. Since the
resulting IV estimator is the closed form solution to a sys-
tem of linear equations, this eliminates potential concerns
that negative results may come from a failure to minimize
a nonlinear GMM objective function. Estimators that per-
form poorly can be expected to do even worse when σ�
needs to be estimated as well.

When the BLP instruments are highly collinear – which is often the
case – the weighting matrix has a higher condition number and the
solver finds many more local optima. Furthermore, as the number of
products increases, this problem becomes worse.16 With reduced form
data, such as that used in Dubé et al. [2011] or Chapter 2 and accurate
quadrature rules, SNOPT usually finds the same local optima.

Despite these considerable engineering precautions, the BLP model
remains numerical unstable because small share values produce even
smaller derivatives. For many datasets the Jacobian elements of the
market share constraints consist of ones along the diagonal and nearly
zero off diagonal elements. In practice, many of these elements are so
small that most optimizers set them equal to zero.17 Consequently, the
solver can have difficulty making progress. I address these problems
by using Dubé et al. [2011]’s trick of specifying the market share con-
straint in terms of the logarithm of the market shares. I also impose

16SNOPT”s memory requirements also explode.
17For example, when I examined a synthetic data set which produced a variety of

valid point estimates for different starting values, I found that the largest off-diagonal
element had magnitude 8.5 × 10−7 and the median magnitude was 1.6 × 10−15.
Another dataset with the same number of markets and products always produced
the same point estimates regardless of starts but had a median off-diagonal element
of 5.3 × 10−5.
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sensible box constraints and compute feasible starting guesses, as de-
scribed in Section 3.3.3.1, to facilitate solver convergence. Nevertheless,
I find that for many data sets the point estimates can vary considerably
for different starting values, even when the solver reports that the
optimality conditions are satisfied.

3.3.3.1 Computing a Good Starting Guess

Computing a good starting guess can considerably accelerate a solver’s
convergence by avoiding regions of the parameter space which are
infeasible. Many optimization algorithms fail or are considerably
slower if the initial guess does not satisfy the constraints because the
solver must first attempt to find a feasible point. To facilitate finding
an optimum and accelerate solver convergence, I compute each initial
guess so that the optimization constraints are approximately satisfied.
My procedure for computing each start is based on the method in
Dubé et al. [2011]:

1. Estimate mean utilities from a simple logit model of demand

log
�
Sjt

�
− log (S0t) = log

�
sjt
�
− log (s0t)

= δjt

= x
�
jtθ1 + ξ jt

exploiting the fact that the denominators in the logit expression
for the predicted shares of the inside and outside goods are
identical.

2. Estimate �θ1 using 2SLS with either BLP or cost-shifter instru-
ments.

3. Draw additional starting values for the scale parameter, θ
guess
2 ,

about 1/2 × |θ1|.

4. Invert the market share equations for each market individu-
ally by iterating Berry’s contraction mapping [Berry, 1994] 1,000
times for each market.18 I invert each market separately to ex-

18In practice, Berry’s mapping is very inefficient, unreliable, and can require more
than 1, 000 iterations to converge if it converges at all (See Chapter 2.). I used it
because it was easy to implement, although better algorithms exist [Reynaerts et al.,
2010]. Nevertheless, in some cases these points still did not satisfy the constraints,
probably because the contraction mapping failed to converge.
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ploit the block diagonal structure, which avoids problems where
blocks require different scaling or stopping conditions. This ap-
proach produces a more robust approximation for the mean
utility, δjt.

5. Recover guesses for θ
guess
1 and ξ jt from δjt using 2SLS.

Despite using DFS’s procedure to generate good starting guesses,
I found that some starting values produced different optima, each
of which satisfied the solver’s optimality criteria because the BLP
problem is often nearly flat, rank deficient, or poorly identified. Con-
sequently, I generate 50 different starts for each replication and then
restart the solver at each of the optima found for the original starts.
This strategy improves the likelihood of finding the true global opti-
mum for each replication. In most cases the difference between original
and restarted optima are much less than 10−4.19

3.3.3.2 Verification

Credible numerical work rests on intensive verification because there
is always another bug lurking, no matter how much you have tested
and debugged. Because I based my implementation on the relatively
stable code in Dubé et al. [2011] I had the luxury of comparing my
results to those from their MATLAB implementation. In addition, I
verified derivatives using finite difference, checked quadrature rules
by comparing computed moments to closed form results, and com-
puted other checks to validate that data was loaded and processed
correctly. I also took advantage of engineering tools including val-
grind [Nethercote and Seward, 2007a,b] to check for memory leaks
and the GDB debugger to ensure that the software executed as ex-
pected. C++’s strong typing system ensured that all expressions were
conformable and used appropriate types – i.e. I disabled all implicit
type conversions (or casts, to use C-language terminology). Lastly, I
loosely adhered to the Test Driven Development philosophy and wrote
functions which did one thing well to facilitate testing. Of course, one
must stop writing unit tests at some point.

19In a few cases the restart failed to solve, probably because SNOPT builds up an
approximation to the Hessian as optimization proceeds.

98



3.3.4 Hardware and Parallelization

After prototyping the estimation and data generation code on a
MacBook Pro, I migrated the software to the Petascale Active Data
Store (PADS) cluster at the University of Chicago. I ran the simulations
on PADS’s analysis cluster which consists of 48 nodes, each with eight
Nehalem 2.66 GHz cores and 24 GB RAM for a total of ~4.25 teraflops.
Like most clusters, PADS has a resource manager and scheduler which
facilitate running multiple jobs in parallel. I use a parameter sweep
architecture to parallelize the estimation which works extremely well
when running many independent jobs, such as estimating a model
repeatedly as part of a Monte Carlo experiment. The PADS cluster’s
Torque/Portable Batch System (PBS) job manager facilitates running
many jobs which differ only in their input because PBS passes a unique,
user-defined ID to each instance which can be used to determine the
input. See Listing 2 in Section A.2 for an example PBS script and
further discussion.

3.4 synthetic data generating process

Much of the power of simulation studies comes from the researcher’s
knowledge of the true data generating process. Following Armstrong
[2011], I generate synthetic data from a fully-specified model of de-
mand and supply to ensure that the data has the correct statistical
properties, such as product characteristics losing their power to iden-
tify the model as J → ∞. I tuned parameter values to approximate
real world data generating processes to the extent that it was reason-
able and possible to do so. I also allow for correlation between the
product-market unobservable, ξ jt, and the unobserved marginal cost
shock, ηjt. Finally, I generated product characteristics and marginal
costs so that the product characteristics and shocks for experiments
with more markets or products add more products or markets to the
existing data. For example, the product characteristics, cost shifters,
and corresponding shocks for the first 12 products in the first market
of an experiment with T = 50 and J = 100 are identical to those for
an experiment with one market and 12 products. Of course, prices
and market shares will differ because of the different Bertrand-Nash
price equilibria. This approach ensures that asymptotics drive results
instead of random changes in the data.
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Generating synthetic data encounters the same numerical problems
as estimating BLP (See Section 3.3). In addition, it is necessary to solve
for Bertrand-Nash price equilibria, find realistic parameter values, and
deal with weak instruments. I discuss these issues below.

3.4.1 Simulation of Data

I perform experiments to estimate BLP models for several different
combinations of markets and products, where the number of markets
T ∈ {1, 10, 25, 50} and the number of products J ∈ {12, 24, 48, 100}.
Each firm produces two products to ensure that the traditional BLP
instruments formed from characteristics of rival goods are not perfectly
collinear.

I generate the data as follows:

1. Draw observed product characteristics for each product, market,
and replication. I use the same observed product characteristics
for each market in a replication. For each experiment, draw the
data so that experiments with larger numbers of products or
markets contain data from smaller experiments.

2. Draw unobserved product characteristics ξ jt and unobserved
costs ηjt where



 ξ jt

ηjt



 =



 U (0, 1)

U (0, 1)



+ (U (0, 1)− 1)



 1

1





This process ensures that E
�
ξ jt

�
= E

�
ηjt

�
= 0 and that these

shocks are correlated, which can be an important source of
endogeneity in real data.

3. Compute marginal costs. I specify

log cjt =
�

1 xjt zjt

�
γ + ηjt,

where zjt is an exogenous supply-side cost shifter.

4. Solve for Bertrand-Nash equilibrium prices using the Path 5.0.00
solver (Dirkse and Ferris 1995, Ferris et al. 1999, Ferris and
Munson 2000), as described further in Section 3.4.2.
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5. Compute observed shares at equilibrium using a sparse grids in-
tegration rule, which approximates the share integrals efficiently
and accurately.

6. Compute 50 starting guesses to estimate the model for each
replication, as discussed in 3.3.3.1.

I do not draw unobserved consumer characteristics (i.e. βi) because
I assume that there is no sampling error, as discussed in 3.4.3. Also,
I draw some data, such as product characteristics, from a uniform
distribution to ensure that the data is bounded. I generate the data
from the following ‘true’ parameter values:

θ1 =





3

2

−5





θ2 =





1 0 0

0 1 0

0 0 1





γ =





−2.0

0.5

0.5





Var







 ξ jt

ηjt







 =



 2.0 0.1

0.1 2.0





Var
�
xjt

�
= 6.0

Var
�
zjt

�
= 0.4

3.4.1.1 Issues Involved in Choosing Parameter Values

The numerical problems inherent in the BLP model made it difficult
to choose parameter values which were realistic yet reliably produced
a price equilibrium. These problems became more acute as the num-
ber of products increased because increasing the number of products
decreases share values, produces even smaller derivatives, and causes
off-diagonal elements in the constraint Jacobian or first order condi-
tions to vanish. Also, the instruments become more collinear as T and
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J increase, compounding the numerical difficulties. In addition large
parameter values can produce numeric overflow, especially for data
drawn from the normal distribution, which has long tails. The use
of polynomial-based quadrature rules exacerbates this problem by
approximating the tails of the distribution more accurately; with a
pMC rule, researchers often avoid this problem by taking draws until
they find a set of nodes which are more stable. Finally, βprice must be
large enough in magnitude so that demand is elastic, otherwise the
Bertrand-Nash first order conditions will not have an interior solution.

I was able to mitigate these problems by drawing data from a
uniform distribution to bound the data and by choosing variances
for product characteristics and random coefficients which were large
enough to provide sufficient variation for identification but small
enough to avoid overflow. Nevertheless, the weakness of the instru-

ments often produced weighting matrices, W =
�

Z�Z
�−1

, with high
condition numbers.

3.4.1.2 Some Observations on Instruments

The BLP model suffers from price endogeneity.20 Researchers have
pursued several identification strategies, including characteristics of
other products [Bresnahan et al., 1997] and cost shifters, both of which
I evaluate in this paper.21 BLP motivate their choice of product char-
acteristics instruments from a functional form argument that price
should be exchangeable in the characteristics of other goods. Let each
firm f produce some set of products F f . Then, BLP’s candidate in-
struments are xjk, ∑

r �=j,r∈F f

xrk, and ∑
r �=j,r/∈F f

xrk, which are own-product

characteristics, characteristics of other goods the firm produces, and
characteristics of rival goods, respectively. Because these instruments
are often collinear, they choose a subset [Berry et al., 1995].

While generating synthetic data, I discovered that this collinearity
can be quite bad and often leads to GMM weighting matrices with
large condition numbers. Furthermore, these instruments are linearly
dependent if each firm produces only one product. Consequently, I as-
sume that firms produce at least two products. Even for multi-product
firms, collinearity persists. Note that the instruments formed from the

20Some argue that product characteristics are also endogenous [Mazzeo, 2002]. In
this paper, I treat them as exogenous.

21Nevo [2001] uses prices from other markets as instruments which he justifies via
Hausman [1997]’s argument that there are common cost shocks but no nation-wide
demand shocks.
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characteristics of rival goods ∑
r �=j,r/∈F f

xrk are just ∑
r∈J

xrk − ∑
r �=j,r∈F f

xrk − xjk

which is a linear combination of the columns of instrument matrix
(1, ∑

r �=j,r∈F f

xrk, and xjk). Consequently, I omit either the sums of the

characteristics of a firm’s other products or the sum of rival prod-
ucts’ characteristics to ensure that the instrument matrix has full rank.
Armstrong [2011]’s simulations show that increasing the number of
products per firm does decrease bias to some extent, perhaps because
the instruments are less collinear.

In addition to product characteristic instruments, I also use cost
shifters because BLP is asymptotically unidentified for one market
without cost shifters [Armstrong, 2011]. To check that the generated
data were reasonable, I regressed price on the various sets of in-
struments. For large J, R2 was typically less than 0.01 with product
characteristics instruments but R2 ≈ 0.5 with cost-shifter IV. I tried
using higher powers of these instruments as in Dubé et al. [2011] but
found that higher moments often increased the condition number and,
thus, collinearity of the weighting matrix. Because correlation between
many of these higher powers and the simple instruments was greater
than 0.98, I decided to work only with the linear terms. As shown
in Section 3.5, we need a better instrumentation strategy to estimate
BLP reliably. Furthermore, given that the optimal instruments could
be calculated in theory if we knew the functional relationship between
price and the unobserved product market shock, it may make sense to
use a different basis combined with a high dimensional model and a
penalization method [Belloni and Chernozhukov, 2011] to choose the
best practical set of instruments.

3.4.2 Solving for Price Equilibrium

Finding a Bertrand-Nash price equilibrium for BLP-style demand
presents both econometric and technical challenges.22 Armstrong
[2011] proves the necessity of generating data from a structural model
in order to avoid obscuring asymptotic properties of the data generat-
ing process. In addition BLP’s instruments require that firms produce
multiple products which adds further complexity and non-linearity
to the system of FOCs. This non-linearity makes finding a reliable,

22If the equilibrium is not Bertrand-Nash, then it is unclear whether or not the
model is identified.
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interior optimum difficult: if the solver overshoots the solution, the
shape of the problem is such that the solver will diverge to either zero
or infinite price, both of which are clearly wrong.

I now derive the system of FOCs and discuss a novel transform I
developed to correct most of the non-linearities. This solution facili-
tates quadratic convergence to a point which satisfies the optimality
conditions for over 90% of the markets I generated.

3.4.2.1 Multi-Product Firms

Because the characteristics of rival goods are perfectly collinear when
each firm produces only a single product, I consider multi-product
firms where each firm f produces a set of goods F f . This modeling de-
cision is also more realistic, because firms – especially consumer goods
manufacturers – often produce several products which are somewhat
substitutable. For multi-product firms, profits in each market t of size
M are

π
f
t = ∑

k∈F f

πkt

π
f
t = ∑

k∈F f

(pkt Mskt − C (Mskt)) .

Without loss of generality, I normalize the market size to M = 1. Then,
the FOCs for each firm are

∂π
f
t

∂pjt
= sjt + ∑

k∈F f

(pkt − mckt)
∂skt
∂pjt

∂π
f
t

∂pjt
= sjt + ∑

k∈F f

(pkt − mckt)
∂skt
∂pjt

for all j ∈ F f . Now the FOCs include the impact of a change in price
on inframarginal units and marginal units as before as well as an

additional strategic term ∑
k �=j,k∈F f

(pkt − mckt) M
∂skt
∂pjt

for the impact of

the price change on the firm’s other products.
The Jacobian of this system of FOCs is
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∂2π
f
t

∂pkt∂pjt
=

∂

∂pkt



sjt + ∑
i∈F f

(pit − mcit)
∂sit
∂pjt





∂2π
f
t

∂pkt∂pjt
=

∂sjt

∂pkt
+ I

�
k ∈ F f

� ∂skt
∂pjt

+ ∑
i∈F f

(pit − mcit)
∂2sit

∂pjt∂pkt

where

∂2sit
∂pjt∂pkt

=
1

det (Σ)

�
β2

price
�

I [i = j] (I [i = k]− skt) sjt

− (I [j = k] + I [i = k]− 2skt) sitsjt
�

φ
�

Σ−1 �β − β
��

dβ.

3.4.2.2 Evaluation

To evaluate the integrals for market shares and their gradients, I use an
SGI rule with nodes and weights {yr, wr}. I compute the scaled nodes
from the unweighted SGI nodes using the relationship Σ−1 �βr − β

�
=

yr . Then, the share integrals become

sjt = ∑
r

wrsjt (βr)

∂sjt

∂pk
=






∑
r

βr
�
1 − sjt (βr)

�
sjt (βr)wr if k = j

∑
r

βr
�
−skt (βr) sjt (βr)

�
wr if k �= j

∂2sjt

∂pjt∂pk
=






∑
r

β2
r
�
1 − sjt (βr)

�
sjt (βr)

�
1 − 2sjt (βr)

�
wr if k = j

∑
r

β2
r
�
−skt (βr) sjt (βr)

�
1 − 2sjt (βr)

��
wr if k �= j

where the functions are evaluated at all the rescaled nodes βr =

β + Σyr which are the type-specific tastes for price.
In addition to the above terms, the second derivative due to the

multi-product term is
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∂2sit
∂pjt∂pkt

= ∑
r

β2
r
�

I [i = j] (I [j = k]− skt (βr)) sjt (βr)

− (I [j = k] + I [i = k]− 2skt (βr)) sit (βr) sjt (βr)
�

wr.

I have exploited the fact that the product of I [i = j] and I [i = k]
implies that i = j if the outer indicator is true so I can replace i inside
the expression with j. The first term on the RHS looks a lot like ∂sjt/∂pkt

but is not the same because of the β2
r term instead of βr.

3.4.2.3 Numerical Issues

In addition to the typical numerical problems encountered in the BLP
model (See 3.3.3.), it is also necessary to solve for the price equilibrium
which is particularly challenging because the Bertrand-Nash FOCs are
non-linear, as plotting slices of the FOCs about marginal cost shows. I
use the Path 5.0.00 solver [Dirkse and Ferris, 1995, Ferris et al., 1999,
Ferris and Munson, 2000], which is currently the best complementarity
solver. Nevertheless, these non-linearities can easily confuse a Newto-
nian root-finder, such as that in Path. Even with an analytic Jacobian –
which is essential for optimal numerical results – Path often did not
converge quadratically, a sign of numerical instabilities. That market
shares are often small, especially as J increases, makes the equations
unstable and often leads to rank deficient systems.23 Furthermore,
small share values produce even smaller derivatives.

I discovered a novel transform – dividing the FOC for product j in
market t by the market share sjt – which removes most of the non-
linearity and leads to consistent, quadratic convergence.24 In addition,
the solver is more likely to find the same optimum for different starts.
To understand the intuition for this transformation, consider the FOCs

for simple logit demand:

f ocjt = sjt +
�

pjt − mcjt
� ∂sjt

∂pjt

= sjt + βprice
�

pjt − mcjt
� �

1 − sjt
�

sjt.

23The solver sets values below a cutoff to 0 which can exacerbate the problem.
24In about 10% of cases, this rescaling makes the objective function too flat for the

solver to make progress because the Jacobian has many vanishingly small elements.
In this case, using the untransformed set of FOCs usually produces a reliable solution.
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Clearly, if sjt is small, then f ocjt will also be very small, leading to
ill-conditioning. Dividing by market shares corrects this problem

�f ocjt = 1 + βprice
�

pjt − mcjt
� �

1 − sjt
�

so that the FOC is nearly linear in the region of the solution, making
the system much more stable. In practice, I found that this transform
worked very well for BLP demand and often makes the Jacobian
diagonally dominant.

To ensure that I have found the true local optimum, I take multiple
starts about a small markup over marginal cost. Because Path is a
complementarity solver it sometimes converges to box constraints
which prevent price from becoming negative. I select the optimum
which produces the smallest residual for

����f ocjt

���
2
.

Because the markets are independent, I solve for equilibrium prices
for each market individually. This promotes better convergence be-
cause different blocks require different scaling and stopping criteria:
trying to solve the entire system will be less stable because the solver
will use the wrong scaling or stopping condition for some blocks. Solv-
ing for individual markets also decreases memory usage and, in some
cases, avoids the performance hit when paging is necessary in the
virtual memory system of the computer. Nevertheless, solving for the
equilibrium prices in each market is still computationally challenging
because Newtonian root-finding scales as J3 for dense systems, mak-
ing systems with even J = 100 products per market quite slow to solve.
Furthermore, increasing J increases non-linearities and decreases the
share values, often making the Jacobian of the FOCs ill-conditioned.
Trying to solve systems with many more products may require even
higher precision arithmetic or advances in solver algorithms.

