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Abstract

A major goal for face recognition is to identify faces
where the pose of the probe is different from the stored
face. Typical feature vectors vary more with pose than with
identity, leading to very poor recognition performance. We
propose a non-linear many-to-one mapping from a conven-
tional feature space to a new space constructed so that each
individual has a unique feature vector regardless of pose.
Training data is used to implicitly parameterize the position
of the multi-dimensional face manifold by pose. We intro-
duce a co-ordinate transform which depends on the position
on the manifold. This transform is chosen so that different
poses of the same face are mapped to the same feature vec-
tor. The same approach is applied to illumination changes.
We investigate different methods for creating features which
are invariant to both pose and illumination. We provide
a metric to assess the discriminability of the resulting fea-
tures. Our technique increases the discriminability of faces
under unknown pose and lighting compared to contempo-
rary methods.

1. Introduction

In face recognition, there is commonly only one example
of an individual in the database. Recognition algorithms ex-
tract a feature vector from the probe image and search the
database for the face with the closest vector. Most work
in the field has revolved around selecting optimal feature
sets for this process. The dominant paradigm is the “ap-
pearance based” approach in which weighted sums of pixel
values are used as features on which to base the recognition
decision. Turk and Pentland [9] used principal components
analysis (PCA) to model image space as a multidimensional
Gaussian and selected the projections onto the largest eigen-
vectors. Other work has used more optimal linear weighted
pixel sums, or similar non-linear techniques [1, 6].

One of the greatest challenges for these methods is to

recognize faces across different poses and illuminations. In
this paper we address the worst case scenario in which there
is only one instance of each individual in a large database
and the probe image is taken with a very different pose
and under very different illumination. Under these circum-
stances, most methods fail, since the extracted feature vec-
tor changes with these “distractor” variables. Indeed the
variation attributable to these factors may dwarf the varia-
tion due to differences in identity. Our strategy is to create a
many-to-one non-linear mapping from a conventional fea-
ture space to a new space which is invariant to pose and
illumination.

2. Previous Work

The simplest approach to making recognition robust to
a distractor variable is to remove all feature measurements
that co-vary strongly with this variable. For example it
has been suggested that the first few eigenvectors can be
discarded as they mainly respond to illuminant informa-
tion. A more sophisticated approach is to measure the
amount of signal (inter-personal variation) and noise (intra-
personal variation) along each dimension and select features
for which the signal:noise ratio is optimal [1]. A problem
with these approaches is that the discarded dimensions may
contain a significant portion of the signal and their elim-
ination ultimately impedes recognition performance. For
example, features that are linearly invariant to horizontal
translation would correspond to images where there was no
variation in the horizontal dimension. In removing com-
ponents that vary under horizontal translation we have also
removed vital information needed for face recognition.

One obvious method to generalize across distractor vari-
ables is to record each subject in the database at each pos-
sible value of the variable, and use an appearance based
model for each [7]. Another approach is to use several pho-
tos to create a 3D model of the head which can then be
re-rendered at any given pose to compare with given probe
[3, 10] . The disadvantage of these methods is that they re-

Authorized licensed use limited to: University College London. Downloaded on October 27, 2008 at 13:16 from IEEE Xplore.  Restrictions apply.



quire extensive recording and the cooperation of the subject.
Several previous studies have presented algorithms

which take a single probe image at one pose and attempt
to match to a single test image at a different pose. One ap-
proach is to create a full 3D head model based on just one
image, and then re-render this at all possible poses before
searching the database [8, 2]. This approach is feasible, but
the computation required is very intensive. The most simi-
lar work to our approach is the work on “eigen-light fields”
by Gross et al. [5]. They treat matching as a missing data
problem - the single test and probe images are assumed to be
parts of larger data vector containing the face viewed from
all poses. The missing information is estimated from the
visible data, using knowledge of the covariance structure.
The complete vector is used for the matching process.

