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Abstract

Background

Ischaemic cardiovascular disease, including myocardial infarction and stroke, is the

leading cause of morbidity and mortality worldwide. Atherosclerosis and coronary

artery disease, which underpin ischaemic cardiovascular disorders, are characterised

by chronic inflammation of the blood vessel wall and endothelial dysfunction. C-type

natriuretic peptide (CNP) has recently been identified as an endothelium-derived

hyperpolarising factor with anti-atherogenic properties. The studies described herein

investigated the hypothesis that the vasoprotective profile of CNP includes opposing

effects on endothelial and vascular smooth muscle cell proliferation and regulation of

blood pressure.

Methods

Cellular incorporation of bromodeoxyuridine was used to determine cell proliferation

and immunoblotting was employed to assess expression/activity of intracellular

signalling proteins in human umbilical vein endothelial cells (HUVEC) and rat aortic

smooth muscle cells (RAoSMC). An endothelium specific CNP knockout (ecCNP

KO) mouse model was developed and organ bath pharmacology utilised to assess

vascular reactivity in vitro, and radiotelemetric monitoring used to determine blood

pressure in vivo.

Principal findings

CNP augmented HUVEC proliferation in a natriuretic peptide receptor (NPR)-C-

dependent fashion by up-regulating the cell cycle promoter, cyclin D1. In contrast,

CNP increased expression of the cell cycle inhibitors p21waf1/cip1/p27kip1 in RAoSMC

and reduced cell growth; the pro- and anti-mitogenic effects of CNP were mediated in

an extracellular signal-regulated kinase (ERK) 1/2-dependent manner. Vascular

reactivity and endothelial function were disrupted in isolated aortae from female

ecCNP KO mice compared to WT, whilst in males was unchanged. Female ecCNP

KO mice were hypertensive.
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Conclusions

The anti-atherogenic properties of CNP are mediated in part by NPR-C and ERK 1/2

signalling, resulting in a differential regulation of cell cycle proteins that promotes

endothelial cell proliferation and inhibits smooth muscle cell growth. Moreover,

endothelium-derived CNP is key to blood pressure regulation in females. These data

suggest that targeting CNP/NPR-C signalling may represent a novel approach for the

treatment of cardiovascular disease.
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1 Introduction

1.1 Cardiovascular disease

1.1.1 Background

In 2003, cardiovascular disease (CVD) led to the death of approximately 16.7 million

people worldwide or 29.2 % of total global deaths (World Health Organisation, 2010).

CVD is the leading cause of mortality in developed countries and this year (2010), the

WHO estimates that CVD will also be the principal cause of death in developing

countries (World Health Organisation, 2010). In England, over the past 40 years, the

mortality rate due to CVD has been reduced from approximately 260 to 80 per

100,000 population; yet, in 2008 there were still 198,000 deaths in the UK, as a result

of CVD (Department of Health, 2008;British Heart Foundation, 2008b). The

predominant forms of CVD are myocardial infarction (MI) and stroke which

accounted for approximately 48 % and 28 %, respectively, of deaths from CVD in the

UK in 2008 (British Heart Foundation, 2008b). These staggering statistics indicate

that there is a clear unmet clinical need in the prevention and treatment of CVD.

1.1.2 Atherosclerosis

Atherosclerosis is an inflammatory disease of the blood vessel wall characterised by

lipid deposition, cell recruitment and plaque formation, leading to occlusion of the

vessel and distal ischaemia (Figure 1; Ross 1999). In the coronary arteries this process

(coronary artery disease) leads to MI, whereas in the cerebral circulation,

atherosclerosis results in stroke. Endothelial cell activation, the initiating process in

the development of atherosclerosis, is caused by infiltration and retention of low

density lipoprotein (LDL) into the arterial intima (Ku et al., 1985;Steinberg,

1997;Skalen et al., 2002); this is accelerated in areas with turbulent blood flow and

hence low shear stress (Ku et al., 1985), such as bifurcation branches. Activated

endothelial cells express several cell adhesion molecules including vascular cell

adhesion molecule (VCAM)-1, intercellular adhesion molecule (ICAM)-1, platelet

endothelial cell adhesion molecule (PECAM)-1, P-selectin and E-selectin, which

promote leukocyte and platelet rolling and adhesion along the endothelium (Johnson

et al., 1997;Nageh et al., 1997;Dong et al., 1998;Cybulsky et al., 2001;Stevens et al.,



2008). Adherent monocytes and T-lymphocytes migrate into the intimal smooth

muscle layer of the artery, down a chemotactic gradient, produced by various

chemokines such as monocyte chemoattractant protein (MCP)-1, Regulated on

Activated Normal T-cell Expressed and Secreted (RANTES/CCL5) and fractalkine

(Boring et al., 1998;Lesnik et al., 2003;Veillard et al., 2004).

Figure 1
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smooth muscle cells and collagen. Immune cells and platelets release growth factors,

such as IFNγ and platelet derived growth factor (PDGF), to promote VSMC 

hyperplasia and migration. Foam cells secrete matrix metalloproteinases, which

degrade the fibrous cap, and IFNγ, which inhibits the ability of smooth muscle cells to 

synthesise collagen, rendering the plaque unstable and vulnerable to rupture (Ross,

1999;Libby, 2002). Following plaque rupture, activated platelets initiate the

coagulation cascade resulting in the formation of a thrombus, which can occlude the

vessel and impede blood flow, leading to ischaemia (Figure 1).

1.1.3 Restenosis

Arteries that become narrowed by an atherosclerotic plaque can be unblocked by a

procedure known as balloon angioplasty. This procedure involves inserting a catheter,

with a balloon attached, into the affected artery and then inflating the balloon to crush

the plaque, thereby increasing the luminal diameter and blood flow (Figure 2). This

process was conducted routinely in the 1990’s, but up to 55 % of patients exhibited

restenosis, a gradual re-narrowing of the blood vessel, within 6 months (Fischman et

al., 1994;Savage et al., 1998). Due to the high incidence of restenosis, many patients

now undergo percutaneous coronary intervention (PCI), which involves inserting a

wire metal mesh, termed a stent, a scaffold upon which new tissue can grow and also

helps maintain an open artery (Figure 2). However, balloon angioplasty followed by

stent implantation still results in approximately 25 % of patients exhibiting restenosis

(Fischman et al., 1994;Serruys et al., 1994).

The reason for this re-occlusion of inflamed arteries is that angioplasty immediately

stimulates an increase in cell adhesion molecule expression and circulating activated

monocytes (Serrano et al., 1997), which facilitates the binding of monocytes to the

endothelium and their subsequent migration into the subendothelial space. Akin to

atherosclerosis, MCP-1 seems to play a key role in the development of restenosis

(Furukawa et al., 1999;Cipollone et al., 2001), by promoting transmigration of

circulating monocytes into the arterial wall. Recruitment of activated leukocytes into

the arterial wall stimulates vascular smooth muscle cell (VSMC) migration from the

medial layer of the arterial wall, past the internal elastic lamina, into the intimal or

subendothelial space. Leukocytes also promote VSMC proliferation (Ross,



1999;Libby, 2002) leading to neointimal hyperplasia, thereby narrowing the lumenal

diameter and ultimately restricting blood flow.

Figure 2 - Balloon angioplasty, stent deploym
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thrombotic surface. First generation DES release rapamycin (sirolimus) or paclitaxel,

in order to inhibit VSMC proliferation and migration; both compounds are macrolide

antibiotics that have potent immunosuppressive and anti-inflammatory properties

(Schwertz and Vaitkus, 2003). However, these compounds are not selective for

smooth muscle cells and it has been shown that rapamycin also inhibits endothelial

cell proliferation and migration in vitro (Matter et al., 2006), which is a significant

drawback since it promotes thrombus formation.

The rate of incidence of stent thrombosis is approximately 0.5 % (Moreno et al.,

2005); this appears to be insignificant but when put into context that there were

28,000 coronary stents implanted in the UK in 2000 (British Heart Foundation, 2008a)

that equates to approximately 140 patients suffering a life threatening thrombotic

event. Patients treated with DES compared to BMS exhibit a higher incidence of MI,

partly owing to late thrombotic events (Pfisterer et al., 2006). In order to reduce

thrombotic events administration of low dose aspirin (a cyclooxygenase (COX)-1 and

-2 inhibitor), clopidogrel (a P2Y12 antagonist), and GpIIb/IIIa antagonists (such as

abciximab), is recommended for patients who have undergone stent implantation

(King III et al., 2008). However, the significant rates of restensosis and thrombotic

events show there remains a clear unmet clinical need and that pharmacological

interventions that promote endothelial cell growth but inhibit VSMC proliferation may

prove pivotal in advancing the treatment of restenosis in addition to atherogenesis.

1.2 Endothelial function

In accord with the location of the endothelium, it is the major regulator of vascular

homeostasis maintaining a balance of vascular tone, smooth muscle cell proliferation,

leukocyte activation, thrombogenesis and fibrinolysis. The normal healthy

endothelium maintains an anti-inflammatory, anti-coagulant, anti-platelet and

fibrinolytic state. This is achieved via the release of various vasodilator and

vasoconstrictor mediators of which nitric oxide (NO) has been shown to be vital

(Moncada and Higgs, 1993). Endothelial dysfunction, a key trigger for the

pathogenesis of atherosclerosis and other CVD, predisposes the vasculature to

vasoconstriction, leukocyte adherence, smooth muscle cell proliferation, platelet

activation and thrombosis (Davignon and Ganz, 2004).
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1.2.1 Nitric Oxide

NO, identified as an endothelium-derived relaxing factor (Palmer et al., 1987;Ignarro

et al., 1987), plays a crucial role in the maintenance of vascular tone and reactivity

(Moncada and Higgs, 1993). NO is synthesised from L-arginine by an enzyme termed

NO synthase (NOS), of which there are 3 isoforms. Endothelial NOS (eNOS) and

neuronal NOS (nNOS) are constitutively expressed, whilst inducible NOS (iNOS) is

up-regulated in response to pro-inflammatory stimuli such as lipopolysaccharide

(LPS). eNOS is the isoform involved in the context of vascular homeostasis as it is

predominantly expressed in the endothelium (Pollock et al., 1991) where it

synthesises NO to reduce vascular smooth muscle tone, inhibit VSMC proliferation

and inhibit leukocyte and platelet activation. eNOS is also expressed in VSMC, red

blood cells, bone-marrow derived macrophages, epithelial cells, kupffer cells and

epithelial cells (Tracey et al., 1994;Teng et al., 1998;Leifeld et al., 2002;Connelly et

al., 2005;Liang et al., 2006;Kleinbongard et al., 2006). NO diffuses from the

endothelium to the underlying vascular smooth muscle where it activates soluble

guanylyl cyclase (sGC) which catalyses the conversion of guanosine-5'-triphosphate

(GTP) to cyclic guanosine-3',5'-monophosphate (cGMP). The level of cGMP is

controlled by the activity of a group of enzymes termed cyclic nucleotide

phosphodiesterases (PDE). PDE transform cyclic nucleotides (i.e. cGMP and cyclic

adenosine-3',5'- monophosphate (cAMP)) into inactive nucleotide monophosphates.

cGMP exerts its biological effects by coupling to one of three groups of proteins:

cGMP-regulated ion channels, cGMP-binding phosphodiesterases and cGMP-

dependent protein kinase (cGK), also known as protein kinase G. In the cardiovascular

system, it is through the action of cGK, that cGMP regulates vascular tone.

NO induces smooth muscle relaxation by reducing intracellular [Ca2+] ([Ca2+]i) and by

reducing the Ca2+ sensitivity of the contractile machinery, through a variety of

pathways (Figure 3). cGK phosphorylates and opens large conductance calcium-

activated K+ (BKCa) channels which hyperpolarises the cell membrane and reduces

Ca2+ influx through L-type calcium channels (Fukao et al., 1999;Hofmann et al.,

2000). Ca2+/ATPase pump located on the plasma membrane and sarcoplasmic

reticulum extrudes Ca2+ from the cytosol into the extracellular space and the

sarcoplasmic reticulum, respectively. Ca2+/ATPase pump has been shown to be
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activated by cGMP, most likely through cGK, leading to a reduction in [Ca2+]i

(Furukawa et al., 1988;Clapp and Gurney, 1991). cGK phosphorylates IP3 receptor,

reducing channel activity in response to IP3 leading to a reduction in [Ca2+]i

(Komalavilas and Lincoln, 1996). In addition, the cGMP-cGK pathway augments

myosin light chain phosphatase (MLCP) activity with no affect on MLC kinase

activity (Wu et al., 1996). In summary, NO reduces [Ca2+]i, via various cGK-

dependent mechanisms, and promotes MLCP activity resulting in smooth muscle

relaxation (Figure 3).

Figure 3 - cGK-mediated smooth muscle relaxation

BKCa - Large conductance calcium-activated K+ channel, Cav - Voltage-dependent L-type calcium

channel, cGK - cGMP-dependent protein kinase, IP3R - Inositol 1,4,5-triphosphate receptor, MLC -

Myosin light chain, MLCK - MLC kinase, MLCP - MLC phosphatase, SR - Sarcoplasmic reticulum
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cyclase which catalyses the conversion of adenosine-5'-triphosphate (ATP) to cAMP

leading to activation of cAMP-dependent protein kinase (PKA). PKA, similar to cGK,

reduces [Ca2+]i and the Ca2+ sensitivity of the contractile machinery (Abe and Karaki,

1992).

Cyclooxygenase (COX), of which there are two isoforms, COX-1 and -2, converts

arachidonic acid to prostaglandin H2, (the precursor to prostaglandins and

thromboxanes), which is then converted by prostacyclin synthase to yield PGI2.

COX-1 is constitutively expressed in nearly all cell types whilst COX-2 expression is

induced following pro-inflammatory stimuli (Vane et al., 1998). It has been suggested

that COX-2 may be constitutively present in endothelial cells, and this may account

for the increase of cardiovascular events, with COX-2 inhibitors, although much

controversy exists with this hypothesis (Warner and Mitchell, 2008).

1.2.3 Endothelium-derived hyperpolarising factor

Endothelium-derived hyperpolarising factor (EDHF) is a third, unidentified factor

that is released from endothelial cells causing smooth muscle cell hyperpolarisation

and subsequent relaxation, which is NO- and PGI2-independent. EDHF has been

shown to be particularly important in the resistance vasculature, where it is the

predominant endothelium-derived vasodilator (Shimokawa et al., 1996;Brandes et al.,

2000), hence it is crucial in regulating peripheral vascular resistance and blood

pressure. The identity of EDHF remains elusive although numerous candidates have

been suggested including potassium ions, cytochrome P450 products, hydrogen

peroxide and recently C-type natriuretic peptide (CNP; Feletou and Vanhoutte,

2009;Luksha et al., 2009). There are currently two general pathways that are

hypothesised to explain EDHF-mediated relaxation. Firstly, an endothelium-derived

diffusible factor passes through the internal elastic lamina and reaches the underlying

VSMC at a sufficient concentration to activate inwardly rectifying K+ channels and a

Na+/K+ ATPase to initiate VSMC hyperpolarisation and relaxation. Secondly,

endothelial hyperpolarisation spreads to the VSMC through intercellular gap junctions

prompting VSMC hyperpolarisation and relaxation (Luksha et al., 2009). The

importance of EDHF in vascular homeostasis has been demonstrated using an

eNOS/COX-1 double knockout (KO) mouse model, which permitted the study of the
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role of EDHF in vivo in animals that can not synthesise NO or PGI2 (Scotland et al.,

2005c). Interestingly female double KO mice are not hypertensive, indicating female

mice rely heavily upon EDHF to regulate blood pressure, whereas male double KO

mice are hypertensive, demonstrating that males have less dependence upon EDHF to

regulate blood pressure. Indeed, male eNOS KO are hypertensive suggesting that

males depend largely upon NO as a regulator of blood pressure (Scotland et al.,

2005c).

1.2.4 Endothelin-1

To balance the biological activity of endothelium-derived vasodilators, endothelial

cells also release vasoconstrictors to increase vascular tone, VSMC proliferation,

leukocyte adhesion, endothelial permeability and platelet aggregation. Endothelin

(ET)-1, a principal endothelium-derived vasoconstrictor, is synthesised from a

preprohormone termed prepro-ET-1. This is cleaved to form a 39 amino acid peptide,

big ET-1, which is subsequently converted into mature ET-1 by endothelin converting

enzyme, found on the membrane of endothelial cells (Bohm and Pernow, 2007). ET-1

acts via two receptors, ETA primarily located on VSMC leading to vasoconstriction

and ETB, primarily located on endothelial cells but also found on VSMC. Activation

of ETB on endothelial cells releases NO whilst on VSMC results in vasoconstriction

(Bohm and Pernow, 2007). Under physiological conditions ETA-mediated

vasoconstriction is partly counteracted by ETB-mediated NO release from the

endothelium. ET-1 causes vasoconstriction by increasing [Ca2+]i, via Gq coupling

(Neylon, 1999) and Ca2+ sensitisation of the contractile apparatus, via Rho kinase

(Miao et al., 2002).

1.3 Natriuretic peptides

Natriuretic peptides are a family of highly conserved hormones which are important in

regulating vascular tone and fluid and electrolyte balance (Levin et al., 1998;Baxter,

2004). The principle family members in mammals are atrial natriuretic peptide (ANP),

brain natriuretic peptide (BNP) and CNP. ANP and BNP are released from cardiac

tissue and act in an endocrine manner to regulate natriuresis, diuresis, blood pressure

and cardiac morphology. CNP is found within the vascular system, most notably in
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the endothelium, where it acts in a paracrine fashion to regulate endothelial and

smooth muscle growth with additional vasodilator and anti-inflammatory effects,

possibly as an EDHF (Ahluwalia and Hobbs, 2005;Scotland et al., 2005a).

1.3.1 Discovery

Approximately 30 years ago de Bold and coworkers demonstrated that atrial extracts

induce a large diuretic and natriuretic response in the rat (de Bold et al., 1981). This

seminal observation led to the isolation of a peptide termed ANP. A few years later a

structurally similar, but distinct peptide with analogous natriuretic and diuretic

properties was isolated from porcine brain tissue, termed BNP (Sudoh et al., 1988).

Although originally discovered in the brain, it is now well recognised the predominant

source of BNP is cardiac tissue. Two years later Sudoh and coworkers isolated an

additional peptide from porcine brain termed CNP (Sudoh et al., 1990), although it

has subsequently shown to be widely distributed throughout the cardiovascular system

(Stingo et al., 1992). Since the discovery of the natriuretic peptides there has been

great interest in their physiological and patho-physiological roles and their potential in

the treatment of CVD.

1.3.2 Structure and synthesis

All natriuretic peptides are produced as preprohormones that are cleaved to generate

prohormones which are subsequently proteolytically processed to yield the mature

active peptide. Each member of the family possess a 17 amino acid ring structure,

formed by a disulphide linkage, which is vital for receptor binding (Lee and Burnett,

2007). Within the cyclic structure 11 amino acids are conserved (Figure 4). ANP and

BNP, but not CNP, possess amino and carboxyl terminal extensions (Ogawa et al.,

1994), which are thought to be important in determining receptor selectivity.

1.3.3 Atrial natriuretic peptide

The human ANP gene (Nppa; located on chromosome 1) contains three exons and two

introns and following translation a 151 amino acid is synthesised. Cleavage of the

amino terminal signal sequence results in the formation of a 126 amino acid peptide,

pro-ANP, which is the predominant form stored in granules within the atria
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(Vuolteenaho et al., 1985). Corin, a cardiac serine protease, cleaves pro-ANP into a 28

amino acid fragment, the mature form of ANP, and a 98 amino acid fragment (Yan et

al., 2000). ANP is released from the atria of the heart in response to stretch

stimulation, induced by hypervolaemia. ANP promotes natriuresis (de Bold et al.,

1981), vasodilatation (Currie et al., 1983) and inhibition of renin (Burnett et al., 1984)

and aldosterone (Atarashi et al., 1984) synthesis in the kidney and adrenal gland,

respectively, leading to a reduction in blood volume and hence blood pressure. In

addition, ANP reduces secretion of vasopressin from the hypothalamus (Samson et al.,

1987) indicating it also has neuromodulatory actions. ANP also prevents cardiac

hypertrophy with a minimal effect on cardiac fibrosis, as demonstrated by gene KO

mice (Oliver et al., 1997;Mori et al., 2004;Franco et al., 2004).

Figure 4 - A schematic showing the primary structure of the natriuretic peptides.

Conserved amino acids are shaded black.
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1.3.4 Brain natriuretic peptide

Despite the discovery of BNP in porcine brain tissue (Sudoh et al., 1988), this peptide

is mainly synthesised and secreted from cardiac tissue, predominantly the ventricles

(Mukoyama et al., 1991). The human BNP gene (Nppb; located on chromosome 1)

consists of two exons and one intron, encodes a 134 amino acid peptide containing a

signal sequence that is cleaved to yield a 108 amino acid peptide, termed pro-BNP,

which in turn is cleaved to form mature BNP (32 amino acids; Kone 2001). BNP is

released from the ventricles of the heart, in response to stretch stimulation and exerts

similar haemodynamic effects to ANP. Since both peptides act at the same receptor,

(discussed in section 1.3.7), it is interesting that BNP KO mice exhibit marked cardiac

fibrosis, rather than hypertrophy (Tamura et al., 2000), highlighting a distinction

between ANP and BNP bioactivity.

1.3.5 C-type natriuretic peptide

CNP is the most highly conserved natriuretic peptide and exhibits 100 % homology in

mammals (Koller and Goeddel, 1992). In addition, there is evidence to suggest that

CNP is the ancestral precursor from which ANP and BNP evolved (Inoue et al.,

2003). The human CNP gene (Nppc; located on chromosome 2) contains two exons

and one intron (Ogawa et al., 1992). Upon translation CNP is synthesised as a 126

amino acid precursor termed prepro-CNP (Ogawa et al., 1992), which is then cleaved

by a signal peptidase to form the 103 amino acid pro-CNP, the form in which CNP is

stored. Pro-CNP is cleaved by furin (Wu et al., 2003), a proprotein convertase that is

resident in the trans-Golgi network (Thomas, 2002), to yield CNP-53. This peptide is

then subsequently cleaved, by an unknown mechanism, to yield the biologically active

22 amino acid form of CNP, CNP-22. In human endothelial cells, hypothalamus,

medulla and pons the predominant form is CNP-53 whilst in human plasma it is CNP-

22 (Minamino et al., 1991;Stingo et al., 1992). CNP-53 may also exert biological

functions as it has been shown to increase cGMP production in cultured mouse

astrocytes (Yeung et al., 1996).

CNP KO mice exhibit impaired endochrondral ossification, a process associated with

fetal bone growth, leading to severe dwarfism (Komatsu et al., 2002). More than 50 %
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of the animals die before the age of 4 weeks with less than 30 % surviving more than

16 weeks (Komatsu et al., 2002). This observation demonstrates CNP has a key role

in bone growth and healthy development. Unlike ANP and BNP KO mouse models,

the cardiovascular role(s) of CNP has not been investigated using a transgenic due to

the gross deformation and severe mortality rate.