Lastly, generating ‘random numbers’ on a discrete computer is a
treacherous business [Judd, 1998]. To avoid problems from spurious
correlation due to poorly generated pseudo-random numbers, I use
Mersenne Twister [Matsumoto and Nishimura, 1998], currently the
best algorithm, to draw random numbers.25

25I use Richard Wagner’s C++ implementation which can be downloaded
from http://www-personal.umich.edu/~wagnerr/MersenneTwister.html. This im-
plementation has several nice features, including generating normally distributed
random variables correctly instead of using erfinv() which approximates the tails of
the distribution poorly.
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3.4.3 Sampling Error

Berry et al. [1995] and Berry et al. [2004b] devote considerable effort
to minimizing bias from sampling error and show that it is negligible
for their data. Often simulation studies – for example Dubé et al.
[2011] – introduce artificial ‘simulation error’ by generating market
shares using a pMC quadrature rule with very few draws. I compute
simulated shares using a very accurate sparse grids integration rule in
order to focus on model performance instead of distorting results with
artificial simulation error. To study simulation error, one could simply
replace the sparse grids rule with some suitable sampling process
from the desired distribution of consumer types.

3.5 results

Using the infrastructure described above, I synthesize data and esti-
mate the BLP model for a range of markets and products. The results
show that for the configurations of markets and products often encoun-
tered in real-world datasets the BLP model suffers from considerable
finite sample bias and that asymptotic inference may not yet be valid.
Because GMM has finite sample bias, it is not surprising that the tra-
ditional BLP GMM-based estimation strategy is also biased. However,
the magnitude of the bias and its persistence as the number of markets
and/or products increase, even with cost-shifter IV, should concern
practitioners.

Casual inspection of log files and point estimates to verify the esti-
mation output confirms these results. For each replication, I estimated
50 unique starts, for which the solver usually found a valid optimum
95% of the time or better.26 Some point estimates showed considerable
variation in magnitude across starts despite valid exit codes, indicating
that these parameters cannot be estimated precisely. In particular, the
point estimates for the scale parameters and the constant term, θ11,
suffered from this problem more than the coefficients on the prod-
uct characteristics and price. Using cost-shifter instruments instead
of characteristics of rival products decreased this variation to some
extent as well as producing smaller asymptotic standard errors.

26A valid optimum for SNOPT has the Inform code 1 (Success) and satisfies the
market share and other constraints to high tolerances.
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The following subsections describe the results in more detail for
both instrumentation strategies and their effect on point estimates and
elasticities. In addition, I discuss solver convergence and computa-
tional costs.

3.5.1 BLP Characteristics Instruments

I compute the bias, mean absolute deviation, median absolute devia-
tion, and RMSE for the point estimates to measure the performance of
the BLP model for a range of markets, T ∈ {1, 10, 25, 50}, and products,
J ∈ {12, 24, 48, 100}. I compute these statistics for both point estimates
and elasticities for each of the 100 replications of each combination of
T and J. I also compare two different instrumentation strategies: char-
acteristics of rival products and cost shifters. These statistics show that
for these datasets, the BLP point estimates with product characteristics
IV are consistently biased in one direction for all of these statistics and
that inference based on the asymptotic distribution of the estimator is
not yet valid.

I compute these statistics by comparing the point estimates with
the true parameters for θ1, the parameters for the mean utility, and θ2,
the scale of the random coefficients’ taste shock. For example, bias =
1/N ∑

n∈N
θ̂(n) − θ0, where θ̂(n) is the best estimate for the n-th replication

and θ0 is the truth. The mean and median absolute deviation are
computed similarly for the absolute value of the deviation of the
best starts from the truth. The Root Mean Squared Error (RMSE) is�

1/N ∑
n∈N

�
θ̂(n) − θ0

�2.

In Table 14, Table 15, and Table 16, I summarize the results for mean
utility parameters, θ1. These tables show that the parameters for the
constant term, θ11, and for the product characteristic, θ12, consistently
have positive bias whereas the parameter for price, θ13 has negative
bias. The computed values for both the absolute and relative bias are

surprisingly large – recall that θ0
1 =

�
3 2 −5

��

. More worryingly,
increasing the number of markets and products has little effect on
the bias and appears to actually increase it in some cases, though this
is probably an artifact of only using 100 replications per experiment.
That most of the variation in BLP models is usually with-in market
[Berry et al., 2004b, Armstrong, 2011] means that increasing the num-
ber of markets will do little to decrease bias. Instead, identification
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must come from increasing the number of products. Furthermore,
increasing the number of replications to 1, 000 will not improve results
considerably because bias scales as

√
N. The other statistics – mean

absolute deviation, median absolute deviation, and RMSE – tell the
same story: for the numbers of markets and products considered there
is persistent bias. The asymptotic theory for BLP developed in Berry
et al. [2004b] argues that the BLP estimator is asymptotically normal
as J → ∞ (with one market) for certain (unspecified) price setting
mechanisms. But, Armstrong [2011] proves that BLP is in fact only
identified as J → ∞ with cost shifter instruments for a Bertrand-Nash
price equilibrium. I.e., using the characteristics of other firms’ products
will not identify the model when J → ∞. For the values of J in these
experiments, finite sample bias is present which is perhaps not sur-
prising, given that the BLP estimator is a GMM estimator and GMM
is know to have poor finite sample properties. Consequently, applied
researchers should search for alternative identification strategies.27

Table 17, Table 18, and Table 19 present these statistics for stan-
dard deviation of the random coefficients. θ22, the parameter on the
product characteristics has little bias, but the other parameters have
much larger bias. When checking the results for the point estimates, I
often observed estimates for θ21 and θ23 which were either extremely
large or small. This could be caused by the relative flatness of the
BLP objective function along these dimensions: i.e., these parameters
may be identified in theory, but in practice they cannot be estimated
precisely. In fact, Armstrong [2011] fixes the scale parameters, θ2, in
his simulations to facilitate the solver’s convergence to an optimum.

Because elasticities are crucial for characterizing the properties of
demand systems in applied work, I also compute these bias statistics
for own- and cross-price elasticities. Table 20 and Table 21 summarize
these results for point estimates with rival product characteristics
as instruments. Elasticities also suffer from large finite sample bias;
in particular, RMSE can be the same order of magnitude as actual
elasticities. When looking at these figures, note that the mean own-
price elasticities range from −4 to −5, regardless of the number of
products so the relative bias is quite large. Cross-price elasticities are
also biased. Although the bias may appear to decrease as J increases,
this decrease really occurs because of the increase in the number of

27With real data, misspecification further complicates identification because the
normal mixing distribution for the random coefficients is usually misspecified [Keane
and Wasi, 2009].
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T J Bias Mean Abs Dev Med Abs Dev RMSE
1 12 1.3 3.3 1.9 5.3
1 24 1.1 2.3 1.3 3.7
1 48 2.6 3.9 1.8 6.4
1 100 2.3 3.2 1.8 4.8

10 12 0.68 3.1 1.7 6.3
10 24 1 2.7 1.5 5.2
10 48 3.3 4.3 2.1 6.6
10 100 2.3 3.5 1.4 7.2
25 12 −0.27 2.8 2.1 4.2
25 24 1.5 3.2 1.8 5.1
25 48 3.4 4.9 1.9 11
25 100 2.8 4.1 1.8 7.8
50 12 −0.2 2.3 1.7 3.5
50 24 1.7 3.4 1.6 6.9
50 48 2.3 3.6 2.1 7.6
50 100 2.8 4.1 2 6.7

Table 14: Bias, Deviations, and RMSE for θ11 with only product characteristics
instruments.

products. The magnitude of the average cross-price elasticity decreases
from 0.2 to 0.03 as J increases from 12 to 100 products. Consequently,
cross-price elasticities also have large relative bias. In addition, the bias
of the elasticities is always in the same direction: own-price estimates
are always too negative and cross-price are always too positive.

For the numbers of markets and products which are typical for
many applied projects, characteristics of rival products produce bi-
ased estimates. Furthermore, asymptotics have not begun to produce
consistent estimates so the asymptotic standard errors are probably
unreliable. Although desirable, increasing the number of products in
these experiments becomes computational difficult – perhaps even
impossible – because the FOCs for the Bertrand-Nash price equilib-
rium are a dense Jacobian and the root-finding algorithm scales as J3.
Thus, J = 100 produces a matrix with 1002 = 10, 000 entries which is
difficult for most current root-finding algorithms.
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T J Bias Mean Abs Dev Med Abs Dev RMSE
1 12 0.33 0.74 0.47 1.4
1 24 −0.033 0.49 0.37 0.67
1 48 −0.014 0.63 0.42 1
1 100 0.14 0.56 0.34 0.94

10 12 0.15 0.71 0.4 1.3
10 24 0.19 0.72 0.33 1.4
10 48 0.022 0.62 0.44 0.9
10 100 0.22 0.75 0.46 1.5
25 12 0.018 0.64 0.44 1.1
25 24 0.28 0.85 0.51 1.4
25 48 0.44 1.1 0.5 2.6
25 100 0.26 0.77 0.46 1.2
50 12 0.08 0.63 0.46 0.92
50 24 0.3 0.86 0.45 1.6
50 48 0.46 0.91 0.51 2.2
50 100 0.21 0.8 0.48 1.3

Table 15: Bias, Deviations, and RMSE for θ12 with only product characteristics
instruments.

3.5.2 Cost Shifter Instruments

The results for point estimates and elasticities when the model is
estimated with supply-side cost shifters weakly confirm Armstrong
[2011]’s proof that the BLP model (and other discrete choice demand
systems) is identified with cost-shifter IV but not product characteris-
tics. Estimates for mean utility parameters (See Table 22, Table 23, and
Table 24.) show that θ12 and θ13 are computed with a factor of 10 less
bias than with BLP IV; other metrics also improve. Similarly, estimates
for the scale parameters for the preference shocks (See Table 25, Ta-
ble 26, and Table 27.) show that θ22 and θ23 have much less bias than
before. Surprisingly, the constant parameter, θ11, and its corresponding
scale parameter, θ21, are still estimated with considerable bias. Note
that most parameters have consistent bias in one direction such as θ13,
the parameter on price, which almost always has negative bias.

As with characteristics IV, increasing the number of markets or
products does not clearly reduce bias. Even for 50 markets and 100
products, asymptotics do not yet seem to apply: consequently, the
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T J Bias Mean Abs Dev Med Abs Dev RMSE
1 12 −2 3 1.3 5.7
1 24 −0.72 1.9 1.2 3.2
1 48 −0.52 1.9 1.2 3
1 100 −0.57 1.7 1.3 2.3

10 12 −1.7 2.6 1.1 6
10 24 −0.65 2 1.3 3.6
10 48 −0.64 1.9 1.3 3.2
10 100 −0.83 2 1 3.9
25 12 −0.62 1.9 1.2 3.1
25 24 −0.96 2.3 1.4 3.7
25 48 −1.3 2.8 1.2 7.6
25 100 −0.95 2.1 1.1 3.7
50 12 −0.39 1.6 1.1 2.7
50 24 −1.2 2.5 1.1 5.4
50 48 −1.2 2.2 1.3 5.2
50 100 −0.63 1.9 1.3 3

Table 16: Bias, Deviations, and RMSE for θ13 with only product characteristics
instruments.

GMM formula for standard errors, which most practitioners use, is
probably invalid and applied researchers should take care when per-
forming inference. To help avoid finite sample bias, Conlon [2009]
estimates a dynamic BLP model using Empirical Likelihood at the
cost of extra computational complexity.28 The small sample size of
these experiments may obscure the effectiveness of increasing T or J
to reduce bias. However, because bias falls as

√
N, even a 10x increase

will not reduce bias significantly. Numerical errors in computing the
true price equilibrium may also exacerbate these problems because
Path often had difficulty finding an interior optimum when synthesiz-
ing the data, despite taking up to 30 starts and using a transform to
facilitate convergence (See Section 3.4.2.3.).

Supply-side cost-shifters produce slightly better own- and cross-
price elasticities than traditional BLP IV, as shown in Table 28 and
Table 29. Bias and other metrics decrease but by less than an order

28Conlon [2009] solves the primal problem. Developing a dual problem formulation
may make EL more accessible for BLP practitioners.
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T J Bias Mean Abs Dev Med Abs Dev RMSE
1 12 3.1 3.9 1 7.3
1 24 4.8 5.3 1 10
1 48 5.7 6.5 1 23
1 100 2.1 2.7 1 5.2

10 12 3.5 4.1 1 8.1
10 24 2.9 3.3 0.94 7.1
10 48 4.7 5.1 1 9.9
10 100 1.7 2.2 0.6 6.7
25 12 3.6 4.1 1.7 7
25 24 3.3 3.6 1.1 7.2
25 48 2.9 3.3 0.98 7.4
25 100 2.2 2.7 0.76 6.7
50 12 2.5 3 1 5.6
50 24 4.1 4.5 1.1 11
50 48 1.5 2 0.98 3.6
50 100 2.7 3.1 0.85 7.4

Table 17: Bias, Deviations, and RMSE for θ21 with only product characteristics
instruments.

of magnitude. Again, the number of markets and products has little
effect on bias.

After examining several measures of bias for both point estimates
and elasticities using two popular instrumentation strategies, the
BLP model appears to be biased for the number of markets and
products often encountered in applied research. Practitioners should
be concerned that finite sample bias persists in all cases and that
asymptotics appear to require many more products and/or markets to
reduce bias. Better instruments and estimation strategies are needed
to address these issues.

3.5.3 Solver Convergence

In addition to the results on bias, I find that BLP becomes increasingly
difficult to solve as the number of markets and products increase
or the quality of the instruments decreases. In Table 30, I tabulate
solver exit codes for all replications and starts by both number of
markets and products when the instruments are the characteristics

114



T J Bias Mean Abs Dev Med Abs Dev RMSE
1 12 0.15 0.73 0.62 1.1
1 24 −0.12 0.47 0.38 0.58
1 48 −0.14 0.5 0.44 0.63
1 100 −0.029 0.4 0.24 0.62

10 12 −0.1 0.4 0.26 0.53
10 24 0.00034 0.3 0.16 0.47
10 48 −0.15 0.28 0.17 0.42
10 100 −0.049 0.27 0.16 0.48
25 12 −0.097 0.35 0.26 0.51
25 24 −0.0093 0.32 0.23 0.48
25 48 0.045 0.33 0.17 0.56
25 100 −0.0041 0.21 0.12 0.36
50 12 −0.01 0.33 0.23 0.45
50 24 0.011 0.28 0.16 0.48
50 48 0.11 0.27 0.12 0.7
50 100 −0.0052 0.25 0.13 0.43

Table 18: Bias, Deviations, and RMSE for θ22 with only product characteristics
instruments.

of rival goods. In this table, each row summarizes the exit codes
for some number of markets, T, and number of products, J. The
columns, except for the last column, are labeled by the SNOPT exit
code to make it easier to view the results. These exit codes [Gill
et al., 2002] are explained in Table 31. The number of successful
exit codes, Inform=1, decreases as both the number of markets and
products increase. Furthermore, exit code 43 – which means that the
initial constraints cannot be satisfied – is the most common source of
failure and increases in frequency almost linearly with the number
of markets. This problem could be caused by the non-convergence
of Berry [1994]’s contraction mapping if it is less likely to converge
for larger numbers of products (See Section 3.3.3.1.). These results
show that the BLP model becomes harder to solve as its complexity
grows, necessitating more starts to find the global optimum. Table 32
shows similar results, though smaller in magnitude, for cost-shifter
instruments. Better instruments appear to facilitate solver convergence,
as reflected in fewer unsuccessful exit codes.
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T J Bias Mean Abs Dev Med Abs Dev RMSE
1 12 0.72 1.6 1 2.6
1 24 0.28 1.2 1 2.1
1 48 0.093 1.1 1 1.3
1 100 −0.047 0.88 1 1

10 12 0.58 1.3 1 2.3
10 24 0.026 0.79 0.89 0.99
10 48 0.16 0.79 0.67 1.1
10 100 0.12 0.66 0.47 0.99
25 12 0.035 0.9 1 1.1
25 24 0.1 0.77 0.67 1
25 48 0.22 0.73 0.41 1.8
25 100 0.21 0.61 0.37 1
50 12 −0.11 0.74 0.72 0.99
50 24 0.25 0.73 0.41 1.4
50 48 0.15 0.52 0.3 0.99
50 100 0.081 0.48 0.37 0.63

Table 19: Bias, Deviations, and RMSE for θ23 with only product characteristics
instruments.

The last column in Table 30 is the total number of starting values
observed for each combination of markets and products. It usually
equals 5,000 (the number of replications, 100, times the number of
starts, 50) except for cases where the solver failed to converge before
the limit on the job’s wall-clock time was met.29 The distribution of
wall-clock time required for different starts is quite skewed with a
long, thin upper tail: i.e., most jobs complete very quickly whereas a
few take an extremely long time. See Figure 5 for a typical example
of the distribution of runtimes, in this case for 50 markets and 100
products with the traditional BLP instruments. The ‘mass point’ at 24
hours was caused by setting an upper limit of 24 hours in the PBS
scripts which ran these estimation jobs.

29Wall-clock time is the elapsed time a job consumes while running, more precisely
it is the sum of CPU time, I/O time, and the communication channel delay.
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T J Bias Mean Abs Dev Med Abs Dev RMSE
1 12 −0.77 2.2 0.94 4.9
1 24 −0.095 1.5 0.77 3.3
1 48 −0.082 1.6 0.91 2.7
1 100 −0.39 1.5 0.98 2.5

10 12 −0.5 1.7 0.81 3.3
10 24 −0.57 1.7 0.83 3.3
10 48 −0.16 1.5 0.97 2.2
10 100 −0.53 1.7 0.93 3.3
25 12 −0.3 1.4 0.94 2.7
25 24 −0.72 1.8 1.1 3
25 48 −0.87 2.2 1.1 4.9
25 100 −0.61 1.7 0.97 2.7
50 12 −0.43 1.5 0.94 2.6
50 24 −0.77 1.9 0.91 3.8
50 48 −0.97 1.9 1.1 4
50 100 −0.56 1.8 1.1 2.9

Table 20: Bias, Deviations, and RMSE for own-price elasticities with only
product characteristics instruments.
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T J Bias Mean Abs Dev Med Abs Dev RMSE
1 12 0.094 0.15 0.035 0.57
1 24 0.017 0.051 0.013 0.2
1 48 0.0068 0.027 0.0072 0.08
1 100 0.0038 0.011 0.0029 0.034

10 12 0.075 0.12 0.051 0.27
10 24 0.032 0.059 0.022 0.15
10 48 0.0097 0.023 0.011 0.046
10 100 0.0056 0.013 0.0053 0.037
25 12 0.067 0.099 0.055 0.23
25 24 0.039 0.063 0.03 0.13
25 48 0.02 0.036 0.013 0.13
25 100 0.0065 0.013 0.0062 0.039
50 12 0.059 0.099 0.055 0.23
50 24 0.044 0.071 0.024 0.27
50 48 0.019 0.031 0.013 0.1
50 100 0.0054 0.013 0.0067 0.028

Table 21: Bias, Deviations, and RMSE for cross-price elasticities with only
product characteristics instruments.
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T J Bias Mean Abs Dev Med Abs Dev RMSE
1 12 −1.4 2.4 0.98 4.9
1 24 0.8 1.8 1 3.3
1 48 4.1 4.8 1.5 7.8
1 100 4.5 5.1 1.8 8.9

10 12 0.27 1.3 0.95 1.7
10 24 0.38 0.95 0.67 1.4
10 48 1.9 2.2 0.81 4.2
10 100 4.4 4.8 1.3 7.7
25 12 0.0036 1 0.72 1.5
25 24 0.65 1 0.74 1.4
25 48 2.2 2.4 0.91 3.9
25 100 4.6 4.9 1.4 7.9
50 12 −0.16 0.69 0.58 0.93
50 24 0.67 0.91 0.42 2
50 48 1.9 2.1 0.79 3.6
50 100 4.3 4.5 1.3 8.7

Table 22: Bias, Deviations, and RMSE for θ11 with cost-shifter instruments.

