
Polygraph: Automatically Generating Signatures

for Polymorphic Worms

James Newsome

Carnegie Mellon University

jnewsome@ece.cmu.edu

Brad Karp

Intel Research Pittsburgh

brad.n.karp@intel.com

Carnegie Mellon University

bkarp+@cs.cmu.edu

Dawn Song

Carnegie Mellon University

dawnsong@cmu.edu

Abstract

It is widely believed that content-signature-based intru-

sion detection systems (IDSes) are easily evaded by poly-

morphic worms, which vary their payload on every infec-

tion attempt. In this paper, we present Polygraph, a sig-

nature generation system that successfully produces signa-

tures that match polymorphic worms. Polygraph gener-

ates signatures that consist of multiple disjoint content sub-

strings. In doing so, Polygraph leverages our insight that

for a real-world exploit to function properly, multiple in-

variant substrings must often be present in all variants of

a payload; these substrings typically correspond to proto-

col framing, return addresses, and in some cases, poorly

obfuscated code. We contribute a definition of the poly-

morphic signature generation problem; propose classes of

signature suited for matching polymorphic worm payloads;

and present algorithms for automatic generation of signa-

tures in these classes. Our evaluation of these algorithms on

a range of polymorphic worms demonstrates that Polygraph

produces signatures for polymorphic worms that exhibit low

false negatives and false positives.

1. Introduction and Motivation

Enabled by ever-more pervasive Internet connectivity, an

increasing variety of exploitable vulnerabilities in software,

and a lack of diversity in the software running on Internet-

attached hosts, Internet worms increasingly threaten the

availability and integrity of Internet-based services.

Toward defending against Internet worms (and other at-

tacks), the research community has proposed and built in-

trusion detection systems (IDSes) [20, 21]. A network ad-

ministrator deploys an IDS at the gateway between his edge

network and the Internet, or on an individual end host. The

IDS searches inbound traffic for known patterns, or signa-

tures, that correspond to malicious traffic. When such mali-

cious traffic is found, the IDS may raise an alarm; block fu-

ture traffic from the offending source address; or even block

the remainder of the offending flow’s traffic. To date, to

detect and/or block Internet worm flows, IDSes use signa-

tures that match bytes from a worm’s payload, using match-

ing techniques including string matching at arbitrary pay-

load offsets [20, 21]; string matching at fixed payload off-

sets [21]; and even matching of regular expressions within

a flow’s payload [20].

It is natural to ask where the signature databases for

IDSes come from. To date, signatures have been generated

manually by security experts who study network traces af-

ter a new worm has been released, typically hours or days

after the fact. Motivated by the slow pace of manual sig-

nature generation, researchers have recently given attention

to automating the generation of signatures used by IDSes

to match worm traffic. Systems such as Honeycomb [14],

Autograph [13], and EarlyBird [22] monitor network traf-

fic to identify novel Internet worms, and produce signatures

for them using pattern-based analysis,1 i.e., by extracting

common byte patterns across different suspicious flows.

These systems all generate signatures consisting of a sin-

gle, contiguous substring of a worm’s payload, of sufficient

length to match only the worm, and not innocuous traffic.

The shorter the byte string, the greater the probability it

will appear in some flow’s payload, regardless of whether

the flow is a worm or innocuous. Thus, these signature gen-

eration systems all make the same underlying assumptions:

that there exists a single payload substring that will remain

invariant across worm connections, and will be sufficiently

unique to the worm that it can be used as a signature without

causing false positives.

Regrettably, the above payload invariance assumptions

are naı̈ve, and give rise to a critical weakness in these previ-

1TaintCheck recently proposed a new approach, semantic-based auto-

matic signature generation [18]. We discuss this further in Section 8.

Proceedings of the 2005 IEEE Symposium on Security and Privacy (S&P’05)
1081-6011/05 $ 20.00 IEEE

Authorized licensed use limited to: University College London. Downloaded on October 27, 2008 at 12:25 from IEEE Xplore. Restrictions apply.

ously proposed signature generation systems. A worm au-

thor may craft a worm that substantially changes its payload

on every successive connection, and thus evades matching

by any single substring signature that does not also occur

in innocuous traffic. Polymorphism techniques2, through

which a program may encode and re-encode itself into suc-

cessive, different byte strings, enable production of chang-

ing worm payloads. It is pure serendipity that worm au-

thors thus far have not chosen to render worms polymor-

phic; virus authors do so routinely [17, 24]. The effort re-

quired to do so is trivial, given that libraries to render code

polymorphic are readily available [3, 10].

It would seem that given the imminent threat of polymor-

phic worms, automated signature generation, and indeed,

even filtering of worms using human-generated signatures,

are doomed to fail as worm quarantine strategies. In this

paper, we argue the contrary: that it is possible to gener-

ate signatures automatically that match the many variants of

polymorphic worms, and that offer low false positives and

low false negatives. This argument is based on a key insight

regarding the fundamental nature of polymorphic worms as

compared with that of polymorphic viruses. Polymorphic

viruses are executables stored locally on a host, invoked by

a user or application. As such, their content may be entirely

arbitrary, so long as when executed, they perform the oper-

ations desired by the author of the virus. That is, a poly-

morphic generator has free reign to obfuscate all bytes of

a virus. In sharp contrast, to execute on a vulnerable host,

a worm must exploit one or more specific server software

vulnerabilities.

In practice, we find that exploits contain invariant bytes

that are crucial to successfully exploiting the vulnerable

server. Such invariant bytes can include protocol framing

bytes, which must be present for the vulnerable server to

branch down the code path where a software vulnerabil-

ity exists; and the value used to overwrite a jump target

(such as a return address or function pointer) to redirect

the server’s execution. Individually, each of these invariant

byte strings may cause false positives. Thus, in our work,

we explore automatic generation of signature types that in-

corporate multiple disjoint byte strings, that used together,

yield low false positive rates during traffic filtering. These

signature types include conjunctions of byte strings, token

subsequences (substrings that must appear in a specified or-

der, a special case of regular expression signatures, matched

by Bro and Snort), and Bayes-scored substrings.

Our contributions in this work are as follows:

Problem definition: We define the signature generation

problem for polymorphic worms.

Signature generation algorithms: We present Polygraph,

2Throughout this paper, we refer to both polymorphism and metamor-

phism as polymorphism, in the interest of brevity.

a suite of novel algorithms for automatic generation of sig-

natures that match polymorphic worms.

Evaluation on real polymorphic worms: We use several

real vulnerabilities to create polymorphic worms; run our

signature generation algorithms on workloads consisting of

samples of these worms; evaluate the quality (as measured

in false positives and false negatives) of the signatures pro-

duced by these algorithms; and evaluate the computational

cost of these signature generation algorithms.

We proceed in the remainder of the paper as follows.

In Section 2, we first provide evidence of the existence of

invariant payload bytes that cannot be rendered polymor-

phic using examples from real exploits, to motivate several

classes of signature tailored to match disjoint invariant byte

strings. We continue in Section 3 by setting the context in

which Polygraph will be used, and stating our design goals

for Polygraph. Next, in Section 4, we describe Polygraph’s

signature generation algorithms, before evaluating them in

Section 5. We discuss possible attacks against Polygraph in

Section 6; discuss our results in Section 7; review related

work in Section 8; and conclude in Section 9.

2. Polymorphic Worms: Characteristics and

Signature Classes

To motivate Polygraph, we now consider the anatomy of

polymorphic worms. We refer to a network flow containing

a particular infection attempt as an instance or sample of a

polymorphic worm. After briefly characterizing the types

of content found in a polymorphic worm, we observe that

samples of the same worm often share some invariant con-

tent due to the fact that they exploit the same vulnerability.

We provide examples of real-world software vulnerabilities

that support this observation. Next, we demonstrate that

a single, contiguous byte string signature3 cannot always

match a polymorphic worm robustly. Motivated by the in-

sufficiency of single substring signatures and the inherent

structure in many exploits, we identify a family of signa-

ture types more expressive than single substrings that better

match an exploit’s structure. While these signature types

are more complex than single substring signatures, and thus

computationally costlier to generate and match, they hold

promise for robust matching of polymorphic worms.

2.1. Exploits and Polymorphism

Within a worm sample, we identify three classes of

bytes. Invariant bytes are those fixed in value, which if

changed, cause an exploit no longer to function. Such bytes

3For brevity, we hereafter refer to such signatures as single substring

signatures.

Proceedings of the 2005 IEEE Symposium on Security and Privacy (S&P’05)
1081-6011/05 $ 20.00 IEEE

Authorized licensed use limited to: University College London. Downloaded on October 27, 2008 at 12:25 from IEEE Xplore. Restrictions apply.

are useful as portions of signatures. Wildcard bytes are

those which may take on any value without affecting the

correct functioning of a worm—neither its exploit nor its

code. Finally, code bytes are the polymorphic code executed

by a worm, that are the output of a polymorphic code en-

gine. Typically, the main worm code will be encrypted un-

der a different key in each worm sample. Execution starts at

a small decryption routine, which is obfuscated differently

in each worm sample. The degree of variation in code bytes

from worm sample to worm sample depends on the quality

of the polymorphic obfuscator used—a poor polymorphic

obfuscater may leave long regions of bytes unchanged be-

tween the code instances it outputs, whereas a more aggres-

sive one may leave nearly no multi-byte regions in common

across its outputs. In this work, we do not depend on weak-

nesses of current code obfuscators to be able to generate

quality signatures. Instead, we render worms to be perfectly

polymorphic, by filling in code bytes with values chosen

uniformly at random. We will also show that the current

generation of polymorphic obfuscators actually do produce

invariant byte sequences in their output, which means that

we should be able to generate even higher quality signatures

for worms that use these real-world code obfuscators.