1.3.6 Urodilatin and dendroaspis natriuretic peptide

Two less well characterised natriuretic peptides have also been identified, urodilatin

and dendroaspis natriuretic peptide (DNP). Urodilatin, originally isolated from human

urine (Schulz-Knappe et al., 1988), is identical to ANP except for 4 additional amino

acids at the N-terminus. DNP was originally identified in the venom of the green

mamba snake (Dendroaspis angusticeps; Schweitz et al., 1992). Both peptides possess

natriuretic and diuretic properties (Lisy et al., 1999) in addition to vasorelaxant

actions (Schweitz et al., 1992;Forssmann et al., 2001). DNP immunoreactivity has

been found in normal human plasma and atrial myocardium, with increased plasma

DNP immunoreactivity in patients with congestive heart failure (Schirger et al., 1999),

suggesting it may have a role in human cardiovascular physiology and pathology.

1.3.7 Natriuretic peptide receptors

The natriuretic peptide family exert their biological effects through a family of cell

surface proteins termed natriuretic peptide receptors (NPR). The three principal

natriuretic peptides bind to all NPR, albeit with differing affinities (Table 1). The rank

order of binding affinity for NPR-A is ANP > BNP >> CNP, for NPR-B is CNP >>

ANP > BNP and for NPR-C is ANP > CNP > BNP (Bennett et al., 1991;Suga et al.,

1992a). CNP has a very low affinity for NPR-A and a high affinity for NPR-B, hence

CNP is regarded as the sole endogenous ligand for NPR-B; ANP and BNP are the

physiological ligands for NPR-A.

NPR-A and NPR-B are particulate guanylyl cyclase (pGC) linked receptors and are

also referred to as GC-A and GC-B, respectively (Figure 5). Both are composed of an

extracellular ligand binding domain, a small hinge region, a kinase homology domain

and an intracellular guanylyl cyclase domain. Binding of natriuretic peptides to these
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receptors catalyses the conversion of GTP to the second messenger, cGMP. NPR-C

possesses an extracellular lingand binding domain which shares approximately 30 %

homology with NPR-A and NPR-B, but in contrast NPR-C lacks an intracellular

kinase homology and guanylyl cyclase domain (Figure 5). Instead, NPR-C possesses a

37 amino acid intracellular tail that has been shown to be a Pertussis toxin (PTx)

sensitive Gi binding domain (Murthy et al., 1998).

NPR-A NPR-B NPR-C

ANP 1.9 pM 5.4 nM 2.6 pM

BNP 7.3 pM 30 nM 13 pM

CNP >500 nM 7 pM 10.8 pM

Table 1 - Dissociation constants (Kd) for binding of human natriuretic peptides to human

natriuretic peptide receptors.

Values determined from experiments using the extracellular domain of each receptor fused to the

constant domain of IgG (Bennett et al., 1991).

1.3.7.1 Natriuretic peptide receptor-A

NPR-A is a 1061 amino acid protein that is expressed in larger conduit vessels, kidney

and adrenal glands (Levin et al., 1998). Activation of NPR-A by ANP or BNP

promotes vasorelaxation, natriuresis, decreases renin and aldosterone synthesis (Potter

et al., 2006) and also has anti-mitogenic effects on smooth muscle cells (Hutchinson

et al., 1997). NPR-A KO mice exhibit raised blood pressure, cardiac hypertrophy and

interstitial fibrosis (Oliver et al., 1997), demonstrating the importance of this receptor

in regulating blood pressure and cardiac morphology.

1.3.7.2 Natriuretic peptide receptor-B

NPR-B is a 1047 amino acid protein that shares 44 % homology in the extracellular

ligand binding domain with NPR-A (Chinkers et al., 1989;Lowe et al., 1989). NPR-B

is highly expressed in the brain, including the pituitary gland, and so may have a role



in neuroendocrine regulation (Kone, 2001). NPR-B has also been shown to be

expressed in blood vessels (Suga et al., 1992c), although NPR-B KO mice do not

show any significant change in blood pressure compared to wild type (WT; Tamura et

al., 2004). NPR-B KO mice suffer from reduced weight and dwarfism due to

impairment of endochondral ossification and a reduction of longitudinal vertebra and

limb-bone growth (Tamura et al., 2004), confirming a role for CNP in

osteoclast/osteoblast function and bone metabolism.

Figure 5 - Structure and homology o
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lack of guanylyl cyclase functionality and intrinsic kinase domain, NPR-C has long

been thought to solely act as a clearance receptor (discussed in section 1.3.8; Maack et

al., 1987). In NPR-C KO mice the half life of ANP is extended (1.44 ± 0.05 min and

2.40 ± 0.08 min, in WT and NPR-C KO, respectively) and these animals are mildly

hypotensive, although the plasma concentrations of ANP or BNP are unchanged

(Matsukawa et al., 1999). These animals also exhibit increased bone turnover

resulting in hunched backs, dome shaped skulls, elongated tails, elongated femurs,

tibias, metatarsal and digital bones (Matsukawa et al., 1999). These observations,

coupled with evidence showing NPR-C possesses a Gi-dependent Pertussis toxin

sensitive domain that is able to inhibit adenylate cyclase (Pagano and Anand-

Srivastava, 2001) and activate phospholipase C-β3 (Murthy et al., 2000), strongly

suggests a signalling role for this receptor.

1.3.8 Clearance of natriuretic peptides

Plasma levels of natriuretic peptides are controlled by the rate of synthesis and release

and removal from the circulation via two discrete mechanisms. One pathway involves

NPR-C mediated endocytosis and the other is hydrolysis by neutral endopeptidase

24.11 (enkephalinase), a zinc metallopeptidase (Valli et al., 1999). Following

endocytosis, lysosomal degradation of the peptide occurs and the internalised receptor

is rapidly recycled to the surface (Cohen et al., 1996). NPR-C contains a single

tyrosine (Tyr508) amino acid in the cytoplasmic domain that has been shown to be

important in clathrin coated pit endocytosis of this receptor, however NPR-C does not

contain any recognised internalisation motifs in the cytoplasmic domain (Cohen et al.,

1996).

Neutral endopeptidase is widely distributed throughout the body including kidney,

lung, heart (Erdos and Skidgel, 1989) and expressed on the surface of human

endothelial cells (Graf et al., 1995), smooth muscle cells, cardiac myocytes and

fibroblasts (Vanderheyden et al., 2004). It metabolises ANP (Stephenson and Kenny,

1987), BNP, CNP (Kenny et al., 1993) and numerous other bioactive peptides

including bradykinin, angiotensin (Ang) II, enkephalin and ET-1 (Erdos and Skidgel,

1989;Fagny et al., 1991). Under physiological conditions it is believed that neutral

endopeptidase has a minor role to play in the inactivation of natriuretic peptides;
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however in pathophysiological conditions in which there are raised levels of

natriuretic peptides, and a large proportion of NPR-C are occupied, neutral

endopeptidase may play a more substantial role in clearance (Maack, 1992;Okolicany

et al., 1992). This is exemplified by the work of Olins et al who showed thiorphan, a

specific neutral endopeptidase 24.11 inhibitor, has no effect on endogenous ANP

levels but increases plasma ANP concentration in rats administered with exogenous

ANP (Olins et al., 1989).

1.4 Cardiovascular roles of CNP

1.4.1 Expression and distribution

The widespread distribution of CNP in the cardiovascular system, particularly

endothelial cells (Stingo et al., 1992), intimates it has a role in vascular homeostasis.

CNP is thought to act in a paracrine/autocrine manner, as opposed to the endocrine

actions of ANP and BNP. Under physiological conditions the plasma concentration of

CNP is approximately 1 pg/ml (Hama et al., 1994;Igaki et al., 1996;van der Zander et

al., 2002;Zambruni et al., 2007) and this value rises in patients with renal failure (3

pg/ml; Igaki et al., 1996) and septic shock (13 pg/ml; Hama et al., 1994). In patients

with congestive heart failure, plasma concentration of CNP is not altered but the right

atrial concentration of CNP is approximately 2-fold greater (Wei et al., 1993;Kalra et

al., 2003;Del Ry et al., 2006). In an animal model, over expression of CNP in

cardiomyocytes does not affect ischaemia/reperfusion (I/R) injury infarct size but does

reduce the resultant cardiac hypertrophy (Wang et al., 2007).

Similar to NO, arterial physiological shear stress augments endothelial CNP mRNA

expression and production in a variety of endothelial cells (Chun et al., 1997). In

addition, oxidative stress produces reactive oxygen species (ROS), which cause

endothelial dysfunction by reducing NO bioavailability, and in bovine coronary artery

endothelial cells (BCAEC) augments CNP secretion (Chun et al., 2000). This

observation suggests CNP may compensate for a lack of NO bioavailability, which

occurs in CVD.
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Growth factors have been shown to differentially modulate CNP secretion from

endothelial cells. One of the most potent stimuli for CNP expression and release is

transforming growth factor (TGF)-β, a cytokine involved in vascular remodelling, 

which increases endothelial CNP secretion by approximately 100-fold (Suga et al.,

1992b;Doi et al., 1996). Vascular endothelial growth factor (VEGF), a potent

endothelial cell mitogen, attenuates CNP secretion from BCAEC, whilst basic

fibroblast growth factor (bFGF), another potent endothelial cell mitogen, augments

CNP secretion (Doi et al., 1996). The pro-inflammatory mediators interleukin (IL)-1β, 

tumour necrosis factor (TNF)-α and LPS (Suga et al., 1993), all of which have

important roles in vascular remodelling and inflammatory cardiovascular disease,

increase CNP secretion from BCAEC, whilst IL-2, a cytokine that promotes T cell

growth, has no affect. These observations demonstrate that pro-inflammatory

mediators, which are present in CVD, promote endothelial CNP secretion, possibly as

a protective response.

Interestingly, ANP and BNP significantly augment CNP production in bovine aortic

endothelial cells (BAEC), an effect blocked by the cGMP-dependent protein kinase

inhibitor KT 5823 (Nazario et al., 1995). The NPR-C specific agonist des(Gln18, Ser19,

Gly20, Leu21, Gly22)-ANP fragment 4-23 (cANF4-23) has no effect, suggesting ANP

and BNP increase the production of CNP in a cGMP-dependent manner, via NPR-A

(Nazario et al., 1995). Indeed, the cGMP and cAMP mimetics, 8-bromo-cGMP and 8-

bromo-cAMP, respectively, increase BCAEC CNP secretion (Suga et al., 1992b). In

healthy individuals, plasma CNP levels are raised to 7.1 pg/ml following BNP

infusion (van der Zander et al., 2002). These observations highlight the ability of ANP

and BNP to augment CNP secretion, intimating some of the effects of these peptides

may be in part via CNP.

1.4.2 Vasodilatation

CNP is a potent arterial- and venous-dilator of isolated human (Wiley and Davenport,

2001), rat (Drewett et al., 1995), murine (Madhani et al., 2003) and porcine vessels

(Barber et al., 1998). In conduit arteries, CNP-induced relaxations are blocked by the

selective NPR-A/B antagonist HS-142-1 (Drewett et al., 1995;Wennberg et al.,

1999;Madhani et al., 2003), demonstrating that in these vessels, vasodilatation is
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NPR-B mediated. However, there is strong evidence to suggest that in resistance

arteries the relaxant effect of CNP is attributable to NPR-C activation.

In the rat mesenteric artery CNP and EDHF elicit equivalent hyperpolarisation and

relaxation responses that are unaffected by HS-142-1, but mimicked by the selective

NPR-C agonist, cANF4-23 (Chauhan et al., 2003). Moreover, responses to CNP or

acetylcholine (ACh) are blocked by a combination of barium (Ba2+), an inwardly

rectifying K+ (KIR) channel inhibitor, plus ouabain, a Na+/K+ ATPase inhibitor.

Similar findings have been shown in the rat coronary vasculature where CNP or

cANF4-23 reduces the perfusion pressure in isolated rat heart, an effect that is blocked

by Ba2+ plus ouabain (Hobbs et al., 2004). This combination of inhibitors is routinely

used in the study of EDHF as they block EDHF-mediated hyperpolarisation and

relaxation in numerous vessels and species (Busse et al., 2002). Such observations

intimate that CNP and EDHF are synonymous. Recently, a definitive role for CNP as

an EDHF in rat mesenteric artery has been elucidated with the use of a NPR-C

specific antagonist, M372049 (Villar et al., 2007). This study proposed that at least

two EDHF pathways exist within the rat mesenteric artery, one which is dependent

upon CNP/NPR-C activation and opening of a Ba2+-sensitive G-protein coupled

inwardly rectifying potassium channel (GIRK), and a second which is triggered by

IKCa activation and dependent upon Na+/K+ ATPase stimulation (Figure 6).

CNP dilates rat coronary and mesenteric arteries via NPR-C, however, ANP is unable

to dilate small resistance arteries through NPR-C activation, even though ANP binds

to the receptor (Madhani et al., 2003). This observation raises the possibility that

either there is more than one subtype of NPR-C (Anand-Srivastava, 2005) or that CNP

interacts differently with NPR-C to cause signal transduction and receptor

internalisation whilst the other natriuretic peptides can only stimulate receptor

internalisation (Scotland et al., 2005a). However, ANP has been shown to inhibit

proliferation of rat astroglial and epithelial cells in an NPR-C dependent manner

(Levin and Frank, 1991;Gower, Jr. et al., 2006), suggesting all natriuretic peptides

have the ability to exert effects via NPR-C.
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Figure 6 - Proposed EDHF pathways present in rat mesenteric arteries

GIRK - G-protein coupled inwardly rectifying potassium channel, IKCa - Intermediate conductance

calcium channel, SKCa - Small conductance calcium channel

1.4.3 Blood pressure regulation

Blood pressure is dependent upon cardiac output, the volume of blood pumped by one

ventricle per minute, and systemic vascular resistance, the force that must be

overcome to push blood through the circulatory system. As described in section 1.4.2

CNP is a potent vasodilator of isolated blood vessels, particularly resistance arteries,

which suggests CNP has the ability to affect systemic vascular resistance and hence

blood pressure. Indeed, several studies support this thesis; intravenous administration

of CNP in healthy volunteers (0.43 nmol/kg), monkeys (10 nmol/kg) and dogs (10

ng/kg/min) causes a transient reduction in blood pressure (Clavell et al., 1993;Igaki et

al., 1996;Seymour et al., 1996). Furthermore, CNP administered to rats as a bolus (30
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blood pressure (Aizawa et al., 2008). These studies reveal that exogenous CNP is able

to modulate blood pressure either through its effects on smooth muscle tone or via

blood volume regulation. Additionally, a recent study has shown that mice with liver

targeted CNP overexpression exhibit an approximate 25 mmHg reduction in systolic

blood pressure (Kake et al., 2009), which further supports the hypothesis that CNP is

able to regulate blood pressure.

1.4.4 Interaction between CNP and the renin-angiotensin-

aldosterone-system

The renin-angiotensin-aldosterone system (RAAS) is a key, well characterised

homeostatic mechanism, which regulates blood volume and systemic vascular

resistance and hence has a vital role in blood pressure regulation. Renin, an enzyme

released from juxtaglomerular cells in the kidney in response to low blood pressure,

cleaves angiotensinogen to angiotensin I, which is converted to Ang II by angiotensin

converting enzyme, a membrane bound enzyme found on the surface of endothelial

cells, particularly pulmonary endothelial cells. Ang II has a wide variety of effects

including vasoconstriction, increased sodium retention, aldosterone release, smooth

muscle cell proliferation and platelet aggregation (Weir and Dzau, 1999).

Aldosterone, produced by the zona glomerulosa of the adrenal cortex, promotes

sodium and water reabsorption and hence increases blood pressure.

In humans, CNP administered i.v. has been shown to reduce plasma aldosterone (Hunt

et al., 1994;Igaki et al., 1996) but other studies show a minimal effect (Cargill et al.,

1995;Barletta et al., 1998). Hunt et al observed a significant reduction in plasma

aldosterone, however there was no change in natriuresis (Hunt et al., 1994). Infusion

of CNP has been shown to have very little or no effect on natriuresis and diuresis

(Hunt et al., 1994;Cargill et al., 1995;Igaki et al., 1996;Barletta et al., 1998)

demonstrating that CNP has a very limited or no role in blood volume regulation.

These observations suggest that the blood pressure altering effect of CNP is primarily

via arterial tone regulation.
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1.4.5 Regulation of leukocyte and platelet reactivity

Cell adhesion molecules play a prominent role in the pathogenesis of atherosclerosis

and restenosis. Numerous cell adhesion molecules exist to coordinate interaction of

circulating cells and the endothelium to recruit cells to sites of inflammatory damage.

These are expressed by various cell types, in particular leukocytes, platelets and

endothelial cells, mostly in response to cell activation by inflammatory stimuli. An

important step in atherogenesis is leukocyte recruitment, a 4 step process consisting of

initial tethering and rolling of leukocytes along the endothelium, followed by firm

adhesion and subsequent diapedisis. The majority of cell adhesion molecules belong

to one of 4 protein families: selectins, immunoglobulins, integrins and cadherins. P-

selectin is found on platelets and endothelial cells and is involved in the rolling and

tethering of platelets to endothelial cells. L-selectin, expressed by leukocytes, and E-

selectin, present on activated endothelial cells, are all involved in rolling and tethering

of leukocytes to endothelial cells (Blankenberg et al., 2003). The immunoglobulin

family contains ICAM, VCAM-1 and PECAM-1, all of which are involved in firm

adhesion of leukocytes to endothelial cells (Blankenberg et al., 2003).

CNP has been shown to inhibit basal, IL-1β- and histamine-induced leukocyte rolling 

due to a reduction in P-selectin expression (Scotland et al., 2005b). CNP has also been

shown to reduce expression of VCAM-1 and ICAM-1 in rabbit coronary artery

following balloon angioplasty (Qian et al., 2002). NPR-C may be involved in

mediating these effects as cANF4-23 reduces basal leukocyte rolling in eNOS KO mice

(Scotland et al., 2005b). However, it is possible NPR-B may also have a role to play

as BAY 41-2272, an sGC activator, also reduces basal leukocyte rolling in eNOS KO

mice (Ahluwalia et al., 2004), demonstrating cGMP is able to inhibit leukocyte

rolling. These data provide an insight into the anti-inflammatory effects of CNP,

implying it may be protective in inflammatory CVD.

Currently, very little is known about natriuretic peptides and their effects on platelets.

An in vitro study has shown CNP to inhibit P-selectin expression and platelet

aggregation in thrombin-activated platelets (Scotland et al., 2005b). Furthermore, it

has been shown that cGMP levels are unaltered in human platelets when administered

with ANP or CNP, suggesting a lack of NPR-A/B on the surface of platelets (Blaise et
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al., 1996). Radioligand binding studies showed that displacement of 125I-ANP was

similar when induced by ANP or cANF4-23 intimating that platelets solely express

NPR-C (Blaise et al., 1996). Collectively these observations suggest that the effects of

CNP on platelets are NPR-C dependent and suggest that CNP may be beneficial in

preventing/treating thrombus formation, of which MI and stroke are a consequence.

1.4.6 CNP in atherosclerosis and restenosis

The role of endogenous CNP in the pathophysiology of atherosclerosis is unknown,

although the vasodilator, anti-platelet and anti-leukocyte effects I have described

above suggest that it is anti-atherogenic. Moreover, there are links between CNP and

atherosclerosis/restenosis which argue for an endogenous cytoprotective role for the

peptide. For example, CNP has been shown to be present in endothelial cells in

normal human coronary arterial segments, however in atherosclerotic lesions

endothelial cells express very little or no CNP (Naruko et al., 1996). In contrast, CNP

is not present in smooth muscle cells or macrophages in normal human coronary

arterial segments, but CNP expression is increased in atherosclerotic lesions in medial

and intimal smooth muscle cells and macrophages (Naruko et al., 1996;Casco et al.,

2002). CNP mRNA has been shown to be present in early and intermediate

atherosclerotic plaques but absent in advanced plaques (Casco et al., 2002).

Furthermore, there is increased expression of NPR-B and NPR-C in intermediate to

advanced atherosclerotic lesions (Casco et al., 2002), intimating that endogenous CNP

has a role in the suppression of atherosclerosis. CNP mRNA, NPR-B and furin, the

enzyme responsible for converting pro-CNP to CNP, are down-regulated in stenotic

human aortic valves suggesting that endogenous CNP prevents aortic valve

calcification (Peltonen et al., 2007).

As mentioned previously, an initiating process in the development of atherosclerosis is

infiltration of oxidised LDL into the arterial intima. Oxidised LDL leads to endothelial

dysfunction and promotes foam cell formation (Ross, 1999) whilst high density

lipoprotein (HDL) is protective against atherosclerosis (Lowenstein and Cameron,

2010). In BCAEC, basal and TGF-β-induced CNP expression is down-regulated by 

oxidised LDL, whilst HDL alone has no effect (Sugiyama et al., 1995). However,

HDL reverses the oxidised LDL reduction in CNP secretion suggesting lipoproteins
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are able to modulate endothelial CNP production (Sugiyama et al., 1995). The above

observations highlight a possible mechanism by which oxidised LDL exerts its

detrimental effects and HDL invokes its beneficial effects.

An immunohistochemical study of patients who had undergone PCI showed CNP and

NPR-C expression in neointimal smooth muscle cells, suggesting a role for CNP in

the control of neointimal hyperplasia following arterial injury (Naruko et al., 2005).

Following balloon angioplasty, CNP promotes re-endothelialisation in rabbit femoral

artery (Doi et al., 2001) and carotid artery (Qian et al., 2002) and inhibits neointimal

thickening in rat carotid artery (Furuya et al., 1993), rabbit carotid artery (Gaspari et

al., 2000;Qian et al., 2002) and rabbit femoral artery (Doi et al., 2001). In addition

CNP reduces in vivo expression of VCAM-1 and ICAM-1 (Qian et al., 2002) and in

vitro P-selectin expression (Scotland et al., 2005b). In sum, these observations reveal

the ability of CNP to counteract both atherogenesis and restenosis and in conjunction

with its anti-inflammatory and blood pressure altering effects suggest it may function

as an endogenous, endothelium-derived vasoprotective peptide.

1.4.7 Vascular cell proliferation

The observation that CNP is synthesised and released from endothelial cells and that

endothelial cells express all 3 natriuretic peptide receptors (Suga et al., 1992d),

suggests that CNP may act in an autocrine manner, to regulate endothelial function.

One facet of this profile is the regulation of cell growth. Previous work has shown

CNP promotes endothelial cell proliferation. In vitro, CNP is pro-mitogenic (Doi et

al., 2001;Ohno et al., 2002;Yamahara et al., 2003;Pelisek et al., 2006) and in vivo

CNP promotes re-endothelialisation in rabbit femoral artery (Doi et al., 2001) and

carotid artery (Qian et al., 2002) following balloon angioplasty (described in section

1.1.3). In addition, adenoviral delivery of CNP to rabbit jugular vein grafts induces

greater re-endothelialisation in comparison to control vein grafts (Ohno et al., 2002).