T J Bias Mean Abs Dev Med Abs Dev RMSE
1 12 0.043 0.37 0.22 0.54
1 24 −0.092 0.34 0.24 0.47
1 48 −0.098 0.28 0.24 0.36
1 100 −0.027 0.19 0.15 0.24

10 12 0.02 0.27 0.19 0.38
10 24 0.015 0.19 0.14 0.25
10 48 0.0086 0.15 0.11 0.19
10 100 −0.0065 0.071 0.053 0.089
25 12 0.061 0.22 0.17 0.29
25 24 0.049 0.15 0.11 0.22
25 48 −0.0054 0.1 0.068 0.15
25 100 −0.0059 0.052 0.041 0.071
50 12 0.065 0.16 0.1 0.25
50 24 0.1 0.16 0.078 0.45
50 48 0.02 0.068 0.051 0.1
50 100 −0.0028 0.037 0.025 0.057

Table 23: Bias, Deviations, and RMSE for θ12 with cost-shifter instruments.
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T J Bias Mean Abs Dev Med Abs Dev RMSE
1 12 −0.38 1.1 0.83 1.5
1 24 −0.05 1 0.84 1.3
1 48 0.012 0.99 0.86 1.2
1 100 0.057 0.72 0.62 0.88

10 12 −0.62 1.3 0.92 2
10 24 −0.18 0.8 0.61 1.3
10 48 −0.15 0.62 0.52 0.86
10 100 −0.027 0.39 0.3 0.52
25 12 −0.38 1 0.71 1.6
25 24 −0.3 0.73 0.64 0.98
25 48 −0.11 0.45 0.34 0.63
25 100 −0.033 0.25 0.19 0.33
50 12 −0.081 0.79 0.67 1.1
50 24 −0.22 0.55 0.35 1
50 48 −0.026 0.28 0.18 0.4
50 100 0.003 0.19 0.14 0.26

Table 24: Bias, Deviations, and RMSE for θ13 with cost-shifter instruments.

T J Bias Mean Abs Dev Med Abs Dev RMSE
1 12 7.4 8.2 2.6 13
1 24 8.4 8.8 2.9 14
1 48 7.2 8.1 1.1 13
1 100 6.2 7.1 3.2 12

10 12 0.8 1.8 1 2.7
10 24 4 4.9 1 11
10 48 2.9 3.8 1 6.6
10 100 5.9 6.8 1.2 11
25 12 1.5 2.3 1 3.4
25 24 3.6 4.4 1.9 7.7
25 48 3.7 4.6 2.1 7
25 100 6.2 7 1.8 11
50 12 0.97 2 1 3.1
50 24 3.9 4.6 1 12
50 48 3.6 4.2 1.8 6.3
50 100 5.9 6.6 2.2 12

Table 25: Bias, Deviations, and RMSE for θ21 with cost-shifter instruments.
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T J Bias Mean Abs Dev Med Abs Dev RMSE
1 12 0.15 0.52 0.4 0.66
1 24 −0.042 0.39 0.31 0.5
1 48 −0.058 0.33 0.26 0.43
1 100 0.032 0.22 0.18 0.3

10 12 −0.038 0.3 0.25 0.39
10 24 0.0067 0.2 0.17 0.27
10 48 −0.023 0.16 0.12 0.22
10 100 −0.0037 0.096 0.062 0.13
25 12 0.0026 0.22 0.17 0.3
25 24 0.00017 0.17 0.12 0.25
25 48 −0.0048 0.1 0.072 0.15
25 100 0.00058 0.06 0.044 0.077
50 12 0.035 0.18 0.13 0.25
50 24 0.065 0.13 0.082 0.25
50 48 0.028 0.063 0.044 0.083
50 100 0.01 0.043 0.033 0.057

Table 26: Bias, Deviations, and RMSE for θ22 with cost-shifter instruments.

T J Bias Mean Abs Dev Med Abs Dev RMSE
1 12 0.23 0.8 0.74 1
1 24 0.0036 0.76 0.83 0.98
1 48 −0.1 0.72 0.78 0.86
1 100 −0.18 0.58 0.54 0.69

10 12 0.17 0.86 0.87 1.2
10 24 −0.06 0.62 0.51 0.89
10 48 −0.022 0.46 0.39 0.6
10 100 −0.035 0.31 0.21 0.43
25 12 −0.035 0.7 0.65 0.88
25 24 0.034 0.45 0.34 0.61
25 48 0.028 0.27 0.17 0.42
25 100 0.0083 0.18 0.13 0.27
50 12 −0.18 0.56 0.43 0.72
50 24 −0.031 0.29 0.2 0.41
50 48 −0.026 0.16 0.099 0.24
50 100 −0.01 0.12 0.077 0.18

Table 27: Bias, Deviations, and RMSE for θ23 with cost-shifter instruments.
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T J Bias Mean Abs Dev Med Abs Dev RMSE
1 12 0.059 0.86 0.52 1.4
1 24 0.17 0.83 0.55 1.3
1 48 0.11 0.85 0.6 1.3
1 100 −0.59 1.3 0.43 60

10 12 −0.098 0.69 0.48 1
10 24 −0.095 0.52 0.33 0.82
10 48 −0.15 0.48 0.28 4.2
10 100 −0.072 0.3 0.19 0.54
25 12 −0.23 0.56 0.38 0.83
25 24 −0.22 0.48 0.34 0.69
25 48 −0.062 0.3 0.19 0.45
25 100 −0.16 0.3 0.13 0.68
50 12 −0.27 0.54 0.32 0.92
50 24 −0.32 0.46 0.22 1
50 48 −0.1 0.2 0.12 0.33
50 100 −0.15 0.24 0.098 0.57

Table 28: Bias, Deviations, and RMSE for own-price elasticities with cost-
shifter instruments.
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T J Bias Mean Abs Dev Med Abs Dev RMSE
1 12 0.047 0.082 0.031 0.16
1 24 0.016 0.034 0.012 0.075
1 48 0.003 0.015 0.0049 0.037
1 100 0.0017 0.0064 0.0016 0.24

10 12 0.03 0.062 0.036 0.1
10 24 0.012 0.026 0.015 0.044
10 48 0.0057 0.01 0.0053 0.079
10 100 0.0017 0.0032 0.0018 0.0057
25 12 0.041 0.066 0.04 0.1
25 24 0.021 0.03 0.019 0.045
25 48 0.0062 0.0087 0.005 0.014
25 100 0.0023 0.0032 0.0018 0.0062
50 12 0.028 0.057 0.033 0.093
50 24 0.022 0.028 0.014 0.057
50 48 0.0065 0.0085 0.0053 0.013
50 100 0.0022 0.0028 0.0017 0.0052

Table 29: Bias, Deviations, and RMSE for cross-price elasticities with cost-
shifter instruments.
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#Market.#Product SNOPT Inform Codes Total
1 3 13 31 32 42 43 84

T1.J12 4987 0 1 0 0 0 12 0 5000
T1.J24 4987 0 1 0 0 0 12 0 5000
T1.J48 4996 0 1 0 0 1 2 0 5000

T1.J100 4962 4 6 6 0 0 22 0 5000
T10.J12 4947 0 1 2 0 0 50 0 5000
T10.J24 4950 0 2 1 0 1 46 0 5000
T10.J48 4920 0 6 8 0 1 65 0 5000

T10.J100 4840 0 11 30 0 2 117 0 5000
T25.J12 4941 0 0 4 0 0 55 0 5000
T25.J24 4914 0 9 1 0 2 74 0 5000
T25.J48 4824 0 17 21 1 5 132 0 5000

T25.J100 4613 0 15 21 32 3 288 0 4972
T50.J12 4932 0 1 4 0 0 63 0 5000
T50.J24 4808 0 12 19 4 6 151 0 5000
T50.J48 4462 0 21 33 14 9 285 176 5000

T50.J100 4225 5 24 5 0 9 512 21 4801

Table 30: Count of Solver Exit Codes by Number of Markets and Products
for BLP Characteristics Instruments

snopt exit code description

1 optimality conditions satisfied
3 desired tolerance could not be achieved
13 nonlinear infeasibilities minimized
31 iteration limit reached
32 major iteration limit reached
42 singular basis
43 cannot satisfy the general constraints
84 not enough real storage

Table 31: SNOPT Exit Codes
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#Market.#Product SNOPT Inform Codes Total
1 3 13 31 32 42 43 84

T1.J12 4983 0 6 0 0 0 11 0 5000
T1.J24 4987 0 0 0 0 0 12 0 5000
T1.J48 4993 0 4 0 0 0 3 0 5000

T1.J100 4969 5 12 1 0 0 13 0 5000
T10.J12 4976 0 0 1 0 0 23 0 5000
T10.J24 4964 0 1 3 0 0 32 0 5000
T10.J48 4984 0 0 2 0 1 13 0 5000

T10.J100 4970 0 1 3 0 0 26 0 5000
T25.J12 4973 0 1 1 0 0 25 0 5000
T25.J24 4921 0 3 3 0 1 72 0 5000
T25.J48 4911 0 7 10 0 3 69 0 5000

T25.J100 4852 0 9 8 5 3 107 0 4984
T50.J12 4936 0 1 3 0 0 60 0 5000
T50.J24 4881 0 10 7 6 3 93 0 5000
T50.J48 4776 0 8 14 8 2 110 82 5000

T50.J100 424 1 0 0 0 0 16 3 444

Table 32: Count of Solver Exit Codes by Number of Markets and Products
for Cost-Shifter Instruments
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Figure 5: Distribution of runtimes for T = 50 markets and J = 100 products
with characteristics of rival products as instruments.

Inspection of the various optima found by the solver for the different
starting guesses confirms the difficulties in solving the BLP model. I
found considerable variation in the point estimates – even those with
the smallest residual for each replication. In particular, the standard
error for the random coefficients seems to be difficult to estimate. The
parameters for the constant term, θ11, and its scale, θ21, are usually the
most difficult parameter to compute precisely.

3.5.4 Bias from Quadrature Rules

As discussed in Chapter 2, accurate numerical integration can have
a profound effect on point estimates, elasticities, and other economic
estimates. Most researchers adopt some form of a Monte Carlo rule –
sometimes improved by using importance sampling or quasi-Monte
Carlo methods. Yet, many practitioners, basing their intuition on
the Law of Large Numbers, assume that as the number of draws
approaches infinity the bias will disappear and estimates will be
consistent asymptotically normal (CAN). However, the finite sample
performance of these rules is unknown. Furthermore, if the optimizer
finds a local optimum instead of the global optimum – which is
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particularly common with pMC rules – then the properties of the
estimator are unknown. As a first step towards answering this question,
I use the Monte Carlo infrastructure of this chapter to compute the
bias for pMC and SGI quadrature rules and find that the SGI rule
considerably outperforms the pMC rule for all metrics.

Table 33 summarizes the bias statistics for a simple synthetic dataset
with 2 markets and 24 products. The data was generated using the
DGP in Section 3.4 with an SGI rule. The estimation procedure was
the same as that described in Section 3.3.3 except that I compute the
pMC estimates with 165 nodes to insure that the computational cost is
roughly the same as the SGI rule, which also uses 165 nodes.30 The key
difference between the rules is that the SGI rule is exact for all degree
11 monomials or less whereas the pMC rule is much less accurate.
These results demonstrate the superiority of the SGI rule: for almost
every measure of bias, SGI parameter estimates are closer to the truth.
For the few cases where pMC is better, it is only slightly less biased.
Consequently, polynomial-based rules appear to decrease the bias of
estimates vis-a-vis pMC.

Bias Mean Abs Dev Med Abs Dev RMSE
SGI pMC SGI pMC SGI pMC SGI pMC

θ11 0.96 12.34 2.29 13.25 1.20 3.64 4.00 28.92
θ12 0.02 −0.13 0.52 0.38 0.22 0.33 0.94 0.48
θ13 −0.28 −0.38 1.47 1.21 0.62 0.99 3.01 1.51
θ21 22.57 128.22 23.01 128.24 2.62 34.06 81.76 253.87
θ22 0.02 −0.04 0.12 0.16 0.07 0.13 0.19 0.20
θ23 0.08 0.64 0.36 0.75 0.16 0.79 0.75 0.90

Table 33: Comparison of bias in point estimates : SGI vs. pMC for T=2 mar-
kets and J=24 products with 165 nodes.

3.5.5 Computational Cost

These simulations and data analysis required 94,325 CPU-hours and
39,875 jobs to estimate the BLP model over 320,000 times.31 These
numbers may appear large compared to what is common for Eco-

30Currently, I only use one set of pMC draws, but this should not affect results
significantly because I use 100 replications.

3116 experiments × 100 replications × 50 starts × 2 types of instrumental variables
× 2 for restarts on original optima = 320,000.
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nomic research, but this usage level is negligible compared to what
is now routine for the natural sciences and engineering. For example,
some Physics and Chemistry models now require over 10,000,000
hours to complete and produce petabytes of output. Furthermore HTC

computing resources are now available at most universities or through
national organizations such as XSEDE (www.xsede.org) and the Open
Science Grid (www.opensciencegrid.org) in the US or the National
Grid Service (www.ngs.ac.uk) in the UK. In addition, 100,000 hours
is the size of a typical exploratory grant at XSEDE, which is available
with minimal paperwork.

3.6 bootstrapping blp

Traditionally, BLP practitioners have relied on the GMM formula
to compute asymptotic standard errors and perform inference. To
evaluate the performance of standard errors researchers typically use
the bootstrap. Given the computational challenges of just estimating
the BLP model reliably, no one has conducted a bootstrap study of
BLP. However, using the infrastructure in this chapter, bootstrapping is
now possible and an important subject for a future study to determine
what market sizes and numbers of products are necessary to use the
asymptotic standard errors.32

Because the unit of observation in BLP is effectively the market,
bootstrapping is not just a straight-forward matter of resampling:
correlation between products in a market and dual asymptotics in
the number of markets and products invalidate simple resampling.
Correlation across markets can add further complexity, although often
researchers assume that different markets are independent. However,
BLP datasets often have the same (observed) characteristics in each
market.33 Because market shares in a market are correlated and most
variation is typically with-in market, asymptotics depend on J → ∞.
Consequently, each market functions a lot like one observation. Per-
haps resampling should be done at the market level, which is similar
to block resampling for time series processes. Using the parametric
bootstrap would require computing ξ jt which is highly inaccurate:

32Monte Carlo experiments where demand is a simple logit with an unobserved
product market shock could also help establish bounds because it should be easier to
estimate than BLP, making it possible to study datasets with much larger T and J.

33In the case where markets are different time periods as in the original BLP paper,
dynamic considerations could matter.
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even with MPEC I observe considerable variation in �ξ jt at optima with
essentially identical structural parameter estimates �θ. Further research
is needed to determine the correct resampling procedure to bootstrap
BLP.

3.7 conclusion

Advances in parallel computing architecture, such as High Through-
put Clusters and parameter sweeps, significantly ease the costs of
performing large-scale Monte Carlo experiments. In fact, Monte Carlo
experiments are quickly becoming a new pillar of the physical sciences
on par with theory and experiment [U.S. National Science Founda-
tion, 2007]. Using this technology, I developed the infrastructure to
characterize the performance of the BLP estimator by running Monte
Carlo experiments for different numbers of markets and products on
a much larger scale than anyone has attempted before.

I find that for the configuration of markets and products found
in many real datasets the BLP parameter estimates and elasticities
are considerably biased by a variety of measures and there were not
enough markets and/or products to reduce bias to the necessary levels.
Using cost shifter instruments mitigates this to some extent, weakly
confirming the asymptotic theory developed in Armstrong [2011]
which showed that asymptotic identification requires supply-side
cost-shifters because product characteristics drop out of the pricing
equation as J → ∞. However even with 50 markets and 100 products,
results show finite sample bias. Consequently, asymptotic results are
probably not valid and applied researchers need to develop better in-
struments, estimation strategies, and models. Because the BLP model
is currently the dominant approach for estimating demand for differ-
entiated products, practitioners must find new ways to reduce this
bias – perhaps by using much larger datasets than we had previously
thought were necessary. By running experiments for datasets gener-
ated from different parameters, the method developed in this chapter
can be used to improve our understanding of the factors causing this
bias and how it propagates through the BLP model.

Given that BLP has considerable finite sample bias and that pMC

rules produce artificially tight standard errors (See Chapter 2.), applied
researchers should avoid naive implementations of the BLP model,
especially in regulatory settings: clearly, any welfare calculations based

129



on such code will produce biased point estimates, misleading standard
errors, and flawed welfare calculations.

This computational approach demonstrates that Economists can
use Monte Carlo experiments on a much larger and more rigorous
scale than before to study the properties of estimators. Using this
methodology, we can now study estimators where no theory yet exists.
Furthermore, these results can help guide theory in the right directions,
just as theory has often pointed applied work in the correct direction
in the past.
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Part II

E VA L U AT I O N O F 2 0 0 3 M O R R I S O N S - S A F E WAY
M E R G E R

The UK supermarket industry has been the focus of several
anti-trust investigations by the UK Competition Commis-
sion for a variety of potential abuses of market power with
respect to both consumers and suppliers. The final part of
the thesis evaluates how the 2003 acquisition of Safeway
by Morrisons affected firm profits, prices, and consumer
welfare. I construct a structural model for the geographic
distribution of demand, by combining a discrete/contin-
uous model of consumer demand with census data. By
modeling both store choice and expenditure in conjunction
with the geographic locations of stores and consumers, I
account for the impact of the spatial distribution of stores
and households on both firms’ behavior and consumer
welfare. I compute the welfare consequences of the merger
as well as a counter-factual merger between Safeway and
Tesco. This Part improves on earlier studies, such as Smith
[2004], by using a higher quality panel of data on con-
sumer purchases (The TNS Worldpanel) and by combining
a structural model of demand with disaggregate census
data to study how store locations affect market power.



4
T H E G E O G R A P H Y O F G R O C E RY D E M A N D I N T H E
U K : A N E VA L U AT I O N O F T H E 2 0 0 3
M O R R I S O N S - S A F E WAY M E R G E R1

In 2003, the UK Competition Commission (CC) approved the acqui-
sition of Safeway plc by Wm. Morrisons plc, respectively the fourth
and sixth largest firms in the industry. Because Morrisons focused
on the North and Safeway on the South, this merger had the poten-
tial to create a fourth national champion to rival Asda, Sainsbury’s,
and Tesco, hopefully improving competition, lowering prices, and
improving quality for consumers. But, the merger could also have had
an adverse affect on competition by creating pockets of local market
power which the merged firm could exploit. To evaluate the CC’s deci-
sion, I construct a geographic distribution of demand which models
the local interactions between consumer demographics and store loca-
tions. My model has several parts. I estimate a Discrete/Continuous
structural model of demand from a high quality panel of consumer
micro-data (the TNS Worldpanel) to explain both store choice and
conditional demand for groceries. After combining this demand sys-
tem with disaggregate census data, I recover marginal costs and then
predict store-level sales and profits as well as willingness-to-pay. I
use these tools to evaluate the welfare implications of the merger
and of a counter-factual merger between Safeway and Tesco. I find
that the changes in prices, profits, and consumer welfare under either
merger are quite small – although larger for a Tesco-Safeway merger.
Although consumers are slightly worse off under these mergers, the
results support the UK Competition Commission’s approval of the
merger.