The emphasis in these algorithms is on creating a model
which can predict how a given face will appear under differ-
ent conditions. Our algorithm takes a different viewpoint.
We aim to construct a single feature which does not vary
with pose or illumination. This seems a natural formula-
tion for a recognition task. Our approach is non-linear so
that signal is preserved but the unwanted variation removed.
This is a general learning technique which can produce fea-
tures which are invariant to any dimension as long as there
are sufficient training examples for which this parameter is
known. This includes both continuous dimensions such as
pose or age and discrete dimensions such as the presence
of glasses or facial hair. Several invariances can be created
sequentially (i.e. pose invariant features are created, which
are then also made invariant to illumination) or jointly (fea-
tures are created which are simultaneously invariant to both
dimensions). It is not necessary to capture training subjects
over the complete set of possible poses which makes col-
lecting training data relatively easy.

3. Creating Invariant Features

Although we are concerned with 3D pose and illumi-
nation invariance, we first demonstrate our ideas using the
simpler case of face recognition where test and probe faces
have an unknown in-plane orientation (see Figure 1). Our
task is to take a single probe face at an arbitrary orientation,
and match it to a test face in the database with a different
orientation. Hence, we wish to make recognition invariant
to the irrelevant orientation. We term the orientation a dis-
tractor or nuisance variable, and denote its value by θ.

In order to create orientation invariant features, we re-
quire a training database with two important characteristics.
First, the value of the distractor variable must be known for
each member. Second, each individual in the training data-
base appears with at least two different values of the dis-
tractor variable. Together these characteristics provide suf-
ficient information to (i) learn how to estimate the distractor

Figure 1. We first consider face recognition in
a test database of faces at an arbitrary (and
different) in-plane orientation. The probe face
matches a single face from the database, but
is at a different orientation. Our algorithm
uses a training database, containing several
faces each viewed a number of angles.

variable when it is not known and (ii) learn how images of
the face at different distractor values are related.

The training database consisted of 20 instances each of
200 faces taken from the BIO ID database [11]. The po-
sitions of the eyes and septum were identified by hand and
defined an affine transform such that these three points were
aligned for all faces. We introduced a random in-plane ori-
entation of [−90, 90]. Faces were cropped to 32× 32 pixels
and flattened to grayscale. The lower part of Figure 1 shows
examples of these training images (all with θ ≤ 0o).

The grayscale values of each of the 4000 training faces,
were concatenated into column vectors p, each of length
32 × 32 = 1024. For each vector, the mean value is
removed, and the standard deviation normalized to unity.
These vectors form the 1024 × 4000 matrix P. We ap-
ply principal components analysis to reduce the dimen-
sionality of the input vectors. The principal components
of the dataset are calculated by performing an eigen-
decomposition of the covariance matrix, PT P, so that
PT P = VΣVT where V is an orthogonal matrix of eigen-
vectors and Σ is a diagonal matrix consisting of the eigen-
values. We truncate the spectral composition of the matrix
by discarding all but the first 100 eigenvectors and eigen-
values, to form new matrices Σ′ and V′. We then calculate
initial feature vectors x = V′p by projecting the original
vectors onto this reduced space.
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Figure 2. Scatterplot of first two features for
2000 faces (all with θ ≤ 0o). Points are color-
coded as a function of the distractor orienta-
tion variable, θ so that dark points represent
horizontal faces and light values vertical. The
position in feature space changes systemati-
cally and smoothly as a function of θ.

3.1. Modelling Manifold Shape

For most choices of feature vector, the majority of posi-
tions in the vector space are unlikely to have been generated
by face images. The subspace to which faces commonly
project is termed the face manifold. In general this man-
ifold is a complex non-linear probabilistic region tracing
through multi-dimensional space. The mean position of this
manifold changes systematically as a function of the dis-
tractor variable, θ. Figure 2 plots the first two components
of the feature vectors xi for 2000 points with θ ≤ 0o. Each
point is color coded by the distractor variable, θ, so that
dark points have orientations close to −90o and light points
have orientations near 0o. Notice that there is a systematic
and smooth change in the mean position of the manifold as
a function of the distractor variable θ so that near-horizontal
faces are represented mainly in the bottom left-quadrant and
near-vertical faces in the top-right quadrant.