2.2. Invariant Content in Polymorphic Exploits

If a vulnerability requires that a successful exploit con-

tain invariant content, that content holds promise for use

in signatures that can match all variants of a polymorphic

worm. But to what extent do real vulnerabilities have this

property? We surveyed over fifteen known software vul-

nerabilities, spanning a diverse set of operating systems and

applications, and found that nearly all require invariant con-

tent in any exploit that can succeed. We stress that we do

not claim all vulnerabilities share this property—only that

a significant fraction do. We now describe the two chief

sources of invariant content we unearthed: exploit framing

and exploit payload.

Invariant Exploit Framing A software vulnerability ex-

ists at some particular code site, along a code path exe-

cuted upon receiving a request from the network. In many

cases, the code path to a vulnerability contains branches

whose outcome depends on the content of the received re-

quest; these branches typically correspond to parsing of the

request, in accordance with a specific protocol. Thus, an

exploit typically includes invariant framing (e.g., reserved

keywords or well known binary constants that are part of

a wire protocol) essential to exploiting a vulnerability suc-

cessfully.

Invariant Overwrite Values Exploits typically alter the

control flow of the victim program by overwriting a jump

target in memory with a value provided in the exploit, ei-

ther to force a jump to injected code in the payload, or to

force a jump to some specific point in library code. Such

exploits typically must include an address from some small

set of narrow ranges in the request. In attacks that redirect

execution to injected code, the overwritten address must

point at or near the beginning of the injected code, mean-

ing that the high-order bytes of the overwritten address are

typically invariant. A previous study of exploits contains a

similar observation [19]. Attacks that redirect execution to

a library also typically select from a small set of candidate

jump targets. For example, CodeRed causes the server to

jump to an address in a common Windows DLL that con-

tains the instruction call ebx. For this technique to be

stable, the address used for this purpose must work for a

range of Windows versions. According to the Metasploit

op-code database, there are only six addresses that would

work across Windows 2000 service packs zero and one [4].

2.3. Examples: Invariant Content in Polymorphic
Worms

We manually identified the invariant content for exploits

of a range of vulnerabilities by analyzing server source code

(when available), and by studying how current exploits for

the vulnerabilities work. We now present six of the vulner-

abilities and exploits that we studied to illustrate the exis-

tence of invariant content in polymorphic worms, even with

an ideal polymorphic engine. We also present our analysis

of the output of one of the polymorphic generators, to show

how close the current generators are to the ideal.

Apachemultiple-host-header vulnerability First, we con-

sider the hypothetical payload of a polymorphic worm

structured like the payload of the Apache-Knacker ex-

ploit [9], shown in Figure 1. This exploit consists of a GET

request containing multiple Host headers. The server con-

catenates the two Host fields into one buffer, leading to an

overflow. This exploit contains several invariant protocol

framing strings: “GET”, “HTTP/1.1”, and “Host:” twice.

The second Host field also contains an invariant value used

to overwrite the return address.

BIND TSIG vulnerability Next, we consider the Lion

worm [5]. We constructed a polymorphic version of the

Lion worm, shown in Figure 2. The Lion worm payload

is a DNS request, and begins with the usual DNS proto-

col header and record counts, all of which may be varied

considerably across payloads, and are thus wildcard bytes;

only a single bit in the header must be held invariant for

the exploit to function—the bit indicating that the packet

is a request, rather than a response. Next come two ques-

tion entries. The second contains an invariant value used

to overwrite a return address (also encoded in a QNAME).

Finally, to take the vulnerable code path in the server, the

exploit payload must include an Additional record of type

TSIG; this requirement results in three contiguous invariant

Proceedings of the 2005 IEEE Symposium on Security and Privacy (S&P’05)
1081-6011/05 $ 20.00 IEEE

Authorized licensed use limited to: University College London. Downloaded on October 27, 2008 at 12:25 from IEEE Xplore. Restrictions apply.

Random
Headers

Payload
Part 1

Random
Headers

Payload
Part 2

Random
Headers

NOP
Slide

Decryption
Key

Encrypted
Payload

GET URL HTTP/1.1 Host: Host:

Decryption
Routine

Return
Address

Figure 1. Polymorphed Apache-Knacker ex-

ploit. Unshaded content represents wild-

card bytes; lightly shaded content represents

code bytes; heavily shaded content repre-

sents invariant bytes.

Record
Additional

Question 2
Question 1
[Obfuscated
Shellcode]

Record
Counts

DNS
Header

QNAME

[Return
QTYPE QCLASS

NAME TYPE
[TSIG]

CLASS
[0x00]

Address]

Figure 2. BIND TSIG vulnerability, as ex-

ploited by the Lion worm. Shading as for

Apache vulnerability.

bytes near the end of the payload.

Slapper The Slapper worm [1] exploits a heap buffer over-

run vulnerability in Apache’s mod ssh module. Note that

the attack takes place during the initial handshake, mean-

ing that it is not encrypted. It is a two-part attack; It

first uses the overrun to overwrite a variable containing the

session-id length, causing the server to leak pointer val-

ues. This part must contain the normal protocol framing

of a client-hellomessage, as well as the value used to

overwrite the variable (0x70).

In the second part of the attack, another session is

opened, and the same buffer is overrun. This time, the

leaked data is patched in, allowing the exploit to perform

a longer buffer overrun while still not causing the server to

crash. The heap metadata is overwritten in such a way as to

later cause the GOT entry of free to be overwritten with

a pointer to the attacker’s code, placed previously on the

heap. Thus, there is an invariant overwrite value that points

to the attacker’s code, and another that points to the GOT

entry for free. An aggressively polymorphic worm may

try to target other GOT entries or function pointers as well.

However, there will still only be a relatively small number

of values that will work.

SQLSlammer The SQLSlammer [2] exploit must begin

with the invariant framing byte 0x04 in order to trigger the

vulnerable code path. It uses a buffer overrun to overwrite

a return address with a pointer to a call esp instruction

contained in a common Windows DLL. There are only a

small number of such values that work across multiple win-

dows versions.

CodeRed The CodeRed [6] exploit takes advantage of a

buffer overflow when converting ASCII to Unicode. The

exploit must be a GET request for a .ida file. The

value used to overwrite the return address must appear

later in the URL. CodeRed overwrites the return address

to point to call esp. There are only a small number of

such pointers that will work across multiple Windows ver-

sions. Hence, the exploit must contain the invariant proto-

col framing string “GET”, followed by “.ida?”, followed by

a pointer to call esp.

AdmWorm The AdmWorm [7] exploits BIND via a buffer

overrun. Unlike the other exploits described here, there are

no invariant protocol framing bytes in this exploit. How-

ever, there is still an invariant value used to overwrite a re-

turn address.

eb 2d 59 31 d2 b2 20 8b 19 c1 c3 0e

81 f3 81 68 44 b3 c1 c3 0a c1 c3 19 c1 c3

11 89 19 81 e9 ff ff ff ff 41 41 41 80 ea

02 4a 4a 74 07 eb d8 e8 ce ff ff ff 0b

Figure 3. Output by Clet polymorphic engine

includes invariant substrings. Boxed bytes

are found in at least 20% of Clet’s outputs;

shaded bytes are found in all of Clet’s out-

puts.

Clet polymorphic engine Figure 3 shows a sample output

by the Clet polymorphic code engine [10].4 The output con-

sists of encrypted code, which is completely different each

time, and a decryption routine that is obfuscated differently

each time. In order to determine how effective the Clet ob-

fuscation is, we generated 100 Clet outputs for the same

input code, and counted substrings of all lengths in com-

mon among the decryption routines in these 100 outputs.

Strings that were present in all 100 outputs appear with

shaded backgrounds; those that were present in at least 20

outputs, but fewer than all 100, appear boxed. Clearly, Clet

produces substrings that are entirely invariant across pay-

loads, and other substrings that occur in a substantial frac-

tion of payloads. However, upon examining the Clet source

4We also evaluated the ADMmutate [3] polymorphic engine. We

present Clet as the more pessimal case, as it produced less invariant content

than the ADMmutate engine.

Proceedings of the 2005 IEEE Symposium on Security and Privacy (S&P’05)
1081-6011/05 $ 20.00 IEEE

Authorized licensed use limited to: University College London. Downloaded on October 27, 2008 at 12:25 from IEEE Xplore. Restrictions apply.

code, it seems likely that the obfuscation engine could be

improved significantly, reducing the number of substrings

in common between Clet outputs.

2.4. Substring Signatures Insufficient

As described previously, the pattern-based signature

generation systems proposed to date [14, 13, 22] gener-

ate single substring signatures, found either in reassembled

flow payloads, or individual packet payloads. These sys-

tems thus make two assumptions about worm traffic:

• A single invariant substring exists across payload in-

stances for the same worm; that is, the substring is

sensitive, in that it will match all worm instances.5

• The invariant substring is sufficiently long to be spe-

cific; that is, the substring does not occur in any non-

worm payloads destined for the same IP protocol and

port.