1I gratefully acknowledge the financial support of the UK Economic and Social
Research Council through a grant (RES-589-28-0001) to the ESRC Centre for Micro-
data Methods and Practice (Cemmap). The Computation Institute at the University
of Chicago graciously hosted me during 2010-2011 academic year. Conversations
with Walter Beckert, Andrew Chesher, Allan Collard-Wexler, Rachel Griffith, Jerry
Hausman, Günter Hitsch, Kenneth L. Judd, Andrew Leicester, Lars Nesheim, C.
Yeşim Orhun, and Adam Rosen have greatly improved this paper. Rachel Griffith
generously provided access to the TNS and IGD data used in this paper.
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4.1 introduction

On 9 January 2003, William Morrisons plc, a UK supermarket chain,
made an unsolicited offer for its larger rival Safeway plc, prompting
a flurry of takeover proposals from other firms seeking to purchase
Safeway. Safeway’s suitors included Asda, Sainsbury’s, and Tesco
as well as Kohlberg Kravis & Roberts (KKR), a private equity firm,
and Trackdean Investments Ltd., a family investment vehicle. As the
takeover battle escalated, the UK Secretary of State for Trade and
Industry referred the acquisition proposals of the four supermarket
firms to the UK Competition Commission under the 1973 Fair Trading
Act: the Secretary believed that acquisition by Asda, Sainsbury’s, or
Tesco would cause a substantial lessening of competition and that a
Morrisons-Safeway merger might also be anti-competitive. Ultimately
the CC approved the merger with Morrisons subject to the divestment
of 52 stores where the CC thought the merger would have an adverse
impact on local competition. After the CC’s decision, on 15 Decem-
ber 2003, Morrisons made a revised offer to acquire Safeway which
received the approval of both firms’ shareholders on 11 February 2004.

In theory, the merger appeared to make good business sense because
Morrisons was concentrated in the North, Yorkshire, and Midlands
whereas Safeway was strong in London, the South East, and Scotland.
Furthermore, Safeway, although not a failed company, lacked a consis-
tent pricing strategy and had struggled to differentiate itself vis-a-vis
Asda, Sainsbury’s, and Tesco whereas Morrisons had profitably dif-
ferentiated itself and grown in a financially sound manner [Seth and
Randall, 2001]. Consequently, a combined firm under Morrisons’ man-
agement could become a strong national competitor through increased
scale, greater purchasing power, and better coverage of regional mar-
kets. The concomitant increase in competition in the groceries industry
should have improved consumer welfare through lower prices and/or
higher quality. In practice, the firm struggled for the next several years
to integrate Safeway’s operations with its own, despite divesting 72
additional stores as well as 114 Safeway Compact convenience stores
to further focus its positioning on larger format stores.

In addition to the 2003 merger investigation [UK Competition Com-
mission, 2003], the UK supermarket industry has been the subject of
several other investigations by the Competition Commission. In 2000,
prior to the merger inquiry, the CC investigated the conduct of multi-
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ples towards suppliers [UK Competition Commission, 2000]2 as well
as their pricing practices, leading to the adoption of a Supermarket
Code of Practice (SCOP) between multiples and suppliers. In addition,
most supermarkets voluntarily adopted a national pricing policy to
allay concerns about ‘price flexing’, the exploitation of local market
power to set higher prices. In addition, the report considered requiring
planning approval for the dominant firms, Asda, Morrisons, Safeway,
Sainsbury’s, and Tesco, prior to opening large stores or performing
large extensions of existing stores within fifteen minutes of another
one of their stores. A subsequent investigation in 2006 resulted in a
strengthened version of SCOP, called Groceries Supply Code of Prac-
tice (GSCOP), and a market test to determine whether the largest firms
could open new stores or undertake renovations of existing stores [UK
Competition Commission, 2006].3

Given this background, I evaluate the CC’s approval of the Morrisons-
Safeway merger by constructing a structural model of the geographic
distribution of demand for groceries to explain how consumers’ phys-
ical locations and preferences interact with stores’ locations, pricing,
and profitability. Understanding this interaction is central to develop-
ing good policy because the geographic distribution of consumers and
their preferences determines the profitability of a store at a specific
physical location. In addition, stores of the same fascia4 or parent
firm increase local market power because the owning firm will cap-
ture part of the demand lost from a price increase when consumers
switch to the firm’s other stores [Smith, 2004]. Furthermore, the lo-
cations of nearby stores as well as their prices and qualities, affect
the number of consumers who choose a store and their expenditure.
This strategic interaction between stores may also propagate pricing
pressures over larger distances through chaining. Consequently, I com-
bine a discrete/continuous model of demand with UK census data
to calculate the expected demand each fascia’s stores face at differ-
ent locations. The discrete/continuous demand system [Dubin and
McFadden, 1984, Hanemann, 1984] explains both store choice and

2‘Multiples’ were defined as firms operating at least ten stores having sales areas
greater than 600 square meters.

3Because the Competition Appeal Tribunal upheld Tesco’s challenge to the lawful-
ness of the market test, the CC undertook an additional inquiry to address concerns
about the economic costs of the test as well as its effectiveness [UK Competition
Commission, 2009].

4Fascia refers to the brand on the front of a firm’s stores such as Tesco Express,
Tesco Metro, or Tesco Extra each of which is a different fascia, although all are owned
by the same corporation, Tesco plc.
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conditional demand. By aggregating over the distribution of consumer
types and locations, as specified in the census data, I can compute the
expected demand at each store, given prices. I then use this aggregate,
geographic distribution of demand for several other calculations. After
recovering marginal costs by inverting the first order equations for
profit, I solve for Bertrand-Nash equilibrium prices, and use these
prices to calculate firms’ profits and bounds on consumers’ compen-
sating variation. Throughout these calculations, I assume that stores
can set the optimal price for each household type’s basket, which
greatly simplifies estimation and computation of prices, profits, and
consumer welfare. Finally, I use these tools to compare three different
policy scenarios: the counter-factual state before the observed merger,
the observed state after Morrisons acquired Safeway, and a counter-
factual merger between Tesco and Safeway. Given Tesco’s dominant
position in the industry, the Tesco-Safeway counter-factual should put
an upper bound on the adverse effects of the acquisition of Safeway
by any of its suitors. Because the census data is disaggregate at the
Output Area (OA) level,5 I can compute welfare effects at this level as
well as the change in profits at individual stores.

My approach to estimating demand is most similar to Smith [2004],
who develops a discrete/continuous choice model to measure market
power, both by computing elasticities and considering the welfare
implications of a series of mergers and demergers. Like Smith, I use
store characteristics and locations from the IGD data.6 My estimates
benefit from access to the Taylor Nelson Sofres (TNS) Worldpanel,7

a high quality homescan panel of consumer microdata containing
actual consumer choices, prices, and expenditure whereas Smith only
observed price-cost margins and had to rely on survey data about
consumers’ stated store choice and expenditure. Consequently, I can
estimate the demand parameters more precisely via Maximum Likeli-
hood Estimation (MLE) instead of his two-step method. I also avoid
the estimation and identification problems he encountered because of
the limitations of his data. Lastly, I use aggregate units of groceries
and price indexes for each fascia, region, and household type which

5An OA or Output Area is the smallest geographical area for which
the UK census provides data. OAs roughly correspond to a ward.
On average they contain 125 households and about 300 residents. See
http://www.statistics.gov.uk/census2001/glossary.asp#oa.

6IGD was formerly known as the Institute of Grocery Distribution and was formed
from the merger of the Institute of Certified Grocers and Institute of Food Distribution.

7Note: the TNS Worldpanel was recently rebranded as the Kantar Worldpanel.

135



Beckert et al. [2009] constructed from a combined TNS-IGD dataset
in order to study the composition of consumers’ shopping baskets.
Although Beckert et al. [2009] use quadratic utility, I choose a specifi-
cation with non-linear demand curves which is more appropriate for
merger analysis.

There is a long literature on estimating consumer demand for gro-
ceries. Deaton and Muellbauer [1980b] provides a survey of ‘classic’
functional forms, demonstrating the advantages of their Almost Ideal
Demand System (AIDS) [Deaton and Muellbauer, 1980a]. These stud-
ies were limited by the aggregate data and computational resources
available at the time. There is a growing literature on the supermarket
industry which builds on advances in modeling discrete choices. Beck-
ert et al. [2009], which uses the same data as this chapter, examines
how consumers choose baskets of goods and finds that often a large
fraction of a given household type never purchases certain categories
such as alcohol or pet food. Briesch et al. [2010] find that not only
do about 20% of US consumers stop at multiple stores per shopping
trip, but that they purchase different baskets from different stores and
that destination categories determine store choice as well as comple-
mentarities between different fascia. Also, the pricing strategy of a
fascia affects whether consumers prefer to purchase a large or a small
basket: EDLP (Every Day Low Pricing) favors large baskets whereas
a Hi-Lo strategy makes opportunistic purchases of small baskets of
whatever is on promotion preferable [Bell and Lattin, 1998]. Pakes et al.
[2006] develop an alternative approach to these estimation strategies
using moment inequalities which may be more robust to identifying
assumptions and specification.

This chapter continues as follows: first, I describe the model (Sec-
tion 4.2) and discuss several datasets which I use for estimation and
geographic aggregation (Section 4.3). Next, I explain the estimation
methodology in Section 4.4 and the results in Section 4.5. Then, I
use the geographic distribution of demand to recover firms’ marginal
costs and to compute price equilibria in Section 4.6. Finally in Sec-
tion 4.7 I use these results to evaluate how the Morrisons-Safeway
and counter-factual Tesco-Safeway mergers affect welfare. Section 4.8
concludes.
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4.2 the model of consumer demand

The geographic distribution of demand for groceries consists of a
structural model of demand integrated over the empirical distribution
of consumers to compute the expected demand for a store at a specific
location. Several factors affect store choice and expenditure conditional
on that choice: store and consumer characteristics, spatial locations of
both stores and households, and consumer preferences. This section
explains the model of consumer preferences at the core of the compu-
tations to evaluate welfare effects of the Morrisons-Safeway merger.
These calculations – estimating demand, recovering marginal costs,
and solving for pre- and post-merger Bertrand-Nash price equilibria –
all depend on integrating predicted demand over the distribution of
consumers.

Because firm behavior depends on the aggregate demand that each
of store faces, I use a static, discrete/continuous model of demand
based on Smith [2004] to estimate demand for each Government
Official Region (GOR) and household composition – e.g., students,
pensioners, couple with children, etc. (See 4.3 for more discussion
of the data.). This model predicts both store choice and conditional
expenditure for representative consumers. For the TNS data, described
in 4.3.1, the empirical distribution of expenditure at chosen stores falls
off exponentially for all levels above the lowest 10%.8 Consequently,
primary shopping constitutes the majority of expenditure so I model
just one trip per period instead of a primary and ‘top-up’ trip as in
Smith [2004]. By emphasizing aggregate purchases, I avoid unnec-
essary difficulties from estimating a more complex model of how
consumers choose baskets of goods. In addition, the model is easy
to estimate using maximum likelihood. If behavior is actually driven
significantly by different shopping modes, the model will be misspeci-
fied. I also consider only one trip per household to avoid dealing with
dynamic demand issues, such as correlations between trips, inventory
keeping, search, and habit formation [Hendel and Nevo, 2004, Seiler,
2010].

8When I fit a line to log (expenditure), adjusted R2 is 0.97, indicating that an
exponential fits the distribution well.
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4.2.1 Indirect Utility

In the data I observe both consumer and store characteristics, some of
which – such as the size of the car park9 and the distance between the
store and the consumer – affect only store choice and others which
affect both store choice and grocery expenditure. I specify an indirect
utility function, Uhj

�
xh, zj, ξh, �hj; θ

�
= Vhj

�
xh, zj, ξh; θ

�
+ �hj, where �hj

is an unobserved household-store shock. I split Vhj
�

xh, zj, ξh; θ
�

into
VLoc and VExp because some covariates affect only store choice but
not conditional expenditure. Thus, VLoc captures the utility derived
solely from a the attributes of a store’s location10 whereas VExp is the
utility from the location and expenditure at a specific store:

Vhj
�
xh, zj, ξh; θ

�
= VLoc

hj
�
xh, zj; θ

�
+ VExp

hj
�

xh, zj, ξh; θ
�

.

xh is household h’s attributes, zj store j’s characteristics, θ the pa-
rameters to be estimated, and ξh a household-specific random effect.
The shocks �hj and ξh are observed by the household but neither the
econometrician nor the firm: firms know the distribution of household
types but not the type of a specific consumer.

Both VLoc and VExp are based on the specification in Smith [2004],which
is derived from Hanemann [1984]. Thus, VLoc

hj , the utility consumer h
receives from just store j’s location, is

VLoc
hj = βcarparkcarparkj + βdistdisthj

and VExp
hj (·), the utility household h receives from both location and

shopping (i.e., their conditional expenditure), is

VExp
hj = µ

�
δ + αout log pout + αprice log pj + αinc log yh + αareaareaj + ξh

�

×
� pj

pout

�−γprice

.

9I.e., ‘parking lot’ in American English.
10Orhun [2005] shows in an extension of Seim [2006]’s model of entry under

incomplete information, that location-specific unobservables play a crucial role in
determining the spatial positioning of supermarkets in the US. I ignore this type of
shock, though unobserved factors such as the accessibility of a store, unobserved
store qualities, or local complementarities with other destinations could be important.
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This functional form leads to expenditure shares which are log-linear
in price and income. Here, yh is household h’s income, pj the aggregate
index of hedonic prices for a unit of groceries at store j, pout the price
of an outside good, areaj the sales area, carparkj the size of the car
park, and disthj the Cartesian distance between the household and the
store.11 µ is the relative contribution of the utility from purchasing
groceries versus the utility from just the store’s location. The outside
good consists of goods purchased on the trip other than groceries,
such as stopping at the chemist, or for a take-away meal. The outside
good is necessary to ensure that the utility function is homogeneous of
degree zero. Because I do not observe purchases of the outside good,
I normalize the price pout to 1, so the term drops out of the utility
specification.12 For practical estimation purposes, I work with

VExp
hj = µ

�
δ + αprice log pj + αinc log yh + αareaareaj + ξh

�
p−γprice

j .

As in Dubin and McFadden [1984], heterogeneity enters the model
in two ways, as the unobserved shock �hj, due to unobserved store char-
acteristics, and the household fixed effect ξh, due to unobserved house-
hold characteristics. Note that �hj affects only store choice whereas ξh

affects store choice and conditional expenditure. �hj captures unob-
served utility which a household gains from a store’s characteristics:
for example, the store could stock some key good which the consumer
values, be conveniently located on the consumer’s regular commute,
or be near other stores where the consumer shops. I assume that �hj

follows a Type I Extreme Value distribution, yielding a multinomial
logit specification which is tractable but often suffers from problems
such as independence of irrelevant alternatives (IIA) and unrealistic
substitution patterns [McFadden, 1981]. In particular, this assumption
requires stores to be substitutes. Briesch et al. [2010] show that cer-
tain product categories affect fascia choice, that roughly 20% of trips
involve stops at two different fascia, and that some fascia are comple-
ments with others. However, these facts have not been reproduced
with UK data: i.e., UK shopping habits may be different because,
among other reasons, US culture is much more car-centric and US
houses typically have much more storage space, facilitating both more

11Phibbs and Luft [1995] show that Cartesian distance is a good approximation
for travel time and that the longer the trip, the higher the correlation between travel
time and Cartesian distance.

12Beckert et al. [2009] also assume that the price of the outside good is constant.

139



stops per shopping trip and larger purchases (or purchases of larger
pack-sizes) because of reduced inventory costs. Many researchers now
use random coefficients to rectify the problems from IIA. To some
extent, I mitigate the problems of IIA by estimating demand sepa-
rately for different types of consumers, as described below. I do not
specify an outside option for store choice where Uh0 = 0 + �h0, as in
most studies such as Smith [2004], because I actually observe all of a
household’s choices in the IGD data.

The random effect, ξh, captures unobserved household character-
istics such as household size, variation in the outside option, and
preferences for atypical items, all of which produce departures from
the reference basket and may cause measurement error. Measurement
error occurs from unobserved variations in quality, i.e. when the actual
price and assortment in a store differ from the reference offer. For
example, variations in price and other promotions cause the consumer
to substitute from goods in the reference basket to similar products.
In the data, I do not observe sales or promotions, so unobserved varia-
tions in price will distort the basket’s composition from the reference
unit of groceries. Furthermore, a store may not stock certain products
in the reference basket either because of outages or local variations
in the assortment of goods offered. For example, most fascia tend to
stock more organic and luxury items in affluent neighborhoods. This
variation is an important source of non-price competition and may be
a significant, especially given the lack of price variation seen in UK
data.13 Consequently, the true price and quality of the basket actually
purchased will differ from the price index for units of groceries and
corresponding reference basket. ξh attempts to control for these unob-
served variations in the quality and price. I assume that ξh is the same
for all stores in a consumer’s choice set to simplify estimation. This
assumption depends on the correlation between non-price competition
and geographic location. Finally, the actual home scan process used to
collect the TNS data provides another source of measurement error
(See 4.3.1 and Leicester and Oldfield [2009b]) because of fatigue, attri-
tion, and reporting errors which vary by both product characteristics
and household type. The differential reporting of different product
types will also distort the observed basket from the baseline. However,
these errors are typically about 5% of expenditure or less so I assume
I can ignore them.

13I am indebted to Jerry Hausman for pointing this out to me.
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Bias will occur when a significant component of the household
random effect is measurement error and not exogenous variation in the
composition of a household’s basket. For example, richer households
(higher yh) will tend to purchase higher quality baskets so the price
index will understate the true price paid. Similarly, a higher price
for the reference basket may cause substitution to lower cost items of
lower quality so that purchased quality is lower than the quality used
for generic ‘units of groceries’. Thus, I expect that in the presence of
measurement error (or endogeneity), ξh will be correlated with both
household expenditure, yh, and the price index, pj. In this case, the
parameter estimates will be biased.

Following Smith [2004], I assume that the store and household
shocks are independent to facilitate estimation via full information
maximum likelihood. If �hj and ξh are correlated then the model is
misspecified and will suffer from selection bias [Heckman, 1979]. These
shocks could be correlated if characteristics which affect store choice
also affect expenditure, such as advertising or product promotions. To
correct this bias, I would need to use one of the estimation strategies
in Dubin and McFadden [1984].

I do not specify time, fascia, or regional dummies because they are
highly collinear with those included in the price index and the solver
failed to converge when I specified them. Similarly, I was unable to
estimate δ. Also following Griffith and Nesheim [2010] and Griffith
et al. [2010], given the incredible richness of product characteristics in
the data, I assume that I observe all product characteristics and that
there is no need to control for a (potentially endogenous) unobserved
product characteristic, unlike the BLP model [Berry et al., 1995] of
differentiated products.

Following Beckert et al. [2009], I use household composition to
categorize households by type and then estimate the model separately
for each group. When the variation in each group is low, this method
controls for some of the unobserved heterogeneity.14 This assumption
simplifies computation and is supported by the low estimated variance
for ξh (See 4.5.).

To avoid infeasible expenditure shares, I assume that ξh is dis-
tributed as a truncated normal where the bounds are chosen to ensure
that whj ∈ [0, 1]. This, unfortunately, causes the support of ξh to de-

14Random coefficients would probably improve the fit of the model.
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pend on the data potentially making ML estimation inconsistent.15 In
the data I observe that the size of the tails which need to be truncated
have extremely small probability mass. In addition, some households
violate these expenditure share bounds, but they are only 59 out of
16897 observations (0.34%). These violations are spread evenly across
household types. Consequently, in order to facilitate computation, I
assume that ξ ∼ N

�
0, σ2�.

Lastly, I set αinc = 1 in order to identify the scale parameter, µ. I do
not impose the restriction that αinc = γprice as in Smith [2004], so γprice

is free. See 4.4.2 for further discussion.
After applying all of these considerations, the indirect utility from

expenditure is

VExp
hj = µ

�
δ + αprice log pj + log yh + αareaareaj + ξh

�
p−γprice

j .