There is evidence to suggest that CNP mediated endothelial cell proliferation is

mediated via NPR-B as cANF4-23 has no effect on endothelial cell mitogenesis (Ohno

et al., 2002) and also Rp-8-pCPT-cGMP, a cGMP dependent protein kinase inhibitor,

inhibits CNP-induced human umbilical vein endothelial cell (HUVEC) capillary

network formation (Yamahara et al., 2003).
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In contrast to its effects on endothelial cell proliferation, CNP inhibits VSMC

proliferation. The first evidence of CNP as a regulator of growth was in cultured rat

VSMC, which upon addition of CNP, resulted in DNA synthesis inhibition (Furuya et

al., 1991). In vivo experiments have shown that CNP inhibits neointimal thickening in

rat carotid artery (Furuya et al., 1993), rabbit carotid artery (Gaspari et al., 2000;Qian

et al., 2002) and rabbit femoral artery (Doi et al., 2001). The receptor responsible for

the anti-proliferative effect of CNP on smooth muscle cells is controversial and

evidence exists for NPR-B and NPR-C. Studies have demonstrated CNP-induced

inhibition of smooth muscle cell proliferation are concomitant with an increase in

cGMP (Furuya et al., 1991;Furuya et al., 1993;Hutchinson et al., 1997;Doi et al.,

2001), suggesting the involvement of NPR-B. Contrary to these studies is the work of

Cahill et al who showed that CNP inhibits growth of aortic smooth muscle cells via

NPR-C in a cGMP-independent manner (Cahill and Hassid, 1994). Studies from our

lab have also confirmed a role for CNP/NPR-C inhibition of RAoSMC proliferation

and have also demonstrated that the pathway involves Gi coupling to NPR-C, which

enhances extracellular signal-regulated kinase (ERK 1/2) phosphorylation

(Panayiotou, 2007).

The studies outlined above emphasise the unique mitogenic profile of CNP with

disparate regulation of endothelial cell and VSMC growth. As previously described

(section 1.1.3), agents released from DES inhibit endothelial cell and VSMC

mitogenesis, which leads to inadequate healing of the vessel, leaving an exposed

thrombogenic surface. CNP promotes endothelial cell proliferation, whilst inhibiting

VSMC growth, which is an attractive profile in the context of atherosclerosis and

restenosis, as endothelial cell damage and VSMC proliferation are key steps in both

vascular diseases. Hence, CNP or pharmacological manipulation of CNP signalling

would be ideal targets for the treatment of these conditions. It is important therefore

that the NPR subtypes and intracellular pathways underpinning the mitogenic effects

of CNP in endothelial cells and VSMC are fully elucidated to optimise potential for

therapeutic exploitation.
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1.5 Regulation of cell growth

1.5.1 Mitogen-activated protein kinases

Mitogen-activated protein kinases (MAPK) pathways are involved in a diverse variety

of actions, including cell proliferation, differentiation, inflammation and

embryogenesis (Pearson et al., 2001). Each pathway consists of a cascade of at least

three protein kinases activated in series; a MAPK kinase kinase (MKKK), a MAPK

kinase (MKK) and a MAPK (Zhang and Liu, 2002). Three principle MAPK pathways

have been identified; ERK, p38 and the c-Jun N-terminal kinase/stress-activated

protein kinase (JNK/SAPK) pathway (Figure 7).

Figure 7 - Principle MAPK pathways
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1.5.1.1 ERK 1/2

ERK 1/2 (p44/42) are ubiquitously expressed serine/threonine kinases which share

85 % homology (Pearson et al., 2001). They are activated by receptor tyrosine kinases

and G protein-coupled receptors and are one of the key signal transduction pathways

involved in regulation of the cell cycle. ERK 1/2 are activated by MAPK/ERK (MEK)

1 and 2, which are phosphorylated by Raf isoforms (Zhang and Liu, 2002). ERK 1/2

phosphorylation is required for cell proliferation in mature differentiated eukaryotic

cells and acts via multiple mechanisms to promote G1 phase entry of the cell cycle

(Meloche and Pouyssegur, 2007;Chambard et al., 2007).

1.5.1.1.1 ERK 1/2 and endothelial cell proliferation

ERK 1/2 signalling is important in endothelial cell proliferation. Endothelial cell

growth factors, VEGF, bFGF and epidermal growth factor activate ERK 1/2 resulting

in BAEC and HUVEC proliferation (Pedram et al., 1998;Yu and Sato, 1999;Wu et al.,

2000). Moreover, endothelial cell ERK 1/2 knockout mice die in utero due to reduced

angiogenesis and aortic endothelial cells from these mice exhibit decreased

proliferation and migration (Srinivasan et al., 2009).

1.5.1.1.2 ERK 1/2 and vascular smooth muscle cell growth

In VSMC the role of ERK1/2 is less clear. In rat aortic smooth muscle cells

(RAoSMC), serum-induced proliferation is blocked by PD98059 (Lu et al., 2006), an

ERK 1/2 inhibitor, and PD0185625 (Gennaro et al., 2004), a selective MEK inhibitor,

suggesting that ERK 1/2 underlies this mitogenesis. This is supported by the

observation that rats administered PD0185625 and subjected to carotid artery balloon

injury, exhibit reduced neointimal formation (Gennaro et al., 2004). Furthermore,

PDGF, Ang II and bradykinin induce RAoSMC growth via ERK 1/2 (Zhan et al.,

2003;Yang et al., 2005;Walcher et al., 2006;Chiou et al., 2009). In contrast, however,

NO has been shown to inhibit RAoSMC proliferation in a cGMP-independent manner

via an up-regulation of ERK 1/2 (Bauer et al., 2001). Conjointly, these observations

highlight the ability of ERK 1/2 activation to result in pro- or anti-mitogenic effects

dependent upon the stimulus.
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1.5.1.2 p38

There are four isoforms of p38 MAPK; , ,  and  of which  and  exhibit 75%

homology, whilst  and  are more distant relatives. All p38 kinases can be

categorised by a Thr-Gly-Tyr dual phosphorylation motif (Zarubin and Han, 2005).

The p38 MAPK family is activated by cellular stress signals including LPS, pro-

inflammatory cytokines, heat shock, high osmotic stress and ultraviolet irradiation

(Zhang and Liu, 2002). MKK 3, 4 and 6 phosphorylate p38 MAPK and these are

phophorylated further upstream by apoptosis signal regulated kinase, MKKK 1-4,

TGF-β-activated protein kinase and mixed lineage kinase (Zhang and Liu, 2002) 

1.5.1.2.1 p38 and endothelial cell proliferation

p38 has been shown to be involved in angiogenesis, suggesting it is involved in EC

growth. VEGF and sesamin have both been shown to promote angiogenesis with a

concomitant increase in p38 activation however pre-treatment with SB203580, a p38

MAPK inhibitor, has no effect on VEGF- and sesamin-induced proliferation but does

attenuate HUVEC migration (Rousseau et al., 1997;Chung et al., 2010b). In addition,

hydrogen sulfide promotes HUVEC migration in a SB203580-inhibitable manner

(Papapetropoulos et al., 2009). These data suggest p38 has no role in endothelial cell

proliferation but is important for endothelial cell migration, an essential process in

angiogenesis.

1.5.1.2.2 p38 and vascular smooth muscle cell growth

In vitro and in vivo data suggest p38 is involved in VSMC proliferation. PDGF

promotes proliferation of A10 cells, a VSMC cell line, and RAoSMC which is

inhibited by SB202190 (Proctor et al., 2008), a p38 MAPK inhibitor. In vivo, p38

MAPK inhibition has been shown to reduce neointimal development following carotid

injury (Proctor et al., 2008). Furthermore, mice which have undergone aortic

allografts and treated with SB239063, a p38 MAPK inhibitor, exhibit reduced

neointimal hyperplasia in comparison to non-treated animals (Ollinger et al., 2008).
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1.5.1.3 JNK/SAPK

JNK/SAPK proteins are encoded by three genes with at least 12 splice variants

(Pearson et al., 2001). They are activated by various stimuli including ultraviolet light,

cytokines and growth factors and are involved in various physiological processes

including cell proliferation, cell survival, cell death, DNA repair and metabolism

(Karin and Gallagher, 2005). MKK 4/7 phosphorylate JNK/SAPK and these are

phosphorylated further upstream by the same kinases as those for MKK 3, 4 and 6

(Zhang and Liu, 2002).

1.5.1.3.1 JNK/SAPK and endothelial cell proliferation

There is limited evidence for a role for JNK in endothelial cell growth. In HUVEC,

VEGF has no effect on JNK activation (Yu and Sato, 1999). Terbinafine, an anti-

fungal agent, supressess HUVEC proliferation that is absent in HUVEC transfected

with a JNK 1 dominant negative (Hsu et al., 2009). Serum starvation and ceramide

treatment activates JNK in human dermal microvascular endothelial cells, which is

inhibited by the presence of VEGF (Gupta et al., 1999), suggesting JNK is involved in

apoptosis in endothelial cells.

1.5.1.3.2 JNK/SAPK and vascular smooth muscle cell growth

Unlike in endothelial cells, JNK has a role in VSMC growth. RAoSMC infected with

a dominant negative JNK mutant exhibit reduced proliferation in response to PDGF

(Zhan et al., 2003). In addition, serum and Ang II promotes RAoSMC proliferation

which is attenuated by SP600125, a JNK inhibitor (Lu et al., 2006;Chiou et al., 2009),

suggesting in VSMC JNK activation can promote proliferation.

1.5.2 Phosphatidylinositol-3 Kinase

Phosphatidylinositol-3 kinases (PI3K) are a family of enzymes involved in a wide

variety of cellular process including cell survival, proliferation, apoptosis,

differentiation and motility (Brader and Eccles, 2004). A key downstream effector of

PI3K is the 60 KDa serine threonine kinase Akt, also known as protein kinase B
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(PKB). Phosphorylation of Thr308 and Ser473 are required for full activation of Akt

(Alessi et al., 1996). Upon activation, Akt phosphorylates multiple substrates

including eNOS, glycogen synthase kinase (GSK)-3, mammalian target of rapamycin

(mTOR) and Bad, amongst others, which are involved in the regulation of various

cellular functions including cell proliferation, survival and insulin signalling (Coffer et

al., 1998;Shiojima and Walsh, 2002). There are 3 mammalian isoforms of Akt that are

encoded by three distinct genes, Akt1/PKBα, Akt2/PKBβ and Akt3/PKBγ. All 3 Akt 

genes are widely expressed however Akt1 is most abundant in brain, heart, lung and

endothelial cells whereas Akt2 is expressed predominantly in skeletal muscle and

Akt3 in brain and kidney (Shiojima and Walsh, 2002).

1.5.2.1 PI3K and endothelial cell proliferation

PI3K signalling is well documented and characterised in endothelial cell proliferation.

VEGF, a potent endothelial cell mitogen, has been shown to promote endothelial cell

growth via multiple signalling pathways including the PI3K/Akt pathway (Yu and

Sato, 1999;Gliki et al., 2002). VEGF stimulated PI3K/Akt activation has been shown

to mediate the activation of eNOS (Dimmeler et al., 1999), by directly

phosphorylating Ser1179, leading to an increase in NO production (Fulton et al.,

1999). It has been suggested that VEGF-induced endothelial cell proliferation is via

NO as NG-nitro-L-arginine methyl ester (L-NAME), a NOS inhibitor, blocks VEGF-

induced endothelial cell mitogenesis (Ziche et al., 1997). In addition, NO has also

been shown to promote endothelial cell proliferation via the PI3K pathway (Kawasaki

et al., 2003), demonstrating a possible positive feedback mechanism. Pueraria

thunbergiana extract, Korean red ginseng water extract, icariin and sesamin, promote

endothelial cell proliferation in an Akt-dependent manner, which is also blocked by

the NOS inhibitor, NG-methyl-L-arginine (L-NMA), without affecting VEGF

expression (Kim et al., 2007;Chung et al., 2008;Chung et al., 2010a;Chung et al.,

2010b). Furthermore, fractalkine stimulates Akt phosphorylation promoting HUVEC

proliferation in a NO-dependent manner (Lee et al., 2006). These observations clearly

demonstrate that activation of the PI3K/Akt pathway promotes endothelial cell

proliferation, in part via NO.
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1.5.2.2 PI3K and vascular smooth muscle cell growth

Akin to endothelial cells, VSMC proliferation can be altered by PI3K signalling. Ang

II promotes proliferation of RAoSMC with a concomitant increase in Akt activation

which is inhibited by wortmannin, a PI3K inhibitor (Chiou et al., 2009). PDGF, C-

peptide and bradykinin promote VSMC proliferation that is inhibited by LY294002, a

PI3K inhibitor (Yang et al., 2005;Walcher et al., 2006;Choi et al., 2010). Thus akin to

endothelial cells, the PI3K/Akt pathway promotes VSMC proliferation.

1.6 The cell cycle

The cell cycle is a highly regulated process that permits cells to replicate (Figure 8). It

is comprised of four phases: mitosis (M), first gap (G1), synthesis (S) and second gap

(G2). Cell cycle progression is primarily regulated by cyclin dependent kinases

(CDK), a family of serine/threonine kinases, which are regulated by cyclins, to

promote cell cycle progression and cyclin dependent kinase inhibitors (CKI), to inhibit

cell cycle progression. CDK protein levels remain stable throughout the cell cycle, in

contrast to cyclin levels which are altered throughout the cell cycle (Vermeulen et al.,

2003). Following stimulation, the D type cyclins (cyclin D1, D2, D3) bind to CDK4 or

CDK6 to allow G1 phase entry, in which the cell prepares for DNA synthesis. Cyclin

D-CDK4/6 complexes phosphorylate the retinoblastoma protein, which is bound to

E2F, a transcription factor, and this phosphorylation releases E2F allowing

transcription of genes required for progression from G1 phase to S phase of the cell

cycle. Cyclin E binding to CDK2 is required for the cells to enter the S phase

(Ohtsubo et al., 1995), in which DNA replication occurs. During the S phase, cyclin A

binds to CDK2, which is required for DNA replication to occur (Girard et al., 1991).

In late G2 and early M phases, cyclin A complexes with CDK1 to promote entry into

the mitotic phase, which is further regulated by cyclin B complexing with CDK1

(Vermeulen et al., 2003).

Two classes of CKI exist: INK4 family comprised of p15, p16, p18 and p19 and

Cip/Kip family comprised of p21waf1/cip1, p27kip1 and p57. The INK4 family bind

predominantly to Cdk4 and Cdk6 preventing cyclin D binding whilst the Cip/Kip
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family inactivate cyclin-CDK complexes throughout the cell cycle (Vermeulen et al.,

2003).

Figure 8 - An overview of the cell cycle

CDK - Cyclin dependent kinase, G1 - first gap, G2 - second gap, M - mitosis, pRB - retinoblastoma

protein, S - synthesis

In endothelial cells, VEGF augments expression of the cell cycle promoters cyclin D1

(Pedram et al., 1998;Favot et al., 2004;Min et al., 2004), cyclin E (Min et al., 2004)

and cyclin A (Favot et al., 2004) and reduces expression of the cell cycle inhibitors

p21waf1/cip1 and p27kip1 (Favot et al., 2004). This cell cycle protein profile underlies the

pro-mitogenic effects of VEGF. Ang II, a promoter of VSMC growth, has been shown

to have no effect or increase cyclin D1 expression (Zahradka et al., 2002;Kintscher et

al., 2003;Chen et al., 2009;Zhou et al., 2009). In addition, Ang II attenuates

p21waf1/cip1 (He et al., 2009;Chen et al., 2009;Zhou et al., 2009) and p27kip1 expression

(Zhou et al., 2009), thereby promoting cell cycle progression and VSMC growth.

These observations highlight that mitogenic factors augment expression of cell cycle

promoters whilst concomitantly reducing expression of cell cycle inhibitors,

promoting proliferation.
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1.6.1 CNP and cell cycle proteins

Very few studies have investigated the effect of CNP on cell cycle protein expression.

Adenovirus mediated gene transfer of CNP to rat VSMC inhibits growth at the G1

phase (Doi et al., 1997). Furthermore, RAoSMC infected with an adenovirus encoding

CNP have increased p21waf1/cip1 mRNA expression at 2, 4 and 6 days, whilst p16

mRNA levels are increased only after 6 days (Doi et al., 2001). The effect of CNP on

cell cycle protein expression in endothelial cells has not been investigated.
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1.7 Aims

In summary, there is compelling evidence linking CNP with vascular homeostasis and

disease. The unique mitogenic profile of CNP on vascular cells suggests that CNP

therapy in vascular diseases such as atherosclerosis and restenosis, which are

characterised by endothelial cell damage and smooth muscle cell proliferation, may

have potential benefit. However, to date there has been a lack of studies delineating

the receptor and signalling pathways underlying CNP-dependent regulation of

endothelial cell and VSMC proliferation. The multi-faceted cytoprotective effects of

CNP on the blood vessel (i.e. vasodilatation, anti-leukocyte, anti-platelet) suggest it is

a key anti-atherogenic mediator. Moreover, identification of CNP as an EDHF, gives

rise to the thesis that this peptide regulates local blood flow and blood pressure,

although whether endogenous CNP has a physiological role in cardiovascular

homeostasis is unknown.

In this thesis I have attempted to address these uncertainties by using a novel

endothelial cell specific CNP KO mouse model, human umbilical vein endothelial

cells, primary rat aortic smooth muscle cells, NPR-C KO endothelial and vascular

smooth muscle cells to investigate the following hypotheses:

1) CNP regulates endothelial cell proliferation through NPR-C-triggered

activation of the MAPK pathways

2) Cell cycle protein expression in HUVEC and RAoSMC is altered in an NPR-C

and ERK 1/2-dependent manner

3) Mice deficient in endothelial CNP exhibit vascular dysfunction in vitro and are

hypertensive
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Chapter 2

Methods
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2 Methods

2.1 Materials

All reagents were from Sigma-Aldrich (Poole, UK) unless otherwise stated. CNP

(Calbiochem, Nottingham, UK) and cANF4-23 were dissolved in distilled water to a

concentration of 1 mM. PD98059, SB203580 and SP600125 (Axxora, Nottingham,

UK) were reconstituted in dimethyl sulphoxide (DMSO) to a concentration of 30 mM.

LY294002 and wortmannin (Calbiochem) were dissolved in DMSO to a concentration

of 10 mM. M372049, a kind gift from Dr. C. Veale (Astrazeneca Pharmaceuticals,

Wilmington, USA), was resuspended in distilled water to a concentration of 1 mM.

Pertussis toxin (PTx; Calbiochem) was reconstituted in distilled water to a

concentration of 100 µg/ml. VEGF (Peprotech, London, UK) was dissolved in

distilled water to a concentration of (10 μg/ml). Ang II was reconstituted in distilled 

water to a concentration of 1 mM. U46619 (Biomol International, Exeter, UK) was

dissolved in ethanol to a concentration of 1 mM. Phenylephrine (PE) and ACh were

resuspended in distilled water to a concentration of 10 mM. Spermine-NONOate

(Sper-NO; Calbiochem) was dissolved in distilled water to a concentration of 10 mM

immediately prior to use. All reagents were stored at -20oC.

2.2 Cell Culture

2.2.1 Human umbilical vein endothelial cell

Pooled donor human umbilical vein endothelial cells (HUVEC; Promocell,

Heidelberg, Germany) were grown using basal endothelial growth medium-2

(EGMTM-2; Lonza, Slough, UK) supplemented with a bulletkit containing fetal calf

serum (FCS; final concentration 2 %), human epidermal growth factor,

hydrocortisone, GA-1000, VEGF, human fibroblast growth factor-B, R3-insulin

growth factor, ascorbic acid, heparin (concentrations are proprietary information). The

media was changed every 2/3 days until cells reached ~90 % confluency and then

passaged by washing with HEPES (Promocell), incubating with trypsin/EDTA

(Promocell) until cells had detached (approximately 2 min) followed by trypsin

neutralisation with trypsin neutralising solution (Promocell). Cells were then
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centrifuged at 200 g for 4 min at room temperature and the supernatant removed. Cells

were then resuspended in media, a cell count performed and cell viability determined.

Cell viability was determined by mixing equal volumes of cell suspension and trypan

blue (Life Technologies, Paisley, UK) and approximately 20 l of the resulting

solution was placed on a haemocytometer and visualised using an inverted microscope

(Axiovert 25, Carl Zeiss MicroImaging Inc., Hertfordshire, UK). Live cells were

counted as unstained cells and dead cells were stained blue. Cells were used for

experimentation if viability was greater than 90 % and up to and including passage 6.

2.2.2 Primary rat aortic smooth muscle cell isolation

RAoSMC isolation was carried out by Dr Catherine Panayiotou (Panayiotou, 2007).

The cells stained positive for smooth muscle specific α-actin and showed a typical hill 

and valley morphology (data not shown). Cells were passaged by trypsinisation with

cells of passage 4-15 used for experimentation.

2.2.3 Biomagnetic purification of mouse pulmonary microvascular

endothelial cells

Mouse pulmonary microvascular endothelial cells (PMEC) were isolated from

C57/BL6 and NPR-C KO mice by a combination of methods previously described

(Hartwell et al., 1998;Kuhlencordt et al., 2004). Animals were killed by cervical

dislocation and the lung was removed and placed in DMEM/Nutrient Mixture F12

(DMEM/F12; Invitrogen) on ice. The lung tissue was washed 3 times in DMEM/F12

and the central cartilaginous lung tissue removed. The remaining tissue was dissected

finely and incubated with 0.1 % collagenase, in DMEM/F12, for 1 h at 37oC. The

tissue was then passed through a 19 gauge needle, to disperse cells, and subsequently

through a 70 μm filter. The resulting cells were centrifuged at 200 g for 5 min at 21oC

and resuspended in DMEM/F12 supplemented with 20 % FCS, 100 U/ml penicillin,

100 μg/ml streptomycin, 1 μl/ml endothelial cell growth supplement/heparin 

(Promocell) and 50 μg/ml endothelial cell growth supplement. Cells were grown in a 

0.1 % gelatin coated flask in a humidified incubator with 5 % CO2 in air at 37oC. The

media was changed after 24 h and changed every 2/3 days until cells were 80-90 %
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confluent. 4x106 Dynabeads coated in sheep anti-rat IgG (Invitrogen) were washed 3

times in PBS and then incubated overnight with 5 µg anti-intercellular adhesion

molecule (ICAM)-2 (CD102, endothelial specific marker; BD Biosciences, Oxford,

UK) on a rotator. The Dynabeads were then washed 3 times in PBS, media was

aspirated and the Dynabeads added to the isolated pulmonary vascular cells for 1 h in

a humidified incubator at 37oC. Cells were trypsinised and magnetically separated.

This involved transferring cells to a 15 ml centrifuge tube which was placed in a

DynaMagTM-15 (Invitrogen, Oslo, Norway) and left for 10 min. Cells expressing

ICAM-2 are bound to the Dynabeads which are attracted to the magnet and hence

collect on the side of the tube; the remaining solution, containing non-bound cells,

was aspirated. Cells were washed and magnetically separated a second time and then

plated. Cells displayed a typical cobblestone appearance (data not shown) and

expressed ICAM-2 as shown by Flow cytometry (Figure 9; conducted by Dr

Inmaculada Villar), demonstrating these are endothelial cells. Cells up to passage 4

were used.

Figure 9 - Flow cytometry analysis of PMEC

A) Representative forward scatter-side scatter dot-plot of cell populations B) Representative histogram

of ICAM-2 expression of positives cells (black) and isotype control (red).

A) B)
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2.2.4 Freezing cells

Long term storage of cells was achieved by storing cells in liquid nitrogen. HUVEC

and PMEC were frozen at passage 3 or below and RAoSMC passage 8 or below.

Following cell viability determination, 10 % DMSO was added to the cells and the

cells transferred to cryogenic vials at a concentration of 0.5 x 106/ml. The vials were

then placed in a Cryo 1oC freezing container (Fisher Scientific, Leicestershire, UK)

and stored overnight in a -80oC freezer. The following day the vials were placed in

liquid nitrogen.

2.2.5 Thawing cells

Vials were removed from liquid nitrogen storage and were placed in a water bath at

37oC with constant agitation. The top was slightly unscrewed, to allow pressure

release, and was promptly re-tightened. Once the majority of the vial was thawed,

1 ml pre-warmed media was added to the vial, under aseptic conditions and the vial

contents transferred into 10 ml media. Cells were centrifuged at 200 g for 4 min at

room temperature and the supernatant removed, in order to remove the DMSO. Cells

were then resuspended in media, plated and the media changed the following day.

