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Abstract

The 2.4 MDa ribosome complex is responsible for protein synthesis in all domains
of life. During its biosynthesis, the nascent polypeptide chain (NC) threads through
the ribosomal exit tunnel and into the cellular milieu. There is much evidence to
indicate that during translation and whilst tethered to the ribosome, the NC has its
first opportunity to acquire structure, which assists in its folding to the active biological
state, in a process known as co-translational folding. The studies of the structural and
molecular determinants of this process present a challenge due to the NC’s intrinsic
conformational heterogeneity.

NMR spectroscopy has the unique ability to report on both protein structure and
dynamic at a residue-specific level and this thesis describes the development of NMR
methodologies to allow monitoring the progressive folding of an immunoglobulin
domain (ddFLN-dom5) NC as it emerges from the ribosome. Snapshots of the emergence
of ddFLN-dom5 from the ribosome were generated using different lengths of in vivo
translated, homogeneously stalled and selectively labelled ribosome-bound NCs (RNC)
which are then extracted from E. coli cells for NMR analysis. A strategy is described that
allows monitoring in situ the integrity of the RNC samples, and the attachment of the
NC to its parent ribosome.

Despite the high-molecular-weight of the ribosomal complexes, their instability and
the low achievable sample concentrations, a range of useful NMR tools are being
developed. Importantly, comparisons of 1H-13C methyl-TROSY HMQC and 1H-15N
SOFAST-HMQC NMR spectra of the ddFLN-dom5-RNCs with the isolated domain
in both native and denatured conditions allows the detailed analysis of the folding
equilibrium of the RNC. A robust data analysis methodology was designed to optimise
the significance of low signal to noise spectra. These NMR data reveal clear evidence
for co-translational folding when the C-terminal end of the ddFLN-dom5 is at lengths
≥47 residues from the peptidyl transferase centre (PTC). At this and longer linking
lengths, the chemical shifts observed for ddFLN-dom5-RNC are identical to those of the
isolated native domain. The RNC resonances show heterogeneous linewidth indicative
of conformational exchange between native and non-native states on the order of the
chemical-shift timescale (ms).

Overall, this study sets the stage for future opportunities for investigations of the
structural and dynamical properties of RNCs at a residue-specific level.
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Chapter 1

Introduction

1.1 Introduction to co-translational folding

It is well known that the biological activity of a protein is linked to its three

dimensional structure, and the information required for folding is contained within the

amino-acid sequence of the polypeptide chain [1–3]. The ribosome, which is the cellular

apparatus responsible for protein biosynthesis within all living systems, produces

and eventually releases the linear polypeptide chains into the cellular environment.

It is known that the ribosome participates in the folding process of new, emerging

polypeptides [4–7], but the details of how a fledgling nascent chain (NC) can adopt

its biologically active fold and avoids alternative misfolded conformations while on

the ribosome is not entirely clear. This thesis describes studies using nuclear magnetic

resonance (NMR) spectroscopy to investigate NCs on their parent ribosome.

In this Chapter, a general background to the ribosome, protein folding and co-

translational protein folding is described. The description of co-translational folding

includes direct structural evidence already obtained experimentally about the emerging

nascent polypeptide via different techniques, including cryo-electron microscopy (cryo-

EM) and fluorescent anisotropy decay studies, as well as predictions derived from

computational simulation approaches. Since NMR spectroscopy is the primary tool

used in this thesis, the NMR methods that have been used during this study are also
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introduced.

1.1.1 Ribosome structure

Over the past decade, a wealth of ribosome structures have been determined via

investigations using X-ray crystallography [8–15] and cryo-EM [16–22]. These have

revealed the inner workings of the ribosome at high resolution at different stages of

translation [23, 24] (Figure 1.1). The initiation step is characterised by the recognition of

the translation initiation site of the mRNA by the small ribosomal subunit (termed 30S

in bacteria and archaea), and the recruitment of the large ribosomal subunit (termed 50S

in bacteria and archaea) with the help of translation initiation factors. During elongation,

the 30S subunit recruits the anti-codon acylated transfer RNA (tRNA) that complements

the mRNA coding sequence, with the help of elongation factor EF-Tu. The recognition

of the cognate tRNA triggers GTP hydrolysis by EF-Tu, which provides the energy to

accommodate the acylated tRNA at the A-site (Figure 1.1C) [27, 28]. This is followed by

peptide bond formation between the incoming amino-acid loaded on the P-site tRNA

and the growing nascent chain at the peptidyl transferase centre (PTC, Figure 1.1B)

located at the heart of the 50S subunit. The elongation process results in the synthesis of

the nascent polypeptide from the N-terminal to the C-terminal end, which then traverses

through the 50S subunit via a constricted 100Å-long tunnel, in which the last 20Å is

thought to be wider and is termed the vestibule or “exit port” (Figure 1.1B). During

translocation, which describes the progression of the ribosome complex along the mRNA

from the 5’ end to the 3’ end, the A-site tRNA is first transferred to the P-site where

the peptidyl-transfer reaction occurs, and the empty tRNA is then translocated to the

E-site to be expelled from the ribosome [24] – with the help of the elongation factor EF-G

and GTP hydrolysis (illustrated in Figure 1.1C). Termination marks the release of the NC
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Figure 1.1: A: Representation of the 70S E. coli ribosomal complex, with the 50S (blue, pdb file

2AVY.pdb) and the 30S (yellow, pdb file 2AW4.pdb) subunits [25]. The A-, P- and E-site tRNAs are

represented in purple, green and black respectively (adapted from the cryo-EM structure of the

archaeal ribosome, pdb file 2J00.pdb [20]). To highlight the location of the ribosomal exit tunnel, an

outline of the nascent polypeptide chain is shown in magenta (aligned with the cryo-EM density

of the TnaC stalling sequence in stalled bacterial ribosomes [26]). B: Cross-section of the ribosomal

exit tunnel, with the three ribosomal proteins that line the ribosome tunnel wall L4, L22 and L23

(the latter being also the universal docking site for auxiliary factor binding [6]). The two main

structural features of the tunnel, the constriction and the exit vestibule are depicted. C: The tRNA

translocation from the A- to P-site and P- to E-site is shown, adapted from Schmeing et al [24],

with the 50S subunit in gold and the 30S in blue. The nascent polypeptide is shown in magenta,

with the amino-acid i in green and i+1 in yellow.
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Figure 1.2: A model of the 70S particle highlighting the L7/L12 stalk region. Two L7 dimers are

represented as ribbons, from pdb 1RQU.pdb [31], with L10 represented as the blue surface, from

pdb 1ZAV.pdb [32]. The 50S, 30S, tRNA and model nascent polypeptide are identical to Figure

1.1. Docking of the L10 structure to the 70S ribosome was achieved by using structural alignment

with pdb file 2WRJ.pdb [14].

from the PTC with assistance from release factors and the recycling of the individual

ribosomal subunits.

1.1.1.1 Dynamics of elongation

Protein translation is a dynamic process [29] in particular during the stages of tRNA

recognition and translocation [30]. The tRNA selection begins with the binding of

EF-Tu to the flexible L7/L12 stalk region of the 50S subunit [30]. The stalk region

is intrinsically flexible, and consists of multiple copies of L7 (four in bacteria, six in

eukaryotes and archaea), whose C-terminal domains are linked to the ribosome-bound

N-terminal domain via a 20-residue-long disordered loop (Figure 1.2). The L7/L12 stalk

region has not been resolved completely in the numerous cryo-EM and X-ray structures

of ribosome complexes due to its inherent dynamic nature, whereby it acts as a “fishing
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line” for the recruitment of EF-Tu. Cryo-EM relies on the averaging of images from an

ensemble of homogeneous molecules, and hence the variety in conformations of the stalk

region prevents good image averaging. NMR is therefore a suitable tool to investigate

the dynamics of the stalk region [33, 34] and its interaction with EF-Tu. The C-terminal

domains of the L7/L12 proteins were found to mediate binding with EF-Tu [35] at the

30S-50S interface (Figure 1.2).

Recognition of cognate tRNA is also a highly dynamic process that involves allosteric

communication between the decoding centre of the 30S subunit within the A-site, and

the GTP hydrolysis centre of EF-Tu. Structural snapshots of the GTP hydrolysis obtained

through the use of non-hydrolysable GTP analogues provided evidence of the allosteric

mechanism, which is mediated by large conformational changes in the tRNA [30, 35].

Prior to GTP hydrolysis, differential kinetics for transient binding of non-cognate or

cognate tRNA at the decoding centre of the A-site were observed by Förster resonance

energy transfer (FRET) studies, and the kinetic selection of these transient interactions

was found to be critical for tRNA selection [36].

Following tRNA recognition, the ratcheting mechanism that induces translocation is

also known to be a highly dynamic process. The transfer of the acylated tRNA from

the A-site to the P-site and of the deacylated tRNA from the P-site to the E-site after

peptidyl transfer to the growing NC, involves large conformational changes divided into

two stages: first there is the counterclockwise ratchet-like rotation of the 30S subunit

with respect to the 50S subunit (Figure 1.1C). Then, secondly, binding of EF-G and GTP

hydrolysis induces the relaxation of the ratcheted state (Figure 1.1C), which completes

translocation. The oscillations at room temperature of the ribosome structure between

the “ratcheted” and “unracheted” states, and the hybrids structures between these states

(Figure 1.1C) were observed via a combination of FRET [37], cryo-EM [38] and crystal
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structures [35], and suggests that the ribosome is a Brownian motor: i.e. the translation

machinery oscillates between different conformations separated by low energy barriers,

and only the binding of EF-G and GTP hydrolysis is able to drive the oscillations towards

effective translocation [30].

Finally, one aspect of the translation machinery to be considered, and which is

perhaps the most interesting from the point of view of the growing nascent chain, is

the flexibility of the PTC centre and the ribosomal exit tunnel. Only recently, have cryo-

EM studies of ribosome-bound NC (RNC) shed light into the intimate set of interactions

between P-site tRNA, the ribosome exit tunnel and the NC [26, 39–41]. In particular,

structures of SecM-stalled RNCs suggest that a set of interactions between the ribosome

exit tunnel and the RNC induces conformational changes of the A-site tRNA that

prevents translocation [40], again revealing allostery between the ribosome tunnel and

the tRNAs. Also, the cryo-EM studies showed that the structure of the ribosomal RNAs

that form the PTC centre was altered in cases where the stalling sequence of a TnaC

leader peptide formed specific contacts with the ribosome exit tunnel.

Computational studies are often used to shed light into a range of biological

processes such as molecular mechanisms, protein-protein interactions and protein

folding. However, because of the size of the ribosome complex, computational studies

of the entire translation machinery are only just beginning to emerge; these have

enabled insights into the mechanism of translocation and allowed models of the dynamic

pathway of the ribosome cycle to be generated [42, 43]. A number of computational

studies have also sought to examine structural aspects of the ribosome, such as the exit

tunnel. These studies suggest a teflon-like property, presumably to allow the NC to

traverse the tunnel unhindered [44, 45]. Moreover, these studies are being extended to

the NC itself [46–48], and are aimed at modelling the conformational space a NC can
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begin to sample upon emergence from the ribosome exit tunnel.

1.1.2 Protein folding

Over the last 50 years, a large number of studies have attempted to understand the

fundamental principles underlying the folding of a polypeptide chain. In 1973, Anfinsen

proposed the hypothesis of protein folding [1] in answer to Levinthal’s paradox [49],

which stated that the number of possible conformations accessible to a polypeptide chain

(10300 for a 150-residue protein [49]) is far greater than the number that could possibly be

sampled in a reasonable time. Anfinsen showed that the amino acid sequence encodes

the necessary information to drive the conformational sampling into the unique low-

energy state, i.e. the sequence drives protein folding [1]. A vast range of protein folding

studies have followed, which include the characterisation of stable folds, the analysis

of folding rates under varying conditions [50], the investigation of transition-state

ensembles [51] and of potential stable, obligatory or non-obligatory intermediate states

[52,53]. The majority of studies of protein folding in vitro have used isolated proteins and

have proposed that polypeptide chains explore only a small number of all the possible

conformations within the energetic folding funnel [50, 52–54] (Figure 1.3A) to acquire

the biologically active structure, which is usually the most energetically preferred state,

and which is often populated within 1 ms (for simple folds) [3, 7]. It is well-established

from a range of studies (for recent reviews see [55]) that, during the folding process,

an isolated polypeptide chain does not follow a simple folding route, but that multiple

folding pathways coexist, all leading to the same native state. Detailed investigation of

native states have led to the view that different conformations can exist in equilibrium

under native conditions, separated by energy barriers that correspond to transition state

ensembles [51]. Classically, mutational analysis and comparison of folding rates have
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Figure 1.3: A: Schematic of protein conformational search during in vitro re-folding (left), with

the corresponding free-energy landscape (right), adapted from [7]. B: In contrast, during bio-

synthesis (the ribosome is represented by the blue spheres), the free-energy landscape of the

nascent polypeptide during synthesis is constantly modified (right, adapted from [48]).
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revealed the nature of transition state ensembles [50], which have often been found to

make native-like contacts [56]. However, a recent detailed study suggested that non-

native contacts can also be formed transiently [57]. Folding of small domains has been

observed to be highly cooperative [54], but experimental results, notably from hydrogen-

exchange studies [52, 53], have suggested that populations of native-like partially folded

intermediate states can typically assist in the acquisition of the native structure by

driving the polypeptide forwards along the most efficient downhill path of the folding

funnel. These intermediate states are often referred to as collapsed states, i.e. compact

heterogeneous structural ensembles without persistent secondary or tertiary structure

[4]. Intermediate states, and in particular molten globules [58] also have the propensity

to misfold and lead to the formation of kinetically trapped aberrant species, which

can result in aggregation or in some instances reorganise to thermodynamically stable

ordered structures such as amyloid fibres [59]. Numerous studies have investigated the

relationship between protein misfolding and human diseases [60], as well as how protein

misfolding is avoided in the cellular milieu [2].

Experimental investigations of protein folding often require trapping thermodynamically

unstable states such as disordered states using a chemical denaturant (guanidinium

chloride or urea). Biophysical strategies such as measuring the thermal stability

or hydrogen-deuterium exchange rates are established tools for determining the

thermodynamic properties of the conformations adopted by the polypeptide chain under

these conditions. High-resolution spectroscopic methods are increasingly being used to

extract further details of protein folding. For example, atomic force microscpy (AFM)

has been used to understand two-stage folding of single domains through mechanically-

induced unfolding [61]. Also, NMR spectroscopy has been widely used to characterise

the ensemble of conformations adopted by a polypeptide chain during protein folding



Chapter 1. Introduction 21

[62], under conditions close to native conditions, including low-populated metastable

states [63, 64] and transition state ensembles [51].

1.1.3 Co-translational protein folding

Studies of protein folding have largely examined isolated proteins, where the entire

amino-acid sequence is available throughout the folding process. In living systems, the

paradigm of protein folding is different, in that the NC emerges from the ribosomal

exit tunnel one amino-acid at a time, into the cellular milieu. This emerging N-terminal

region of a nascent polypeptide has the opportunity to explore conformational space

before the entire sequence is available for folding [5] (Figure 1.3B).

1.1.3.1 Comparison of folding rate and elongation rate

The maximum rate of folding into the native state is limited by the rate at which the

nascent polypeptide chain emerges from the exit tunnel, which is in turn dictated by the

rate of peptide synthesis at the PTC, ca. 43-137 peptide-bonds/min in E. coli [65,66] (120-

180 peptide-bonds/min within a eukaryotic system [67]). There are very few studies

reporting the de novo folding rate [67], but a notable example is the measurement of

the folding timescale of the multidomain protein CFTR as the NC emerges from the

eukaryotic ribosomal exit tunnel (upon cleavage of the peptidyl-tRNA bond) in real time

by FRET. The folding time was found to under 2 min, implying that the folding rate

was close to the synthesis rate of this 111-residue domain [67]. Protein translation rates

are known to be highly regulated and are found to depend on the codon composition

of the transcript [65, 66]. The clustering of codons that pair to low abundance tRNA

appears to have an increased probability of occurring at ca. 19-20 residues downstream

of the C-terminal end of individual domains within multi-domain proteins, resulting
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in slow-translating stretches at domain boundaries [66]. The attenuation of translation

rates downstream of an individual domain is thought to be be necessary for the correct

folding of full-length Suf1 protein, as shown by limited proteolysis experiments [65]. As

the ribosomal tunnel can hold 24-40 residues [41, 47], rare codon clusters 20 residues

downstream of the C terminal end of domains would appear to allow the newly

synthesised polypeptide chain to explore conformational space and to reach a transient

thermodynamic equilibrium prior to the synthesis of the rest of the protein. In the

majority of studies of co-translational folding detailed below (as well as in this PhD

study), translation is arrested in order to achieve thermodynamic equilibrium (Section

2.1.1), mimicking situations where the elongation rate is slow, and the folding rate rapid.

This transient equilibrium (i.e. reshaping the energy landscape as in Figure 1.3 B) might

not be attained in cases of fast elongation rates and slow folding, as is perhaps the case

within domains. While the structural studies of stalled nascent chains are necessary to

probe the folding process and provide parallel information to kinetics studies, ultimately,

equilibrium studies will need to be combined with kinetic studies.

1.1.3.2 Biochemical evidence for co-translational protein folding

The nascent polypeptide within the ribosomal exit tunnel is highly confined (Figure 1.1B,

[26,40,41]), and it is only when the N-terminal region of the NC reaches the exit vestibule

(the last 20 Å of the ribosome exit tunnel, Figures 1.1B and 1.4) that it begins to have

increased conformational freedom [68]. Indeed, there is increasing evidence to suggest

that during synthesis and prior to its completion, the emerging NC can begin to sample

conformations that assist its folding to its biologically active state in a process known

as co-translational folding [5, 68]. An understanding of the structure and dynamics of the

NC as it exits the ribosome will provide a detailed picture how protein folding takes
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Vestibule

PTC

Figure 1.4: Surface of the inside of the ribosome tunnel (from [68,69]). As in [69], an extra 20 Å is

added to account for the longer tunnel as reported in the crystal structures of the ribosome [8,70].

The electron density observed for a nascent chain of dipeptidylaminopeptidase B [41] is shown

on the right at the same scale.

place within the cellular environment, and importantly, if and how this process differs

to that observed in vitro (Section 1.1.2). At present, very little structural information is

available for the NC during synthesis, although biochemical studies have indicated that

the NC has the capacity to orchestrate certain cellular events that mediate downstream

processes. Prior to the completion of synthesis for example, the appearance of a signal

peptide sequence within the ribosomal exit tunnel can invoke the recruitment of the

signal recognition particle (SRP), which, together with the Sec machinery, co-ordinates

an intricate translocation mechanism, a process which can occur co-translationally [39].

Much biochemical and biophysical evidence has shown that, whilst still tethered to the

ribosome, the NC can acquire catalytic activity [71–73] (Figure 1.5B), form disulphide

bonds [74, 75] and also recognise conformation-dependent antibodies [76] (Figure 1.5A).

Limited proteolysis studies (Figure 1.5D) have revealed that for the multi-domain protein
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Figure 1.5: Evidence for co-translational protein folding includes indications from: A:

conformation-specific antibody recognition [76, 77], B: FRET [67, 78], C: activity assays [71–73, 79],

D: limited proteolysis [80, 81], E: fluorescence anisotropy decay [82, 83].
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CFTR, folding of the NC can occur in a sequential domain-by-domain manner [80] and

FRET studies have shown that it requires ATP binding [67]. Together these studies,

which describe largely functional attributes of the NC, provide compelling evidence that

native-like structure can be acquired in a co-translational manner.

1.1.3.3 Co-translational protein folding and in vitro re-folding

Perhaps the most well-studied system comparing aspects of co-translational de novo

protein folding and in vitro re-folding has been the P22 tailspike protein [77]. In

this study, conformation-dependent antibodies raised against the N-terminal domain

of the native protein showed a marked binding preference for conformations on the

ribosome in the case of stalled RNCs, compared to the equivalent truncated polypeptide

chain refolded in vitro, thus suggesting that different conformations are sampled on the

ribosome. Similarly, a stalled RNC of the first 190 N-terminal residues of firefly luciferase

were found by limited proteolysis to populate native-like structures. These native-like

intermediate structures were not observed when the released protein was denatured and

refolded in vitro [81], which indicates that the native-like intermediates were specific to

vectorial emergence of the NC during co-translational folding. In addition, it was found

in this study that the action of molecular chaperones present in vivo is likely to influence

the manner in which these intermediate structures are acquired [81] (Section 1.1.3.5). The

difference between co-translational folding and in vitro refolding is supported further

by biophysical studies which have revealed that luciferase acquires its activity within

seconds during biosynthesis, but in contrast, the acquisition of activity upon refolding

from a chemically denatured state is considerably slower, on the order of minutes [79].

One key difference between in vitro refolding and in vivo de novo folding lies in the

vectorial nature of protein synthesis (and co-translational folding). In an interesting
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study, AFM coupled to modelling via molecular dynamics has been used in an attempt

to model vectorial folding by limiting the conformational space of the C-terminal region

of a polypeptide chain using the AFM tips. For a multidomain ankyrin repeat protein,

NI6C [84], studied in this way, it was found that the vectorial re-folding pathway appears

to involve a nucleation of the N-terminal repeats and condensation of the C-terminal end

of the protein.

Overall, the details of how refolding under steric constraints that model ribosome

tethering and the passage through the ribosomal exit tunnel (Section 1.1.1) resembles

de novo co-translational folding remains to be seen, and important factors such as

the effects of the geometry of the ribosome exit tunnel, interaction with cellular

chaperones (Section 1.1.3.5) and molecular crowding (Section 1.1.3.4) are likely to be

key determinants. Indeed, it seems likely that the folding processes of proteins have

evolved such that the formation of folding intermediates during biosynthesis prevents

misfolded conformations, as opposed to what has been often seen within in vitro

refolding experiments (Section 1.1.2); with the vectorial emergence of the NC, the

potential interactions the NC establishes with the ribosome inside and outside the

ribosomal exit tunnel, and other factors mentioned (molecular chaperones, cellular

crowding) all exerting an influence on the co-translational folding process.

1.1.3.4 Molecular crowding and protein biosynthesis

The dense cellular milieu contains up to 400 g.L−1 of biomaterial in E. coli [85]. While

the consequences of cellular crowding on protein folding [86,87] have been investigated,

the effect of crowding on co-translational folding are poorly understood. The presence

of crowding agents was found to accelerate not only refolding rates, but also to hasten

protein aggregation [86]. The latter observation is consistent with the prediction that
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macromolecular crowding increases the association constant [88]. A factor likely to

assist the NC in avoiding misfolding within the crowded cellular environment would

therefore be the arrangement of polysomes (the clustering of multiple ribosomes on a

single mRNA transcript). Indeed, the orientations of individual ribosomes within the

polysome [89] appears to limit the extent to which each emerging NC can interact

with its partially folded neighbour. The increased binding constants that result from

crowding conditions [85] are also likely to increase chaperone activity that can assist

protein folding [86].

Computational studies have also suggested that the excluded volume effect due to

macromolecular crowding is likely to alter the entropy of the nascent polypeptide chain

[87]. As a consequence, it alters the thermodynamics and kinetics of protein folding in

vivo, by destabilising disordered states which are generally more expanded, in favour of

more compacted states.

1.1.3.5 Molecular chaperones, the trigger factor

The molecular chaperone trigger factor (TF, Figure 1.6) is the first chaperone that can

interact with the nascent chain, and has a docking site on the ribosome in the vicinity

of the exit port of the exit tunnel (ribosomal protein L23). TF shows a strong affinity for

untranslating ribosomes (KD=1.1 µM [90]1) and its docking site is close to the exit port

of the ribosomal tunnel, so that TF forms a molecular cradle for the emerging NC [93].

TF has an even higher affinity for translating ribosome (KD=50 nM [82,94]), where it can

make initial contact with ca. 40% of the RNC [6,82,95], and is known to cycle on and off

the ribosome; it is therefore likely to alter the nature of the intermediate species that are

formed during translation.

1The ribosome concentration in E. coli is ca. 5-20 µM [91], and the association of TF to ribosome is
competing with the dimerisation of TF, which constant is on the order of 18 µM [92].
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Figure 1.6: 47 kDa Trigger factor in green (pdb files 1W26.pdb [96] and 2VRH.pdb [97]) interacting

with the 50S subunit in blue (pdb file 2AW4.pdb [25]) at the universal docking site (protein L23).

For clarity, a nascent polypeptide chain has been modelled in magenta as in Figure 1.1.

1.1.4 Structural evidence for co-translational folding

The structure and function of the intact 70S ribosome and its component 50S and

30S subunits has been described in an array of exquisite crystallographic (reviewed

in [24]) and cryo-EM structures (reviewed in [23], Section 1.1.1) and although several

biochemical and biophysical studies have demonstrated co-translational folding, little

structural evidence exists for the conformational preferences of RNCs, and where within

the ribosomal environment and at what stage during synthesis co-translational folding

begins to occur. Within the ribosome, the ribosome exit tunnel is of considerable interest

in the context of co-translational folding. As mentioned, the tunnel is located within

the 50S subunit, and is lined with parts of the 23S rRNA and the ribosomal proteins

L4 and L22 that are likely to mediate the exit of the NC [68, 70]. Modelling studies
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have suggested that it is a water-filled, yet rigid structure [42, 44] (Figure 1.4A). With

dimensions of 20 Å at its widest points [8] the tunnel has been the subject of a central

question — whether or not it has the capacity to support any degree of folding or

structure of the NC?

Recent cryo-EM studies of translation-arrested ribosomes have demonstrated that

a pair of NCs, unrelated in sequence, assume an unfolded conformation that extends

throughout the length of the tunnel [26, 39] and can indeed interact with the inner wall

of the tunnel. When, however, a stabilising helical motif was introduced to the NC

sequence at positions that reflect different locations within the exit tunnel [41], the NC

readily formed helical structure. The formation of such structure occurred as little as

53 Å away from the PTC (Figure 1.4) and this is in strong support of previous FRET

studies [78], which also indicated formation of secondary structure.

Perhaps more intriguing is the recent proposal for the “exit port” (Figure 1.4).

Mapping of the conformational space accessible to the voltage-gated potassium channel

protein Kv1.3 RNC by “molecular tape measurements” using cysteine-modifying reagents

have suggested that the ribosome tunnel widens at the exit port [69]. Moreover, the

absence of electron density for the NC at the exit port in cryo-EM maps of translating

ribosomes holding TnaC or Sec61/SecY [26,39], while a well defined density is observed

closer to the PTC, suggests a heterogeneity in conformation at the exit port, and that the

vestibule might offer an entropic window for folding of the NC [98].

Computational modelling has suggested that some native contacts can be achieved

by barnase-RNC and CI-2 RNC when the nascent polypeptide is only 25 residues long

[46]. At these lengths, the NC can only extend to the exit port. Molecular dynamics

simulations of four domains with different folds [47] have predicted that a coil-to-globule

transition can occur at distances >65 Å from the PTC (the globular state is defined as
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a compact heterogeneous structural ensemble without persistent secondary or tertiary

structure), which corresponds to the distance spanned by a ca. 24-residues extended

peptide.

The expectation is that there is an increase in conformational space sampled by

the NC once it reaches the exit port, which is likely to be accompanied by a greater

degree of freedom. This has been examined for apomyglobin-RNC (ApoMb-RNC)

using fluorescence depolarisation measurements. The motions of ApoMb-RNC were

modelled using the model-free approach proposed by Lipari and Szabo [82, 99]. The

model-free approach makes use of two parameters to describe internal motions: the

timescale of the motions is expressed in terms of a local correlation time (τc,NC), and the

amplitude of the motions is expressed in terms of an order parameter (S2
NC: the greater

the amplitude of the motion, the lower the order parameter). Fluorescence depolarisation

measurements of ApoMb-RNC [82,83,100] showed a correlation between NC length and

both the amplitude and timescale of these motions. For NC lengths of <57 residues,

the NC appears to be largely immobilised, and its motions are too restricted (in other

words, S2
NC is too high) to allow independent tumbling of the NC. On the contrary, at

longer translation lengths (>57 residues) the RNCs were found to be flexible, and their

motions were found to have a correlation time of 3-11 ns, which reflects the greater

degree of freedom upon emergence from the ribosome exit tunnel. This correlation time

corresponds to the rotational diffusion of a small domain, and indicates that the small

globular RNC moves independently of the ribosome [83]. In addition, the timescale of

the motions appears to decrease as the length of translated construct increases, from

τc,NC = 9± 2 ns at a NC length of 57 residues down to τc,NC = 5± 1 ns at a NC length

of 153 residues, reflecting the progressive gain in flexibility as the fraction of the NC that

has emerged from the ribosomal exit tunnel grows.
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The timescale of the motion is also a function of the size of the domain, with large

domains having longer correlation times [99]. The correlation time of ApoMb-RNC (3-

11 ns) is much faster than the rotational correlation time found for the released 150

residues domain (41 ns2), which can perhaps be rationalised by a either a smaller size

of the potential co-translational folding intermediates [82, 83], or the absence of defined

structure. These experimental studies together with simulation studies [46–48] indicate

that the NCs are not only able to sample a myriad of conformations (ms timescale),

but are also highly dynamic on a ns timescale, and renders the characterisation of their

structures inaccessible by either X-ray crystallography or cryo-EM. Thus, a parallel with

the L7/L12 stalk region mentioned earlier (Section 1.1.1.1) can be drawn, which leads to

the idea that NMR can be a suitable tool to investigate both the structure and dynamics

of the emerging RNC.

In this thesis, the use of NMR for examining RNCs is considered, specifically its

ability to provide detailed quantitative data about their dynamics. The remainder of

this Chapter surveys the technique, and a synopsis of the key aspects of NMR used

in biological systems is presented in Section 1.2. As the work described in Chapters

2-4 requires a detailed understanding of rapid-acquisition techniques, diffusion NMR

and transverse relaxation optimised spectroscopy, these more advanced concepts are

introduced in Section 1.3.

1.2 NMR spectroscopy in studying protein folding

An array of NMR experiments has been used extensively to study protein folding

and unfolding pathways, as well as the different conformations the polypeptide chain

2This value is based on fluorescence anisotropy decay measurements on the released nascent chain by
Ellis et al [83], and might suggest an oligomerisation of the protein. The expected τc for a 150 residues
domain would be ca. 10 ns assuming a globular domain based on the Stoke-Einstein-Debye equation 1.18.
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populates during folding/unfolding. These are briefly summarised below.

1.2.1 NMR studies of protein unfolding and folding pathways

NMR has been found to provide detailed information on the structural and dynamical

properties of intermediate states occupied during unfolding. NMR studies using

isolated full-length proteins have enabled the characterisation of persistent native-like

conformations in unfolding intermediate states within highly-denaturing conditions for

proteins such as GFP [101] and the ribosomal protein L9 [102]. Details of a molten globule

unfolding intermediate of alpha-lactalbumin [103] have been revealed, highlighting the

intrinsic dynamic properties of such intermediate states. Unfolding intermediates that

are easily stabilised under denaturing conditions are often used to gain insight into

the analogous folding intermediates, but refolding experiments provide more direct

information on the folding pathways. For instance, the refolding pathway of β2-

microglobulin after chemically-induced unfolding, characterised using real-time NMR

acquisition [104] showed the existence of multiple folding pathways: ı) a two-stage

folding, ıı) a three-stage folding with a long-lived native-like intermediate, and ııı) a

three-stage folding pathway with a short-lived intermediate state.

The pioneering development of relaxation dispersion spectroscopy (described in

Section 1.3.1) has also been used to examine the conformations of sparsely populated

(1-2%) metastable states present under native conditions for the G48M SH3-fyn [105],

the KIX domain [106] and the villin headpiece HP67 [107] amongst others. These

metastable states are thought to be the analogues of folding intermediates, and are

seen to possess residual native-structural elements, with large disordered regions.

The structure and dynamics of these metastable states are of great interest to the

understanding of the function of small signalling domains, which is often related to
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their native conformational sampling. The ps-to-ns dynamics of the low populated state

of G48M SH3-fyn have been characterised using the carbon chemical-shift dispersion

of Leu and Ile sidechains to model the timescale of methyl rotamerisation [108, 109].

More than just allowing the characterisation of the structural and dynamic properties

of the metastable states, relaxation dispersion spectroscopy also allows examination of

the chemical exchange kinetics between native and intermediate states as well as the

thermodynamic features of the folding process [63,110]. Further insight into the kinetics

of exchange and the properties of the transition states related to the energy barriers

separating the native and metastable states were provided by a study of the folding

pathway of a nitrogen regulatory protein using relaxation dispersion spectroscopy and

mutagenesis. This study showed that transient non-native hydrogen bonds reduce the

free energy of the transition state [57], thus increasing the rate of folding.

1.2.2 NMR studies of disordered proteins

Over recent years, NMR methods have allowed the determination of structural ensembles

that describe the conformational space adopted by disordered states. For example,

the unfolded ensemble of urea-denatured ubiquitin has been characterised using

paramagnetic relaxation enhancement (PRE) and residual dipolar coupling (RDC) NMR

measurements [111, 112]. Both approaches, in combination with molecular dynamics

(MD) modelling, have shown that the disordered ensemble contains a number of

compact conformations which retain some residual structure. For instance, PRE

restraints combined with MD simulation have shown that for α-synuclein (but not for β-

synuclein [113]) compact conformations are stabilised by a number of long-range tertiary

interactions [114], despite the absence of defined structural elements.

The development of restrained MD modelling to enable the use of ensemble NMR
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data as inputs into structural determination is an area of rapid development over recent

years [115], in particular in attempts to describe unfolded and highly dynamic states

[116]. Chemical shifts contain detailed structural information, although their potential is

only recently beginning to be exploited [117–119]. Not only are chemical-shift-restrained

simulations able to provide structures of globular states [117–119], but they have also

been able to reproduce the conformational sampling of disordered proteins such as

sendai virus nucleoprotein [120].

1.2.3 NMR studies of high-molecular-weight complexes

NMR spectroscopy has typically been considered as being size-limited, in part because

of relaxation processes, mediated by dipolar interactions and chemical-shift anisotropy

(discussed further in Section 1.3.1), whose rates increase as the size of the molecule

increases, and the rate of rotational diffusion decreases. However, developments of new

labelling strategies and TROSY spectroscopy techniques (described in detail in Section

1.3.2) have allowed the NMR investigation of the functional states of a number of high-

molecular-weight complexes [121]. For example, the NMR study of the 20S proteasome

revealed the mechanism that enables substrate localisation within the catalytic chamber

[122, 123], which is facilitated by the dynamics of the surface residues of the entrance

pore and the catalytic chamber, as well as the network of substrate-enzyme interactions

inside the catalytic chamber [124]. Similarly, the highly dynamic substrate (hDHFR)

of the 900kDa GroEL-ES complex was characterised, with the network of chaperone-

substrate interactions identified using CRIPT and CRINEPT NMR experiments [125]

(TROSY-based experiments described further in Section 1.3.2). The resulting set of

conformations of the GroEL-ES bound hDHFR was described as a dynamic ensemble

of randomly distributed structures.
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1.2.4 NMR studies of ribosome complexes

As was mentioned in Section 1.1.1.1, analysis of 1H-15N spectra of 70S ribosomes [33,34]

revealed resonances from the L7/L12 stalk, which are observed as the result of resonance

narrowing through the independent motion afforded by the 20 residue-long flexible

linker that tethers the C-terminal domain to the ribosome body. The NMR observation

of flexible regions of high molecular weight complexes is not a new discovery in

NMR spectroscopy and dynamic regions within large amyloid structures have also been

observed to give rise to resonances using conventional NMR methods [?, 126–128].

The similarity of the chemical shifts of ribosome-bound L7/L12 to those obtained

from purified L7 shows that the structure of the ribosome stalk is closely resembling that

of the isolated proteins [31,33]. The observation of sharp resonances from the ribosomally

associated C-terminal domain of L7 is indicative of rapid tumbling and high flexibility.

The effective correlation time of the ribosomally associated L7/L12 stalk determined

via 1H-15N spin relaxation studies is much shorter than that expected for the ribosome

complex overall (τcL7/L12 = 14 ns, [33], compared to τcribo ∼ 2500 ns [129] at 25◦C).

1.2.5 Studying structural and dynamical properties of RNCs by NMR

spectroscopy

By analogy to the ribosome-bound stalk region, the possibility of using NMR to

study RNCs was first demonstrated on a pair of tandem repeat immunoglobulin-like

domains derived from the 120kDa F-actin cross-linking gelation factor from Dictyostelium

discoideum (domain 5 and domain 6, abbreviated as ddFLN-dom5+6) [130]. The RNC

construct of this initial study comprised ddFLN-dom5 anchored to the ribosome via

ddFLN-dom6, which behaves as an extended linker (Figure 1.7). The analysis of the

resonances derived from 1H-15N correlation spectra using SOFAST-HMQC experiments
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Figure 1.7: Schematic representation of ddFLN-dom5+6 RNC as in [130], by a cross-section of the

translating 70S ribosome (pdb file 2J00 and 2J01). The 30S subunit is shown in yellow, the 50S

subunit in blue, and mRNA in black. The three tRNAs are represented with dark grey, grey and

light grey for the A-site tRNA, P-site tRNA and E-site tRNA, respectively. The domain of interest,

ddFLN-dom5, is shown in magenta, with its native-fold, while the unfolded ddFLN-dom6 linker

resides principally inside the ribosome exit tunnel.