4.2.2 Conditional Demand

According to classical microeconomic theory, Roy’s Identity can be
used to derive the conditional demand. Because the indirect utility
depends on an aggregate price index, not the prices of the individual
goods, I assume that I can treat the price index as a ‘price’ and
apply Roy’s Identity. If this is not true, then the aggregate conditional
demand for groceries must be derived by applying Roy’s Identity to
each individual good and then aggregating. For the case where utility
depends only on the total price of the basket via an index restriction,
the true derived aggregate conditional demand, qtrue

hj ∝ qhj, and the
constant of proportionality depends on the expenditure share weights,
as shown in Appendix B.1.

Under this assumption, the conditional demand is

qhj = −
∂Vhj/∂pj

∂Vhj/∂yh

qhj =
yh
pj

�
γprice

�
δ + αprice log pj + log yh + αareaareaj + ξh

�
− αprice

�

and the expenditure share is

15ξh is a function of the parameters because the shock is obtained by solving the
relationship for the observed and calculated conditional demand, which is computed
below using Roy’s Identity.
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whj = γprice
�
δ + αprice log pj + log yh + αareaareaj + ξh

�
− αprice.

Because αprice < 0 for the price term, the expenditure share has a
simple interpretation: the constant term, −αprice, captures the subsis-
tence expenditure required by a household and the bracketed term
represents expenditure on goods which are not necessities.

4.3 data

Evaluating the Morrisons-Safeway merger requires predicting the de-
mand a store faces and then computing the equilibrium prices under
different policy scenarios and the changes in consumer welfare. I
estimate the structural model of demand from data on household
shopping trips, household attributes, and store characteristics. I use
a dataset which Beckert et al. [2009] (BGN, hereafter) assembled by
merging the TNS Worldpanel, which includes data on household
consumption and characteristics, with the IGD database of store char-
acteristics.16 In addition, BGN construct a price index for units of a
reference basket of groceries.

Recovering marginal costs, solving for Bertrand-Nash equilibrium
prices, and calculating changes in welfare all utilize the same method:
compute the expectation of the appropriate equation, such as the profit
first order equations, and then solve for the appropriate factor, such
as marginal costs or equilibrium prices. The expectation is formed
by integrating predicted demand at each store over the empirical
distribution of consumers as specified in Table KS020 of the UK 2001
Census, which contains OA-level data on household composition.

I now discuss the main features of the TNS and IGD datasets further.

4.3.1 TNS Worldpanel

I use the TNS data from November 2003 to November 2004 to estimate
demand for units of groceries by household type and region.17 This

16I only work with data for England and Wales because too many stores are
missing from the data for Northern Ireland, Scotland, and the various Isles.

17Because I observe data only after the Morrisons-Safeway merger, I estimate
the post-merger demand system and then use the structural model to compute the
unobserved pre-merger state, which provides a basis for welfare comparisons. See
4.7.
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data is a homescan panel of consumer purchases from the UK World-
panel for Fast-Moving Consumer Goods (FMCG) sector. Households
use a scanner to record information about their purchases at the SKU
level, including the date, price, quantity, and location of purchase. In
addition, they can enter items without a barcode, such as raw fruit
and vegetables. The scanning system transmits results electronically
to TNS who periodically verify the information using the consumer’s
receipts. In addition, TNS provides further data on household charac-
teristics from which I determined each household’s composition type.
The only store characteristics in the data are the address and fascia.

The data which I use was prepared by BGN. They divide the data
by GOR and household type. The household types are similar to those
in the UK 2001 Census’s Table KS020. Because marital status should
not affect consumption behavior, BGN aggregate household types
which differ only by marital status: e.g., a married couple with de-
pendent children is treated the same as an unmarried couple with
dependent children. In addition, BGN construct a price index for a
unit of groceries from an aggregate of hedonic price indexes for each
fascia by region and household type. I use this aggregate index as the
price when estimating demand. This index varies by year, month, GOR,
and fascia which complicates estimation by decreasing the amount of
variation in price. In addition, as explained in Section 4.2.1, the price
index assumes that each household type purchases the same reference
basket and could introduce measurement error to the extent that a
household’s basket differs from the reference basket. See Section B.3.3
in the Appendix for further discussion of the price index.

Although, the TNS data includes all shopping trips which a house-
hold reports during a period, BGN draw a single trip at random
for each household. This facilitates estimation by avoiding dynamic
issues such as correlation, inventories, and habit formation, but ig-
nores much of the information in the data. For merger evaluation,
this may not matter because the analysis depends on the expected
demand a store faces, which is formed by aggregating over all repre-
sentative consumers who shop at a store. Because of regional pricing,
aggregate demand at all of a fascia’s stores determines each fascia’s
regional pricing behavior; consequently, dynamics are less important
for accurate assessment of the welfare consequences than predicting
the consumption of individual consumers. In addition, BGN assume
each household’s choice set consists of the 30 stores closest to their
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home. For most households, this is a reasonable assumption because
of consumers’ aversion to traveling more than 10 to 15 minutes to shop
[Smith, 2004]. However, BGN find that a small fraction of households
shop at more distant stores so they exclude these consumers from the
dataset. These distant purchases may be determined by the shoppers’
commute paths, as Houde [2011] found for gasoline purchases.

Section B.3 provides more information on the issues associated with
using TNS data.

4.3.2 IGD Data

Because the TNS data lacks store characteristics, BGN supplement it
with the IGD data, which contain the store characteristics for all of
the stores of the major supermarket firms as well as many smaller
regional and local companies. The data include the date of opening,
closing, and the last renovation as well as the store’s address, post
code, sales area, gross area, and car park size. The IGD data span
1900-2004 which enables me to determine which stores operated under
the Safeway fascia prior to their acquisition by Morrisons. After data
cleaning and allowing for store acquisitions, conversions, and closures,
my dataset has 10, 883 stores for England and Wales.

Following BGN, I group the data into the following fascia: Aldi,
Asda, Budgens, Coop, Iceland, Kwik Save, Lidl, Marks & Spencer,
Morrisons, Netto, Other, Safeway, Sainsbury’s, Somerfield, Tesco, and
Waitrose as well as SainS and TescS, for Sainsbury’s and Tesco’s con-
venience stores. Coop consists of the different regional Cooperative
movement stores whereas Other contains the fringe of regional and
smaller grocery retailers. This simplification facilitates estimation but
overstates these firms’ market power because they lack the centraliza-
tion, logistics, and focused strategies of the other fascia.

4.4 demand estimation

I estimate the demand system via maximum likelihood. Because of its
efficiency, MLE is an good choice when endogeneity and unobserved
product characteristics are not important. However, the estimator will
be inconsistent if the assumptions in Section 4.2 fail.
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The likelihood for a household, Lh (x; θ), is composed of two pieces:
the likelihood of choosing a location (i.e. a specific store) and the
conditional likelihood of expenditure:

Lh (x; θ) = Pr
�
h chooses j, buys qhj

�

Lh (x; θ) = Pr [h chooses j]× Pr
�
qhj |h chooses j

�

where qhj is the units of groceries household h purchases at store j.
Consequently,

log Lh (x; θ) = �choice + �q

where �choice is the log-likelihood computed from the probability of
household h choosing store j and �q is the log-likelihood of purchasing
qhj units of groceries conditional on shopping at j. These two com-
ponents of the log-likelihood are easily calculated using the shocks,
�hj and ξh, because they follow Type I Extreme value and normal
distributions, respectively.

4.4.1 Computation of the Log-likelihood

Give the distributional assumptions, I estimate the full model using
maximum likelihood in a single step as follows:

1. Compute a set of initial guesses by drawing points about the OLS
point estimates of conditional expenditure on the covariates. I
use multiple, randomly-drawn, starting points in a region about
the OLS estimates.

2. Maximize the full log-likelihood:

a) Compute the household-specific shock, ξh (θ), by inverting
the equation for conditional demand

b) Compute the log-likelihood for store choice, �choice
h

�
xh, zj, ξh (θ) ; θ

�

c) Compute the log-likelihood for conditional expenditure,
�q

h
�
xh, zj, ξh (θ) ; θ

�

Because �hj ∼ Type I Extreme Value, the probability of choosing a
store (the discrete part of the discrete/continuous choice model) is the
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convenient multinomial logit form [McFadden, 1981], which facilitates
computation of the log-likelihood for the consumer’s store choice:

Pr [h chooses j] =
exp

�
Vhj

�
xh, zj, ξh; θ

��

∑
k∈Jh

exp [Vhk (xh, zk, ξh; θ)]

where, Jh is household h’s choice set and j the chosen store. Conse-
quently, the log-likelihood, �Store

h , is

�choice
h (xh, z, ξh; θ) = − log ∑

k∈Jh

exp
�
Vhk − Vhj

�

where I have rewritten the fraction in the choice probability to be more
stable numerically.
�choice is a function of the indirect utility, Vhk, which in turn depends

on the shock, ξh. I obtain ξh by inverting the equation for expenditure
share

ξh =
1

γprice
whj +

αprice

γprice
−

�
δ + αprice log pj + log yh + αareaareaj

�
.

I also use the shock ξh to compute �q, the log-likelihood from con-
sumer expenditure conditional on store choice. Because ξh is a trun-
cated normal, the likelihood is

�q
h
�

xh, zj, ξh; θ
�

= −1
2

log σ2 − 1
2

log 2π − 1
2σ2 ξh

�
whj, xh, zj; θ

�2

− log [Φ (bh)− Φ (ah)] .

Φ is the normal cumulative distribution function, ah and bh are the
truncation bounds which ensure that whj ∈ [0, 1], and σ2 is the vari-
ance of the shock. I have written ξh as a function of covariates and
parameters to emphasize that the support of ξh depends on the data
and parameter estimates. Under these conditions, MLE is still consis-
tent but may converge faster than

√
N [Donald and Paarsch, 1996]. I

dropped the term log [Φ (bh)− Φ (ah)] from the estimation procedure
because in practice the bounds are so far apart that this normalization
term is nearly constant.
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4.4.2 Identification

Variation in household and store characteristics affects the indirect
utility and, thus, likelihood in two ways. Some characteristics – such
as the size of the car park and household-store distance – only affect
store choice whereas others – such as price, income, and sales area –
affect both store choice and conditional expenditure. Consequently,
variation in the data leads to the identification through one or both of
these channels. In addition, identification depends on the restrictions
imposed on the model as well as the distributional assumptions for
the errors. These restrictions include the standard logit normalization
of the variance of �hj to π2/6 [Train, 2009] and the normalization
αinc = 1 in order to identify the scale parameter, µ.18 Identification
of αprice, αarea, γprice, and σ2 follows from the identification of µ, the
log-linear functional form of the conditional expenditure equation,
and the variation of the covariates income, yh, price, pj, and sales
area, areaj. βcarpark and βdist are identified through variation in the
size of car park and household-store distance when otherwise similar
households choose different stores.

In theory, δ should be identified from the conditional expenditure
and variation of the covariates, but the solver diverges when I include
δ in the model. Lack of variation in the price index could contribute
to this problem because the standard deviation of the price index for
each GOR, household type, and month is usually less than 20% and
often closer to 10% of the mean price. Firms’ national pricing policies
further reduce price variation. Ellis [2009] finds that although UK
grocery prices fluctuate by up to 40% per week, monthly observations
understate the amount of variation. In addition, UK consumers are
extremely price sensitive so weekly fluctuations in price and promo-
tions influence expenditures and lead to departures from the reference
basket of groceries, i.e. measurement error. Both effects decrease the
correlation between expenditure and the monthly price index. Diag-
nostic OLS regressions for the expenditure share equation have R2

less than 0.2. Consequently, a model with a higher-frequency price
index19 or which focuses on aggregate expenditure may produce more
reliable results. I control for the measurement error in the basket of

18This normalization is reminiscent of the restriction that αinc = 1 in the AIDS
model, as required by economic theory.

19A household-specific price index is another option, especially because some
consumers never purchase certain goods such as alcohol.
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groceries by estimating the model by household composition using
price indexes which are computed for each region, household type,
fascia, and month. ξh captures the remaining unobserved variation
in consumer preferences. Adding random coefficients to the model
might reduce this error further.

In regions of the parameter space where γprice is close to zero, the
utility reduces to an expression which is nearly linear in covariates,
making identification of µ impossible because the interaction between
household and store characteristics disappears. [Train, 2009]. This
problem complicates estimation because the price index is normalized
so that pj ≈ 1 and point estimates for γ̂price range from 0.26 to 0.4 (See
Table Table 34.), making p−γprice

j quite flat and close to 1.
The model could also be misspecified because of the failure of Roy’s

Identity, endogeneity, or incorrect treatment of shocks. Assuming Roy’s
Identity holds for the price index, the parameter estimates should be
consistent and unbiased after controlling for selection via the model
for store choice. But, when Roy’s Identity is not valid, the parameters
will not be identified. For example, if prices enter the indirect utility
via an index restriction, then conditional expenditure is really

whj = Ψ
�

γprice
�
δ + αprice log pj + log yh + αareaareaj + ξh

�

− αprice
�

,

for some constant of proportionality Ψ, which is a function of the
expenditure shares (See Section B.1 for the derivation.). Then δ and
γprice are not identified from conditional expenditure alone because
only Ψγprice can be identified from variation in yh (αprice and αarea are
still identified). Thus, δ and γprice must be identified from variation
in store choice. Assuming Roy’s Identity holds for the price index is
equivalent to the restriction that Ψ = 1.

Endogeneity potentially affects the estimation results through si-
multaneity and measurement error. Price endogeneity is a problem,
particularly if firms observe ξh and incorporate it into their price set-
ting mechanism. If households which spend more also prefer more
expensive, higher quality goods, then the coefficient on price will
be biased. In addition, income could be correlated with ξh if more
affluent households spend more because they purchase higher priced,
higher quality goods, such as organic produce, which deviate from the
reference basket. But, the correlation between ξh and income is likely
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small because, ceteris paribus, the different fascia position themselves
to appeal to certain consumer groups. By controlling for fascia in the
price indexes, I attempt to control for these sources of endogeneity.

The discrete/continuous choice specification should control for
selection bias by explicitly modeling store choice as long as the sample
of households in the dataset is representative. However, if E

�
�hjξh

�
�=

0 then selection bias is possible: for example, households which prefer
certain fascia spend more at those fascia. Or, an advertising campaign
could affect both store choice and expenditure. Then the parameter
estimates will be biased.

The unobserved quality of store locations – such as ease of access,
proximity to other stores, or exceptional staff – may matter, as Orhun
[2005] found for US supermarkets. Such a shock is similar to unob-
served product-market characteristic, ξ jt, in models like Berry et al.
[1995] and often correlated with price. But fascia pursue a national
pricing strategy so local characteristics only affect price through the
resulting equilibrium price for a region. Consequently, local fixed
effects should not be significant.

4.4.2.1 Estimation and Numerical Issues

I discuss computational and numerical issues in Section B.2 of the
Appendix.

4.5 demand estimation results

Table 34 displays the point estimates for the model of household de-
mand for groceries by household type.20 The structural parameters
consist of the β coefficients, which only affect the utility a consumer
obtains from a store’s location, and the other coefficients, which af-
fect the utility from a store’s location and from consumption. The
coefficient σ2

ξ is the variance of the household-specific shock, ξh. All
point estimates cannot be rejected at the 5% level (or better) and have
the expected signs: i.e., the results show that consumers prefer lower
prices, shorter travel times, easier parking, and more variety (i.e. more

20When comparing the scale of the point estimates for location and conditional
expenditure, it is important to multiply coefficients of VExp

hj by the scale parameter, µ.
E.g., to compare βdist to µαprice, instead of αprice.
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sales area). In addition, estimates are similar in sign and magnitude
across household types.21

Although the estimates for the variance of the household shock, ξh,
appear small, they have the same order of magnitude as the variation
in price. Small �σ2

ξ may be caused by estimating by household type
to control for heterogeneity in household composition. This result
supports the assumption that households purchase a type-specific
reference basket of units of groceries and that departures from this
basket, in terms of quality, assortment, and price are small: i.e., the
price index captures consumer behavior well and there is little mea-
surement error. The bounds on the expenditure share, wjh, further
limit the variation in the household-specific shock.

The largest parameter in magnitude is β̂dist for all household types,
indicating that consumers dislike traveling, which agrees with other
studies [Smith, 2004]. Single households – young, pensioners, and
single parents – have by far the greatest distaste for distance, reflecting
either higher values of time or lack of a partner to share the work of
running a household. The coefficient for the size of βcarpark is also large
and significant. Both of these point estimates reflect the importance of
convenience to consumers.

Because the conditional own-price elasticity of a household for
a store is ηhj = −1 + γpriceαpricew−1

hj , the product of γprice and αprice

affects a household’s elasticity: price sensitive household types have
more negative values for γpriceαprice. The estimates show, then, that
single pensioners and single parents with children are the most price
sensitive whereas single non-pensioners are the least price sensitive,
possibly because single pensioners and single parents tend to have
lower incomes. When I examined the mean and medium expenditure
vs. household type, this story only holds for single pensioners. Perhaps,
single parents effectively have lower incomes vis-a-vis other household
compositions because they lack the scale economies of couples and,
consequently, have less time for ‘home production’ activities such as
shopping and housekeeping. Also, total expenditure on groceries in
the TNS data may not be a reliable measure of income for households
receiving welfare benefits.

21I performed likelihood ratio tests to check if I could aggregate similar household
types. In all cases, the test rejected the hypothesis that any of these household types
could be combined at the 1% level. Consequently, I do not consider aggregation of
household types further.
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To recast these results in more economically meaningful terms, I
compute elasticities and profits and compare them with the perceived
ranking of firms in the marketing literature and popular press (See
Section 4.6.). These metrics confirm that Asda, Morrisons, Sainsbury’s,
and Tesco dominate the UK supermarket industry and exert significant
pressures on their rivals while being constrained primarily by each
other.

4.5.1 Elasticities

To understand the extent of firms’ market power, I compute own-
and cross-price elasticities as well as elasticities for income, area, and
distance. First, I calculate the elasticities observed for each store in
an OA’s choice set. Using these store-level elasticities, I can evaluate
the local market power at a highly disaggregate level. Next, I average
elasticities over all fascia and OA in a GOR, weighting by the population
in OAs whose choice sets include the relevant fascia. Consequently,
the reported elasticities represent the market power a typical con-
sumer encounters when a fascia is in their choice set.22 The averaged
elasticities measure the regional market power of the different fascia.
This approach handles the differentiation of stores, both by location
and quality. To obtain the national average elasticities, I average the
elasticities over GOR, weighted by the population in each GOR.

More formally, I compute the elasticities for each OA’s choice set
from the expected demand, qja, each store j faces in OA a:

qja = ∑
h∈Ha

� �
nhasjhaqjhadF (y, ξ) ,

where Ha is the set of household types in OA a, nha is the number of
households of type h in a, and sjha is the probability of someone in a
choosing store j from the stores in a’s choice set. In addition, I integrate
over the distribution for income and ξ, assumed to be log-normal and
normal, respectively. Then, I compute the price-elasticities for store j
with respect to price for fascia k for each OA’s choice set:

22To some extent, this is an artifact of only defining a store’s choice set as the
30 closest stores. However, most consumers visit more distant stores infrequently
because of their strong distaste for travel and propensity to shop near their homes.
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ηj,k =
pk
qja

∂qja

∂pk

ηj,k =
pk
qja

∑
h∈Ha

� �
nha

�
∂sjha

∂pk
qjha + sjha

∂qjha

∂pk

�
dF (y, ξ)

ηj,k =
pk
qja

∑
h∈Ha

nha

� �
sjha

�
qjha

�
∂Vhja

∂pj
I [j ∩ k]− ∑

i∈Ca

siha
∂Viha
∂pk

�

− I [j ∩ k]

�
qhja

pj
+ γpriceαprice

yha

p2
j

��
dF (y, ξ) .