Can a sensitive and specific single substring signature

be found in the example payloads in the Apache and DNS

exploits described in Section 2.3? Consider the Apache ex-

ploit. The unshaded bytes are wildcards, and cannot be re-

lied upon to provide invariant content; note that even the

NOP slide can contain significantly varying bytes across

payloads, as many instruction sequences effectively may

serve as NOPs. If we assume a strong code obfuscator, we

cannot rely on there being an invariant substring longer than

two bytes long in the obfuscated decryption routine, shown

with light shading. The only invariant bytes are the heavily

shaded ones, which are pieces of HTTP protocol framing,

and a return address (or perhaps a two-byte prefix of the

return address, if the worm is free to position its code any-

where within a 64K memory region). Clearly, the HTTP

protocol framing substrings individually will not be spe-

cific, as they can occur in both innocuous and worm HTTP

flows. By itself, even the two-to-four-byte return address

present in the payload is not sufficiently specific to avoid

false positives; consider that a single binary substring of

that length may trivially occur in an HTTP upload request.

As we show in our evaluation in Section 5, we have exper-

imentally verified exactly this phenomenon; we have found

return address bytes from real worm payloads in innocuous

flows in HTTP request traces taken from the DMZ of Intel

Research Pittsburgh.

The Lion worm presents a similar story: the heavily

shaded invariant bytes, the high-order bytes of the return

5It is possible that a worm’s content varies only very slightly across in-

stances, and that at least one of a small, constant-cardinality set of substring

signatures matches all worm instances. We view this case as qualitatively

the same as that where worm content is invariant, and focus our attention

herein on worms whose content varies to a much greater extent, such that

a small set of substring signatures does not suffice to match all variants.

address, and TSIG identifier, two and three bytes long, re-

spectively, are too short to be specific to the Lion worm.

As we show in our evaluation in Section 5, we found false

positives when searching for those substrings in DNS traf-

fic traces from a busy DNS server that is a nameserver for

top-level country code domains.

We conclude that single substring signatures cannot

match polymorphic worms with low false positives and low

false negatives.

2.5. Signature Classes for Polymorphic Worms

Motivated by the insufficiency of single substring sig-

natures for matching polymorphic worms robustly, we now

propose other signature classes that hold promise for match-

ing the particular invariant exploit framing and payload

structures described in this section. All these signatures are

built from substrings, or tokens. The signature classes we

investigate in detail in Section 4 include:

Conjunction signatures A signature that consists of a set

of tokens, and matches a payload if all tokens in the set are

found in it, in any order. This signature type can match the

multiple invariant tokens present in a polymorphic worm’s

payload, and matching multiple tokens is more specific than

matching one of those tokens alone.

Token-subsequence signatures A signature that consists

of an ordered set of tokens. A flow matches a token-

subsequence signature if and only if the flow contains the

sequence of tokens in the signature with the same order-

ing. Signatures of this type can easily be expressed as

regular expressions, allowing them to be used in current

IDSes [20, 21]. For the same set of tokens, a token sub-

sequence signature will be more specific than a conjunc-

tion signature, as the former makes an ordering constraint,

while the latter makes none. Framing often exhibits order-

ing; e.g. the TSIG record in the Lion worm, which must

come last in the payload for the exploit to succeed, and the

return address, which must therefore come before it.

Bayes signatures A signature that consists of a set of to-

kens, each of which is associated with a score, and an over-

all threshold. In contrast with the exact matching offered by

conjunction signatures and token-subsequence signatures,

Bayes signatures provide probabilistic matching—given a

flow, we compute the probability that the flow is a worm us-

ing the scores of the tokens present in the flow. If the result-

ing probability is over the threshold, we classify the flow to

be a worm. Construction and matching of Bayes signatures

is less rigid than for conjunction or token-subsequence sig-

natures. This provides several advantages. It allows Bayes

signatures to be learned from suspicious flow pools that

contain samples from unrelated worms, and even innocu-

ous network requests. (We show that the other signature

Proceedings of the 2005 IEEE Symposium on Security and Privacy (S&P’05)
1081-6011/05 $ 20.00 IEEE

Authorized licensed use limited to: University College London. Downloaded on October 27, 2008 at 12:25 from IEEE Xplore. Restrictions apply.

Network

Tap

Flow

Classifier

Polygraph

Signature

Generator

signatures

Monitor
Polygraph

Flows

Full
Packet

Innocuous

Flow Pool

Suspicious

Flow Pool

Signature

Evaluator

Labeled
Flows

Figure 4. Architecture of a Polygraph monitor.

generation algorithms can be adapted to deal with these sit-

uations effectively, but at a higher computational cost). It

also helps to prevent false negatives in cases where a token

is observed in all samples in the suspicious flow pool, but

does not actually appear in every sample of the worm. This

issue is further discussed in Section 6.

3. Problem Definition and Design Goals

We now consider the context in which we envision Poly-

graph will be used, both to scope the problem we consider in

this paper, and to reveal challenges inherent in the problem.

Having defined the problem, we then offer design goals for

Polygraph.

3.1. Context and Architecture

Figure 4 depicts a typical deployment of a Polygraph

monitor, shown as the shaded region, which incorporates

the Polygraph signature generator. In this paper, we con-

cern ourselves with the detailed design of algorithms for

the Polygraph signature generator. We now give a brief

overview of the remaining pieces of a Polygraph monitor, to

provide context for understanding how the Polygraph signa-

ture generator fits into an end-to-end system.

We envision that a Polygraph monitor observes all net-

work traffic, either at a monitoring point such as between

an edge network and the Internet, or at an end host. In this

work, we consider only a single monitor instance at a single

site.6 Monitored network traffic passes through a flow clas-

sifier, which reassembles flows into contiguous byte flows,

and classifies reassembled flows destined for the same IP

protocol number and port into a suspicious flow pool and

an innocuous flow pool. Flow reassembly (including traf-

fic normalization) at a monitor has been well studied in the

IDS research community [20]; we defer a discussion of the

liabilities of conducting flow reassembly to Section 6.

6While we believe that extending Polygraph to work distributedly

holds promise for reasons explored in previous signature generation sys-

tems [13], we leave such extensions to future work.

There is a rich literature on methods for identifying

anomalous or suspicious traffic. Previous signature gener-

ation systems have used inbound honeypot traffic [14] or

port scan activity [13] to identify suspicious flows. Far

more accurate techniques are also available, such as moni-

toring the execution of a server to detect exploits at run time,

and mapping exploit occurrences to the network payloads

that caused them, as is done in run-time-detection-based

methods [18]. These current techniques are not suitable for

blocking individual infection attempts, either because they

are too inaccurate or too slow, but they are suitable for use

in a flow classifier for Polygraph. The design of flow clas-

sifiers is outside the scope of this paper, but we assume as

we design and evaluate algorithms for the Polygraph signa-

ture generator that a flow classifier will be imperfect—that

it may misclassify innocuous flows as suspicious, and vice-

versa. Such misclassified flows increase the difficulty of

avoiding the generation of signatures that cause false pos-

itives; we refer to such innocuous flows in the suspicious

flow pool as noise.

Another challenge in generating high-quality signatures

is that we presume the flow classifier does not distinguish

between different worms (though some classifiers may be

able to help do so [18]); it simply recognizes all worms as

worms, and partitions traffic by destination port. Thus, the

suspicious flow pool for a particular destination port may

contain a mixture of different worms—that is, worms that

are not polymorphic variants based on the same exploit. For

example, a single edge network may include hosts running

different HTTP server implementations, each with different

vulnerabilities. In such a case, different worm payloads in

the suspicious flow pool for port 80 observed at the DMZ

may contain different exploits. As we describe in our de-

sign goals, the signature generation algorithm should pro-

duce high-quality signatures, even when the suspicious flow

pool contains a mixture of different worms.

In the simplest possible setting, signature generation

works as a single pass: the Polygraph signature generator

takes a suspicious flow pool and an innocuous flow pool as

input, and produces a set of signatures as output, chosen to

match the worms in the input suspicious flow pool, and to

minimize false positives, based on the innocuous flow pool.

However, we believe that incorporating feedback, whereby

the Polygraph signature generator is provided information

concerning the false positives and false negatives caused by

signatures it has previously generated, can significantly im-

prove signature quality and allow Polygraph to adapt to at-

tacks that change over time.

3.2. Problem Definition for Polygraph Signature
Generator

In the remainder of this paper, we focus on the signature

generation algorithms in the Polygraph signature generator.

Proceedings of the 2005 IEEE Symposium on Security and Privacy (S&P’05)
1081-6011/05 $ 20.00 IEEE

Authorized licensed use limited to: University College London. Downloaded on October 27, 2008 at 12:25 from IEEE Xplore. Restrictions apply.

We now formally define the signature generation problem,

and introduce terminology and notation used in subsequent

exposition.

The signature generation algorithm is given a training

pool containing a suspicious flow pool where each flow is

labeled as a worm flow, and an innocuous flow pool where

each flow is labeled as a non-worm. Note that these labels

are not necessarily accurate. In particular, the suspicious

pool may contain some innocuous flows. We refer to in-

nocuous flows in the suspicious flow pool as noise.

The signature generation algorithm then produces a set

of signatures. We state that the signature set causes a false

positive for a flow if it is not a worm, but one or more sig-

natures in the signature set matches it. If a network flow is

a worm, but no signature in the signature set classifies the

payload as a worm, we state that the signature set causes a

false negative for that network flow.

3.3. Design Goals

Polygraph7 must meet several design goals to work ef-

fectively:

Signature quality. Our end-to-end goal in Polygraph, as

has been the case in prior worm signature generation sys-

tems, is to generate signatures that offer low false positives

for innocuous traffic and low false negatives for worm in-

stances, including polymorphic worm instances.

Efficient signature generation. The signature types pro-

posed in Section 2.5 are more complex than the single sub-

string signatures generated automatically by today’s signa-

ture generation systems. To the extent possible, we seek to

minimize the computational cost of signature generation in

the size of the suspicious flow pool. Thus, we seek efficient

algorithms for signature generation.