(described in detail in Section 1.3.3) revealed that the ribosomally attached ddFLN-dom5-

RNC adopted a fold that resembles closely the native fold observed in the corresponding

isolated domain [130]. Analysis of 1H-13C correlation spectra of ddFLN-dom5+6-RNC

using HMQC experiments provided further insight into the RNC folded state, afforded

by the increased sensitivity resulting from both the increased flexibility of the sidechains

and the three equivalent protons of methyl groups [131]. The inherent dynamic

behaviour of the NC has been confirmed from the observation of narrow linewidths

associated with the NC resonances (ca. 25-30 Hz) compared to the linewidths expected

for the ribosome alone (>1000 Hz, [33]). Similarly, the NMR study of an SH3-RNC via

1H-15N CRINEPT experiments (Section 1.3.2) have revealed that resonances from the NC

have linewidths amenable to NMR observation (36 Hz [132]). The 1H-15N spectrum was

characteristic of a disordered SH3 domain despite the C-terminal end of the domain
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being 50 residues away from the PTC [132].

1.3 NMR spectroscopic methods for the study of ribosome

complexes

This section introduces the key concepts for the NMR spectroscopy of RNCs. The

challenges related to NMR studies of RNC complexes arise from the size of the complex,

which results in broadened linewidths, the limited maximum achievable concentration,

which leads to low sensitivity, and the overall limited stability of the complex, which

prevents accumulation of data over more than two to four days at most. Following

a a brief introduction to NMR relaxation, specific NMR experiments which were used

and optimised to overcome these challenges will be described in detail. For instance, the

transverse relaxation-optimised spectroscopy (TROSY) NMR technique allows narrowing

of broad linewidths, and longitudinal relaxation-optimised spectroscopy (SOFAST-

HMQC) allows the rapid acquisition of heteronuclear spectra, compensating for the low

concentrations and short lifetimes of RNCs samples. Pulsed-field gradient diffusion

experiments were used to monitor the attachment of the observed polypeptide to the

ribosome complex. Finally, the choice of nucleus labelling that allows the appropriate

NMR experiments to probe for the unfolded and folded states of the RNC, in order to

gain information to the folding equilibrium of the RNC, will be discussed.

1.3.1 Introduction to spin dynamics

The key concept which underlies NMR data accumulation is relaxation, which is the

return to the equilibrium magnetic state, proceeding via transitions between the energy

levels of the nuclear spin system. These transitions are caused by field fluctuations

that have the same frequency as that corresponding to the difference in energy between
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two spin states. The equilibrium state corresponds to a net longitudinal magnetisation

(referred to as I0
z ) and a zero transverse magnetisation. The spin-spin relaxation rate (R2)

describes the return to equilibrium of the transverse magnetisation (during acquisition),

such that a fast R2 rate results in early decay of the recorded magnetisation (10-50 ms or

shorter for proteins), broad signals and decreased peak height. The spin-lattice relaxation

rate (R1) describes the return to equilibrium of the longitudinal magnetisation, and a

relatively fast R1 is necessary for the recovery of magnetisation between scans to allow

a high repetition rate of data accumulation within a reasonable time frame (typically

seconds). Both R2 and R1 depend on the signal intensity of the frequencies generated

by the fluctuating fields that match the frequencies of the relevant NMR transitions.

The probability of finding the frequency ω within the thermal motions of a molecule

depends on the rotational diffusion of the molecule, or the correlation time τc (assuming

that rotational diffusion is the only significant motion process) [133, 134], is termed J(ω)

and is given by:

J(ω) =
τc

1 + ω2τ2
c

(1.1)

The fluctuating fields of interest in bio-molecular NMR have their origins

predominantly in dipolar interactions with other NMR-active nuclei, and in the chemical

shift anisotropy. Selective labelling can reduce the number of NMR active nuclei within

a molecule and therefore limit the dipolar contributions to the relaxation [136]. During a

sequence of pulses, it is possible to avoid spin states that are associate with fast-relaxing

transitions [137], for example in TROSY pulse sequences (described in Section 1.3.2).
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Figure 1.8: Heteronuclear 15N relaxation rates R2 (1/T2) and R1(1/T1) as function of molecule

correlation time τc, calculated for a 1H frequency of 700MHz. A small protein domain (20kDa)

has an estimated correlation time, τc of ca. 5-10ns, whereas a spheric particle of the size of the

ribosome (2.4 MDa) has a τc of ca. 2500ns [129]. This figure was generated with the help of Dr.

John Kirkpatrick, UCL, using the expression for the relaxation rates in term of spectral density

from [135].

1.3.1.1 Effects of internal motions

The transverse and longitudinal spin relaxation results in the decay of the recorded

magnetisation, and recording the relaxation rates allows the spectral density (J(ω))

function to be partially mapped. The model-free method proposed by Lipari and

Szabo [99] expresses J(ω) in terms of the overall rotational correlation time, and the

amplitude and internal correlation time of the local motion of the main vector of the

interactions leading to relaxation (e.g. the NH bound for 15N relaxation). Indeed, regions

of a protein or complex often have local ps-ns dynamics, which result in apparent faster

tumbling than the rest of the molecule. To differentiate at a residue-specific level, the
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contribution to J(ω) arising from the overall rotational diffusion (correlation time τc)

compared to that arising from the local ps-ns flexibility (correlation time τe), the model-

free method makes use of the order parameter S, which is a measure of the amplitude of

the internal ps-ns motions for each residue.

J(ω) =

[
S2τc

1 + ω2τ2
c
+

(1− S2)τ′

1 + ω2τ′2

]
(1.2)

where τ′ =
(
τ−1

c + τ−1
e
)−1.

S describes the width of the distribution of orientations of the bond vector (NH for

example), and can be interpreted as a function of the cone semi-angle θ that limits the

ps-ns motions of the residues (Figure 1.9):

S =
1
2

cos(θ)(1 + cos(θ)) (1.3)

Conformational entropy is also a function of the distribution of the bond vector

orientations. A simple relation between the difference of model-free S2 between two

conformations (A & B) and the difference in conformational entropy, Sentropy, between

these two conformations has been proposed [138], which assumes that the motions are

restricted within a cone (the model-free order parameter is written SLZ to highlight the

distinction from Sentropy).

Sentropy, B − Sentropy, A = ln

(
3−

√
1 + 8SLZ, B

3−
√

1 + 8SLZ, A

)
(1.4)

In the case of the ribosome, a range of correlation times needs to be considered to

model the distinct motions occurring within the complex, including the overall rotational

diffusion time τc,ribo, the correlation time of motions of flexible domains such as the C-
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Figure 1.9: A: Amplitude of the motions described by the model-free approach, using the S2

parameter, shown on the ribosome for the dynamic L7 stalk. B: Schematic representation of

the motions associated with different regions of the ribosome complex: the overall rotational

correlation τc,ribo, the motions of flexible domains τc,L7, τc,NC (with their order parameter S2
L7,

S2
NC, Section 1.3.1), and the internal motions of sidechains or flexible loops τc,i (with their order

parameter S2
i ).

terminal domain of the L7 stalk (τc,L7, S2
L7), and the fast internal motions associated with

dynamic loops or side-chains (τc,i, S2
i ) (Figure 1.9B).

1.3.1.2 Effects of chemical exchange

Processes of chemical exchange can also contribute to the relaxation rate R2, and this

modulation of R2 by chemical exchange is distinguishable from anisotropic rotational

diffusion [139]. Depending on the timescale, chemical exchange results in de-phasing

of the magnetisation that can be partially refocused by applying a train of 180◦

pulses (CPMG pulse train) with a frequency that is close to that of the chemical

exchange process in relaxation dispersion experiments [140]. By varying the frequency

of the CPMG pulse train, the magnetisation de-phasing can be quantified allowing
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characterisation of the kinetics of the chemical exchange process, and extraction of

parameters describing the participating states, such as their chemical shift [63], or

residual dipolar coupling [141].

1.3.2 TROSY NMR spectroscopy

High-molecular-weight complexes are associated with long rotational correlation times,

which result in rapid transverse relaxation (as can be seen in Figure 1.8). The early decay

of the recorded transverse magnetisation results in line-broadening and losses in NMR

signal sensitivity. Recent developments in NMR spectroscopy, such as 1H-15N TROSY

[142, 143], 1H-15N CRIPT & CRINEPT [144] and methyl-TROSY HMQC [145, 146] have

facilitated the study of large complexes such as the 900kDa GroEL-ES complex [147] and

the 20S proteasome [122], and suggest that studies of the RNCs by similar strategies are

possible. Each of these TROSY experiments rely on carefully constructed magnetisation

pathways that avoid conversion of slow-relaxing spin states with fast-relaxing spin states,

and guide the magnetisation through spin-states whose relaxation is slowed by the effects

of interference between different relaxation mechanisms [137] (Figure 1.10).

1H-15N TROSY relies on the destructive interference of the 1H-15N dipolar

interactions and chemical shift anisotropy (CSA), which is predicted to be optimal at a

1H frequency of ∼ 1 GHz and reduces significantly the rate of two of the four transitions

(Figure 1.10A, transitions shown in blue). The pulse sequences of 1H-15N TROSY

experiments selectively transfers the magnetisation from the slow-relaxing 15N transition

(Rs
2,N) during indirect evolution to the slow relaxing 1H transition (Rs

2,H) for detection,

and minimises the time spent in fast-relaxing spin-states during magnetisation transfer

[143]. 1H-15N CRIPT and CRINEPT spectroscopy further exploits the cross-correlated

relaxation in the 1H-15N spin system of large proteins to improve the efficiency of the
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Figure 1.10: Transitions between magnetic states in A: 1H-15N spin pair or B: 1H-13C CH3 spin

system. The proton magnetisation states are shown in purple and the heteronuclear states is

shown in green. A: The transitions whose rates are reduced by the destructive interference

between the dipolar interactions and CSA are shown in blue, and are labelled slow (s). B: The

transitions which do not involve 1H-1H and 1H-13C dipolar interactions are shown in blue and

are labelled slow (s). A is adapted from [148] and B is adapted from [145].
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magnetisation transfers over that achieved using classic Insensitive Nuclei Enhanced

Polarization Transfer (INEPT) elements [144]. Despite the remarkable sharpening of

resonances observed in the case of GroEL [147], the spectral improvements achieved

through this destructive interference pathway depend critically on the tumbling rate of

the molecule and on the magnetic field.

The examination of the transitions occurring in a CH3 group isolated from external

protons shows that the multiple 1H-1H and 1H-13C dipole-dipole interactions cancel each

other for all transitions involving eight of the possible 16 spin-states (shown on the

right in Figure 1.10B), in a field-independent manner. A variety of pulse sequences

were examined before it was discovered that in the HMQC scheme, the recorded

magnetisation results from pathways that populate exclusively the eight slow-relaxing

spin-states (and pathways that involve exclusively the fast-relaxing spin-states), making

the HMQC a TROSY scheme [145] in the sense that slow- and fast-relaxing spin-states are

not mixed. 1H-1H dipole-dipole interactions with external protons constitute the primary

remaining relaxation process, and can produce spin-flips, which result in the mixing of

the slow- and fast-relaxing spin-states; this source of signal loss can be significantly

attenuated using high deuteration levels (>90%). Any 13C-13C coupling also contributes

to rapid relaxation, but over the past decade, it has been clearly demonstrated [121]

that this effect can be reduced using selective labelling, such as uniform-[12C,2 H], Ileδ1-

[13C1H3] labelling. To achieve this highly selective Ileδ1 labelling, methyl-13C, 3,3 2H,

α-ketobutyric acid is introduced into the growth medium, together with 2H, 12C glucose

or acetate as the principal carbon source [149,150]. Similarly, the combination of selective

labelling U-[12C,2 H], Leuδ1-,Valγ1-[13C1H3] can also be achieved using the biosynthetic

precursor of Val and Leu, 3-methyl-13C, 3,4,4,4 2H α-isovalerate. 1H-13C and 2H-1H

dipolar interaction arising during the pulse sequence results in dipole-dipole cross-
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relaxation of the multiple-quantum spin-system during the 13C evolution time [145].

The overall sensitivity of the experiment is thus dependent on the rotation correlation

time (τc,ribo) and the order parameter of the methyl axis (S2
axis, Figure 1.11). It is assumed

that motion around methyl axis is so rapid that it is independent of the slower rotational

motion of the entire molecule.

τ
c
 (ns)

S2

axis

re
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v

e 
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n
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Figure 1.11: Predicted maximal intensity in methyl-TROSY HMQC of RNC, as a function of

τc,ribo and the order parameter describing the reorientation of the methyl 3-fold axis (S2
axis), using

equation 1.10 and 1.5 from Ollerenshaw et al [145]. ∑
i

1
r6

HH,i
and ∑

i

1
r6

HD,i
are defined as in Ollerenshaw

et al [145], and such that
(

∑
i

r−6
HH,i

)− 1
6

= 5.5 Å and
(

∑
i

r−6
HD,i

)− 1
6

= 1.8 Å. The black lines show the

tumbling time of the proteasome as studied by [122], 300 ns, and that of malate synthase G, 118

ns [145].

The performance of the methyl-TROSY HMQC experiment was demonstrated by the

NMR investigation of high MW complexes (often using high temperatures to decrease

the rotational correlation time of the large complexes), such as the 670 kDa 20S archaeal

proteasome [122] (60◦C), the 468 kDa archaeal oligomeric TET2 protease [151] (37◦C),

the 230 kDa nucleosomal protein 2-nucleosome complex [152] (45◦C), and the 204 kDa
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ATPase motor of the Sec translocase [153] (25◦C). The overall rotational correlation time

of the complex approached values of 300 ns in the first two cases.

Ollerenshaw et al [145] have shown that the proton transverse relaxation rate in

the methyl-TROSY HMQC has contributions from the methyl proton - carbon dipolar

coupling (first term in equation 1.5), the dipolar coupling of the methyl proton with all

the external deuterium (second term of equation 1.5) and the dipolar coupling of the

methyl protons with the remaining protons (last term in equation 1.5), considering that

only the slow-relaxing pathways contribute to the signals, which is likely to be the case

for broad resonances arising from ribosome-attached domains:

R2,H =
1
45

( µ0

4π

)2 S2
axisγ2

Hγ2
Ch̄2τc,ribo

r6
HC

+
8

15

( µ0

4π

)2
∑

i

γ2
Hγ2

Dh̄2τc,ribo

r6
HD,i

+
1
4

( µ0

4π

)2
∑

i

γ4
Hh̄2τc,ribo

r6
HH,i

(1.5)

Those three relaxation terms are described as functions of the relevant spectral density

function ( JCH(ω), JHD(ω) and JHH(ω)) with a single overall correlation time τc,ribo in the

case of ribosome complexes (Section 1.3.1) (JCH(ω) is weighted by the order parameter

of the side chain motions S2
axis). The spectral density functions J(ω) are approximated to

J(0) only since (ωCτc)2 is much larger than 1 for τc>20ns.

At 25◦C, the rigid ribosomal complex was shown to have a rotational correlation

time of τc,ribo ∼ 2500ns [129], which is significantly greater than in any methyl-TROSY

work yet reported. Nonetheless, the ribosome is known to contain flexible regions such

as the L7/L12 stalk which has a relatively short correlation time (τc,L7 ≈14 ns, [33])

as described in Figure 1.9. Indeed, in high MW complexes, internal motions of long

extensions such as the stalk region or in the case of an RNC the nascent chain, result

in an apparent reduction of their tumbling time (Figure 1.9). As described in Section
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1.3.1.1, the model-free approach introduces an internal correlation time that reflects these

motions (τc,L7,τc,NC), and their coupling to the overall rotational correlation time (τc,ribo).

The model-free method incorporates the effects of internal motion into the expression

for J(ω), and modifies JCH(0) = S2
axisτc,ribo to

JCH(0) = S2
axis
(
S2

eτc,ribo + (1− S2
e)τ
′) (1.6)

and JHH(0) = JHD(0) = τc,ribo to

JHH,HD(0) =
(
S2

eτc,ribo + (1− S2
e)τ
′) (1.7)

Thus, the model-free method applied to equation 1.5 gives rise to a new expression of

the relaxation rates that includes τ′ and S2
e:

R2,H =

[
1

45

(µ0

4π

)2 S2
axisγ2

Hγ2
Ch̄2

r6
HC

+
8

15

( µ0

4π

)2
∑

i

γ2
Hγ2

Dh̄2

r6
HD,i

+
1
4

( µ0

4π

)2
∑

i

γ4
Hh̄2

r6
HH,i

]
×
(
S2

eτc,ribo + (1− S2
e)τ
′) (1.8)

The latter expression is therefore more appropriate for the analysis of the 1H relaxation

rates of flexible regions of the ribosome complex.

Local anisotropy within the flexible domain (such as dynamics of individual loops or

secondary elements) results in additional terms in the expression of JHH,HD(0) ( JCH(0)

is again simply scaled by S2
axis) [154, 155]:

JHH,HD(0) = S2
eS2

i τc,ribo + S2
e(1− S2

i )τ
′ + (1− S2

i )τ
′′ (1.9)

with τ′′ =
(

τ−1
c,ribo + τ−1

c,e + τ−1
c,i

)−1
, in which the local motions are characterised by τc,i

and S2
i . Again, this can complicate further the expression of R2,H. Similarly, chemical
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Figure 1.12: A: Predicted maximal intensity in methyl-TROSY HMQC spectra of resonances from

a flexible domain attached to the ribosome, as a function of the internal correlation time τc,e and

the order parameter of the internal motions (S2
e) (refer to main text for details), assuming S2

axis=0.5

and τc,ribo=2500 ns. B: Predicted proton linewidth for the same resonances, calculated from R2,H

using equation 1.11 (refer to main text for details).

exchange on the order of the chemical shift timescale (100 ns-1 ms) as mentioned in

Section 1.3.1.2 would require an additional term Rexchange to R2,H.

The maximum intensity of the methyl-TROSY HMQC, defined as the amplitude of

the first point of the FID (i.e. at the beginning of the acquisition time, without any 13C

chemical shift evolution), depends solely on the proton relaxation rate:

IHMQC = exp(−4τRs
2,H) (1.10)

where τ is equal to 1/4JCH. Figure 1.12A shows the expected IHMQC of ribosome-attached

flexible domains as a function of τc,e and S2
e, with τc,ribo=2500 ns, and S2

axis=0.5, and ∑
i

1
r6

HH,i

and ∑
i

1
r6

HD,i
defined as in Ollerenshaw et al [145]. For τc,e close to τc,ribo (>1000 ns), as the

model of internal motion is not strictly valid, the overall tumbling of the molecule τc,ribo is

not independent of τc,e. The extended model-free approach to analyse slow interdomain

motion can be applied in such cases [156].
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R2H is an NMR parameter that is readily measured in heteronuclear experiments

from the 1H linewidth (∆ν1H):

R2H = π∆ν1H (1.11)

Conversely, the estimation of the internal motion parameters of the observed domain

can be derived from the analysis of the proton linewidth (Figure 1.12B). Empirical

measurements show that the uncertainty in linewidth is inversely proportional to the

signal-to-noise [157]:

σLW =
17.2
SN

(1.12)

The 1H linewidths of RNC resonances are presented in Section 3.2.2.1.

1.3.3 Fast acquisition NMR spectroscopy

The NMR study of co-translational folding requires the preparation of relatively

large amounts of homogeneous material (>103 times more than what is required for

fluorescence spectroscopy). Despite this feat of preparative biochemistry [158], the

maximal achievable concentration of the ribosomal material is on the order of 25 mg/ml

in order to avoid ribosome aggregation and significant increases in the viscosity of the

sample [129], and at ca. 10 µM, represents a molar concentration that is 10- to 100-

fold lower than that typically used for NMR spectroscopy. Consequently, accumulating

sufficient data to overcome the inherent problems associated with poor signal-to-noise

ratios within the limited lifetime of the sample (typically <24 hours) is a significant

challenge.

Central to the study of RNCs has been the application of NMR pulse sequences

that allow rapid acquisition, in particular the SOFAST-HMQC experiment [159], which

has been used in our studies of ddFLN-RNCs [130] and also in the study of barnase-
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RNCs [160].

The SOFAST-HMQC experiment relies upon the use of selective excitation so that

unperturbed nuclei act as a reservoir of cool spins, allowing the more rapid R1

relaxation of the excited spins (via enhanced longitudinal cross-relaxation). The return

to equilibrium of the longitudinal magnetisation can be written as:

d∆Iiz(t)
dt

= −ρi∆Iiz(t)−∑
j,i

σij∆Ijz (1.13)

where ρi is the auto-relaxation rate of the ith spin (which depends on 1Hi-1Hj dipolar

couplings as well as small contributions from the proton chemical shift anisotropy and

the 1H-15N dipolar coupling) and σij is the cross-relaxation rate between the ith and

jth spins; in the case of uniform excitation and at time t=0, R1 = ρi + ∑
j,i

σij. However,

after selective excitation, a large number of jth spins are unperturbed (∆Ijz ∼ 0), which

reduces the contribution to the cross-relaxation rate of the ith spins significantly. Because

σij has large negative values for large molecules with long rotational tumbling times

(Figure 1.13), the longitudinal relaxation rate is increased for selective excitation. This is

demonstrated in Figure 1.13 using the simple model of an isolated two-spin system.

In addition to the use of selective excitation, a decrease in the excitation angle from

90◦ to 60◦ (the excitation angle is 120◦ in practice, but after the 180◦ 1H pulse the final

excitation angle is 60◦), according to the optimised Ernst angle excitation, permits the

reduction of the inter-scan delay from 1.25×T1 to 0.6×T1. The optimal excitation angle

(αe) is a function of the inter-scan delay (T) and R1: cos(αe) = exp(−R1.T) [161]. The

blue curve in Figure 1.14 shows αe as a function of the interscan delay (T) for R1=2Hz.

The sensitivity per unit time depends on the interscan delay (T), αe, R1 and the time for



Chapter 1. Introduction 51

Figure 1.13: 1H amide spin-lattice relaxation rates R1 for a two-spin system as a function of the

rotational correlation time, τc, calculated at a 1H frequency of 700 MHz. Refer to the main text

for the description of the proton auto-relaxation rate ρH and longitudinal cross-relaxation rate

σHH. For uniform excitation, R1 = ρH + σHH. For a selective excitation, an approximation of R1

is shown assuming an isolated two-spin system, in which the contribution from cross-relaxation

is down-weighted by a factor of 0.9 (refer to main text). A small protein domain has a correlation

time of ca. 5-10 ns, whereas a spherical particle of the size of the ribosome has a correlation time

of ca. 2500 ns [129]. This figure was generated using the expression for the relaxation rates in

terms of the spectral density from [135].

one scan (Tscan) [159, 161]:

I ∝
1− exp(−R1.T) sin(αe)

1− exp(−R1.T) cos(αe)
√
(Tscan)

(1.14)

and is shown in Figure 1.14 in red, right axis. The experiment therefore benefits

from fast recycling yielding greater sensitivity per unit time. The result of multiple

quantum acquisition in the indirect dimension is broader 15N linewidths compared

to single quantum acquisition (typically from 7 Hz to 15 Hz for the 16.7kDa protein
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Figure 1.14: Optimised excitation angle αe (left axis, blue curve) and relative sensitivity per unit

time I (right axis, red curve) as a function of the recycling delay T noted as T/T1, for T1=500 ms.

calmodulin) [162]. In an attempt to overcome this issue, a BEST-HSQC scheme was

developed using selective excitation or inversion for all proton pulses, thereby combining

the advantages of both the SOFAST-HMQC and HSQC experiments [163]. The BEST-

HSQC sequence was tested and was found not to be as sensitive as the SOFAST-HMQC.

This difference is probably due to the increased number of proton pulses in the HSQC

sequence, which must all be included as selective shaped pulses in the BEST-HQSC

sequence. The SOFAST-HMQC therefore offers the best compromise to study high-MW

complexes such as the ribosome.

1.3.4 Measurements of diffusion coefficients by NMR spectroscopy

As will be described in Chapter 2, Section 2.3.3 the lifetime of the ribosome complexes

is limited, and monitoring of the sample stability proves to be of major importance in
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gauging the length of time during which the integrity of the ribosome is maintained,

and the ribosomal proteins or nascent chain are attached to the ribosome complex.

As the release of the observable L7/L12 stalk (Section 1.2.3) does not result in a

significant linewidth decrease of the L7/L12 resonances (because the stalk region tumbles

independently of the ribosome core, Section 1.2.3), analysis of the 2D spectrum is not

sufficient to detect release. The attachment of the dynamic ribosomal proteins (and

ribosome-bound nascent polypeptide) can therefore be best monitored by NMR via the

introduction of translational diffusion measurements [33]. Pulsed-field gradient (PFG)

diffusion NMR spectroscopy typically allows the deconvolution of the translational

diffusion coefficients of different species in solution that have distinct chemical shifts

[164, 165]. The introduction of a PFG of length δ and strength G dephases the

magnetisation as a function of the z-position of the particles (Figure 1.15A, arrow b).

The magnetisation is then rephased by the introduction of a second PFG with opposite

phase after a time ∆ (Figure 1.15A, arrow c). By recording the progressive loss of

signal intensity that results from increasing the strength of the PFG, one can extract

the translational diffusion coefficient (D) from the Stejskal-Tanner equation [164]:

I
I0

= exp
[

D
(

∆− δ

3

)
. (δ.G.γH)

2
]

(1.15)

The above equation assumes gradient pulses are applied with square shapes. In practice,

gradient pulse are usually shaped to reduce eddy currents at the start and end of the

pulse. Therefore, the product δ.G, which represents the integrated gradient, is modified

to include a shape factor, Fshape, that depends on the shape of the gradient pulses.

The accurate determination of small translational diffusion coefficients such as those

associated with the ribosome (on the order of 10−11 m2s−1) requires a strong signal

attenuation for the strongest gradient, which is achieved by using a long diffusion
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Figure 1.15: Schematic of three different diffusion pulse sequences. Narrow and wide bars

show 90◦ and 180◦ pulses respectively. Refer to main text for definition of ∆, δ and G. A:

PFG echo sequence. At the time indicated by the arrow a, the magnetisation is Ix. At time

b, the magnetisation is dephased by the PFG, modulated along the z axis: Ix. cos(2.γ.G.δ.z) +

Iy. sin(2.γ.G.δ.z). At time c, the magnetisation is still phase modulated along the z axis, and the

molecules are displaced by longitudinal diffusion. At time c, the magnetisation is rephased by the

PFG, but the molecules have been displaced by diffusion, so that the magnetisation is modulated

by equation 1.15. B STE (stimulated echo) sequence. C STE with bipolar gradient pulses.
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delay and long gradient pulses. The choice of these parameters is typically dictated by

limitations of the probe and by longitudinal and transverse relaxation occurring during

delays in the sequence, as discussed below. To avoid the rapid return to equilibrium via

transverse relaxation during the diffusion delay ∆ in the PFG echo sequence (Figure

1.15A), the use of a stimulated echo (STE, Figure 1.15B) converts the magnetisation

into Iz during ∆, which is associated with slower longitudinal relaxation. However,

STE experiments are associated with a loss of 50% of the magnetisation that is not

returned to the z-axis after the second 90◦ pulse (arrow b in Figure 1.15B) due to the

dephasing of the magnetisation in the x-y plane. A loss of signal is thus unavoidable,

but nonetheless, the fast transverse relaxation associated with biomolecules renders STE

diffusion experiments the most sensitive. STE experiments allow the use of longer

diffusion delays, ∆, although the choice of ∆ remains limited by the longitudinal

relaxation (∆ <T1) of the observed nucleus, and as mentioned in Section 1.3.3, T1 can be

as short as hundreds of ms to seconds in the case of 1H longitudinal magnetisation. The

choices for the other experimental parameters are also dictated by practical limitations:

for example, the length of the gradient pulses, δ, is limited by the transverse relaxation,

and the gradient strength, G, is limited by the probe capacity and the need to avoid

extensive sample heating. The use of STE with bi-polar gradient pulses reduces eddy

current effects (Figure 1.15C), and were used throughout this thesis.

In the case of selective isotopic labelling within a mixture or a complex (as for

RNCs, as described further throughout this thesis), an attractive feature of translational-

diffusion measurements by NMR is that the experiments can be nucleus-selective. The

recent introduction of heteronuclear STE (XSTE) diffusion experiments [166] permits

recording of only the magnetisation of 1H nuclei that are coupled to 15N or 13C nuclei.

The magnetisation during ∆ is purely 15N (13C) longitudinal magnetisation as a result of
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Figure 1.16: Schematic of heteronuclear PFG diffusion pulse sequences. Narrow and wide bars

represent 90◦ and 180◦ pulses. τ = 1/4JXH. Refer to main text for definition of ∆, δ and G.A
15N (13C) XSTE diffusion experiment. τ′ = 1/4JNH, and τ′ = 1/10JCH (refer to main text). B
13C-edited STE-HMQC diffusion experiment.
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the refocused-INEPT element that precedes ∆ (Figure 1.16A). Note that in the case of the

13C XSTE diffusion sequence, the delay of the second spin-echo in the first refocused-

INEPT and the first spin-echo of the last refocused-INEPT is optimized (labelled τ’ in

Figure 1.16A) for a 13CH3 group, i.e. 1/10JCH instead of 1/4JCH. Nonetheless, the

sensitivity of 15N (13C) XSTE diffusion experiments is limited due to the extensive

transverse relaxation occurring during both refocused-INEPT elements of the pulse

sequence (as well as the loss due to the STE mentioned earlier). Recently, 13C nucleus

selection has been introduced through the use of bi-polar STE prior to a conventional

methyl-TROSY HMQC sequence (Figure 1.16B), which reduces the otherwise extensive

line-broadening due to transverse relaxation [167]. In this case, transverse relaxation

pathways are still active during the gradient pulses, but at least some of the methyl-

TROSY coherences are preserved throughout the STE part of the sequence.

Several useful characteristics of the observed species can be extrapolated from the

diffusion coefficient, such as the hydrodynamic radius, the rotational correlation time

and an estimation of the molecular weight. The hydrodynamic radius (rh) of the particles

that gives rise to the STE diffusion spectra can be estimated from the experimentally

measured diffusion coefficient using the Stokes-Einstein relation:

rh =
kB.T

6π.D.η
(1.16)

where kB is the Boltzmann constant (1.38 × 10−23kg m2 s−2 K−1), η(T) is the viscosity of

water (in kg m−1 s−1, at temperature T) with [168]:

η(T) = 2.41× 10
247.8

T−140−5 (1.17)

Assuming a spherical geometry, the rotational correlation time can be estimated from
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the hydrodynamic radius using the Stokes-Einstein-Debye relation:

τc =
4π.ηT.r3

h
3.kB.T

(1.18)

Lastly, assuming a spherical particle, the molecular weight of the particle that has a given

rh can be estimated by the following equation:

MW =
4π.NA.(rh − rw)3

3.ν0
(1.19)

where NA is the Avogadro number (6.02×1023 mol−1), rw is the thickness of the water

layer around the particle (estimated to be around 0.2nm [134]), ν0 is the specific volume

for the particle (estimated to be 7.3×10−7 m3.g−1 for proteins and 5.5×10−7 m3.g−1 for

nucleic acids) [169].

1.3.5 Nuclei labelling

The aim of this work is to analyse the folding equilibrium of nascent chains as they

emerge from the ribosome, and therefore, both the folded states and unfolded states are

investigated in parallel by heteronuclear NMR spectroscopy. Typically, folded states are

often associated with wide chemical shift dispersion of the amide 1H, 15N and 13C nuclei

[134], and therefore overlap of resonances is reduced using 1H-15N and 1H-13C 2D NMR

spectroscopy. Moreover, the methyl 1H chemical shift can undergo high-field shifting

due to the ring current effect from nearby aromatic residues [170], and are therefore

sensitive probes for structural interactions. Unfolded states, however, are often associated

with narrow chemical shift dispersion of the 1H and 13C nuclei (of side chains), and

only the 15N nucleus (as well as the 13C carbonyl) remains dispersed due to the strong

influence of the residue type on its chemical shift [134]. As a consequence, 15N labelling is
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required for the study of the unfolded states by 1H-15N SOFAST-HMQC spectra (Section

1.3.3) and 1H-13C labelling is preferred to monitor the folded state due to the higher

sensitivity of the methyl group over the backbone amide group (which results from

the three equivalent protons and typically low order parameter of the sidechain methyl

groups).

Moreover, unfolded states are highly flexible and are therefore associated with a very

fast effective correlation time. A persistence length on the order of seven residues for

unfolded states has been reported [171], so that the overall size of the protein has very

little influence on the effective correlation times of individual residues in an unfolded

peptide. Folded states, on the other hand, are globular structures with longer effective

correlation times, that strongly depend on the size of the molecule (as equation 1.19

reports, ca. 10 ns for a 20 kDa domain). Therefore, the study of folded RNCs requires

strategies to reduce linewidths, such as the methyl-TROSY HMQC experiment, together

with a high deuteration level [121].

Lastly, the effect of temperature is also to be considered. Increasing the sample

temperature during NMR acquisition is often used as a means of decreasing the

rotational correlation time of high MW complexes, however, the stability of the ribosome

complex is significantly reduced with increasing temperature [172]. Moreover, at high

temperatures, the amide protons of unfolded states typically undergo faster exchange

with the protons of the solvent, which results in significant line-broadening [173]. In light

of these conflicting considerations, a temperature of 25◦C was chosen as a compromise

in studies of both the ribosome and the RNCs, as described in this thesis.
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1.4 Conclusion

This introduction has summarised on how the structures of the ribosome complex

from X-ray and cryo-EM have allowed an improved understanding of the mechanism

of translation. However, these structural studies have provided little information on

the conformations of the nascent polypeptide chains. NMR spectroscopy, which has

been demonstrated to be a suitable tool for the study of protein folding, can report

on different states occupied in the folding pathway as it occurs for isolated protein: the

unfolded ensemble, the intermediate states, and even recently reporting on the transition

states. There is little structural information on co-translational folding pathways, and the

aim of this work is to use NMR spectroscopy to study the folding equilibrium of RNCs

at different stages of translation. The study relies on the careful optimisation of a series

of advanced NMR experiments suitable for RNCs.



Chapter 2

A strategy for the production and

NMR analysis of ribosome-bound

nascent chains complexes

2.1 Introduction

The central aim of this thesis is to study co-translational protein folding via NMR

spectroscopy by creating snapshots of the emergence of a domain from the ribosomal

exit tunnel via stalled RNCs. Generating homogeneous and stable lengths of newly

synthesised nascent chains at a concentration amenable for NMR study, and with the

appropriate isotopic labelling, is a significant challenge, and here an in vivo approach

to produce these RNC samples has been explored. Additional challenges for the

NMR study of RNCs reside in the low sensitivity due to the low maximal molar

concentration (10 µM), the slower tumbling of the large RNC, and the limited sample

lifetime. This chapter presents the development of a set of methodological tools (both

spectroscopic and biochemical) to facilitate the detailed NMR study of RNCs and co-

translational folding. Chapter 3 will subsequently describe the NMR investigation of
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co-translational folding of increasing lengths of an ddFLN-immunoglobulin RNC using

this methodology.

2.1.1 Production of RNCs for NMR studies

Upon completion of synthesis, the translation process is terminated by auxiliary factors

which interact with the ribosome to expel the synthesised NC. Preparative methods to

homogeneously arrest translation and keep the newly synthesised polypeptide chain on

the PTC have been developed over the recent years [5] and allowed the generation of

RNCs for biochemical and biophysical studies. These are either in vitro transcription-

translation [174–176] or in vivo methods [158, 160, 177, 178], and have resulted typically

in very small quantities of RNCs (1-10 µL of 1-5µM). Using linearised DNA or mRNA

transcripts, that lack a stop codon to terminate translation [130, 179], together with in

vitro transcription-translation reactions [175, 176] results into synchronised translational

stalling. For studies by NMR spectroscopy, the production of high quantities of

selectively isotopically labelled NC bound to isotopically-silent ribosomes is needed.

Indeed, the ribosome is not NMR silent as previous studies have shown that the

L7/L12 stalks gives rise to well dispersed signals in 1H-15N HSQC spectra [33], which

can interfere with the analysis of the RNC. With unlabelled ribosomes in the in vitro

transcription-translation reactions, the use of isotopically labelled amino-acid allows the

selective labelling of the NC alone [130]. The pure cell-free production method allows,

in principle, control of all aspects of translation, including the co-factors being present

during translation [174–176]. This method, however, is very costly in terms of routine

usage and has therefore only been used for the production of small amounts of RNCs.

The conversion to in vivo production methods to generate RNCs in a cost effective

way is not permitted by the use of linearised DNA or mRNA transcripts, thus recently
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introduced stalling motifs are used in vivo [178].

The application of translation-arrest motifs, such as those derived from the secretion

monitoring protein (SecM) [180] and the tryptophan operon (tnaC) [26] have opened the

door to in vivo production of RNC [132, 158, 160, 178]. In the case of SecM, a 17 amino

acid stalling region is recognised by the ribosomal exit tunnel, and translation is stalled

in the pre-translocation step prior to peptide bond formation with the Pro-tRNA166 at

the A-site and Gly-tRNA165 at the P-site [40]. Cryo-EM studies showed electron density

revealing a shift of the carbonyl-carbon of the Gly-tRNA165 away from the Pro-tRNA166

(Figure 2.1A & B), and suggest that this move disables translocation. Contacts of the

SecM residues with regions of the 23S rRNA that line the ribosomal exit tunnel are

thought to mediate the conformational changes of the rRNA network that accommodate

the P-site 3’ aminoacylated A nucleotide (Figure 2.1A).