2.3 Measurement of endothelial cell proliferation

A 5-bromo-2’-deoxyuridine (BrdU) cell proliferation ELISA (Roche Diagnostics, East

Sussex, UK) was used to assess endothelial cell proliferation, according to the

manufacturer’s guidelines. The BrdU assay functions by measuring BrdU

incorporation during DNA synthesis and is a non-radioactive alternative to [3H]-

thymidine incorporation. Initial experiments were conducted to define optimum

proliferation conditions. HUVEC were seeded from 500 cells/well up to 100,000

cells/well, in a 96 well plate, for 24 h in growth medium. Media was then changed to

basal growth medium containing 0.1 % FCS and 5 % of supplements (i.e. a 1 in 20

dilution of normal growth medium with basal media, to quiesce the cells). After 23 h

30 min the media was then changed back to normal growth medium and cells were

incubated with or without inhibitor (M372049 (1 μM), PD98059 (30 μM), SB203580 

(30 μM), SP600125 (3 μM), wortmannin (500 nM), LY294002 (10 μM)) for 30 min. 
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Following inhibitor incubation, cells were treated with or without CNP (1 pM - 1 µM)

for 24 h. Following 20 h incubation, BrdU was incubated with the cells for 4 h, after

which culture medium was removed and the cells fixed. The cells were then incubated

with anti-BrdU peroxidase (POD), washed and tetramethyl-benzidine added. The

product was quantified by measuring absorbance at 370 nm (reference 492 nm) using

a Molecular Devices 96 well microplate reader (Menlo Park, California, USA).

PMEC were seeded at 500 cells/well, in a 96 well plate, for 24 h in growth medium.

Media was then changed to basal growth medium containing 0.1 % FCS and 0.5 %

supplements (i.e. a 1 in 200 dilution of growth medium with DMEM/F12, to quiesce

the cells). After 24 h the media was changed back to growth medium and the cells

treated with CNP (100 pM) for 24 h. Following 20 h incubation BrdU was incubated

with the cells for 4 h and the BrdU assay conducted, as described above. All BrdU

experiments were conducted in triplicate, i.e. each treatment was performed on 3

separate wells of the same endothelial cell population equating to an n=1.

2.4 Determination of MAPK phosphorylation and cell cycle

proteins

HUVEC and RAoSMC were seeded at 750,000 cells/10 cm dish. The following day,

media was changed and HUVEC were treated with CNP (100 pM) for 0, 0.5, 1, 3, 6 or

24 h. RAoSMC were seeded and the following day media changed to 0.1 % FCS.

RAoSMC were left overnight in 0.1 % FCS, the media changed and then treated with

CNP (1 µM) for 0, 0.5, 1, 3, 6 or 24 h. Some dishes received 30 min pre-incuabtion

with PD98059 (30 μM) or M372049 (10 μM) or PTx (100 ng/ml) before CNP 

addition. Following CNP incubation cell lysates were prepared. Media was aspirated

and the cells washed twice with 4oC PBS (Invitrogen). Cells were lysed by incubating

200 µl/dish phospho-homogenisation buffer (10 mM Tris, 50 mM NaCl, 30 mM

sodium pyrophosphate (NaPPi), 2 mM EDTA, 50 mM sodium fluoride, 1 mM sodium

orthovanadate, 1 mM phenylmethylsulfonyl fluoride, 1 % Triton X-100 and 1 µg/ml

benzamidine, antipain, leupeptin, aprotinin) for 5 min. Each dish was scraped to

remove cells and the lysate centrifuged at 12281 g for 5 min at 4o C, after which the

pellet was discarded and the lysate stored at -20oC.
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2.5 Sample preparation

To quantify total protein all samples were subjected to the Pierce® BCA protein assay

(Biorad, Hertfordshire, UK). Protein concentrations were determined based upon a

standard curve of bovine serum albumin (0, 0.125, 0.25, 0.5, 0.75, 1, 1.5, 2 mg/ml)

that was constructed by a series of dilutions from the 2 mg/ml albumin standard

provided, with phospho-homogenisation buffer. 25 µl sample or standard were mixed

with 200 µl working reagent (50:1 BCA reagent A:B), any bubbles removed and then

incubated at 37oC for 10 min. Absorbance was measured at 562 nm using a Molecular

Devices 96 well microplate reader and total protein was calculated from the standard

curve. Samples were diluted with phospho-homogenisation buffer to ensure equal

loading of protein for each run. Samples were diluted 1:1 with 2x sample buffer (20

mM Tris HCl, 2 mM EDTA, 2 % SDS, 10 % β-mercaptoethanol, 20 % glycerol, 0.01 

% bromophenol blue and distilled water), a hole made in the top of the eppendorf and

the samples boiled at 100oC for 5 min, to denature proteins, followed by

centrifugation at 12281 g at 4oC for 5 min. Samples were then placed on ice or stored

at -20oC.

2.6 Sodium dodecyl sulphate polyacrylamide gel

electrophoresis (SDS PAGE)

Gels were prepared by placing two pieces of glass together in a casting frame which

was held upright in a casting stand. A 7.5 % separating gel was prepared by mixing 5x

separating buffer (0.375 M Tris base, 0.1 % SDS, distilled water, pH 8.8), 7.5 %

acrylamide/bis-acrylamide, 0.1 % ammonium persulphate, 0.1 % N,N,N',N'-

tetramethylethylenediamine (TEMED) and distilled water and was pipetted into the

glass assembly. A 12 % separating gel was prepared by mixing 5x separating buffer,

12 % acrylamide/bis-acrylamide, 0.1 % ammonium persulphate, 0.06 % TEMED and

distilled water. The separating gels were overlaid with isopropanol to remove any

bubbles and also to allow the constituents to polymerise. Once the separating gel had

polymerised isopropanol was removed and the separating gel was overlaid with

stacking gel, which was prepared by mixing 5x stacking buffer (0.125 M Tris base,

0.1 % SDS, distilled water, pH 6.8), 4 % acrylamide/bis-acrylamide, 0.1 %
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ammonium persulphate, 0.1 % TEMED and distilled water. The comb was inserted

and the gel allowed to polymerise. The comb was removed and the gels transferred to

a Protean III gel tank, filled with SDS PAGE running buffer (50 mM Tris base, 0.384

M glycine, 0.1 % SDS, distilled water). 20 µl of each sample and 10 µl of protein

marker (precision plus kaleidoscope protein standards; Bio-Rad), were loaded into the

wells and separated at 70 – 120 V, until the dye front reached the end of the gel.

Proteins were then transferred by semi-dry transfer to a 0.45 µm or 0.2 µm pore

nitrocellulose membrane (HybondTM ECLTM, Amersham Biosciences,

Buckinhamshire, UK) using a Nova Blot and Multiphor II (Pharmacia Biotech). The

anode and cathode were covered with distilled water and electrode paper (GE

Healthcare, Buckinghamshire, UK; 7 cm x 10 cm) was soaked in either solution 1 (0.3

M Tris base, 20 % methanol and distilled water), solution 2 (0.025 M Tris base, 20 %

methanol and distilled water) or solution 3 (0.04 M 6-amino-n-hexanoic acid, 20 %

methanol and distilled water). 6x filter paper soaked in solution 1 was placed on the

anode, followed by 3x filter paper soaked in solution 2, then the nitrocellulose

membrane, then the gel and finally 9x filter paper soaked in solution 3 was placed on

top. The gel was prepared for transfer by removing from the glass plates, wetting the

gel with distilled water and discarding the stacking gel. In order to ensure

homogenous transfer the filter paper was rolled to ensure removal of bubbles. The

electrodes were connected and the Multiphor II run at 150 W for 45 min - 1 h.

2.7 Immunoblotting

Following transfer, the membrane was placed in 0.1 % Ponceau S for 10 min with

gentle shaking on a mini orbital shaker (Stuart Scientific, Staffordshire, UK). Ponceau

S reversibly stains proteins so that the membrane can be visually inspected to ensure

equal loading and transfer. The membrane was washed 3 - 5x with distilled water, to

remove Ponceau S, and then incubated with 5 % milk (50 mg/ml original dried

skimmed milk; (Marvel, Dublin, Republic of Ireland) dissolved in PBS/Tween (3.25

mM NaH2PO4, 7.5 mM Na2HPO4, 0.146 M NaCl, 0.1 % Tween 20 and distilled

water)) for 1 h at room temperature with gentle shaking; the milk was removed after

15 min and fresh milk added for the remainder of the incubation. Membranes were

then transferred to a new tray and probed with primary antibody in 5 % milk (anti-

p44/p42 MAP Kinase 1:500, anti-phospho-p44/p42 MAP Kinase (Thr202/Tyr204)
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1:500, anti-phospho-Akt (Ser473) 1:500, anti-Akt 1:500, anti-eNOS 1:1,000, anti-

phospho-eNOS (Ser1177) 1:1,000, anti-Cyclin D1 1:1,000, anti-p27 Kip1 1:1,000

(New England Biolabs, Hertfordshire, UK), anti-p21 1:500 (BD Pharmingen, Oxford,

UK) or anti-actin 1:10,000 (Chemicon International, distributed by Millipore,

Watford, UK) overnight at 4oC with constant agitation, apart from anti-actin. Anti-

actin was incubated for 10 min, at room temperature with constant agitation. The

membrane was then washed with PBS/Tween 5x for 5 min and incubated with

shaking for 1 h at room temperature with horseradish peroxidase-conjugated goat anti-

rabbit IgG or goat-anti mouse (Dako, Cambridgeshire, UK) diluted 1:2,000 in 5 %

milk in wash buffer. The membrane was washed with PBS/Tween 5x for 5 min. In

order to visualise the membrane, it was incubated with ECL (Amerhsam Biosciences)

for 2 min, wrapped in clingfilm and placed in a HypercasetteTM (Amersham

Biosciences). Under dark room conditions HyperfilmTM (Amersham Biosciences) was

placed on top of the membrane and exposed for varying times and the film processed

using a Compact X4 (X-ograph imaging systems, UK). Band densitometry was

calculated using AlphaEase software (AlphaInnotech, California, USA).

2.8 Endothelium specific CNP knockout mouse

2.8.1 Generation of endothelium specific CNP knockout mouse

All experiments were carried out in accordance with the Animals (Scientific

Procedures) Act 1986, United Kingdom.

The Cre/loxP recombination system was used to generate endothelium specific (ec)

CNP KO mice (Figure 10). Cre recombinase, a 38 KDa protein derived from

bacteriophage P1, efficiently excises DNA flanked by 2 loxP recognition sites (Sauer

and Henderson, 1988). The loxP site is a 34 bp site consisting of two 13 bp

palindromic sequences flanking an 8 bp sequence (Sauer, 1998). Initially a targeting

vector was designed with 2 loxP sites flanking the entire coding region for Nppc in

exons 1 and 2. One loxP site was upstream of exon 1; the other was associated with a

neomycin selection cassette, downstream of exon 2. The neomycin positive selection

cassette, flanked by flippase recombinant target (FRT) sequences, was inserted into

the targeting vector to allow selection of transfected embryonic stem cells. The FRT



site allows deletion of the neomycin selection cassette under flippase recombinase

action. To ensure only embryonic stem cells expressing the targeted CNP locus were

selected a Diphtheria toxin A negative selection cassette was also inserted into the

targeting vector. Diphtheria toxin is expressed by cells in which non-homologous

recombination occurs and the cells die. Following successful homologous

recombination of the targeted CNP locus in embryonic stem cells, the stem cells were

injected into blastocysts.
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Chimeric mice were generated in which the CNP locus (exon 1 and 2) and the

neomycin selection cassette was flanked by two loxP sites. Mice were then bred until

germ line transmission occurred. These mice were crossed with flippase recombinase

expressing mice resulting in in vivo excision of the neomycin selection cassette and

generation of Nppcflox/+ mice. Nppcflox/+ mice were crossed with Tie2Cre expressing

animals in which Cre recombinase expression is driven by the endothelial specific

Tie2 promoter, resulting in selective excision of the CNP gene from endothelial cells.

The Tie2 gene encodes an angiopoietin receptor and contains promoter and enhancer

regions that drive transgene expression specifically in endothelial cells (Schlaeger et

al., 1997). Tie2-lacZ transgenic mice demonstrate pan endothelial specific pattern of

lacZ staining throughout embryogenesis and adulthood (Schlaeger et al., 1997). This

expression system has previously been used to remove NPR-A selectively from the

endothelium (Sabrane et al., 2005).

Nppcflox/+ Tie2+ floxed mice were setup as breeding pairs, leading to the generation of

Nppc+/+ Tie2- (WT), Nppc+/+ Tie2+, Nppcflox/+ Tie2-, Nppcflox/+ Tie2+, Nppcflox/flox

Tie2- and Nppcflox/flox Tie2+ (ecCNP KO) offspring. ecCNP KO carry the targeted

CNP locus and also express Tie2 leading to the removal of the CNP gene from

endothelial cells.

2.8.2 Genotyping of animals

Mouse ear clip samples were digested using DirectPCR lysis reagent (Viagen Biotech,

distributed by Bioquote, York, UK) and 0.3 mg/ml proteinase K overnight at 55oC

with shaking. The following day, samples were incubated at 85oC for 45 min to

denature proteinase K after which the samples were ready for use. The Flpe mediated

neomycin excision was detected using the floxed CNP primers (Table 2); Figure 11

illustrates the binding sites of these primers. The PCR reaction mixture consisted of

2 μM primers, 2x BioMix (containing ultra stable Taq DNA polymerase, ultra pure 

dNTPs and MgCl2; Bioline, London, UK), DNA template and distilled water. PCR

conditions were as follows: 94oC for 2 min followed by 35 cycles of denaturation at

94oC for 30 s, annealing at 60oC for 1 min, polymerisation at 68oC for 2 min followed

by a final extension at 68oC for 10 min. PCR products were mixed with 5x DNA

loading buffer (Bioline), stained with SYBR safe DNA gel stain (Invitrogen), resolved



by gel electrophoresis on a 2 % agarose gel and viewed using an AlphaImager

(AlphaInnotech).
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2.9 Mouse isolated thoracic aorta

Mice were killed by cervical dislocation and the aorta was carefully removed and

cleaned of fat and connective tissue. The aorta was cut into 3 or 4 pieces

approximately 4 mm in length and mounted in 10 ml organ baths containing Krebs

bicarbonate buffer (composition (mM): Na+ 143, K+ 5.9, Ca2+ 2.5, Mg2+ 1.2, Cl- 128,

HCO3
- 25; HPO4

2- 1.2, SO4
2- 1.2, D-glucose 11) maintained at 37oC gassed with 95 %

O2/5 % CO2. Tension was set at 0.3 g and the vessels allowed to equilibrate for

approximately 1 h, over which time the vessels were washed every 15 - 20 min and

the tension reset to 0.3 g if required. After equilibration, the vessels were primed with

KCl (48 mM). The vessels were washed thoroughly and cumulative concentrations of

PE (1 nM - 10 µM) or U46619 (100 pM - 1 µM) were added. The vessels were

washed until basal tone was reached and then vessels were contracted to

approximately 80 % of the maximum PE-induced contraction. Endothelial integrity

was assessed by adding cumulative concentrations of ACh (1 nM - 10 µM); vessels

with < 50 % relaxation were deemed endothelium denuded and discarded. Vessels

were then washed and were pre-contracted to approximately 80 % of the maximum

PE-induced contraction and cumulative concentrations of CNP (1 nM – 1 µM) and

Sper-NO (100 pM – 30 µM) were added. Data were captured using Powerlab and

Chart version 6 (AD Instruments, Oxfordshire, UK).

2.10 Mouse blood pressure recording

Mice were implanted with a DSI PhysioTel® PA-C10 telemetry probe (Data Sciences

International, Minneapolis, USA). Each probe was cleaned and sterilised according to

the manufacturers guidelines. The probe was soaked in Terg-A-Zyme® (Fisher

Scientific) for a maximum of 72 h, rinsed with water, dried and stored until the day of

implantation. Prior to insertion the probe was sterilised by soaking in NuCidex®

(Johnson and Johnson, New Jersey, USA) for a maximum of 40 min, then washed

with sterile saline and finally re-gelled to ensure the absence of air bubbles in the

catheter tip. Mice were sedated with 5 % isoflurane and anaesthesia was maintained

using 2 % isoflurane. An incision was made in the neck and the left carotid artery was

isolated and cleaned. A small incision was made in the carotid and the catheter
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inserted ensuring no bubbles formed. The tip of the catheter was placed into the aortic

arch, securely fastened and the transmitter body placed subcutaneously on the right

flank. The incision was stitched and each animal received post-operative analgesia and

antibiotics consisting of 0.3 μg vetergesic (Reckitt Benckiser, York, UK), 15 ng 

baytril (Bayer, Newbury, UK) and 0.5 ml saline (Baxter, Newbury, UK)

subcutaneously. Animals were left to recover between 7-10 days, under a 12 h light-

dark cycle, after which haemodynamic recordings were taken for 64 h over the

weekend to minimise noise disturbances. Mean arterial blood pressure (MABP), heart

rate and activity were recorded for 2 min at 15 min intervals using Dataquest A.R.T

software (Data Sciences International, USA).

2.11 Statistics

Statistical analyses were carried out using GraphPad Prism version 5 (GraphPad

software, California, USA). An unpaired, two tailed t-test was carried out when

comparing two groups. When comparing 3 or more groups a one-way ANOVA

followed by a Bonferroni post test was conducted. For organ bath experiments, curves

were fitted to the data using nonlinear regression and the concentration of each drug,

giving a half-maximal response (EC50), was used to compare potency. Curves were

analysed using two-way ANOVA. Data are not significant unless otherwise stated,

where P<0.05 is defined as significant.

In Figure 28, 32 and 33 vehicle (DMSO) caused an increase in expression of the

respective proteins. In order to quantify the effect of PD98059 the effect of DMSO

alone was subtracted from the treatment groups that had received DMSO. In

retrospect, it would have been more appropriate to add DMSO to the CNP treatment

group as well, so that all treatments received DMSO and then a fair comparison could

be made between the groups.
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Chapter 3

Results 1
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3 Results 1

3.1 Introduction

Atherosclerosis and restenosis are characterised by endothelial cell damage and

neointimal hyperplasia (Nabel, 1991;Raines and Ross, 1993). Previous studies have

shown CNP to enhance endothelial cell proliferation in vitro and promote re-

endothelialisation in vivo (Doi et al., 2001;Ohno et al., 2002;Qian et al.,

2002;Yamahara et al., 2003;Pelisek et al., 2006). The intracellular mechanism(s) by

which CNP promotes mitogenesis is unknown, although some studies have suggested

that this effect is NPR-B mediated (Ohno et al., 2002;Yamahara et al., 2003).

Studies described in this section investigate the hypothesis that in endothelial cells,

CNP activates NPR-C, which mediates MAPK activation resulting in altered cell

cycle protein expression to promote growth. This was achieved by assessing

endothelial cell proliferation in response to CNP in the presence of an NPR-C

antagonist, MAPK inhibitors and endothelial cells isolated from NPR-C KO mice. In

addition, MAPK phosphorylation (i.e. activation) was assessed in the presence of

NPR-C blockade and cell cycle protein expression determined in the presence of

MAPK inhibition.

Data from our lab have demonstrated that CNP-induced inhibition of VSMC

proliferation is mediated via activation of NPR-C resulting in ERK 1/2

phosphorylation (Panayiotou, 2007); however the downstream targets are unknown.

Thus, I also investigated if a NPR-C-dependent ERK 1/2 activation resulted in a

differential effect on cell cycle protein expression in VSMC to bring about growth

arrest.
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3.2 Defining optimum conditions for measuring CNP-

induced HUVEC proliferation

In order to identify the optimum cell density, FCS concentration and CNP incubation

time to use, initial studies explored the effect of these different parameters on cell

growth. Initially, 1 µM CNP was used to determine incubation time, cell density and

FCS concentration as this is commensurate with the maximal concentration of CNP

released from endothelial cells in response to ACh (Chauhan et al., 2003) and gives

maximum relaxation in isolated thoracic aorta and mesenteric arteries (Madhani et al.,

2003)

HUVEC were grown in either basal growth medium (2 % FCS plus supplements), a 1

in 20 dilution of the basal growth medium (equivalent to 0.1% FCS plus 5 %

supplements) or 0.1 % FCS only, ranging from 500 cells/well up to 100,000 cells/well

(Figure 12). Absorbance was greatest at 1,000 or 2,500 cells/well and decreased as

cell density increased, indicating at higher cell densities the cells were not

proliferating; this is likely due to contact inhibition. As a result, the cell density

chosen for future experiments was 1,000 cells/well. 2 % FCS with supplements was

also chosen for subsequent growth studies as this media composition resulted in a

consistent increase in proliferation. A similar increase in growth was observed when

incubating 1 µM CNP for 24 h (Figure 12) or 48 h (Figure 13). Thus, all further

proliferation experiments were conducted using 1,000 HUVEC/well, in 2 % FCS plus

supplements and incubated with CNP for 24 h.
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Effect of CNP (24 h) on HUVEC proliferation with differing cell

density and media composition
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Figure 12 - BrdU incorporation in response to CNP (1 µM) for 24 h in HUVEC

HUVEC (500 cells/well - 100,000 cells/well) were grown in 3 different media conditions. Data are

represented as mean ± SEM, expressed as a percentage of basal growth (control, set at 100 %); n=3-5

conducted in triplicate.
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Effect of CNP (48 h) on HUVEC proliferation with differing cell

density and media composition
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Figure 13 - BrdU incorporation in response to CNP (1 µM) for 48 h in HUVEC

HUVEC (500 cells/well - 100,000 cells/well) were grown in 3 different media conditions. Data are

represented as mean ± SEM, expressed as a percentage of basal growth (control, set at 100 %); n=3-5

conducted in triplicate.
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3.3 CNP-induced HUVEC proliferation is part NPR-C

mediated

In order to determine a concentration-response relationship for the proliferative effect

of CNP on endothelial cells, HUVEC were treated with CNP (1 pM – 1 µM) for 24 h.

CNP caused a bi-phasic response, with all concentrations tested causing a significant

increase in HUVEC proliferation, in comparison to control, except for 1 pM CNP

(Figure 14). CNP (100 pM) was chosen for future experiments in endothelial cells as

it achieved the greatest increase in proliferation.

To identify the NPR responsible for the positive effect of CNP on endothelial cell

proliferation cANF4-23, a selective NPR-C agonist (Maack et al., 1987), and M372049,

a selective NPR-C antagonist (Veale et al., 2000) were used. HUVEC were incubated

with cANF4-23 (1 pM – 1 µM) for 24 h, resulting in comparable peak increases in

proliferation and a similar bi-phasic response to CNP (Figure 14). In the presence of

M372049 (10 µM; 30 min pre-incubation), the proliferative response to CNP (100

pM; 24 h) and cANF4-23 (100 pM; 24 h) were significantly inhibited (Figure 15).

M372049 (10 µM) alone had no effect on proliferation (data not shown).

To confirm a role for NPR-C in the growth promoting effect of CNP, pulmonary

microvascular endothelial cells (PMEC) were isolated from WT and NPR-C KO mice.