Efficient signature matching. Each signature type also in-

curs a different computational cost during matching against

network traffic. We characterize these matching costs for

each signature type, to argue for the tractability of filtering

using these more complex signatures.

Generation of small signature sets. Some constraint must

be made on the number of signatures Polygraph generates

to match a suspicious flow pool. In the extreme case, Poly-

graph might generate one signature for each polymorphic

payload. Clearly, such behavior does not qualify as gen-

erating a signature that matches a polymorphic worm. We

seek to minimize the number of signatures Polygraph gen-

erates for a suspicious flow pool, without sacrificing signa-

ture quality (causing false positives). Such sets of signatures

cost less bandwidth to disseminate, and cost less to match

at traffic filtering time.

7For the remainder of the paper, we refer to the Polygraph signature

generator as Polygraph, in the interest of brevity.

Robustness against noise and multiple worms. A suc-

cessful signature generator must generate high-quality sig-

natures on workloads that contain noise or a mixture of

different worms on the same destination port. If the sys-

tem cannot find a fully general signature that matches all

worms in the pool and does not cause false positives, it

should instead generate multiple signatures, each of which

matches some subset of flows in the suspicious flow pool

(most likely a subset that employ the same exploit), and

such that the set of signatures together exhibits low false

positives and low false negatives.

Robustness against evasion and subversion. An adver-

sary who knows the design of Polygraph may attempt to

evade or subvert the system. Several well known attacks

against IDS systems may be mounted against Polygraph,

but there are novel attacks specific to Polygraph as well.

An adversary may, for example, evolve a worm’s payload

over time, in an effort to cause signatures previously gener-

ated by Polygraph to cease matching the worm. We con-

sider several evasion and subversion strategies an adver-

sary might adopt in Section 6, and describe defenses against

them.

4. Signature Generation Algorithms

In this section, we will describe our algorithms for auto-

matically generating signatures of different classes includ-

ing conjunction signatures, token subsequence signatures,

and Bayes signatures. For ease of explanation, we first con-

sider the problem of generating one signature that matches

every sample (or most of the samples) in the suspicious flow

pool. However, when the suspicious flow pool has noise or

contains a mix of different worms (or a worm with different

attack vectors), generating one signature that matches every

flow is not always possible or will result in low-quality sig-

natures. In Section 4.3, we will show how these algorithms

can be adapted to handle the cases when there is noise and

when there are multiple worms in the suspicious pool, by

generating a set of signatures where each signature in the set

only matches part of the suspicious pool and the set of sig-

natures together match the samples in the suspicious pool.

Many of the algorithms described in this section are

based on algorithms found in [11].

4.1. Preprocessing: Token Extraction

We define a token to be a contiguous byte sequence.

Each signature in the signature classes that we consider is

made up of one or more such tokens. Here we discuss al-

gorithms for extracting and analyzing tokens, which will be

used in our algorithms for creating signatures.

As a preprocessing step before signature generation, we

extract all of the distinct substrings of a minimum length

Proceedings of the 2005 IEEE Symposium on Security and Privacy (S&P’05)
1081-6011/05 $ 20.00 IEEE

Authorized licensed use limited to: University College London. Downloaded on October 27, 2008 at 12:25 from IEEE Xplore. Restrictions apply.

that occur in at least K out of the total n samples in the

suspicious pool. By distinct, we mean that we do not want

to use a token that is a substring of another token, unless it

occurs in at least K out of n samples not as a substring of

that token. For example, suppose one of the substrings oc-

curring in at least K out of the n samples is “HTTP”. “TTP”

is not a distinct substring unless it occurs in at least K of the

n samples, not as a substring of “HTTP”.

There is a well-known algorithm to find the longest sub-

string that occurs in at least K of n samples [12], in time lin-

ear in the total length of the samples. That algorithm can be

trivially modified to return a set of substrings that includes

all of the distinct substrings that occur in at least K out of

n samples, but also includes some of the non-distinct sub-

strings, in the same time bound. We can then prune out the

non-distinct substrings and finally output the set of tokens

for use in signature generation.

Token extraction can be viewed as a first step toward

eliminating the irrelevant parts of suspicious flows. After

the token extraction, we can simply represent each suspi-

cious flow as a sequence of tokens, and remove the rest of

the payload.

4.2. Generating Single Signatures

We next describe our algorithms that automatically gen-

erate a single signature that matches all (or most of) the

suspicious flow pool. Note that this approach of forcing all

(or most of) the suspicious flow pool to be matched using

a single signature is not resilient against noise or when the

suspicious flow pool contains a mixture of different worms.

We present our full algorithms to address these issues in

Section 4.3.

4.2.1. Generating Conjunction Signatures

A conjunction signature consists of an unordered set of to-

kens, where a sample matches the signature if and only if

it contains every token in the signature. To generate one

conjunction signature matching every sample in the pool,

we can simply use the token extraction algorithm described

above to find all the distinct tokens that appear in every sam-

ple of the suspicious pool. The signature is then this set of

tokens. The running time of the algorithm is linear in the

total byte length of the suspicious pool.

4.2.2. Generating Token-Subsequence Signatures

A token-subsequence signature is an ordered list of tokens.

A sample matches a token-subsequence signature if and

only if the subsequence of tokens is in the sample. To gen-

erate a token-subsequence signature, we want to find an or-

dered sequence of tokens that is present in every sample in

the suspicious pool. We begin by showing how to find the

signature from two samples, and then show how we can use

that algorithm to find a token-subsequence signature for any

number of samples.

A subsequence of two strings is a sequence of bytes

that occur in the same order in both strings, though not

necessarily consecutively. For example, in the strings

“xxonexxxtwox” and “oneyyyyytwoyy”, the longest com-

mon subsequence is “onetwo”. The problem of finding the

longest common subsequence of two strings can be framed

as a string alignment problem. That is, given two strings,

we wish to align them in such a way as to maximize the

number of characters aligned with a matching character.

The alignment that gives the longest subsequence in the pre-

vious examples is:

x x o n e x x x - - t w o x -

- - o n e y y y y y t w o y y

This alignment can be described by the regular expression

“.*one.*two.*”.

Note that the longest subsequence does not maximize

consecutive matches, only the total number of matches. For

example, consider the strings “oxnxexzxtwox” and “ytwoy-

oynyeyz”. The alignment corresponding to the longest sub-

sequence is:

- - - - - o x n x e x z x t w o x

y t w o y o y n y e y z - - - - -

This results in the signature “.*o.*n.*e.*z.*”. However,

in this case we would prefer to generate the signature

“.*two.*”, which corresponds to the alignment:

o x n x e x z x t w o x - - - - - - -

- - - - - - - y t w o y o y n y e y z

Although the second alignment produces a shorter subse-

quence, the fact that all the bytes are contiguous produces

a much better signature. (We can use the technique in Ap-

pendix A to show that the first signature has a 54.8% chance

of matching a random 1000-byte string, while the second

signature has only a .0000595% chance). Thus, we need to

use a string alignment algorithm that prefers subsequences

with contiguous substrings.

We use an adaptation of the Smith-Waterman [23] al-

gorithm to find such an alignment. An alignment is as-

signed a score by adding 1 for each character that is aligned

with a matching character, and subtracting a gap penaltyWg

for each maximal sequence of spaces and/or non-matching

characters.8 That is, there is a gap for every “.*” in the re-

sulting signature. However, we do not count the first and

the last “.*”, which are always present. In our experiments,

we set Wg to 0.8 (We used the technique in Appendix A to

help choose this value, based on minimizing the chance of

the resulting signature matching unrelated strings). Using

these parameters, the score for the alignment producing the

signature “.*o.*n.*e.*z.*” has a value of 4− 3 .8 = 1.6,

8This differs from the common definition of a gap, which is a maximal

sequence of spaces.

Proceedings of the 2005 IEEE Symposium on Security and Privacy (S&P’05)
1081-6011/05 $ 20.00 IEEE

Authorized licensed use limited to: University College London. Downloaded on October 27, 2008 at 12:25 from IEEE Xplore. Restrictions apply.

while the score for the alignment producing the signature

“.*two.*” has a value of 3− 0 .8 = 3. Hence, the latter sig-

nature would be preferred. The Smith-Waterman algorithm

finds the highest-scoring alignment between two strings in

O(nm)time and space, where n and m are the lengths of the

strings.9

We generate a signature that matches every sample in the

suspicious pool by finding a subsequence of tokens that is

present in each sample. We find this by iteratively applying

the string-alignment algorithm just described. After each

step, we replace any gaps in the output with a special gap

character , and find the best alignment between it and the

next sample. Note that this algorithm is greedy, and could

reach a local minimum. To help reduce this risk, we first use

the token extraction algorithm to find the tokens present in

every sample, and then convert each sample to a sequence

of tokens separated by . This helps prevent an early align-

ment from aligning byte sequences that are not present in

other samples. It also has the added benefit of reducing the

lengths of the strings, and hence the running time of the

Smith-Waterman pairwise comparisons.

If the suspicious pool consists of s samples, each n bytes

long, the running time is O(n)to perform the token extrac-

tion, plus O(sn2)to perform the alignments.

4.2.3. Generating Bayes Signatures

The conjunction and token-subsequence classes of signa-

tures assume that the distinction between worms and in-

nocuous flows involves an exact pattern of a set of tokens.