Here, Ca is the set of stores in the choice set for OA a and I [j ∩ k] is 1
iff stores j and k have the same fascia and 0 otherwise. This formula
shows that a price increase affects demand at a store at both the
extensive margin through the choice probability, sjha, and the intensive
margin through the conditional demand, qjha. Competition from rival
stores, on the other hand, only operates through the choice probability

via the term − pk
qja

∑
h∈Ha

� �
sjhaqjha ∑

i∈Ca

siha
∂Viha
∂pk

, which explains why

some fascia devote considerable resources to non-price competition
to capture consumers at the extensive margin. When several stores
with the same fascia are in an OA’s choice set, their local own-price
elasticities increase because the fascia’s other stores capture some
of the customers who would substitute away on a price increase.
This multi-store effect increases local market power for major firms
by making demand less elastic. If firms were free to pursue price
flexing to exploit their local market power, then most elasticities would
increase in magnitude because the term ∑

i∈Ca

siha∂Viha/∂pk reduces to

skha∂Vkha/∂pk. Consequently, regional (or national) pricing may be an
effective strategy to make demand less elastic, increasing both market
power and profits. Regional pricing may also facilitate tacit collusion
because it is easier to monitor and coordinate on price.

Table 35 presents population-weighted own- and cross-price elas-
ticities. Each row represents a fascia’s set of elasticities with respect
to the prices of the fascia listed in the column. All own-price elastic-
ities are negative, ranging from -4.22 to -5.54 which correspond to
a price-cost margin of about 18-24%, using the Lerner formula. This
markup is higher than the low margins typically reported for the
supermarket industry because I can only recover marginal costs and
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do not observe the fixed costs involved in distribution, logistics, and
other infrastructure.

Cross-price elasticities are significantly smaller and show consid-
erable variation in the market power of the different fascia, ranging
from 0.00 to 0.52. These surprisingly low values show that firms wield
considerable local power, driven by consumers’ distaste for travel and
multi-store effects. Most second tier firms have relatively larger cross-
price elasticities with respect to the Asda, Morrisons, Sainsbury’s, and
Tesco (AMST) fascia than the AMST fascia have with them, except for
a few fascia such as Iceland. These results show that the AMST fas-
cia exert more competitive pressure on smaller firms than vice-versa.
Cross-price elasticities are also larger between fascia which pursue
similar formats and strategies, such as Aldi vs. Kwik Save or Netto
vs. Kwik Save which compete for similar market segments. Tesco’s
dominance is clear: almost every fascia’s largest cross-price elasticity
is with respect to Tesco. These results are similar to those found in the
CC’s 2006 supermarket investigation [UK Competition Commission,
2006].

The elasticities for the Limited Assortment Discounters (LAD) (Aldi,
Lidl, and Netto) are surprising because these stores pursue simi-
lar strategies so their cross-price elasticities should be symmetric.
However, the elasticities with respect to changes in Lidl’s price are ex-
tremely small because the price index for Lidl is 35% larger than Aldi’s
and Netto’s prices on average, making Lidl a particularly unappeal-
ing substitute for price-sensitive consumers. In addition, cross-price
elasticities for Aldi and Lidl with respect to Netto are about half of
Netto’s because Aldi and Lidl have twice as many stores as Netto and
the geographic averaging involved in the calculations.

Elasticities also show some limitations to my model. The model
overstates the market power of the Coop and Other fascias. Coop stores
are part of a larger buyer co-operative and lack the central coordination
and economies of scale and scope of AMST. The Other fascia contains
many independent, fringe firms which operated a limited number of
stores on a regional or smaller basis. Classifying them as a single fascia
engaged in regional price setting considerably overstates their market
power and influence on the computed equilibrium or aggregated
elasticities. Also, fascia which consistently operate smaller formats
have smaller elasticities. Finally, the logit functional form assumption
requires that rival fascias are substitutes.
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Another possible source of low cross-price elasticities is missing
data. If many stores are missing, then the choice sets constructed
from the IGD data will understate the density of stores, increasing the
distance between stores and, hence, decrease cross-price elasticities.
Because most of the missing stores are independent operators and
small convenience stores, this should not have a significant impact on
results.23

As a check, I compared my results to Smith [2004], who computes
elasticities using a similar model. He finds own-price elasticities which
are roughly a factor of two larger in magnitude than mine and cross-
price elasticities which are a factor of 10 to 100 larger. These differences
arise for several reasons: he does not construct elasticities at the choice
set level; he estimates demand using data on fascias’ price-cost margins
and from consumer surveys about shopping habits; and, he performs
sensitivity analysis to determine αprice and αinc (β1 and β2 in his
notation) because he cannot identify them separately.

4.6 geography of competition

By combining the parameter estimates with census and postcode data,
I constructed a geographic distribution of demand to understand
how store locations and the distribution of consumers affect compe-
tition and consumer welfare. These spatial locations help determine
how much local market power a fascia can exploit and how pricing
pressures propagate via chaining (where a store’s price affects more
distant stores through its impact on intervening stores). I use this
method of aggregating demand over the empirical distribution of
consumers in order to calculate marginal costs, price equilibria, fascia
profits, and consumer welfare. This section of the chapter focuses on
how the method works and the recovery of marginal costs. In Sec-
tion 4.7, I use this technique to evaluate the welfare consequences of
the Morrisons-Safeway merger and a counter-factual merger between
Tesco and Safeway.

Supermarkets make a complex offer to consumers by varying price,
quality, range, and service (PQRS), all of which firms choose to max-
imize their profits. UK Competition Commission [2006] found that
supermarkets, with the exception of Coop and Somerfield, set national
prices, based on Tesco’s argument that prices propagate through the

23I am grateful to Patrick Mitchell-Fox, an analyst at IGD, for clarifying this issue.
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chain of substitution, producing a national price. I assume that firms
sets prices for their fascia regionally to capture the strategic effect of
regional variation in the assortment (range) of products: in practice,
assortment varies on an even smaller scale.24 Unfortunately, this varia-
tion is difficult to observe. This model of competition is incorrect if
either variation in assortment is large and local or it is small. In the
former case, firms essentially choose a store-specific price for a unit of
groceries and pursue price flexing; in the latter case, they choose a na-
tional price. The regional pricing assumption overstates (understates)
firms’ market power if pricing is at the national (store) level. However,
if Tesco’s argument is valid and there is sufficient density of stores and
consumers, then the chain of substitution produces national prices.25

It is not clear how these different models of competition would affect
the welfare change under a merger.

For all of these calculations, I assume that a static model captures
the relevant economics for this policy analysis. The IGD data show that
during the 1980s and 1990s, firms’ built primarily mid-sized (280 m2

to 1,400 m2) and large-sized (> 1,400 m2) stores. Since 2000, however,
competition has focused on convenience stores (< 280 m2), because
of legal restrictions on building larger formats.26 The market test
proposed by the CC in 2006 strengthened these planning constraints
[UK Competition Commission, 2006].

4.6.1 Geographic Aggregation

I recover each fascia’s marginal cost for each region and household
type by inverting the first order conditions (FOCs) for expected profit,
assuming Bertrand-Nash competition in prices. I assume that each
firm functions as a product in a multi-product, oligopoly and sets
prices for its fascia regionally.

To calculate marginal costs, I calculate the geographic expectation
of the FOCs as follows:

1. For each GOR, compute pair-wise distances between all stores
and OAs using the UK Office of National Statistics (ONS) 2006 All
Fields Postcode Directory (AFPD), which maps post codes and

24Controlling for fascia should capture most of the variation in quality and service
because firms try to provide a uniform shopping experience across stores.

25Using the machinery of this chapter, it should be possible to test Tesco’s national
pricing argument.

26Firms may also have been constrained by a lack of suitable sites for larger stores.
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OAs into ‘northings’ and ‘eastings’, a standard X-Y coordinate
system for UK geographical data. Given the high precision of UK
postcodes this introduces little error compared to a household’s
true location.

2. Form choice sets for each OA from the 30 closest stores.

3. Calculate the expected FOCs for profit at each store by integrating
demand over household types, income, and OAs using the KS020
Table of the UK 2001 Census. The demand is the product of the
probability that a household chooses a specific store and the
conditional demand. Then, aggregate across stores by fascia.

4. Invert the first order equations and recover marginal costs for
each fascia, household type, and region, allowing for strategic
interactions for the firms (Sainsbury’s and Tesco) which control
multiple fascia.

After recovering marginal costs, I use a similar method to compute
expected firm profits and price equilibria.

I assume that marginal cost is the same for all of a fascia’s stores
and that scale economies and network effects do not affect marginal
costs; i.e., that a linear specification is sufficient. To the extent that
these factors matter, my model will be misspecified. Both Jia [2008]
and Holmes [2011] show that both of these forces affect competition
among US discounters, but the smaller scale of the UK may decrease
the importance of these factors.

Before discussing the results in Section 4.6.2, I first explain the
equilibrium assumption, profit function, and derivation of the first
order equations.

4.6.1.1 Equilibrium Assumption

Marginal cost recovery is based on computing profits and FOCs at
equilibrium prices. But, solving for equilibrium prices when there
are multiple consumer types and hundreds of products is technically
challenging, even if competition is limited to just several hundred key
value items (KVI) [UK Competition Commission, 2006]. Consequently,
I assume that the fascia compete via Bertrand-Nash competition in
each region and they choose an optimal price for the reference basket
of each household type. This assumption simplifies the problem of
solving for the price equilibrium and marginal costs.
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Because there are many more goods than household types and
households purchase a type-specific reference basket, this assumption
is equivalent to each firm choosing the vector of prices of individual
goods, p, such that they satisfy





p̃1

· · ·
p̃H




=





ωT
1

· · ·
ωT

H




p

for some optimal price indexes, p̃h, and vectors of expenditure shares,
ωh. Thus, firms can adjust prices in a way that generates the profit-
maximizing price for each type’s basket. Clearly, this equation map-
ping prices to basket prices only has a solution if the matrix of expendi-
ture shares is full rank.27 Appendix 7 in UK Competition Commission
[2000] provides further support: Sainsbury’s, Somerfield/Kwik Step,
Tesco, and Waitrose all report that they focus pricing strategy on the
basket price consumers face as part of their offer. Furthermore, Tesco
buying managers set prices to target certain subgroups, consistent
with central Tesco pricing policy.

4.6.1.2 Profits Under Multi-Product Oligopoly

Given the equilibrium optimization assumption, the geographic profit
function aggregates each household’s expected conditional demand
over household types and OAs. Thus, πjha, the profit at store j from
household type h in OA a, is

πjha = nha
�

pj − cj
�

qjhasjha.

Aggregating over all OAs in a region, conditional on household type,
yields a store’s conditional profits:

πjh = ∑
a∈OA

nha
�

pj − cj
�

qjhasjha.

Then, total profit per store is just the sum over consumer types:

27When the matrix is full rank there will also be multiple solutions because of the
non-trivial null space of the expenditure share matrix.
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πj = ∑
h∈H

∑
a∈OA

nha
�

pj − cj
�

qjhasjha + Fj,

where Fj is the fixed cost of opening and operating store j. To obtain a
fascia’s profits, I aggregate over the set of all stores the fascia operates,
F f :

π f =
�

p f − c f
�

∑
j∈F f

∑
h∈H

∑
a∈OA

nhaqjhasjha +
��F f

�� Ff .

Because I observe neither a household’s income nor shock, ξh, I inte-
grate over their distributions, assumed to be normal and log normal,
respectively. The moments for income are computed from the TNS
data.28

Sainsbury’s and Tesco operate multiple fascias which increases
their market power, according to the theory of multi-product firms.
Consequently, the FOCs must include these effects. Let firm f operate
T different fascia. A firm’s individual stores are enumerated in sets
F 1

f , . . . ,FT
f for each fascia type t. Then, the firm f ’s set of stores

F f = ∪
t∈T

F t
f is the union of the set of stores for each fascia type. Now,

each firm’s profit is the sum of the profits of each its fascia:

π f = ∑
t∈T

∑
j∈F t

f

∑
h∈H

∑
a∈OA

� �
nha

�
pt

f − ct
f

�
qjhasjhadF (y) dF (ξh)

+
���F t

f

��� Ft
f .

In most firms, this reduces to the profits from a single fascia.

4.6.1.3 FOCs Under Multi-Product Oligopoly

Recovering marginal costs or solving for a new price equilibrium un-
der different market structures requires computing the multi-product
profit FOCs. Consequently, cross-price effects are important when firms
set prices if the markets served by the different fascia overlap suffi-
ciently. E.g., if the markets for Tesco and Tesco Metro have have large

28I perform the integration via a Gaussian-Hermite product rule with three nodes
in each dimension because using more nodes had negligible impact on the results. I
tried using sieve estimation [Chen, 2007] to approximate the income distribution but
there was not enough data to use a non-parametric method.
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cross-price elasticities – i.e. are good substitutes – then assuming that
competition is single-product oligopoly will understate Tesco’s true
market power.

Let the multi-product firm f choose prices p1
f , . . . , pT

f . Because firms
choose the optimal price for each household type’s basket, this com-
plex optimization problem reduces to a set of separate optimization
problems for each household type. Thus, firms solve a non-linear
system of Bertrand-Nash FOCs where each fascia’s FOC conditional on
household type is:

0 =
∂π f

∂pv
f

0 = ∑
j∈F v

f

∑
h∈H

∑
a∈OA

nhaqjhasjha

+ ∑
t∈T\{v}

�
pt

f − ct
f

�
∑

j∈F t
f

∑
h∈H

∑
a∈OA

nha

�
qjha

∂sjha

∂pv
f

�

+
�

pv
f − cv

f

�
∑

j∈F v
f

∑
h∈H

∑
a∈OA

nha

�
qjha

∂sjha

∂pv
f
+ sjha

∂qjha

∂pv
f

�
.

This equation shows that prices affect profits through the price charged,
the relative desirability of other stores, and the change in demand at
each store. To recover marginal costs, rewrite the equations in matrix
notation:29

0 = Df + Gf
�

p f − c f
�

Df ,(v) = ∑
j∈F v

f

∑
h∈H

∑
a∈OA

nhaqjhasjha

Gf ,(v,t) = ∑
j∈F t

f

∑
h∈H

∑
a∈OA

nha

�
qjha

∂sjha

∂pv
f
+ sjha

∂qjha

∂pv
f

I [t = v]

�
.

The subscripts denote the element in the vector or matrix. The vector
Df is the total demand at each fascia. Gf is a matrix of changes in
demand at the margin. The cross-partial for market share in these
terms is:

29I [b] is the indicator function which is 0 if b is false and 1 if b is true.
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∂sjha

∂pv
f

=






sjha

�
∂Vjha

∂pv
f
− ∑

m∈F v
f

smha
∂Vmha
∂pv

f

�
j ∈ F v

f

−sjha ∑
m∈F v

f

smha
∂Vmha
∂pv

f
j ∈ F t

f , t �= v

0 otherwise

After inverting the FOCs, the marginal costs are

c f = p f + G−1
f Df .

Conversely, given a set of marginal costs, FOCs can be solved for a new
equilibrium price vector under different market structures.

4.6.2 Results

I now discuss the results on marginal costs, price-cost margins, and
profits. I focus on how results vary by either GOR or household com-
position, depending on which is more important economically.30

4.6.2.1 Marginal Costs

According to Smith [2004], the UK supermarket industry has a simple
cost structure which consists of purchasing goods, distribution, labor,
and store operations. He argues that the first three are marginal costs,
based on research by the UK Competition Commission [2000]. Like
Smith, I do not observe advertising, headquarters overhead, and other
firm-level costs so I assume they are fixed.

Because the price index varies by month, region, and fascia, I recover
marginal costs for each month, region, and fascia from the FOCs, as
explained in Section 4.6.1.3. The discussion of results focuses on May
2004 because the same patterns persist across periods, although results
for other months show some small variation in costs. Marginal costs
can only be recovered in GOR where a fascia operates: for example,
I do not observe any Budgens or Waitrose stores in the North East

30Most results in this paper can be viewed by fascia, household composition,
or GOR. To facilitate comprehension, I aggregated or averaged along one of these
dimensions. A detailed appendix with results along all three of these dimensions is
available upon request.
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and, consequently, cannot recover their marginal costs in this region.
In these cases, the marginal cost is coded as Not a Number (NaN) or
‘Missing’ to ensure that these cases are handled correctly in subsequent
computations.

Cost recovery depends on the assumption that firms play a Bertrand-
Nash pricing game for multi-product firms, where each fascia func-
tions as a product because of the regional pricing assumption.31 I
assume that Sainsbury’s and Tesco are the only firms which operate
multiple fascia (brands), which is a reasonable approximation of actual
behavior because most firms focus on a specific market segment.32

Table 36 reports population-weighted marginal costs with multi-
fascia effects averaged across household type. Allowing for the multi-
fascia effect lowered marginal costs by 0.7 to 7 percent for Sainsbury’s
and Tesco’s fascias, depending on household type and region. Rival
fascias have the same marginal costs in either case. Operating multiple
fascias increases Sainsbury’s and Tesco’s market power because some
of the demand lost from a price increase at one fascia is captured at
their other fascia. Ignoring this strategic effect overstates Sainsbury’s
and Tesco’s true costs.

Smith [2004] also found that failure to consider multi-fascia effects
leads to incorrect marginal costs. My recovered marginal costs also
agree with the marketing literature [Seth and Randall, 2001]: Aldi and
Netto pursue a deep discount strategy and are the low cost leaders;
Iceland and Kwik Save also offer low costs and target working and
lower-middle class households; Asda, Tesco, Morrissons-Safeway, and
Sainsbury’s – listed in order of increasing marginal costs – occupy
the middle ground; Tesco’s convenience store fascia enjoys a cost ad-
vantage over Sainsbury’s; and, lastly, Marks & Spencer and Waitrose
have significantly higher costs than all other fascia, reflecting their
emphasis on higher quality. Surprisingly, Lidl’s marginal costs are
much higher than Aldi’s and Netto’s, driven by Lidl’s much higher
prices. In addition, fascia with higher marginal costs charge higher
prices. Each fascia also has the same ordering for the costs of serving
different household types. These trends persist when viewed across

31In the most general sense, each individual store is a product. Because firms
pursue a regional pricing strategy, they set one price per fascia-household type in
each GOR. When price flexing occurs, each store functions as a product.

32For example, Tesco’s fascias include Tesco Express, Tesco Metro, Tesco, and Tesco
Extra. The assignment of other firms’ stores to one fascia is based on the fact that only
Sainsbury’s and Tesco focus on both the supermarket and convenience store formats.
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either household types or region.33 Marginal costs vary by household
type because the baskets for different types vary in size and com-
position. Geographical differences, such as distance to distribution
centers, density, wages, or congestion, also cause regional variations in
marginal costs. For example, average marginal costs are consistently
higher for the East Midlands, London, the South East, and Wales for
all fascia.

4.6.2.2 Price-Cost Margin

From the marginal costs and price indexes, I calculate the price-cost
margin, PCM = (p − c) /p, for each fascia by household composition
(See Table 37.). Price-cost margins vary primarily by household type
and not by region. These margins also agree with the marketing
literature. Of the big four, Asda, Morrisons-Safeway, and Tesco all
have margins ranging from 22% to 23% , which are slightly lower
than Sainsbury’s (PCM from 23% to 24%). Sainsbury’s margin for its
convenience store format is also higher than Tesco’s, though both firms
have higher markups for this format than for the standard format.
Similarly, Aldi and Netto – the deep discounters – and Iceland and
Kwik Save – which target lower income households – have lower PCM.
Lastly, Marks & Spencer also has comparably low margins, driven by
their extremely high costs.

Margins vary by household composition in a similar way for each
fascia: single pensioners, single parents, and pensioner couples are
more profitable whereas couples with children, other without children,
and other with children are less profitable. Although total marginal
costs are lower for serving the former, per capita marginal costs usually
are not. Consequently, more profitable household types purchase items
with higher margins, such as prepared food.