The proliferative response elicited by CNP (100 pM; 24 h) was significantly lower in

NPR-C KO PMEC in comparison to WT PMEC (Figure 16A). Moreover, basal

proliferation in NPR-C KO PMEC was approximately 40 % compared to WT (Figure

16B).
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Concentration-dependent effect of CNP and cANF4-23

on HUVEC proliferation
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Figure 14 - BrdU incorporation in response to CNP (1 pM - 1µM) and cANF4-23 (1 pM - 1µM;

both 24 h) in HUVEC

Data are represented as mean ± SEM, expressed as a percentage of basal growth (control, set at 100 %);

*P<0.05 vs control, **P<0.01 vs control, ***P<0.001 vs control; n=20 (CNP), n=4 (cANF4-23),

conducted in triplicate.
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Effect of CNP and cANF4-23 on HUVEC proliferation

in the presence of M372049
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Figure 15 - BrdU incorporation in response to CNP (100 pM) and cANF4-23 (100 pM; both 24 h)

in HUVEC in the absence and presence of M372049 (10 µM)

Data are represented as mean ± SEM, expressed as a percentage of basal growth (control, set at 100 %);

*P<0.05 vs CNP alone, #P<0.01 vs cANF4-23 alone; n=4-6, conducted in triplicate.
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3.4 Determination of the signalling pathway responsible for

CNP-induced HUVEC proliferation

Having identified NPR-C as underlying CNP-induced endothelial cell proliferation, I

attempted to identify the intracellular signalling pathway(s) involved. Work from our

lab has shown that CNP-mediated inhibition of VSMC proliferation is in part via

NPR-C activation and ERK 1/2 phosphorylation (Panayiotou, 2007). To determine if

activation of a MAPK pathway is involved in CNP-mediated endothelial cell

proliferation, HUVEC were treated with the ERK 1/2 inhibitor PD98059 (30 µM), the

p38 MAPK inhibitor SB203580 (30 µM), and the JNK inhibitor SP600125 (3 µM) for

30 min prior to addition of CNP (100 pM; 24 h). CNP-mediated endothelial cell

proliferation was blocked significantly by pre-treatment with PD98059, whilst growth

was unaffected in the presence of SB203580 or SP600125 (Figure 17).

A potential role for the PI3K/Akt pathway in CNP-induced HUVEC growth was also

investigated since this signalling cascade is well established to regulate endothelial

cell proliferation, particularly in response to VEGF (Brader and Eccles, 2004).

HUVEC were treated with the structurally distinct PI3K inhibitors LY294002 (10

µM) and wortmannin (500 nM) for 30 min prior to addition of CNP (100 pM; 24 h).

Both LY294002 and wortmannin resulted in a significant reduction in CNP-induced

proliferation (Figure 18).
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Effect of MAPK inhibitors on CNP-induced

HUVEC proliferation

(A) (B)

(C)

Figure 17 - BrdU incorporation in response to CNP (100 pM; 24 h) in HUVEC in the absence and

presence of (A) PD98059 (30 µM), (B) SB203580 (30 µM) or (C) SP600125 (3 µM)

Data are represented as mean ± SEM, expressed as a percentage of basal growth (control, set at 100 %

after excluding any effect of inhibitors alone PD98059, 69.07 ± 1.76 %; SB203580, 113.41 ± 3.70 %;

SP600125, 88.84 ± 2.61 %). *P<0.05 vs CNP; (A) n=7, (B) n=6, (C) n=3, conducted in triplicate.
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Effect of PI3K inhibitors on CNP-induced

HUVEC proliferation
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Figure 18 - BrdU incorporation in response to CNP (100 pM; 24h) in HUVEC in the absence and

presence of (A) LY294002 (10 µM), or (B) wortmannin (500 nM)

Data are represented as mean ± SEM, expressed as a percentage of basal growth (control, set at 100 %

after excluding any effect of inhibitors alone LY294002, 24.24 ± 1.49 %; wortmannin, 86.11 ± 2.19 %).

*P<0.05 vs CNP; n=4, conducted in triplicate.
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3.5 CNP induces ERK 1/2 and Akt phosphorylation in

HUVEC

Since the ERK 1/2 inhibitor, PD98059 attenuated CNP-induced HUVEC proliferation,

total ERK 1/2 and phosphorylated ERK 1/2 protein levels were measured in response

to CNP. HUVEC were treated with 100 pM CNP (0, 0.5, 1, 3, 6 and 24 h) and samples

analysed by immunoblot. CNP elicited a rapid ERK 1/2 activation which was

significant at 0.5 h, returning to basal level by 1 h (Figure 19). Total ERK 1/2 levels

remained unaltered at all time points. VEGF (10 ng/ml) was used as a positive control

since it has been shown to phosphorylate ERK 1/2 in HUVEC (Yu and Sato, 1999).

The PI3K inhibitors LY294002 and wortmannin also reduced CNP-mediated HUVEC

proliferation, therefore total Akt and phosphorylated Akt were determined as

described above. CNP elicited Akt phosphorylation which was significant at 0.5 h,

whilst total Akt levels remained unaltered (Figure 20).
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Effect of CNP on ERK 1/2 phosphorylation in HUVEC
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Figure 19 - Expression and phosphorylation of ERK 1/2 in response to CNP (100 pM) for 0 - 24 h

in HUVEC

Expression and phosphorylation of ERK 1/2 was determined by western blotting and quantified by

densitometry (normalised to control, 0 h). Data are represented as mean ± SEM; *P<0.05 vs control,

***P<0.001 vs control; n=4.
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Effect of CNP on Akt phosphorylation in HUVEC
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Figure 20 - Expression and phosphorylation of Akt in response to CNP

HUVEC

Expression and phosphorylation of Akt was determined by western b

densitometry (normalised to control, 0 h). Data are represented as mean ±

n=4.
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3.6 NPR-C activation underlies CNP-induced ERK 1/2 and

Akt phosphorylation in HUVEC

To confirm that NPR-C activation results in CNP-mediated ERK 1/2 and Akt

phosphorylation, the NPR-C antagonist, M372049 and PTx, a Gi/o G-protein inhibitor,

were employed. PTx was used since NPR-C has been characterised to cause smooth

muscle relaxation via a Gi-dependent mechanism (Chauhan et al., 2003). HUVEC

were pre-incubated with M372049 (10 μM; 30 min) or PTx (100 ng/ml; 16 h) 

followed by treatment with CNP (100 pM; 30 min); 30 min was chosen since CNP

significantly increases ERK 1/2 and Akt phosphorylation at this time point. M372049

and PTx blocked the CNP-elicited increase in ERK 1/2 (Figure 21 and Figure 22) and

Akt (Figure 23 and Figure 24) phosphorylation. Total ERK 1/2 and Akt levels

remained unaltered throughout.
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Effect of M372049 on CNP-induced ERK 1/2

phosphorylation in HUVEC
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Figure 21 - Expression and phosphorylation of ERK 1/2 in response to CNP (

HUVEC in the absence and presence of M372049 (10 μM) 

Expression and phosphorylation of ERK 1/2 was determined by western blotti

densitometry (normalised to control). Data are represented as mean ± SEM;

##P<0.01 vs CNP; n=4.
Phospho - ERK 1

Phospho - ERK 2
ERK 1
100 pM; 30 min) in

ng and quantified by

*P<0.05 vs control,

ERK 2
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Effect of Pertussis toxin on CNP-induced ERK 1/2

phosphorylation in HUVEC
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Figure 22 - Expression and phosphorylation of ERK 1/2 in response to CNP (1

HUVEC in the absence and presence of PTx (100 ng/ml)

Expression and phosphorylation of ERK 1/2 was determined by western blotti

densitometry (normalised to control). Data are represented as mean ± SEM;

###P<0.001 vs CNP, n=4.
Phospho - ERK 1

Phospho - ERK 2
ERK 1
00 pM; 30 min) in

ng and quantified by

*P<0.05 vs control,

ERK 2
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Effect of M372049 on CNP-induced Akt

phosphorylation in HUVEC
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Figure 23 - Expression and phosphorylation of Akt in response to CNP (100 pM

HUVEC in the absence and presence of M372049 (10 μM)  

Expression and phosphorylation of Akt was determined by western blotting

densitometry (normalised to control). Data are represented as mean ± SEM; *

##P<0.01 vs CNP; n=4.
Phospho-Akt
; 30 min) in

and quantified by

P<0.05 vs control,

Akt
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Effect of Pertussis toxin on CNP-induced Akt

phosphorylation in HUVEC
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Figure 24 - Expression and phosphorylation of Akt in response to CNP (100 pM

HUVEC in the absence and presence of PTx (100 ng/ml)

Expression and phosphorylation of Akt was determined by western blotting

densitometry (normalised to control). Data are represented as mean ± SEM; *

###P<0.001 vs CNP; n=4.
Phospho-Akt
; 30 min) in

and quantified by

P<0.05 vs control,

Akt



89

3.7 CNP does not activate eNOS in HUVEC

VEGF has been shown to promote endothelial cell proliferation, in part, via NO

production (Papapetropoulos et al., 1997). eNOS, the source of NO in endothelial

cells, can be phosphorylated at Ser1177 and activated by Akt (Fulton et al., 1999).

Since I have shown that Akt activity is triggered in response to CNP (Figure 20), I

investigated if CNP-induced eNOS activation may provide a mechanism for the

mitogenic effects of CNP in endothelial cells. Total and phosphorylated eNOS levels

were assessed in HUVEC treated with CNP (100 pM; 30 min). However, CNP was

unable to elicit eNOS phosphorylation (Figure 25).
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Effect of CNP on eNOS phosphorylation in HUVEC
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Figure 25 - Expression and phosphorylation of eNOS in HUVEC i

min)

Expression and phosphorylation of eNOS was determined by we

densitometry (normalised to control). Data are represented as mean ± S
Phospho-eNOS
n response to CNP (100 pM; 30

stern blotting and quantified by

EM; n=5.
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3.8 CNP alters cell cycle protein expression in HUVEC in an

ERK 1/2-dependent manner

I have previously shown CNP promotes HUVEC proliferation implying it alters cell

cycle protein expression and activity. To investigate potential cell cycle protein

targets, HUVEC were treated with 100 pM CNP (0, 0.5, 1, 3, 6 and 24 h) or VEGF

(10 ng/ml; 6 h) and cyclin D1 (a cell cycle promoter) and p21waf1/cip1 (a cell cycle

inhibitor) expression assessed. CNP caused a time dependent increase in cyclin D1

expression that was significant at 6 h, and returned to basal levels after 24 h

(Figure 26). p21waf1/cip1 expression was significantly decreased at 24 h, but unaltered at

shorter incubation times (Figure 27). VEGF was used as a positive control as it is a

potent endothelial cell mitogen (Zachary, 2003); it did not significantly alter cyclin D1

expression (Figure 26) but decreased p21waf1/cip1 expression (Figure 27) to a similar

magnitude as CNP.

Since I have demonstrated CNP promotes HUVEC proliferation via activation of the

ERK 1/2 pathway (Figure 17), and that the ERK 1/2 pathway is a key regulator of the

cell cycle (Meloche and Pouyssegur, 2007), the effect of inhibiting this MAPK

pathway on cyclin D1 expression was investigated. HUVEC were pre-incubated with

PD98059 (30 μM; 30 min) followed by treatment with CNP (100 pM; 6 h). CNP 

increased cyclin D1 expression which was blocked by PD98059 (Figure 28).
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Effect of CNP on cyclin D1 expression in HUVEC
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Figure 26 - Expression of cyclin D1 in response to CNP (100 pM) for 0 - 24 h

Cyclin D1 expression was determined by western blotting and quantified by den

to control, 0 h). Data are represented as mean ± SEM; *P<0.05 vs control; n=4.
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Effect of CNP on p21waf1/cip1 expression in HUVEC
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Figure 27 - Expression of p21waf1/cip1 in response to CNP (100 pM) for 0 - 24 h

p21waf1/cip1 expression was determined by western blotting and quantified by den

to control, 0 h). Data are represented as mean ± SEM; *P<0.05 vs control; n=4.
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Effect of PD98059 on CNP-induced cyclin D1

expression in HUVEC
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Figure 28 - Expression of cyclin D1 in response to CNP (100 pM; 24 h) in HUVEC in the absence

or presence of PD98059 (30 μM) 

Cyclin D1 expression was determined by western blotting and quantified by densitometry (normalised

to control). Data are represented as mean ± SEM, expressed as cyclin D1 expression (percentage of

control; set at 100 % excluding vehicle; DMSO 0.1 %, 116 ± 6 %). **P<0.05 vs control, ##P<0.05 vs

CNP, n=4.
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3.9 CNP alters cell cycle protein expression in RAoSMC in

an ERK 1/2-dependent manner

Since I had shown that CNP alters the expression of the cell cycle mediators cyclin D1

and p21waf1/cip1 in endothelial cells, it was investigated if CNP also differentially

effects cell cycle proteins in VSMC, to bring about its anti-proliferative effects. This

would potentially explain the differential effect of CNP on endothelial cell and smooth

muscle cell growth, since CNP increases ERK 1/2 phosphorylation in both cell types

(Panayiotou 2007; section 3.5). RAoSMC were treated with 1 µM CNP (0, 0.5, 1, 3, 6

and 24 h) or Ang II (100 nM; 24 h). CNP elicited a time dependent increase in

p21waf1/cip1 (Figure 29) and p27kip1 (Figure 30) expression which was significant at 6

and 24 h. CNP appeared to increase cyclin D1 expression, however this effect was not

statistically significant (Figure 31). Ang II was used as a positive control as it is a well

established promoter of smooth muscle cell proliferation (Wolf and Wenzel, 2004); it

significantly increased p21waf1/cip1 (Figure 29) but had no significant effect on p27kip1

(Figure 30) or cyclin D1 expression (Figure 31).

In order to link CNP-induced ERK 1/2 phosphorylation in RAoSMC with downstream

effects on cell cycle proteins, RAoSMC were pre-incubated with PD98059 (30 μM;  

30 min) followed by treatment with CNP (1 µM; 24 h). Pre-incubation with PD98059

blocked the CNP mediated increase in p21waf1/cip1 (Figure 32) and p27kip1 (Figure 33).
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Effect of CNP on p21waf1/cip1 expresssion in RAoSMC
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Figure 29 - Expression of p21waf1/cip1 in response to CNP (1 μM) for 0 - 24 h

p21waf1/cip1 expression was determined by western blotting and quantified by d

to control, 0 h). Data are represented as mean ± SEM; *P<0.05 vs control; n=3.
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Effect of CNP on p27kip1 expression in RAoSMC
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Figure 30 - Expression of p27kip1 in response to CNP (1 μM) for 0 - 24 h in 

p27kip1 expression was determined by western blotting and quantified by den

control, 0 h). Data are represented as mean ± SEM; *P<0.05 vs control, *** P<0.
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Effect of CNP on cyclin D1 expression in RAoSMC
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Figure 31 - Expression of cyclin D1 in response to CNP (1 μM) for 0 - 24 h in R

Cyclin D1 expression was determined by western blotting and quantified by dens

to control, 0 h). Data are represented as mean ± SEM; n=3.
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Effect of PD98059 on CNP-induced p21waf1/cip1

expression in RAoSMC
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Figure 32 - Expression of p21waf1/cip1 in response to CNP (1 μM; 24 h) in RAoSM

or presence of PD98059 (30 μM) 

p21waf1/cip1 expression was determined by western blotting and quantified by densit

to control). Data are represented as mean ± SEM, expressed as p21waf1/cip1 expres

control; set at 100 % excluding vehicle; DMSO 0.1 %, 160 ± 16 %). *P<0.05 vs

CNP, n=3.
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Effect of PD98059 on CNP-induced p27kip1

expression in RAoSMC

C
on

tro
l

C
N
P

PD
98

05
9

PD
98

05
9

+
C
N
P

90

100

110

120

130

140

150

160

170 *

#

p
2

7
k

ip
1

e
xp

re
ss

io
n

(%
o

f
co

n
tr

o
l)

Figure 33 - Expression of p27kip1 in response to CNP (1 μM; 24 h) in RAoSMC in 

presence of PD98059 (30 μM) 

p27kip1 expression was determined by western blotting and quantified by densitomet

control). Data are represented as mean ± SEM, expressed as p27kip1 expression (perc

set at 100 % excluding vehicle; DMSO 0.1 %, 149 ± 3 %). *P<0.05 vs control, #P<0.05
p27kip1
the absence or 

ry (normalised to

entage of control;

vs CNP; n=5.
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3.10 Summary of key findings

I have shown that CNP promotes endothelial cell proliferation in an NPR-C dependent

manner. In turn, NPR-C activation leads to an increase in ERK 1/2 and Akt activation

which results in the former augmenting cyclin D1 expression and facilitating cell

cycle progression. In VSMC, CNP elicits an ERK 1/2-dependent increase of

p21waf1/cip1 and p27kip1 expression, thereby preventing cell cycle progression and

proliferation. Thus, I have identified a key differential effect of CNP-dependent ERK

1/2 phosphorylation, via NPR-C, in endothelial cells and VSMC that appears to

underlie the pro- and anti-mitogenic effects of CNP, in these two cell types.
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Chapter 4

Results 2
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4 Results 2

4.1 Introduction

CNP is a vasodilator of conduit (Drewett et al., 1995;Wennberg et al., 1999;Madhani

et al., 2003) and resistance arteries (Chauhan et al., 2003;Villar et al., 2007;Kun et al.,

2008) and recent studies have suggested CNP to be an EDHF (Chauhan et al.,

2003;Villar et al., 2007). In addition, CNP administration to healthy humans,

monkeys, dogs and rats elicits a transient reduction in blood pressure (Clavell et al.,

1993;Igaki et al., 1996;Seymour et al., 1996;Aizawa et al., 2008). Such observations

intimate that CNP may be important in regulation of local blood flow and systemic

blood pressure. In order to determine the role of endothelium-derived CNP, in

cardiovascular homeostasis, our lab has developed an endothelial cell CNP KO

(ecCNP KO) mouse. This is to circumvent the problems in global CNP KO mice,

which includes gross bone deformation and less than 30 % of these animals survive up

to the age of 16 weeks (Komatsu et al., 2002).

Studies described in this chapter investigate the hypothesis that ecCNP KO mice have

altered vascular and endothelial function and are hypertensive. This was achieved by

assessing thoracic aorta and mesenteric artery reactivity, in vitro, and measuring mean

arterial blood pressure (MABP) in vivo using radiotelemetry.
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4.2 Initial characterisation of WT and ecCNP KO mice

To determine the genotype of animals, PCR was carried out on DNA isolated from ear

clip samples. Animals that express a homozygote floxed CNP gene and express Tie2

are deemed ecCNP KO animals (refer to section 2.8.1 for ecCNP KO generation).

Throughout this chapter, four genotypes have been studied: Nppc+/+ Tie2-, Nppc+/+

Tie2+, Nppcflox/flox Tie2- and Nppcflox/flox Tie2+ (ecCNP KO). Data shown as WT is the

grouped data for Nppc+/+ Tie2-, Nppc+/+ Tie2+ and Nppcflox/flox Tie2- animals. Figure

34 depicts all the genotypes produced by the Nppcflox/+ Tie2+ breeding pairs.

Littermate controls were used throughout.

To assess if ecCNP KO mice exhibit altered growth rates, animals were weighed

weekly from age 6 to 16 weeks. Increase in body weights were unchanged in male

(Figure 35) and female (Figure 37) ecCNP KO mice when compared to WT. Change

in body mass from 6 to 16 weeks was also unaltered in male (Figure 36) and female

(Figure 38) ecCNP KO mice versus WT.
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Genotyping of WT and ecCNP KO mice

Figure 34 - Genotyping of WT and ecCNP KO mice

Gel depicting the 6 possible offspring from Nppcflox/+ Tie2+ breeders. Lane (1) Nppc+/+

Nppc+/+ Tie2+, (3) Nppcflox/+ Tie2-, (4) Nppcflox/+ Tie2+, (5) Nppcflox/flox Tie2- and (6) Nppcfl

(ecCNP KO)
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Body mass of male WT and ecCNP KO mice

aged 6 to 16 weeks old
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Figure 35 - Body mass of male WT and ecCNP KO mice aged 6 to 16 weeks old

Data are represented as mean ± SEM; n=7-16.
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Figure 36 - Body mass change in male WT and ecCNP KO mice between 6 and 16 weeks old

Data are represented as mean ± SEM; n=7-16.
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Body mass of female WT and ecCNP KO mice

aged 6 to 16 weeks old
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Figure 37 - Body mass of female WT and ecCNP KO mice aged 6 to 16 weeks old

Data are represented as mean ± SEM; n=8-13.
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Figure 38 - Body mass change in female WT and ecCNP KO mice aged 6 to 16 weeks old

Data are represented as mean ± SEM; n=8-13.
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4.3 Effect of endothelial CNP gene knockout on functional

reactivity of thoracic aorta

Functional pharmacological studies were used to determine thoracic aorta reactivity.

Concentration-response curves were constructed for the contractile agents PE and

U46619 and for the relaxant agents ACh (endothelium-dependent), CNP and Sper-NO

(both endothelium-independent). In order to construct relaxant concentration-response

curves, vessels were pre-contracted with an EC80 concentration of PE.

4.3.1 Contractile agonists

Vascular responsiveness to PE was unchanged in male (Figure 39) and female

(Figure 40) ecCNP KO mice versus WT. Contractile responses to U46619 were also

unchanged in both sexes (Figure 41 and Figure 42).

4.3.2 Vasorelaxants

In male ecCNP KO mice, the response to ACh was unchanged compared to WT

(Figure 43). ecCNP KO female aortae exhibited a significantly reduced potency to

ACh with a lower Emax (72.56 ± 1.96 and 64.44 ± 3.53; WT and ecCNP KO,

respectively), although the EC50 was unaltered (Figure 44).

ecCNP KO male aortae demonstrated a statistically significant leftward shift in the

CNP concentration-response curve, versus WT (Figure 45). However,the EC50 and

Emax were unchanged. Female ecCNP KO aortae exhibited unaltered responsiveness to

CNP, compared to WT (Figure 46).

In males, the concentration response curves to Sper-NO were indistinguishable

between WT and ecCNP KO (Figure 47), although there was a minor change in the

EC50 (pEC50: 6.65 ± 0.04 and 6.80 ± 0.03; WT and ecCNP KO, respectively). ecCNP

KO female aortae demonstrated a leftward shift in the concentration-response curve to

Sper-NO (Figure 48) with an increase in potency (pEC50: 6.48 ± 0.04 and 6.75 ± 0.08;

WT and ecCNP KO, respectively); the Emax was unaltered.
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Effect of PE in aortic rings from male

WT and ecCNP KO mice
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Figure 39 - Concentration-response curves to PE in aortic rings from male WT and ecCNP KO

mice

Inset graph shows concentration-response curves to PE in male aortic rings from individual genotypes.

Contraction is expressed as mean ± SEM increase in tension (g); n=7-9.

PE
pEC50 –log [M]

PE
Emax tension (g)

Nppc+/+ Tie2- 6.85 ± 0.13 0.30 ± 0.03

Nppc+/+ Tie2+ 6.95 ± 0.22 0.25 ± 0.04

Nppcflox/flox Tie2- 6.87 ± 0.09 0.34 ± 0.03

WT 6.88 ± 0.08 0.30 ± 0.02

ecCNP KO 6.91 ± 0.12 0.27 ± 0.03

Table 3 - pEC50 and Emax values of PE in aortic rings from male WT and ecCNP KO mice

pEC50 is expressed as mean ± SEM –log [M]. Emax is expressed as mean ± SEM increase in tension (g);

n=7-9.
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Effect of PE in aortic rings from female

WT and ecCNP KO mice
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Figure 40 - Concentration-response curves to PE in aortic rings from female WT and ecCNP KO

mice

Inset graph shows concentration-response curves to PE in female aortic rings from individual

genotypes. Contraction is expressed as mean ± SEM increase in tension (g); n=8-11.

