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Abstract

Point mutations in LRRK2 cause autosomal dominant Parkinson’s disease. Despite extensive efforts to determine the
mechanism of cell death in patients with LRRK2 mutations, the aetiology of LRRK2 PD is not well understood. To examine
possible alterations in gene expression linked to the presence of LRRK2 mutations, we carried out a case versus control
analysis of global gene expression in three systems: fibroblasts isolated from LRRK2 mutation carriers and healthy, non-
mutation carrying controls; brain tissue from G2019S mutation carriers and controls; and HEK293 inducible LRRK2 wild type
and mutant cell lines. No significant alteration in gene expression was found in these systems following correction for
multiple testing. These data suggest that any alterations in basal gene expression in fibroblasts or cell lines containing
mutations in LRRK2 are likely to be quantitatively small. This work suggests that LRRK2 is unlikely to play a direct role in
modulation of gene expression, although it remains possible that this protein can influence mRNA expression under
pathogenic cicumstances.
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Introduction

Mutations in Leucine Rich Repeat Kinase 2 (LRRK2) are the

most common Mendelian genetic cause of Parkinson’s disease

(PD) currently identified [1]. Additionally, variation at this locus

has recently been implicated as a risk factor for sporadic PD in

two genome wide association studies [2,3]. Although the

function of LRRK2 is unknown, the presence of a kinase

domain, a GTPase domain and protein/protein interaction

domains within its open reading frame has led to suggestions

that it could act as a signaling node within cells, with the

protein/protein interaction regions functioning as scaffolding

areas to recruit binding partners and substrates to an active

complex [4,5]. LRRK2 has been implicated in a number of

signaling pathways including ERK signaling and the mTOR

pathway [4,6,7]. It is likely that if LRRK2 does act in this

manner, then alterations in the activity of this protein would

result in changes in signaling pathways leading to downstream

shifts in gene expression.

In addition, a recent study has suggested that pathogenic forms

of LRRK2 bind directly to the miRNA processing enzyme

Argonaute and thus influence mRNA levels in a Drosophila model

of LRRK2 disease [8]. Because mammalian miRNAs potently

reduce mRNA levels [9], the prediction from the Drosophila data

would be that steady state mRNA levels of miRNA targets are

altered in the presence of mutant LRRK2. To test whether

mutations in LRRK2 cause an alteration in basal gene expression

we have examined the impact of mutations in three contexts:

fibroblast cells cultured from PD patients carrying mutations in

LRRK2 (including the R1441G, Y1699C and G2019S muta-

tions), brain tissue from 5 patients carrying the G2019S mutation

compared to idiopathic PD and control brain tissue [10], and

HEK293T cells stably transfected with a plasmid allowing

inducible expression of LRRK2 with or without the R1441C
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mutation. We have compared global gene expression in these

systems, searching for differences between wild type and mutant

conditions.

Materials and Methods

Fibroblast culture
Fibroblast cultures were isolated from PD patients with LRRK2

mutations and healthy controls (summarised in table 1) following

approval of the study by the ethics board of the Royal Free Hospital,

London, UK and informed written consent from the individuals

concerned. Skin punch biopsies (forearm) were cultured in 5 cm2

sterile Petri dishes at 37uC in 5% CO2 in 2 ml DMEM

(supplemented with 10% Fetal Bovine Serum and 1% Penicillin/

Streptomycin solution) until fibroblasts were seen to migrate from

the skin explants [11]. Media volume was increased by 0.5 ml every

2 days. When plates were confluent, fibroblasts were lifted from

dishes by trypsinising with TrypLE (Invitrogen) and transferred to

10 cm2 dishes for culturing. Samples were designated anonymous

identifiers following collection. For collection of RNA, cells were

plated in 10 cm plates at equivalent passage number (n = 7) and at

equal density. Following 24 hours growth, RNA was extracted using

the RNeasy kit (Qiagen) and RNA quality ascertained prior to

microarray analysis using RIN analysis (Agilent). Western blot

analysis of endogenous LRRK2 expression was carried out by

immunoblotting following BCA assay (Pierce, as per manufacturers

instructions), with 10 mg of lysate loaded onto 4–12% Bis Tris gels

(Invitrogen) following denaturation in 4x sample buffer (Invitrogen)