We aim to implicitly parameterize the shape of the face
manifold as a function of the nuisance variable, θ. We
model the shape of the manifold at a given orientation, θ
as a multivariate Gaussian, represented by a mean vector
m(θ) and a covariance matrix, S(θ), so that the probability
of generating a vector x is given by

Figure 3. The shape of the manifold is para-
meterized as a function of the distractor vari-
able, θ. For each value of θ we calculate the
mean feature vector (red line). We also calcu-
late the covariance (ellipse presents two stan-
dard deviations for θ = −60o). Shaded region
represents the region within two standard de-
viations of the mean at some θ.

p(x|θ) =
1√

2π|S(θ)| d
2

exp
[− 1

2 (x − m(θ))T S−1(x − m(θ))
]

(1)

Figure 3 replots the first two features and shows the value
of the mean, m parameterized by the distractor variable, θ
(red line). The covariance is depicted for the value θ = −60
by an ellipse representing a Mahalanobis distance of 2. The
shape of the manifold in this two-dimensional subspace is
visualized by displaying the envelope of all of these covari-
ance ellipses (shaded area). The mean at each value of θ
is calculated by Gaussian weighting the data points by their
θ-proximity.

m(θ) =
∑n

i=1 xi exp
[−(θi − θ)2/2σ2

m

]
∑n

i=1 exp [−(θi − θ)2/2σ2
m]

(2)

where xi is the i’th training data vector, θi is the associated
value of the distractor variable, σm is a smoothing para-
meter and n is the total number of training vectors. This
weighted/regularized estimate has two advantages. First, it
ensures that the mean and the covariance of the manifold
change smoothly with θ. Second, it ensures that the esti-
mates can always be calculated, even when data around this
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Figure 4. We plot the feature vector for a sin-
gle face as a function of orientation. Notice
that while it follows the general shape of the
manifold (shaded area), it’s position relative
to the manifold varies. For some values of
the distractor variable it is above the man-
ifold, whereas for others it is to the left or
right. The blue axes represent a local change
in co-ordinates for a given value of θ.

value of θ is sparse. A similar formulation is used to calcu-
late a smoothly varying covariance function.

3.2. Creating Invariance

Figure 4 depicts a single face projected into this two di-
mensional subspace, also parameterized by the distractor
variable θ. As this example face varies from horizontal to
vertical the projection, x(θ) (black line) moves around the
manifold (shaded area). On average the movement follows
that of the mean, m(θ) of the manifold (red line), but at any
given value of θ the position relative to the mean changes.
Let us consider the vector y(θ) from the mean at a given
value of the distractor variable to the feature vector at the
same value of the distractor variable:

y(θ) = x(θ) − m(θ) (3)

The vectors y are depicted as the “spokes” connecting the
mean (red line) to the path of the particular face (black line)
in Figure 4. Notice that this vector is not constant as a func-
tion of the distractor variable θ. At θ = −90, x is to the
left (lower value of feature 1) of the mean m, whereas at
θ = −20, x is to the right (higher value of feature 1) of the

mean. In general there is no particular reason why the fea-
ture vector y should be invariant to the distractor variable.

The core of our method is to define a local transforma-
tion f which depends on θ and acts on yi(θ) to form a new
vector ci which is always constant:

f(yi(θ), θ) = ci ∀ θ, i (4)

The transformation is defined so that it produces a different
constant vector, ci for each individual, i in the database.