An in vivo approach is not only cost-effective, but it also offers the exciting future

possibility of examining protein folding directly within the cellular environment. The in

vivo approach that we introduced uses E. coli to generate large quantities of SecM-stalled

RNC for NMR studies [132,158,160]. NMR study of RNCs produced in vivo requires the

manipulation of the growth and expression media to enable selective isotopic labelling

to take place for the NC alone. In this study, the in vivo method has been developed in

collaboration with Dr Lisa Cabrita (UCL) and is described in Section 2.3.1.

2.1.2 NMR characterisation of RNCs complexes

As NMR spectroscopy has a significantly greater sensitivity for fast tumbling molecules

(τc <50 ns) compared to slower tumbling high molecular weight complexes, the release

of the NC from the ribosome can potentially give rise to additional or higher intensity

cross-peaks in (heteronuclear) spectra. A conservative philosophy to analyse NMR data
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A B

Figure 2.1: A: Schematic of the conformational changes of the ribosomal rRNA and the P-site

tRNA induced by the SecM sequence. In particular, the P-site A76 (3’ aminoacylated) is shifted

away from the A-site tRNA (dotted arrow) and prevents translocation B: Overlay of the P-site 3’

aminoacylated A nucleotide models from cryo-EM maps of SecM stalled RNC in green and TnaC

stalled RNC in yellow that highlights the moves of the P-site tRNA 3’ ends induced by the SecM

sequence. Both A and B are adapted from [40]

from RNC is therefore adopted: i.e. the null hypothesis is that signals are not from RNC,

and collection of strong evidence is required to accept the alternative hypothesis that

the signals indeed arise from RNCs. It is essential to monitor the stability, integrity and

attachment of the NC to the ribosome complex before and during NMR data acquisition.

An array of NMR and biochemical tools for the characterisation of the RNC have been

developed in this study and are presented in the latter section of this Chapter (Section

2.3.3).

2D 15N-1H SOFAST-HMQC and 13C-1H HMQC spectra are recorded in order to
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assess the structure and dynamics of the RNCs, but given the low concentrations present,

signals may be weak even after several days of acquisition. The analysis of such spectra

can be non-trivial, therefore we first discuss the development of appropriate statistical

methods for the analysis of very low intensity spectra (Section 2.2). The application of

such methodology to analyse the sensitivity of the 15N-1H SOFAST-HMQC of RNCs is

presented in Section 2.3.2.3 and the sensitivity of the 13C-1H HMQC of RNCs is presented

in Sections 2.3.2.5 & 2.3.2.7.

Together, this Chapter describes the set of tools that were used in the detailed study

of co-translational folding of a ddFLN-dom5 that is presented in the next Chapter 3.

2.2 Theory: Development of a statistical analysis methodology

to quantify signal observability

The sensitivity of NMR spectra recorded on ribosomes and particularly on RNC

remains low, partially because of the low maximum concentration of the ribosome

complex (10µM) and because of the size of the complex. A method has been developed

that allows the definition of a threshold for the observability of resonances based on the

noise level of the spectrum, which has a gaussian distribution with a standard deviation

σnoise. Loosely, a resonance is observable when its intensity is significantly higher than

the noise. At low signal to noise however, this significance must be quantified more

formally, using standard statistical methods. By normalising the signal intensity by the

noise, we define the z-score (or signal to noise ratio, SN):

z = SN =
signal intensity− µnoise

σnoise
(2.1)
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where µnoise is the mean of the noise of the spectrum and σnoise is the standard deviation

of the noise. For a properly baselined spectrum, µnoise = 0. The z-score is sampled from

the standard normal distribution of the noise, thus, a z-score of >1.64 indicates that the

signal intensity has <5% chance of arising from the noise distribution. This significance

level is used throughout the thesis.

To explore in practical terms the effect of sensitivity and processing in signal

observability, a series of spectra from a purified isolated immunoglobulin domain (9µM)

were recorded, with increasing number of scans (NS) from 4 to 1024. Peaks were picked

at fixed positions from the most sensitive spectrum, and noise data were picked within

the same chemical shift range as the signals. The z-scores of noise and signal intensities

of these spectra are shown in Figure 2.2A. As expected by definition, the distribution

of the z-scores of the noise is centred at 0, and has a standard deviation of 1. Spectra

recorded with NS=1024, 64 and 16 scans are shown in Figures 2.2B, C & D, and most

of the resonances that were observed in the highest sensitive spectrum are not observed

“by eye” in the least sensitive spectrum (NS ≤ 64). This is reflected in the distribution of

the z-score of the signal intensity in the spectra recorded with a low number of scans,

in which most of the signals were associated with a z-score lower than 1.64 (dotted line

in Figure 2.2). Nonetheless, despite the fact that only few resonances were observable in

these spectra, the centre of the signal intensities distribution is higher than the centre of

the noise distribution, clearly demonstrating that the analysis of the entire distribution

rather than single signals, allows us to confirm the presence of the spectra even when

individual resonances are not observed.

The distribution of signal intensities narrows when the overall intensity of the

spectrum is reduced. This is reflected in Figure 2.3, which shows the standard deviation

of the signal distribution (σsignals) as a function of the number of scans. The standard
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Figure 2.2: A: Signal distribution (orange) and noise distribution (grey) for immunoglobulin

domain ddFLN-dom5 spectra recorded with decreasing number of scans. The spectra are

processed with no zero filling nor window function to avoid bias (refer to main text). The

distributions are normal gaussian distributions. B, C & D: Spectra of isolated immunoglobulin

domain (ddFLN-dom5) recorded with decreasing number of scans, from NS=1024 to NS=16. A

slice at 15N frequency = 126.7ppm is shown on the top. The grey signals are negative.
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Figure 2.3: Plot of the centre of the peak intensity distribution (µsignals, orange), the standard

deviation of the peak intensity distribution (σsignals, magenta) and the standard deviation of the

noise distribution (σnoise, grey), as a function of the number of scans used to record the spectra,

on a log-log scale.

deviation increases linearly with NS, as does the intensity (Figure 2.3). However, as the

overall intensity is lowered, the width of the signal intensities distribution modelled by

σsignals deviates from the theoretical σsignals<σnoise (magenta versus grey lines), and in

reality, σsignals = σnoise. The consequence of this observation is that for low SN data,

the observed resonances are not necessarily the ones that have intrinsically the sharper

linewidth and higher intensity, but rather are randomly distributed due to the gaussian

noise distribution.

The effect of applying window functions and zero-filling to the z-scores of the

observed signals is shown in Figure 2.4. The mean z-score is improved by applying

both window function which effectively is averaging the noise because the multiplication

becomes a convolution in the Fourier domain (green curve in Figure 2.4), or zero-filling

to extend the FID domain which results in increased resolution in the Fourier domain,

and allows more accurate peak picking (orange curve in Figure 2.4).

This basic analysis is highly dependent on the peak-picking, and how the signal
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Figure 2.4: Plot of the centre of the mean of the signal intensities z-scores as a function of the

number of scans used to record the spectra on a log-log scale, when using different processing

modes: no window function nor zero filling (black), a sine-bell window function and no zero

filling (green), no window function and zero filling to double the size of the real data (orange),

and both window function and zero filling (magenta).

intensity is defined. It is therefore important to introduce the uncertainty of the signal

position into the analysis. This is rarely considered in spectra with high SN, but at low

SN can become an important factor as shown in Figure 2.5.

The uncertainty in the signal position is directly proportional to its linewidth, as

depicted in equation 2.2 and inversely proportional to its SN [181, 182].

σHz =
1√

2
∗ LW

SN
(2.2)

For a typical RNC NMR measurement, SN is close to 2, and the linewidths are

>40Hz in the 1H dimension and >100Hz 15N dimension. Based on Equation 2.2,

the uncertainty of the resonance frequency is therefore 0.02ppm in the 1H dimension

and 0.5ppm in the 15N dimension. The spectra typically have a digital resolution of

0.014ppm/0.2ppm (1H/15N), where the limited resolution is due to the short acquisition

times that are needed to benefit from the fast recycling rate of the SOFAST-HMQC
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Figure 2.5: Schematic of a resonance with high SN (left) and low SN (right). The black line shows

the theoretical signal and the orange line shows the addition of the noise to the signal. The black

arrows shows the theoretical resonances chemical shift, the orange arrows show the maximum

of the experimental spectra, and the red arrow show the chemical shift difference between the

experimentally determined peak position and the theoretical peak position for low SN signals.

(Section 1.3.3), and the fast R2 during acquisition. The intrinsic uncertainty on the

signal positions (0.02ppm/0.05ppm), is therefore on the order of the digital resolution

(0.014ppm/0.2ppm). As a consequence, a signal cannot be localised to a single

data point, but only to a region of interest (ROI) of at least 3×3 data points (or 9

variables). The signal intensity is then defined as the maximum within this 3×3 ROI.

This maximum cannot be compared to the normal noise distribution represented by

a gaussian distribution and its standard deviation, but needs to be compared to the

distribution of maxima of random 3×3 ROIs distributed within the noise region of the

spectrum. The nine-variate normal distribution f (x1, x2, ...x9) is the extension of the

noise distribution from a single variable to a 3×3 ROI, as such it is a function of the

correlation between neighbouring points (ρ) and the gaussian noise standard deviation

(σ). The correlation between neighbouring peaks (ρ) is introduced during processing

by the window function and zero filling. The spectra recorded on the immunoglobulin
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1.0 0.05 -0.01 1.0 0.6 0.05

-0.01 0.00 0.1 0.4 0.2 -0.08

0.02 0.00 -0.01 -0.06 -0.07 -0.04

Table 2.1: Example of a correlation matrix between neighbouring points, on the left for a spectrum

processed without window function nor zero-filling, and the right for a spectrum processed with

a sine-bell window function and a zero filling to double the size of the Real data. The shaded

points of the matrix shows the cases where the correlation is strong (with the i+1, j+1 datapoints,

where i is the 15N position and j is the 1H position).

domain were used to optimise the processing such that the SN is maximised and the

correlation is minimised. An acceptable correlation does not spread beyond the 3×3 ROI

(Table 2.1).

For the ROI to be an observable signal, the probability that the maximum of the ROI

(X) is significantly higher than the noise distribution of 9 variables x1, x2, ...x9 needs to be

close to 1:

F(X) = P(all xi ≤ X) = F(X) = P(x1 6 X ∩ x2 6 X ∩ ...∩ x9 6 X) (2.3)

Because of the correlation between neighbouring points ρ, F(X) can be rewritten as:

F(X) = P(x1 6 X) ∗ P(x2 6 X|x1) ∗ ... ∗ P(x9 6 X|x1, x2, x3, ..., x8) (2.4)

This probability is the multivariate normal cumulative density function (mvncdf) at X, it

is the integral of f (x, x, x, ...) from X to +∞ in each nine dimensions:

F(X, X, X...) =
∫ X

−∞

∫ X

−∞
...
∫ X

−∞
f (x1, x2, ..., x9)dx1dx2...dx9 (2.5)
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If F(X, X, X, ...) is higher than 95%, the maximum in the 3×3 ROI has less than 5%

chance to be generated by the noise, we therefore conclude that the observation is a

genuine resonance. This 95% threshold is the equivalent of a z-score of 1.64 for a normal

gaussian distribution.

Figure 2.6A shows the histograms of the z-score of signal intensity as defined by the

maximum within a 3×3 ROI, as well as the nine-variate normal distribution of the z-score

of the noise at varying sensitivity (dotted line). Note that now the distribution of the z-

score of the noise are not centred at 0. The vertical black line shows the value at which

the mvncdf=95% (a signal which intensity is above this line has less than 5% chance

of being generated by the noise). At a high sensitivity (NS=1024), the intensity of each

resonance is higher than the noise threshold. However, with a lower sensitivity (NS≤64),

the distribution of signal intensity overlaps with the noise multivariate distribution, and

a random set of signals are not observable. As the search radius is increased, statistical

significance demands a greater signal intensity. This is reflected by the increased z-score

of the 5% threshold, from 1.64 for a single point, to ca. 2.5 when using a 3×3 ROI,

to 2.8 when using a 5×5 ROI (Figure 2.7). The consequence of this is that when the

chemical shift is allowed to vary, the required intensity to determine the significance of

a resonance is higher. New resonances that are different from either the assigned native

state or disordered states will be identified only if they have a strong intensity (SN >3).

Throughout this work, the analysis of resonances intensities is performed using the

maximum of the 3×3 ROI centred at either the resonances assigned to either the native

state of the ddFLN-dom5, or the 8M urea denatured state. Both the centre of the peak

intensity distribution and individual resonances are compared to the noise. When the

centre of the peak intensity distribution is shifted from the noise, a spectrum is present,

even if individual resonances do not have a statistically significant SN. However, in
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Figure 2.6: A: Distribution of maxima of 3×3 ROIs centred on the noise region (grey) and at

signal positions (orange) in the same spectra as shown in Figure 2.2. The same scale as Figure

2.2 is used, i.e. normalised with the true standard deviation of the noise. B, C & D: Spectra of

isolated immunoglobulin domain (ddFLN-dom5) as in Figure 2.2.
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Figure 2.7: Plot of the z-score of the 5% threshold as a function of the uncertainty in the peak

position, experimentally determined from noise regions of 1H-15N HSQC spectra.

this case, it is not possible to compare individual resonance intensities as the width

of the peak intensity distribution depends uniquely on the noise. Also, for a non-native

resonance to be identified, its SN needs to be higher than 2.8, i.e. it is higher than the

noise allowing an extremely wide ROI.

2.3 Results and Discussion

2.3.1 In vivo production of SecM-stalled RNCs

2.3.1.1 SecM-RNC constructs

This Chapter describes the methodology that was developed to study co-translational

protein folding by NMR, with a model domain used as an example: domain 5 from

the gelation factor (ABP-120) from Dictyostelium discoideum (ddFLN-dom5). Translation

of varying lengths of the subsequent domain ddFLN-dom6 in addition to ddFLN-

dom5 offers the opportunity to observe the emergence of ddFLN-dom5 from the exit
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tunnel. The conformational states occupied by ddFLN-dom5-RNC at different stages of

translations of the ddFLN-dom6 linker were monitored by NMR spectroscopy, making

use of large quantities of homogeneously stalled ddFLN-dom5+6-RNC. Previous NMR

studies of the ddFLN domains have shown that the truncation of the sequence coding

for the final G-strand of ddFLN-dom6 renders the domain folding incompetent [183]

(Figure 2.8B) such that it acts as a flexible linker tethering the folding-competent ddFLN-

dom5 to the PTC. To generate snapshots of the emergence of ddFLN-dom5 from the

ribosome exit tunnel, a series of RNC constructs were designed which have increasing

lengths of ddFLN-dom6 (Figure 2.8C). At the C-terminus of the construct, 17 amino-

acids from SecM allow translational pausing via the binding of the NC to the ribosome

tunnel (Figure 2.8A), while at the N-terminus there is a 6×His affinity tag to facilitate

affinity purification (Figure 2.8C).

While in this study, the linker is the disordered ddFLN-dom6 truncation, the nature

of the linker can be modified, and only requires being disordered to provide sufficient

flexibility to the RNCs to allow NMR observation.

2.3.1.2 In vivo production of selectively labelled RNCs

The in vivo method to generate selectively-labelled ddFLN-dom5-RNCs is described in

the Material and Methods, Chapter 6 [158]. Briefly, E. coli cells were grown in unlabelled

media to an OD600 ∼4, and then transferred into isotopically-enriched (with 15NH4Cl,

13C-glucose) media for expression (Figure 2.9A). Typically, 60 to 80 nmoles of ribosomes

were recovered from 500ml of cell culture after cell lysis and sucrose cushion (Figure

2.9C & D). 6 nmoles of NC-occupied ribosomes were typically isolated after Ni-IDA

affinity chromatography (Figure 2.9D). Finally, 3 nmoles of pure ddFLN-dom5-RNCs

were typically recovered from the 10% to 35% sucrose gradient (Figure 2.9D). The silver-
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Figure 2.8: A: Schematic of snapshots of the emergence of ddFLN-dom5-RNC from the ribosomal

exit tunnel at different lengths of translation of ddFLN-dom6 (purple). The SecM stalling

sequence is shown in green, and ddFLN-dom5 is shown in magenta. B: Left: crystal structure

of ddFLN (pdb ID: 1QFH.pdb) where ddFLN-dom5 is shown in pink and ddLFN-dom6 in

magenta. Right: schematic of the truncation of the C-terminal strand of ddFLN-dom6 (shown

in black) rendering the domain folding incompetent. C: Simplified map of the ddFLN-dom5-NC

constructs used in this study. Varying lengths of ddFLN-dom6 are used for different ddFLN-

dom5-RNCs, from ddFLN-dom5+21-RNC which incorporate none of the ddFLN-dom6 sequence,

to ddFLN-dom6751−840 to produce ddFLN-dom5+110-RNC. The numbering in the name of the

RNCs corresponds to the number of amino-acids from the C-terminal end of ddFLN-dom5 to the

PTC centre (black rectangle).
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Figure 2.9: Schematic representation of the ddFLN-dom5-RNC preparation. Refer to main text

for details.
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stained SDS-PAGE of these purified RNCs showed the typical pattern of the 54 ribosomal

proteins (Figure 2.9D), and in addition, the absorbance ratio OD260/OD280 gave a value

1.9±0.1, which was indicative of a homogeneous ribosome sample [184]. A lower ratio is

indicative of an excess of proteins and a higher ratio indicates loss of ribosomal proteins.

Another important aspect of the RNC preparation is the NC occupancy level.

The occupancy of the nascent chain in the ribosomes throughout the purification

was monitored by 6×His western blot, where 10pmoles of 70S complexes after each

purification steps are loaded along side 10, 5 and 2pmoles of purified ddFLN-dom5

with a 6×His tag (Figure 2.10A). The level of immunofluorescence from the 10pmoles

of 70S is quantified and compared to the immunofluorescence from the known quantity

of isolated ddFLN-dom5 controls to give an estimate of the NC quantity (Figure 2.10B).

The immunofluorescence of 10pmoles of the ribosome pellet after the first purification

step indicates that <20% of the ribosomes are occupied with a nascent chain (Figure

2.10A & B blue squares). The subsequent affinity purification improved the overall NC-

occupancy in the sample, yielding 75-80% of RNCs (Figure 2.10A & B orange diamonds).

The high occupancy is maintained after sucrose gradient purification (Figure 2.10A & B

red diamonds), suggesting that the NC remains attached during this final purification

step.

Moreover, the purified RNCs were also assessed for the presence of co-purified trigger

factor (TF), using an anti-TF antibody (Figure 2.10C). It was found that ddFLN-dom5-

RNCs typically contained <5% TF (Figure 2.10D), which is a very small amount as TF is

typically present in a equimolar ratio with ribosomes in the cellular environment [94],

and is unlikely to interfere in any significant way with the NMR observations of the NC.
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Figure 2.10: A: Anti-His western blot of samples collected at different stages of the ddFLN-

dom5+47-RNC purification. The quantities in pmoles indicated are based on quantification of 70S

ribosome in each sample from OD260 measurement. B: Quantification of the ddFLN-dom5+47-

RNC sample based on the signal intensity of the western. The dotted line is the linear fitting from

the three control samples (isolated ddFLN-dom5). The error bar for purified ddFLN-dom5-RNC

corresponds to the difference in occupancy found for the 10 and 5 pmoles samples (brown and red

diamonds). C: Anti-TF western for ddFLN-dom5+31-RNC, ddFLN-dom5+37-RNC and ddFLN-

dom5+47-RNC. D: Quantification of TF in the ddFLN-dom5-RNC samples based on the signal

intensity of the western. The error bars correspond to standard deviation of the TF occupancy

found in two to three independent preparations.



Chapter 2. A strategy for the production and NMR analysis of RNCs 80

0
15000

m/z
16000 17000 18000 19000

%

100
18008.4668

17994.3242 18049.5566

18062.9375

18079.0762

Figure 2.11: MALDI mass spectrum of partially purified and released ddFLN-dom5+47-NC.

The expected molecular weight of 1H-12C-14N ddFLN-dom5+47-NC is 17,115Da. The expected

molecular weight of 1H-13C-15N ddFLN-dom5+47-NC is 18081Da. Recorded by Dr Lisa Harris,

UCL.

2.3.1.3 Quantification of the selective labelling of RNCs

The acquisition of heteronuclear correlation NMR spectra requires homogeneous isotope

enrichment of the nascent chain with 13C and/or 15N. To achieve this during in vivo

production of the RNC, the growth media contains 12C glucose and 14NH4Cl to allow

production of NMR-silent ribosomes, while the expression media is isotopically enriched

(13C glucose or 15NH4Cl) to allow for the production of ribosome-bound nascent chains

with NMR-active heteronuclei [158]. The homogeneous isotopic labelling of the NC was

monitored by performing MALDI-TOF mass spectrometry of the purified release chain

from the cells expressing ddFLN-dom5-RNCs. The expected mass increase as a result of

isotopic labelling is reflected in the spectrum (Figure 2.11), where the NC has of a mass

of 18.0 kDa compared to the expected value of 17.1 kDa for unlabelled protein. The 966

Da difference in mass showed that the released ddFLN-dom5-NC is 99% labelled.

During the expression period of the RNCs, i.e. during the 60 mins of induction,

the cells produced some further ribosomes. While the expression protocol keeps the

expression period to a minimum, the ribosomes produced during this period are

isotopically labelled. The extent of ribosome labelling was quantified by recording
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Figure 2.12: 1H spectra of empty ribosomes purified from the ddFLN-dom5+110-RNC

preparation. The first increment of 1H-13C-edited HMQC (red) and 1H-13C filtered HMQC (blue)

via phase cycling (Section 6.2.7). The 1H-13C filtered spectrum (blue) is scaled such that the

L7/L12 signals have the same intensity as in the 1H-13C-edited spectrum (red), i.e. to 13% of its

initial intensity.

13C/15N-filtered and 13C/15N-edited proton spectra, which were recorded using opposite

phase cycling in an HMQC-based experiment (Figure 2.12) [157]. The flexible L7/L12

stalk region which gives rise to intense NMR signals [33] is used as a probe for

the labelling of the entire ribosomal complex. 13C/15N-filtered and 13C/15N-edited

proton spectra (Material and Method, Section 6.2.7) of empty ribosomes isolated from

the ddFLN-dom5-RNCs preparation showed that the intensities of the L7/L12 methyl

signals in the 13C-edited spectrum typically corresponded to 10-15% of those in the 13C-

filtered spectrum (Figure 2.12), suggesting that around 10-15% of the L7/L12 stalk are

isotopically enriched and gives rise to signals. (Of course, this means that the entire

ribosome is labelled to approximately the same extent, but these do not give rise to

observable resonances.) A similar ratio for the amide signals of L7/L12 in the 15N-

edited spectrum compared to that in the 15N-filtered spectrum was typically observed.

The extent to which the ribosomes were isotopically labelled in the purified ddFLN-

dom5-RNC samples was also determined based on the comparison of the intensity of the
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L7/L12 resonances to that expected from a completely isotopically labelled 70S sample

of the same concentration; this was found to vary from <5% to 15%.

2.3.1.4 Control spectrum: interaction of isolated NC with empty ribosomes

The ddFLN-dom5 used in this study have been chosen such that the native proteins

do not interact significantly with the 70S complex [130, 179], as this could restrict the

tumbling of the nascent chain by providing a second anchor point to the MDa complex

(the first one being the tethering at the PTC centre), and thus broaden resonances

potentially beyond detection. In order to confirm that the ribosome does not specifically

interact with the ddFLN-dom5 NC, the interaction of the purified release chain with

empty 70S was examined by NMR spectroscopy. The 1H-15N HMQC of purified ddFLN-

dom5 in the presence of empty ribosomes is shown in Figure 2.13B, which shows that

the observed resonances do not present extensive broadening compared to those of

ddFLN-dom5 isolated nascent chain (black spectrum in Figure 2.13B), with linewidths of

the amide protons varying from 20 Hz to 40Hz (Figure 2.13B). A similar experiment

performed with an isolated and purified released nascent chain of ddFLN-dom5+37

which, in addition to the isolated domain contains the hydrophobic SecM sequence

and the linker sequence (and thus is more representative of the ribosomally tethered

sequence), is shown in Figure 2.13C. Resonances attributed to SecM residues were

typically extensively broadened in the presence of the ribosome, however, the ddFLN-

dom5 resonances are not broadened, suggesting that this domain does not interact with

the ribosome.

In order to investigate further any potential interaction of ddFLN-dom5+37 with

empty ribosomes, 1H STE spectra were recorded to discriminate the translational

diffusion coefficient of ribosome-bound or isolated domains. The relative intensity
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Figure 2.13: A:1H-15N HSQC spectrum of the isolated released ddFLN-dom5+37-NC labelled with

the assignment of the ddFLN-dom5 resonances and SecM resonances recorded at 25◦C. B: Overlay

of the 1H-15N SOFAST-HMQC of the isolated ddFLN-dom5+dom6 alone (10µM, black) and with

empty 70S ribosomes (10µM, orange). The intensity losses for six ddFLN-dom6 resonances (dotted

blue circles) can be attributed to the truncation of ddFLN-dom6 as well as the resonances shift

highlighted for a ddFLN-dom6 resonances (plain blue circles) C: Overlay of 1H-15N SOFAST-

HMQC of the purified released ddFLN-dom5+37-NC alone (10µM, black) and with empty 70S

ribosomes (10µM, orange). The position of the discrete SecM resonances that do not overlay with

ddFLN-dom5 or linker resonances are highlighted with the blue circles.
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of the ddFLN-dom5 signals in 1H STE spectra recorded with increasing gradient

strengths is shown in Figure 2.14. Translational diffusion coefficients were calculated

from these data using Equation 1.15. Isolated ddFLN-dom5 was found to have a

translational diffusion coefficient D=1.40±0.05×10−10 m2s−1 and the resonances from

isolated ribosome complex were associated with D=1.7±0.4×10−11 m2s−1 (Figure 2.14A).

In the presence of 70S ribosomes, the diffusion coefficient of 15N-13C ddFLN-dom5+37

was selectively measured using a 1H-13C XSTE experiment [166] to filter out the

resonances arising from the unlabelled 70S complexes, and gave a diffusion coefficient of

1.30±0.05×10−10 m2s−1, a value identical (within error) to that found for ddFLN-dom5

in isolation. This high value for the diffusion of the purified chain in the presence of

empty ribosomes indicates that it does not interact significantly with the 70S complex
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on the timescale of the diffusion experiment (in which the diffusion delay ∆=100ms,

Material and Methods Section 6.2.4), however the broadening of the SecM resonances in

the SOFAST-HMQC suggested a transient interaction (timescale �100 ms) that did not

involve the folded ddFLN-dom5 domain.

For isolated ddFLN-dom5+110, which contains a longer hydrophobic ddFLN-dom6

linker sequence, the STE experiment showed a bi-exponential decay of the intensity with

increasing gradient strength, indicative of heterogeneity (Figure 2.14B). Two diffusion

coefficients can be measured from this curve, one extrapolated from the intensities in

the spectra recorded with the four lowest gradient strengths, that is on the order of the

isolated ddFLN-dom5 (D=1.40±0.05×10−10 m2s−1, Figure 2.14B), and one extrapolated

from the intensities in the four spectra recorded with the highest gradient strengths, that

is 5±0.5×10−11 m2s−1, a value that is 2-fold lower than that of ddFLN-dom5. This may

be a result of the susceptibility to proteolysis cleavage of the ddFLN-dom6 disordered

linker, and the bi-exponential decay of intensity in the STE diffusion experiment might

be reflecting a truncation of the unfolded ddFLN-dom6 linker.

2.3.2 NMR spectroscopy of RNCs

A set of NMR experiments were assessed and a subset seemed appropriate for the

study of ddFLN-dom5-RNC, and are presented below. First 1H 1D and 1H STE

diffusion spectra of ddFLN-dom5-RNC are described. Then, a detailed analysis of the

unfolded region of 1H-15N SOFAST-HMQC spectra of ddFLN-dom5-RNC is presented,

which can be assigned to either unfolded ddFLN-dom5 or the disordered ddFLN-dom6

linker, depending on the linker length (ddFLN-dom5+21-RNC or ddFLN-dom5+110-

RNC, respectively). Then, the ability of the 1H-15N SOFAST-HMQC to report on the

folded state of ddFLN-dom5+110-RNC is discussed. The analysis of the dispersed
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folded resonances in the 1H-13C HMQC and methyl-TROSY HMQC spectra of ddFLN-

dom5+110-RNC are presented next. Finally, the analysis of 15N XSTE and 13C-

edited STE-HMQC diffusion experiments are described (Section 2.3.2.8), that allows the

confirmation of the attachment of the NC to the ribosome complex.

2.3.2.1 Assessment of ribosome purity via 1H 1D NMR

1H 1D spectra recorded of a 10 µM ddFLN-dom5-RNC sample (>80% occupancy) were

closely similar to those recorded of empty 70S ribosomes under the same conditions

(Figure 2.15A). The absence of obvious signals from ddFLN-dom5 in these proton spectra

is surprising (Figure 2.15A). Based on signal intensities of the amide region, the ratio of

the ddLFN-dom5 resonances to those of L7/L12 stalk is thus estimated to be <0.1%,

although the occupancy of the ribosome complex was confirmed to be >80% as seen

by an anti-His western western blot (Figure 2.10). Two copies of the L7/L12 stalks are

thought to be visible for each ribosome [33], and only one nascent chain per ribosome.

Therefore, the higher abundance of NMR-observable L7/L12 cannot explain the very

significantly reduced sensitivity of the resonances of the nascent chain (<0.1%). It is

possible that differences in dynamics may contribute to the absence of visible nascent

chain resonances: in these spectra, restricted tumbling of the NC compared to that of the

L7/L12 stalk may result in broader linewidths for the NC resonances, and thus lower

sensitivity for those resonances. Irrespective of the exact reasons, it is clear that the

observed 1D 1H spectra is that of the ribosome alone, therefore, they were used to assess

the purity and concentration of the ribosome complexes.
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2.3.2.2 Assessment of the ribosome integrity by 1H STE NMR

The observation of resonances in the methyl and amide regions (inserts of Figure 2.15A)

from ribosomal complexes which have been assigned to the flexible L7/L12 stalk region

( [33] and Chapter 4) offers one possible probe for the integrity of the 70S complexes.

The method employed to monitor the ribosome integrity was the 1H STE diffusion

NMR experiment, observing the L7/L12 methyl signals (the amide undergo exchange

with H2O) to report on the translational diffusion of the entire ribosome complex. 1H

STE diffusion spectra of ddFLN-dom5-RNC are shown in Figure 2.15B. The observed

decay of intensity in the STE spectra with increasing gradient strength (Figure 2.15C)

indicates that the observed signals arise from slow diffusing species, with a calculated

translational diffusion coefficient of 2.0±0.5×10−11 m2s−1 (Figure 2.15B). This value is

equal, within the experimental uncertainty, to the value obtained for the 70S complex

(D= 1.7±0.4×10−11 m2s−1, Figure 2.15B in line with previous measurements from light-

scattering spectroscopy [172]), and indicates that the purified RNCs are intact ribosome

complexes.

2.3.2.3 Analysis of the unfolded region of 1H-15N SOFAST-HMQC spectra of RNCs

A 1H-15N SOFAST-HMQC spectrum of ddFLN-dom5+21-RNC is shown in Figure 2.16A

& B. The spectrum shows a cluster of signals in the central region of the spectrum

(between 7.8-8.5 in the 1H dimension). In the case of longer linker length, well-dispersed

resonances are also observed with very low intensity and are analysed in details in the

next Section 2.3.2.4. The analysis of the central region of the 1H-15N SOFAST-HMQC

spectrum of RNC is described first.

The cluster of unfolded signals in the 1H-15N SOFAST-HMQC spectrum of ddFLN-

dom5+21-RNC overlays reasonably well with the 1H-15N HSQC spectrum of 8M urea
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Figure 2.16: A: 1H-15N HSQC spectra of the isolated ddFLN-dom5+21 as a released NC. B:
1H-15N SOFAST-HMQC spectra of ddFLN-dom5+21-RNC. C: 1H-15N HSQC spectra of the

assigned ddFLN-dom5 in 8M urea [185]. D: 1H-15N SOFAST-HMQC spectra of ddFLN-dom5+21-

RNC (black), overlaid with spectra of the urea unfolded ddFLN-dom5 (magenta). The depicted

assignment is extrapolated from the 8M urea assignment of the isolated ddFLN-dom5. The blue

circled resonances highlight possible chemical shift changes between the urea denaturated states

and the RNC resonance for A721. E: Distribution of the signal intensity for the 32 resonances that

do not overlap in spectrum B. The signal intensity is defined as the maximum within a 3×3 ROI

centred at the urea assigned position. The nine-variate distribution of the noise is shown in grey.

Except for few resonances mentioned in the main text (V677, T679, T685, A721, V729, V731), all

resonance intensities are significantly higher than the noise distribution. The black line shows the

noise threshold as defined in Section 2.2, above which the signals have less than 5% chance of

being a result of random noise. All spectra were recorded at 25◦C.
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denaturated ddFLN-dom5 (shown in Figure 2.16C with assignments [185]). 32 of

the observed and resolved ddFLN-dom5+21-RNC resonances could be attributed to

unfolded ddFLN-dom5 based on the assignment (Figure 2.16D), with most peaks within

0.05ppm in the 1H dimension and 0.5ppm in the 15N dimension. These resonances can

be probes to report on the unfolded states of the RNC.

The RNC spectrum (Figure 2.16D) shows a significant broadening of the disordered

ddFLN-dom5 resonances which results in a significantly greater overlap in the central

region of the RNC spectrum compared to the urea-denatured spectrum of the isolated

protein. The distribution of the z-score of the intensities of the 32 unfolded ddFLN-

dom5 resonances is shown in Figure 2.16E (using the methodology described in Section

2.2, where the signal intensity is the maximum of a 3×3 ROI centred at the resonances in

the urea denatured ddFLN-dom5 spectra), and most of the resonances have a statistically

significant intensity. Figure 2.17 shows the z-score for each of the residues which had an

unambiguous assignment in the ddFLN-dom5+21-RNC spectrum (plot A), or in the 8M

urea denatured spectrum of the isolated protein (plot B). The intensities of the individual

residues do not show a clear correlation along the sequence, and the two plots show

broadly the same variation along the sequence. The attachment of the RNC does not

appear to result in significant broadening of the C-terminal residues compared to the

N-terminal ones, in line with the high flexibility observed along unfolded chains [171].

However, some unfolded resonances in the 1H-15N SOFAST-HMQC spectrum of

ddFLN-dom5+21-RNC, such as those corresponding to V677, T679, T685, A721, V729,

V731 appear to have a particularly low intensity (Figure 2.16E & 2.17C), but might also

have altered chemical-shift values compared to those in the urea-denaturated spectra

(Figure 2.16D). This difference in chemical shift between the unfolded ddFLN-dom5 and

the RNC spectra might be explained by a difference in the conformational-sampling
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C: Plot of the intensities of ddFLN-dom5+21-RNC resonances divided by those of the 8M urea

denatured ddFLN-dom5, normalised so that the mean of the ratio equals one. The variation of

the ratio varies from 0.5 to 1.5 times the mean, except for residues T685, N711 and N730.
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the domains can perform in urea compared to when attached to the ribosome via its

C-terminal end.

Resonances corresponding to an unfolded chain are also observed in spectra of

ddFLN-dom5-RNCs with long linker lengths. Figure 2.18A shows the disordered

region of the 1H-15N SOFAST-HMQC spectrum of ddFLN-dom5+110-RNC. The large

cluster of overlapping resonances in the centre of the spectrum cannot be assigned to

disordered ddFLN-dom5: discrete ddFLN-dom5 resonances were not observable, with

their intensity being lower than the noise threshold (Figure 2.18B & D). Instead, the RNC

resonances seem to overlay well with the spectrum of truncated ddFLN-dom6 linker

(Figure 2.18C). The distribution of the z-score of ddFLN-dom6 resonances intensities

(Figure 2.18D, cyan) shows that the sensitivity of the disordered ddFLN-dom6 signals is

sufficiently higher than the noise (SN = 2 to 8) to allow good accuracy for determination

of resonance frequency and sensitivity. This observation showed that the overlapping

central region of the 1H-15N SOFAST-HMQC spectra of RNCs provides distinct probes

for the unfolded ddFLN-dom6 linker and for unfolded ddFLN-dom5.

We have shown here that the analysis of a set of discrete resonances attributed to

unfolded ddFLN-dom5, that do not overlay with resonances of the ddFLN-dom6 linker,

nor to background L7 resonances, may be used to investigate the disordered state of

ddFLN-dom5-RNCs. Further results using this approach will be presented in Chapter 3.

2.3.2.4 Analysis of the “well-dispersed” resonances in 1H-15N SOFAST-HMQC spectra of

RNCs.