supplemented with 5% b-Mercaptoethanol (Sigma). Proteins were

transferred to PVDF membrane (Millipore) and membranes

blocked with 5% milk solution in Phosphate buffered saline for

1 hour prior to probing with primary (90minutes) and secondary

(60minutes) antibodies. For LRRK2, rabbit monoclonal MJFF2

(Epitomics – see http://www.pdonlineresearch.org/discussions/

lrrk2-antibodies for characterisation of these antibodies) was used

at a 1:1000 dilution, for b Actin mouse monoclonal AC-74 (Sigma)

was used at a 1:5000 dilution. HRP secondary antibodies were used

at a dilution of 1:2000 and 1:10000 for LRRK2 (rabbit) and b Actin

(mouse) respectively. Membranes were washed three times in PBS

supplemented with 1% tween, and exposed to Supersignal ECL

substrate (Pierce). Membranes were exposed to Kodak biomax film

and developed on a Fujifilm developer as per manufacturers

instructions.

HEK293t LRRK2 expression
Flp-In-TRex-LRRK2 293 inducible cell lines [12] were grown

in DMEM with 10%FBS, Pen/Strep, Blasticidin (15 ug/ml final

conc.), Hygromycin (100 ug/ml final conc.). To induce LRRK2

protein expression, Doxycyclin (1 ug/ml final conc) was added to

growth medium for 24–48 hours. LRRK2 expression was detected

using mouse V5 Ab (Invitrogen) against V5 tag for Western blot

and/or ICC. For Western Blotting and Illumina assay, inducible

LRRK2 cells were seeded at 0.96106 cells/well in 6-well plates.

Cells were induced with Doxycyclin and harvested at different

time points with either 0.5 ml Trizol for RNA extraction or PBS

for immunoblot analysis as described above. Expressed LRRK2

was demonstrated to possess kinase activity as previously described

[13,14].

Brain samples
Occipital cortex samples were obtained from the Queen

Square Brain bank (four G2019S samples and idiopathic PD

control samples) and Sun Health brain bank (one G2019S

sample and 36 neuropathologically examined control samples)

[15]. Details of the brain samples used in this study are

summarised in table 2. Samples from both sites had fully

informed consent for retrieval and were authorized for ethically

approved scientific investigation (Research Ethics Committee

number 10/H0716/3).

Human oligonucleotide arrays
Illumina HumanWG-6 and HumanHT-12, and Affymetrix

Exon 1.0 ST Arrays were used according to manufacturer’s

instructions as previously described [16]. Briefly, 500 ng of total

RNA was processed for each sample and quality control using

RNA integrity number (RIN) performed prior to analysis [17].

Expression data was subjected to quantile normalization and

differential expression values calculated on sets of biological

replicates. The threshold for significance for individual genes was

set at +/21.5 fold expression between conditions and P,0.05.

Cluster analyses were derived using the Illumina Beadstudio

software suite. Expression data from this study are MIAME

compliant and have been deposited in the GEO database

(accession number GSE25580).

Results

We compared gene expression in three systems: an inducible

HEK cell model, patient fibroblasts and patient brain samples for

wild type and mutant LRRK2. To confirm expression of LRRK2

in these systems, we carried out western blot analysis using anti-V5

and anti-LRRK2 antibodies for the HEK cells and fibroblasts/

brains samples respectively (Figure 1). In the HEK cells, basal

expression of LRRK2 was low but was increased after induction

within 24–48 hours. Expression levels were similar in both WT

Table 1. Patient and control fibroblast samples used in this
study.