We might consider a number of different forms for the
function f(θ), but a reasonable starting point is to consider
a rigid rotation, R(θ) around the local origin, m(θ). In
other words, we define a change in co-ordinate system that
depends on θ. The local co-ordinates change with θ so that
y(θ) remains constant when expressed in the new frame.

In Figure 4, the local co-ordinate frame is depicted by
a set of blue axes for θ(−30). These axes rotate as they
traverse along the mean m(θ) (red line). The rotation is
chosen so that for every θ the local value of y (black spoke
from the current point on the manifold mean) is a constant
vector in the local frame of reference defined by the axes.
The problem of calculating invariant feature vectors is now
re-cast as finding the rotation R as a function of the distrac-
tor variable, θ, and the constant vectors, ci.

4. Invariance To In-Plane Orientation

In this section we provide a concrete example of our
technique. We quantize the distractor dimension into nk

evenly spaced bins θk, and represent the function in each
bin by the rotation matrix Rk. Consider the case where we
have nf training feature vectors of dimension nd from each
of ni individuals. This provides a total of ny = nf × ni

feature vectors y, each of which has an associated value of
the distractor variable, θ. Let Y be the nd ×ny matrix con-
taining these column vectors. Similarly, let C be a nd × ni

matrix where each column represents the invariant feature
associated with individual i. We seek:

arg min
C,Rk

E =
nk∑

k=0

‖RkYWk − CTWk‖F (5)

where the operator ‖.‖F denotes the Frobenius norm. Wk

are diagonal ny × ny weight matrices in which the entries
depend on the distance between the current distractor vari-
able θk and the distractor value for each of the ny training
vectors, θy . These weights are calculated as in Equation
2. The ni × ny identification matrix T contains only zeros
and ones and indicates which feature vectors in Y belong
to which individual (and hence to which invariant vector in
C). Assuming that the vectors in Y are ordered by individ-
ual, it will have the form:
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T =




1 1 · · · 1 · · ·
1 1 · · · 1 · · ·

...
...

. . .
...

· · · 1 1 · · · 1


 (6)

Our approach is to alternately minimize the error, E with
respect to the functions Rk and the constant vectors, ci.
The algorithm is as follows:

Algorithm 1 Learn Invariant Mapping

Rk ⇐ I
C ⇐ 1

nf
YTT

while ∆E ≥ ∆Etol do
for all k do

Rk ⇐ PROCUSTES(YWk,CTWk)
end for
C ⇐ 1

nf nk

∑nk

k=1 RkYWkTT

E ⇐ ∑nk

k=0‖RkYWk − CTWk‖F

end while

The function R = PROCRUSTES(A,B) returns the solu-
tion to the orthogonal Procrustes problem (see [4]), which is
the rotation matrix R which most closely fulfils RA = B.
The result of this algorithm is a set of co-ordinate transfor-
mations Rk which vary as we iterate along the quantized
distractor variable, θk. The Gaussian weighting matrix en-
sures that the transformation changes smoothly. The invari-
ant features of the training faces, C may be discarded.

4.1. Calculating Invariant Features

To calculate the invariant feature vector associated with
a new face, we first project into the reduced eigenspace, to
form the data vector x. Then we estimate the value of the
distractor variable using Bayes rule.

p(θk|x) =
p(x|θk)p(θk)∑nk

l=1 p(x|θl)p(θl)
(7)

where p(x|θk) is given by Equation 1. For simplicity we
select the maximum a posteriori (MAP) value of k. We
calculate the vector y relative to the local mean, mk and
transform by the local transformation Rk. The complete
algorithm is:

Algorithm 2 Calculate MAP Invariant Feature
x ⇐ V′p
k ⇐ arg maxk{p(θk|x)}
y ⇐ x − mk

ĉ ⇐ Rky

4.2. Results

We calculated the invariant mapping for the in-plane ori-
entation example using nf = 20 images from each of
ni = 200 individuals. We quantized the distractor vari-
able (orientation) into nk = 181 bins in 1o increments from
−90 to +90o. We formed a test database containing one
example each of 200 different faces. Each test face had a
different random orientation. We calculated the pose invari-
ant vector for each face, c. We used 200 probe faces, which
came from the same individuals as the test dataset, but were
at a different random orientation. We calculate the pose in-
variant vectors for each of the probe faces. We use nearest
neighbor matching in the 100 dimensional invariant space to
identify which test face is most similar to each probe face.