In addition to intense resonances from disordered linker regions, discussed above, the

1H-15N SOFAST-HMQC spectra of ddFLN-dom5+110-RNC exhibited dispersed signals

of low intensity (Figure 2.19A & C). These dispersed resonances overlay well with folded



Chapter 2. A strategy for the production and NMR analysis of RNCs 93

A

8.6 8.4 8.2 8.0 7.8
1H  (ppm)

125

120

115

110

1
5
N

  
(p

p
m

)

T679

G716

A721

8.6 8.4 8.2 8.0 7.8
1H  (ppm)

B

125

120

115

110

1
5
N

  
(p

p
m

)

C

8.6 8.4 8.2 8.0 7.8
1H  (ppm)

125

120

115

110

1
5
N

  
(p

p
m

)

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1
T
6
7
9

A
7
2
1

G
7
1
6

z-score

d
is

tr
ib

u
ti

o
nD

8M urea

+110-RNC

70S

+110-RNC

ddFLN-dom6

+110-RNC

Figure 2.18: A: 1H-15N SOFAST-HMQC spectrum of ddFLN-dom5+110-RNC (black). The 1H-15N
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B: Overlay of 1H-15N SOFAST-HMQC spectrum of ddFLN-dom5+110-RNC (black) and isolated

8M urea unfolded ddFLN-dom5 (magenta) [185]. The blue spheres indicate the resonances that

do not overlay with resonances arising from L7/L12 or ddFLN-dom6 linker. C: Overlay of the
1H-15N SOFAST-HMQC spectra of ddFLN-dom5+110-RNC (black) and purified released ddFLN-

dom5+110 construct (cyan). D: Distribution of the z-score of the intensities of unfolded ddFLN-

dom5 resonances in magenta and ddFLN-dom6 resonances in cyan in the 1H-15N SOFAST-HMQC

spectrum of ddFLN-dom5+110-RNC. The 5% threshold as defined in Section 2.2 is shown by the

dotted black line.
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15N SOFAST-HMQC spectrum of ddFLN-dom5+110-RNC. C: Overlay of 1H-15N SOFAST-HMQC
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D: Overlay of 1H-15N SOFAST-HMQC spectra of ddFLN-dom5+110-RNC (orange), and that of
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with the highest sensitivity are labelled above the intensity bar.
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ddFLN-dom5 resonances by comparison with a spectrum of isolated ddFLN-dom5+21

(Figure 2.19B). In the RNC spectrum, 9 well-dispersed ddFLN-dom5 resonances out of

64 resonances analysed (labelled in Figure 2.19C) had an intensity that was significantly

higher than the noise threshold as defined in Section 2.2 (Figure 2.19E). These resonances

hinted at the presence of folded ddFLN-dom5-RNC. Moreover, the centre of distribution

of the z-score of the 64 dispersed ddFLN-dom5 resonances intensity is shifted compared

to the noise distribution (Figure 2.19E), indicating resonances corresponding to folded

ddFLN-dom5 within the RNC spectrum are present but not observable, as it was

the case in the distribution observed for a model spectrum of isolated ddFLN-dom5

recorded with very low number of scans, and with very low sensitivity, shown in Figure

2.6 (NS=16). Together, this indicates that the folded state of the RNC is populated

at this linker length, but individual “folded” resonances may not be observed. As

has been described in the case of the model spectra, at low SN, the distribution of

resonance intensity is only dependent on the noise, not on their intrinsic linewidth, and

observation of a particular resonance was found to be highly sample-dependent – i.e. no

significance should be attached to the observation of particular individual resonances.

This low intensity significantly hinders more detailed analysis of the folded conformation

of ddFLN-dom5-RNCs via 1H-15N SOFAST-HMQC (e.g. diffusion measurements or

linewidth analysis).

This analysis of the 1H-15N SOFAST-HMQC spectra of RNCs suggests that, while the

amide resonances were found to be reliable probes of the disordered regions of RNC,

allowing the discrimination between unfolded ddFLN-dom5 and linker ddFLN-dom6,

alternative methods are required for the detailed analysis of weak folded resonances.

This is pursued in the next Section using other NMR probes, and in particular the 13C-

based observations of residue sidechains.
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2.3.2.5 Analysis of the well-dispersed resonances in 13C-1H HMQC of RNCs.

Resonances from sidechains are often associated with increased sensitivity relative to the

backbone resonances due to their low order parameter as compared to the backbone

[186], and further in the case of methyl groups (Leu, Val, Ile, Ala, Thr and Met),

for which the three equivalent protons also provide enhanced sensitivity [187]. 1H-

13C HMQC spectra of ddFLN-dom5+110-RNC (Figure 2.20B) show several dispersed

methyl resonances that overlay closely with native-ddFLN-dom5 resonances (Figure

2.20A and 2.20D orange spectrum). The intensity distribution of 16 high-field shifted

methyl resonances (<0.6 1H ppm) of ddFLN-dom5 in ddLFN-dom5+110-RNC is shown

in Figure 2.20E. As shown by the insert of Figure 2.20D, five resonances were found to

overlap in RNC spectra (resonances I695 γ2 and a L7 resonance, V729 γ1 and V664 γ2,

V729 γ2 and A670 β). Compared to the spectrum of the isolated, released chain, the

extent to which those resonances are overlapped has increased, and this relates to their

broader linewidth induced by the ribosome tethering. These five resonances are therefore

analysed separately from the other 11 resonances, and were found to have statistically

significant intensities. The intensity distribution of the remaining resonances was found

to overlap with the noise distribution, and only two of these discrete resonances have

intensities that were found to be higher than the noise threshold. As was the case for the

1H-15N SOFAST-HMQC resonances (Section 2.3.2.4), the discrete methyl resonances in

the 1H-13C HMQC have a distribution that is shifted from the noise, indicating that the

folded state is being populated, but individual resonances remain hard to observe. In

order to increase the sensitivity of the dispersed methyl resonances, the methyl-TROSY

HMQC method was tested with high level of deuteration and selective labelling of the

Ile δ1.
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Figure 2.20: A: 1H-13C HMQC spectrum of isolated ddFLN-dom5+21 purified as a released NC,

with the assignment of the ddFLN-dom5 methyl resonances from [185]. Two isoleucines assigned

to SecM are also shown, labelled in red. B: 1H-13C HMQC spectrum of ddFLN-dom5+110-RNC.

D: Overlay of 1H-13C HMQC spectra of ddFLN-dom5+110-RNC (black) and that of 13C labelled

70S ribosome (green)(the resonances in the latter arise from L7L12 stalk). D: Overlay of 1H-13C

HMQC spectra of ddFLN-dom5+110-RNC (black) and isolated ddFLN-dom5+110-NC (magenta).

An insert of the spectra is shown below, highlighting overlapped resonances in the RNC spectrum.

E: Intensity distribution of the 16 methyl resonances assigned in B in the 1H-13C HMQC spectra

of ddFLN-dom5+110-RNC. The intensities of the discrete signals are shown in orange, and the

intensities of the overlapped signals are shown in dark red. The noise distribution is shown in

grey, and the noise threshold as defined in Section 2.2 is shown with the dotted black line.
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2.3.2.6 Analysis of the dispersed resonances in 1H-13C methyl-TROSY HMQC of RNCs

The combined use of deuteration and selective 13CH3 labelling currently presents

optimal conditions to perform methyl-TROSY NMR spectroscopy in the 1H-13C HMQC

acquisition (Section 1.3.2), reducing T2 relaxation resulting in narrower, more intense

resonances. U-[12C,2 H], Ileδ1-[13C1H3] labelled ddFLN-dom5-RNC samples were

produced, and the methyl-TROSY HMQC of ddFLN-dom5+110-RNC is shown in Figure

2.21. Signals arising from the high-field shifted (i.e. folded) isoleucine side-chains of

ddFLN-dom5 were all observed with a statistically significant intensity, and a SN ranging

from 4.3 to 12.5 (Figure 2.21B & D). Compared to SN of ca. 1-3 in previous spectra, and

this increased intensity allows further characterisation of the folded state of the RNC.

The observation of these intense resonances allows determining their proton

linewidths (∆ν1H): the 1H linewidths of the deuterated ddFLN-dom5-RNC resonances

were measured by fitting the signals to a lorentzian lineshape, whilst no window function

was applied in the 1H dimension (Figure 2.21), and the uncertainty in linewidth was

estimated from equation 1.12 [157]. 1H linewidths of the RNCs ranged from 14-28

Hz with uncertainty of 1-4 Hz. These linewidths were significantly narrower than the

linewidths expected for resonances arising from the ribosomal particle (�100 Hz, Figure

1.12), indicating that the nascent chain has a high degree of motional freedom, and

an internal tumbling time τc,NC (Section 1.3.2) that is significantly shorter than that of

the entire ribosome complex (τc,ribo ∼ 2500 ns, [129]). These linewidths of the RNC

resonances were however significantly greater than these of the corresponding isolated

nascent chain resonances (ca. ≤ 5-6 Hz), which could not be measured accurately in this

case because the 1H acquisition time, otherwise limited by the probe capacity and the 1H-

13C decoupling pulse, was too short to avoid truncation in the FID. These results indicate

that the NC has restricted mobility due to the attachment to the ribosomal complex.
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Figure 2.21: 1H-13C HMQC spectra of: A: purified released U-[12C,2 H], Ileδ1-[13C1H3] ddFLN-

dom5+47-NC, 100 µM recorded for 1 hour, and B: U-[12C,2 H], Ileδ1-[13C1H3] ddFLN-dom5+110-

RNC, 10 µM recorded for 30 hours. The corresponding proton slice of the signals are shown next

to the assigned resonances, with their SN ratio in green and 1H linewidth in black. The intensity

distribution for the five ddFLN-dom5 Isoleucine resonances are shown in D. The signal intensity

is the maximum in a 3×3 ROI, and the 5% threshold for the noise is shown with the black dotted

line.
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The 13C acquisition time was kept deliberately short (t1 max=20 ms) to allow a maximise

signal accumulation, but consequently this did not allow the accurate determination of

the 13C linewidths.

Thus, we have shown in this section that the analysis of the resonances observed

in the methyl-TROSY HMQC (and in particular the increased sensitivity allowing

measurement of the 1H linewidths) of ddFLN-dom5-RNCs provides a wealth of

information on the folding states of the RNC, and this strategy was utilized for the

detailed investigation of the folded states of ddFLN-dom5-RNC with varying ddFLN-

dom6 linker lengths presented in Chapter 3.

2.3.2.7 Analysis of the aromatic resonances of RNCs

Aromatic resonances are also good reporters of the formation of globular structure

because of their hydrophobicity and their propensity to cluster within the hydrophobic

core of simple protein folds [188]. Moreover, there is no aromatic residue in the C-

terminal end of the L7 stalk, which simplifies the analysis of the RNC spectrum since

the intense resonance of L7 in the case of even small amounts of mixed labelling in the

in vivo derived RNC would not be present in this region. Figure 2.22A shows the 1H-

13C aromatic spectrum of isolated released ddFLN-dom5+21, in which 10 “dispersed”

resonances can be assigned to the Tyr and the Phe residues within ddFLN-dom5 [185].

The resonances corresponding to a Trp residue also observed (labelled in red in Figure

2.22A) can be readily assigned to the single Trp in the sequence, present in the SecM

stalling sequence. The 1H-13C aromatic spectrum of ddFLN-dom5+110-RNC is shown

in Figure 2.22B. The spectrum shows a set of overlapping residues that have chemical

shifts close to the random-coil chemical shift of Phe and Tyr (13C: 127-132 ppm / 1H:

6.9-7.3 ppm & 13C:115-120 ppm / 1H: 6.6-6.9 ppm, respectively) which overlap with
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Figure 2.22: A: 1H-13C HMQC spectrum of isolated ddFLN-dom5+21 released NC, with the

ddFLN-dom5 peak assignment from [185] and the SecM Trp resonances in red. The Trp chemical

shift are as follows from the BioMagResBank: Cδ1,2:127 ppm, Hδ1:7.2 ppm, Cε3:120 ppm, Hε3:7.5

ppm, Cζ2:114.5 ppm, Hζ2:7.4 ppm, Cζ3:122 ppm, Hζ3:7.0 ppm. B: 1H-13C HMQC spectrum

of ddFLN-dom5+110-RNC (black) overlaid with that of the purified released chain in magenta

(same as in A). C: Signal intensity distribution for the ddFLN-dom5 resonances in the RNC spectra

shown in B. The signal intensity is the maximum of a 3×3 ROI centred at the resonances frequency

in the released assignment, and the noise is shown in grey.
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resonances from the isolated domain. Resonances assigned to folded ddFLN-dom5

aromatic residues were not observable: their intensities distribution overlaps with the

noise distribution (Figure 2.22C). This is in line with the lower intensity of aromatic

signals than the methyl resonances where even in the latter case some of the individual

resonances were at the noise threshold (Section 2.3.2.5). The ratio of intensities of the

“unfolded” aromatic resonances to that of the dispersed “folded” ones (which are at the

noise level) was found to be 40±10. This differential intensity was increased compared

to the spectrum of the isolated domain, where the unfolded resonances have an intensity

that is 10±5 times higher than the dispersed ones. This might reflect the broadening of

the folded resonances due to the restricted motion imposed by the ribosome tethering,

while the aromatic sidechains of unfolded linker residues have a higher degree of

freedom.

Notably, the absence of visible Trp resonances indicates that the C-terminal end of

the nascent chain is not observable, probably due to the restricted tumbling due to the

likely occlusion within the ribosomal tunnel. Indeed, the Trp within the SecM sequence is

known to make stable contacts within the constriction of the ribosome exit tunnel (Figure

2.1) [40], therefore it is expected to have a high order parameter and also to tumble with

the τc of the ribosomal complex. In addition, despite the restricted tumbling of the C-

terminal end of the RNC, a set of His sidechain resonances arising from the 6×His tag

are observable, reporting on the faster tumbling of the N-terminal end of the RNC.

Together, the intensity of the aromatic resonances are typically too weak to probe for

the presence of folded ddFLN-dom5-RNC, however, they appear to be a reliable means

of assessing the integrity of the RNC by reporting on the relative sensitivity of the His

resonances at the N-terminus versus the Trp resonances at the C-terminus.
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2.3.2.8 Attachment of RNCs as followed by heteronuclear-edited STE diffusion

The direct monitoring of the ribosomal attachment of the species giving rise to

the observed resonances can be performed by measuring the translational diffusion

coefficient associated with the RNC resonances and comparing this to the translational

diffusion coefficient of ribosome-bound L7/L12 (D = 1.7±0.4×10−11 m2s−1, Section

2.3.2.1) or that of released ddLFN-dom5 in the presence of one molar equivalence of

ribosome (D = 1.30±0.05×10−10 m2s−1, Section 2.3.1.4). With values for the parameters

of the STE experiments appropriate for the determination of the diffusion coefficient of

the ribosome (i.e. a diffusion delay, ∆=100 ms, gradient lengths δ=4 ms, Section 1.3.4),

the intensity of signals arising from released NCs is expected to decay more than 95%

from the spectrum recorded at low gradient strength (2.5 G.cm−1) to that recorded at high

gradient strength (47.5 G.cm−1). A signal arising from ribosome-bound species, however,

is expected to have an attenuation of 30%. This indicates that the diffusion coefficients of

the ribosome and that of the released proteins have values that are significantly different

to assess ribosome-attachment based on the STE diffusion measurement on the NC

resonances.

Heteronuclear STE experiments [166, 167] were used to determine the translational

diffusion coefficient of the NC specifically, excluding most of the resonances from the

L7/L12 stalk. As mentioned in Section 2.3.2.3, the resonances characteristic for the

unfolded regions of the RNC are observed in the 1H-15N SOFAST-HMQC spectra,

and this suggests that the 15N XSTE diffusion measurement [166] can report on the

attachment of the NC giving rise to these unfolded resonances. On the other hand, the

1H-13C-edited STE diffusion experiment [167] can report on the attachment of the NC

giving rise to folded ddFLN-dom5 resonances observed in the 1H-13C HMQC spectra.

Figure 2.23 shows the 15N XSTE and 13C-edited STE-HMQC spectra of ddFLN-
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Figure 2.23: A: 1H-15N edited XSTE spectra of ddFLN-dom5+110-RNC recorded with g=2.5

(cyan), g=47.5 G.cm−1 (black). B: 13C-edited STE-HMQC spectra of ddFLN-dom5+110-RNC

recorded with g=2.5 (cyan), g=25 (blue), g=47.5 G.cm−1 (black). C: Plot of the relative signal

integral delimited by the dotted lines in A in the different spectra of the diffusion experiments

in a log scale, versus the square of the gradient strength, in the 1H-15N edited XSTE spectra of

ddFLN-dom5+110-RNC in red and for the purified released in the presence of ribosome in blue

(Section 2.3.1.4). The intensity of the 1H STE of empty 70S is shown in black. D: Same as C for

the intensity of the 13C-edited STE-HMQC spectra.

dom5+110-RNC. The 15N XSTE spectra of ddFLN-dom5+110-RNC showed a signal

characteristic of unfolded resonances with a low 1H chemical shift dispersion (Figure

2.23A). This signal showed a 30% decay from the 15N XSTE recorded with a low gradient

strength (2.5 G.cm−1) to that recorded with a high gradient strength (47.5 G.cm−1). The

integral of the signal at 7.8-8.5 ppm was analysed to determine the diffusion coefficient

of the unfolded RNC (ranging from 2.3 to 1.7±0.5×10−11 m2s−1, Figure 2.23C), which

showed that those signals arise from a ribosome-bound NC.

The 13C-edited STE-HMQC spectra recorded at gradient strengths g=2.5, 25 and

47.5 G.cm−1 are shown in Figure 2.23B, which also showed a similar attenuation to
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that observed in the 15N XSTE spectra (Figure 2.23D). If we assume that the extent of

labelling of the ribosomal-bound L7/L12 within RNC samples is 10%, as typically found

to be visible in the heteronuclear spectra of RNC, the signals within the 13C-edited STE-

HMQC spectra thus represents the sum of the RNC signal plus those from L7/L12. The

attribution of the resonances in the 13C-edited STE-HMQC diffusion spectra was done by

analysing the 1H-13C HMQC spectrum, and the intensity of the signals arising from 10%

labelled L7/L12 is compared to the intensity of the signals arising from the NC which

was dependent on the length of ddFLN-dom6 linker (analysed in details in Chapter 3).

The L7/L12 contribution to the signals observed in the 13C-edited STE-HMQC spectra

was therefore found to vary from 20% to 70%, depending on the ddFLN-dom6 linker

length. In the case of intermediate linker lengths (ddFLN-dom5+37 & ddFLN-dom5+47),

the signals in the 13C-edited STE-HMQC spectra arise mainly from L7/L12 resonances,

suggesting that the diffusion experiments report mainly on the attachment of the stalk

region. In cases of shorter and longer RNC constructs (≤ ddFLN-dom5+31 & ≥ ddFLN-

dom5+67) the intensity of either the disordered ddFLN-dom5 or the ddFLN-dom6 linker

(Section 2.3.2.3) were high enough to allow attribution of the observed signals in the 13C-

edited STE-HMQC spectra to the NC, thus allowing reporting on the attachment of the

NC to the ribosome complex.

The absence of high field shifted methyl resonances in the 1H-13C spectra of

70S ribosomes offers the exciting potential of monitoring the translational diffusion

coefficient for the “folded” ddFLN-dom5-RNC resonance in a specific manner. For

protonated RNCs, 13C-edited STE-HMQC spectra did not reveal any dispersed ddFLN-

dom5 resonances, despite very high data accumulation, which is likely to be a result

of transverse relaxation during the spin-echo that hosts the 2ms gradients. However,

13C-edited STE-HMQC spectra of U-[12C,2 H], Ileδ1-[13C1H3] labeled ddFLN-dom5+110-
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Figure 2.24: A: 13C-edited STE-HMQC spectra of U-[12C,2 H], Ileδ1-[13C1H3] ddFLN-dom5+110-

RNC recorded with g=2.5 (cyan), g=25 (blue), g=47.5 G.cm−1 (black), δ=1.5ms and ∆=100ms. The

dotted lines indicates one and two standard deviation of the noise. B: Plot of the relative signal

intensity in the different spectra of the diffusion experiments in a log scale, versus the square of

the gradient strength, for the I695 resonances in the 13C-edited STE-HMQC spectra of ddFLN-

dom5+110-RNC in red and for the purified released in the presence of ribosome in blue (Section

2.3.1.4). The intensity of the 1H STE of empty 70S is shown in black.

RNC displayed an NMR signal that corresponded to the resonances of “folded” Ileδ1

695 (Figure 2.24), which do not overlay with any 70S ribosomal resonances. Despite

the low SN (ca. 3.5), the absence of signal decay from 2.5 G.cm−1 to 47.5 G.cm−1

indicates slow translational diffusion similar to that of the 70S complex, thus enabling the

demonstration that the NC is attached to the ribosome unambiguously (Figure 2.24B).

This result showed the ability to monitor the attachment of the nascent chain in-situ

during the typically long acquisition time required for RNCs. RNC are typically unstable

and highly transient complexes in nature; the release of NC from the ribosome would

significantly compromise the analysis of RNC spectra as even small amounts of release

would result in the appearance of sharp resonances for folded ddFLN-dom5 that can

overlay with RNC resonances. The ribosome-bound ddFLN-dom5-NC giving rise to the

“folded” 1H-13C methyl-TROSY HMQC spectrum or “unfolded” 1H-15N SOFAST-HMQC
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spectrum was directly monitored by interleaving the acquisition of the heteronuclear

two-dimensional spectra with 1H STE and either 13C-edited STE-HMQC or 15N XSTE

diffusion experiments, respectively.

2.3.3 A complete strategy to monitor the integrity of RNCs

NMR data on RNCs are typically recorded over several days, and it is thus critically

important to monitor and to understand the integrity of the RNCs over this time-frame.

This section presents the overall strategies developed to monitor the stability of the

RNC, using a combination of NMR experiments and biochemical assays, and attempts

therefore to draw together an assessment of its behaviour over time.

The integrity of the RNC complex can be characterised by four main features (Figure

2.25): firstly the general integrity of the sample, which can suffer for example from

bacterial growth, and secondly the stability of the 70S ribosome itself. Both of these

aspects can be (and are) monitored using 1H NMR experiments (described further in

Section 2.3.3.1). The attachment of the NC to the ribosomal complex and in particular

the release of the SecM stalling sequence may be monitored by the analysis of its

Trp resonances which will be described in Section 2.3.3.3. Lastly, and perhaps most

importantly, the integrity of the NC itself may be monitored by the analysis of the

ddFLN-dom5 resonance intensities over time, the measurement of the NC diffusion

coefficient over time via 13C-edited STE-HMQC diffusion experiments and also using

biochemical methods, in particular with the emphasis on the use of an anti-His western

blot timecourse analysis, described in Section 2.3.3.4).

Over 30 RNC samples have been produced and studied during the course of this

PhD. The data presented here have been chosen to best illustrate the various aspects of

the stability of the RNCs samples over time, and have consequently been drawn together
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Bacterial growth Ribosome break-down

SecM release NC proteolysis

Unfolded

RNC

Folded

RNC

Figure 2.25: Schematic of the different processes by which the RNCs complexes can break-down.

Refer to main text Section 2.3.3 for details.

from many different samples.

2.3.3.1 Stability of the 70S monitored by changes in the proton spectra over time

1H NMR spectra can be used to report on the integrity of 70S ribosomes within the

RNC over the time-course of the NMR acquisition, in particular when recorded in

an interleaved manner with heteronuclear spectra and diffusion experiments. The

very short acquisition time of a 1H NMR spectrum (2-5 mins) renders it particularly

favourable for the analysis of the sample integrity without compromising the time
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available for acquisition of NMR data relevant for the co-translational folding analysis

(e.g. heteronuclear spectra). Over the course of the sample lifetime, 1H spectra of RNCs

typically exhibit a number of changes, particularly in the methyl region (Figure 2.26).

Upon closer inspection, three resonances were able to be assigned to the L7/L12

methyls by comparison with 1H-13C HMQC of 13C labelled ribosome (Figure 2.26 and

Chapter 4). Among them, a signal at 0.8 ppm typically did not change over time (Figure

2.26A & C cyan curve), however, the signal at 0.9 ppm was found to double in intensity

over 20-30 hours of sample lifetime in 1H spectra of each of the RNC sample (Figure

2.26A & D, cyan curve).

The properties of these signals with increasing intensity over the three days of

NMR acquisition can be examined by measuring the translational diffusion over the

same time-course, using interleaved 1H STE diffusion experiments. Figure 2.26C &

D shows the intensity of the signals centred around 0.8 ppm and 0.9 ppm in the 1H

STE diffusion experiment with gradient strengths of g=2.5 (cyan), g=25 (blue), g=47.5

G.cm−1 (black). The increase in intensity of the signal at 0.9 ppm was typically

Figure 2.26 (following page): A: Stack of 1H 1D spectra of a ddFLN-dom5+110-RNC sample

recorded at hourly intervals during the NMR acquisition time (0-85 hours). Two sections of the

methyl region are highlighted, the methyl resonance centred at 0.8 ppm assigned to the L7/L12

stalk and a methyl resonance centred at 0.9 ppm, which is positioned at a random coil methyl

chemical shift. : B: Same as A, but the ribose region of the spectra is shown. C, D & E: Plots of the

variation of intensity of the 1H STE diffusion experiment with the NMR experimental time. Low

gradient strenght spectra (cyan, g=2.5 G.cm−1), middle gradient strength (blue, g=25 G.cm−1)

and high gradient strength (black, g=47.5 G.cm−1) are shown. Plot B shows the signal intensity vs

time for the resonance centred at 0.7 ppm. Resonances centred at 0.9 ppm is shown in plot C, and

the ribose signal is shown in plot E. Refer to the main text for the analysis of the variations over

time. F: Size exclusion profile on an analytical Superdex 200 of a ribosome incubated at 25◦C for

one week. The profile of the high molecular weight fraction is shown in magenta and that of the

low molecular weight fraction is shown in cyan. The lower graph shows the same profiles with a

zoom on the low absorbance values.



Chapter 2. A strategy for the production and NMR analysis of RNCs 110

20
40

60

0.50.550.60.650.70.750.80.850.90.951
0

0.5

1

1.5

2

2.5

3

3.5
x 107

1H ppm
ti
m

e 
in

 h
ou

rs

in
te

n
si

ty

DSS
methyl 0.8ppm

methyl 0.9ppm

5
10

15

3.23.33.43.53.63.73.83.944.14.2
0

1

2

3

4

5

6
x 108

1H ppm

ti
m

e 
in

 h
ou

rs

in
te

n
si

ty

ribose

0 20 40 60 80
0

0.5

1

1.5

2

2.5

3 methyl 0.8ppm

time (hrs)

si
g

n
al

 i
n

te
g

ra
l 

(x
 1

0
7
)

0 20 40 60 80
3

4

5

6

7

8

9 ribose

time (hrs)

si
g

n
al

 i
n

te
g

ra
l 

(x
 1

0
7
)

0 20 40 60 80
0

1

2

3

4

5

6

7 methyl 0.9ppm

time (hrs)

si
g

n
al

 i
n

te
g

ra
l 

(x
 1

0
7
)

A

C

D

B

E

5 10 15 20 25 30

0

10

20

elution volume (ml)
5 10 15 20 25 30

0

200

400

600

O
D

2
8
0

F

elution volume (ml)

O
D

2
8
0

5%

50%

95%

5%

50%

95%

5%

50%

95%

70S after 1 week

Low MW fraction

Large MW fraction



Chapter 2. A strategy for the production and NMR analysis of RNCs 111

associated with an increase in the diffusion coefficient from 2.0±0.5×10−11 m2s−1 to

10.0±0.5×10−11 m2s−1. The spectra recorded with a high gradient strength (black

line in figure 2.26D, g=47.5 G.cm−1) showed a much slower decay, indicating that the

ribosome-bound resonances disappeared slowly. Together, this suggests that the increase

in intensity corresponds to the appearance of fast diffusing released ribosomal proteins

that contribute to the random-coil signal at 0.9ppm (doubling time typically 20-30 hours),

whilst the ribosomally-associated L7/L12 became released in a much longer timescale

(half time typically 3-6 days).

In order to quantify the amount of released material observed in the 1H 1D spectra,

a ribosome sample was analysed biochemically after the 1H 1D spectra recorded from

that sample over time had showed the same pattern as in Figure 2.26A. After seven days

at 25◦C, the 1H STE diffusion spectra of the 70S ribosome sample exhibited a similar

increase in translational diffusion (D=10.0±0.5×10−11 m2s−1). The sample was then

analysed biochemically by analytical sucrose gradient sedimentation and size-exclusion

chromatography (Figure 2.26F). In the size exclusion chromatography profile, the 70S

ribosomal fractions eluted in the void volume (∼7ml), and the absorbance at OD280 of the

latter eluting species accounted for less than 2% of the initial ribosome content (OD280=10

versus OD280=580 for the 70S ribosomal fraction), indicating that only a small proportion

of the ribosomes were disassembled. The ratio OD260/OD280 of the low MW fraction

were found to be similar to that of an intact ribosome sample (2.0), indicating that the

ratio of ribosomal RNAs and ribosomal proteins in the released fractions was that of the

intact ribosome, thus suggesting that the entire ribosome was being disassembled (as

opposed to specific proteins being released).

In an intact ribosome, only two copies of L7/L12 are observable in the 1H 1D

spectrum. However, the disassembling of the 70S ribosome results in the appearance
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of 53 additional proteins in the proton spectrum, that were not observed initially.

Consequently 2% of released ribosomal proteins (as quantified biochemically) resulted in

the appearance of new signals in the 1H 1D and 1H STE spectra that were sharp, intense,

and associated with a fast translational diffusion. Therefore, the acquisition of 1H 1D and

1H STE spectra can be used to quantify the disassembly of the entire ribosomal complex

in the RNC samples.

Stability of the ribosomal RNA monitored in 1H 1D and 1H STE diffusion spectra

Aside from changes in the methyl region of the 1H 1D spectra, examination of other

regions of 1H spectra revealed ribose signals that were found to have a diffusion

coefficient identical to that of ribosome-bound L7/L12 methyl resonances (Figure 2.26E).

The analysis of these ribose signals over the time-course of a typical NMR acquisition

period of an RNC can be used to investigate their attachment to the ribosome complex.

The intensity of these ribosome signals in the high gradient strength 1H STE spectra

(black line in Figure 2.26E, g=47.5 G.cm−1) were found to decrease over time, indicating

the loss of ribosome-bound ribose, in line with the previous biochemical observation

that both ribosomal protein and RNA were being released when the ribosome complex

is being degraded. However, the intensity of the ribose resonances in the 1H 1D

spectra remained stable, suggesting that the released ribosomal RNA observed via

OD260 measurements was not observed in the conventional 1H spectra, and only the

ribosomally-attached ribose are observed in the 1H 1D and 1H STE diffusion spectra.

2.3.3.2 Microbial contamination observed via changes in the 1H 1D spectra

The typical release of ribosomal proteins described above follows simple exponential

kinetics. In contrast, a second set of resonances in the proton spectra were observed
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to changes with sigmoidal kinetics (Figure 2.27). The decrease in the intensity of

signals (Figure 2.27 A & B) which can be assigned to sucrose, was concomitant with

the appearance of intense peaks (Figure 2.27C & D). These peaks have been tentatively

assigned to a product of the metabolism of sucrose. Changes in the HEPES buffer

1H chemical shifts (Figure 2.27E&F) occurred on the same timescale, and were found

to correspond to a decrease in the pH of the sample from 7.4 to 6.8 (measured

electrochemically). These simultaneous changes can be attributed to the growth of a

microbial contaminant digesting sucrose. In RNC samples that exhibited these changes

in the 1H 1D, the lag phase of the sigmoidal growth kinetics varied between 10-30 hours

and the log phase occurred between 12-38 hours. The careful removal of sucrose via

buffer exchange in a 100kDa cut-off concentrator significantly increases the lag phase

of the growth, and microbial contamination can be prevented during the entire NMR

acquisition time (3-4 days). Nonetheless, because these changes seems to have an effect

that is not reflected in the ribosomal resonances, in other words because the kinetics of

the changes of the ribosome signals is significantly different than the growth kinetics

discussed here, it is likely that it has little effect on the ribosome stability if the amount

of sucrose is low enough.

Together these results demonstrate that the stability and integrity of the ribosomal

complex can be monitored via 1H 1D spectra recorded in an interleaved manner with

the heteronuclear spectra. In the majority of samples, only a small percentage of the

ribosomal proteins are released, and the bulk of the ribosomes remains intact over the

course of a week at 25◦C.
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Figure 2.27: Top: 1H 1D spectrum of a ddFLN-dom5+110-RNC sample recorded at time=0 (black,

i.e. immediately after exchange in a 100kDa cut-off concentrator) and at time=70 hours (blue).

The HEPES, sucrose and metabolic products chemical shifts are highlighted in green, magenta

and orange respectively. A, C & E: Stack of 1H spectra of ddFLN-dom5+110-RNC recorded after

increasing acquisition time at 25◦C, zoomed to show the ppm region corresponding to the sucrose

chemical shift (A), a resonances that increased over time (C) and the HEPES chemical shift (E).

The relative intensity of the sucrose peak at 3.4 ppm versus acquisition time is shown in B, that of

the sharp peak at 1.8ppm is shown in D and the chemical shift of the the HEPES peak over time

is shown in F.
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2.3.3.3 Monitoring SecM-based release

To understand the process by which the NC is released from the ribosomal complex, and

in particular to test whether the SecM stalling sequence is being released, the appearance

of signals from the sidechain of the Trp residue within SecM can be analysed over the

time-course of the NMR acquisition (Section 2.3.2.7). Only on two occasions (samples of

ddFLN-dom5+31 & +37RNCs) did an increase in intensity for the “folded” well-dispersed

ddFLN-dom5 resonances correlate with the appearance of a Trp signal with a statistically

significant intensity (Figure 2.28I), which is suggestive of the SecM region being released

from the ribosomal tunnel. Nonetheless, for the majority (10 out of 30) of analysed RNC

samples, the absence of observation of the Trp signal whilst the ddFLN-dom5 resonances

showed a significant increase in intensity indicated that the release of the NC was not

SecM mediated (Figure 2.28K). Together, these observations suggest that whilst SecM

release is not the primary cause of NC release, it can be monitored by analysing the

intensity of the sidechain Trp resonances over the time.

2.3.3.4 Monitoring the integrity of the NC itself

The combined analysis of 1H 1D, 1H STE spectra and the Trp sidechain resonance over

time suggests that most RNCs do not release via 70S ribosome degradation or SecM

mediated released. Nonetheless, an increase in intensity for the “folded” ddFLN-dom5

resonances was typically observed in the 1H-15N SOFAST-HMQC (Figure 2.28K) and

1H-13C HMQC (Figure 2.29B) spectra. For example, after 20-30 hours of acquisition

at 25◦C, the sensitivity for dispersed ddFLN-dom5 resonances increased significantly

(Figure 2.29B compared to A).

In order to report whether the resonances associated with such increase in intensity

in the heteronuclear spectra arise from released NC, 13C-edited STE-HMQC diffusion
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Figure 2.28: A: Schematic of the ddFLN-dom5-RNC constructs, highlighting the Trp residue

within SecM that interacts with the ribosomal exit tunnel. B: 1H-15N HSQC spectrum of purified

released ddFLN-dom5+31-RNC. The Trp sidechain resonance is circled in green. C: Normalised

histogram of the z-score of the intensity of the 1H-15N resonances of folded ddFLN-dom5 shown

in spectrum B in orange, and Trp sidechain in green. D: 1H-15N SOFAST-HMQC spectrum of

ddFLN-dom5+31-RNC, recorded within the first 10 hours of acquisition. H: 1H-15N SOFAST-

HMQC spectrum of the same sample recorded within 27-37 hours of sample life-time. The

sidechain tryptophan is highlighted in green, and overlay with the resonances of the SecM

tryptophan seen in spectrum B. F: 1H-15N SOFAST-HMQC spectrum of ddFLN-dom5+47-RNC,

recorded within the first 32 hours of acquisition. G: 1H-15N SOFAST-HMQC spectrum of the same

sample recorded within 32-66 hours of sample lifetime. Although the ddFLN-dom5 resonances

have increased in intensity, the absence of the Trp sidechain resonances is highlighted with the

hollow circle. : E, G, I, K: Same as C for spectra shown in D, F, H & J respectively.
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Figure 2.29: 1H-13C HMQC spectra ddFLN-dom5+110-RNC. A: Spectrum acquired within 7.3

hours at 25◦C, with a total acquisition time of 3.3 hours. The 6×His western band of the sample

before the acquisition of A is shown in D lane a. B: Spectrum acquired from 36 to 47 hours at

25◦C. The 6×His western blot of the sample after the acquisition of B is shown in D lane b. After

B is recorded, the low molecular weight fractions are separated from the ribosome fraction via a

100kDa concentrator. The 6×His western band of the low molecular weight fractions separated

from the sample after B is recorded is shown in D lane s. The ribosomal fraction is shown in

D lane c. The spectrum of sample c is shown in C. All spectra are recorded with the same total

acquisition time (3.3 hours) and displayed with the same threshold.
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Figure 2.30: Signal integral from the random-coil methyl signals in the 13C-edited STE-HMQC

spectra of ddFLN-dom5+110-RNC (0.6-0.8 1H ppm) recorded with g=2.5 (black) and g=47.5

G.cm−1 (blue) as a function of sample acquisition time at 25◦C.

spectra can be recorded throughout the NMR acquisition period, as was described in

Section 2.3.2.8. The diffusion data typically show a similar increase in signal intensity in

the low gradient strength (g=2.5 G.cm−1) diffusion spectrum within the first 24 hours of

acquisition (Figure 2.30 shows an example from the data recorded on ddFLN-dom5+110-

RNC). The translational diffusion coefficient calculated from these data, using Equation

1.15, increases over time from 2±0.5×10−11 m2s−1 initially to 10±0.5×10−11 m2s−1 after

24 hours of acquisition, which reveals the appearance of low-molecular weight labelled

proteins. After 24 hours of acquisition at 25◦C, the measured translational diffusion

coefficient reached a plateau. The timescale of the increase in diffusion was found

to be similar to the timescale of increase in intensity of the “folded” ddFLN-dom5

resonances in the 1H-13C HMQC (Figure 2.31A), suggesting that those “folded” ddFLN-

dom5 resonances arise from released NCs.