Mutation LRRK2 Domain N

R1441G ROC 2

Y1699C COR 1

G2019S Kinase 8

Controls N/A 11

doi:10.1371/journal.pone.0022489.t001

Table 2. Mutant and idiopathic PD occipital cortex samples
used in this study.

Case Age at death Sex Pathology Post mortem delay

G2019S 1 84 F Limbic 32.2

G2019S 2 80 F Limbic 44.4

G2019S 3 81 F Limbic 15

G2019S 4 72 F Limbic 24.55

G2019S 5 85 M Limbic 2

IPD 1 78 F Neocortical 60.3

IPD 2 73 F Neocortical 29

IPD 3 84 F Limbic 30

IPD 4 77 M Limbic 41

IPD 5 85 M limbic 49

doi:10.1371/journal.pone.0022489.t002
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and R1441C lines (Figure 1A and 1B). We also confirmed

expression of WT and mutant (G2019S and Y1699C) LRRK2 in

fibroblast samples (Figure 1C), which again showed similar levels

of expression. Finally, we assessed LRRK2 protein levels in

occipital cortex (Figure 1D), demonstrating expression of full

length LRRK2.

Having confirmed the expression of LRRK2 at the protein level

in these systems, we carried out genome wide expression analysis.

In the HEK cells we compared each cell line induced for 12 h or

24 h to its uninduced controls; no differences in gene expression

were seen in either WT or R1441C expressing cells (Figure 2A–D).

Similarly, no differences in gene expression were seen in fibroblast

cell lines with heterozygous mutant (G2019S) LRRK2 compared

to wild type controls (Figure 2E).

We also examined gene expression in brains of LRRK2 carriers

compared to controls and to idiopathic PD (Figure 2F–H). For this

series of experiments, we took tissue from the occipital cortex,

where LRRK2 is expressed but where there is little evidence of the

disease process as Lewy bodies are rarely formed here and there is

no cell loss [18,19]. Therefore, the aim of this analysis was to

isolate the effects of LRRK2 from the disease process in the

relevant tissue of human brain. Supporting the assumption that

the occipital cortex is largely spared from the disease process,

idiopathic PD cases showed no difference in gene expression

compared to neurologically normal controls in this brain region

(Figure 2H). However, as in the cell line analyses, there was no

effect of LRRK2 mutation on gene expression compared to either

neurologically normal controls or idiopathic PD cases (Figure 2F

and G).

We considered that simply looking for genes whose steady state

expression might miss more subtle patterns in the data and

therefore examined overall gene expression by unsupervised

hierarchical clustering (Figure 3). Samples did not separate by

genotype, again suggesting that there is no significant or consistent

difference between the mutant and wild type cells.