For almost all cases, the MAP estimate of the distractor
variable was very close to the true value, with a mean error
of the order of 2o. Recognition performance was very good.
For 192 out of 200 probe faces, the first choice match was
correct. Visual inspection of the failures indicated that the
chosen match was very similar to the probe face. This may
partly reflect the limitations of our low resolution 32 × 32
grayscale input images.

4.3. Visualizing Invariant Vectors

In this section we describe a method for visualizing the
invariant features. Consider a given face feature vector, pi,
which maps to the invariant feature ci. We aim to visualize
all other face feature vectors which project to the same in-
variant feature ci. Intuitively, these faces should look like
the original face under all possible values of the distractor
variable, θ.

Algorithm 3 Visualize Invariant Feature
c ⇐ INV ARIANT (p)
for all k do

yk ⇐ RT
k c

xk ⇐ mk + yk

pk = V′T xk

end for

where INVARIANT corresponds to Algorithm 2.
Figure 5 shows the results of this process for three faces

from the test database (top). The first row consists of a num-
ber of face images which map to exactly the same vector ci

as the first face. The second and third rows correspond to
the second and third faces respectively. In each case, the
faces look like rotated versions of each other. The mapping
of these images to the same vector constitutes invariance to
in-plane orientation. Note that this is not mere interpolation
since only a single instance of each of these faces was used,
and even this was not in the training database.

Authorized licensed use limited to: University College London. Downloaded on October 27, 2008 at 13:16 from IEEE Xplore.  Restrictions apply.



Figure 5. An invariant feature vector was cal-
culated for each of the three faces at the
top of the figure. The three rows of faces
underneath correspond to other faces which
project to the exactly the same vector.

4.4. Functional Forms for Transformation

At the heart of the technique for calculating invariant fea-
ture vectors is an orthogonal transormation Rk which varies
smoothly as a function of the distractor variable index, k.
This corresponds to a change of co-ordinates relative to the
local manifold mean, as depicted in Figure 4. There is no
reason why this transformations should be limited to pure
rotation. However, we do expect mappings to be smooth
since faces which are similar at one value of the distractor
variable will tend to look similar at other values.

In order to incorporate a more sophisticated function
f(y) we make three substitutions. First, the forward model,
Rky is replaced by the new function fk(y). Second,
PROCRUSTES(A,B) is replaced by an estimation pro-
cedure for the parameters of fk which aims to minimize
‖fk(A) − B‖F . Finally, in order to visualize the invari-
ant feature, we replace RT in Algorithm 3 by the func-
tion inverse f−1(c). This final substitution is not required
for recognition performance, so non-unique functions are
permitted. We have experimented with using a general lin-
ear transformation instead of a rotation, and this improves
recognition rates to 196/200.

5. Invariance to 3D Pose and Lighting

We now consider the more challenging case of face
recognition under different poses and lighting conditions.
We restrict our discussion to variations in horizontal pose
and horizontal lighting direction, although the same ideas
can be applied to the more general problem if enough data is
gathered. We have collected a database in which the lighting
direction, φ varied from −90o to +90o in 30o increments.

Figure 6. Training faces were captured with
systematically varying pose (top) and illumi-
nation (bottom). All combinations of pose
and illumination were captured.