The margins I calculated agree with those in Smith [2004]’s Table 3,
column (i), which computes the revenue minus the cost of purchasing
goods divided by revenue. His value for the margin is based on
all marginal costs (purchase of goods, distribution and labour) and
is smaller. The CC estimated a multinomial choice model and also

33I examined the standard deviation of both marginal cost and the price cost
margin for each fascia-household type pair across GOR. Both quantiles and histograms
indicate that �σMC/MC and �σPCM/PCM are less than 10% at the 75th (90th) quantile:
the distribution is clumped near 0 with a sharply declining right tail. Fascia-household
pairs with higher variation are those which are poorly represented in the TNS data,
such as the young and pensioners, and fascia with few observations in a GOR, such
as Sainsbury’s convenience store format.
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finds that margins are 20% in concentrated markets and 15% in non-
concentrated markets [UK Competition Commission, 2006]. These
margins are much higher than the market literature’s value of roughly
5%. As discussed at the beginning of this section, there are several
fixed costs, such as advertising, store-level overhead, and headquarters
costs, which I do not observe and assume are fixed costs. If I could
observe these costs and recompute the margins, I would expect to find
margins that were closer to those in the marketing literature.

4.6.2.3 Geographic Distribution of Profits

Using the geographic distribution of demand, I predict both fascia
and store-level profits by region and household composition. I sum-
marize the different fascias’ share of profits by GOR in Table 38. Asda,
Morrisons, Sainsbury’s, and Tesco (AMST) have the largest shares
other than Coop and Other, whose apparently large market shares
result from aggregation, as discussed in Section 4.3.2. These fascia lack
the coordination and integration of AMST. AMST also have particularly
large market shares among the most profitable household types (cou-
ples, couples with children, others, and others with children) which
tend to be larger, both in numbers of adults and children. In addition,
Tesco occupies a dominant position followed by Sainsbury’s and Asda,
who have comparable market shares. Tesco’s lead is even stronger
when combined with its convenience store fascia: Tesco’s small format
stores have much more market share, lower costs, and higher margins
than Sainsbury’s. The combined Morrison-Safeway fascia is a more
effective national competitor than these fascia were individually when
compared with the counter-factual pre-merger state in Section 4.7:
Safeway and Morrisons are often strong where the other is weak.
These results also show that Iceland is a strong niche competitor.

Table 38 also shows which fascia have the largest share of profits
in each region. Of the big four, Asda is clearly strongest in the North
and weaker further South; Morrison-Safeway favors the North East
and Yorkshire; Sainsbury’s has significant market share across the
country, but is concentrated in London and the South; and, Tesco is
strong everywhere, but quite dominant in the East, South East, and
Wales with market shares there of 19-26%. Other patterns are visible,
such as the deep discounters’ focus on the North and Midlands, and
Waitrose’s concentration on the more affluent areas in London and the
South East.

164



There is considerable variation in the profitability of individual
stores, as shown in Table 39 which reports summary statistics for total
profit by store and by sales area.34 These statistics show that fascia
which operate larger format stores, as expected, have larger total sales
per store but that convenience stores and smaller format stores, such
as Budgens and Iceland, are much more profitable per sales area. The
deep discounters, Aldi and Netto are also quite profitable per sales
area: Lidl, however, is not as profitable because of its much higher
marginal cost. The profitability of AMST’s stores has considerably more
variance than most other fascia, probably because AMST operate more
extremely large format stores (hypermarkets). For all fascias, there is
a long upper tail: some stores are extremely profitable, either because
they are well located or have huge sales areas. Also, firms may operate
less profitable stores to foreclose entry to rivals, preventing a situation
which would be even less profitable.

4.7 merger evaluation and policy experiment

In 2003 the UK Competition Commission approved the acquisition of
Safeway by Morrisons instead of Tesco or a handful of other suitors.
To evaluate the merger, I compare the pre-merger state with both
the actual merger and a counter-factual Tesco-Safeway merger. This
comparison uses firm profits, prices, market shares, and compensating
variation to quantify changes in consumer welfare and firm profits.
The counter-factual Tesco-Safeway merger provides an upper bound
on the adverse welfare consequences of the acquisition of Safeway
because Tesco has the most market power and is strong in every
region.

My method is similar to the method used in Section 4.6.1 to recover
marginal costs and compute firm profits. In contrast to other merger
evaluations, I only observe consumer shopping decisions after the
Morrisons-Safway merger has occurred. Consequently, I must recon-
struct firm behavior prior to the merger. Fortunately, the IGD data
starts considerably earlier than 2003 and includes observations on
which stores operated under the Safeway fascia. I use this data to
construct two counter-factual datasets, one for the state before the
observed merger and another for after a hypothetical Tesco-Safeway

34A store whose sales area was miscoded in the TNS data causes the anomalously
large maximum profit for Marks & Spencer in Table 39.
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merger. For both datasets, I solve for the Bertrand-Nash equilibrium
prices and use them to compare firm and consumer welfare under
each scenario.

In each scenario, I assume that marginal costs remain constant for
each fascia regardless of the industry structure. The only exception is
Safeway whose pre-merger marginal costs are assumed to be the same
as Morrisons’s and whose post-merger costs are the same as the firm
which acquired Safeway (i.e. Morrisons or Tesco).35 Because Safeway’s
strategy lacked focus [Seth and Randall, 2001], any suitor would
expect to improve the performance of Safeway stores by replacing
Safeway’s purchasing, distribution, and operations with their own
business processes. Consequently, Safeway’s pre-merger costs are
probably higher than Morrisons’s, and this assumption understates
the welfare gains from the merger.

4.7.1 Computation of Welfare

Unfortunately, the standard, analytic expression for the change in
compensating variation does not apply to my model of utility be-
cause the marginal utility of income is non-linear in income [Train,
2009, Anderson et al., 1992]. Consequently, I cannot easily compute
the expected maximum utility and solve for the compensating varia-
tion. However, it is possible to compute bounds on the compensating
variation [McFadden, 1999]:

∑
j∈Ca

s0
hjaCjj ≤ E [CVha] ≤ ∑

j∈Ca

s1
hjaCjj,

where Ca is the choice set for OA a, Cjj is the compensating variation
if the consumer chooses store j in both the pre- and post-merger
scenarios, i = 0 (i = 1) indicates the pre-merger (post-merger) scenario,
and si

hja is the probability household h chooses store j under scenario
i. The intuition for this formula is that the consumer would need more
(less) compensation if he were unable to change his choice of store
before (after) the policy change. Let p0

j and p1
j be the prices at store j

before and after the merger. Then Cjj can be calculated by solving for
Cjj from the definition of compensating variation

35In theory, I should be able to recover Safeway’s actual marginal costs if I had
access to TNS data prior to the merger.
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Vhja

�
yh, p0

j

�
= Vhja

�
yh − Cjj, p1

j

�

which yields

Cjj = yh − exp

��
p1

j

p0
j

�γ �
log yh − αp log p0

j + αareaareaj + ξh

�

+ αp log p1
j − αareaareaj − ξh

�
.

Note that Cjj = 0 if the price does not change. Furthermore, only the
utility of consumption affects the willingness-to-pay because utility
from location does not change. Cjj < 0 means that the consumer needs
compensation for his lower post-merger utility. Finally, I compute the
total lower and upper bounds on compensating variation for each GOR
and household type by integrating over the distribution of consumers,
income, and the shock ξh. For this problem, this method yields tight
bounds and eliminates the need for a more complex procedure to
calculate the change in consumer welfare.

4.7.2 Results

The observed Morrisons-Safeway merger and counter-factual Tesco-
Safeway merger cause little change in consumer welfare and firm prof-
its vis-a-vis the pre-merger state. Both mergers caused small changes
in prices, profits, market shares, and compensating variation, although
these effects are larger for the Tesco-Safeway merger which is also
worse for consumers.

Table 40 compares the changes in market shares, ∆s, profits, ∆π,
and prices, ∆price, where the subscripts refer to whether Morrisons or
Tesco acquired Safeway. The first column, spre, provides pre-merger
market shares for comparison. The changes in profits and prices are
computed via population-weighted averages across GOR and house-
hold composition. I compare the total pre-merger market share and
profits of the acquiring firm and Safeway with the post-merger values
for the combined firm. The change in market shares for both mergers
was small – less than 0.02% for Morrisons and 0.35% for Tesco. The
lack of geographic overlap between Morrisons and Safeway explains
the small magnitude of the change, especially given the assumption
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that Safeway’s per-merger marginal costs were the same as Morrisons.
If Safeway’s true costs were larger, then the change in market share
should be larger because the true pre-merger price would be higher.
The merger should also produce a larger increase in consumer wel-
fare from the lower prices associated with the combined firm’s cost
savings.

When Safeway merges with either Morrisons or Tesco the change
in profits is also small: 0.07% and 0.67% of pre-merger profits, re-
spectively. Almost all firms increase their profits after either merger,
although by less than 1%. Most firms can increase their profits and
prices much more under the Tesco-Safeway merger because Tesco’s
market power enables it to raise prices more than Morrisons and
prices are strategic complements under Bertrand-Nash competition.
The main exception is Waitrose, whose profits decrease by about 1%
because Waitrose decreases its price by 0.25% or more in response
to these mergers, probably because of increased competition in the
South and London where the majority of Waitrose’s customers live.
In addition, the multi-fascia strategic effect propagates the changes in
Sainsbury’s and Tesco’s prices from their supermarket fascia to their
convenience store fascia, causing price increases of about 1%.

The bounds on consumer-willingness-to-pay are summarized by
region and household type in Table 41 and Table 42. These tables show
the upper and lower bounds on compensating variation, CVlow and
CVupper, for three scenarios. The labels ‘Pre’, ‘Morr’, and ‘Tesco’ in
the column headings indicate which scenarios are being compared:
pre-merger, after the Morrisons-Safeway merger, and after the counter-
factual Tesco-Safeway merger.36 These bounds are usually quite tight
– i.e. less than 10% – and, consequently, provide a good estimate of
consumer welfare.

When aggregated to the national level or by household composi-
tion, these mergers appear to decrease consumer welfare. The largest
negative welfare changes appear to be for couples, couples with chil-
dren, and others with children. However, these categories tend to be
relatively more numerous. There is considerable regional variation
and both mergers improve welfare in some regions. For example,
the Morrisons-Safeway merger reduces consumer welfare by at most -
0.12% of pre-merger profits, but improves welfare in the East Midlands,

36The change in compensating variation for Morr vs. Tesco is not just the difference
between Pre vs. Tesco and Pre vs. Morr because the marginal utility is non-linear in
income.
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London, and the South West by providing stronger competition with
Sainsbury’s and Tesco. Similarly, the Tesco-Safeway merger causes at
most a -0.54% decrease in consumer welfare, but produces positive
compensating variation in Yorkshire and the East Midlands. The small
magnitude of these changes could be caused either by an extremely
competitive market where there is sufficient competition to prevent
higher prices or by a situation where each store is effectively a local
monopolist. Furthermore, regional pricing may be an effective strat-
egy for tacit collusion to sustain higher prices. Any of these causes
could prevent a merger in the supermarket industry from significantly
changing the nature of competition.

I also computed the compensating variation for the welfare change
between Morrisons and Tesco acquiring Safeway. The results show
that acquisition by Tesco would be worse for consumer types when
aggregated at the national level, though consumers in the Northwest,
Yorkshire, and the West Midlands would be slightly better off. These
regions correspond to areas where Morrisons has traditionally been
stronger and Tesco relatively weaker.

Overall, my results support the UK Competition Commission’s deci-
sion to approve Morrisons’s acquisition of Safeway because it has little
effect on firm profits and consumer welfare – certainly significantly
less than a counter-factual merger between Tesco and Safeway. In the
long run, Morrisons-Safeway could have developed into another strong
national competitor to Asda, Sainsbury’s, and Tesco if Morrisons had
not had such difficulty integrating Safeway’s operations. Moreover,
the CC’s requirement that Morrisons divest itself of some stores where
local competitiveness could be affected further minimized potential
adverse consequences of this merger.

4.8 conclusion

This chapter evaluates the impact of Morrisons’s acquisition of Safe-
way on consumer welfare and firm profits. By combining estimates for
the demand system with census data, I compute changes in prices, ex-
pected profits, and consumer-willingness-to-pay for both the observed
merger and a counter-factual Tesco-Safeway merger. Because the data
is highly disaggregate these calculations provide information about
the nature of demand and competition at even the OA and store-level.
The results show that the Morrisons-Safeway merger, which the CC
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approved in 2003, had little impact on consumer welfare. A counter-
factual merger with Tesco would have been an order of magnitude
worse for consumers, though still have had a small impact.

These results depend on several assumptions, but especially that
locations are fixed exogenously. Adding a stage to the model where
fascia choose locations could affect results. In addition, the unobserved
quality of locations [Orhun, 2005], scale economies, and network effects
might also influence the results [Holmes, 2011, Jia, 2008].

Unfortunately, the current model cannot distinguish between a
competitive equilibrium and tacit collusion, both of which could cause
small changes in welfare. Using the method developed in this paper,
I can, in theory, compute the price equilibrium if firms pursue price
flexing instead of regional pricing and how these pricing strategies
affect welfare. From a policy point of view, it is also worth investigating
whether regional pricing facilitates collusion.

Future work could use this geographical distribution of demand
to investigate market definition, whether chaining effects propagate
pricing pressure across catchment areas, the local market power of
different stores, and whether regional pricing facilitates collusion.
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NE NW York E Mid W Mid E Eng Lon SE SW Wales
Aldi 0.59 0.59 0.59 0.64 0.59 0.60 0.63 0.62 0.60 0.63

Asda 0.71 0.72 0.71 0.76 0.70 0.70 0.75 0.76 0.70 0.76
Budg −− −− 0.70 0.71 0.69 0.69 0.72 0.71 0.69 −−
Coop 0.79 0.82 0.79 0.85 0.78 0.75 0.82 0.84 0.73 0.83

Icel 0.64 0.64 0.64 0.65 0.62 0.63 0.66 0.65 0.62 0.66
Kwik 0.63 0.63 0.63 0.68 0.63 0.64 0.68 0.66 0.63 0.68

Lidl 0.79 0.80 0.79 0.80 0.77 0.77 0.79 0.79 0.76 0.86
MandS 1.07 1.08 1.10 1.09 1.02 1.01 1.06 1.05 1.12 1.14

Netto 0.58 0.60 0.60 0.62 0.57 0.57 0.60 0.64 −− 0.63
Other 0.67 0.74 0.72 0.79 0.69 0.69 0.74 0.77 0.69 0.75
Morr 0.75 0.78 0.76 0.82 0.75 0.74 0.80 0.83 0.74 0.82
Sain 0.79 0.80 0.79 0.85 0.78 0.77 0.82 0.86 0.77 0.83

SainS −− 0.79 0.77 −− 0.74 0.70 0.80 0.83 0.71 0.73
Some 0.74 0.74 0.73 0.79 0.73 0.72 0.77 0.76 0.72 0.78

Tesc 0.74 0.75 0.75 0.80 0.73 0.73 0.78 0.80 0.73 0.78
TescS 0.70 0.71 0.70 0.76 0.70 0.69 0.73 0.72 0.70 0.75
Wait −− 0.95 0.94 1.01 0.91 0.90 0.96 1.01 0.90 1.03

Table 36: Average Marginal Costs with Multi-Fascia Effects by GOR
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spre ∆sMorr ∆sTesco ∆πMorr ∆πTesco ∆priceMorr ∆priceTesco

Aldi 4.41 0.00 −0.02 0.17 0.26 0.02 0.10
Asda 9.32 0.01 −0.03 0.13 0.37 0.04 0.14
Budg 1.15 −0.00 −0.00 0.06 0.42 0.02 0.14
Coop 8.85 0.00 −0.04 0.09 0.23 0.02 0.10

Icel 7.64 0.00 −0.03 0.07 0.30 0.03 0.14
Kwik 6.55 0.01 −0.03 0.20 0.18 0.02 0.18

Lidl 1.87 −0.00 −0.01 0.06 0.28 0.01 0.10
MandS 1.45 −0.00 −0.01 0.00 0.19 0.03 0.13

Morr 2.49 0.01 −0.01 0.13 0.10 0.26 0.10
Netto 2.23 0.00 −0.01 0.14 0.13 −0.16 0.08
Other 14.96 −0.00 −0.06 0.04 0.25 −0.00 0.11

Safe 5.29 −− −− −− −− −− −−
Sain 9.38 −0.00 −0.03 0.04 0.39 −0.01 0.14

SainS 0.52 −0.00 −0.00 −0.06 0.09 0.30 0.85
Some 4.78 −0.00 −0.02 0.02 0.35 −0.01 0.14

Tesc 14.62 0.00 0.35 0.08 2.44 0.09 0.59
TescS 2.58 −0.00 −0.03 0.06 −0.36 −0.02 1.20
Wait 1.91 −0.02 −0.02 −0.96 −0.64 −0.37 −0.25

Table 40: Percent change in market shares, profits, and price post-merger.

Pre vs. Morr Pre vs. Tesco Morr vs. Tesco
CVlow CVupper CVlow CVupper CVlow CVupper

NE −22.21 −21.90 −24.68 −23.37 −2.66 −1.45
NW −8.20 −8.08 −2.13 −0.16 6.04 7.93
York −21.75 −21.36 8.29 10.47 29.94 31.85

E Mid 14.17 14.41 9.20 11.58 −5.34 −2.66
W Mid −40.53 −39.88 −30.57 −28.33 9.07 11.89
E Eng −29.45 −28.93 −79.60 −77.08 −50.11 −48.18

Lon 43.46 44.83 −10.16 −4.50 −53.36 −49.53
SE −11.33 −11.24 −91.19 −85.74 −79.92 −74.45

SW 15.34 15.99 −74.71 −72.53 −90.83 −88.28
Wales −8.96 −8.26 −28.14 −26.89 −19.85 −18.38
Total −69.47 −64.42 −323.70 −296.55 −257.00 −231.25

Table 41: Bounds on expected compensating variation by GOR
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Pre vs. Morr Pre vs. Tesco Morr vs. Tesco
CVlow CVupper CVlow CVupper CVlow CVupper

1 Young −9.04 −8.63 −11.49 −8.44 −2.72 0.29
1 Pen −6.99 −6.72 −18.06 −16.42 −11.21 −9.69

1 Parent −0.79 −0.53 −20.15 −18.80 −19.49 −18.24
Couple −12.26 −11.29 −44.69 −37.69 −33.00 −26.19

Pen Couple −4.68 −4.36 −14.27 −11.92 −9.76 −7.53
Coup child −22.33 −20.76 −141.97 −136.37 −120.41 −115.38

Other no −10.23 −9.21 −57.03 −51.61 −47.39 −42.19
Other with −3.14 −2.93 −16.05 −15.29 −13.02 −12.32

Total −69.47 −64.42 −323.70 −296.55 −257.00 −231.25

Table 42: Bounds on expected compensating variation by household compo-
sition
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Part III

A P P E N D I X



A
C O M P U TAT I O N A L A N D N U M E R I C A L I S S U E S I N
E S T I M AT I N G T H E B L P M O D E L

This appendix provides additional numerical and computational de-
tails about how to estimate the BLP model and perform large-scale
Monte Carlo simulations. First, I explain how to implement BLP as an
MPEC and then discuss how to run large-scale simulations using the
PBS job manager.

a.1 snopt formulation of blp mpec

The most reliable way to estimate the BLP model is to specify the
problem as an MPEC and use a modern solver such as SNOPT [Su
and Judd, 2010, Dubé et al., 2011]. The SNOPT interface formulates
the optimization problem as

min
x

F0 (x)

subject to lx ≤ x ≤ ux

lF ≤ F (x) ≤ uF

where

F0 (x) = Fobjective (x)

Fi (x) = constrainti (x) .

F (·) is a vector function whose first element is the value of the ob-
jective function and whose other elements are the constraints. lx and
ux specify the upper and lower box constraints on x. Box constraints
speed up optimization by preventing the solver from considering
clearly infeasible regions of the parameter space. lF and uF are the
upper and lower bounds on the objective function and non-linear
constraints. For the BLP MPEC problem, the vector
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x =





θ1

θ2

δjt

η




.

The gradient of the objective function and the Jacobian of the con-
straints are specified in a matrix G (x) where

Gi (x) = ∇xFi (x) ,

i.e.

Gij (x) =
∂Fi (x)

∂xj
.