PE
pEC50 –log [M]

PE
Emax tension (g)

Nppc+/+ Tie2- 6.95 ± 0.08 0.30 ± 0.03

Nppc+/+ Tie2+ 6.79 ± 0.09 0.27 ± 0.03

Nppcflox/flox Tie2- 6.99 ± 0.10 0.26 ± 0.03

WT 6.92 ± 0.05 0.28 ± 0.02

ecCNP KO 6.89 ± 0.08 0.27 ± 0.02

Table 4 - pEC50 and Emax values of PE in aortic rings from female WT and ecCNP KO mice

pEC50 is expressed as mean ± SEM –log [M]. Emax is expressed as mean ± SEM increase in tension (g);

n=8-11.
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Effect of U46619 in aortic rings from male

WT and ecCNP KO mice
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Figure 41 - Concentration-response curves to U46619 in aortic rings from male WT and ecCNP

KO mice

Inset graph shows concentration-response curves to U46619 in male aortic rings from individual

genotypes. Contraction is expressed as mean ± SEM increase in tension (g); n=5-6.

U46619
pEC50 –log [M]

U46619
Emax tension (g)

Nppc+/+ Tie2- 7.92 ± 0.06 0.69 ± 0.04

Nppc+/+ Tie2+ 7.93 ± 0.05 0.65 ± 0.03

Nppcflox/flox Tie2- 7.88 ± 0.10 0.76 ± 0.06

WT 7.90 ± 0.04 0.70 ± 0.03

ecCNP KO 7.81 ± 0.11 0.76 ± 0.09

Table 5 - pEC50 and Emax values of U46619 in aortic rings from male WT and ecCNP KO mice

pEC50 is expressed as mean ± SEM –log [M]. Emax is expressed as mean ± SEM increase in tension (g);

n=5-6.
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Effect of U46619 in aortic rings from female

WT and ecCNP KO mice
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Figure 42 - Concentration-response curves to U46619 in aortic rings from female WT and ecCNP

KO mice

Inset graph shows concentration-response curves to U46619 in female aortic rings from individual

genotypes. Contraction is expressed as mean ± SEM increase in tension (g); n=5-8.

U46619
pEC50 –log [M]

U46619
Emax tension (g)

Nppc+/+ Tie2- 8.01 ± 0.09 0.86 ± 0.08

Nppc+/+ Tie2+ 7.81 ± 0.05 0.77 ± 0.02

Nppcflox/flox Tie2- 7.77 ± 0.12 0.86 ± 0.10

WT 7.89 ± 0.06 0.84 ± 0.05

ecCNP KO 7.88 ± 0.06 0.87 ± 0.05

Table 6 - pEC50 and Emax values of U46619 in aortic rings from female WT and ecCNP KO mice

pEC50 is expressed as mean ± SEM –log [M]. Emax is expressed as mean ± SEM increase in tension (g);

n=5-8.
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Effect of ACh in aortic rings from male

WT and ecCNP KO mice
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Figure 43 - Concentration-response curves to ACh in aortic rings from male WT and ecCNP KO

mice

Inset graph shows concentration-response curves to ACh in male aortic rings from individual

genotypes. Relaxation is expressed as mean ± SEM percentage reversal of PE-induced tone; n=6-8.

ACh
pEC50 –log [M]

ACh Emax

% relaxation

Nppc+/+ Tie2- 7.53 ± 0.14 69.02 ± 4.73

Nppc+/+ Tie2+ 7.30 ± 0.08 74.20 ± 4.90

Nppcflox/flox Tie2- 7.60 ± 0.05 74.47 ± 2.27

WT 7.48 ± 0.05 71.87 ± 2.57

ecCNP KO 7.56 ± 0.12 73.07 ± 4.09

Table 7 - pEC50 and Emax values of ACh in aortic rings from male WT and ecCNP KO mice

pEC50 is expressed as mean ± SEM –log [M]. Emax is expressed as mean ± SEM percentage reversal of

PE-induced tone; n=6-8.
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Effect of ACh in aortic rings from female

WT and ecCNP KO mice
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Figure 44 - Concentration-response curves to ACh in aortic rings from female WT and ecCNP

KO mice

Inset graph shows concentration-response curves to ACh in female aortic rings from individual

genotypes. Relaxation is expressed as mean ± SEM percentage reversal of PE-induced tone. *P<0.05 vs

WT; n=6-8.

ACh
pEC50 –log [M]

ACh Emax

% relaxation

Nppc+/+ Tie2- 7.51 ± 0.07 73.53 ± 4.29

Nppc+/+ Tie2+ 7.66 ± 0.04 78.83 ± 1.61

Nppcflox/flox Tie2- 7.33 ± 0.07 67.59 ± 3.52

WT 7.52 ± 0.04 72.56 ± 1.96

ecCNP KO 7.54 ± 0.08 64.44 ± 3.53*

Table 8 - pEC50 and Emax values of ACh in aortic rings from female WT and ecCNP KO mice

pEC50 is expressed as mean ± SEM –log [M]. Emax is expressed as mean ± SEM percentage reversal of

PE-induced tone. *P<0.05 vs WT; n=6-8.
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Effect of CNP in aortic rings from male

WT and ecCNP KO mice
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Figure 45 - Concentration-response curves to CNP in aortic rings from male WT and ecCNP KO

mice

Inset graph shows concentration-response curves to CNP in male aortic rings from individual

genotypes. Relaxation is expressed as mean ± SEM percentage reversal of PE-induced tone. **P<0.01

vs WT; n=5-6.

CNP
pEC50 –log [M]

CNP Emax

% relaxation

Nppc+/+ Tie2- 7.09 ± 0.09 96.25 ± 3.43

Nppc+/+ Tie2+ 7.28 ± 0.15 98.12 ± 2.78

Nppcflox/flox Tie2- 7.31 ± 0.08 98.52 ± 1.63

WT 7.23 ± 0.08 97.70 ± 1.44

ecCNP KO 7.45 ± 0.07 98.47 ± 0.97

Table 9 - pEC50 and Emax values of CNP in aortic rings from male WT and ecCNP KO mice

pEC50 is expressed as mean ± SEM –log [M]. Emax is expressed as mean ± SEM percentage reversal of

PE-induced tone; n=5-6.

-9 -8 -7 -6

0

20

40

60

80

100

Nppc-/- Tie2+

Nppc+/+ Tie2+

Nppc+/+ Tie2+

Nppcflox/flox Tie2-

Log [CNP] M

%
re

la
xa

tio
n



116

Effect of CNP in aortic rings from female

WT and ecCNP KO mice
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Figure 46 - Concentration-response curves to CNP in aortic rings from female WT and ecCNP

KO mice

Inset graph shows concentration-response curves to CNP in female aortic rings from individual

genotypes. Relaxation is expressed as mean ± SEM percentage reversal of PE-induced tone; n=5-6.

CNP
pEC50 –log [M]

CNP Emax

% relaxation

Nppc+/+ Tie2- 6.92 ± 0.17 99.02 ± 1.96

Nppc+/+ Tie2+ 7.38 ± 0.11 96.32 ± 4.23

Nppcflox/flox Tie2- 7.36 ± 0.17 98.19 ± 1.97

WT 7.20 ± 0.09 97.89 ± 2.05

ecCNP KO 7.29 ± 0.14 93.07 ± 2.05

Table 10 - pEC50 and Emax values of CNP in aortic rings from female WT and ecCNP KO mice

pEC50 is expressed as mean ± SEM –log [M]. Emax is expressed as mean ± SEM percentage reversal of

PE-induced tone; n=5-6.
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Effect of Sper-NO in aortic rings from male

WT and ecCNP KO mice
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Figure 47 - Concentration-response curves to Sper-NO in aortic rings from male WT and ecCNP

KO mice

Inset graph shows concentration-response curves to Sper-NO in male aortic rings from individual

genotypes. Relaxation is expressed as mean ± SEM percentage reversal of PE-induced tone; n=5-6.

Sper-NO
pEC50 –log [M]

Sper-NO Emax

% relaxation

Nppc+/+ Tie2- 6.53 ± 0.07 103.51 ± 1.67

Nppc+/+ Tie2+ 6.57 ± 0.04 101.20 ± 0.76

Nppcflox/flox Tie2- 6.91 ± 0.08 103.38 ± 1.74

WT 6.65 ± 0.04 102.70 ± 0.83

ecCNP KO 6.80 ± 0.03* 102.89 ± 1.83

Table 11 - pEC50 and Emax values of Sper-NO in aortic rings from male WT and ecCNP KO mice

pEC50 is expressed as mean ± SEM –log [M]. Emax is expressed as mean ± SEM percentage reversal of

PE-induced tone. *P<0.05 vs WT; n=5-6.
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Effect of Sper-NO in aortic rings from female

WT and ecCNP KO mice
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Figure 48 - Concentration-response curves to Sper-NO in aortic rings from female WT and

ecCNP KO mice

Inset graph shows concentration-response curves to Sper-NO in female aortic rings of individual

genotypes. Relaxation is expressed as mean ± SEM percentage reversal of PE-induced tone.

***P<0.001 vs WT; n=5-6.

Sper-NO
pEC50 –log [M]

Sper-NO Emax

% relaxation

Nppc+/+ Tie2- 6.19 ± 0.05 100.57 ± 2.03

Nppc+/+ Tie2+ 6.70 ± 0.08 99.35 ± 1.72

Nppcflox/flox Tie2- 6.60 ± 0.05 97.89 ± 2.98

WT 6.48 ± 0.04 99.34 ± 1.27

ecCNP KO 6.75 ± 0.08** 99.63 ± 1.31

Table 12 - pEC50 and Emax values of Sper-NO in aortic rings from female WT and ecCNP KO

mice

pEC50 is expressed as mean ± SEM –log [M]. Emax is expressed as mean ± SEM percentage reversal of

PE-induced tone. **P<0.01 vs WT; n=5-6.
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4.4 Effect of endothelial CNP gene knockout on functional

reactivity of mesenteric artery

Mesenteric artery reactivity was assessed in 16 - 20 week old ecCNP KO mice, as

CNP has been shown to be an EDHF in rat mesenteric arteries (Villar et al., 2007).

Concentration-response curves to ACh were constructed in male and female

mesenteric arteries that were pre-treated with the NOS inhibitor, L-NAME (300 µM),

and the COX inhibitor, indomethacin (5 µM), and contracted with an EC80

concentration of U46619. These studies were carried out by Dr Amie Moyes as

previously described (Scotland et al., 2005c).

ACh responses were unaltered in ecCNP KO male mesenteric arteries, compared to

WT (Figure 49). ecCNP KO female mesenteric arteries exhibited a significant

rightward shift of the ACh concentration-response curve versus WT (Figure 50). This

was accompanied by a significant reduction in potency (pEC50: 6.89 ± 0.14 and 5.94 ±

0.38, WT and ecCNP KO, respectively) and a trend towards a reduced Emax (86.54 ±

2.15 and 77.01 ± 10.59, WT and ecCNP KO, respectively).
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Effect of ACh in mesenteric arteries from male WT and ecCNP KO

mice pre-treated with L-NAME and indomethacin
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Figure 49 - Concentration-response curves to ACh in mesenteric arteries from male WT and

ecCNP KO mice in the presence of L-NAME and indomethacin

Inset graph shows concentration-response curves to ACh in male mesenteric arteries from individual

genotypes. Relaxation is expressed as mean ± SEM percentage reversal of U46619-induced tone; n=6.

ACh
pEC50 –log [M]

ACh Emax

% relaxation

Nppc+/+ Tie2- 6.03 ± 0.45 81.01 ± 8.34

Nppc+/+ Tie2+ 5.77 ± 0.73 74.29 ± 4.65

Nppcflox/flox Tie2- 5.97 ± 0.20 88.73 ± 2.10

WT 5.95 ± 0.22 81.34 ± 3.38

ecCNP KO 5.17 ± 1.97 81.59 ± 1.94

Table 13 - pEC50 and Emax values of ACh in mesenteric arteries from male WT and ecCNP KO

mice in the presence of L-NAME and indomethacin

pEC50 is expressed as mean ± SEM –log [M]. Emax is expressed as mean ± SEM percentage reversal of

U46619-induced tone; n=6.
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Effect of ACh in mesenteric arteries from WT and ecCNP KO mice

pre-treated with L-NAME and indomethacin
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Figure 50 - Concentration-response curves to ACh in mesenteric arteries from female WT and

ecCNP KO mice in the presence of L-NAME and indomethacin

Inset graph shows concentration-response curves to ACh in female mesenteric arteries from individual

genotypes. Relaxation is expressed as mean ± SEM percentage reversal of U46619-induced tone.

***P<0.01 vs WT; n=4-7.

ACh
pEC50 –log [M]

ACh Emax

% relaxation

Nppc+/+ Tie2- 6.93 ± 0.22 85.62 ± 7.28

Nppc+/+ Tie2+ 7.00 ± 0.11 85.44 ± 2.39

Nppcflox/flox Tie2- 6.47 ± 0.69 88.45 ± 3.39

WT 6.89 ± 0.14 86.54 ± 2.15

ecCNP KO 5.94 ± 0.38* 77.01 ± 10.59

Table 14 - pEC50 and Emax values of ACh in mesenteric arteries from female WT and ecCNP KO

mice in the presence of L-NAME and indomethacin

pEC50 is expressed as mean ± SEM –log [M]. Emax is expressed as mean ± SEM percentage reversal of

U46619-induced tone. *P<0.05 vs WT; n=4-7.
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4.5 Effect of endothelial CNP gene knockout on blood

pressure, heart rate and activity

To determine the role of endothelial derived CNP on blood pressure, WT and ecCNP

KO mice were implanted with a DSI PhysioTel® PA-C10 telemetry probe, allowing

continuous measurement of MABP, heart rate and activity in conscious animals. Mice

used in these studies were aged between 16 - 20 weeks at the time of implantation.

Animals were housed under a 12 h light dark cycle (light from 8 am to 8 pm) and

haemodynamic recordings were taken for 64 h over the weekend to minimise noise

disturbances. Data shown in this section is the 24 h period between Saturday 2 pm to

Sunday 2 pm.

4.5.1 Blood pressure

Irrespective of genotype, male (Figure 51) and female (Figure 52) mice had raised

MABP in the dark period, compared to the light period. In male ecCNP KO mice,

MABP was not significantly altered over the 24 h period, compared to WT (Figure

53). Female ecCNP KO mice had a significantly raised MABP over the 24 h period

versus WT (105.5 ± 0.68 mmHg and 114.9 ± 1.04 mmHg; WT and ecCNP KO,

respectively; Figure 54).

4.5.2 Heart rate

In comparison to WT, male ecCNP KO mice exhibited a significantly raised heart

rate, over the 24 h period (523.0 ± 4.98 beats/min (bpm) and 548.1 ± 4.10 bpm; WT

and ecCNP KO, respectively; Figure 55). The heart rate of female ecCNP KO mice

was significantly lower versus WT, over the 24 h period (600.0 ± 3.49 bpm and 569.1

± 4.80 bpm; WT and ecCNP KO, respectively; Figure 56).

4.5.3 Activity

Over the 24 h period, male ecCNP KO mice exhibited increased activity, compared to

WT (Figure 57), whilst activity of female ecCNP KO mice was decreased in

comparison to WT (Figure 58).
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Circadian rhythm of MABP in male and female

WT and ecCNP KO mice

14 16 18 20 22 0 2 4 6 8 10 12 14

80

100

120

140

160

WT

ecCNP KO

DarkLight Light

Time of Day

M
e

a
n

a
rt

e
ri

a
lb

lo
o

d
p

re
ss

u
re

(m
m

H
g
)

Figure 51 - Circadian rhythm of MABP in male WT and ecCNP KO mice

Data are represented as mean ± SEM, n=6-8.
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Figure 52 - Circadian rhythm of MABP in female WT and ecCNP KO mice

Data are represented as mean ± SEM, n=5-6.
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MABP of male and female WT and ecCNP KO mice
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Figure 53 - MABP of male WT and ecCNP KO mice

Data are represented as mean ± SEM, n=6-8.
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Figure 54 - MABP of female WT and ecCNP KO mice

Data are represented as mean ± SEM. ***P<0.001 vs WT; n=5-6.
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Heart rate of male and female WT and ecCNP KO mice

W
T

ec
C
N
P

KO

500

520

540

560

580

600

620

***

H
e

a
rt

ra
te

(b
p

m
)

Figure 55 - Heart rate of male WT and ecCNP KO mice

Data are represented as mean ± SEM. ***P<0.001 vs WT; n=6-8.
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Figure 56 - Heart rate of female WT and ecCNP KO mice

Data are represented as mean ± SEM. ***P<0.001 vs WT; n=5-6.
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Activity of male and female WT and ecCNP KO mice
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Figure 57 - Activity of male WT and ecCNP KO mice

Data are represented as mean ± SEM. **P<0.01 vs WT; n=6-8.
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Figure 58 - Activity of female WT and ecCNP KO mice

Data are represented as mean ± SEM. ***P<0.001 vs WT; n=5-6.
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4.6 Summary of key results

Thoracic aorta reactivity to contractile agents was unchanged in male and female

ecCNP KO mice, compared to WT. In males, the relaxant response to ACh was

unchanged; however, in females responsiveness to ACh was reduced. Female thoracic

aorta from ecCNP KO mice was more sensitive to the NO donor, Sper-NO, compared

to WT; this was not apparent in male ecCNP KO animals. ecCNP KO female

mesenteric arteries exhibited reduced potency, versus WT, to the endothelium-

dependent vasodilator ACh, whilst it remained unchanged in males.

Female ecCNP KO mice exhibited raised MABP, demonstrating a role for

endothelium-derived CNP in blood pressure regulation in these animals. This rise in

MABP was accompanied by a reduction in heart rate and activity. Male ecCNP KO

mice did not exhibit altered MABP, however these animals did have raised heart rates

and activity. These data clearly demonstrate a role for endothelium-derived CNP in

physiological blood pressure regulation, at least in females.
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Chapter 5

Discussion
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5 Discussion

5.1 Summary of key findings

I have shown that in HUVEC, CNP-mediated NPR-C activation leads to ERK 1/2 and

Akt activation. In turn, CNP-mediated ERK 1/2 activation augments cyclin D1

expression, stimulating mitogenesis. In RAoSMC, CNP also elicits a NPR-C-mediated

ERK 1/2 activation; however, in this cell type ERK 1/2 triggers expression of

p21waf1/cip1 and p27kip1, inhibiting growth. These data demonstrate that CNP-induced

ERK 1/2 activation in endothelial and smooth muscle cells differentially regulates cell

cycle protein expression and hence proliferation.

With the generation of an ecCNP KO mouse, I have demonstrated isolated mesenteric

artery and thoracic aorta from female ecCNP KO mice exhibit an attenuated response

to the endothelium-dependent dilator ACh, compared to vessels from WT litter mates.

In contrast, ACh-induced relaxations in these vessels from male ecCNP KO mice

were similar to WT animals. Female mice lacking endothelial CNP are hypertensive,

whilst males are normotensive. These observations indicate that in females

endothelium-derived CNP is involved in the regulation of artery tone and systemic

blood pressure.

5.2 CNP as a regulator of endothelial cell proliferation

Previous work has shown CNP to promote growth of endothelial cells from various

species and vessels, in vitro; human coronary artery endothelial cells (HCAEC; Ohno

et al., 2002), BAEC (Doi et al., 2001), HUVEC (Yamahara et al., 2003) and porcine

aortic endothelial cells (Pelisek et al., 2006). In the large part, CNP-induced

endothelial cell proliferation has been suggested to occur via NPR-B activation,

however, there are studies that suggest NPR-C may also be involved. For instance,

CNP promotes proliferation and migration of HCAEC, whereas the selective NPR-C

ligand, cANF4-23, has no effect (Ohno et al., 2002). Furthermore, natriuretic peptides

augment HUVEC capillary network formation, an effect inhibited by the cGMP

dependent protein kinase inhibitor Rp-8-pCPT-cGMP, intimating that this effect is
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mediated by guanylyl cyclase linked NPR-B (Yamahara et al., 2003). Moreover,

cANF4-23 has been shown to exert a very weak suppression of BAEC DNA synthesis,

suggesting that NPR-C activation on endothelial cells, if anything, may result in

attenuated cell growth (Itoh et al., 1992). In contrast, I have provided clear evidence

that cANF4-23 promotes HUVEC proliferation to a similar magnitude as CNP, and that

the effect of both peptides is blocked by M372049, a selective NPR-C antagonist.

Additionally, I have taken a genetic approach to assess the role of NPR-C on cell

growth; proliferation of endothelial cells derived from NPR-C KO mice was not

altered by CNP, whereas growth of endothelial cells from WT mice were significantly

enhanced. Such observations confirm an important role for NPR-C in the pro-

mitogenic effect of CNP. A possible explanation for the discrepancy between my

work and previous studies may be due to the proliferative effect of CNP being species

or vessel specific. M372049 does not completely inhibit the proliferative action of

CNP, suggesting a residual NPR-B dependent effect remains. However, the

observations that cANF4-23 is equipotent to CNP and that the pro-mitogenic effect of

CNP is lost in NPR-C KO endothelial cells confirms a predominant role for NPR-C

(over NPR-B) in this process. The incomplete inhibition by M372049 may simply

result from a competitive antagonism.

In addition to delineating the receptor subtype involved in the proliferative effect of

CNP, I have also identified the second messenger/intracellular pathways that underlie

this response. The ERK 1/2 pathway has been shown to be activated by various

growth factors that stimulate endothelial cell proliferation including VEGF, fibroblast

growth factor-2, epidermal growth factor and hepatocyte growth factor (Pedram et al.,

1998;Wu et al., 2000;Rikitake et al., 2000;Nakagami et al., 2001). In addition, various

herbal extracts including Pueraria thunbergiana extract, Korean red ginseng water

extract, icariin and sesamin, and the chemokine fractalkine promote endothelial cell

proliferation in an ERK 1/2-dependent manner (Lee et al., 2006;Kim et al.,

2007;Chung et al., 2008;Chung et al., 2010a;Chung et al., 2010b). In this study, the

ERK 1/2 inhibitor, PD98059, significantly inhibited the mitogenic response to CNP in

HUVEC demonstrating a role for this arm of the MAPK signalling cascade in this

process. Furthermore, CNP-mediated ERK 1/2 phosphorylation was blocked by

M372049 and the Gi/o inhibitor, Pertussis toxin, demonstrating a clear link between

activation of Gi-coupled NPR-C and stimulation of the ERK 1/2 pathway. This
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observation is in accord with previous findings that have demonstrated numerous

growth factors to stimulate Gi-coupled receptors e.g. sphingosine-1-phosphate and

insulin like growth factor (New and Wong, 2007). Interestingly, many of these Gi

coupled growth factor receptors possess a single transmembrane domain, akin to

NPR-C, rather than the classical heptahelical structure. This homology supports a key

role for NPR-C regulating mitogenesis.