To further confirm the observation that the “folded” ddFLN-dom5 resonances arise

from released NCs, the sample was subjected to a 100 kDa cut-off concentrator after 30



Chapter 2. A strategy for the production and NMR analysis of RNCs 119

A D

0 2 4 6 8 10 12 14 16 18
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 C

B E

time in hours 0 1 3 6 8 19 44 time in hours 1 5 18 27 44 55 68

time in hours

time in hours

re
la

ti
v

e 
fl

u
o

re
se

n
ce

0 10 20 30 40 50 60 70
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

time in hours

re
la

ti
v

e 
fl

u
o

re
se

n
ceF

20kDa

30kDa

20kDa

30kDa

time in hours

z
-s

co
re

z
-s

co
re

10 20 30 40 50 60 70
0

2

4

6

8

10

20 40 60
0

2

4

6

8

10

+110-RNC no protease inhibitor +110-RNC with protease inhibitor

Figure 2.31: A: Mean z-scores of 16 high field shifted resonances assigned to folded ddFLN-

dom5 residues (Section 2.3.2.5) in ddFLN-dom5+110-RNC (Figure 2.29). Vertical error-bars show

the standard error of the mean, and horizontal error-bars correspond to the time of acquisition

for each spectrum. The green dotted line shows the 5% threshold corresponding to the limit of

observability of the mean of 16 resonances (Section 2.2). Data are fitted to Equation 2.7, k=20 ±
13 hours−1 (r2=0.94) B: Anti-His western blot of ddFLN-dom5+110-RNC during the timecourse.

The blue arrow shows a lower molecular weight band below full-length ddFLN-dom5+110-NC at

time 0. The red arrow shows the 14kDa product of the proteolysis and the green arrow shows

the full-length 28kDa NC. C: Intensity of the chemiluminescence signal in the 6×His western blot

shown in B for full-length ddFLN-dom5. Data are fitted to Equation 2.8, k=3±3 hours−1 (r2 0.99).

D, E and F: same as A, B and C but for U-[12C,2 H], Ileδ1-[13C1H3] ddFLN-dom5+110-RNC. In

this spectra, only the five dispersed Ile defined in Section 2.3.2.5 are analysed.
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hours of NMR experiments, and the ribosomal fractions were analysed by NMR, and it

was found that the folded ddFLN-dom5 resonances were significantly reduced compared

to before sample processing (Figure2.29C compared to B).

To understand the origin of the release (which was not SecM mediated), the sample

was analysed by anti-His western blot before the NMR acquisition (Figure 2.29D, lane

a) and after 30 hours of acquisition (Figure 2.29D, lane b). It was found that the

6×His band was truncated to ca. 15 kDa (red arrow) from 28 kDa (the size of the full

length, green arrow). This indicates that the 6×His ddFLN-dom5+110-NC was being

cleaved and released from the ribosome, thus giving rise to intense “folded” signals in

the heteronuclear spectrum. To analyse further the size of the truncated product, the

low molecular weight fractions of the sample upon filtering through a 100 kDa cut-

off concentrator was analysed by MALDI-TOF mass-spectrometry. The MALDI mass-

spectrum showed that the released chain corresponded to the NC with a cleavage of

ddFLN-dom6 at a position eleven amino acids downstream from ddFLN-dom5, and 99

amino acids upstream from the PTC centre (Figure 2.32B).

These observations from ddFLN-dom5+110-RNC suggest that the analysis of the

intensity of the “folded” ddFLN-dom5 resonances in 1H-13C HMQC spectra over the

NMR acquisition period, together with the analysis of the 13C-edited STE-HMQC

diffusion spectra and the western blot analysis of samples collected at the same time-

points can be used to analyse the timescale of the cleavage in RNC samples.

The increase in intensity of the ddFLN-dom5 resonances was typically found to

follow single exponential kinetics (Figure 2.31A) as did the decrease in the intensity

of the band corresponding to the full-length construct in the western blot (Figure

2.31B). The two events therefore appear to be correlated and to follow similar kinetics

which resembles proteolysis, and where the size of the proteolysis product typically
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Figure 2.32: A: MALDI mass-spectrum of the isolated released chain from ddFLN-dom5+110-

RNC sample (via filtering through a 100 kDa cut-off concentrator as described in the text) after

30 hours of NMR acquisition, corresponding to sample “s” in the 6×His western shown in Figure

2.29D. B: Sequence of ddFLN-dom5-NC from N to C-terminii, with in dark red the 6×His tag,

in magenta ddFLN-dom5, in green the length of the linker that would correspond to a size of

13.8kDa, the rest of the linker is shown in grey before the SecM sequence in yellow.

corresponds to the size of the ddFLN-dom5 folded domain observed by NMR.

The proteolysis process is a first order reaction:

RNCFL
k→ NCtrunc (2.6)

with the intact, full length RNC (RNCFL) concentration decreasing as:

[RNCFL]t = [RNCFL]0. exp
(
−t
k

)
(2.7)

and the truncated and released NC (NCtrunc) increasing as:

[NCtrunc]t = [NCtrunc]∞.
[

1− exp
(
−t
k

)]
(2.8)

In Figure 2.31A, the increase in the mean intensity of the released high field shifted NC

resonances observed from a ddFLN-dom5+110-RNC sample was fitted to Equation 2.8
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(red line in Figure 2.31A), which gave a time constant for proteolysis of 20 ± 5 hours−1

(r2=0.94). The same equation was then used to fit the increase in intensity observed in

low gradient strength 1H-13C edited diffusion spectrum of Figure 2.30 (g=2.5 G.cm−1),

which gave a time constant for proteolysis of 13 ± 4 hours−1 (r2 0.96). The decrease in

band intensity of the full-length RNC observed in western blots (Figure 2.31B & C) was

fitted to Equation 2.7 and gave a time constant of 3±1 hours−1 (r2 0.99). The truncation

of other ddFLN-dom5-RNC samples followed similar kinetics, where the typical time-

constant of the proteolysis reaction varied from 10 to 20 hours. Interestingly, the nature

of the proteolysis was found to vary depending on the ddFLN-dom6 linker length, and

is described in Chapter 3 (Section 3.2.3).

The observed proteolysis was also found to be significantly attenuated by the

presence of protease inhibitors. In particular the Complete inhibitor tablet from Roche

supplemented with 1µM of the inhibitor pepstatin (pepsin protease inhibitor), and 5mM

EDTA was determined to be particularly effective. As an example, Figure 2.31D shows

that the signal intensity of the high field shifted ddFLN-dom5-RNC resonances in the 1H-

13C methyl-TROSY HMQC spectrum mentioned in Section 2.3.2.5 did not increase over

time, and the western blot analysis of the samples performed in parallel did not show

any evidence for proteolysis over two days (Figure 2.31E). The decay in intensity beyond

two days might be related to precipitation of the ribosome sample that was observed

visually.

2.3.3.5 Assessing the RNC integrity post NMR

The attachment of the NC to the 70S ribosome after NMR can be assessed by pelleting

the ribosomes of the RNC samples post-NMR acquisition through a 17% sucrose cushion,

and monitoring the presence of the NC in the ribosome pellet via anti-His western blot
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Figure 2.33: Western blot analysis of a sample of ddFLN-dom5+47-RNC sample after two days of

NMR acquisition at 25◦C. Lane 1: 10pmoles of post NMR sample, no treatment. Lane 2: 10pmoles

of pellet through a 17% sucrose cushion (spin 30min at 120,000rpm). Lane 3 & 4 supernatant of

the cushion. Lane 5: 10pmoles of purified ddFLN-dom5+47-RNC.

detection. Figure 2.33 shows and example of such analysis, the western blot signal was

found to be nearly identical in the NMR sample of ddFLN-dom5+47-RNC prior pelleting

and in the pellet, indicating that the NC remains attached.

2.4 Concluding remarks

We have shown here that the in vivo production method of ddFLN-dom5-RNC can

generate homogeneously stalled, selectively labelled RNC samples amenable to NMR

study. This chapter represents a description of the developed methods for the analysis

of these RNC samples, highlighting the need for cautious continuous analysis of the

integrity of the RNC samples via both biochemical and NMR methods to ensure that

data recorded arise from RNC samples and not from degraded products.

Analysis of the 1H-15N SOFAST-HMQC spectrum of ddFLN-dom5+21-RNC revealed

intense resonances of the disordered state of ddFLN-dom5, indicating firstly that the NC

populates the unfolded state, and secondly that the analysis of 1H-15N SOFAST-HMQC

spectra of RNC with different linker lengths can report on the unfolded state of the RNC

at increasing translation lengths (Figure 2.34A). Analysis of the 1H-15N SOFAST-HMQC

spectrum of ddFLN-dom5+110-RNC revealed resonances from the disordered ddFLN-
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A BShort linker

ddFLN-dom5+21-RNC

Long linker

ddFLN-dom5+110-RNC

Unfolded ddFLN-dom5: 

1H-15N SOFAST-HMQC

Linker ddFLN-dom6: 

1H-15N SOFAST-HMQC

Folded ddFLN-dom5: 

1H-13C methyl-TROSY-HMQC

Figure 2.34: Schematic of the conclusion drawn from the analysis of the 1H-15N SOFAST-HMQC

of ddFLN-dom5+21-RNC (A), and 1H-15N SOFAST-HMQC & 1H-13C methyl-TROSY HMQC of

ddFLN-dom5+110-RNC (B). Refer to main text for details.

dom6 linker, confirming that the linker is intrinsically disordered at these lengths,

and no distinct resonances that arose from a disordered ddFLN-dom5 (Figure 2.34B).

The 1H-13C methyl-TROSY HMQC spectra of the deuterated, selectively Ile δ1 labelled

ddFLN-dom5+110-RNC sample showed resonances similar to the natively folded state

of ddFLN-dom5 with statistically significant intensities, indicating that firstly ddFLN-

dom5 populates the native folded state at this length, and secondly that 1H-13C methyl-

TROSY HMQC spectra are suitable to provide structural and dynamical informations

on the folded states of ddFLN-dom5-RNCs (Figure 2.34B). The combined use of 1H-15N

SOFAST-HMQC and 1H-13C methyl-TROSY HMQC provide dual probes for examining

the unfolded and folded characteristics, respectively, of RNCs, and were therefore used to

examine the folding equilibrium of ddFLN-dom5-RNCs at different stages of emergence

of this domain from the ribosomal exit tunnel, as is discussed in Chapter 3.

As a result of the developments described in this Chapter, the attachment of the

RNC can now be routinely confirmed by the use of 13C-edited STE-HMQC diffusion
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experiments. The comparison of the linewidths of RNC methyl groups in 1H-13C methyl-

TROSY HMQC spectra of ddFLN-dom5+110-RNC further confirms the RNC attachment

to the ribosome. The attachment of the RNC rendered the C-terminal residues of the

RNC constructs non-observable in conventional 1H-15N or 1H-13C HMQC acquisition,

and in particular the resonances from the single Trp residue within the SecM stalling

sequence, and this particular feature can be used to discriminate ribosome-bound from

SecM-released nascent chain.

While the low intensity of the “folded” ddFLN-dom5-RNC resonances would suggest

increasing the acquisition time (or indeed the temperature used for NMR acquisition),

this was restricted due to the short lifetime of the complex. From the combined NMR and

biochemical data, it appears that the RNCs are indeed susceptible to release, however, the

nature of this process varies. Figure 2.35 shows the different ways by which the integrity

of the RNCs was found to be degraded. When the timescale of release was close to the

timescale of NMR acquisition, the signals from the release chain rendered the analysis of

the RNC resonances challenging due to their significantly sharper linewidth compared

to the ribosome-attached domain (Figure 2.21). It was found to be important to monitor

the timescale of release by the methods developed in Section 2.3.3, which included the

highly interleaved acquisition of:

1. 1H 1D spectra from which any microbial contamination can be detected,

2. 1H STE spectra to determine the translational diffusion associated with the proton

resonances that can report on the integrity of the ribosomes (Figure 2.35A),

3. 13C-edited STE-HMQC spectra which can report on the presence of released NC

(Figure 2.35B);

4. 1H-13C HMQC and/or 1H-15N SOFAST-HMQC spectra, from which the intensity
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NC proteolysis

A
1H-1D
1H PFG-Ste diffusion

Ribosome break-down

5-7 days

SecM release
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1H-13C PFG-Ste HMQC diffusion

Analysis of resonances intensities over time

C - Trp intensity D - anti-His western time-course
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Unfolded

RNC

Folded
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Figure 2.35: Schematic of the different processes by which the RNCs complexes can be degraded,

as well as the methods developed to monitor this break-down.



Chapter 2. A strategy for the production and NMR analysis of RNCs 127

of the dispersed ddFLN-dom5 resonances can be analysed over the time-course,

increase in which are indicative of NC release (Figure 2.35B).

5. The observation of Trp sidechain indole resonance in 1H-15N SOFAST-HMQC

spectra can identify SecM based released (Figure 2.35C), although this was found

to be rare (two out of 30 samples).

6. In parallel to these NMR experiments, anti-His western blot of samples collected

over time-course of NMR acquisition can reveal proteolysis at the ddFLN-dom6

linker (Figure 2.35D).

7. Finally, the integrity of the RNC sample after NMR experiment can monitor the

presence of the NC within the ribosomal pellet.

In conclusion, this chapter has presented a general methodology for the NMR study

of RNC, including a set of NMR experiments reporting on the folded and unfolded state

of the RNCs, a methodology for the analysis of low intensity spectra, and a series of NMR

and biochemical controls to monitor the attachment of the NC to the ribosome complex.

This methodology forms the basis for a detailed analysis of the folding equilibrium

of ddFLN-dom5-RNC as it emerges from the ribosome exit tunnel, described in the

following Chapter 3.



Chapter 3

Snapshots of the emergence of ddFLN-

dom5 from the ribosome exit tunnel

followed by NMR spectroscopy

3.1 Introduction

3.1.1 ddFLN-dom5 has an immunoglobulin fold

The filamin protein gelation factor (ABP-120) from Dictyostelium discoideum (ddFLN) is

an immunoglobulin-repeat protein consisting of six immunoglobulin domains followed

by an actin-binding domain.The six immunoglobulin domains share a high sequence

homology (average 40%, [189]), (Figure 3.1A). The native state structure of ddFLN-dom5

has been solved by X-ray crystallography [190] (figure 3.1A), and reveals a very similar

structure to the NMR structure of ddFLN-dom4 [191] and the crystal structure of ddFLN-

dom6 [190]. The structure consists of an antiparallel β-sheet sandwich, where each of the

seven β-strands is labelled from A to G (N-term to C-term) according to the standard

nomenclature for immunoglobulin folds [190] (Figure 3.1B). Within the structure, the

N-terminal strand A closes the back β-sheet, and strand A’ closes the front β-sheet, and

makes contacts with the C-terminal strand G via hydrogen bounds (Figure 3.1C). The
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Figure 3.1: A: Sequence alignment of ddFLN-dom5, ddFLN-dom6, ddFLN-dom4, fnIII and TI

(pdb entries 1QFH.pdb [190], 1KSR.pdb [191], 1TEN.pdb [192] and 1TIU.pdb [193] respectively), the

secondary elements are shown with the same color coding as in A&B, the conserved residues

are in the red rectangle, and the residues that have been shown to form the folding nucleus [56]

are shown in red bold letters. B The X-ray crystal structure of ddFLN-dom5 with the six β-

strands labelled A to G (pdb entry 1QFH.pdb, [190]). C: A topology map of ddFLN-dom5 adapted

from [190].
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dynamics of the native state of the domain has been studied by NMR, and the overall

high order parameter (S2 >0.95) of the β-sandwich indicates a very stable β-sheet [183],

which is also consistent with low b-factor values derived from the crystal structure [190].

Within the structure, the N-terminal hemisphere (loops BC, DE and FG, Figure 3.1) has

been shown to be ordered (S2>0.95), whereas the C-terminal hemisphere (loops A’B, C’D

and EF, Figure 3.1) is more dynamic (and in particular the loop from strands C’ to D)

and contains residues with lower order parameters (S2 ≈ 0.7) and high b-factor values

from the crystal structure [183].

The immunoglobulin domains of ddFLN share an overall homology in structure

and in sequence with other immunoglobulin domains from other organisms (Figure

3.1C). The in vitro folding of immunoglobulin-like domains has been extensively

studied over the last 15 years, with detailed studies of the folding of ddFLN-

dom4 [61], of fibronectin type III domains (fnIII) [194, 195] and of titin domain

(TI) [196, 196], using a range of biophysical and structural techniques. One of

the major biophysical techniques that has been used to study the conformations

of immunoglobulin domains is hydrogen/deuterium (H-D) exchange, which in

combination with denaturation/renaturation experiments, has been used to probe

structural features during the folding of the proteins [52, 197].

3.1.2 Introduction to hydrogen exchange studies of protein folding

Hydrogen/deuterium (H-D) exchange reports on both the structure and dynamics of a

given system, and it is often used in conjunction with mass spectrometry and/or NMR.

For example, H-D exchange rates measured by NMR at a residue specific level were used

to define the folding characteristics of lysozyme [198], and to characterise the formation

of intermediate ensembles populated during the folding process of a number of proteins
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Figure 3.2: Linderstrøm-Lang model of the hydrogen exchange reaction [200]. Refer to main text

for details on the analysis of the different regimes for the H-D exchange reaction.

[52,53], among them fnIII [194,199]. The use of NMR to record H-D exchange at a residue

specific level relies on the fact that deuterium is not detected within standard 1H NMR

experiments. The experiment therefore consists of the rapid dilution of a protonated

sample of protein in D2O, followed immediately by the recording of the decay in the

intensity of 1H-15N amide resonances in real time as the amide protons exchange with

the deuterium within the solvent.

The Linderstrøm-Lang model of H-D exchange proposes that the rate of H-D

exchange (kex) can be related to the open/closing of structural segments of the protein

[200] (Figure 3.2). Briefly, in the “closed” conformation, the amides are protected from

exchange with the deuterium of the solvent, and in the “open” conformation, the amide

protons exchange with an intrinsic rate that only relates to the peptide bond and the

protection offered from the two surrounding sidechains (or in other words, the exchange
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rate of the amide proton in the case where no protection is offered by the structure of

the protein). Above pH of ca. 3, the intrinsic exchange rate kint is base-catalysed and

therefore is directly proportional to the pH, and has been measured on dipeptides of

each of 400 amino-acid combinations [201]. Two regimes can be analysed depending

on the relative values of kint and the closing rate of the structural element kcl. In the

case of high pH (EX1 regime), kop is the rate limiting step, kint � kcl, and the rate of

conformation exchange is simply kop = kex. In the case of low pH (EX2 regime), the rate

limiting step is the intrinsic H-D exchange, kint � kcl, and the exchange rate kex probes

for the thermodynamic equilibrium for the opening-closing of the structure (quantified

by the protection factor P):

P = kcl/kop = kint/kex (3.1)

P relates to the difference in free energy of the observed residue,

∆Gop−cl = RT ln(P)

between the “closed” state and the “open”, exchange-competent state [202]. By measuring

the protection factors of a different folding equilibrium than the native equilibrium

(using chemical denaturation for example), the folding free energy landscape can be

mapped at a residue specific level [52, 53]. Additionally, the protection factors of the

native state can also be used to map the stability of the structure and these studies have

been performed on several immunoglobulin-like fold proteins [194, 199].

3.1.3 The in vitro folding pathways of immunoglobulin domains

As has been mentioned before, the aim of this chapter is to study the co-translational

folding pathway of ddFLN-dom5, and to compare this to the in vitro folding pathways
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that have been proposed for immunoglobulin domains. The information available

on the in vitro folding pathways derives from different experiments that probed the

thermodynamic equilibrium (H-D exchange [52, 197]), kinetics of folding (φ-value

analysis [203]), and structural details along the folding pathways (AFM [204]). Particular

questions are relevant for the comparison of the in vitro and co-translational folding:

is the folding cooperative or are their any intermediate states being occupied? Are

these intermediate states obligatory? Are the transition states native like? What are

the stability of the different states?

To the best of our knowledge, there is no structural details of the (re)folding pathway

of ddFLN-dom5, but the urea unfolding of ddFLN-dom5 monitored by NMR, UV CD

and tyrosine fluorescence was seen to be mainly cooperative, with the disordered and

folded states in slow interconversion on the NMR timescale (ca. 100ms) [183]. From the

folding mid-point (4.2M urea), the free energy of unfolding was found to be ∆GF−U =

7.8± 1.9 kcal.mol−1. Nonetheless, on the basis of NMR intensities, a transient population

of an invisible intermediate state was inferred and at most 20% of the domains were

observed to populate this unfolding intermediate at folding mid-point. In Section 3.2.1

of this current chapter, the stability of the native state of ddFLN-dom5 is investigated

using H-D experiments, and compared to the free energy of unfolding.

Additional information on the folding pathway of immunoglobulin domains were

derived from several other immunoglobulin domains which structural homology with

ddFLN-dom5 is shown in Figure 3.1A.

Hydrogen-deuterium exchange experiments on the immunoglobulin domain fnIII

have shown that β-strands B, C and F are resistant to hydrogen exchange [194, 199]

(∆Gop−cl > 5 kcal.mol−1), whereas residues in the A’ and G strands are somewhat less

stable [194] (∆Gop−cl ∼ 3-4 kcal.mol−1), and can sample a wider conformational range
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at room temperature. The increased stability observed for the inner stands B, C and F

as measured by H-D exchange is likely to be related to their involvement in the folding

core of the protein as determined by φ-value analysis [194]. φ-value analysis consists of

quantifying the effect of the mutation of a set of residues one by one to the chemical

folding and unfolding kinetics. A residue with a high φ-value indicates that the residue

is structured in the folding transition state; a residue with a low φ-value indicates that

the residue only becomes structured late in the folding pathway, after the transition

state. Residues in strands B, C and F of fnIII were found to be typically associated with

high φ-values [194, 195], which suggest that these are structured in the transition state

ensemble.

The folding landscape of titin (TI) has been also studied using φ-value analysis and

computational modelling. β-strands B, C, E and F were found to be associated with

high φ-values [196], which indicates that they make native-like contacts in the transition

state ensemble [56], and residues in the A’ and G strands are associated with lower φ-

values in TI [196] and might be relatively disordered in the transition state ensemble. A

comprehensive computational study that incorporates these experimental results showed

that the transition state ensemble of TI is native like, with strands B, C, E and F fully

formed, and strands A, A’ and G quasi-unstructured [196], and that seven residues of

strands B, C, E and F form a folding nucleus around which the rest of the structure

condenses at the early folding stages (shown in red letters in Figure 3.1C).

The folding pathway of ddFLN-dom4 was also investigated using atomic force

microscopy (AFM) force-unfolding measurements [61]. This study showed the

population of an obligatory intermediate state during re-folding that followed the

mechanical unfolding of a ddFLN-dom1-5 chain using the force provided by the AFM

tips to stretch the protein [61]. The authors show that the folding of ddFLN-dom4
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followed a three-state folding pathway, whereas the other immunoglobulin domains of

ddFLN followed a slower, two-state folding pathway. The structural properties of the

folding intermediate states were found to be similar to that of the unfolding intermediate

state, otherwise characterised [205], in which strands C-G adopt a native-like fold and

strands A & B are disordered.

Together, these experimental data on three homologous immunoglobulin domains

suggest that most immunoglobulin domains fold cooperatively (with the exception of

ddFLN-dom4), with a transition state ensemble in which either strands B, C and F (in

the case of fnIII), B, C, E and F (in the case of TI) make native like contacts. ddFLN-

dom4 is a fast folding domain that populates an intermediate state during unfolding

and refolding. Interestingly, it is thought that the presence of a stable intermediate state

fastens the folding rate of ddFLN-dom4 ca. 10 times [61] compared to other ddFLN

domains which do not populate apparent intermediates. However, the observation of a

non-obligatory, “invisible” intermediate state, found to be populated at mid-point folding

by ca. 20% of ddFLN-dom5 suggests that a there are probably multiple folding pathways

that remain to be characterised.

3.1.4 Co-translational folding intermediates

So far, there is no experimental evidence to confirm that in vitro folding pathways are

sampled during de novo co-translational folding. On the contrary, evidence for step-

wise folding was observed in the case of the P22 tailspike protein [206], in which

co-translational folding intermediate states were recognised by conformation-specific

antibody of the N-terminal domain at translation lengths that were aggregating in vitro.

Similarly, the folding of the N-terminal 190 residues of firely luciferase was found to

precede and accelerate the folding of the entire sequence co-translationally [81]. This
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step-wise folding was not observed in vitro in the presence of chaperones, suggesting

that the vectorial emergence of the N-terminal domain is required for the formation of

the intermediate state. Early step-wise folding of CFTR-RNC was also revealed by FRET

studies, for which a three-state co-translational folding was observed despite its complex

topological organisation and high contact number [67]. This experimental evidence

suggests that the co-translational folding pathway (and transition state ensemble) is

different to the in vitro refolding pathway, as presented in Figure 1.3B, and may be

associated with the population of intermediate states that are not typically accessible

in the refolding pathway.

Computational modelling of the emergence of small protein domains such as protein

G or the monomeric λ-repressor has also suggested that, despite the in vitro folding being

cooperative, transient intermediates that are specific to co-translational folding, may be

populated before the emergence of the entire domains from the ribosomal tunnel [48]

(Figure 3.3).

To date, there are very few structural studies of co-translational folding. The

co-translational folding of ddFLN-dom5 is investigated in this chapter, using the

methodology described in Chapter 2.

3.2 Results and Discussion

3.2.1 Hydrogen exchange study of in vitro ddFLN-dom5 folding

To determine whether ddFLN-dom5 domain shares the same native thermodynamic

equilibrium properties as the immunoglobulin family, the protection factors from

ddFLN-dom5 were determined by H-D exchange experiments as followed by NMR.

Lyophilised samples of ddFLN-dom5 were dissolved in D2O, and a series of SOFAST-
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Figure 3.3: Folding free energy landscape with the contact order as the reaction coordinate for

two RNCs: Protein G (A) and monomeric λ-repressor (B). The free energy landscape of the RNC

at different stage of translation are shown with different colour: when the domain is attached to

the PTC with a linker length of 22 residues in yellow, to a linker length of 35 residues in black.

Protein G samples a metastable intermediate, while monomeric λ-repressor populates a stable

intermediate at linker lengths of 22-24 residues. Figure adapted from [48].

HMQC were recorded with 5min intervals (2min dead time). 40 residues out of the

69 being analysed were found to have an H-D exchange rate that followed a linear

dependancy with pH at pD* 6.15, 6.6, 7.3 and 7.7 (Supplementary Figure A.1), thus

confirming that these follow the EX2 regime (Section 3.1.2). Overall, the free energy

of opening/closing of the structure was found to be similar within error to the folding

free energy obtained from the urea-denaturation of ddFLN-dom5 (∆GF−U = 7.8± 1.9
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Figure 3.4: A: Structural mapping of the ∆Gop−cl of ddFLN-dom5. Residues for which the amide

proton exchange within the experiment dead time (3min) have been assigned to a ∆Gop−cl ∼
2.6 kcal.mol−1. Residues that follow the EX1 regime as well as prolines are coloured in grey. B:

∆Gop−cl of ddFLN-dom5 as a function of residue numbers (the secondary elements are indicated

on the top). Only those residues determined to be in the EX2 exchange regime are included.

kcal.mol−1, [183]). Residues of the A, A’, C and G strands were found to have a

lower average protection factor (〈∆GA,A′,C,D and G
op−cl 〉=6.0 kcal.mol−1, Figure 3.4) than those

of the B & F strands (〈∆GB&F
op−cl〉=8.8 kcal.mol−1, Figure 3.4), which is consistent with

observation from other immunoglobulin-like proteins. Most of the residues of strand

E were found to follow the EX1 regime, suggesting a relatively slow “closing” rate

(kcl < kint ≈ 0.5s−1). Their “opening” rates were also found to be slow (〈kop〉=3×10−7

s−1), which also suggest a very stable “close” conformation for that central strand, also in

line with previous studies, and a high energy barrier between the “open” and “close”

conformation. This slow closing rate and slow opening rates was also observed in

residues of strand F and one residue of the BC loop. The stability of strand C was,

however, altered in ddFLN-dom5 (〈∆GC, ddFLN−dom5
op−cl 〉< 6.1 kcal.mol−1) compared that of

fnIII (〈∆GC, fnIII
op−cl 〉=7.3 kcal.mol−1 [199]).
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Together, the protection factors measured for ddFLN-dom5 confirm a very stable β-

sandwich, in which strands B, E and F are relatively rigid compared to strands A,C,D &

G. The stability of the loops were also found to display interesting dynamical properties;

the loops of the C-terminal hemisphere were particularly dynamic (〈∆Gop−cl〉 < 3.4

kcal.mol−1), compared to the loops of the N-terminal hemisphere which were found to

be of a higher stability (〈∆GBC loop
op−cl 〉 > 5.7 kcal.mol−1). The relative dynamic differences

between the N & C terminal hemispheres is of interest in the context of co-translational

folding. During vectorial emergence, the N-terminus emerges first and would in

principle have the capacity to form stable structure prior to the emergence of the C-

terminal hemisphere.

3.2.2 Characterising the co-translational folding properties of ddFLN-dom5

using NMR spectroscopy

The folding equilibrium of the ddFLN-dom5-RNC at different stages of emergence from

the ribosomal exit tunnel was investigated using NMR. Samples of stalled RNCs of

ddFLN-dom5 with increasing lengths of ddFLN-dom6 were produced as in Figure 3.5.

The various lengths of ddFLN-dom6 were designed to behave as a disordered linker

that positions the preceding domain at the exit port of the ribosomal exit tunnel, thus

providing snapshots for the emergence of ddFLN-dom5 from the exit tunnel (Section

2.3.1.1). As mentioned in Section 1.1.4 the ribosomal exit tunnel has the capacity to hold

between 24 and 40 residues of the emerging NC. RNCs containing linker lengths >47

residues are thought to have the immunoglobulin domain fully exposed and available

to fold, while linker lengths of 21-47 may display different capacities to adopt structures

due to their proximity to the ribosome exit tunnel. ddFLN-dom5+21-RNC is thought to

have the last G-strand of ddFLN-dom5 partially sequestered within the ribosome tunnel,
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Figure 3.5: Schematic of the ddFLN-dom5-RNC constructs as in Figure 2.8, with the residues that

are expected to span through the 100Å long exit tunnel shaded in blue.

and constructs ddFLN-dom5+31 & +37-RNC have the immunoglobulin domain either

fully exposed or partially sequestered. To study the progressive emergence and folding

of ddFLN-dom5, isotopically labelled samples of each RNC were prepared and analysed

by NMR using the methodology as described in Chapter 2, Section 2.3.2.

3.2.2.1 Analysis of 1H-13C methyl-TROSY HMQC of RNC

As described in Chapter 2, Section 2.3.2.6, high levels of perdeuteration within the

ribosomal complex, and selective 13C labelling of the NC Ileδ1 methyl groups labelling

combined with methyl-TROSY HMQC methods provides a sensitive means of assessing

folded structure in RNCs. Samples of uniform-[12C,2 H], Ileδ1-[13C1H3] labelled ddFLN-

dom5+110, +47 and +37-RNCs were therefore produced. Ile residues were chosen

because of the high dispersion of their chemical shift, their extended sidechains that

provide additional dynamics to the methyl group, and their distribution throughout the
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Figure 3.6: Methyl groups of the Ile mapped on the structure of ddFLN-dom5.

structure (Figure 3.6) with Ile residues found within the hydrophobic core of the protein

(I674, I695 & I738), and also at the surface (I743 & I748); covering strands B (I674), C

(I695) and G (I743 & I748). Ile residues are present in the N-terminal hemisphere (I738)

and in the C-terminal hemisphere (I748). Together, these Ile residues are a very sensitive

set of reporters of native structure.

The 1H-13C methyl-TROSY HMQC spectrum of isolated ddFLN-dom5+47-NC

(Figure 3.7A) revealed three high-field shifted resonances assigned to I695, I674 and

I738 [185], while the two solvent-exposed Ile of strand G (I743 & I748) were found to

have a lower 1H chemical shift dispersion. Four additional resonances were observed at

chemical shifts characteristic of random coil conformations and these were assigned to

the two Ile of the ddFLN-dom6 truncation and the two Ile of the SecM sequence. The

1H-13C methyl-TROSY HMQC spectrum of the isolated ddFLN-dom5 was used to assess

spectra obtained for each of the RNC lengths.

The 1H-13C methyl-TROSY HMQC spectrum of ddFLN-dom5+110-RNC contains
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Figure 3.7: 1H-13C HMQC spectra of: A: purified released U-[12C,2 H], Ileδ1-[13C1H3] ddFLN-

dom5+47-NC, B: U-[12C,2 H], Ileδ1-[13C1H3] ddFLN-dom5+110-RNC (A & B are the same spectra

as shown in Figure 2.21), D: U-[12C,2 H], Ileδ1-[13C1H3] ddFLN-dom5+47-RNC and E: U-[12C,2 H],

Ileδ1-[13C1H3] ddFLN-dom5+37-RNC. Proton cross-sections of the signals are shown next to the

assigned resonances. The intensity distribution for the five ddFLN-dom5 Isoleucine resonances

are shown in C, F & G for ddFLN-dom5+110, +47 and +37-RNC respectively.
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signals from each of the five ddFLN-dom5 Ile native resonances (Figure 3.7B), with a

signal to noise ratio (SN or z-score, Section 2.2) that allows for their observation with

confidence (Figure 3.7C), indicating that the nascent chain is folded. The chemical shift

of the observed ddFLN-dom5 resonances were identical to that of the released chain,

within 0.01 1H ppm and 0.08 13C ppm. Additional resonances were also observed, that

can be assigned to the ddFLN-dom6 linker, L7/L12 stalk and resonances from the 50S

subunit.

The dispersed ddFLN-dom5 Ile resonances were also observed in the 1H-13C

methyl-TROSY HMQC spectrum of ddFLN-dom5+47-RNC (Figure 3.7D), with identical

chemical shift within 0.01 1H ppm and 0.1 13C ppm, and a sufficient SN to confirm their

significance (Figure 3.7F). Similar to ddFLN-dom5+110-RNC spectrum, resonances from

the L7/L12 stalk and the 50S subunit were also observed, but the cluster of resonances

assigned to the ddFLN-dom6 linker in the spectrum of ddFLN-dom5+110-RNC was

significantly reduced in the case of ddFLN-dom5+47-RNC, which is consistent with the

shorter ddFLN-dom6 sequence associated with the shorter RNC.

The spectrum of sample ddFLN-dom5+37-RNC contained intense resonances from

the L7/L12 stalk and 50S subunit, and the dispersed folded ddFLN-dom5 were

associated with a significantly lower SN (Figure 3.7E & G). Only two of the five

resonances were associated with a SN that was significantly higher than the noise

(resonances for I738 could not be analysed due to its overlap with L7/L12 resonances).

The distribution of the ddFLN-dom5 resonances intensities is nevertheless higher than

the noise distribution. Any potential new resonances had a SN that was lower than the

noise threshold allowing a search in the entire spectrum (z-score=2.8, Section 2.2). Before

analysing the characteristic of each residues of the folded state of ddFLN-dom5-RNCs as

observed in these spectra, the attachment of the NC over the time of acquisition of the
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1H-13C methyl-TROSY HMQC was analysed.

Figure 3.8A, B & C shows the intensity of the five Ile resonances of ddFLN-dom5

in the 1H-13C HMQC spectra recorded over a time-course of 50 to 100 hours. Each

spectrum is recorded for 3 hours, followed by the acquisition of 1H 1D spectrum and 1H

STE diffusion spectra. The intensities of the ddFLN-dom5 resonances remained stable

for 40 hours in the case of ddFLN-dom5+110-RNC, for 60 hours in the case of ddFLN-

dom5+47-RNC, but increased rapidly after only 6 hours in the case of ddFLN-dom5+37-

RNC. Figure 3.9 shows the spectrum recorded within the first 12 hours of acquisition of

ddFLN-dom5+37-RNC, compared to that recorded from 38-48 hours, and the spectrum

recorded after 38 hours reveals the appearance of sharp ddFLN-dom5 Ile resonances.

These have linewidths which are significantly sharper than the linewidths of the ddFLN-

dom5+110-RNC resonances (>13Hz, Section 2.3.2.6), and are indeed similar to those

observed for released protein (<10Hz), indicating that these resonances do not arise from

ribosome-attached NC but rather from released protein.

The attachment of the NC was also examined by the 13C-edited STE-HMQC diffusion

experiment (Section 2.3.2.8), recorded in an interleaved manner with the heteronuclear

spectra. Three gradients strength were used: 2.5, 25 and 47.5 G.cm−1, and the decay

of intensity from the spectrum recorded with a low gradient strength compared to that

recored with a high gradient strength gave an estimation of the translational diffusion

coefficient of the NC (cyan vs black curves in Figure 3.8D, E & F ). A decay of ca.

30% is indicative that the NC has a diffusion coefficient equal to that of the ribosome,

whereas greater attenuations are associated with the release of the NC (Section 2.3.2.8).