However, the distinction between worms and innocuous

flows may instead be a difference in the probability dis-

tributions over sets of tokens that may be present. Thus,

given two different distributions over sets of tokens (e.g.,

for worms and innocuous flows), we could classify a flow

by the distribution from which its token set is more likely

to have been generated. This type of signature allows for

probabilistic matching and classification, rather than for ex-

act matches, and may be more resilient to noise and changes

in the traffic.

We study the naı̈ve Bayes classifier as a first step toward

exploring this class of signatures. This model is character-

ized by the following independence assumption: the prob-

ability of a token being present in a string, when the string

is known to be a worm or an innocuous string, is indepen-

dent of the presence of other tokens in the string. This as-

sumption often holds approximately in many practical sce-

narios, and is simple enough to allow us to focus on the

important question, i.e., how such a probabilistic matching

scheme compares to the exact matching schemes. In addi-

tion, a naı̈ve Bayes classifier needs far fewer examples to

9Hirchberg’s algorithm can reduce the space bound to O(m), where m

is the length of the longer string.

approach its asymptotic error, in comparison to many other

models; thus, it will yield very good results when it is used

with an extremely large number of dimensions (i.e. tokens,

in our case) and a moderately sized suspicious pool. In fu-

ture work, we can easily relax this independence assump-

tion and extend the naı̈ve Bayes model to other more com-

plex Bayesian models to allow more complex dependencies

in the presence of sets of tokens.

As in the conjunction and subsequence signature gen-

eration, the first step in generating a Bayes signature is to

choose the set of tokens to use as features, as described

in Section 4.1. Assume that we have a set of n tokens,

{Ti}1 i n, from the preprocessing step. Thus, a flow x could

be denoted with a vector (x1,...,xn) in {0,1}n, where the

ith bit xi is set to 1 if and only if the ith token Ti is present

somewhere in the string.

We then calculate the empirical probability of a token

occurring in a sample given the classification of the sample

(a worm or not a worm), i.e., for each token Ti, we compute

the probability that the token Ti is present in a worm flow,

denoted as ti, and the probability that the token Ti is present

in an innocuous flow, denoted as si. We calculate ti sim-

ply as the fraction of samples in the suspicious flow pool

that the token Ti occurs in. We estimate si, the probability

of a token occurring in innocuous traffic, by measuring the

fraction of samples it appears in the innocuous pool, and by

calculating it using the technique described in Appendix A.

We use whichever value is greater, in an effort to minimize

the risk of false positives.

Given a sample x, let L(x) denote the true label of x,

i.e., L(x)= worm denotes x is a worm, and L(x)= worm

denotes x is not a worm. Thus, to classify a sample x =
(x1,...,xn), we wish to compute Pr[L(x)= worm|x]and

Pr[L(x)= worm|x].
To calculate Pr[L(x)= worm|x], we use Bayes law.

Pr[L(x)= worm|x]

=
Pr[x|L(x)= worm]

Pr[x]
Pr[L(x)= worm]

From the independence assumption of the naı̈ve Bayes

model, we can compute this as follows:

=
Pr[L(x)= worm]

Pr[x]
1 i n

Pr[xi = 1|L(x)= worm].

We only need to estimate the quantity
Pr[L(x)=worm|x]

Pr[L(x)= worm|x]
(i.e., if this is greater than 1, then the x is more likely to have

been generated by a worm, and vice-versa).

Pr[L(x)= worm|x]

Pr[L(x)= worm|x]

=
Pr[L(x)= worm]· 1 i nPr[xi = 1|L(x)= worm]

Pr[L(x)= worm]· 1 i nPr[xi = 1|L(x)= worm]

Proceedings of the 2005 IEEE Symposium on Security and Privacy (S&P’05)
1081-6011/05 $ 20.00 IEEE

Authorized licensed use limited to: University College London. Downloaded on October 27, 2008 at 12:25 from IEEE Xplore. Restrictions apply.

To calculate the result, we need to find a value to use

for Pr[L(x)= worm], i.e., the probability that any partic-

ular flow is a worm. This value is difficult to determine,

and changes over time. We simply set Pr[L(x)= worm]=
Pr[L(x)= worm]= .5. Since false positives are often con-

sidered more harmful than false negatives, we set a thresh-

old so that the classifier reports positive only if it is suf-

ficiently far away from the decision boundary. Given a de-

sired maximum false positive rate, the value of the threshold

to use is automatically set by running the classifier on the

innocuous traffic pool and the suspicious traffic pool, and

selecting a threshold that minimizes the “negative” classi-

fications in the suspicious traffic pool while achieving no

more than the maximum false positive rate in the innocuous

traffic pool.

In practice, we transform the formula above such that

each token is assigned a score based on the log of its term in

the formula. To classify a sample, the scores of the tokens

it contains are added together. If a token is present in a

sample multiple times, it is counted only once. If the total

score is greater than the threshold, the sample is classified

as a worm. This transformation allows the signatures to

be more human-understandable than if we were to use the

probability calculations directly.

4.3. Generating multiple signatures

In a practical deployment, the suspicious flow pool could

contain more than one type of worm, and could contain

innocuous flows (as a result of false positives by the flow

classifier). In these cases, we would like for Polygraph to

still output a signature, or set of signatures, that matches

the worms found in the suspicious pool, and does not match

innocuous flows.

We show that the Bayes generation algorithm can be

used unmodified even in the case of multiple worms or

noise in the pool. However, for the token subsequence and

conjunction algorithms, we must perform clustering. With

clustering, the suspicious flow pool is divided into several

clusters, where each cluster contains similar flows. The sys-

tem then outputs a signature for each cluster, by using the

algorithms previously described to generate a signature that

matches every flow in a cluster.

Clearly, the quality of the clustering is important for gen-

erating good signatures. First, the clusters should not be too

general. If we mix flows from different worms into the same

cluster, or mix flows of worms and noise in the same clus-

ter, the resulting signature may be too general and exhibit a

high false positive rate. Second, the clusters should not be

too specific. If flows of the same worm are separated into

different clusters, the signatures for each cluster may be too

specific to match other flows of the worm.

We choose to adapt a widely-used clustering method,

hierarchical clustering [11], to our problem setting. Hi-

erarchical clustering is relatively efficient, does not need

to know the number of clusters beforehand, and can be

adapted to match our semantics. We next describe the de-

tails of how we use hierarchical clustering in Polygraph.

Hierarchical Clustering. Each cluster consists of a set of

flows, and a signature generated using that set. Given s

flows, we begin with s clusters, each containing a single

flow. At this point, the signature for each cluster is very

specific. It matches exactly the one flow in that cluster.

The next step is to iteratively merge clusters. Whenever

two clusters are merged, the signature generation algorithm

being used is run again on the combined set of samples to

produce a new, more sensitive signature for the new cluster.

We decide which two of the clusters to merge first by

determining what the merged signature would be for each of

the O(s2)pairs of clusters, and using the innocuous pool to

estimate the false positive rate of that signature. The lower

the false positive rate is, the more specific the signature is.

The more specific the signature is, the more similar are the

two clusters. Hence, we merge the two clusters that result

in the signature with the lowest false positive rate. After

each merge, we compute what the merged signature would

be between the new cluster and each of the remaining O(s)
clusters. We always choose whichever pair of the current

clusters results in the signature with the lowest false positive

rate to merge next.

Merging stops when the signature resulting from merg-

ing any two clusters would result in an unacceptably high

false positive rate, or when there is only one cluster remain-

ing. The system then outputs the signature for each of the

remaining clusters that has enough samples in it to be likely

to be general enough. As we show in Section 5, a cluster

should contain at least 3 samples to be general enough to

match other samples of the worm. The cost of this algo-

rithm is to compute O(s2)signatures.

Note that our method for generating signatures with clus-

tering is a greedy approach for finding the best signatures.

As is well-known in the literature, a greedy approach may

reach local minimum instead of global minimum. For ex-

ample, two flows from different worms may have some co-

incidental similarity, causing them to be merged into a sin-

gle cluster during an early round of the algorithm, possibly

preventing the ideal clustering (and set of signatures) from

being found. However, due to the complexity of the prob-

lem, a greedy approach is worthwhile, since it offers re-

duced computational cost compared to an exhaustive search

of possible clusterings.

5. Evaluation

In our experiments, we evaluate the performance of each

Polygraph signature generation algorithm under several sce-

narios. We first consider the simple case where the suspi-

Proceedings of the 2005 IEEE Symposium on Security and Privacy (S&P’05)
1081-6011/05 $ 20.00 IEEE

Authorized licensed use limited to: University College London. Downloaded on October 27, 2008 at 12:25 from IEEE Xplore. Restrictions apply.

cious flow pool contains only flows of one worm. We next

consider the case where the flow classifier is imperfect, re-

sulting in innocuous requests present in the suspicious flow

pool along with the flows from one worm. Last, we con-

sider the most general case, in which the suspicious flow

pool contains flows from multiple worms, and from innocu-

ous requests.

5.1. Experimental Setup

We describe our experimental setup below. In all our ex-

periments, we set the token-extraction threshold k = 3 (de-

scribed in Section 4.1), the minimum token length = 2,

and the minimum cluster size to be 3. We conduct 5 in-

dependent trials for each experiment, and report the 2nd

worst value for each data point (e.g., the 80th percentile).

All experiments were run on desktop machines with 1.4

GHz Intel R Pentium R III processors, running Linux ker-

nel 2.4.20.

Polymorphic workloads. We generate signatures for poly-

morphic versions of three real-world exploits. The first two

exploits, the Apache-Knacker exploit (described in Section

2) and the ATPhttpd exploit10 use the text-based HTTP pro-

tocol. The third exploit, the BIND-TSIG exploit, uses the

binary-based DNS protocol.