The camera pose, θ varied from −90o to +90o for each of
these lighting directions (see Figure 6). Ten unique posi-
tions on the face were identified by hand. Combinations of
the features were used to extract pixel regions correspond-
ing to the nose, eyes and mouth of the object. Pixels from
these regions were concatenated to create the initial feature
vectors, p. The pixel data was projected onto the first 20
eigenvectors to form a reduced feature vector, x.

5.1. Quantifying Invariance

We propose a measure of the feature discriminability,
which quantifies the success of our method, even when the
test database is small, and recognition rates are close to
100%. We compare within-class to between-class variance.
We might expect our technique to reduce the within-class
variance since the feature vectors are now relatively con-
stant as a function of 3D pose and illumination. Let the
nd × ny matrix Y denote a feature matrix where each col-
umn represents one nd dimensional feature vector. This
might contain the features before or after invariance is in-
troduced. We assume that this matrix contains nf features
from ni individuals so that ny = nf × ni. Let T repre-
sent the ni × ny identification matrix mapping individuals
to data vectors (see Equation 6). If we assume that the mean
feature vector, y is zero, then the within- and between-class
variances, SW and SB are as follows:

SW =
1

nfni
(Y − 1

nf
YTT T)(Y − 1

nf
YTT T)T (8)

SB =
1

n2
fni

YTT TYT (9)

We define our measure of discriminability as:

D =
Trace(SB)

Trace(SB) + Trace(SW )
(10)
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Figure 7. (A) Scatterplot of first 2 dimensions
of original space. Each continuous line repre-
sents data from one subject, ordered by hor-
izontal pose. Variation due to pose change
is much greater than variation due to identity.
(B) First 2 components of the invariant vector.
There is little variation with pose, but different
individuals (line segments) are separated.

This index compares the between-subject variance to the
within-subject variance. If the between-subject variance
dominates the index will be near one. If the within-subject
variance dominates, the index will be near zero.

5.2. Pose Only Results

We first test our algorithm on a subset of data in which
only pose was varied. The training dataset consisted of 225
images of 20 different individuals at random poses, θ, be-
tween ±90o. Test data consisted of 235 images of 18 dif-
ferent individuals also at random orientations, but with the
same lighting conditions. The pose dimension was subsam-
pled into 181 distinct bins. The weighting standard devia-
tion was set to 40o. The pose of the test samples was as-
sumed known to make comparison with [5] fair. The trans-
formations Rk were linear.

Figure 7 (A) shows a scatter plot of the first two compo-
nents of the orignal vectors X. Connected points originate
from the same subject and are plotted in order of θ. In Fig-
ure 7 (B) the first two components of the invariant features
C are shown. Points originating from the same individual
project to nearly the same place. Figure 8 (A) plots the
discriminability index in the original and invariant spaces.
The initial eigenvectors, x are dominated by within-subject
variance (D ≤ 0.5), whereas the invariant features, c are
dominated by between subject variance (D close to 1). We
also plot gold standard discriminability. This was calculated
by extracting features from several images of each subject
in which pose and lighting were constant. The remaining
within-subject variation is due to expression changes and
variability in the feature extraction process. Finally, we plot

the results of the algorithm of Gross et al. [5]. Here the
pose was discretized into 8 bins. Each training subject con-
tributed one image to each bin. Twenty “eigen-light field
vectors” were calculated. The same test dataset was used to
calculate the final feature vectors. The discriminability was
less than for our algorithm.

We also compared these algorithms for using a subset of
the FERET database. The training set consisted of 200 faces
each viewed from 10 different poses in the range [-90, 90].
We tested each algorithm using 100 different faces across all
pairs of poses from the set, using a nearest-neighbour clas-
sification algorithm. The eigen-light field algorithm pro-
duced features with a discriminability of 0.6395 and 54%
recognition performance across pose. This is similar to re-
sult presented in [5] for weakly registered data. The invari-
ant features produced by our algorithm had a discriminabil-
ity of 0.8755. Recognition performance across pose was
61%. We conclude that our algorithm produces comparable
or better results than that of [5].