In addition to implicating ERK 1/2 signalling in the mitogenic effect of CNP, I have

also demonstrated a role for the PI3K/Akt pathway. In HUVEC, the structurally

unrelated PI3K inhibitors, LY294002 and wortmannin, inhibited the mitogenic

response to CNP. This observation suggests CNP acts in an analogous fashion to other

growth factors including VEGF, Pueraria thunbergiana extract, Korean red ginseng

water extract, icariin, sesamin and fractalkine that promote endothelial cell

proliferation in an Akt-dependent manner (Yu and Sato, 1999;Gliki et al., 2002;Kim

et al., 2007;Chung et al., 2008;Chung et al., 2010a;Chung et al., 2010b). In the case of

VEGF, it has been shown that phosphorylation of eNOS is triggered by Akt activation

and endothelial cell growth is increased in a NO-dependent manner (Dimmeler et al.,

1999). In an attempt to explore if a similar mechanism underlies the mitogenic effects

of CNP, I examined if eNOS phosphorylation was stimulated by CNP; however, this

was not the case. Nonetheless, I was able to show that CNP-mediated Akt

phosphorylation is blocked by M372049 and Pertussis toxin, hence implicating NPR-

C in this process. These data suggest, in addition to NPR-C/ERK 1/2 signalling, CNP

can promote endothelial cell proliferation via an NPR-C/PI3K/Akt pathway. In

addition to eNOS, Akt has multiple downstream targets which can alter cell

proliferation including glycogen synthase kinase-3 and forkhead box O1 which alter

cyclin D1 and p21waf1/cip1 levels, respectively (Brader and Eccles, 2004). Whether

CNP alters expression of these downstream targets is unknown.

Several endogenous mediators, including VEGF, fibroblast growth factor-2,

angiopoietin-1 and 17β-estradiol,  increase cyclin D1 expression in endothelial cells, 

with a concomitant augmentation of proliferation (Pedram et al., 1998;Kanda et al.,

2005;Fu et al., 2007). VEGF and 17β-estradiol have been shown to increase cyclin D1 

expression in a PD98059-inhibitable manner, implicating ERK 1/2 as a positive

regulator of cyclin D1 expression (Pedram et al., 1998;Fu et al., 2007). In HUVEC, I
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have revealed that CNP also augments expression of cyclin D1 in an ERK 1/2-

dependent manner. Furthermore, I have shown CNP attenuates expression of the cell

cycle inhibitor p21waf1/cip1, an effect akin to VEGF (Favot et al., 2004). In concert,

these observations provide a novel insight into the mechanism by which CNP

promotes endothelial cell proliferation (see Figure 59).

Figure 59 - Signalling pathway by which CNP mediates vascular cell proliferation

CNP - C-type natriuretic peptide, ERK - Extracellular signal-regulated kinase, G1 - First gap, G2 -

Second Gap, M - Mitosis, NPR - Natriuretic peptide receptor, S - Synthesis

5.3 CNP as a regulator of VSMC proliferation

It is well established that CNP inhibits proliferation of smooth muscle cells, however

conflicting evidence exists regarding the receptor involved. Furuya et al demonstrated

raised levels of cGMP underlie CNP-induced inhibition of rat VSMC proliferation and

CNP-treated injured rat carotid arteries, intimating that the receptor responsible is the

guanylyl cyclase coupled NPR-B (Furuya et al., 1991;Furuya et al., 1993). Moreover,

RAoSMC infected with an adenovirus encoding rat CNP exhibit significantly reduced

growth with a concomitant increase in cGMP, also suggesting the effect is NPR-B
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mediated (Doi et al., 2001). Further still, growth inhibition correlates with cGMP

levels in RAoSMC and in these cells the NPR-C selective agonists, cANF4-23 and

des[Cys105,Cys121]rANP, are unable to inhibit proliferation (Hutchinson et al., 1997).

Contrary to the above observations, it has been suggested that CNP inhibits RAoSMC

proliferation via NPR-C in a cGMP-independent manner (Cahill and Hassid, 1994).

Work from our lab has also shown that CNP-mediated inhibition of RAoSMC

proliferation is mediated, at least in part, by NPR-C; this inhibitory effect is triggered

by NPR-C-dependent ERK 1/2 phosphorylation (Panayiotou, 2007). Since I had

shown that CNP/NPR-C-induced ERK 1/2 phosphorylation results in cyclin D1

expression and endothelial cell growth, I investigated which cell cycle proteins were

responsible for the dichotomous effect of CNP (via NPR-C and ERK 1/2 activation) to

inhibit VSMC growth (as opposed to augmenting HUVEC proliferation). Herein, I

have demonstrated CNP elicits a time-dependent increase in p21waf1/cip1 and p27kip1

expression in an ERK 1/2-dependent manner in RAoSMC. This observation is

consistent with previous findings which demonstrate an up-regulation of p21waf1/cip1

and p27kip1 expression in smooth muscle cells in response to the anti-mitogenic agents

NO and sodium salicylate (Sato et al., 2000;Marra et al., 2000). It is also in accord

with three independent studies which reported NO to increase ERK 1/2

phosphorylation resulting in inhibition of VSMC proliferation (in a cGMP-

independent manner) with a concomitant increase in p21waf1/cip1 expression (Ishida et

al., 1999;Kibbe et al., 2000;Bauer et al., 2001). Thus, it appears a similar pathway

underlies the anti-mitogenic effect of CNP, and this is predominantly cGMP-

independent since I have shown that p21waf1/cip1 and p27kip1 up-regulation is the result

of NPR-C activation.

Classically, VSMC pro-mitogenic mediators such as Ang II are thought to enhance

ERK 1/2 activation, attenuating expression of p21waf1/cip1 and p27kip1 (He et al.,

2009;Chen et al., 2009;Zhou et al., 2009). Contrary to this, I have demonstrated that

in VSMC CNP elicits ERK 1/2 activation leading to an increase in p21waf1/cip1 and

p27kip1 levels. This correlates with the observation that PDGF, although a pro-

mitogenic factor for VSMC, increases p21waf1/cip1 expression in an ERK 1/2 dependent

manner (Marra et al., 2000;Lee and Moon, 2005), supporting the hypothesis that ERK

1/2 activation leads to p21waf1/cip1 induction. Thus, despite ERK 1/2 phosphorylation
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often being associated with cell growth, the studies described above and those from

our lab, demonstrate that ERK 1/2 activation can also increase expression of

p21waf1/cip1 and p27kip1 resulting in growth inhibition.

Interestingly, in RAoSMC CNP also elicited an increase in cyclin D1 expression,

which was unexpected since cyclin D1 is a promoter of the cell cycle. As described

above, NO increases expression of p21waf1/cip1 and p27kip1 and, akin to CNP, also

increases cyclin D1 expression (Ishida et al., 1997). However, other inhibitors of

VSMC proliferation such as rapamycin and lovastatin reduce cyclin D1 expression

(Hashemolhosseini et al., 1998;Oda et al., 1999). The reason for the raised cyclin D1

expression I report here is unknown; however, it may be a regulatory feedback

mechanism to counteract the significantly raised levels of p21waf1/cip1 and p27kip1.

An additional mechanism by which CNP may alter cell cycle proteins is via the

expression of a homeobox gene termed growth arrest-specific homeobox (Gax), a

gene encoding a transcription factor. The Gax gene has been shown to be largely

confined to the cardiovascular system such as the aorta, heart, lung and kidney

(Gorski et al., 1993). Gax expression is attenuated by PDGF, Ang II and serum in

VSMC (Gorski et al., 1993;Yamashita et al., 1997) and also in rat carotid artery

following endothelial denudation by balloon angioplasty (Weir et al., 1995). Gax has

been shown to be present in VSMC and endothelial cells in normal human arteries and

overexpression of Gax in HUVEC and VSMC results in increased p21waf1/cip1

expression (Smith et al., 1997;Gorski and Leal, 2003). Furthermore, overexpression of

Gax in rabbit iliac arteries that have undergone balloon angioplasty and stent

deployment, exhibit reduced neointimal hyperplasia (Maillard et al., 2000). This data

suggests that Gax is likely to have a regulatory function in the G0/G1 transition phase

of the cell cycle in VSMC. CNP augments Gax expression in VSMC (Yamashita et

al., 1997), which would be anticipated to increase p21waf1/cip1 expression and bring

about growth inhibition. However, the effect of CNP on Gax expression in HUVEC is

yet to be determined.

In summary, I have identified that in HUVEC, CNP mediated NPR-C activation

increases ERK 1/2 and (Akt phosphorylation), which in turn modulates cell cycle

protein expression (i.e. cyclin D1) to promote proliferation. In contrast, in VSMC
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CNP mediated NPR-C activation increases ERK 1/2 phosphorylation, promoting

expression of the cell cycle inhibitors p21waf1/cip1 and p27kip1, resulting in inhibition of

VSMC growth.

5.4 The role of CNP in cardiovascular homeostasis

CNP is a potent vasodilator of conduit (Drewett et al., 1995;Wennberg et al.,

1999;Madhani et al., 2003) and resistance arteries (Chauhan et al., 2003;Villar et al.,

2007;Kun et al., 2008) and administration of CNP to human volunteers, monkeys,

dogs and rats causes a transient reduction in blood pressure (Clavell et al., 1993;Igaki

et al., 1996;Seymour et al., 1996;Aizawa et al., 2008). These observations indicate

that CNP may be able to regulate blood pressure by altering the contractile state of the

resistance vasculature.

Since the seminal observation that removal of the endothelium from isolated arteries

prevents the dilator response to ACh (Furchgott and Zawadzki, 1980), there has been

great interest in the role of the endothelium in vasomotor tone. NO and PGI2 are

endothelium-derived vasodilators with anti-mitogenic, anti-inflammatory and anti-

thrombotic properties, which are major contributors to vascular homeostasis

(Moncada and Higgs, 1993;Fetalvero et al., 2007). Endothelium-dependent

relaxations are sometimes partially or totally resistant to COX and NOS inhibition and

accompanied by smooth muscle cell hyperpolarisation (Busse et al., 2002;Feletou and

Vanhoutte, 2009). These observations are attributed to a third endothelium-derived

factor termed EDHF, which has been shown to have an increasing importance as

vessel size decreases (Shimokawa et al., 1996;Brandes et al., 2000). The importance

of EDHF in blood pressure maintenance has been illustrated using eNOS/COX-1

double KO mice, which are unable to synthesise endothelium-derived NO and PGI2.

Male eNOS/COX-1 mice are hypertensive whereas female eNOS/COX-1 mice are

normotensive, in comparison to WT (Scotland et al., 2005c). These data intimate that

female mice use EDHF to regulate blood pressure whereas males are more reliant on

NO.

The identify of EDHF is unknown, however, it is likely that it varies across species

and vascular beds. Numerous candidates have been suggested to be EDHF, such as
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potassium ions, cyctochrome P450 products, hydrogen peroxide and CNP (Feletou

and Vanhoutte, 2009;Luksha et al., 2009). Work from our lab has identified CNP to

be an EDHF in the rat mesenteric and coronary circulation and this function has been

demonstrated to be mediated via NPR-C signalling (Chauhan et al., 2003;Hobbs et al.,

2004;Villar et al., 2007). The observations that exogenous CNP can modify vascular

tone and blood pressure, and appears to act as an EDHF, led us to develop a mouse

with selective deletion of CNP in vascular endothelial cells (ecCNP KO) to test the

physiological role of endothelium-derived CNP in cardiovascular homeostasis. This

experimental approach was chosen as no suitable in vivo tools are available to

selectively block CNP/NPR-C signalling and, moreover, global CNP KO mice have

gross bone deformation and a high mortality rate (Komatsu et al., 2002), preventing

meaningful analysis of the cardiovascular system.

In male and female ecCNP KO thoracic aorta, responses to the contractile agents PE

and U46619 were identical to WT. In males, endothelium-dependent relaxations to

ACh were unchanged whilst in females the ACh response was significantly reduced,

compared to WT, albeit marginally. This data indicates that CNP may have a minor

role in endothelial function in conduit arteries of females. This is surprising as it is

thought that the contribution of EDHF to vascular tone of large conduit arteries is

negligible (Luksha et al., 2009). Indeed, it has been shown that in aortic rings from

eNOS KO mice the ACh response is completely abolished (Scotland et al., 2005c),

suggesting there is little or no EDHF component found in the aorta. A possible

explanation for this discrepancy may be that CNP acts via NO to elicit aortic

relaxation. In HUVEC, CNP increases nitrite and nitrate (stable metabolites of NO),

suggesting CNP augments NO production (Rautureau et al., 2010). However, CNP-

induced relaxation of rat aortic rings is unaffected by pre-treatment with L-NG-

nitroarginine (L-NNA), a NOS inhibitor (Brunner and Wolkart, 2001), questioning

whether NO is involved in mediating the vasodilator effect of CNP. Nonetheless, my

observations suggest CNP is produced by the aortic endothelium and may have a

minor role in maintaining aortic tone, at least in females.

Although EDHF has a minor role in large conduit arteries, I assessed if a lack of CNP

affected the potency of NO in aortic rings from ecCNP KO mice. The EDHF pathway

can compensate for a lack of NO, which is important in CVD where NO bioactivity is
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compromised and I hypothesised that the opposite may be true – that loss of CNP may

be compensated by an increase of NO sensitivity. This idea has arisen due to the

findings that production of EDHF is dampened by NO in rabbit carotid, porcine and

mongrel dog coronary arteries (Bauersachs et al., 1996;Nishikawa et al., 2000) and

mesenteric arteries from eNOS KO mice display similar myogenic tone to WT due to

an up-regulation of EDHF (Scotland et al., 2001). Thoracic aorta from female ecCNP

KO mice exhibited greater sensitivity to Sper-NO suggesting a compensatory

mechanism by which a lack of CNP initiates an up-regulation of the NO pathway.

Indeed, crosstalk between the NO-sGC and natriuretic peptide-pGC pathways has

been shown to occur in vitro and in vivo (Madhani et al., 2003;Madhani et al.,

2006;discussed in section 5.8) supporting the above hypothesis. These data imply that

a reduction in CNP could potentially trigger an up-regulation of the NO pathway

and/or its components, possibly at the guanylyl cyclase level.

The relaxation response to ACh in female ecCNP KO mesenteric artery was

significantly reduced versus WT, suggesting CNP to be an EDHF in the mouse

mesenteric artery. This compliments previous findings, identifying CNP as an EDHF

in the rat mesenteric and coronary arteries (Chauhan et al., 2003;Hobbs et al.,

2004;Villar et al., 2007). Interestingly, in male ecCNP KO mesenteric artery the ACh

response was unaltered, compared to WT, suggesting either males lack an EDHF

component in the mesenteric artery or that an alternative EDHF exists within the male

vasculature. The former hypothesis is the most likely, as in the resistance vasculature

endothelium-dependent relaxations in males are predominantly mediated by NO

(McCulloch and Randall, 1998;Pak et al., 2002;Scotland et al., 2005c). In summary,

these in vitro data identify CNP as an EDHF in the female mouse mesenteric artery,

suggesting there is a sex difference in the regulation of resistance vessel tone and may

be responsible for lower MABP in females.

To translate these in vitro observations to an in vivo setting I used radiotelemetric

monitoring to explore if endothelium-derived CNP has a physiological role in

regulating MABP. I observed a significant increase in MABP in female ecCNP KO

mice compared to WT littermates. In contrast male WT and ecCNP KO mice had

equivalent MABP. These observations complement the isolated vessel data since

arteries isolated from female ecCNP KO were dysfunctional and lacked an EDHF
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response, in comparison to WT, whereas vascular reactivity was comparable between

arteries isolated from male WT and ecCNP KO mice. This study reinforces previous

work demonstrating that exogenous CNP is able to modulate vascular tone and blood

pressure but goes one step further in identifying a pivotal role for endogenous CNP in

maintaining cardiovascular homeostasis in vivo.

My work has also identified male ecCNP KO mice to have raised heart rates and,

contrastingly, female ecCNP KO mice to have lower heart rates than WT controls. A

possible explanation for this sex difference may be due to the changes observed in

MABP. Female ecCNP KO mice are hypertensive and so a reduction in heart rate may

be a compensatory mechanism to counteract the raised blood pressure. Under

physiological conditions the baroreceptor reflex mechanism maintains blood pressure,

such that an increase is counteracted by a reduction in heart rate. However, this is an

acute response and a long term increase in blood pressure is thought to cause the

baroreceptors to reset to the new pressure hence returning heart rate to baseline (Ortiz

and Garvin, 2003). However, male and female eNOS KO mice are hypertensive and

numerous studies have shown them to have persistently reduced heart rates (Shesely et

al., 1996;Godecke et al., 1998;Kurihara et al., 1998;Stauss et al., 1999;Yang et al.,

1999), suggesting the baroreceptor reflex remains chronically functional; the same

appears to be true for female ecCNP KO mice.

Male ecCNP KO mice are not hypertensive, ruling out the possibility that a

compensatory mechanism is responsible for the increase in heart rate observed in

these animals. However, these animals are more active and so an increase in heart rate

is not wholly unexpected and could be attributed to this. Alternatively, CNP has been

shown to exert a negative chronotropic effect and so mice lacking CNP could well

exhibit raised heart rates. For example, CNP and cANF4-23 reduce Langendorff-

perfused mouse heart rate, and this effect is mediated via NPR-C (Rose et al., 2004).

Additionally, CNP enhances the bradycardic response of isolated female guinea pig

atrial-right vagal nerve preparartions in response to vagal nerve stimulation (Herring

et al., 2001). Furthermore, rats expressing a dominant-negative NPR-B mutant have

raised heart rates with no change in mean arterial pressure (Langenickel et al., 2006),

implying that under physiological conditions NPR-B activation results in a reduction

in heart rate. It is tempting to suggest that the animals in the Langenickel et al study
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are not hypertensive because the receptor expressed and responsible for resistance

artery tone is NPR-C (Chauhan et al., 2003;Villar et al., 2007), which should remain

functional in these animals. However, it is difficult to explain why an altered heart rate

would only seem to occur in males and not females (although it is possible the change

in MABP may mask this); moreover, we have deleted CNP from endothelial cells

specifically and it is hard to envisage how this loss may result in direct effects on heart

rate.

5.5 Sex differences in cardiovascular disease

It is recognised that pre-menopausal females are less susceptible to developing CVD

compared to age-matched males and post-menopausal females (Lerner and Kannel,

1986;Barrett-Connor, 1997;British Heart Foundation, 2008b). These observations

provide the background to the hypothesis that female sex steroids, principally

estrogens, are responsible for a sex-dependent cardioprotective effect, which may in

part be due to increased endothelium-dependent vasodilatation (Mendelsohn and

Karas, 2005). In ovariectomised mice (i.e. mice lacking estrogen), EDHF responses

are blunted and this effect is reversed by treatment with 17β-estradiol (Huang et al.,

2001;Liu et al., 2002). Additionally, EDHF has been shown to be more prominent in

regulating vascular tone in female mice and rats compared to their male counterparts

(McCulloch and Randall, 1998;Pak et al., 2002;Scotland et al., 2005c). Furthermore, I

have shown that females lacking CNP are hypertensive, whilst their male counterparts

are not. In combination, these studies infer that estrogen promotes EDHF (and

possibly CNP) activity, which may represent one mechanism by which estrogens are

cardioprotective. Indeed, 16 week old ewes have double the concentration of

circulating CNP compared to adult (>3 years) ewes, and estrogen treatment

significantly increases circulating CNP levels in adult ewes (Prickett et al., 2008). In

summary, it is recognised that estrogen offers protection against CVD and it is

tempting to suggest that CNP is partly responsible through its ability to regulate blood

pressure, although further studies are required to determine this. It should be noted

however that the ‘cardioprotective’ phenotype observed in ecCNP KO females may be

peculiar to mice since male mice exhibit very little or no EDHF activity (Scotland et

al., 2005c), whilst in other species such as rats and guinea pigs, males do exhibit

significant EDHF responses (Kamata et al., 1996;Yamanaka et al., 1998). Thus, if it
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were possible to knockout CNP in these species, they may exhibit altered blood

pressure in both sexes. It is important therefore that the role of endothelium-derived

CNP is established in several animal species and more pertanently in humans, to

examine if a sex difference does indeed exist and if this can be exploited

therapeutically.

5.6 CNP and cardiovascular disease

I have shown CNP to promote endothelial cell proliferation and inhibit VSMC

growth, both via NPR-C. Furthermore, my work has demonstrated that endogenous

CNP regulates arterial reactivity, which in turn governs systemic blood pressure.

These observations highlight a key role for endothelium-derived CNP in regulating

vascular tone and integrity, which is critical to cardiovascular homeostasis and in

preventing or slowing the onset of CVD. Since many of the salutary effects of CNP

appear to occur via NPR-C, CNP and NPR-C agonists are likely to represent novel

therapeutic targets in CVD.

5.6.1 Role of CNP in atherosclerosis: Potential therapy

Atherosclerosis is a chronic inflammatory disorder characterised by endothelial

dysfunction, lipid deposition, monocyte and platelet activation, and VSMC growth

(Ross, 1999;Libby, 2002). Various risk factors including hypertension, smoking,

diabetes and dyslipidaemia have been clearly shown to correlate with increased

atheroma progression (Solberg and Strong, 1983;McGill, Jr. et al., 1997;Lewington et

al., 2002;Liapis et al., 2009). CNP targets numerous aspects of atherosclerosis

including hypertension, endothelial cell and VSMC growth, and leukocyte and platelet

activation (Ahluwalia and Hobbs, 2005;Scotland et al., 2005a;Scotland et al.,

2005b;this thesis), highlighting CNP as a novel therapeutic target with potential to

exert a multi-faceted anti-atherogenic activity.

Normal, healthy endothelium regulates vascular tone and permeability, leukocyte

adhesion, smooth muscle cell proliferation, thrombosis and fibrinolysis. Under

physiological conditions, high shear stress and laminar flow maintain a healthy

endothelium by stimulating expression and activity of cytoprotective molecules. Low
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shear stress, exhibited by hypertensive patients (Khder et al., 1998), and turbulent

blood flow, found at bifurcation branches, can lead to endothelial dysfunction and

subsequently atherogenesis (Ku et al., 1985;Traub and Berk, 1998;Chiu et al., 2009).

More than 40 % of males and 30 % of females aged 16 and over had hypertension in

the UK in 2006 (British Heart Foundation, 2006). Clinical observations have shown

that hypertension positively correlates with atherosclerotic progression (Lakka et al.,

1999;Sipahi et al., 2006). Herein, I have identified female ecCNP KO mice to be

hypertensive, suggesting these animals may be predisposed to atherogenesis. Indeed,

ApoE KO mice, a model routinely used in the study of atherosclerosis, crossed with

eNOS KO mice, which are markedly hypertensive, exhibit exacerbated atherosclerosis

(Knowles et al., 2000;Chen et al., 2001). Collectively, these observations demonstrate

that hypertension promotes atheroma progression and I have shown endogenous CNP

to regulate systemic blood pressure, implying CNP would be beneficial in retarding

atherosclerosis due to its blood pressure altering effects. Furthermore, observations

from this study implicate the vasodilator effect of CNP via NPR-C, as the primary

cause in blood pressure reduction, identifying NPR-C as a potential target in blood

pressure and hence CVD management.

In vitro studies have shown turbulent blood flow to increase VCAM-1 (Chappell et

al., 1998), ICAM-1, P-selectin and MCP-1 (Hsiai et al., 2003) expression, with a

reduction in eNOS expression (Ziegler et al., 1998). Similar to NO, CNP expression is

increased by high shear stress (Buga et al., 1991;Chun et al., 1997;Zhang et al., 1999)

suggesting in turbulent flow, hence atherosclerotic prone regions, CNP expression is

reduced. This assumption correlates with the observation that endothelial cells in

atherosclerotic lesions express very low levels of CNP, which inversely correlates

with disease severity (Naruko et al., 1996). These observations infer that CNP is anti-

atherogenic and supplementation is desirable as CNP lowers blood pressure, which in

turn would help maintain a physiological shear stress and thereby an anti-atherogenic

state.