In our experiments, we show that Polygraph generates

high quality signatures for both HTTP exploits and the DNS

exploit, even with an ideal polymorphic engine. In order to

simulate an ideal polymorphic engine, we fill wildcard and

code bytes for each exploit with values chosen uniformly at

random. For the HTTP exploits, we also include randomly

generated headers of random length, which do not affect the

functioning of the exploit.

Network traces. We used several network traces as input

for and to evaluate Polygraph signature generation. For our

HTTP experiments, we used two traces containing both in-

coming and outgoing requests, taken from the perimeter of

Intel Research Pittsburgh in October of 2004. We used a

5-day trace (45,111 flows) as our innocuous HTTP pool.

We used a 10-day trace (125,301 flows), taken 10 days after

the end of the first trace, as an evaluation trace. The eval-

uation trace was used to measure the false positive rate of

generated signatures. In experiments with noisy suspicious

pools, noise flows were drawn uniformly at random from

the evaluation pool.

We also used a 24-hour DNS trace, taken from a DNS

server that serves a major academic institution’s domain,

and several CCTLDs. We used the first 500,000 flows from

this trace as our innocuous DNS pool, and the last 1,000,000

flows as our evaluation trace.

10In this ATPhttpd exploit, the attacker provides a long URL in a GET

request, which is used to overwrite the return address on the server, trans-

ferring control to the attacker’s code.

5.2. Experimental Results

We describe our experimental results below.

5.2.1. Single Polymorphic Worm

We first consider the case where the suspicious flow pool

contains only flows from one worm. In these experiments,

we want to determine what signatures Polygraph would find

for each worm, how accurate these signatures are (e.g., how

many false positives and false negatives they cause), and

how many worm samples are necessary to generate a qual-

ity signature. If there are too few worm samples in the sus-

picious flow pool, the resulting signatures will be too spe-

cific, because they will incorporate tokens that those sam-

ples have in common only by coincidence, but that do not

appear in other samples of the worm. For each exploit, we

run our signature generation algorithms using different sus-

picious pools, of size ranging from 2 to 100 worm samples.

Signature Quality. Tables 1 and 2 show our results for

the Apache-Knacker and BIND-TSIG exploits. For sake of

comparison, we also evaluate the signatures based on the

longest common substring, and the most specific common

substring (that is, the one that results in the fewest false pos-

itives) for each worm.11 Token-subsequence signatures are

shown in regular expression notation. The Bayes signatures

are a list of tokens and their corresponding scores, and the

threshold decision boundary, which indicates the score nec-

essary for a flow to match the signature.

The conjunction and token-subsequence signatures gen-

erated by Polygraph exhibit significantly fewer false posi-

tives than ones consisting of only a single substring. For the

Apache-Knacker exploit, the subsequence signature pro-

duces a lower false positive rate than the conjunction signa-

ture, which is expected since the ordering property makes

it more specific. For both exploits, the Bayes signature is

effectively equivalent to the best-substring signature. This

is reasonable for the Apache-Knacker exploit, since all but

one of the tokens occurs very frequently in innocuous traf-

fic. For the BIND-TSIG exploit, the Bayes signature would

be equivalent to the conjunction signature if the matching

threshold were set slightly higher. We hypothesize that this

would have happened if we had specified a lower maximum

false positive rate (we used .001%). It also would have hap-

pened if the best substring occurred equally often in the in-

put innocuous pool as in the evaluation trace.

Number of Worm Samples Needed. For each algorithm,

the correct signature is generated 100% of the time for all

experiments where the suspicious pool size is greater than 2,

and 0% of the time where the suspicious pool size is only 2.

11We do not propose an algorithm to find such a substring

automatically—we simply measure the result of using each substring and

report the best one.

Proceedings of the 2005 IEEE Symposium on Security and Privacy (S&P’05)
1081-6011/05 $ 20.00 IEEE

Authorized licensed use limited to: University College London. Downloaded on October 27, 2008 at 12:25 from IEEE Xplore. Restrictions apply.

Class False + False − Signature

Longest Substring 92.5% 0% HTTP/1.1\r\n

Best Substring .008% 0% \xFF\xBF

Conjunction .0024% 0%
‘GET ’, ‘ HTTP/1.1\r\n’, ‘: ’, ‘\r\nHost: ’,

‘\r\n’, ‘: ’, ‘\r\nHost: ’, ‘\xFF\xBF’, ‘\r\n’

Token

Subsequence
.0008% 0%

GET .* HTTP/1.1\r\n.*: .* \r\nHost: .*

\r\n.*: .*\r\nHost: .*\xFF\xBF.*\r\n

Bayes .008% 0%

‘\r\n’: 0.0000, ‘: ’: 0.0000, ‘\r\nHost: ’: 0.0022,

‘GET ’: 0.0035, ‘ HTTP/1.1\r\n’: 0.1108,

‘\xFF\xBF’: 3.1517. Threshold: 1.9934

Table 1. Apache-Knacker signatures. These signatures were successfully generated for innocuous

pools containing at least 3 worm samples.

Class False + False − Signature

Longest Substring .3279% 0% \x00\x00\xFA

Best Substring .0023% 0% \xFF\xBF

Conjunction 0% 0% ‘\xFF\xBF’, ‘\x00\x00\xFA’

Token Subsequence 0% 0% \xFF\xBF.*\x00\x00\xFA

Bayes .0023% 0%
‘\x00\x00\xFA’: 1.7574, ‘\xFF\xBF’: 4.3295

Threshold: 4.2232

Table 2. BIND-TSIG signatures. These signatures were successfully generated for innocuous pools

containing at least 3 worm samples.

The signatures generated using 2 samples are too specific,

and cause 100% false negatives.

5.2.2. Single Polymorphic Worm Plus Noise

Next we show that Polygraph generates quality signatures

even if the flow classifier misclassifies some flows, result-

ing in innocuous flows in the suspicious flow pool. In these

experiments, we use hierarchical clustering with our con-

junction and token subsequence algorithms. Ideally, one or

more signatures will be generated that match future samples

of the polymorphic worm, and no signatures will be gener-

ated from the innocuous traffic that will result in false posi-

tives. We also demonstrate that Bayes does not require hier-

archical clustering, even when there are innocuous flows in

the suspicious pool. In each of these experiments, we use 5

flows from a polymorphic worm, while varying the number

of additional innocuous flows in the suspicious flow pool.

False Negatives For the conjunction and token-

subsequence signatures, Polygraph generates a cluster

containing the worm flows, and no other flows. The signa-

tures for these clusters are the same signatures generated in

the case with no noise, and produce 0% false negatives.

The Bayes signatures are not affected by noise until it

grows beyond 80%, at which point the signatures cause

100% false negatives. This is because we are only using

a token as a feature in the Bayes signature if it occurs in

at least 20% of the suspicious flow pool.12 This parameter

can be adjusted to allow Bayes to generate signatures with

higher noise ratios.

False Positives Figures 5(a) and 5(b) show the additional

false positives (that is, not including those generated by the

correct signatures) that result from the addition of noise.

In the HTTP case, when there is sufficiently high noise,

there are also clusters of innocuous flows that result in sig-

natures. That is, the clustering algorithm interprets simi-

lar noise flows that are dissimilar from flows in the innocu-

ous pool as other worms in the pool. We hypothesize that

this occurs because our HTTP traces come from a relatively

small site. That is, a more diverse innocuous pool would al-

low the algorithm to determine that the resulting signatures

cause too many false positives and should not be output.

Again, once the ratio of noise grows beyond the 80%

threshold, Bayes does not use any tokens from the actual

worm flows as part of its signature. Instead, the signa-

ture consists only of tokens common to the innocuous noise

12We do this to minimize the number of tokens that are only coinciden-

tally in common between flows being used as part of the signature.

Proceedings of the 2005 IEEE Symposium on Security and Privacy (S&P’05)
1081-6011/05 $ 20.00 IEEE

Authorized licensed use limited to: University College London. Downloaded on October 27, 2008 at 12:25 from IEEE Xplore. Restrictions apply.

0 0 0 0 0 0 0 0
.0

0
1

7
4

0
.0

1
1

7

0 0 0 0 0 0 0
.0

1
0

1

0
.0

0
8

7
6

0
.0

1
2

4

0 0 0 0 0 0 0 0
.0

0
1

1
6 0
.1

0
4

0 10 (67%) 20 (80%) 30 (86%) 40 (89%) 50 (91%)

Number (Fraction) of Noise Samples in Suspicious Pool

0

0.2

0.4

0.6

0.8

1

A
d
d
it

io
n
al

 F
al

se
 P

o
si

ti
v
e

R
at

e

Conjunction

Token Subsequence
Bayes

(a) Apache-Knacker exploit

0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0
.0

0
3

3
5 0
.0

9
9

2

0 (0%) 10 (67%) 20 (80%) 30 (86%) 40 (89%) 50 (91%)

Number (Fraction) of Noise Samples in Suspicious Pool

0

0.2

0.4

0.6

0.8

1

A
d
d
it

io
n
al

 F
al

se
 P

o
si

ti
v
e

R
at

e

Conjunction

Token Subsequence
Bayes

(b) BIND TSIG exploit

0 0 0 0 0 0 0 0
.0

0
1

7
4

0
.0

1
1

7

0 0 0 0 0 0 0
.0

1
0

1

0 0
.0

1
2

4

0 0 0 0 0 0 0 0

0
.1

9
7

0 10 (50%) 20 (67%) 30 (75%) 40 (80%) 50 (83%)

Number (Fraction) of Noise Samples in Suspicious Pool

0

0.2

0.4

0.6

0.8

1

A
d
d
it

io
n
al

 F
al

se
 P

o
si

ti
v
e

R
at

e

Conjunction

Token Subsequence
Bayes

(c) Mixed HTTP exploits

Figure 5. False positives due to noise in suspicious pool.

flows, resulting in false positives.