Thus, for the BLP MPEC,

F (x) =





η
�Wη

Sobserved
jt = sjt (δ (x, ξ; θ1) ; θ2)

η − Z�
(δ − Xθ1)





and

lx =
�

−100 −50 −108 −108
��

ux =
�

100 50 108 108
��

lF =
�

−10 log
�

Sobserved
jt

�
0
��

uF =
�

108 log
�

Sobserved
jt

�
0
��

.

These box constraints rule out extreme parameter values to improve
solver convergence. Although the objective function is positive semi-
definite, the lower bound on F0 is set to -10.0 to force the solver to do
its best. lF = uF for both the market share constraints and moment
conditions because these constraints are equality constraints.
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Similarly, the Jacobian G is

G (x) =





0 0 0 2Wη

0
∂s (δ; θ2)

∂θ2

∂s (δ; θ2)
∂δ

0

Z�X 0 −Z� I




.

The first row is actually the gradient of the objective function for the
SNOPT interface. This interface makes it easier to specify the sparse-
ness structure of the problem more economically when implementing
the estimation software.

a.2 example pbs script for estimating blp

Listing 2 shows a PBS script which executes 10 BLP estimations per
job using a parameter sweep. Chunking faster jobs together is an
important technique for minimizing scheduler overhead and increas-
ing throughput. The script uses the bash shell and special comments
which start with #PBS to specify options to the job manager, such as
limits on wall-clock time for the job (12 hours in this case) or the
indexes for instances of this job (specified with the -t option). Each
instance of this job is passed a unique index between 0 and 499, inclu-
sive, via the environmental variable PBS_ARRAYID. I use this variable to
determine which replication and starts to process. The script abstracts
as much state information as possible – the number of markets, T, the
number of products, J, the type of instrumental variables, etc. – in
other environmental variables to make it easier to modify this script
for other experiments as well as to compare different runs.

Listing 2: Example PBS script for estimating 10 BLP starts per job.

#!/bin/bash

#PBS -l nodes=1:ppn=1,walltime=12:00:00

#PBS -q long

#PBS -t 0-499

#PBS -m n

#------------------------------------------------------------

# Purpose: run one BLP start at a time by converting the

# parameter sweep index to a start and replication.

#------------------------------------------------------------
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# Global definitions to describe this run

export N_STARTS_PER_JOB=10

export N_STARTS=50

export IVType=Char

export T=25

export J=100

export PROJ_DIR=/gpfs/pads/projects/CI-SES000069

export BASE_DIR=${PROJ_DIR}/data/blp/arm.T${T}.J${J}

# Ensure that GFORTRAN output occurs as written instead of

# all C/C++ followed by FORTRAN

export GFORTRAN_UNBUFFERED_ALL=’y’

#------------------------------------------------------------

# Regular logic : run ten estimations per job

#------------------------------------------------------------

ix=${PBS_ARRAYID}

ixBegin=$(( ix * N_STARTS_PER_JOB ))

for(( ix = ixBegin ; ix < ixBegin + N_STARTS_PER_JOB ; ix++ ))

do

ixRep=$(( ix / N_STARTS ))

ixStart=$(( ix % N_STARTS ))

echo

echo ’>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>’

echo ’====>>>> Commencing ONE BLP Estimation’

echo ’ Replication : ’ ${ixRep}

echo ’ Start : ’ ${ixStart}

echo " Using ${IVType} instruments"

echo ’<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<’

echo

inFile=${BASE_DIR}/rep${ixRep}/config/DFS.${IVType}.config.${

ixStart}.prop

${PROJ_DIR}/sbox/blpcpp/src/blpDriver -f ${inFile}

done ✆
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B
S U P E R M A R K E T M E R G E R E VA L U AT I O N

This appendix contains supplementary information about using Roy’s
identity with a price index, numerical issues involved in estimating
the model, and the data and how it was cleaned.

b.1 roy’s identity and price indexes

Because Roy’s identity holds for true prices but not necessarily a
price index, treating the price index as the true price can produce
an incorrect result when deriving demand. Let the indirect utility be
Vhj = Vhj

�
pj, yh

�
, where pj is the price index for a unit of groceries at

store j and yh is household h’s expenditure. The true specification of
the indirect utility is Vtrue

hj = Vhj
�

p̆j, yh
�

where p̆j is the vector of all
prices of goods at the store. The price index is a function of this vector
of prices, pj = f

�
p̆j
�
. Assume that prices enter the indirect utility

via an index restriction. I.e., the price index pj = ω · p̆j, where ω is a
vector of expenditure shares. Then, Vtrue

hj = Vhj
�
ω · p̆j, yy

�
. If p̆jk is the

k-th component of the vector p̆j and q̆jk k-th component of demand,
then Roy’s identity implies that

q̆jk = −
∂Vtrue

hj

∂ p̆jk
/

∂Vtrue
hj

∂yh

= −
�

∂Vhj

∂pj

∂pj

∂ p̆jk

�
/

∂Vhj

∂yh

= −ωk
∂Vhj

∂pj
/

∂Vhj

∂yh
.

Aggregating individual expenditures to compute the total units of
groceries demanded by a household shopping at store j yields

qj = ω · q̆j

= −
�

∑
k

ω2
k

�
∂Vhj

∂pj
/

∂Vhj

∂yh
,
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assuming that the aggregation of demand uses the same weights as
the price index. Consequently, the result from Roy’s Identity must
be scaled by the sum of the squares of the weights on the individual
goods (or categories) if the price index is used instead of individual

price. If the weights ωk ≈ 1/n then
n
∑

k=1
ω2

k ≈ 1/n which is small

because the index is composed of thousands of products. If this factor
is not accounted for, the reported parameter estimates will be too
small. The scaling factor, µ, in the indirect utility helps account for this
scaling difference between the discrete and continuous choice parts of
the model so the model provides reasonable predictions of both store
choice and expenditure.

b.2 estimation and numerical issues

To calculate reliable point estimates, I use SNOPT 7.0 [Gill et al.,
2002], one of the best solvers currently available to maximize the log-
likelihood. SNOPT solves sparse, large-scale, constrained optimization
problems using a sequential quadratic programming (SQP) algorithm.
The SQP algorithm determines the search direction by minimizing a se-
quence of quadratic sub-problems which approximate the Lagrangian
locally, subject to linearized constraints. Although other algorithms,
such as the interior point method used in KNITRO [Byrd et al., 2006],
are sometimes faster, interior point methods only work well on convex
problems. For this problem SNOPT is much more reliable, especially
for starting values in some regions of parameter space where the
estimated variance of ξh is extremely small. SNOPT, KNITRO, and
IPOPT [Wachter and Biegler, 2006], a free interior point solver which is
similar to KNITRO, produce similar solutions and reliably outperform
MATLAB’s fmincon.

In addition, I used multiple starting values and computed accurate
gradients using Complex Step Differentiation (CSD) [Al-Mohy and
Higham, 2009] (See Section B.2.1.). In theory, CSD is more accurate
than finite difference methods and often as accurate as analytic deriva-
tives if you take a very small step size. In practice, I suspect that the
solver will perform better with analytic gradients.
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b.2.1 Complex Step Differentiation

CSD uses imaginary numbers to compute derivatives numerically
which are more accurate than finite difference methods and often as
good as automatic differentiation [Martins et al., 2001], a compiler-
like tool which analyzes source code and computes efficient analytic
derivatives. CSD calculates gradients numerically by taking a very
small step1 in the complex direction and approximating the gradient

as
∂ f (x)

∂xi
≈ Imag

�
f (x + ih · ei)

h

�
where ei is a unit vector in the i-th

direction. From the Taylor series expansion of f (x), it is easy to show
that the error is O

�
h2� but with a much smaller h than for (two-sided)

finite difference [Al-Mohy and Higham, 2009].

b.2.2 Verification of Optimum

Because the log-likelihood of a discrete choice model may have mul-
tiple local maxima, it is important to ensure that the solver has con-
verged to a local maximum and that it is the global maximum [Mc-
Fadden, 1984].

To verify that the solver converged to a local optimum, I try multiple
starting values, use several solvers (SNOPT, KNITRO, Ipopt), and test
my code on a Monte Carlo data set. For all households, the solver’s
exit codes indicate that it found locally optimal solutions, although not
always within the desired tolerance. Numerical difficulties occur when
the variance of the household-specific shock, σ2

ξ , is small, which causes
numerical truncation in the calculation of �q

h.2 I also compared the
results from SNOPT 7.0 to those from Ipopt 3.5.5, a modern Interior
Point solver [Wachter and Biegler, 2006]. For all households, the two
solvers found the same optima to at least four decimal places. In
addition, I confirmed that the gradients and Lagrange multipliers
were close to 0, that the condition number was small, and that all
eigenvalues of the Hessian were positive, indicating that the solver’s
solutions were local optima.3

1CSD’s superior accuracy depends on taking a smaller step size than finite
difference methods.

2I am grateful to Todd Munson in the MCS division of Argonne National Labora-
tory for explaining this point to me.

3I computed the Hessian using CSD because BFGS approximations to the Hessian
often differ considerably from the true value, particularly when the solver converges
quickly.
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To examine the properties of the solution on a larger scale, I compare
the solver’s optimum to the value of the log-likelihood at 500 quasi-
Monte Carlo Niederreiter points in a hypercube of ±σ̂ about the
solver’s solution.4 For every household type, the solver’s solution was
larger than at any of the Niederreiter points, indicating that the solver
had probably found the global maximum.

Proving that the local maximum is the global maximum is more
difficult. McFadden [1984] discusses functional form restrictions that
ensure that a local maximum of a logit model is the global solution.
One practical option is to compare the values of the log-likelihood
and a quadratic approximation – analogous to that used by most
solvers – about the solver’s solution on a set of quasi-Monte Carlo
points to examine if the quadratic approximation is accurate, if there
is consistent bias in one direction, and if the objective function has
multiple peaks.5

b.3 tns worldpanel

The TNS Worldpanel is a complex, high quality home scan panel
of consumer shopping behavior which was designed for marketing
purposes and contains rich detail about both household demographics
and product characteristics. Participants scan every grocery item which
they purchase and bring into the home using a scanner provided by
TNS.6 The data is sent to TNS electronically and periodically verified
using till receipts. If an item lacks an SKU – such as raw fruit and
vegetables – then the household enters the price and other details
manually. Households typically participate in the panel for about two
years and in return receive modest compensation which is designed
to avoid influencing consumer spending on groceries [Leicester and
Oldfield, 2009a].

Despite the precision of the measurement, there are several potential
sources of bias: sampling bias, learning how to scan, attrition, and
fatigue. Sampling bias occurs because a disproportionate number of
participating households are those in their prime consuming years
(couples with and without children). The young (students) and the old

4Niederreiter points are superior to standard Monte Carlo draws because they do
a better job of covering the hypercube than pseudo-Monte Carlo draws [Judd, 1998].

5Ken Judd suggested this technique to me.
6E.g., if they purchase lunch at Marks & Spencer and eat it at the office the

transaction is not recorded in the TNS data.
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(pensioners) are under-represented and often missing completely in
some regions. TNS reweights the data to correct for this bias. To avoid
learning effects, TNS discards the first two weeks of data from new
participants. Also, scanning behavior changes over time because of
fatigue or scanning causing households to modify their consumption
habits [Leicester and Oldfield, 2009b]. In addition, household types
attrit at different rates. Nevertheless, TNS selects households and lo-
cations to maintain a representative distribution of consumer types.
Leicester and Oldfield [2009b] discusses these issues in more detail as
part of a comparison with the benchmark Expenditure and Food Sur-
vey (EFS). They conclude that scanner data matches the general trends
of the EFS although with about 25% lower recorded expenditures.

Following Beckert et al. [2009], I simplify the complexity of the
data by grouping similar fascia together, constructing household types
which are based on the census categories for household composition,
and constructing a price index for units of a reference basket of
groceries. The following subsections examine these decisions in more
detail.

b.3.1 Household Type

I assign each household in the TNS data a type based on the KS020
Household Composition Table in the UK 2001 Census (See Table 44.).7

Then, I combine types which differ by only marital status, which
should not affect consumption. I assume that each household pur-
chases units of groceries of its type-specific reference basket of gro-
ceries at the price specified by the price index as discussed further in
Section B.3.3.

b.3.2 Aggregation of Fascia

The TNS and IGD data provide much more detailed fascia than can
be feasibly used for estimation. Consequently, similar ‘sub-fascia’ are
grouped into 18 broader categories with one fascia for each of the
major firms except Sainsbury’s and Tesco, which each have an addi-
tional fascia type for their convenience store format. In addition, I
coalesce the various regional Cooperative movement stores into one

7Household type 11 (KS0200015 Other, all pensioner) is not included because
there are no observations of this type in the TNS data.
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tns household tns hh type(s) ks020 household
1 Single Young 2 KS0200003 Single non-pensioner
2 Single Pensioner 1 KS0200002 Single Pensioner
3 Single Parent 7 KS0200011 Single parent,

dependent children
4 Childless couple 4 KS0200005 + KS0200008 Couple,

no children
5 Pensioner couple 3 KS0200004 Pensioner couple
6 Couple with children 5 KS0200006 + KS0200009 Couple

dependent children
7 Others – no children 6, 8,10, 11, 12 KS0200007 + KS0200010 Couple,

with non-dependent children ;
KS0200012 Single parent
non-dependent children ;
KS0200013 Other, dependent
children ; KS0200014 Other, all
student ; KS0200016 Other, other

8 Others – with children 9 KS0200013 Other, with dependent
children

Table 44: Conversion of Census KS020 to TNS Household Type

Coop fascia and assign the fringe of regional and independent grocery
retailers to the Other fascia.

The firms which are represented by Other typically have only a
local presence. In all GOR, 75% or more of Other stores are the size
of convenience stores. In some regions, several firms under the Other
fascia have have a comparable number of stores to the national players.
However, given their consistently small sales areas and regional pres-
ence, these stores probably have little market power and lack the cost
advantages of the fascia which have more national presence, more effi-
cient supply chains, and economies of scale and scope. Consequently,
treating all these fringe stores as one fascia overstates their market
power.

Similarly, using a single Coop fascia overstates the market power
of the Cooperative movement stores because they lack the focus and
centralized coordination of the major fascia.
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b.3.3 Price Index for Aggregate Consumption

I use the aggregate hedonic price indexes which Beckert et al., 2009
construct by performing hedonic regressions within product categories
and then aggregating with category expenditure weights. The hedonic
regressions control for regional, fascia, and monthly fixed effects.
The price index aggregates bar-code level hedonic price indexes to
produce an aggregate index for the price of a unit of groceries. This
unit of groceries represents the price of the reference basket of goods
which each household type faces in a specific fascia-region-month.
The hedonic weights from the index can also be used to impute prices
for stores in the consumer’s choice set where I do not observe prices
because the consumer shops elsewhere.

This aggregation assumes that, conditional on household type,
households behavior roughly satisfies the Gorman Polar form – i.e.,
their preferences are homothetic across different goods, perhaps with
some satiation level of spending. The assumption that household ex-
penditure is split across goods in constant fractions, regardless of
income, has important implications for the price equilibrium and cost
recovery, as discussed in Section 4.6.

The price data consists of prices, goods, product characteristics,
quantities, and pack sizes for over 16 million purchases. The variation
occurs both in the choice of basket – which is across household type
and region – and prices – which is across fascia, regions, and months.
Using this data, the price index is constructed as follows:

1. Group similar barcode-level purchase data into specific cate-
gories (shampoo, milk, mineral water, etc.) and then compute a
hedonic regression

log pbst = αr
f + tt + αrt f t + rr + z

�
bβr + �bst

for each category, using the observations at store s, fascia f ,
barcode (product) b, geographic region g, time t and product
category group r. I suppress the subscripts for individual i of
household-type h who actually purchased the item on some trip.

2. From the category regression, compute predicted prices for
counter factual purchases at all fascia, dates, and regions:
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p̂bst = exp
�
α̂r

f + t̂t + α̂rt f t + r̂r + z
�
b β̂r + �̂bst

�
.

�̂bst is the residual for the price which was observed for the item
b at a specific fascia-region-date. I assume that this shock is an
unobserved product characteristic which would be the same for
any household purchasing the same item at a different fascia
and date, regardless of household type.

3. Compute the predicted price for fascia-product category-month-
region-household type by taking the mean over these factors:

p̂r f hgt =
1

Nr f hgt
∑

(b̃,s̃,t̃)∈Ar f hgt

p̂b̃s̃t̃

where Nr f hgt is the number of predicted prices for a fascia-
product category-household type in a given month and region
and Ar f hgt is the set of the indices for a given fascia-product
category-household type, (b, s, t).

4. Compute the product category expenditure weights for each
individual household type by region:

wrhg = ∑
i∈h∩g

∑
b∈r

eib/ ∑
i∈h∩g

∑
b

eib

where eib is household i’s annual expenditure on product b, h∩ g
is the set of households of type h in region g. Thus, wrhg is the
observed expenditure weight for all households of type h in
region g on product category r. Annual expenditure is either the
total expenditure observed per year or the observed expenditure
scaled by 12/ (Months of Data) if there is less than a year of data
for a household i. Note: these expenditure weights are assumed
to be constant over time.

5. Finally, calculate the expenditure-weighted aggregate hedonic
price index (hereafter, the ‘price index’) for each household type-
fascia-region-month
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Pf hgt = ∑
r

wrhg p̂r f hgt.

Constructing a universal ‘unit of groceries’ remains a challenge
because quality is not the same across fascia or even within fascia. In
addition, (unobserved) price tiers for different locations and formats,
promotions, stock outages, and seasonal effects further complicate
these measurements. Also, non-price competition is important in the
UK supermarket industry, especially the variation of the assortment
of goods based on local market demographics, such as stocking more
organic products in more affluent neighborhoods. As shown below,
households do not purchase the same baskets, e.g. some households
never purchase alcohol or pet food. Also, the fraction of the basket
spent on different kinds of goods changes with income. The price
index averages over these different factors. To minimize the impact of
measurement error, I include a household shock, ξh.

The use of this price index and units of a reference basket of gro-
ceries to estimate demand depends on the validity of assumption that
consumers, conditional on household type, purchase the same basket
of goods at each fascia. The mean, median, and standard deviation
of expenditure by household type and fascia on fresh food, prepared
food, alcohol and non-food at supermarkets show considerable varia-
tion: for example, the standard deviation is often the same order of
magnitude as the mean (See, for example, the mean and standard
deviation for alcohol in Table 45 and Table 46.).8 Furthermore, median
alcohol expenditure is zero for all household type-fascia pairs and me-
dian non-food expenditure is almost always zero. In addition, research
for US consumers indicates that they purchase different baskets from
different stores, that different fascia are even complementary, and con-
sumers often make more than one stop on a trip [Briesch et al., 2010].
Because consumers often deviate from the reference basket both in
quality and composition, consumer expenditure is observed with mea-
surement error. If the shock ξh fails to control for this heterogeneity,
the model will suffer from endogeneity.

In addition, expenditure and basket composition are correlated with
fascia because different fascia target different demographic segments.
This correlation could also be caused by TNS’s sampling mechanism
if household type is correlated with other demographics which pre-
dispose a household to choose a specific fascia or basket as well as

8Tables for the other expenditure categories are available upon request.
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the location where they live. This endogeneity would be even more
important to handle in a dynamic model where firms (and households)
choose locations.

b.3.4 Computation of Choice Sets and Distance

To simplify estimation and welfare calculations, I assume that the
choice set of each household or OA consists of the 30 nearest stores.
This assumption seems reasonable, based on the statistics in Table 47
which show mean, median, and 75-th percentile distances for the 30
stores closest to each OA by region. Because consumers have high
disutility from travel [Smith, 2004], most households are unlike to
consider stores outside this choice set unless a particular store is
conveniently located or stocks a good which the consumer values
highly.

A small fraction of households actually shops at more distant stores;
Beckert et al. [2009] drop these observations from the data which
could bias the results. The choice set may also overstate demand for
convenience stores if consumers are less willing to travel to smaller
stores than larger formats. Constructing choices sets of a uniform size
does, however, facilitate implementation of the estimation code, and
captures the majority of the stores that each household considers.
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