5.3. Pose and Illumination Results

There are two distinct approaches to making the ex-
tracted feature vectors invariant to pose and lighting direc-
tion. In the joint approach, we model the manifold as a
2D surface and calculate a mapping Rk,l, which depends
on the two dimensional position on the manifold, (θk, φl).
If we quantize each dimension into nk bins, this technique
requires us to estimate (nk)d transformations. Hence, it
may not be tractable in high dimensions unless the per-
dimension sampling is considerably reduced. We term the
second approach sequential invariance. Recall that our al-
gorithm maps one feature vector x to another vector c of
the same dimension where this feature is invariant to the
distractor variable, θ. We use this θ-invariant feature c as
the input for a second process in which we make the vector
invariant to a second distractor variable, φ. This process can
be repeated until the discriminability, no longer increases.

The pose dimension was subsampled into 31 distinct bins
and the lighting dimension into 7 bins. The weighting stan-
dard deviation was 40o for each dimension. The first 60
eigenvectors were used as the initial features.The training
dataset consisted of a total of 1846 images of 20 individ-
uals under different lighting and pose conditions. The test
dataset consisted of 168 images of 18 different individuals.
Figure 8 (B) shows the results of our algorithm on the pose
and lighting dataset illustrated in Figure 6. The plot shows
the discriminability, D of the resulting data vectors for the
original dataset, feature vectors invariant to pose alone, fea-
ture vectors invariant to lighting alone, the jointly invariant
data vectors and the sequentially invariant feature vectors.
Figure 8 (B) shows that our method significantly increases
the discriminability of face vectors under unknown pose and
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Figure 8. (A) “Pose-Only” results. From L to
R, Original features x, Invariant Features, ĉ,
Gold Standard, Eigen-Light Fields approach
of Gross et al. (B) “Pose and Illumination”
results. From L to R, Original Features, x,
features invariant to illumination, ĉL, invariant
to pose ĉp, both sequential ĉseq, both joint ĉjt

lighting. The most optimal condition is to render features
jointly invariant to pose and orientation.

6. Discussion

In this paper we have presented a supervised method for
rendering face recognition features invariant to nuisance pa-
rameters such as pose and lighting. We have demonstrated
the results on the toy-problem of in-plane orientation and
for horizontal pose and lighting-direction. First, we esti-
mate the value of the nuisance variable(s). We then define a
transform upon the data which is contingent on the value of
the nuisance variable and produces a invariant new vector.
We present a technique for visualizing invariant vectors, by
showing the set of the original vectors which project to it.

The most closely related approach to our work is the
“eigen-light fields” of Gross et al. [5]. They utilize an ex-
tended feature vector in which the image data from several
different poses is concatenated. The eigenvectors of this ex-
tended space are calculated and used as the input features.
A given probe face is considered as an input vector with
missing data (the other poses). The expected value of this
missing data can be predicted based on the known data (the
image at a given pose), and is determined by a linear trans-
form determined by the data covariance.

This is similar to our formulation in which the pose-
invariant vector c is related to the input vector yk at a given
value of pose (θk) by a transformation, Rk. However, our
approach is potentially more expressive as this transforma-
tion may be an arbitrary function. Our approach has several
advantages. First, we provide a coherent mechanism for es-
timating the (potentially unknown) value of the distractor
variable. Second, we can apply more complicated transfor-
mations to model the variation as a function of the nuisance

variable. Third, for comparable amounts of training data,
our algorithm gives better performance. This may reflect
the regularizing effect of weighting the data points based on
their proximity in “nuisance space”. Fourth, our algorithm
does not require training data to be coarsely binned, nor
does it require complete training data for any given subject.
Importantly, the philosophy of our approach differs. Gross
et al. learn how images at one pose are related to images
at another with a view to predicting the full light-field from
one pose. Our approach aims to eliminate the pose variable
from the feature vector entirely.
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