The decay of intensity associated with the unfolded methyl signals (1H ppm 0.6-1.0) of

sample ddFLN-dom5+110-RNC is similar to what is expected for a ribosomal particle,

and remains stable for ca. 40 hours. Moreover, the decay of intensity associated with
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Figure 3.8: A, B & C: Mean z-score of the intensity of five ddFLN-dom5 Ile resonances (Section

2.3.2.5) in ddFLN-dom5+110, +47 and +37-RNC respectively, followed over-time (see also Figure

2.31). The intensities shown here are intensity measured on the sum of five spectra in the case

of ddFLN-dom5+110-RNC, ten spectra in the case of ddFLN-dom5+47-RNC and 3 spectra in the

case of ddFLN-dom5+37-RNC. The vertical error-bars show the standard error of the mean, and

the horizontal error-bars correspond to the time of acquisition for each spectrum. The green

dotted lines show the 5% threshold corresponding to the limit of observability for the mean of

five resonances (Section 2.2). The red rectangle shows the data that are summed for the intensity

analysis and linewidth analysis shown in Section 3.2.2.1. D, E & F: Signal intensity of the 13C-

edited STE-HMQC diffusion spectra, recorded with gradient strengths of g=2.5 (cyan), 25 (blue)

and 47.5 (black) G.cm−1, for ddFLN-dom5+110, +47 and +37-RNC respectively. G, H & I Anti-His

western of ddFLN-dom5+110, +47 and +37-RNC respectively, during the timecourse that covers

the NMR acquisition. The red arrow shows the 14kDa product of the proteolysis and the green

arrow shows the full-length NC.
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Figure 3.9: Ile-methyl-TROSY HMQC spectra of U-[12C,2 H], Ileδ1-[13C1H3] ddFLN-dom5+37-

RNC. Left: spectrum recorded within the first 12 hours of acquisition. Right: spectrum recorded

after 38 hours of acqusition. Both spectra are recorded with the same number of scans, and the

1D 1H traces at the 13C chemical shift of Ile 674 and Ile 695 are shown above the spectra. The

linewidth of the appearing ddFLN-dom5 resonances are on the order of 6-7Hz, similar to the

linewidth of the isolated protein signals.

the dispersed resonance of I695 could be measured directly, and was found to be on

the order of that expected from a ribosome particle (data shown in Section 2.3.2.8). The

intensities of unfolded methyl signals of both samples ddFLN-dom5+47 & +37-RNCs in

the 13C-edited STE-HMQC diffusion spectra also indicated that the diffusion coefficient

of those resonances are on the order of that of a ribosome particle, and remained stable

for ca. 55 hours (ddFLN-dom5+47-RNC) and 40 hours (ddFLN-dom5+110-RNC). In the

heteronuclear spectrum of ddFLN-dom5+37-RNC however, most of the signals observed

could be attributed to the L7/L12 stalk as the overall signal for the NC was weak in

the NMR data accumulated over the period of the time analysed (Figure 3.7E). The 13C-
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edited STE-HMQC diffusion experiment therefore mainly reported on the attachment of

those ribosome signals, and not the attachment of the NC.

The anti-His western blotting of samples taken over the time of NMR acquisition

did not show significant levels of proteolysis, indicating this was not the main factors

in limiting the sample lifetime. However, due to the high deuteration level, it was not

possible to probe for a tryptophan resonance which would be used to monitor a SecM

base release (Section 2.3.3.3).

The conservative approach to RNC analysis detailed in Chapter 2 stipulates that

the null hypothesis is that the observed signals arise from released NC unless strong

evidence indicates the attachment of the NC to the ribosome. In the case of ddFLN-

dom5+110 & +47-RNCs, the observation of RNC signals in the 1H-13C methyl-TROSY

HMQC spectra allowed the attribution of the slow diffusing signals in the 1H-13C-edited

STE diffusion spectra to the folded NC, which indicated that the NC remains attached

for 40-60 hours respectively. However, data from ddFLN-dom5+37-RNC were more

ambiguous. The weak intensity of the folded NC resonances in the 1H-13C methyl-

TROSY HMQC meant that these were not observed in the 1H-13C-edited STE diffusion

spectra, and there is therefore no evidence that the signals observed within the first six

hours of acquisition are those of the attached NC – particularly as subsequent spectra

showed the appearance of released NC. Nevertheless, it is clear that data recorded

from ddFLN-dom5+110 & +47-RNCs within 40-60 hours are from attached NC, and

the spectra are therefore suitable for further analysis.

In particular, the 1H linewidths (∆ν1H) of each resonances could be measured, which

relate to the dynamics of the residues. A Lorentzian function was used to fit each

signal in spectra of isolated ddFLN-dom5, ddFLN-dom+110 & +47-RNCs, and both

the fitted lineshape and the raw spectrum are shown above the spectra in Figure 3.7.
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Resonance SN in SN in ∆ν1H (Hz) in ∆ν1H (Hz) in ∆ν1H(Hz) in
+110-RNC +47-RNC +110-RNC +47-RNC isolated

ddFLN-dom5
748 11.8 9.8 16±1 19±2 <5
743 12.5 8.7 14±1 15±2 <6
738 4.9 3.8 28±4 31±5 <6
695 6.4 5.5 19±3 24±3 <6
674 4.3 4.3 19±4 34±4 <6
L7 15.3 37 5.1±1.1 4.7±0.5

Table 3.1: Signal to noise and linewidth of the dispersed, native-like ddLFN-dom5 Ileδ1 in ddFLN-

dom5+110 and ddFLN-dom5+47-RNC. The linewidth uncertainty are calculated with equation

1.12.

The linewidths of isolated ddFLN-dom5 are sharper than 6Hz (Table 3.1) – limited by

the proton acquisition time. Similar values for the linewidths of the L7 resonances

were found in the spectra of ddFLN-dom+110 & +47-RNCs (5.1±1.1 & 4.7±0.5 Hz),

indicating that the dynamics of the ribosome-bound L7 is similar to that of an isolated

domain (in line with previous NMR studies of the L7/L12 [33]). The linewidths of

the folded ddLFN-dom5 Ileδ1 resonances in 1H-13C methyl-TROSY HMQC spectra of

ddFLN-dom5+110 & +47-RNCs were found to be broader than those of L7: ca. 20Hz on

average, with a range of 14-28Hz (Table 3.1), indicating that the RNCs are less mobile

than the L7 stalk. These linewidths were, however, sharper than the linewidth expected

from the ribosome complex, estimated to be ca. 190Hz (Section 1.3.2, assuming S2
axis=0.5),

indicating that the NC does experience independent motions from the ribosome core,

attributable to the flexible ddFLN-dom6 linker.

The linewidths of each of the dispersed resonances of ddFLN-dom5+110-RNC are

mapped on the ddFLN-dom5 structure in Figure 3.10A. Most were nearly identical

within error (16-19 Hz with uncertainties of 1-3Hz), with the exception of I738 (24±4Hz),

which is in the F-G loop in the N-terminal hemisphere and the sidechain of which is
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Figure 3.10: Structural mapping of the Ile ∆ν1H of ddFLN-dom5+110-RNC in A and ddFLN-

dom5+47-RNC in C. B & D: Map of the allowed τc,NC and S2
NC that satisfy the experimental

linewidth (shown in the same colour coding as in A and C respectively) considering τc,ribo=2500ns

and S2
axis=0.5 for all Ile residues. The regions shaded indicates the quoted uncertainties in Table

3.1. The L7 linewidth are shown in black. Refer to Chapter 1 Section 1.3.2 for details about the

plot.
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within the hydrophobic core of the protein facing strand B. As the linewidth is directly

correlated to the amplitude of the rotation of the methyl group (S2
axis, Section 1.3.2),

restricted rotation of the methyl group could explain the broader linewidth of I738 in the

ddFLN-dom5+110-RNC spectrum, possibly due to the buried position with which I738

is present within the structure.

To model the overall flexibility of the RNC provided by the flexible linker, the model-

free parameters that characterise the motion of the NC relatively to the ribosome (its

correlation time τc,NC and order parameter S2
NC) were derived from the linewidths using

equations 1.11 & 1.8 (Chapter 1, Section 1.3.2). The allowed values of τc,NC and S2
NC,

given the observed linewidths and τc,ribo=2500 ns are shown in figure 3.10B (see also

Figure 1.12B). The correlation time associated with the motions of the NC was at most

300 ns, assuming a very low order parameter (i.e. the amplitude of the motion not

limited). If the order parameter of the NC is larger (at most S2
NC=0.1), the correlation

time of the motion will be lower (τc,NC ∼ 50 ns) to satisfy the observed linewidth. By

comparison, the motion associated to the L7 linewidth were found to have a correlation

time τc,L7 ≤ 60 ns and S2
NC ≤ 0.01 (black lines in Figure 3.10B & D). The dynamics of L7

have also been measured by 1H-15N relaxation, which showed a correlation time τc,L7 ∼

14ns [33], suggesting that motions of the C-terminal end of L7 are beyond the validity of

the model used here which was derived for τc,L7 ≥ 50ns (Section 1.3.2).

The linewidths of the RNC resonances indicate that, overall, the natively folded

ddFLN-dom5 in ddFLN-dom5+110-RNC tumbles independently of the ribosome,

although with a longer tumbling time as compared to the C-terminal domain of the

L7/L12 stalk. This is also supported by the low maximum order parameter values

(allowed if τc,NC is close to 50 ns) which indicates that the amplitude of the motions

experienced by the nascent chain is large, and the NC is not in a confined space.
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In order to understand the overall motion of the folded RNC in ddFLN-dom5+47-

RNC, the linewidths associated with the folded resonances of ddFLN-dom5+47-RNC

(∆ν1H=15.0-34.2Hz) were analysed by comparison with their linewidths in the ddFLN-

dom5+110-RNC spectrum. Resonances I743 and I748 were found to have the same

linewidths in both the ddFLN+47-RNC spectrum (15±2 & 19±2 Hz) and ddFLN-

dom5+110-RNC spectrum (14±1 & 16±1 Hz), while other resonances were found to

be broader in ddFLN-dom5+47-RNC spectrum (∆ν1H=14-28Hz). This suggests that the

broad linewidths for residues I695, I738 and I674 are not due to the limited tumbling

due to the shorter linker. The persistence length of a disordered peptide is known

to be on the order of seven residues [171], i.e. within a disordered linker, the i + 8th

residue tumbles independently of the ith residue. The C-terminal end of ddFLN-dom5

is expected to be between 7 to 23 residues away from the exit port of the ribosome exit

tunnel in ddFLN-dom5+47-RNC (assuming that 24-40 residues occupy the ribosomal exit

tunnel, Section 3.2.2), and given that the truncated ddFLN-dom6 sequence results in a

disordered linker, and a persistence length of seven residues, it is expected that this linker

length provides enough flexibility for the RNC to tumble independently of the ribosome.

This independent tumbling was confirmed by the linewidth of the folded I743 and I748

resonances in the ddFLN-dom5+47-RNC spectrum, these linewidths were associated

with an overall motion of the NC that has a maximum correlation time of τc,NC = 300

ns, and a maximum order parameter of S2
NC = 0.1 (Figure 3.10D), and indicates that the

overall motion experienced by the NC in ddFLN-dom5+47-RNC is of similar timescale

and amplitude as in ddFLN-dom5+110-RNC. Together, these results suggest that the

ddFLN-dom6 linker provides the required flexibility to allow ddFLN-dom5 to sample a

large volume in both RNCs, and provide the NC with a large conformational entropy.

Nonetheless, the analysis of the linewidths of the folded ddFLN-dom5 resonances
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in ddFLN-dom5+47-RNC were found to be very heterogeneous, from 34±4 Hz (I674

and I738) to 15±2 Hz (I748 and I743). This heterogeneity is significantly greater than

the experimental uncertainty, and might indicate internal dynamics in addition to the

overall motion of the entire domain (analysed above). This differential linewidth seems

to be greater than that observed for ddFLN-dom5+110-RNC, which suggest that this is

beyond the differential dynamics of the side chains (i.e. differential S2
axis). The solvent

exposed Ile methyl groups (Ile 748 and Ile 743) were found to have a sharper linewidth

(Figure 3.10) compared to those packed in the hydrophobic core of the domain (Ile 674,

Ile 674 and Ile 738). In addition, the Ile methyl groups of the N-terminal hemisphere (Ile

674, Ile 738) were found to be the most broadened, in particular residues I674 of strand

B, which was found to be very stable in the native state of the protein by H-D exchange.

This preliminary observation of differential dynamics may be indicative of chemical

exchange with a non-native intermediate state, or there may be additional anisotropic

dynamics associated with individual loops or side-chains (Section 1.3.2). A knowledge of

proton linewidths alone does not permit the accurate determination of local anisotropy or

chemical exchange at this intermediate linker length, and further experimental data will

be required to provide additional information. Another possibility for the differential

linewidths observed within ddFLN-dom5+47-RNC may be a transient interaction of

ddFLN-dom5 with the ribosome [130]. This would result in the broadening of the

residues of the N-terminal hemisphere as in a chemical exchange situation, and would

also reduce significantly the tumbling of the NC (i.e. increase τc,NC and S2
NC).

In summary, while it is clear for the ddFLN-dom5+47-RNC that the immunoglobulin

domain is fully emerged and folded, the proton linewidths reveal the existence of non-

native dynamics. This may indicate conformational exchange or transient interactions

with the ribosome surface. These observations provide a strong foundation for future
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work to analyse these effects further.

3.2.2.2 Analysis of the disordered regions of ddFLN-dom5-RNCs in the 1H-15N SOFAST-

HMQC

In order to analyse further the folding equilibrium of ddFLN-dom5 as a function of

ddFLN-dom6 translation length, the unfolded states of ddFLN-dom5 were examided

using the 1H-15N SOFAST-HMQC of each sample as described in Section 2.3.2.3 and

compared to the 1H-15N HSQC spectrum of 8M urea denatured ddFLN-dom5. The 1H-

15N HSQC spectrum of unfolded ddFLN-dom5 contains several discrete resonances – in

particular, resonances G716 and T679, which do not overlay with either L7/L12, folded

ddFLN-dom5 or disordered ddFLN-dom6 resonances. These resonances were therefore

used to monitor the unfolded state of ddFLN-dom5 at each linker length (Figure 3.11,

magenta circles). Unlike the analysis of the folded resonances, the assessment of whether

Figure 3.11 (following page): 1H-15N SOFAST-HMQC spectra of disordered ddFLN-dom5 in

magenta, truncation of ddFLN-dom6 in cyan, 70S in grey, and ddFLN-dom5-RNCs in black. A:
1H-15N SOFAST-HMQC spectra of 8 M urea denatured ddFLN-dom5 [185]. B: ddFLN-dom5+21-

RNC, C: ddFLN-dom5+31-RNC, D: ddFLN-dom5+37-RNC, E: ddFLN-dom5+47-RNC, F: ddFLN-

dom5+57-RNC, G: ddFLN-dom5+67-RNC and H: ddFLN-dom5+110-RNC, I: Truncated ddFLN-

dom6751−840. The magenta circle in A shows resonances G716 and T714 of unfolded ddFLN-dom5

and the cyan circles in G shows two resonances of disordered ddLFN-dom6. J: Normalised z-score

(SN) of the mean intensity for resonances G716 and T714 of unfolded ddFLN-dom5 in magenta

and disordered ddFLN-dom6 in cyan as a function of linker length. The z-score is normalised

for the 70S concentration and the square root of the number of scans: each spectra was recorded

with 352 scans, and the intensities shown here correspond to the intensity in the sum of 5 spectra

for ddFLN-dom5+21-RNC (7 µM), 10 spectra for ddFLN-dom5+31-RNC (4.8 µM), 11 spectra for

ddFLN-dom5+37-RNC (7 µM), 4 spectra for ddFLN-dom5+47-RNC (7 µM), 5 spectra for ddFLN-

dom5+57-RNC (10 µM), 8 spectra for ddFLN-dom5+67-RNC (7 µM) and 3 spectra for ddFLN-

dom5+110-RNC (9 µM). The error bars are the standard deviation of the noise of each spectrum

divided by
√

2×
√

NS×[RNC]. The grey doted line shows the 5% threshold of the noise of each

spectrum, and the black lines shows the average threshold.
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the unfolded resonances arose from attached RNC was easier to monitor. This was

because the unfolded resonances are distinct from the folded resonances observed from

the released chain that was found to be able to fold as seen in Section 2.3.3.3; and the high

intensity of the unfolded resonances that allows recording the 1H-15N SOFAST-HMQC in

a shorter timescale (compared to 1H-13C methyl-TROSY HMQC, ca. 6-12 hours); as well

as less ambiguity in the 15N XSTE diffusion experiment in which the dispersed L7/L12

amide resonances are very distinct from the unfolded ddFLN-dom5 resonances.

Resonances from disordered ddFLN-dom5 could be observed in the 1H-15N

SOFAST-HMQC spectra of ddFLN-dom5+21, +31 and +37-RNC (Figure 3.11A, B and

C respectively), indicating that at these linker lengths ddFLN-dom5 populates the

disordered state. The intensity of the disordered resonances remained constant (within

error) from linker lengths of +21 to +31 residues. The ratio of intensities of unfolded

ddFLN-dom5 resonances in the ddFLN-dom5+31-RNC compared to those in the +21-

RNC spectra is approximately constant throughout the ddFLN-dom5 sequence (Figure

3.12), with the exception of five resonances that had a higher intensity in the ddFLN-

dom5+31-RNC spectrum, indicating that the unfolded state in both lengths sample

similar conformations. The intensities of the unfolded resonances decrease however

as the linker length increases from +31 to +47 residues. At a linker length of +37

residues, the intensities of the unfolded resonances were significantly lower than at

linker lengths of +21 or +31 residues, despite the longer linker providing additional

flexibility to the domain. This lower intensity was not associated with a lower occupancy

of the NC as controlled by the anti-His western, but instead relates to the intrinsic

properties of the ddFLN-dom5+37-RNC. As mentioned in Section 3.2.2, at linker length

of +37, ddFLN-dom5+37-RNC is expected to be either fully exposed or at most with

3 residues within the exit tunnel. Although resonances from the folded state could
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Figure 3.12: Intensities for the unfolded resonances in ddFLN-dom5+31-RNC spectrum divided

by that in ddFLN-dom5+21-RNC spectra, normalised for the number of scans and RNC

concentration, as plotted versus the residue number.

not be analysed in details in the 1H-13C methyl-TROSY HMQC of ddFLN-dom5+37-

RNC (due to early release of the NC), one cannot exclude that a low population of a

folded state is populated, giving rise to weak signals in the 1H-13C spectrum (Figure

3.7G). The decrease in the intensity of the unfolded ddFLN-dom5 resonances together

with the absence of discernible “folded” resonances suggest that perhaps the currently

observed unfolded state is in a slow exchange with a “NMR-invisible” folded state, and

therefore only a subset of the domains populates the unfolded state; this would explain

the lower intensity for those resonances in the 1H-15N SOFAST-HMQC spectra of ddFLN-

dom5+31-RNC. The presence of a folded state (with perhaps non-native structure or

dynamics) that is NMR-invisible is also supported by the analysis of ddFLN-dom5+47-

RNC spectra. At a linker length of +47 residues, “folded” but severely broadened

resonances were observed in the 1H-13C methyl-TROSY HMQC. It is reasonable to expect

such broadening to be even more significant at shorter linker lengths, thus rationalising

the absence of observed signals.
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In 1H-15N SOFAST-HMQC spectra of ddFLN-dom5+57 to +67-RNCs, resonances

from disordered ddFLN-dom5 were not observed, despite the linker providing enough

flexibility, indicating that at these linker lengths the unfolded state was not populated (as

was the case for ddFLN-dom5+47-RNC). Moreover, the appearance of weak resonances

assigned to unfolded ddFLN-dom6 (Figure 3.11G, H & J) at linker length ≥ 67 residues

indicates that at these lengths parts of the unfolded linker have emerged from the

ribosome exit tunnel with enough flexibility to allow NMR observation. Moreover,

in the 1H-15N SOFAST-HMQC spectrum of ddFLN-dom5+110 resonances assigned to

disordered ddFLN-dom6 were observed with higher intensities compared to ddFLN-

dom5+67-RNC, which is consistent with the greater exposure of the long linker. This

also indicates that the ddFLN-dom6 linker remains disordered at all lengths of this study.

Close inspection of weak unfolded ddFLN-dom5 resonances in ddFLN-dom5+110-RNC

spectrum revealed that these most likely reflected an artefact of the intense ddFLN-dom6

resonances that partially overlap the ddFLN-dom5 resonances; this is also supported

by the analysis of the 1H-13C HMQC of the same sample that revealed that ddFLN-

dom5 adopts the native conformation, signifying the essentially complete folding of the

ddFLN-dom5 domain.

Together, the analysis of the unfolded resonances in the 1H-15N SOFAST-HMQC

spectra of RNCs with increasing linker lengths indicates that the unfolded state is

populated for linker length ≤ 37 residues, and not populated at linker length ≥ 47

residues. At linker length of +37 residues, the low intensity of the unfolded resonances

might also be indicative of a equilibrium between an observed unfolded state and a yet-

to-be-analysed partially folded state, in slow exchange compared to the NMR timescale

(ca. 100ms). One can not exclude such an equilibrium for shorter lengths, although

the greater intensities for the unfolded resonances suggests that at shorter lengths, the
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equilibrium is favouring the unfolded state.

3.2.3 Analysis of the differential resistance to proteolysis and the implication

for co-translational folding

As described in Chapter 2, Section 2.3.3, a number of NMR and biochemical strategies

were developed to assess the integrity of the RNC over time. Section 2.3.3.4 presented

evidence that for ddFLN-dom5+110-RNC, proteolysis can occur at the ddFLN-dom5

linker, resulting in the release of the folded immunoglobulin domain and giving rise

to sharp resonances in the heteronuclear spectra (Figure 2.29 showed the spectrum

before proteolysis and the spectrum after proteolysis has occurred within 24 hours).

A similar increase in the intensity of native-like resonances over time in 1H-13C HMQC

spectra of ddFLN-dom5+47-RNC (Figure 3.13D) was also attributed to the release of the

native domain via truncation of the linker, as well as in the case of ddFLN-dom5+57

and +67 (Supplementary figures, Figure A.3). The timescale of proteolysis as observed

by this increase in intensity in the heteronuclear spectra varied: 20±13hrs for ddFLN-

dom5+110-RNC, 16±4 hrs for ddFLN-dom5+47-RNC, 66±33 hrs for ddFLN-dom5+57-

RNC and 65±35 hrs for ddFLN-dom5+67-RNC. The folded domain however appears to

be resistant to proteolysis (as seen by the heteronuclear spectra recorded after proteolysis,

MS and anti-His western, Section 2.3.3.4) and thus proteolytic cleavage was targeted at

the disordered linker downstream the C-terminal end of the domain. The resistance

of folded domains to limited proteolysis has previously been used to probe for native

structure [207] and is often used to identify protein domains [208]. In this regard, it is

interesting to note that in RNCs with linker length of 47 residues and longer, ddFLN-

dom5 is resistant to the proteolysis accounted here, under the influence of trace amounts

of proteases.
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Figure 3.13: A: Decrease of the mean mean z-scores of the intensities of 1H-15N unfolded ddFLN-

dom5 resonances over time in ddFLN-dom5+37-RNC. The vertical error-bars show the standard

error of the mean, and the horizontal error-bars show the time of acquisition of 8 spectra. The

black line shows the mean z-scores of the unfolded resonances T679, V682, A683 and A694. The

blue line shows the mean z-scores of unfolded resonances T714 and G716. The dotted green line

shows the 5% threshold corresponding the limit of observability for the mean of five resonances.

Data are fitted to equation 2.8 (red curve), k=21.5 ± 7 hours (r2=0.92). B: Decrease in the mean

z-scores of the intensities of the signal in the 6×His western blot corresponding to full-length

ddFLN-dom5+37-NC. The western blot is shown in the insert. The green arrow shows the size

of the full-length RNC, and the red arrows highlight fragments that have a size similar to that of

ddFLN-dom5. In the plot, the y axis is the normalised signal intensity from the western fluorescent

signal. The x axis is the time in hours. Data are fitted to equation 2.8 (red curve), k=11.5 ± 8 hours

(r2=0.93). C: Mean z-score of the intensities of folded methyl resonances ddFLN-dom5+37-RNC,

in 1H-13C HMQC. The axis are the same as in A, as well as the green line. D: Same as C for

ddFLN-dom5+47-RNC. The red curve shows the fit of equation 2.7, k=16 ± 4 hours (r2 0.99).
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In contrast to RNC with a long linker length, RNC constructs with short linker

lengths were not subject to the equivalent proteolytic behaviour over time, and were also

seen to populate the unfolded state as seen in the previous Section 3.2.2.2. Samples of

ddFLN-dom5+21-RNC and ddFLN-dom5+37-RNC were however subject to proteolysis

over time in the absence of protease inhibitors, as shown by the disappearance of the

full-length band in the anti-His western time-course (Figure 3.13B) with a time constant

of 12 ± 8 hours. This proteolysis, however, was not correlated with the appearance of

native ddFLN-dom5 resonances in the 1H-13C HMQC spectra, the intensities of which

remained below detection during the entire time-course (Figure 3.13C). On the contrary,

the intensities of isolated “unfolded” resonances in the 1H-15N SOFAST-HMQC (ddFLN-

dom5 residues T679, V682, A683 and A694) appeared to decrease over time (Figure

3.13A, black curve) with a time constant of 21.5 ± 7 hours. This result suggests that

with linker lengths of 21 and 37 residues, the entire immunoglobulin domain has the

propensity to sample conformation that renders it sensitive to proteolysis, in which the

domain can be truncated within 4-29 hours. It it interesting to note that the most intense

resonances in the 1H-15N SOFAST-HMQC of ddFLN-dom5+37-RNC also correspond to

resonances of the N-terminal end of the domain. Unfolded resonances from the C-

terminal end of the domain (T714 and G716, Figure 3.13A, blue curve) were typically

associated with a lower SN in the 1H-15N SOFAST-HMQC, and were also observed

to have decreasing intensities from 70 hours, at which time the intensities of the N-

terminal resonances reached a plateau. This might indicate that the proteolysis targets

the disordered NC in a N- to C-terminal manner.

Although this result is not equivalent to a controlled limited proteolysis experiment,

it is worth noting the correlation between the susceptibility of RNCs to proteolysis

and NMR observations. RNCs of ddFLN-dom5 with a linker length ≥ 47 residues



Chapter 3. Snapshots of the emergence of ddFLN-dom5 from the ribosome 161

A B

Figure 3.14: Schematic of the relation between resistance to proteolysis reaction and the folding

equilibrium. A: In the case where the RNC populates the folded state, the folded domain is

resistant to proteolysis. B: In the case where the RNC populates unfolded or partially folded

states, the domain is susceptible to proteolysis. Refer to the main text.

gave rise to dispersed resonances in the 1H-13C methyl-TROSY HMQC, and proteolysis

typically occurred downstream in the linker region, thus releasing the folded domain

from the ribosome (Figure 3.14A). ddFLN-dom5-RNC with linker length ≤ 37 residues,

on the other hand, gave rise to resonances assigned to the disordered state in the 1H-

15N SOFAST-HMQC, and proteolysis caused the progressive truncation of the unfolded

immunoglobulin from the N-terminus to the C-terminus (Figure 3.14B).

The disappearance of the full-length RNC band in the anti-His western blot also

correlated with the appearance of a lower MW bands whose sizes were similar to that

of the ddFLN-dom5 domain, as it was observed in the case of ddFLN-dom5+110+RNC

(Figure 2.31B) and ddFLN-dom5+47+RNC (Figure 3.8E). Segments of a protein that are

resistant to proteolytic cleavage in limited proteolysis experiments were attributed to

residual structural elements in intermediate states such in as molten globule ensemble,

for example in the case of bovine alpha-lactalbumin [209, 210]. The observation of an

anti-His band of the size of the ddFLN-dom5 domain suggests that the domain was

sampling a conformation that protects it from proteolysis in ddFLN-dom5+37-RNC, and
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this observation is in line with the potential population of folded but “invisible” state

ddFLN-dom5+37-RNC that was inferred from the lower intensity of unfolded resonances

in the 1H-15N SOFAST-HMQC spectrum of ddFLN-dom5+37-RNC compared to that of

shorter RNCs, and the shift of the distribution of the intensities of folded ddFLN-dom5

resonances compared to the noise distribution in the 1H-13C methyl-TROSY HMQC.

A controlled limited proteolysis experiment might assist in determining differential

rates of proteolysis as a function of linker lengths, and probe for a low population of

folded state that is resistant to limited proteolysis. Such an experiment would provide

complementary information to the NMR results, and in particular provide additional

information to the transient population of NMR invisible folded states in short RNCs.

3.3 Further discussion and concluding remarks

NMR spectroscopy was used to map the co-translational folding properties of

ddFLN-dom5 as it emerges from the ribosomal exit tunnel. At a linker length of 21

residues, the C-terminal end of ddFLN-dom5 has not emerged from the ribosome exit

tunnel, and is not available for the entire domain to fold. In the isolated native state,

strands B, E & F were seen to be the most stable, but strand G also makes stable H-

bounds with strand F (∆GI743
op−cl=9.1kcal.mol−1, ∆GV745

op−cl=8.9kcal.mol−1). The observation

of unfolded ddFLN-dom5 at short linker lengths suggest that the availability of strand

G is required for complete folding to occur, and perhaps these H-bonds are necessary to

stabilise the folded state. The unfolded state was also observed to be populated at linker

lengths up to 37 residues. This length exceeds the number of residues needed to pass

through the ribosome tunnel, assuming a fully expanded conformation (24 residues [48]).

This indicates therefore, that either the ddFLN-dom6 linker has the propensity to adopt

a compact structure in the tunnel (Figure 3.15A), or that the ribosome itself is playing



Chapter 3. Snapshots of the emergence of ddFLN-dom5 from the ribosome 163

linker length

????????????????

A

B

C D

???????????????????
E

F

????????????????????????????

+47+37 +110

Figure 3.15: Schematic of the folding equilibrium at increasing linker lengths. The question marks

indicate the “invisible by NMR” states, on which the current set of NMR and biochemical data does

not provide any information. Refer to the main text.

an active role that prevents co-translational folding at short translation lengths (Figure

3.15B). There is no evidence that the N-terminal end of ddFLN-dom6 has a propensity

to form an α-helix in vitro, although one can not exclude the formation of such helix

within the confining environment of the ribosome exit tunnel. Indeed, the formation of

α-helices in the last 50Å of the tunnel have been observed for a sequence that is prone to

helix formation [41], and SecM was seen to adopt a slightly compact conformation near

the exit port of the tunnel [40]. The need for a longer linker to observe complete folding

could also be due to transient interactions of the ribosome with the nascent chain, and

in particular with the linker sequence. If the linker itself interacts with the ribosome, its

ability to provide enough flexibility for the C-terminal end of ddFLN-dom5 to sample

the conformational space required to fold might be altered (Figure 3.15B).
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The NMR data alluded to the presence of an invisible folded state at linker length of

37 residues as observed in the decreased intensity of the unfolded resonances compared

to those of ddFLN-dom5+21-RNC in the 1H-15N SOFAST-HMQC. The very low intensity

of the folded ddFLN-dom5+37-RNC resonances in the 1H-13C methyl-TROSY HMQC

could be the result of the very low population of this intermediate state (Figure 3.15C).

In addition, the linker length might not be long enough to provide the require flexibility

for the NC to tumble independently of the ribosome, thus preventing NMR observation.

Indeed, the persistence length of a disordered protein has been shown to be around

seven residues [171], and at a linker length of 37 residues, at most 13 of these residues are

present outside of the ribosomal tunnel, however, this might not be a linker length which

ensures independent tumbling. This restricted tumbling is surprising with respect to

computational studies which have suggested that the exit port of the ribosome exit tunnel

present an entropic window for the nascent chain to sample a larger conformational

space (detailed in the introduction Section 1.1.4). Indeed, previous fluorescent anisotropy

studies of partially folded ApoMb-RNC which has not emerged fully from the ribosome

were also shown to undergo an independent tumbling with a correlation time as short as

3-11ns [83]. This suggests therefore that either the intermediates observed for ApoMb-

RNC have a more compact structure that the invisible folded state populated by ddFLN-

dom5+37-RNC (and thus are tumbling faster), or that the linker sequences used here

behave differently to that of the C-terminal disordered extension of Apo-Mb-RNC.

An interaction of ddFLN-dom5 itself with the ribosome would also limit further

its flexibility and render its resonances broadened beyond detection. At lengths of

47 residues and longer, however, the observed folded RNC resonances were observed

to tumble independently of the ribosome complex via the analysis of the proton

linewidths in the 1H-13C methyl-TROSY HMQC, therefore any potential interaction with
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the ribosome is likely to be partially disrupted at longer linker lengths, in which the

domain has the capacity to fold completely (Figure 3.15F). The use of a combination of

NMR and biophysical/biochemical assays can shed light to any potential NMR invisible

intermediates state populated at these lengths. For example, the data presented here

from uncontrolled limited proteolysis hindered the resistance to proteolysis of a low

population of folded domain in ddFLN-dom5+37-RNC.

With a longer linker length of 47 residues, the population of a disordered state was

not observed in the 1H-15N SOFAST-HMQC (Figure 3.15D). Native-like resonances were

observed in the 1H-13C methyl-TROSY HMQC, indicating that the immunoglobulin

domain is folded. The dynamics of the ddFLN-dom5 at this stage of co-translational

folding differs, however, from that of the fully exposed domain seen with a linker length

of 110 residues. These dynamics might reflect a chemical exchange with non-native

states that remains to be characterised (Figure 3.15E). This is interesting in light of the

increased dynamics of the N-terminal hemisphere that was observed (with selective

broadening of residues I738 and I674), in comparison to the overall stability of the

N-terminal hemisphere as observed in the native state by H-D experiment on isolated

ddFLN-dom5. In particular, residue I674 were seen to be very stable in the native state

(∆GI674
op−cl=10kcal.mol−1), however, it was selectively broadened in the ddFLN-dom5+47-

RNC, indicating that this residue is subject to chemical exchange or local anisotropic

effects. In contrast, resonances of the G-strand had similar linewidths in the 1H-13C

methyl-TROSY HMQC spectra of ddFLN-dom5+47 and +110 RNC, which indicates that

these have similar dynamics and that the overall motion of ddFLN-dom5 is not strongly

affected by the increased linker length. Although the linewidth analysis excluded a

strong interaction with the ribosome, transient interactions that could shift the folding

equilibrium cannot be excluded (Figure 3.15F).
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In summary, the current data provides for the first time a structural and dynamical

understanding of the different conformations sampled during co-translational protein

folding. The newly described methods to generate RNCs and analyse their properties

by NMR will enable future experiments of this kind to be explored. To complete this

understanding, the main challenge resides in the limited NMR observability of RNC

with restricted tumbling and of rigid regions of the ribosome complex, aside from the

challenges related to the variability in the sample preparation and stability. The nascent

chain spans through the large ribosomal subunits only; it would be therefore interesting

to analyse the effect of reducing the size of the complex to the individual subunits on the

NMR observability. The use of higher temperatures can also permit the NMR observation

of slower tumbling regions, this has been tested on stable archaeal ribosomes, and is the

subject of the next chapter.



Chapter 4

NMR investigations of intact ribosomes

4.1 Introduction

NMR studies of high molecular weight biological systems have increased in number

recently, as was discussed in Section 1.2.3. Notable examples are studies of the 20S

proteasome, of GroEL-ES and of the SecA machinery. The NMR study of the 20S

proteasome revealed the N-terminal residues as forming a primitive gate at the entrance

pore [122,123], that regulate protein degradation, with exchange rate between the closed

and opened conformations of these N-terminal residues was found to be on the order

of a second. Also, the dynamics of the surface residues, the entrance pore and the

catalytic chamber were found to assist substrate localisation [122]. The network of

substrate-enzyme interactions inside the catalytic chamber was also investigated by

NMR, revealing that these interactions shift the folding equilibrium of the substrate

by destabilising the folded states [124], thus facilitating protein degradation. The

NMR investigation of a substrate inside the GroEL-ES chaperonin chamber revealed

an opposite effect of confinement to that of the proteasome which actually destabilised

the disordered state of the substrate [125]. In the NMR studies of the translocation

machinery [153] the recognition mode of hundreds of different signal sequences by the

cognate receptor SecA that mediate translocation through the Sec pathway was shown by

NMR to be mediated by hydrophobic and electrostatic interactions with a single groove
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on SecA [153]. The same NMR study revealed an oscillation between two conformations

of SecA: an open conformation where the groove is accessible and a closed conformation

where the C-terminal tail is occluding the groove. This equilibrium was proposed to be

an autoinhibitory regulation mechanism, which is relieved by interaction with the SecB

chaperone.

These studies offered the hope to the possible use of NMR to investigate aspects of

the ribosome, in particular the dynamical features of translation, such as the network of

transient interactions between the NC and the ribosome exit tunnel, the allostery between

the exit port of the exit tunnel, the universal docking site, and the PTC and tRNA binding

sites (Section 1.1.1.1). As seen from the investigations of RNCs presented in Chapters 2

& 3 of this thesis, the NMR study of the ribosome and its dynamics is challenging. Its

size exceed the typical maximum size for traditional NMR and computational studies.

While initial NMR studies of ribosome were described as early as the 1980s with the

observation of the L7/L12 stalk [33,211–213], the detailed NMR investigation of the entire

ribosomes has not been presented to date. This Chapter describes some preliminary

NMR investigations of entire ribosome complexes.