Discussion

This study assessed a series of patient fibroblast cells

harbouring mutations in LRRK2, brain samples from G2019S

carriers and a cell line system over-expressing LRRK2 wild type

and mutant transgenes for alterations in gene expression due to

the presence of mutant LRRK2. Overall, our data show that any

differences in gene expression are lower than the relatively

modest cutoffs (1.5 fold, p,0.05 after correction for multiple

testing) used. In turn, this suggests that mutant LRRK2 does not

elicit large changes in steady state mRNA levels within the cell

under normal growth conditions. This is in contrast to a recent

publication studying a series of mononuclear cells carrying the

G2019S mutation [20] and data from Drosophila and a HEK cell

model [8]. There are a number of possible reasons for the

divergence in our data from those in these studies. With regard to

the former, our cellular studies have been carried out on cultured

cells in a monolayer, rather than primary cells in a suspension,

and both fibroblasts and HEK cells represent a significantly

different cell type to mononuclear cells. Focussing on the

relevance of these systems to the biology of LRRK2, it is notable

that both cell lines carrying plasmids allowing the inducible

expression of LRRK2 and patient fibroblast samples have been

used as model systems for examining the aberrant behaviour of

mutant LRRK2 [8,21]. The recent report of induced pluripotent

stem cells (iPSCs) from a patient carrying a G2019S mutation

offers a model system closer to the human brain for analysing

gene expression alterations due to mutations in LRRK2 [22]. To

date, however, it has not been possible to carry out gene

expression analyses from multiple replicates of iPSC lines

generated from multiple independent LRRK2 mutation carriers,

a key requirement if changes in expression are to be detected and

ascertained as significantly correlated with mutant LRRK2

alleles. To follow up on our analysis of LRRK2 mutations in

model systems used to assess the biology of LRRK2, we

examined the impact of mutant LRRK2 in a disease setting by

carrying out a case control comparison of brain tissue from

patients carrying mutations in LRRK2, idiopathic patient brain

material and control samples derived from the Queen Square and

Sun Health brain banks. Similar to our data from cellular

analyses, no impact of mutations upon expression was observed

once correction for multiple comparisons had been carried out. It

should be noted that analysis of brain expression was limited by

the small number of G2019S brain samples available for mRNA

extraction, an issue that is also reflected in the number of

pathological reports for LRRK2 cases [19].

Our results do not exclude the possibility that gene expression

can be differentially altered by mutations in LRRK2 under

conditions of stress, for example under starvation conditions,

oxidative challenge or widespread cell loss [4]. Several recent

papers have highlighted a potential role for LRRK2 in stress

response via the mTOR pathway, and it is plausible that LRRK2

Figure 1. LRRK2 expression in inducible HEK cell lines and
primary fibroblast cultures. (A) Induction of LRRK2 expression
following exposure of cells to Doxycyclin as measured by immuno-
blotting for V5 epitope (B) Normalised protein expression of wildtype
and R1441C plotted over time (C) Western blot analysis of endogenous
LRRK2 expression in representative mutant and wild type fibroblast
lines (D) Western blot analysis of LRRK2 in human occipital cortex.
doi:10.1371/journal.pone.0022489.g001
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exerts an influence on gene expression following activation in

response to cellular stress. With regard to alterations due to

miRNA regulation, our data demonstrates no overall impact on

mRNA levels. This does not exclude translational regulation as a

mechanism through which a putative LRRK2 miRNA pathway

could operate, although the recent publication by Guo et al

emphasizes that miRNAs in mammalian cells predominantly

function by directly impacting on mRNA levels rather than by

premature translation termination or inhibiting ribosome forma-

tion or binding [9].

In summary, our data provides evidence from two independent

cellular model systems and brain tissue from patients that LRRK2

mutations do not result in large alterations in basal gene expression

under normal growth conditions. These data raise the possibility

that mutant LRRK2 exerts its pathogenic affect through an

alternative mechanism, for example through post translational

Figure 2. Gene expression scatterplot analysis. (A) Uninduced expression state of HEK cells stably transfected with a construct expressing WT
LRRK2 under the control of an inducible promoter (y axis) vs. cells induced for 12 hrs (x axis) and (B) 24 hrs. The same experimental paradigm was
used for pathogenic mutant LRRK2 R1441C (C–D). n = 6 for all groups. Outer lines denote 1.5 fold expression differences. No genes expressed outside
these levels reached significance (p,0.05). (E) Fibroblast expression profile of Control vs. pathogenic mutant LRRK2. WT (y axis, n = 10) and mutant
LRRK2 G2019S (x axis, n = 8). Outer lines denote 1.5 fold expression differences. No genes expressed outside these levels reached significance
(p,0.05) (F–H) Case control comparison of gene expression in brain tissue from G2019S vs iPD (F), G2019S vs control (G) and iPD vs control (H). n = 5
for G2019S and iPD, n = 15 for control. Outer lines denote 1.5 fold expression differences. No genes expressed outside these levels reached
significance (p,0.05).
doi:10.1371/journal.pone.0022489.g002
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modification via its kinase activity or through altered recruitment

of other co-factors to an active enzymatic complex, aspects of the

biology of LRRK2 that are undergoing investigation in a number

of laboratories [23,24].
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