Another initiator of endothelial dysfunction is oxidised LDL which increases

endothelial VCAM-1, ICAM-1 (Libby, 2002) and MCP-1 expression (Takahara et al.,

1997), promoting monocyte recruitment and migration. Oxidised LDL also reduces

TGF-β-induced CNP secretion from BAEC (Sugiyama et al., 1995). CNP attenuates
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TNF-α-induced MCP-1 secretion from HUVEC (Weber et al., 2003) and also LPS-

induced MCP-1 secretion from human mesangial cells (Osawa et al., 2000). In

addition, CNP and cANF4-23 reduce basal leukocyte rolling in eNOS KO mice

(Scotland et al., 2005b). Balloon injured rabbit coronary arteries infected with an

adenovirus expressing CNP exhibit reduced VCAM-1 and ICAM-1 expression and

macrophage infiltration after 7 days (Qian et al., 2002). However, in vitro, CNP has

no effect on TNF-α-induced HUVEC ICAM-1 expression or CD11b, the ICAM-1 

ligand, expression on human whole blood leukocytes (Scotland et al., 2005b). A

possible reason for this discrepancy may be due to the length of each study, the in vivo

versus in vitro nature of the studies or the species difference. Nonetheless, the above

observations collectively identify CNP as being anti-inflammatory, a highly desirable

property in the prophylactic tretament of CVD. To further elucidate the role of

endogenous, endothelium-derived CNP on leukocyte activity, ongoing studies in our

lab are assessing leukocyte activation in vivo in ecCNP KO mice.

Intact, non-activated endothelium prevents platelet adhesion, whilst activated or

damaged endothelium results in platelet adhesion (Gawaz et al., 2005). Platelet-

endothelial cell adhesion involves interaction of P-selectin glycoprotein ligand-1

(Frenette et al., 2000) and the glycoprotein GBIb/IX/V (Romo et al., 1999), on

platelets, with P-selectin, present on the endothelial cell surface. This interaction is

rapidly reversible and insufficient for stable adhesion. Mice lacking platelet

glycoprotein GP IIb/IIIa (αIIb/β3), an integrin involved in firm platelet adhesion,

exhibit reduced platelet adhesion and attenuated atherosclerotic lesion formation

(Massberg et al., 2005). Such studies have provided evidence suggesting that platelets

contribute to the development of atherosclerosis. ApoE KO mice, as young as 6 weeks

old, exhibit substantial platelet adhesion to the carotid endothelium, even in the

absence of an atherosclerotic lesion (Massberg et al., 2002). In addition, 6 week old

ApoE KO mice treated for 12 weeks with p0p/B, an anti-GPIbα monoclonal antibody, 

display reduced atherosclerotic lesion formation in atherosclerotic prone areas such as

the carotid artery bifurcation, aortic sinus and coronary arteries (Massberg et al.,

2002). Furthermore, ApoE KO mice injected with P-selectin KO platelets exhibit a

40 % reduction in atherosclerotic lesions, in comparison to animals injected with

activated wild type platelets (Huo et al., 2003). Collectively the studies above have

clearly identified the exacerbation of atherogenesis by platelets is, in part, P-selectin
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mediated. It has been suggested that endothelium adherent platelets act as docking

sites for leukocytes and activate them, thereby initiating leukocyte diapedesis (May et

al., 2008). CNP, and the selective NPR-C agonist, cANF4-23, reduce histamine-

induced HUVEC P-selectin expression and thrombin-induced platelet P-selectin

expression (Scotland et al., 2005b). This data demonstrates that CNP reduces P-

selectin expression, in an NPR-C dependent manner. Thus, CNP or NPR-C agonists

are likely to prove efficacious prophylactic treatments to reduce atherosclerotic lesion

formation by inhibiting adherence of leukocytes and platelets to the endothelium, an

initiating process in CVD. The effect of CNP on various cell adhesion molecules and

their ligands on endothelial cells, leukocytes and platelets is largely unknown and so

represents an area of research that is lacking to fully understand the mechanisms

underlying the anti-inflammatory actions of CNP. Work in our lab is currently

investigating this area using ecCNP KO mice.

Ruptured atherosclerotic lesions are characterised by thrombus formation leading to

occlusion of an artery (Davi and Patrono, 2007). A well known inhibitor of

fibrinolysis (breakdown of a thrombus) is plasminogen activator inhibitor (PAI)-1,

which inhibits tissue plasminogen activator and urokinase, leading to reduced plasmin

levels, hence reduced thrombi degradation. Various studies have demonstrated CNP to

promote fibrinolysis by altering expression of factors involved in thrombus

degradation. In rat aortic endothelial cells, Ang II-induced mRNA expression of tissue

factor, an initiator of the coagulation cascade, and PAI-1 are suppressed by CNP

(Yoshizumi et al., 1999). Furthermore, in RAoSMC and human aortic smooth muscle

cells, CNP reduces PAI-1 mRNA expression and protein secretion (Bouchie et al.,

1998). Additionally, in rabbit carotid arteries CNP reduces endothelial and neointimal

PAI-1 (Kairuz et al., 2005). These studies clearly demonstrate that CNP suppresses

PAI-1 expression thereby promoting fibrinolysis and further still, CNP inhibits

thrombin-induced platelet activation (Scotland et al., 2005b) and shear stress-induced

thrombosis in rabbit carotid arteries (Qian et al., 2002), indicating the beneficial use of

CNP in the treatment of thrombosis. In addition to the anti-fibrinolytic action of PAI-

1, it is also involved in vascular remodelling and has been shown to be elevated in

atherosclerotic lesions (Padro et al., 1995). Human studies have yielded discordant

results, with elevated plasma PAI-1 being associated with an increased or decreased

risk of restenosis (Fay et al., 2007). Thus, these observations intimate that CNP
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reduces PAI-1 expression promoting fibrinolysis, hence reducing thrombosis, and

PAI-1 may also reduce neointimal hyperplasia, highlighting CNP as a potential

therapy in MI and stroke.

Neointimal hyperplasia caused by VSMC proliferation and migration is also critical to

the pathophysiology of atherosclerosis (Raines and Ross, 1993). VSMC growth leads

to luminal narrowing, resulting in restricted blood flow; treatments that effectively

prevent this process are required. In vitro, CNP inhibits rat VSMC proliferation

(Furuya et al., 1991) and also attenuates human coronary artery smooth muscle cell

(Ikeda et al., 1997) and RAoSMC (Kohno et al., 1997) migration. In vivo, CNP

reduces neointimal hyperplasia in rat carotid artery and rabbit carotid, femoral and

iliac artery, by as much as 90 % (Furuya et al., 1993;Ueno et al., 1997;Gaspari et al.,

2000;Doi et al., 2001;Ohno et al., 2002;Qian et al., 2002;Yasuda et al., 2002). These

data clearly demonstrate the beneficial anti-mitogenic and anti-migratory properties of

CNP, and in conjunction with the ability of CNP to promote endothelial cell growth,

hence promoting re-endothelialisation, highlight it as a potential therapeutic target in

the treatment of CVD associated with VSMC growth. Furthermore, I have established

that CNP/NPR-C/ERK 1/2 activation promotes expression of the cell cycle inhibitors

p21waf1/cip1 and p27kip1, inhibiting VSMC mitogenesis, whilst in endothelial cells this

pathway augments expression of the cell cyle promoter cyclin D1, stimulating growth.

The identification of this pathway may prove beneficial in the design of novel NPR-C

ligands, to concomitantly inhibit VSMC growth and promote endothelial cell

proliferation.

In addition to the concept that VSMC are directly involved in atherosclerotic

development, is the observation that vulnerable, less stable plaques contain fewer

VSMC than fibrotic, stable plaques (Davies et al., 1993). Plaques with a thinned

fibrous cap, partly due to a loss of VSMC, are more likely to rupture leading to

thrombosis and subsequently MI or stroke (Virmani et al., 2000). Therefore, agents

that inhibit VSMC growth could lead to thin cap atheromas, promoting plaque

instability and hence increasing the risk of thrombosis. This observation suggests that

compounds with anti-mitogenic VSMC effects may be detrimental in the treatment of

atherosclerosis. However, statins, a routinely used class of drugs to lower plasma

cholesterol with pleiotropic effects including inhibition of VSMC proliferation
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(Munro et al., 1994;Corsini et al., 1996), have been very successful in reducing

cardiovascular events. This indicates that although statins reduce VSMC growth they

are still highly beneficial in the treatment of CVD, suggesting CNP would also be

beneficial despite its anti-mitogenic VSMC effects.

To summarise, CNP promotes endothelial cell proliferation and inhibits leukocyte

recruitment, VSMC growth, platelet adhesion and aggregation in part via NPR-C.

Additionally, endothelium-derived CNP regulates blood pressure, by altering

resistance arterial tone through an NPR-C dependent mechanism. These observations

clearly highlight the vasoprotective actions of CNP/NPR-C activation indicating CNP

or NPR-C agonists may be a potential prophylactic/treatment for atherogenesis. To

further investigate the role of CNP in atherosclerosis future studies will assess

atheroma development in ecCNP/ApoE KO mice.

5.6.2 Restenosis

Recurrence of intimal hyperplasia occurs within 6 months in approximately 25 % of

patients who have undergone PCI and have a stent implanted (Fischman et al.,

1994;Serruys et al., 1994). This alarming statistic emphasises the need for compounds

that reduce the following aspects of restenosis: endothelial cell damage, VSMC

growth and leukocyte and platelet activation. Drug eluting stents (DES) have been

developed which release agents (e.g. rapamycin/sirolimus) with anti-proliferative and

immunosuppressive actions that have been successful in reducing the rate of

restenosis to <10 % (Morice et al., 2007), however, the complication of stent

thrombosis remains.

Stent thrombosis occurring post PCI is categorised as early stent thrombosis,

occurring 0 - 30 days post PCI, late stent thrombosis, occurring >30 days to 1 year

post PCI or very late stent thrombosis, occurring >1 year post PCI (Cutlip et al.,

2007). Stent thrombosis occurs in patients treated with BMS and DES, however in the

Basel Stent Kosten Effektivitats Trial (BASKET) the rate of late stent thrombosis was

double in patients treated with DES in comparison to BMS, 2.6 % vs 1.3 %

respectively (Pfisterer et al., 2006). These data highlight that current agents released
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from DES are not ideal as they are associated with increased rates of thrombosis, a life

threatening process.

Current DES release agents that inhibit VSMC proliferation and migration, a

beneficial action in reducing the incidence of restenosis, and also inhibit endothelial

cell proliferation (Parry et al., 2005;Matter et al., 2006), an unwanted effect. Balloon

angioplasty and stent deployment cause endothelial denudation, exposing

thrombogenic material to the blood, which can lead to thrombosis (Schwertz and

Vaitkus, 2003;Stahli et al., 2009). Following PCI, endothelial cell denudation may

give rise to stent thrombosis, particularly in patients treated with a DES, as the agents

eluted from the stent impair endothelial regeneration. In vitro, rapamycin, an agent

currently used, suppresses endothelial cell proliferation and migration (Matter et al.,

2006) and also inhibits human endothelial progenitor cell proliferation and

differentiation (Butzal et al., 2004), which have been shown to be involved in re-

endothelialisation (Blindt et al., 2006). Therefore, current drugs released from stents

impair vascular healing due to impaired endothelial cell and endothelial progenitor

cell function. These observations highlight the critical need for agents with anti-

mitogenic VSMC effects, but with pro-proliferative effects on endothelial cells, in

order to ensure rapid healing of the endothelium to maintain an anti-thrombotic and

anti-inflammatory surface.

CNP would be an ideal candidate to be released from DES as it promotes endothelial

cell proliferation, inhibits VSMC proliferation, has anti-inflammatory and anti-

thrombotic properties (Figure 60). As described previously, following angioplasty in

rabbit carotid artery, rabbit femoral artery and porcine femoral artery, CNP treatment

inhibits neointimal thickening (Gaspari et al., 2000;Doi et al., 2001;Qian et al.,

2002;Fuchs et al., 2008) and accelerates re-endothelialisation (Doi et al., 1996;Ohno

et al., 2002;Qian et al., 2002). Furthermore, work from our lab has identified NPR-

C/ERK 1/2 signalling as mediating the growth altering effects of CNP (Panayiotou,

2007; Chapter 3). The unique mitogenic profile of CNP, mediated by NPR-C,

identifies both as therapeutic targets in the treatment of restenosis.
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Figure 60 - The beneficial actions of endothelium-derived CNP

CNP - C-type natriuretic peptide, VSMC - Vascular smooth muscle cell

5.6.3 Vein graft disease prevention

Vein grafts are used for auto transplantation in patients requiring coronary artery

bypass surgery. When adequate arterial grafts are not available, a saphenous vein graft

is commonly used due to ease of harvestation and plentiful supply. Unfortunately,

following a procedure, vein graft disease can occur, which is comprised of three

discrete processes: thrombosis, intimal hyperplasia and atherosclerosis (Motwani and

Topol, 1998). Within the first month, approximately 13 % of saphenous vein grafts

occlude, principally due to thrombosis (Bourassa et al., 1982;Fitzgibbon et al., 1996).

The major disease process in saphenous vein grafts between one month and one year

is intimal hyperplasia, affecting approximately 10 % of grafts (Bourassa et al.,

1982;Fitzgibbon et al., 1996) and so patency after 1 year is approximately 75 %. One

year post surgery, atherosclerosis is the dominant disease, leading to attrition of

saphenous vein grafts, leaving the 10 year saphenous vein graft patency at 50 - 60 %

(Fitzgibbon et al., 1996;Hassantash et al., 2008).

All three processes have been shown to be attenuated by CNP therapy and a few

studies have looked at these processes in the context of vein graft disease. CNP has

been shown to reduce intimal hyperplasia and CD8-positive cells in a mouse model of

vein graft disease, in which the inferior vena cava is interposed into the common
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carotid artery (Schachner et al., 2004). Furthermore, CNP promotes

reendothelialisation and suppresses neointimal hyperplasia and thrombosis in rabbit

jugular vein grafts interposed into the carotid artery (Ohno et al., 2002). These studies

clearly demonstrate CNP to be effective in suppressing thrombosis and neointimal

hyperplasia, two of the main processes involved in vein graft disease and hence

identifies CNP as a potential therapy. As discussed previously (section 1.4.5) the

receptor thought to be responsible for the anti-aggregatory effect is NPR-C, which has

also been shown to be responsible for the anti-mitogenic VSMC effect, therefore

suggesting NPR-C agonists would be beneficial in vein graft disease prevention.

5.6.4 Ischaemia/reperfusion injury

Ischaemia/reperfusion (I/R) injury occurs when ischaemic tissue is reperfused i.e.

blood flow is restored. Restoration of blood flow to ischaemic tissue is vital in order to

protect from organ damage; however, paradoxically reperfusion itself can result in

tissue damage greater than the initial insult. This situation arises during MI, stroke and

also during surgery where vessels are clamped during transplant surgery. I/R injury is

characterised by microvascular dysfunction, most notably a reduction in endothelium-

derived NO, leading to an inflammatory response, typified by increased leukocyte

activation, cellular and fluid extravasation, capillary constriction and decreased

perfusion (Carden and Granger, 2000). Mice deficient in P-selectin and ICAM-1

subjected to I/R injury do not exhibit impaired endothelium-dependent vasodilatation

unlike wild type mice, suggesting a role for activated leukocytes in I/R injury (Banda

et al., 1997).

There is increasing evidence to suggest CNP may be a beneficial treatment, post MI,

to reduce cardiac hypertrophy and remodelling. In an experimental model of MI in

rats, CNP reduces myocardial hypertrophy and collagen volume, 2 weeks post MI,

with no effect upon blood pressure (Soeki et al., 2005). A further study has shown 3

weeks post I/R-induced MI cardiomyocyte restricted overexpression of CNP in mice

resulted in a reduction of ventricular hypertrophy, functional impairment of cardiac

tissue, necrosis and inflammation, compared to WT (Wang et al., 2007). The anti-

hypertrophic effect of CNP is most likely NPR-B mediated as rats expressing a

dominant negative NPR-B exhibit reduced cGMP and cardiac hypertrophy
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(Langenickel et al., 2006). Work from our lab has shown CNP and cANF4-23 reduce

infarct size in the Langendorff isolated rat heart when administered pre- or post-

reperfusion, following ischaemia (Hobbs et al., 2004).

Chronic heart failure patients produce CNP in the myocardium suggesting a role for

CNP (Kalra et al., 2003) in cardiac fibrosis. In vitro studies have shown CNP to be

synthesised in rat cardiac fibroblasts in response to TGF-β, ET-1 and bFGF, all of 

which promote cardiac fibrosis, suggesting CNP may counter this pathology. Indeed,

CNP inhibits DNA and collagen synthesis (Horio et al., 2003), intimating it directly

reduces cardiac fibrosis. Collectively these observations highlight the ability of CNP,

most likely through a combination of NPR-B and -C, to prevent MI-induced cardiac

hypertrophy and fibrosis advocating CNP therapy in ischaemic CVD.

5.7 Angiogenesis and revascularisation

Angiogenesis is a physiological process involving the growth of new vessels which is

vital in numerous conditions such as tumour growth, wound healing and re-

vascularisation. It is an endothelium-centred response to hypoxia that promotes

migration and proliferation of endothelial cells to sprout new capillaries from existing

blood vessels, a process which is predominantly initiated by hypoxia inducible factor

(HIF)1α, that in turn transcriptionally activates genes including VEGF, PDGF, bFGF 

and angiopoietins (Distler et al., 2003;Simons, 2004;Simons, 2005).

Several reports in the literature suggest that CNP can mobilise endothelial cells and

promote re-endothelialisation of damaged blood vessels, consistent with a pro-

angiogenic activity. CNP promotes re-endothelialisation following balloon

angioplasty (Ueno et al., 1997;Morishige et al., 2000;Doi et al., 2001;Kuhnl et al.,

2005) and in vein grafts (Ohno et al., 2002). Furthermore, in vitro, CNP promotes

capillary network formation of HUVEC and in mice subjected to hindlimb ischaemia

(Yamahara et al., 2003). Additionally, CNP expression is increased in human

coronary atherosclerotic lesions (Naruko et al., 1996) and in the neointima follwing

PCI (Naruko et al., 2005). In combination, these observations intimate that CNP is

produced endogenously in response to vessel injury, which may be beneficial in

revascularisation.
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It is plausible to suggest that the angiogenic effect of CNP may be via VEGF as ANP

has been suggested to promote angiogenesis through VEGF. ANP increases mRNA

expression of VEGF in HUVEC (Tokudome et al., 2009) and lung extracts from

NPR-A KO mice exhibit reduced VEGF expression in comparison to WT (Kong et

al., 2008) suggesting ANP or BNP can physiologically increase VEGF secretion.

Studies investigating angiogenesis in our novel ecCNP KO mouse model are required

to elucidate if endothelium-derived CNP is involved in neovascularisation.

5.8 Interaction between nitric oxide and CNP in the

vasculature

Endothelium-derived NO, PGI2 and EDHF are important regulators of vascular

homeostasis. As discussed earlier and highlighted in this thesis, CNP is an EDHF in

the rat and mouse mesenteric artery (Chauhan et al., 2003;Villar et al., 2007). It has

been suggested that EDHF is up-regulated to compensate for a lack of NO bioactivity

(Huang et al., 2000;Scotland et al., 2001), which can occur in CVD due to the

oxidative environment.

It has been demonstrated that the natriuretic peptide and NO systems can modulate

each other such that if one is down-regulated the other is up-regulated (Hussain et al.,

2001;Madhani et al., 2003;Madhani et al., 2006). The potency of ANP and CNP in

aortae from eNOS KO mice is greater than that from WT mice. Also the potency of

ANP and CNP is decreased in aortae from eNOS KO mice treated with supramaximal

concentrations of glyceryl trinitrate, an NO donor, but increased in aortae from WT

mice pretreated with L-NAME (Madhani et al., 2003). In addition, I have shown NO

to be more sensitive in aorta from ecCNP KO mice compared to WT animals.

Furthermore, CNP reduces coronary perfusion pressure in an infarct model of I/R

injury, which is enhanced by L-NAME treatment (Hobbs et al., 2004). In sum, these

data allude to the hypothesis that a compensatory mechanism exists whereby if the

level of NO is reduced, as occurs in CVD, there is an up-regulation of the natriuretic

peptide signalling pathway.
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Studies suggest that NO may also have a role in CNP-mediated vasorelaxant activity

in certain vascular beds. For instance, CNP has been shown to dilate rat

juxtamedullary arterioles, preconstricted with noradrenaline, in a NO-dependent

manner (Amin et al., 1996). Additionally, CNP causes a reduction in rat coronary

perfusion pressure with a corresponding increase in cGMP that is reduced in the

presence of L-NNA (Brunner and Wolkart, 2001). This observation suggests that in

the rat coronary vasculature CNP-mediated dilation is dependent upon NO. These

observations suggest that CNP mediated relaxation via NO may occur in some species

in some vascular beds, although it is unknown whether this is due to an increase in

NOS expression or NO synthesis. CNP infusion in rats attenuates MABP with an

increase in urinary excretion of NO metabolites (Costa et al., 2007). The authors

found iNOS and nNOS levels were undetectable and there was no change in eNOS

expression in aorta, right atrium or left ventricle (Costa et al., 2007), however there

was increased NOS activity in all 3 tissues, suggesting CNP increases eNOS activity.

Additionally, CNP has been shown to decrease VCAM-1 and ICAM-1 expression,

macrophage infiltration and neointimal formation following balloon angioplasty

which is reduced by L-NAME treatment and accompanied by an increase in iNOS

expression (Qian et al., 2002). Collectively, the above observations highlight the

possibility that some of the vasoprotective actions of CNP may be mediated via NO,

although further studies are required to ascertain if this hypothesis is correct.
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5.9 Conclusions

Herein, I have identified the receptor, signalling pathway and downstream targets by

which CNP alters mitogenesis of endothelial and smooth muscle cells. CNP enhances

endothelial cell growth in an NPR-C dependent manner, leading to ERK 1/2

phosphorylation, initiating up-regulation of cyclin D1 and down-regulation of

p21waf1/cip1, resulting in proliferation. In contrast, CNP-induced NPR-C activation, in

smooth muscle cells, leads to ERK 1/2 activation, which in turn augments p21waf1/cip1

and p27kip1 expression, thereby preventing growth. Thus, I have identified NPR-

C/ERK 1/2 signalling as key in mediating the differential mitogenic effects of CNP in

endothelial and smooth muscle cells.

Additionally, I have demonstrated that in female mice CNP is involved in

physiological blood pressure regulation. Female mice lacking endothelial CNP are

hypertensive and exhibit altered vascular reactivity, most notably in resistance

arteries, whilst male mice are normotensive. These observations provide support to the

hypotheses that CNP is important in maintaining physiological blood pressure and that

CNP is an EDHF, which may underlie the cardioprotective phenotype of females.

In sum, my thesis provides strong evidence for CNP/NPR-C signal transduction as a

key pathway in mediating the anti-atherogenic properties of this vasoprotective

peptide. Further, my data highlights the therapeutic potential of this pathway in a

variety of cardiovascular disorders including atherosclerosis and restenosis.
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