4.2 Results and Discussion

4.2.1 NMR of the E. coli ribosome

4.2.1.1 Production of purified 70S, 50S and 30S particles.

Isotopically labelled ribosome complexes suitable for NMR were purified from E.

coli cells grown in 15N/13C enriched media as described in Section 6.1.7, or in

media supplemented with methyl-13C, 3,3-2H, α-ketobutyric acid in a perdeuterated

background to produce selectively Ileδ1 labelled complex (Section 1.3.2). Following
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purification, the ribosomal complexes were assessed for purity using agarose gels and

SDS-PAGE (Figure 4.1). In 1% w/v agarose gels, two RNA bands were typically

observed, which represented the migration of the 23S and the 16S ribosomal RNAs

(Figure 4.1A). The very small 5S rRNA migrates beyond the ethidium bromide line.

In the SDS-PAGE of a typical 70S sample (Figure 4.1B), a series of bands were observed,

which correspond well to the expected distribution of sizes of the ribosomal proteins.

This purification strategy typically yielded up to 36±6 nmoles of pure 70S (>95%)

per litre of culture. To purify the component subunits, the purification strategy was

modified by decreasing the magnesium concentration to 1mM to allow splitting of the

subunits, without them dissociating into their component proteins. The optical density

at 254nm (OD254) profile of the fractionation of the sucrose gradient (Figure 4.1C) shows

good separation of the individual subunits, which was further confirmed by the distinct

pattern of the proteins within the 50S and 30S complexes revealed by SDS-PAGE analysis

of the fractions (Figure 4.1D). The recovery of isolated subunits from the 70S ribosomes

loaded was as high as 94% for the large subunit, but only ca. 40% for the small subunit,

based on the concentration measured by OD260.

4.2.1.2 Translational diffusion of the 70S particle and the 50S & 30S subunits monitored by

NMR spectroscopy

Both the 70S ribosome complex and the individual subunits were characterised by NMR.

As described in Section 2.3.2.1 (Figure 2.15), the ribosome gave rise to well-defined

resonances in proton spectra, as also seen for the isolated 50S and 30S subunits (Figure

4.2A&B). The methyl resonances at <0.7ppm that arise from the L7/L12 stalk, which

gave rise the majority of the signals in the 70S spectrum, could easily be identified in

the proton spectrum of the 50S subunit (Figure 4.2B). The spectrum of the 30S subunit
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Figure 4.1: A: 1% w/v agarose gel of 70S ribosome, with a 1k DNA ladder on the left. The

attribution of the RNA bands is shown in white. B: SDS-PAGE of ribosome complexes. From

left to right: protein ladder, 70S, 50S and 30S. The tentative attribution of the protein bands to

each ribosomal protein is indicated in blue for the large subunit and in red for the small subunit.

C: OD254 profile of the 17%-26% w/v sucrose gradient of a 70S ribosomes sample at low Mg

concentration (1mM). SDS-PAGE of the numbered fractions is shown in D. The fractions that

contained pure 50S subunits are in the blue rectangle, and those that contained pure 30S subunits

are in the red rectangle.
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30S subunit (red). Resonances observed in the methyl region of the 70S spectrum are likely to

arise from the flexible L7/L12 stalk. B: Proton spectrum of the intact ribosome complex (black),

overlaid with that of the 50S subunit (blue). C: Plot of the relative signal intensity in spectra of

the 1H STE diffusion experiment (on a log scale) versus the square of the gradient strength on the

x axis, for 70S in black, 50S in blue and 30S in red. The signal labelled with * indicates a signal

that is associated with a fast diffusion coefficient, and does not arise from the ribosome complex.

D: View of the 70S ribosome and the 30S & 50S subunits. The A,P and E tRNA are shown in grey,

as well as the nascent chain in the magenta.
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showed mainly resonances indicative of unfolded regions, with a narrow chemical shift

dispersion of the methyl resonances (none at less than 0.7ppm) in agreement with

previous studies [33]. These resonances have been tentatively assigned to a disordered

extension of the S1 protein as the S1 extension is associated with a high flexibility

from X-ray and cryo-EM studies of the 30S subunit. To understand the hydrodynamic

behaviour of the ribosome and its subunits, and to ensure the ribosomal attachment

of the proteins giving rise to the observed resonances, 1H STE diffusion spectra were

recorded, and used to estimate the translational diffusion coefficients of the complexes.

As shown previously (Section 2.3.2.1, Figure 2.15), the resonances from the 70S complex

show a diffusion coefficient of 1.7±0.4×10−11 m2s−1 at 25◦C (4.2C), a value identical

to the diffusion coefficient measured by light-scattering spectroscopy [172]. This value

equates to a hydrodynamic radius (rh) of 13±0.5nm (using the Stokes-Einstein relation,

Equation 1.16), which is consistent with the modelled hydrodynamic radius [214] from

the crystal structures of E. coli ribosomes [25] (rh=13nm). This rh relates to an overall

correlation time for the ribosome complexe of τc,ribo=1250ns, (using the Stokes-Einstein-

Debye relation, Equation 1.18). Previous measurement of τc,ribo using phosphorescence

anisotropy decay experiments found a τc,ribo=3300ns at 15◦C [129], corresponding to

τc,ribo=2500ns at 25◦C. The discrepancy between the rotational correlation time measure

by phosphorescence anisotropy decay and that calculated using the hydrodynamic radius

derived from NMR and light scattering experiments may be due to the aspherical shape

of the ribosome [129].

The diffusion coefficients of the isolated subunits were measured using a similar

1H STE diffusion experiments and were found to be 2.7±0.4×10−11 m2s−1 for the 30S

subunit and 5.1±0.4×10−11 m2s−1 for the 50S subunit (Figure 4.2C), which correspond

to hydrodynamic radii of 12nm and 5nm, respectively. Diffusion coefficients of ribosomal
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subunits measured by light-scattering spectroscopy were found to be 2.1 and 1.9×10−11

m2s−1 for the 30S and 50S prepared under identical conditions [172]. The NMR

measurement of the diffusion coefficient of the 30S subunits is in good agreement

with the value obtained from light-scattering spectroscopy (within uncertainty). It

was surprising that the NMR determined translational diffusion coefficient of the 50S

subunit was found to be greater than that of the 30S subunits, and indeed under the

NMR conditions, the ratio of their diffusion coefficients is opposite to the ratio of their

sedimentation coefficients (50 & 30 Svedberg units, respectively), which were determined

from sucrose gradient sedimentation. The diffusion coefficient measured for the 50S

subunit relates to a hydrodynamic radius that is smaller than the radius modelled

from the X-ray crystal structure (rh=9.5-10nm [25, 214]), and may suggest additional

conformational changes upon splitting. The hydrodynamic radius of the 30S subunits

extrapolated from its NMR-determined diffusion coefficient (rh=12nm) is larger than the

hydrodynamic radius modelled from the X-ray crystal structure (rh=7-8nm [25, 214]).

The slow NMR-determined diffusion coefficient may suggest that the 30S subunit can

dimerise under the NMR conditions used here. It is known that the inactive form of the

30S has the propensity to dimerise [215].

4.2.1.3 Heteronuclear NMR spectra of 70S ribosomes and the 50S & 30S subunits

The 1H-15N heteronuclear spectra of the component subunits are shown in Figure

4.3. The spectrum of the 30S subunit contains ca. 35 cross-peaks, all characteristic of

resonances arising from disordered polypeptide (Figure 4.3C) and which were assigned

to the disordered extension of S1 [33]. Resonances that overlay well with the 77 residues

of the C-terminal domain of isolated L7 [31] were observed with narrow linewidth

(∆ν1H ∼40Hz in the 1H-15N SOFAST-HMQC) in the spectrum of 70S ribosomes as
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well as in that of the 50S subunit (Figure 4.4A & B). Resonances from the N-terminal

domain of L7/L12 (residues 2-30) were apparently broadened beyond detection, as were

10 N-terminal resonances of the linker between the N-terminal and C-terminal domains

(residues 31-41). Resonances from the remainder of the linker (residues 42-51) could be

observed as well as those from the C-terminal domain.

The detection of the linker resonances more than ten residues from the L7/L12 N-

terminal domain is pertinent as regards the observability of the nascent chains as a

function of the distance from the ribosome, that was described in Chapters 2 & 3. The

N-terminal domain of the L7 stalk sits on L10, itself attached to the rigid ribosome via

interaction with L11 (Figure 1.2). L11 is associated with a well defined electron density

in the cryo-EM and X-ray crystal structures of the E. coli ribosome [11, 16], and is thus

considered to be part of the rigid core of the ribosome. While L10 and its interacting

partners the N-terminal domains of L7/L12 appear to tumble too slowly to be observed

in the 1H-15N SOFAST-HMQC spectrum, the disordered linker of L7/L12 appears to

provide sufficient flexibility for the tenth linker residue and beyond to be observed, in

line with the persistence length of an intrinsically disordered peptide, which is on the

order of seven residues [171]. If this dynamical behaviour is also characteristic of the

ddFLN-dom6 linker, one would expect to observe resonances that are no less than 10

residues away from the exit port of the ribosomal exit tunnel.

The 1H-13C HMQC spectra of the ribosomal subunits are shown in Figure 4.5. The

spectra of 50S subunits and 70S ribosomes show a number of methyl resonances (>40)

that overlap with typical V, A, T and L chemical shifts as shown in the boxes regions of

Figure 4.5 [216]. Notably three distinct Ileδ1 resonances can be identified (Figure 4.5A &

B). The C-terminal domain of L7/L12 contains two Ile residues (I57 & I69); the additional

Ileδ1 resonances observed in these 1H-13C HMQC spectra of the 50S and 70S particles
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respectively, showing the methyl region of the spectra. The typical chemical shift of methyl groups
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13C HMQC spectra of 70S ribosomes, and 50S & 30S subunits respectively. The typical chemical

shift of ribose H-C resonances are indicated with the squares, from the BioMagResBank [216]. G:

Structure of the RNA ribose showing the nuclei nomenclature.



Chapter 4. NMR investigations of intact ribosomes 178

does not appear to have been observed in the corresponding 1H-15N SOFAST-HMQC

spectra. The 1H-13C HMQC spectrum of 30S subunit contains resonances that overlap

with the typical chemical shift of methyl group of unfolded I, V, L, A and T residues

( [216], Figure 4.5C). No high-field-shifted methyl resonances (1H ppm <0.5ppm) were

observed in the spectra of either 70S ribosomes, or 50S or 30S subunits (Figure 4.5A&B).

This is in agreement with both the disordered properties of S1 in the 30S subunit, and the

absence of aromatic residues within the C-terminal domain of L7 in the 70S ribosomes

and 50S subunit, which means the methyl resonances do experience ring-current shifts.

Interestingly, a notable feature of these 1H-13C HMQC spectra are resonances from

each of the subunits and from that of the 70S ribosomes that can be attributed to

ribose groups (Figure 4.5D, E & F). These resonances were associated with a diffusion

coefficient of 1.6±0.5×10−11 m2s−1 in the 1H STE spectra of 70S ribosome, which is very

similar to the diffusion coefficient of the intact 70S complex, and strongly indicates that

these resonances arise from ribosomally asscociated RNA. However, the corresponding

resonances from the RNA bases are not observed, rendering the assignment of the ribose

resonances challenging.

In order to investigate the utility of NMR to further probe the core of the ribosome

complex, 1H-13C methyl-TROSY HMQC spectra were recorded from perdeuterated

ribosome samples that were selectively labelled at the Ileδ1 methyl groups: U-[12C,2 H],

Ileδ1-[13C1H3], a strategy that has been used successfully to probe other large systems,

and the RNCs (Chapter 3). In conventional 1H-13C HSQC spectra, the three Ile

previously observed from the 50S and 70S particle (among which two resonances were

assigned to the L7/L12 C-terminal domain, Figure 4.6A) gave rise to intense and narrow

resonances. The presence of these slow-relaxing signals prevented the acquisition time

being decreased to values that would optimise the signal-to-noise for much broader
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signals (ideally as short as ca. 3ms for the 13C acquisition time), because truncation of the

slow decaying FIDs of the flexible Ile resonances results in sinc side bands that overlap

with and obscure low intensity resonances. When the 1H-13C methyl-TROSY HMQC

spectrum of the intact 70S particle was recorded, ca. 10 broad cross-peaks were observed

(Figure 4.6B), with signal-to-noise ratio (SN) ranging from 5.1 to 9.5, in addition to the

three intense Ile resonances mentioned previously. This SN was higher than the noise

threshold (2.8) for new resonances to be detected, allowing a search within the entire

spectrum (Section 2.2). Four of these resonances were observed in the 1H-13C methyl-

TROSY HMQC spectrum of the 30S subunit (Figure 4.6C), and notably these included the

only high-field-shifted resonance (peak B, 0.18ppm). The 1H-13C methyl-TROSY HMQC

spectrum of the 50S subunit revealed a cluster of overlapping broad signals at random

coil chemical shifts (13C ppm: 11-14, 1H ppm: 0.65-0.9ppm, Figure 4.6D), together with a

cluster of Ile resonances that is low-field-shifted in the 13C dimension, with 13C chemical

shift higher than 16ppm, which are indicative of a trans conformation of the Ile side-

chains [217].

The number of observed resonances is clearly significantly lower than the number of

Ile residues in the ribosomal complexes (334 in the 70S complex, 189 in the 50S subunit

and 145 in the 30S subunit). Nonetheless, in the 1H-13C methyl-TROSY HMQC spectra

of the isolated subunits and of the intact ribosome, overlapping resonances are observed

that were broadened beyond detection in the 1H-13C HSQC spectra. In the 50S subunit,

these resonances exceed the number of Ile residues in L7 domains (two in the C-terminal

domain and four in the N-terminal domain), and in the 30S subunit, the observation

of a high-field shifted resonances suggests that a folded protein is observed in addition

to the S1 disordered extension. This indicates that residues from more rigid regions of

the subunits give rise to observable resonances. The combination of broad linewidth and
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Figure 4.6: A: 1H-13C HSQC spectrum of 6 µM U-[12C,2 H], Ileδ1-[13C1H3] 70S ribosomes

(recorded for 1 hour). B: 1H-13C methyl-TROSY HMQC spectrum of 6µM U-[12C,2 H], Ileδ1-

[13C1H3] 70S ribosomes (recorded for 3.5 hour). C: 1H-13C methyl-TROSY HMQC spectrum of

3µM U-[12C,2 H], Ileδ1-[13C1H3] 30S subunits (recorded for 17.5 hour). Resonances arising from

the L7/L12 of the small amount of non-separated 50S are shown in the blue circles in the centre of

the spectrum. D: 1H-13C methyl-TROSY HMQC spectrum of 6µM U-[12C,2 H], Ileδ1-[13C1H3] 50S

subunits (recorded for 17.5hour). The signal intensity distributions are shown below the spectra.

The signals assigned to the 30S subunits are indicated with a letter or a red dot and are shown

in red in the intensity distributions, and those assigned to the 50S subunits are indicated with a

number and are shown in blue in the intensity distributions.
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absence of chemical shift dispersion renders the observed resonances largely overlapped,

and complicates their NMR analysis.

One commonly used strategy to attempt to decrease the linewidths of broadened

resonances is to shorten the rotational correlation time by increasing the temperature.

To examine whether ribosomes were amenable to elevated temperatures, their stability

was first investigated at ambient temperature (25◦C) using the established NMR

methodology presented in Chapter 2, specifically the use of 1H 1D and 1H STE diffusion

experiments. 1H STE diffusion experiments indicated the appearance of protein signals

associated with a high diffusion coefficient after 24 hours in both 70S ribosome samples

(D=3.0±0.3×10−11 m2s−1 compared to D=1.7±0.3×10−11 m2s−1 at time zero) as well as

in samples of the individual subunits, with the spectra recorded with a low gradient

strength undergoing an increase in intensity after 24 hours (Figure 4.7C). This coincided

with the appearance of additional resonances in the 1H-13C HSQC spectrum (Figure 4.7A

to B). Hence, both the 1H STE diffusion and the 1H-13C HSQC experiments indicated

the release of ribosomal proteins, which could be related to the break-down of entire

ribosome, as indicated by analytical sucrose gradient runs of identical ribosome samples.

Indeed, the SDS-PAGE of the low-molecular-weight fractions of the analytical sucrose

gradient (black rectangles in Figure 4.8B & E) presented a similar pattern to that of the

ribosomal fractions (orange rectangle in Figure 4.8). This results suggests that the break-

down of the ribosomes is perhaps mediated by dissociation of the ribosomal proteins

from the rRNA scaffolding, leading to the disassembly of the complex.

Although the integrity of the ribosomal complex could be easily monitored in situ,

the limited stability of the ribosome samples suggested that elevated temperatures were

likely to result in increased break-down. At 30◦C, visible precipitates were detected

after 2-3 hours of NMR acquisition. The instability of the ribosomes at temperatures ≥
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with a diffusion coefficient of 1.64×10−11 m2s−1. B: Methyl region of 1H-13C HSQC spectrum of

70S ribosomes that were left for 24 hours at 25◦C. C: Plot of the signal intensity in the different

spectra of the 1H STE diffusion experiment on a log scale versus the square of the gradient

strengths in the x axis, for fresh 70S ribosomes in black, and after 24 hours at 25◦C in red. In

the latter case, the intensity decay was characteristic of a heterogeneous sample, in which more

than two species with different diffusion coefficients are being observed. The diffusion coefficient

calculated from the four lowest gradient strengths is D=1.0±0.1×10−10 m2s−1.
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Figure 4.8: Analytical sucrose gradient profile of (A) an intact 70S ribosome sample, with a

diffusion coefficient measured by 1H STE diffusion experiments of 1.7×10−11 m2.s−1, (B) a sample

that showed an increase in its diffusion coefficient after 24 hours in the spectrometer, see main

text and (C) a sample that showed a diffusion coefficient of 1×10−10 m2.s−1, after being stored

for one week at 4◦C. D,E & F show the corresponding SDS-PAGE of the fractions throughout the

sucrose gradient profiles shown in A, B and C, respectively. The black rectangles contain the low

molecular weight fractions and the orange rectangles contain the 70S fractions.



Chapter 4. NMR investigations of intact ribosomes 184

30◦C has been previously reported, with notably the precipitation and break-down of

the complex related to an increase in the diffusion coefficient [172].

4.2.2 NMR studies of ribosomes from thermophilic archaea

In order to explore the possibility of using elevated temperatures to probe ribosome

structure, ribosomes from two archaeal sources were investigated. Unlike the well-

characterised E. coli ribosomes, the purification of archaeal ribosomes is not as well

established [218]. Sucrose gradient sedimentation of Sulfolobus Solfataricus (SSF) or

Pyrobaculum aerophilum (P. aero) ribosomes is sufficient to split the individual subunits

(Figure 4.9), and their purity was correlated to the salt concentration used during

purification: increasing the salt concentration to 500 mM NH4Cl was found to be

insufficient for removing all extrinsic factors (e.g. elongation factors, EFs, or trigger

factor, TF) from the ribosomal subunits, but higher concentrations of NH4Cl are reported

to lead to partial disintegration of the subunits [219, 220]. The separated subunits were

quantified by the absorbance at OD260 (1 OD unit at 1 cm pathlength corresponds to 60

pmoles/L of 50S subunits and 70 pmoles/L of 30S subunits [218]). 2.5 nmoles of 50S

subunits and 4.6 nmoles of 30S subunits were purified from 3.24 g of SSF cells using the

protocol described in Section 6.1.10.

The proton spectrum of 30S SSF subunits resembles that of the 30S E. coli subunits

(Figure 4.10A), despite there being no archaeal protein homologous to the bacterial S1

protein; therefore the disordered region of another protein must be observable in the

30S SSF subunit, which remains to be characterised. 1H-15N SOFAST-HMQC spectrum

of 30S SSF subunits showed ca. 16 resonances, which were clustered at chemical-shifts

characteristic of disordered peptide, further indicating that the observed protein in the

30S SSF subunit shares the unfolded characteristic with the disordered extension of S1
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protein in E. coli 30S subunit (Figure 4.11D).

The 1H 1D spectrum of 50S SSF or P. aero subunits presented a cluster of signals

with narrow proton chemical shift dispersion in the methyl region (>0.7ppm, Figure

4.10A&C). Archaeal ribosomes also possess a stalk region composed of six copies of

L7/L12, which are expected to be observed in the spectra of 50S subunits [221]. The

comparison of the methyl resonances of SSF or P. aero 50S subunits reveals resonances

with a reduced chemical shift dispersion than the resonances of E. coli L7/L12 (Figure

4.10B & C). Also, the intensity of the resonances (normalised to the concentration of the

sample) appears to be lower in the archaeal ribosome spectra than in the corresponding

E. coli spectra. The 1H-15N SOFAST-HMQC spectrum of 50S SSF subunits showed
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a narrow amide 1H chemical shift dispersion with all resonances found between 7.5

- 8.5 ppm (Figure 4.11B), and the amide resonances were found to be broadened at

increased temperature indicating that the amide protons undergo exchange with the

solvent (Figure 4.11C). Under the conditions that were optimal for the NMR acquisition

of the L7/L12 spectrum from 50S E. coli ribosomes (25◦C), only a few resonances are

observed from the 50S SSF subunits (<30), and the large differences in chemical shift

do not allow the attribution of these observed resonances to the C-terminal domain of

L7/L12 (Figure 4.11B).

With six L7 copies per ribosome [221], it is perhaps surprising that the NMR spectra

of archaeal 50S subunits did not present the well-resolved L7 resonances observed in

the NMR spectrum of E. coli ribosomes. However, the limited current knowledge of the

biochemistry of the archaeal organism [218] does not preclude the presence of translation

factors, such as elongation factors (EFs) [219,220] interacting with the L7/L12 C-terminal

domain. In the present work, these could not be excluded from the SDS-PAGE of the 50S

or 30S archaeal subunits (Figure 4.9). The presence of EFs can immobilise L7 and result

in extensive resonance broadening [19, 32, 33].

The methyl region of the spectra of the archaeal subunits were used in 1H

STE diffusion experiments (Figure 4.10D&E); the resultant diffusion coefficients are

summarised in Table 4.1. The 50S E. coli and SSF subunits were found to have

identical diffusion coefficients within experimental error (5.1±0.4×10−11 m2s−1 and

4.2±0.2×10−11 m2s−1), indicating that the subunits from both species share similar size

and conformation. The diffusion of the 50S P. aero subunit was slower (1.7±0.2×10−11

m2s−1), closer to the diffusion coefficient reported for the 50S E. coli subunits from light-

scattering (1.9×10−11 m2s−1 [172], Section 4.2.1.2). The diffusion coefficient of the 30S E.

coli and SSF subunits were also identical within error, indicating that ribosome subunits
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.

Experiment Species Diffusion
coefficient
×10−11 m2s−1

Light scattering 70S E. coli 1.7
NMR 70S E. coli 1.7±0.3

Light scattering 50S E. coli 1.9
NMR 50S E. coli 5.1±0.4
NMR 50S SSF 4.2±0.2
NMR 50S P. aero 1.7±0.2

Light scattering 30S E. coli 2.1
NMR 30S E. coli 2.7±0.4
NMR 30S SSF 3.2±0.7

Table 4.1: Translation diffusion coefficients determined by 1H STE NMR diffusion or light

scattering experiments at 25◦ for the small and large ribosomal subunits of different organisms.

SSF: Sulfolobus solfataricus. P. aero: Pyrobaculum aerophilum. Light scattering values are from [172].

from both species share similar hydrodynamic properties.

The stability of the P. aero 50S subunits at elevated temperatures (50◦C) was assessed

using 1H 1D spectra and 1H STE diffusion experiments. After several hours of NMR

acquisition (24 hours), no changes in either the proton NMR spectrum or the diffusion

coefficient were observed, indicating increased stability of the archaeal ribosomes

compared to the E. coli ribosomes.

In an attempt to observe slower tumbling regions of the ribosomal complex, 1H 1D

spectra were recorded at elevated temperature (50◦C) on the 50S P. aero subunit. These

showed an increase in intensity for the broad resonances, in particular in the amide

region of the spectra (Figure 4.12A). 1H 1D spectra for samples in H2O were generally

recorded using water pre-saturation for water suppression, with a typical pre-saturation

power corresponding to a B1 field of 50-100 Hz. Recording 1H 1D spectra on a P. aero 50S

subunit sample prepared in D2O allowed examination of the effect of pre-saturation on

the intensity of the broad 50S resonances. Comparison of the spectrum recorded without

pre-saturation to that recorded with pre-saturation at a power employed for H2O samples
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indicated that pre-saturation significantly attenuated the intensity of the very broad

50S resonances across the entire spectrum (Figure 4.12B). This indicated that the broad

resonances were highly sensitive to cross-relaxation with Hα nuclei, whose resonance

frequency lies close to the frequency of water, and are thus saturated during pre-

saturation. As was demonstrated in Section 1.3.3, cross-relaxation is dependent on the

rotational correlation time, and the cross-relaxation rate is fast for large molecular weight

species. The observed cross-relaxation suggests that the broad resonances observed in

the 1H 1D spectra arise from rigid regions of the ribosome.

4.3 Concluding remarks

The preliminary NMR investigations of intact ribosomes described in this Chapter

revealed the following observations: the L7/L12 C-terminal domain that is observed

in conventional 1H-15N SOFAST-HMQC spectra of E. coli 70S ribosomes, as well as 10

residues from the linker region between the C-terminal and N-terminal domains are

tumbling independently from the ribosome complex. The other proteins that form the

stalk region (L10 and parts of L11) as well as the N-terminal domain of L7 and the first 10

residues of the linker appear to be insufficiently flexible to be observable in conventional

NMR spectra. The stalk region thus provides a good model for the independent tumbling

of a flexible region on the ribosome, a feature which was exploited in the NMR study of

RNCs presented in Chapter 3.

In the 1H-13C HSQC spectrum of intact 70S ribosomes, resonances from the C-

terminal domain of L7 are observed, with at least one additional Ile resonance that

originates from a more rigid region of the 50S subunit. In the 1H-13C methyl-TROSY

HMQC spectrum of deuterated Ileδ1 labelled 50S subunits, a number of overlapping

resonances are observed, which also arise from rigid regions of the subunit. In the
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1H-13C methyl-TROSY HMQC spectrum of deuterated Ileδ1 labelled 30S subunits, at

least two resonances that have disperse chemical shifts (Figure 4.6C, peaks labelled with

letters A & B) indicate that a folded protein is observable. Although the number of

observed resonances does not correspond to anywhere even close to the number of

Ile residues in the ribosome complex, the observation of such resonances differentially

between conventional and methyl-TROSY based spectroscopy indicates that a range of

dynamics must be considered for the study of ribosome complexes: ı) some regions

such as the C-terminal domain of L7, tumble independently of the ribosome, ıı) the core

of the ribosome complex that contains most of the ribosomal proteins has a rotational

correlation time that renders their resonances broadened beyond detection even in 1H-

13C methyl-TROSY HMQC spectra and ııı) this study reveals the presence of regions

undergoing internal motions that reduces the linewidth of their resonances as modelled

in Figure 1.12, Section 1.3.2, such that they can be observed in 1H-13C methyl-TROSY

HMQC spectra, although these are not as flexible as the stalk region. The assignment

of broad resonances, and the characterisation of these dynamical regions is challenging.

A combination of factor-binding can be used together with selective labelling of specific

ribosomal protein [222].

The use of archaeal ribosomes permits using increased temperatures to decrease

the overall rotation correlation time of the ribosome complex. At these elevated

temperatures, broad resonances (1H linewidth on the order of one ppm) are observed,

whose intensities were beyond detection in the spectra recorded at 25◦C.

Ribose resonances were also observed in 1H-13C HSQC spectra of the 70S ribosome

and the corresponding subunits, indicating that some ribosomal RNAs are sufficiently

flexible enough to give rise to sharp signals in conventional NMR experiments. The bases

of these nucleotides are not observed, suggesting that they might undergo chemical
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exchange on the order of ms, or are simply more rigid than the ribose rings. The

assignment of such ribose resonances can be performed via selective RNA labelling

via an in vitro transcription production [223] and RNA-TROSY-based experiments [224].

The development of strategies to generate ribosomal complexes in vitro [225–228] will

facilitate the production of archaeal ribosome samples [218] with the optimal labelling

for NMR of proteins [121] and rRNA [223].

The measurement of translational diffusion of E. coli and archaeal ribosome provides

insight into conformational changes of the subunits upon splitting. The 50S E. coli and

SSF subunits appear have a reduced hydrodynamic radius compared to that expected

from the X-ray structure of the subunits, and that was not the case for the 50S P. aero

subunits. The 30S E. coli and SSF subunits may dimerise under the conditions used

for the NMR study, despite the fact that indentical conditions were not seen to produce

inactive subunits previously [215].

The NMR characterisation of archaeal ribosomes will allow the investigation of

ribosome binding factors [219], and demonstrates that NMR can be a useful tool to

drive the preliminary studies of the archaeal translational machinery, which has not

been investigated comprehensively to date.



Chapter 5

Concluding remarks
This thesis presents a strategy for the use of NMR spectroscopy to study, at a residue

specific level, the process of biosynthesis on the ribosome. Central to such a study are

the preparative methods for RNCs: the in vivo method recently introduced [158] and

optimised during the period of this study yielded preparations in which the attached

NC was homogeneously stalled during synthesis, selectively isotopically labelled, and

at the large quantities required for NMR studies. This allowed the production of all

of the RNC complexes described in this thesis. The low levels of background labelling

(observed in NMR spectra via the presence of isotopically labeled L7) of the ribosome

complex had only a small effect on the analysis of the NMR signals of ddFLN-dom5-

RNCs. Emerging strategies for more controlled selective RNC labelling strategies include

the manipulation of endoribonucleases to prevent translation of any ribosomal protein

during expression [229].

The maximum working ribosome concentration (ca. 10 µM) is low compared the

concentrations typically used for solution state NMR. Moreover, the sample lifetime

is limited to a few days (two to three days) at best (as described in Chapter 2). As

shown, this leads to weak NMR signals with achievable values for the signal-to-noise

ratio ranging from two to five. This provided the impetus for the development of the

methodology for the analysis of low signal-to-noise data of RNCs that was presented

in Chapter 2. In this work, the presence of “folded” resonances in the RNC spectra -
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where the individual peaks corresponding to native-like ddFLN-dom5 were not always

clearly visible “by eye” across different spectra - was assessed not by the observation

of individual resonances, but by comparing the distribution of intensities of a number

of candidate ddFLN-dom5 resonances to the distribution of the noise. In summary,

the knowledge of the peak positions allowed the identification of low signal-to-noise

resonances at a statistically significant confidence level, and thus even low populations of

the folded or unfolded conformations could be detected. This methodology allowed the

detailed analysis of RNC spectra and their comparison with those of the isolated folded

ddFLN-dom5, or ddFLN-dom5 denaturated in urea. The comparison with the latter

proved useful although differences were observed (Chapter 2, Section 2.3.2.3) and that

suggests spectra of C-terminal truncations of the ddFLN-dom5 domain could provide

more meaningful comparisons. Preliminary studies have shown that truncations of the

last G strand of ddFLN-dom5 renders the domain folding incompetent (as was observed

for ddFLN-dom6 in the +110 RNC (Chapter 2)).

This thesis presented various experiments to analyse the folding state of the nascent

polypeptide. From the work presented here, the use of rapid acquisition methods,

e.g. the 1H-15N SOFAST-HMQC experiment, proved particularly important in probing

for disordered states of the RNC. It is best combined with the 1H-13C methyl-TROSY

HMQC experiment, which was found to be the most suitable experiment to probe for

more compact conformations. These appear to undergo conformational heterogeneity,

including possible interactions of the attached nascent polypeptide with the ribosome.

The essential function of diffusion NMR experiments in RNC studies is also very clear

from this work and these enabled the close correlation of changes in NMR spectra over

time with observations using biochemical methods.

The NMR study of ddFLN-dom5 co-translational protein folding (Chapter 3) revealed
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that the NMR observable folding mid-point appears to be when the domain is ca. 37

residues from the PTC, at which length the low intensities of unfolded ddFLN-dom5

resonances compared to their intensities in RNCs of shorter linker lengths (21 & 31

residues) suggested the presence of “NMR invisible” states. At a linker length of 47

residues, the domain appears to sample an observable native folded state, but with non-

native dynamics that suggest exchange with a non-native state a ms timescale. At a

linker length of 110 residues, ddFLN-dom5 seems to have near-native-like properties.

Heretofore, NMR analysis of the dynamics of RNCs relies on the analysis of the

linewidths of the methyl resonances, although spin relaxation experiments [108, 230]

currently under investigation could provide more detailed descriptions of the dynamics

of RNCs. At the 110 linker length, the resonances observed for ddFLN-dom5 are broader

than those for the (potentially analogous) C-terminal domain of L7 suggesting that either

the RNC linker sequence (ddFLN-dom6) is less dynamic than the L7 linker, or that

ddFLN-dom5 undergoes significant conformational exchange when on the ribosome.

Parallel investigations on an entirely disordered nascent chain of alpha-synuclein [231]

suggest that interactions with the ribosome are causing resonance broadening. These

will need to be further investigated.

Resonance assignment of RNCs was undertaken in this work by comparison with

isolated polypeptides. The parallel NMR study of the entire 70S ribosome has revealed

resonances that arise from less flexible regions of the ribosome (Chapter 4), and suggests

that new resonances can be observed, despite their chemical shift not being known a

priori. Such an observation indicates that the “NMR invisible” states of the RNC can be

observed using a similar strategy. For such resonances (for which the chemical shift is

not known a priori) assignment will need to be undertaken with the RNCs themselves.

For this purpose, selected labelling strategies are possible e.g. site-specific labelling
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of proteins through incorporation of position-specific isotopically labelled amino acids

[232]. Also likely to be useful for sequential assignment of RNCs is the development

of three-dimensional experiments within the BEST-NMR suite (band-selective excitation

short-transient-NMR experiments) [233], which allow reduced inter-scan delays in a

manner analogous to the 1H-15N SOFAST-HMQC experiment. Non-uniform sampling

(NUS) [234] also allow reductions in the acquisition time of indirect dimensions without

compromising sensitivity or resolution.

The exploration of the ribosome itself using NMR (Chapter 4) revealed not only

that a range of dynamics ought to be considered: the dynamics of side chains of the

residues observed by NMR, the flexibility of regions of the ribosomes complex (such as

the L7/L12 stalk that tumble independently from the ribosome, or regions that undergo

internal motions) and the correlation time of the entire ribosome complex; but also that

some ribosomal-RNAs (rRNA) have a high flexibility. The observation of both rRNA and

proteins from more rigid regions of the ribosome confirms that the ribosome is a very

dynamic complex, in which motions on different timescales are to be investigated. The

preliminary solution-state NMR observations of slow tumbling regions of the ribosome

presented in Chapter 4 does not preclude the potential benefit of solid-state NMR

acquisition on sedimented ribosomes [235] in which more rigid regions of the mega-

dalton complex may be observed. The benefits of studying archaeal ribosomes have been

demonstrated in Chapter 4. In vitro reconstitution of complete, functional ribosomes has

been established [225–228], and offers the opportunity to use of selective labelling specific

ribosomal proteins and rRNAs.

Overall, the success of the NMR strategy developed for obtaining unique residue-

specific structural information on the co-translational folding process reveals a wealth

of possibilities for exploring the biosynthesis of a range of different topologies e.g: beta
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sheets, mixed alpha/beta (e.g. alpha-antitrypsin), multi-domain (e.g. SufI) and knotted

(e.g. ubiquitin carboxyl-terminal esterase L1, UCH-L1), and to compare results obtained

from NMR with those obtained from biophysical methods. Furthermore, we can begin to

explore the influence of the ribosome on the emerging nascent chain, to understand the

influence of chaperones such as trigger factor on folding, and to attempt to understand

co-translational misfolding. NMR can provide detailed structural information on highly

dynamic systems such as RNCs, such as proton distances and relative bond orientations

[62] from PRE and RDC measurements, respectively. The data shown in Chapters 2 and

3 show that the spectra of the ddFLN-dom5-RNC are highly reproducible and therefore,

it should be possible to record RDCs from RNC samples (and also PREs using suitable

labelling strategies). In the case of RDCs, preliminary investigations [236] show that

alignment strategies for RDC measurements are likely to be successful. Future work will

also investigate H-D exchange methods of the ddFLN-RNCs to provide information on

the folding equilibria at progressive lengths. The “basic” NMR parameter, obtained in

the studies described in this thesis, the chemical shift, also contains detailed structural

information. Indeed, recent developments in molecular dynamics simulations show that

accurate structural ensembles can be determined from chemical shifts alone [117–119].

These methods are being investigated using the NMR data obtained in this work for

the ddFLN-dom5-RNC. This has the potential to transform our understanding of the

development of structure during folding and it has been very exciting being part of the

development of this work.



Chapter 6

Materials and methods
The following chapter describes the methodology used in the studies presented in this

thesis. It covers the preparation from E. coli of selectively isotopically labelled ribosomes,

and of ribosome-bound nascent chain complexes (RNCs) that were used in the NMR

studies, as well as biochemical analyses used to assess the integrity of the RNCs and the

NMR-based strategies that were used to describe the structural and dynamical properties

of the samples studied.

All biochemicals and reagents were purchased from Sigma (unless otherwise

specified) and were of the highest grade possible.

6.1 Molecular biology and biochemical methods

6.1.1 DNA constructs

Each of the ddFLN-RNCs constructs used ( ddFLN-dom5+21, +31, +37, +47, +67, +110-

NC) were in the pLDC vector [158] and cloned by Dr Lisa Cabrita. The vector contains

ampicillin resistance for selection and a T7 promoter which enables protein expression

to be induced using IPTG. These DNA constructs also have an N-terminal hexa-histidine

tag to facilitate protein purification and detection and a C-terminal SecM motif which

is used to enable stalling of the nascent chain during translation. The ddFLN5 DNA

construct used for the preparation of the isolated protein was also in the pLDC vector,
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but contained a stop codon at the C-terminus instead of the SecM motif. This clone was

generated by Xiaolin Wang.