5.2.3. Multiple Polymorphic Worms Plus Noise

Finally, we examine the fully general case: that in which

there are flows from more than one polymorphic worm, and

misclassified innocuous flows in the suspicious flow pool.

We evaluate Polygraph on a suspicious flow pool contain-

ing 5 flows from the Apache-Knacker polymorphic worm; 5

from the ATPhttpd polymorphic worm, and a varying quan-

tity of noise flows. Ideally, Polygraph should generate a

signature that covers each polymorphic worm, and not gen-

erate any signatures that cover the innocuous flows.

False Negatives. Our results in this case are similar to those

with one HTTP worm plus noise. We observe that Poly-

graph generates conjunction and token-subsequence signa-

tures for each of the two polymorphic worms. Bayes gen-

erates a single signature that matches both worms. The sig-

natures generated by each algorithm generate 0% false neg-

atives, except for Bayes once the fraction of noise flows in-

creases beyond 80%, at which point it has 100% false neg-

atives.

False Positives. Figure 5(c) shows that the false positive

behavior is very similar to when there is only one type of

worm in the suspicious pool. Once again, the signatures

generated by each algorithm have no false positives until

there are a large number of noise samples in the suspicious

pool.

5.2.4. Runtime Performance Overhead

Without clustering, all of our signature generation tech-

niques generate a signature very quickly. For example,

when training on 100 samples in our Apache-Knacker eval-

uation, the conjunction signature, the token subsequence

signature, and the Bayes signature are each computed in

under 10 seconds. The cost of signature generation grows

with the square of the number of samples when using hier-

archical clustering. However, we still find that the run-times

are reasonable, even with our unoptimized implementation.

When training on 25 samples, the conjunction and subse-

quence signatures with hierarchical clustering are generated

in under ten minutes.

The performance of our signature generation algorithms

can be improved with optimizations. Additionally, some of

our algorithms can be parallelized (especially hierarchical

clustering), allowing the signature generation time to be re-

duced significantly by using multiple processors.

6. Attack Analysis

In this section, we analyze potential attacks on Poly-

graph, and propose countermeasures. Note that some at-

tacks are not unique to Polygraph. For example, resource

utilization attacks are common to all stateful IDSes, and

previous work addresses these issues. In addition, eva-

sion attacks are common to network-based IDSes, and tech-

niques such as normalization have been proposed to defend

against them. We do not discuss these more general attacks

here; We focus on Polygraph-specific attacks.

Overtraining Attacks: The conjunction and token-

subsequence algorithms are designed to extract the most

specific signature possible from a worm. An attacker may

attempt to exploit this property to prevent the generated sig-

nature from being sufficiently general.

We call one such attack the coincidental-pattern attack.

Rather than filling in wildcard bytes with values chosen uni-

formly at random, the attacker selects from a smaller distri-

bution. The result is that there tend to be many substrings

coincidentally in common in the suspicious pool that do not

actually occur in every sample of the worm.

We evaluate Polygraph’s resilience to this attack by mod-

ifying the Apache-Knacker exploit to set each of the ap-

proximately 900 wildcard bytes to one of only two values.

Proceedings of the 2005 IEEE Symposium on Security and Privacy (S&P’05)
1081-6011/05 $ 20.00 IEEE

Authorized licensed use limited to: University College London. Downloaded on October 27, 2008 at 12:25 from IEEE Xplore. Restrictions apply.

0 10 20 30 40 50
Worm Samples in Suspicious Pool

0

0.2

0.4

0.6

0.8

1

F
al

se
 N

eg
at

iv
e

R
at

e

Conjunction

Token Subsequence
Bayes

Figure 6. Number of worm samples required

when under ‘coincidental-pattern’ attack.

We used between 2 and 50 samples generated in this way in

Polygraph’s suspicious pool, and another 1000 generated in

this way to measure the false negative rates.

Figure 6 shows the false negative rates of Polygraph’s

signatures generated for this attack. Bayes is resilient to the

attack, because it does not require every one of the com-

mon tokens to be present to match. However, the conjunc-

tion and subsequence algorithms need a greater number of

worm samples than before to create a sufficiently general

signature.

Another concern is the red herring attack, where a worm

initially specifies some fixed tokens to appear within the

wildcard bytes, causing them to be incorporated into sig-

natures. Over time, the worm can stop including these

tokens, thus causing previously produced signatures to no

longer match. Again, Bayes should be resilient to this at-

tack, because it does not require every token in its signature

to be present to match a worm flow. For the other signa-

ture classes, the signature must be regenerated each time

the worm stops including a token.

Innocuous Pool Poisoning: After creating a polymorphic

worm, an attacker could determine what signatures Poly-

graph would generate for it. He could then create otherwise

innocuous flows that match these signatures, and try to get

them into Polygraph’s innocuous flow pool. If he is suc-

cessful, then the worm signature will seem to cause a high

false positive rate. As a result, the signature may not be

generated at all (when using clustering), or the system may

conclude that the signature is insufficiently specific.

This problem can be addressed in several ways. One way

is for Polygraph to collect the the innocuous pool using a

sliding window, always using a pool that is relatively old

(perhaps one month). The attacker must then wait for this

time period between creating a worm and releasing it. In

the case of a non-zero-day exploit, a longer window gives

time for other defenses, such as patching the vulnerability.

Another defense is to deploy distributed Polygraph mon-

itors, each using a locally collected innocuous pool. This

would make it significantly more difficult for the attacker to

poison all innocuous pools. It also offers other added ben-

efits, such as decreasing the time needed to detect a new

worm.

Long-tail Attack: Matching on network flows is tricky, be-

cause we cannot examine the entire flow at once—we must

let packets through. Sometimes an exploit could have al-

ready occurred by the time we see a full signature match.

For the token-subsequence signature, it may be desirable

to prune off the end of the signature, and keep just enough

to ensure few false positives. For a Bayes signature, the

flow can be matched before we see every token in the signa-

ture. In either case, it may also be desirable to buffer/throttle

streams that are in the middle of a partial match.

7. Discussion

We have presented three classes of signatures, and an

algorithm to generate signatures for each class. The ques-

tion remains—which algorithm and signature class should

be used?

All three signature classes have advantages and disad-

vantages. The token-subsequence signature class produces

ordered signatures that are more specific than the equivalent

unordered conjunction signatures. However, some exploits

may contain invariants that can appear in different orders.

In that case, the token-subsequence signature will consist of

only the tokens that appear in a consistent order, and may

actually be less specific than a conjunction signature for the

same worm. The Bayes signature class can be generated

more quickly than the others, and is more useful when there

are tokens that only appear some of the time.

All three algorithms are promising, but no one algorithm

is superior to the others for every worm. The most resilient

approach for using these algorithms is to consider all three,

and use the signature that appears to have the fewest false

positives and false negatives.

8. Related Work

The Bro [20] and Snort [21] IDSes monitor network traf-

fic, and search the monitored traffic for signatures of known

worms and other intrusions; Polygraph solves the comple-

mentary problem of how to provide the signature database

required by an IDS automatically. We note that both Bro

and Snort support matching regular expression signatures

in reassembled TCP flows, and thus already support match-

ing the token subsequence signatures generated by Poly-

Proceedings of the 2005 IEEE Symposium on Security and Privacy (S&P’05)
1081-6011/05 $ 20.00 IEEE

Authorized licensed use limited to: University College London. Downloaded on October 27, 2008 at 12:25 from IEEE Xplore. Restrictions apply.

graph. Shield [26] uses manually generated vulnerability-

based signatures to filter out attack flows on a host. These

vulnerability-based signatures could be effective against

polymorphic worms, however, they need to be manually

generated.

Honeycomb [14], Autograph [13], and EarlyBird [22] all

generate signatures for novel worms automatically. While

these three systems produce signatures by different means,

they share a common signature type: a single, contiguous

string. As discussed in Section 2.4, these signatures often

fail to match polymorphic worm payloads robustly.

TaintCheck [18] is a tool for automatic exploit detec-

tion and signature generation. Besides being able to de-

tect very accurately when monitored software is exploited,

it proposes a novel method for automatic signature gen-

eration, semantic-based signature generation—instead of

the pattern-based signature generation methods in Honey-

Comb [14], EarlyBird [22], Autograph [13], and Polygraph,

which is based on extracting common patterns in sample

flows, TaintCheck proposes to automatically generate sig-

natures using information about the vulnerability and how

it is exploited. As a first step, TaintCheck demonstrated

how to automatically extract values used to overwrite the

high-order bytes of the jump target and use that as an in-

variant part of a signature. Extensions to such semantic-

based signature generation could be used to identify other

invariant parts for signatures such as protocol framing [18].

Semantic-based signature generation could serve as a com-

plimentary approach for signature generation for polymor-

phic worms.

Finally, the problem of motif-finding in computational

biology is reminiscent of that of finding a signature for a

polymorphic worm: given long strings, find extremely sim-

ilar short strings (motifs) contained in them [16, 8, 27, 28].

The underlying assumption in motif-finding, however, is

that differences in non-motif regions of the strings are

changes caused by random perturbations that occur at a sig-

nificantly lower rate in the motif regions.

9. Conclusion

The growing consensus in the security community is

that polymorphic worms portend the death of content-based

worm quarantine—that no sensitive and specific signatures

may exist for worms that vary their content significantly

on every infection. We have shown, on the contrary, that

content-based filtering holds great promise for quaran-

tine of polymorphic worms—and moreover, that Polygraph

can derive sensitive and specific signatures for polymor-

phic worms automatically. We observe that it is the rigid-

ity of many software vulnerabilities that enables matching

of polymorphic worms by fixed signatures; exploits fre-

quently must incorporate invariant byte sequences in order

to function correctly. We have defined the signature gen-

eration problem for polymorphic worms; provided exam-

ples that illustrate the presence of invariant content in poly-

morphic worms; proposed conjunction, token-subsequence,

and Bayes signatures classes that specifically target match-

ing polymorphic worms’ invariant content; and offered and

evaluated Polygraph, a suite of algorithms that automati-

cally derive signatures in these classes. Our results indi-

cate that even in the presence of misclassified noise flows,

and multiple worms, Polygraph generates high-quality sig-

natures. We conclude that the rumors of the demise of

content-based filtering for worm quarantine are decidedly

exaggerated.

10. Acknowledgments

Thanks to Dan Ferullo, David Brumley, and Hyang-

Ah Kim for their help in dissecting exploits. Thanks to

Shobha Venkataraman for feedback and pointers into ma-

chine learning literature. Thanks to Lisa Sittler and James

Gurganus for their assistance in gathering network traces.

Finally, thanks to the anonymous reviewers for their insight-

ful feedback.

References

[1] CERT advisory CA-2002-27. http://www.cert.org/
advisories/CA-2002-27.html.

[2] CERT advisory CA-2003-04. http://www.cert.org/
advisories/CA-2003-04.html.

[3] K2, admmutate. http://www.ktwo.ca/c/
ADMmutate-0.8.4.tar.gz.

[4] The Metasploit project. http://www.metasploit.
com.

[5] SANS Institute: Lion worm. http://www.sans.org/
y2k/lion.htm.

[6] Symantec Security Response: CodeRed Worm.
http://www.sarc.com/avcenter/venc/data/
codered.worm.html.

[7] Viruslist.com: Net-Worm.Linux.Adm. http://www.
viruslist.com/en/viruses/encyclopedia?
virusid=23854.

[8] T. L. Bailey and C. Elkan. Fitting a mixture model by expec-
tation maximization to discover motifs in biopolymers. In
Proceedings of the Second International Conference on In-
telligent Systems for Molecular Biology, pages 28–36. AAAI
Press, Menlo Park, California, 1994.

[9] C. CAN-2003-0245. Apache apr-psprintf memory cor-
ruption vulnerability. http://www.securityfocus.
com/bid/7723/discussion/.

[10] T. Detristan, T. Ulenspiegel, Y. Malcom, and M. V. Under-
duk. Polymorphic shellcode engine using spectrum analysis.
http://www.phrack.org/show.php?p=61&a=9.

[11] D. Gusfield. Algorithms on Strings, Trees and Sequences.
Cambridge University Press, 1997.

[12] L. Hui. Color set size problem with applications to string
matching. In Proceedings of the 3rd Symposium on Combi-
natorial Patttern Matching, 1992.

[13] H.-A. Kim and B. Karp. Autograph: toward automated, dis-
tributed worm signature detection. In Proceedings of the 13th
USENIX Security Symposium, August 2004.

Proceedings of the 2005 IEEE Symposium on Security and Privacy (S&P’05)
1081-6011/05 $ 20.00 IEEE

Authorized licensed use limited to: University College London. Downloaded on October 27, 2008 at 12:25 from IEEE Xplore. Restrictions apply.

[14] C. Kreibich and J. Crowcroft. Honeycomb - creating intru-
sion detection signatures using honeypots. In Proceedings of
the Second Workshop on Hot Topics in Networks (HotNets-
II), November 2003.

[15] C. Kreibich and J. Crowcroft. Honeycomb - creating intru-
sion detection signatures using honeypots. In Proceedings of
the Second Workshop on Hot Topics in Networks (HotNets-
II), November 2003.

[16] C. E. Lawrence, S. S. Altschul, M. S. Boguski, J. S. Liu, A. F.
Neuwald, and J. C. Wootton. Detecting subtle sequence sig-
nals: A gibbs sampling sequence strategy for multiple align-
ment. Science, 262:208–214, 1993.

[17] C. Nachanberg. Computer virus-antivirus coevolution. Com-
munications of The ACM, 1997.

[18] J. Newsome and D. Song. Dynamic taint analysis for auto-
matic detection, analysis, and signature generation of exploits
on commodity software. In Proceedings of the 12th Annual
Network and Distributed System Security Symposium (NDSS
05), Feb. 2005.

[19] A. Pasupulati, J. Coit, K. Levitt, and F. Wu. Buttercup: On
network-based detection of polymorphic buffer overflow vul-
nerabilities. In IEEE/IFIP Network Operation and Manage-
ment Symposium, May 2004.

[20] V. Paxson. Bro: a system for detecting network intruders in
real-time. Computer Networks, 31(23-24), December 1999.

[21] T. S. Project. Snort, the open-source network intrusion de-
tection system. http://www.snort.org/.

[22] S. Singh, C. Estan, G. Varghese, and S. Savage. Automated
worm fingerprinting. In Proceedings of the 6th ACM/USENIX
Symposium on Operating System Design and Implementation
(OSDI), Dec. 2004.

[23] T. Smith and M. Waterman. Identification of common molec-
ular subsequences. Journal of Molecular Biology, 147:195–
197, 1981.

[24] P. Szor. Hunting for metamorphic. In Proceedings of the
Virus Bulletin Conference, 2001.

[25] G. Vigna, W. Robertson, and D. Balzarotti. Testing Network-
based Intrusion Detection Signatures Using Mutant Exploits.
In Proceedings of the ACM Conference on Computer and
Communication Security (ACM CCS), Washington, DC, Oc-
tober 2004.

[26] H. Wang, C. Guo, D. Simon, and A. Zugenmaier. Shield:
Vulnerability-driven network filters for preventing known
vulnerability exploits. In Proceedings of ACM SIGCOMM,
Portland, OR, Aug. 2004.

[27] E. P. Xing and R. M. Karp. Motifprototyper: a profile
bayesian model for motif family. In Proceedings of National
Academy of Sciences, volume 101, 2004.

[28] E. P. Xing, W. Wu, M. Jordan, and R. Karp. Logos: A mod-
ular bayesian model for de novo motif detection. Journal
of Bioinformatics and Computational Biology, 2(1):127–154,
2004.

A. Token Distinguishability

We find that it is useful to estimate how likely a token

is to appear in innocuous network traffic. This information

can be used as a relative measure of how distinguishing one

token is compared to another. That is, given two tokens that

appear in worm samples equally as often, the one that ap-

pears in innocuous traffic less often is more distinguishing

than the other. Such information can also be used to help

estimate the false positive rate of a signature.

One often-used heuristic is that, in general, longer strings

are more useful in a signature than short strings. In par-

ticular, one automatic signature generation algorithm is

to find the longest substring common to a set of suspi-

cious samples [15]. We wish to quantify how much bet-

ter a longer substring is than a shorter substring. This

can help to answer questions such as, “Which is a more

specific signature- a twenty byte string or the conjunc-

tion of two twelve byte strings?” Additionally, consider-

ing the length of a string alone can be quite misleading.

While the string “HTTP/1.1\r\n” is longer than the string

“\xBF\xFF\xFE”, it is still much more likely to appear in

innocuous requests on port 80.

To calculate the probability that pattern string P occurs

in some input text T , we construct a finite state machine that

takes T as input, and reaches the accept state if and when P

is found. In this machine, there is a state for each character

in P, plus the initial state. We denote the probability that the

machine is in state i after processing n characters as Pri(n).
Our goal, then, is to calculate Prl(P)(l(T)), where l(P) is

the length of the pattern P, and l(T) is the length of the

text T . To calculate Prl(P)(l(T)), we iteratively compute the

probability of being in each state after processing each input

character. This calculation can be performed in O(l(P)
l(T))time.

To calculate the probability that text matching an input

with a uniform-random byte distribution, we set the proba-

bility that a transition is taken equal to the number of char-

acters on its label, divided by the size of the alphabet.

We can use the same technique to estimate the proba-

bility that a string occurs in a network flow of a particular

protocol. Instead of assuming that each character in the al-

phabet is equally likely, we can use traces of the protocol

to measure the relative frequency of each character. We

can use these measurements to estimate the probability of

each transition in the finite state machine. This model can

be further improved by measuring the relative frequency

of each character, given the current context. For example,

if the flow consists of English text, and the last character

matched was “q”, it is very likely that the next character

will be “u”. Again, these statistics can easily be measured

from traces of a protocol. Compared to simply measuring

the frequency of the string in the trace, this technique of-

fers a more generalized view of the protocol. For exam-

ple, while the trace might not have any requests contain-

ing the exact string “www.obscuresite.com”, this technique

can calculate that it is more plausible than the equally long

string “dJesOuruhamjRhoEfvi”, since substrings including

“www.” and “.com” are common, it fits the model for En-

glish words, etc.

Proceedings of the 2005 IEEE Symposium on Security and Privacy (S&P’05)
1081-6011/05 $ 20.00 IEEE

Authorized licensed use limited to: University College London. Downloaded on October 27, 2008 at 12:25 from IEEE Xplore. Restrictions apply.