6.1.2 Bacterial strains

The bacterial strain DH5α (Invitrogen) was used plasmid maintenance. For the

expression of isolated proteins, RNCs and for the isolation of ribosomes, BL21-GOLD

(DE3) (Stratagene), was used. Both of these bacterial strains were purchased as

competent cells.

6.1.3 Growth media composition

The media used for routine bacterial growth was LB (10 g/L tryptone, 5 g/L yeast extract,

10 g/L NaCl). For plates, the media was supplemented with 7.5 g/L agar, which was

added prior to autoclaving.

For media with ampicillin, 100 µg/mL of ampicillin was added after sterilisation,

when the temperature was < 50◦C.

For the expression of isotopically-labelled isolated proteins a M9 medium was used.

The medium comprised of M9 salts (7.1 g/L Na2HPO4, 3.4 g/L KH2PO4, 5.84 g/L NaCl,

pH 7.4) which was supplemented with 2 mM MgSO4, 100 mM CaCl2, 0.8 g/L yeast

nitrogen base without amino acids (Difco), 1 g/L 15N NH4Cl and 2 g/L 13C glucose.

MDG media without L-aspartic acid ( [237], Table 6.1) was used for the preparation

of isotopically labelled ribosomes. In the case of RNC preparation, MDG media (Table

6.2) was used for unlabelled growth and enhanced M9 media (Table 6.3) was used for

expression of the isotopically labelled NC.

For selectively methyl labelled RNCs, perdeuteration was used, where all media

components were prepared in 99% deteurium oxide and deuterated carbon sources were
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Compound Final concentration
Glucose (D-glucose-1,2,3,4,5,6,6-d7) 2 g/L

MgSO4 2 mM
Trace metals∗ 0.02%∗ (w/v)

Na2HPO4 25 mM
KH2HPO4 25mM

NH4Cl 50 mM (1 g/L∗∗)
Na2SO4 5mM

Table 6.1: MDG media [237] for the production of isotopically labelled ribosomes. In brackets

are the modifications applied when producing deuterated ribosomes. ∗ 100% trace metals: 2mM

CoCl2, 2mM CuCl2, 2mM NiCl2, 2mM Na2SeO3, 2mM CoCl2, 2mM Na2MoO4, 2mM H3BO3,

10mM ZnSO4, 10mM MnCl2, 20mM CaCl2, 50mM FeCl3. ∗∗ For 15N labelling 1 g/L 15NH4Cl was

used.

Compound Final concentration
L-aspartic acid 0.2% w/v

Glucose (d4 acetic acid) 2 g/L (3g/L)
MgSO4 2 mM

Trace metals 0.02% (w/v)
Ampicillin 0.1 mg/ml
Na2HPO4 25 mM
KH2HPO4 25mM

NH4Cl 50 mM
Na2SO4 5 mM

Table 6.2: MDG media used for the generation of unlabelled ribosomes for RNC expression. In

brackets are the modifications applied when producing deuterated RNCs. Refer to table 6.1 for

the composition of 100% trace metal.
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Compound Final concentration
Na2HPO4 7 g/L
KH2PO4 3.4 g/L
KH2PO4 5.84 g/L

Glucose (d4 acetic acid) 2 g/L (3g/L)
NH4Cl 1 g/L
MgSO4 2.5 mM
CaCl2 0.2 mM

Trace metal 0.0125% (w/v)
Ampicillin 0.1 mg/mL

BME vitamins (Sigma) (yeast nitrogen base (Difco)) 2.5 mL (0.8 g/L)

Table 6.3: Enhanced M9 media for the growth of isotopically labelled ribosomes. In brackets

are the modifications applied when producing deuterated RNCs. Refer to table 6.1 for the

composition of 100% trace metal.

used. For the preparation of uniform-[12C,2 H] , Ileδ1-[13C1H3] RNCs within uniform-

[12C,2 H] ribosomes, d4 acetic acid (3 g/L) was used instead of 13C glucose. For the

preparation of uniform-[12C,2 H], Ileδ1-[13C1H3] ribosomes, D-glucose-1,2,3,4,5,6,6-d7 (2

g/L) was used instead of 13C glucose. The BME vitamins within the enhanced M9

media was replaced with 0.8 g/L yeast nitrogen base (Difco). The isoleucine precursor

(2-ketobutyric acid-4-13C,3,3-d2 sodium salt hydrate) was used at a concentration of 100

mg/L.

6.1.4 Transformation

To 25 µL of competent E.coli cells, 1 µL of a plasmid was added. The cells were incubated

on ice for 30 min, followed by a heat shock at 42◦C for 45 s. They were then incubated

on ice for 30 s and incubated for 1 hour in 900 µL of LB media at 37◦C, 200 rpm to allow

for expression of the antibiotic resistance gene. The cells were plated on LB-Amp plates.

The plates were incubated at 37◦C for 12-16 hours, until the colonies were 2-3 mm in

size.
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6.1.5 Expression of selectively isotopically labeled ribosome-bound nascent

chain complexes

3 mL of LB media were inoculated with a single colony, and left to grow overnight at

37◦C, 200 rpm. Two flasks of 500 mL of MDG media were inoculated with the overnight

pre-culture and left to grow overnight at 37◦C, 180 rpm. The optical density at 600 nm

(OD600) was measured before the cells were pelleted at 3500 rpm for 15 min. The pellet

from 1 L of culture was resuspended in 500 mL of enhanced M9 salts and pelleted again

at 3500 rpm for 15 min. The resuspension/pelleting was repeated twice to remove the

residual MDG media. The cells were then finally resuspended in 500 mL of enhanced

M9 media without isotopes (15NH4Cl or/and 13Cglucose). The absorbance of the cells at

OD600 was monitored before the addition of 15NH4Cl and/or 13C glucose isotopes (for

uniform isotopic strategy). For RNC expression, IPTG was added to a final concentration

of 1 mM and the cells were incubated at 37◦C and at 180 rpm. After 10 min of incubation,

rifampicin was added to the medium at a final concentration of 0.15 mg/mL. After 1 hour

of incubation, the cells were pelleted at 3500 rpm for 20 min and transferred into a 50

mL falcon tube and flash-frozen and stored at -20◦C for later purification.

6.1.6 Expression of uniformally deuterated ribosome, Ileδ1 selectively

labelled ribosome-bound nascent chain complexes

3 mL of LB media were inoculated with a single colony, and left to grow overnight at

37◦C and at 200 rpm. 3 mL of deuterated (80%) MDG media in which the carbon source

was protonated glucose, were inoculated with the overnight pre-culture and left to grow

for 10 hours at 37◦C, 180 rpm. 3 mL of deuterated (100%) MDG media in which the

two carbon sources were 1 g/L of protonated glucose and 1.5 g/L of d4 acetic acid were

inoculated with the culture and left to grow for 12 hours at 37◦C, 180 rpm. 3 mL of
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deuterated (100%) MDG media in which the carbon source was 3 g/L of d4 acetic acid

were inoculated with the culture and left to grow for 10 hours at 37◦C, 180 rpm. 100 mL

of deuterated (100%) MDG media in which the carbon source was 3 g/L of d4 acetic acid

were inoculated with the culture and left to grow for 12 hours at 30◦C, 180 rpm. Two

flasks of 500 mL of deuterated (100%) MDG media in which the carbon source is 3 g/L

of d4 acetic acid were inoculated with the culture and left to grow for 20 hours at 30◦C,

180 rpm. The absorbance of the cells at OD600 was monitored to ensure that the end of

the log phase was reached (OD600=2-2.5). The cells were then pelleted at 3500 rpm for

15 min. The pellet from 1 L of culture was resuspended in 500 ml of deuterated (100%)

enhanced M9 media with 3 g/L of d4 acetic acid for RNC expression. The absorbance of

the cells at OD600 was monitored before the addition of 2-ketobutyric acid-4-13C,3,3-d2

sodium salt hydrate to a final concentration of 100 mg/L. After 60 min of incubation

at 30◦C and at 180 rpm, a time that allowed the cell to metabolise the precursor, RNC

expression was induced with the addition of IPTG to a final concentration of 1 mM and

the cells were incubated at 30◦C, 180 rpm. After 10 min of incubation, rifampicin was

added to the medium at a final concentration of 0.15 mg/mL. After 2 hours of incubation,

the cells were pelleted at 3500 rpm for 20 min and transferred into a 50 mL falcon tube

and flash-frozen and stored at -20◦C for later purification.

6.1.7 Production of isotopically labelled 70S ribosomes

BL21 E. coli cells were streaked onto LB-agar plates, and a single colony was used to

inoculate 3 mL of LB media without antibiotic. The pre-culture was incubated overnight

at 37◦C, 180rpm. Two flasks of 500 mL of MDG without L-aspartic acid and enriched

with 15NH4Cl and/or 13Cglucose isotopes were inoculated with the overnight pre-culture

and left to incubate overnight at 37◦C, 180rpm. The OD600 was measured before the cells
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were pelleted at 3500 rpm for 15 min. The cells were then resuspended in M9 media

enriched with 15NH4Cl and/or 13Cglucose. After 1 hour of incubation, the cells were

pelleted at 3500 rpm for 20 min and transferred into a 50 mL falcon tube, flash-frozen

and stored at -20◦C for later purification.

6.1.8 Purification of RNC

6.1.8.1 Buffer composition

• Buffer B: 500 mM KOAc, 50 mM HEPES, 6 mM MgOAc, 2 mM BME, pH 7.4.

• Lysis buffer: 1 M KOAc, 50 mM HEPES, 12 mM MgOAc, 5 mM EDTA, 5 mM ATP,

2 mM BME, 2 pellet/100mL protease inhibitor (Roche), 1 mM pepstatin, 1 mg/mL

lysozyme, traces of DNAse 1, pH 7.4.

• 35% sucrose cushion: 35% w/v sucrose, 1 M KOAc, 50 mM HEPES, 12 mM

MgOAc, 5 mM EDTA, 5 mM ATP, 2 mM BME, 0.3 pellet/100mL protease inhibitor

(Roche), 1 mM pepstatin, pH 7.4.

• Resuspension buffer: 500 mM KOAc, 50 mM HEPES, 6 mM MgOAc, 5 mM ATP, 2

mM BME, 0.1 pellet/100mL protease inhibitor (Roche), 1 mM pepstatin, pH 7.4.

• RNC elution buffer: 500 mM KOAc, 50mM HEPES, 6 mM MgOAc, 150 mM

Imidazole, 2 mM BME, 0.1 pellet/100mL protease inhibitor (Roche), 1 mM

pepstatin, pH 7.4.

• Sucrose gradient: Two stock solutions of 35% and 10% w / v sucrose were used

to prepare the linear sucrose gradients and both were prepared in the following

buffer: 1 M KOAc, 50 mM HEPES, 12 mM MgOAc, 5 mM EDTA, 2 mM BME, 0.1

pellet/100mL protease inhibitor (Roche), 1 mM pepstatin, pH 7.4.
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• NMR tico buffer: 30 mM NH4Cl, 10 mM HEPES, 12 mM MgCl2, 5 mM EDTA,

1 mM BME, 0.1 pellet/100mL protease inhibitor (Roche), 1 µM pepstatin, 1 mM

BME, pH 7.4.

6.1.8.2 RNC purification

The cells were resuspended in the lysis buffer, and lysis was performed using four passes

in a French Press at 1000 psi. The cellular debris was then pelleted by centrifugation at

18000 rpm for 45 min. After cell lysis the cell lysate was loaded onto a 35% w/v sucrose

cushion with volume ratio of 1:3 (cell lysate : sucrose), and subjected to centrifugation for

12 hours at 40 000 rpm (Type 45Ti rotor). The resulting ribosome pellet was disolved in

resuspension buffer and released NCs were purified from the supernatant of the sucrose

cushion by Ni NTA chromatography. The ribosome suspension was loaded onto 5 mL of

Ni IDA beads (Protino) for 1 hour at 4◦C. The unbound ribosomes and other impurities

were washed from the beads with the resuspension buffer. The RNC were then eluted

from the beads using the elution buffer. Following concentration using a filtration device

with a 100 kDa cut-off, 1 nmole of RNCs were loaded onto 35 mL 10-35% w/v sucrose

gradients formed in SW28 tubes using a manual gradient maker, and sedimented for

15 hours at 21 000 rpm (SW28 rotor). The sucrose gradient was fractionated and the

OD254 of each fractions of the gradients was monitored using the Foxy Junior system

(Presearch). The factions were assessed using SDS-PAGE. The ribosomal fractions are

concentrated and buffer-exchanged in tico buffer through a 100 kDa cut-off concentrator

to remove sucrose, and any residual low MW co-factors and released ribosomal proteins.

The RNCs were flash-frozen and stored at -80◦C. Upon defrosting and prior to NMR

analysis, the RNC samples were buffer-exchanged with tico buffer using a 100 kDa cut-

off concentrator to remove any released proteins.
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Marilia Karyadi and Lisa Cabrita helped with the production and purification of

ddFLN-dom5+21-RNC and ddFLN-dom5+31-RNC, and Johanna Reul helped with the

production of ddFLN-dom5+37-RNCs.

6.1.9 Purification of ribosome samples

The ribosome purification was identical to the RNC purification with the omission of the

Ni IDA chromatography step.

Piotr Gierszewski prepared uniform-[12C,2 H], Ileδ1-[13C1H3] E. coli 70S ribosomes.

6.1.9.1 Purification of SSF ribosomal subunits

SSF cells were grown in 15N isotopically enriched media to produce 15N labelled SSF

ribosomes (prepared by Fabian Blombach, Germany). The purification of the SSF

ribosomes followed the same protocol as used for E. coli ribosomes, except that a 16-26%

w/v sucrose gradient with 500 mM NaCl was used for the sucrose gradient purification

step.

Daniel Sohmen produced and purified P. aero 50S subunits.

6.1.10 Purification of isolated subunits

To produce the isolated 30S and 50S subunits, purified 70S ribosomes were incubated for

1 hour in tico buffer with 1 mM MgCl2, and loaded on a 16-26% w/v sucrose gradient

and sedimented for 15 hours at 21 000rpm.
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6.1.11 Sodium Dodecyl Sulfate polyacrylamide gel electrophoresis (SDS-

PAGE)

For SDS-PAGE, the protein samples were mixed with LDS loading dye (Invitrogen) and

boiled for 5 min. The protein samples were run on 4-12% (w/v) Bis-Tris gels. The

gels probing for RNCs or ribosomes were typically silver stained using the SilverQuest

silver staining kit (Invitrogen), following the manufacturer’s instructions. Gels of isolated

proteins were stained with Coomassie Stain (0.025% w/v coomassie brilliant blue, 40%

v/v ethanol, 10% v/v glacial acetic acid) and then destained using Destain (40 % v/v

ethanol, 10% v/v glacial acetic acid).

6.1.12 Quantification of ribosomes and RNCs concentration using optical

density measurements

The concentration of ribosomes and RNC samples was determined using UV

spectroscopy at OD260, where 1 OD260 in a 1cm pathlength corresponded to 24 nM of

70S ribosomes [184]. An OD260/OD280 ratio of two was used to indicated a pure 70S

preparation, as this ratio reflects both the rRNA and protein content present within the

ribosomal complex [184]. For the component subunits, 1OD260 was equivalent to either

36 nM of 50S subunits or 72 nM of 30S.

6.1.13 Immunodetection – Western Blot

• Blotting buffer: 6.05 g/L Tris, 14.4 g/L glycine, 20% (v/v) methanol, 0.01%(v/v)

SDS. (stored at 4◦C )

• Tris Buffered Saline (TBS) : 2.42 g/L Tris, 11.69 g/L NaCl, pH 7.4 (stored at 4◦C)

• TBS-Tween: 0.1%(v/v) Tween-20 in TBS
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• Blocking buffer:

Histidine-Tag detection: 20% (w/v) casein in TBS-Tween.

anti-TF: 0.5% (w/v) skim milk powder in TBS-Tween.

• Antibody dilution:

Histidine-Tag detection: Penta-His HRP conjugate (Qiagen) (1:5000)

anti-TF primary antibody: TF rabbit polyclonal antibody (1:2500) (Genscript)

anti-TF secondary antibody: Horse-radish conjugated anti-rabbit antibody (raised in

goat) (1:1000) (New England Biolabs)

• chemiluminescence detection (ECL): SuperSignal West Pico chemiluminescence

substrate (Pierce)

After the SDS-PAGE, the gel along with 2 sponges, nitrocellulose membrane and filter

paper were soaked in cold blotting buffer. The following were stacked onto the Western

apparatus (negative face): sponge, filter paper, gel, nitrocellulose membrane, filter paper,

sponge. The “sandwich” was pushed down to release trapped air bubbles. The apparatus

was clamped up within the gel running tank and the inner chamber was filled with

blotting buffer and the outside chamber with water. The transfer took place for 2 hours

at 250 mA on ice. After the transfer, the membrane was placed face-up into a container

and allowed to block for one hour with blocking buffer with shaking. The membrane

was incubated with the primary antibody for more than 1 hour (typically overnight),

then washed four times for 10 min with TBS-Tween. For anti-histidine detection, the

membrane was then treated with ECL reagents for 5 min, wrapped in plastic-wrap

and then the chemiluminescence was detected with Fujifilm LAS-1000 scanner using

exposure times of 30 s to 10 min. For anti-TF detection, the membrane was incubated
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with the secondary antibody for 1 hour at room temperature, followed by an additional

wash step (four intervals of 10 min) and ECL treatment and detection as described above

for anti-histidine detection.

The density of the western blot bands were quantified by using the software ImageK

1.44o, Wayne Rasband, NIH.

6.1.14 Nascent chain and trigger factor occupancy within RNCs

To measure the NC occupancy, 5 and 10 pmoles of RNCs together with a series of purified

ddFLN-dom5 standards ranging in amount (2 to 10 pmoles) were run on SDS-PAGE,

transferred onto the western blot membrane and probed for the his-tag. Densitometry

analysis of the resulting bands enabled a standard curve based upon the ddFLN-dom5

standards to be generated and the NC occupancy was determined from this. The

quantification of TF occupancy was performed in a similar manner, except that the

standards were purified TF, and these were loaded at amounts ranging from 0.2 to 2

pmoles.

6.1.15 RNC proteolysis time-course

To assess the stability of the RNCs over time, a sample was incubated at 25◦C for 3-7 days,

during which 10 pmoles samples were collected each 3-6 hours, and run on SDS-PAGE

and the his-tag was probed using anti-his western blot (Section 6.1.13).

6.1.16 Expression and purification of isolated ddFLN-dom5

6.1.16.1 Expression of isolated ddFLN-dom5

A single colony was used to inoculate 3mL of LB media. The pre-culture was incubated

overnight at 37◦C, 200 rpm. 500 mL of M9 enriched with 15NH4Cl and/or 13Cglucose
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isotopes was inoculated with the pre-culture and incubated for 6 hours at 37◦C, 180 rpm.

When the OD600 reached 0.6, IPTG was added to the media to a final concentration of

1 mM. After 4 hours of incubation, the cells were pelleted at 3500 rpm for 20 min and

transferred into a 50 mL falcon tube, flash-frozen and stored at -20◦C.

6.1.16.2 Buffer composition

• Phosphate buffer: 25 mM NaH2PO4, 30 mM NH4Cl, 2 mM BME, pH 7.4.

• Phosphate washing buffer: 25 mM Imidazole, 25 mM NaH2PO4, 30 mM NH4Cl, 2

mM BME, pH 7.4.

• Phosphate elution buffer: 150 mM Imidazole, 25 mM NaH2PO4, 30 mM NH4Cl, 2

mM BME, pH 7.4.

6.1.16.3 Purification of isolated ddFLN-dom5

The cells were resuspended in phosphate buffer supplemented with DNAase and

protease inhibitors, and lysis was performed using sonication, performed on ice with

interleaved periods of 10s of sonication and 30s of rest (10 cycles). The cellular debris was

then pelleted by centrifugation at 18000 rpm for 45 min. The cell lysate was loaded on Ni

NTA beads, and the binding was performed for 1 hour at 4◦C. The beads were washed

with phosphate washing buffer and the protein was eluted with phosphate elution buffer.

The sample was then buffer exchanged in phosphate buffer and loaded on a 5 mL Hitrap

Q-sepharose column (GE healthcare) using the Akta system. The Q-sepharose column

was washed with phosphate buffer and the protein was eluted with a 60 mL gradient

of salt from 0 M to 1 M NaCl and 1.5 mL fractions were collected. The sample was

then concentrated with a 10 kDa cut-off concentrator and loaded on a Superdex 75 16/60

column (GE healthcare) in tico buffer and 1 mL fractions of the proteins were collected.
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Pure fractions of ddFLN-dom5 (as assessed by SDS-PAGE) were pooled and concentrated

using a 10 kDa cut-off concentrator. The final concentration of protein is determined

using the OD280, and the absorbance coefficient (for ddFLN-dom5, ε=5960 L.mol−1cm−1)

was calculated from the EXPASY website using the sequence .

Released NC extracted from the purification of RNC are purified using the same

protocol for Ni-NTA chromatography.

6.2 NMR experiments

All NMR experiments on RNCs were recorded on a 700 MHz Bruker Avance III

spectrometer at 25◦C, using Topspin 2.1. The water frequency was calibrated by placing

the water on-resonance in a simple presaturation-1D. The calibrated water frequency

was always the carrier frequency of the proton channel. The pulse length for the 90◦

hard pulse was calibrated by finding the 360◦ null at the maximum power level. 2D

heteronuclear correlation spectra of RNCs were recorded in an interleaved fashion with

1D 1H, 1H STE, 15N, 13C XSTE or 13C-edited STE diffusion experiments.

6.2.1 1H 1D

1H 1D experiments were run with excitation sculpting for water suppression, with an

acquisition time of 50 ms and a spectral width of 21 ppm. The number of scans varies

from 128 to 512.

6.2.2 1H STE diffusion

1H STE diffusion experiments were run using bi-polar gradients. Smoothed-square

gradient pulses of 2 ms were used in the bi-polar encoding & decoding spin echoes.

A diffusion delay of 100 ms separated the encoding & decoding gradient pairs. Three
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gradient strengths were recorded: 5%, 50% and 95% of the maximum gradient strength

(0.563 T.m−1). The acquisition time was set to 50 ms, and the spectral width to 25 ppm.

The number of scans varied from 128 to 512.

6.2.3 15N XSTE diffusion

15N XSTE diffusion experiments were run using bipolar encoding gradients (2 ms

smoothed-square gradient pulses) during the first spin-echo of the the first refocused-

INEPT and decoding gradients during the second spin-echo of the last refocused-INEPT

as published by Ferrage et al [166]. Additional water presaturation pulses were added

during the recycling delay and during the diffusion delay (after the first refocused-

INEPT). A diffusion delay of 100 ms separated the bipolar encoding/decoding gradient

pairs. Three gradient strengths were recorded: 5%, 50% and 95% of the maximum

gradient strength. The 1H acquisition time was set to 50 ms during which 15N decoupling

was applied using the garp4 decoupling sequence, and the spectral width was set to 25

ppm. Data were accumulated for one to two hours.

6.2.4 13C STE diffusion

6.2.4.1 13C XSTE diffusion

1H-13C XSTE diffusion experiments were run identically to the 1H-15N XSTE diffusion

experiment, but the delay of the second spin-echo in the first refocused-INEPT and the

first spin-echo of the last refocused-INEPT was optimised for 13CH3 groups, i.e. 1/10JCH

instead of 1/4JCH. The reason for adjusting this delay is to optimise the J-coupling

magnetisation transfer for a CH3 group.
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6.2.4.2 13C-edited STE-HMQC diffusion

13C-edited STE-HMQC experiments were run with the STE elements prior to a 1H-13C

HMQC sequence, as in Didenko et al [167]. Bipolar 2 ms smoothed-square gradient

pulses were used, with a 100 ms diffusion delay. The experiment was run in a pseudo

2D fashion (with no 13C chemical shift evolution), with three gradient strengths: 5%,

50% and 95% of the maximum gradient strength. During 1H acquisition (52 ms) 13C

decoupling was applied using the garp4 decoupling sequence. Data were accumulated

for 15 min to one hour.

6.2.5 1H-15N SOFAST-HMQC

1H-15N heteronuclear experiments were run in the SOFAST-HMQC fashion [159]. PC9

(1408 ms) and REBURP (857 ms) selective pulses were used for 120◦ excitation and

inversion respectively, centred at 8.5 ppm. Low power 15N decoupling was used during

the 46 ms 1H acquisition (garp4 decoupling sequence with the 90◦ pulse lengthened from

107 µs to 350 µs). The recycling delay was shortened to 50 ms. The 15N acquisition time

was limited to 14.1 ms during which the 13C nuclei were decoupled using a 13C adiabatic

broadband CHIRP inversion pulse. The 15N spectral width was 32 ppm (64 increments),

and the 1H spectral width was 16 ppm. Data were accumulated for 45 min to three

hours.

6.2.6 1H-13C HMQC & 1H-13C methyl-TROSY HMQC

1H-13C HMQC experiments were run using a standard HMQC sequence with additional

water presaturation during the 1 s recycling delay, a clean-up gradient-pair around

the 1H 180 refocusing pulse, and removal of the 13C equilibrium magnetisation by an

additional 13C 90◦ pulse followed by a PFG [145, 146]. The 13C acquisition time (t1)
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was set to 3.3 ms (10 ms in the case of 1H-13C methyl-TROSY HMQC), with a 110 ppm

spectral width (40 ppm in the case of 1H-13C methyl-TROSY HMQC). No 15N decoupling

was performed. The 1H acquisition time is set to 52 ms during which 13C decoupling

was applied using the garp4 decoupling sequence. The 1H spectral width was 14 ppm.

Data were accumulated for two to four hours.

6.2.7 Labelling experiments

“Labelling experiments” to assess the 13C (15N) isotopic labelling were performed

using a standard 1H-13C HMQC experiment (1H-15N SOFAST-HMQC) for which the

phase cycling of the receiver was modified to either select or reject 1H-13C (1H-15N)

magnetisation. Water suppression was performed using a presaturation pulse during

the 1.3 s recycling delay. Signal intensities from both experiments (13C/15N-1H edited

or filtered) were directly comparable, and proportional to the relative population of

isotopically labelled and unlabelled proteins.

6.2.8 Hydrogen-deuterium exchange

For hydrogen-deuterium exchange (Section 3.2.1), the sample was dialysed in 100 mM

bi-carbonate and lyophilised for 4-12 hours. The lyophilised sample was disolved in

deuterated tico buffer with varying pH* from 6.15 to 7.7, and immediately inserted in the

700 MHz NMR spectrometer to record a series of 5 min 1H-15N SOFAST-HMQC spectra.

The spectra were processed using nmrPipe (package version 2009), using a lorentz-to-

gaussian window function (GMB in nmrPipe) in both dimensions. The resonances were

fitted with a gaussian lineshape and the simulated resonances were used to measure

the signal intensity. The decay of signal intensity over time was fitted with a single

exponential to extrapolate the hydrogen-deuterium exchange rate kex. Refer to Section
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3.1.2 for details.

6.3 Processing NMR data

NMR experiments were processed using nmrPipe (package version 2009) [238]. In

some cases, Topspin 2.1 (Bruker) was used. When stated, the data was imported in

Matlab (MathWorks, Matlab release R2010b).

6.3.1 1H 1D

1H 1D were converted from Bruker to nmrPipe format, a cosine-bell window function

was applied to the data before zero-filling to double the size of the data. After Fourier

transformation, the imaginary data were discarded. A zero-order phase correction was

then applied, followed by a linear baseline correction. The nmrPipe script is shown in

Supplementary Material Script 1. The data was then converted from nmrPipe format to

text format, and imported into Matlab. The time at which each spectrum was recorded

was also imported in Matlab.

• The signal integral from 0.75 ppm to 0.85 ppm was calculated for each spectrum

and plotted against the time at which those spectra were recorded. The

uncertainties of these integrals were calculated as the standard deviation over the

same bandwidth at -0.5ppm and shown with error-bars. This methyl region of the

spectrum is referred to as the “ribosome bound signal”.

• Similarly, the signal integral from 0.94 ppm to 1.0 ppm was calculated and this

methyl region of the spectrum is referred to as the “ribosome-released signal”.

• Similarly, the signal integral from 3.7 ppm to 3.9 ppm was calculated and this

region of the spectrum is referred to as the “rRNA signal”.



Chapter 6. Materials and methods 217

• Maximum signal intensity (corresponding to a sharp signals of a small metabolite

molecule) at 1.8 ppm (as well as 2.85 ppm) was plotted over time and is referred to

“metabolite signal”.

• Maximum signal intensity at 5.4 ppm was plotted over time and is referred to as

“residual sucrose”.

• The chemical shifts of the HEPES signal at 3.85 ppm-3.95 ppm was plotted over

time and is referred to as “HEPES chemical shift”.

6.3.2 1H STE diffusion spectra

First, the diffusion coefficient for the high-molecular-weight particles giving rise 1H

signals at 0.8 ppm was estimated using the ratio of their intensities in the 50% and

95% gradient strength spectra, and the diffusion coefficient for the low-molecular-weight

particles giving rise to 1H signals at 1ppm was estimated using the ratio of their

intensities in the 5% and 50% gradient strength spectra. This was done in Topspin 2.1.

The diffusion coefficients was calculated based on the following equation:

D =
ln(I2/I1)

((G1γH)2 − (G2γH)2)× (∆− δ
3 )

(6.1)

where γH is the 1H gyromagnetic ratio (2.67522128×108 rad.s−1.T−1), I1 and I2 are the

intensities at the two different gradient strengths, ∆ is the diffusion delay (100 ms), δ is

the length of the gradient pair (4 ms), and G1 and G2 are the gradient strengths calculated

according to:

gi = g%.Gmax.Fshape.δ (6.2)
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where g% is the % of maximum gradient strength, Gmax is the maximum gradient

strength (0.563 T.m−1), Fshape is the shape factor related to the integral of the gradient

used (Fshape=0.63 for a sine gradient and Fshape=0.9 for a smoothed-square gradient).

1H STE spectra were converted from Bruker to nmrPipe format, and process in an

identical manner as the 1H 1D spectra, and imported into Matlab.

• For each of the gradient strength increments, the signal integral from 0.75 ppm to

0.85 ppm was calculated and plotted against the time at which the spectra were

recorded. The uncertainties of these integrals were calculated as the standard

deviation over the same bandwidth at -0.5 ppm and shown with error-bars. This

methyl region of the spectrum is referred to as the “methyl 0.8 ppm” signal.

• Similarly, the signal integral from 0.94 ppm to 1.0 ppm was calculated and this

methyl region of the spectrum is referred to as the “methyl 0.9 ppm” signal.

• Similarly, the signal integral from 3.7 ppm to 3.9 ppm was calculated and this

methyl region of the spectrum is referred to as the “ribose” signal.

6.3.3 15N XSTE diffusion spectra

Data were processed in a similar fashion to the 1H STE spectra in Topspin 2.1. Data

were also converted to nmrPipe format and processed in a similar fashion to the 1H STE

spectra. Once exported to Matlab, the the bandwidth of the signal integral was from 8.0

to 8.5 ppm.

6.3.4 13C-edited STE-HMQC diffusion spectra

Data were processed in a similar fashion as the 15N XSTE diffusion spectra. Once

exported to Matlab, the bandwidth of the signal integral was from 0.75 to 1.0 ppm.
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6.3.5 1H-15N SOFAST-HMQC spectra

1H-15N SOFAST-HMQC spectra were exported to nmrPipe. A simple cosine-bell window

function was applied to the 1H dimension before zero-filling to double the size of the

data. After Fourier transformation, the imaginary data were discarded. A zero-order

phase correction was applied and the data were then transposed. A simple cosine-

bell window function was applied to the 15N dimension before zero-filling to double

the size of the data. After Fourier transformation, the imaginary data was discarded.

A zero-order phase correction of -90◦ and a first-order phase correction of 180◦ were

applied followed by a linear baseline correction in the 15N dimension. The data was

then transposed again and a linear baseline correction in the 1H dimension was applied.

The nmrPipe script is shown in Supplementary Material script 2. Figures were produced

with spectra processed using linear prediction in the indirect dimension, and zero-filling

to 4096 points in the direct dimension and 1024 points in the indirect dimension.

Three to five consecutive 1H-15N SOFAST-HMQC spectra were added in a moving

average fashion using the nmrPipe library script addNMR. The moving averages were

then exported to text files and opened in Matlab. The correlation between neighbouring

points was determined using a region devoid of resonances of the spectrum for 1H

chemical shift of 10.5 to 11 ppm (refer to Section 2.2 for details, and the Matlab script

is shown in Supplementary Material Script 3). The noise levels of the spectra were

determined using the standard deviation over 100 points chosen randomly between 6.5

and 10.5 ppm (1H chemical shift), which do not overlap with resonances of ddFLN-dom5

or L7/L12. The distribution of maxima within regions of interest (ROI) of 3×3 datapoints

(Section 2.2) of the noise and signals were used to analyse the signal intensities (refer to

Section 2.2 for details, and the Matlab script is shown in Supplementary Material Script

4).
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6.3.6 1H-13C HMQC

1H-13C HMQC spectra were processed in a similar fashion as the 1H-15N SOFAST-HMQC

spectra.

One to ten consecutive 1H-13C HMQC were summed up, exported to text files and

opened in Matlab. The correlation between neighbouring points was determined using

a empty region of the spectrum for 1H chemical shift of -0.4 to -0.2 ppm (refer to Section

2.2 for details). The noise of the spectra are determined using the standard deviation

between 100 points chosen randomly between -0.2 and 1.0 ppm (1H chemical shift),

which do not overlap with resonances of ddFLN-dom5 or L7/L12.

6.4 Other structural analyses

6.4.0.1 Structural alignment of immunoglobulin domains

The sequence alignment of ddFLN-dom5, ddFLN-dom6, ddFLN-dom4, fnIII and TI was

performed in Chimera UCSF, with a restraint from the structural alignment of 30%.

6.4.0.2 Model of hydrodynamic radii from structure

The hydrodynamic radii were modelled from the pdb structures using Hydropro [214],

using a minimum bead size of 5 and a maximum bead size of 10.
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Figure A.1: Plot of the H-D exchange rate as a function of the pH measured in D2O for each

residues of purified isolated ddFLN-dom5 (black circles) are shown together with those measured

from ddFLN-dom5+6 (blue circles). The y axis is the log10 of kex. When the exchange was found

to be in the EX2 regime, the red line shows log10(kint)-log10(P). This figure is showing the data for

the first 36 residues. The last 40 residues are shown in Figure A.2.
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Figure A.2: Refer to Figure A.1.
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Figure A.3: z-score of 1H-13C high field shifted methyl resonances for folded ddFLN-dom5 in

ddFLN-dom5+57-RNC in A and ddFLN-dom5+67-RNC in B. The y axis is the mean z-score of the

16 signal intensity (maximum within a 3×3 region of the spectra centred at the resonances). The x

axis is the time of acquisition in hours. The y error bars are the standard deviation of the random

noise of the individual spectra divided by
√

16. The x error bars shows the time of acquisition.

The black dotted line shows the 5% threshold of the nine-variate distribution of the random noise.

The green green line shows the 5% threshold divided by
√

16. The red curve is the fit of equation

2.8, with a time constant of 66 ± 33 hours, R2 0.90 for A and 65 ± 35 hours, R2 0.999 for B.
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bruk2pipe -in ./fid \
-bad 0.0 -aswap -AMX -decim 1418.66666666667 -dspfvs 20 -grpdly 67.9896545410156 \
-xN 2048 \
-xT 1024 \
-xMODE DQD \
-xSW 14097.744 \
-xOBS 700.133 \
-xCAR 4.773 \
-xLAB 1H \
-ndim 1 \
-out ./test.fid -verb -ov
nmrPipe -in test.fid \
| nmrPipe -fn SP -off 0.45 -end 0.98 -pow 2.0 -c 0.5 \
| nmrPipe -fn ZF -auto \
| nmrPipe -fn FT -auto \
| nmrPipe -fn PS -p0 $phase -p1 0.0 -di -verb \
| nmrPipe -fn EXT -x1 -4ppm -xn 13ppm -sw \
| nmrPipe -fn BASE -nw 20 -nl -1.5ppm -0.5ppm 10.5ppm 11.5ppm \
-ov -out test.ft1
pipe2txt.tcl -index PPM test.ft1 >1D.txt

Script 1: nmrPipe script for the conversion and processing of 1D 1H spectrum. $phase was

estimated manually, using the visualisation software nmrDraw.

bruk2pipe -in ./ser \
-bad 0.0 -aswap -DMX -decim 1792 -dspfvs 20 -grpdly 67.9841766357422 \
-xN 1024 -yN 64 \
-xT 512 -yT 32 \
-xMODE DQD -yMODE States-TPPI \
-xSW 11160.714 -ySW 2270.405 \
-xOBS 700.133 -yOBS 70.952 \
-xCAR 4.773 -yCAR 117.066 \
-xLAB 1H -yLAB 15N \
-ndim 2 -aq2D States \
-out ./test.fid -verb -ov
nmrPipe -in test.fid \
| nmrPipe -fn SP -off 0.45 -end 0.98 -pow 1 -c 0.5 \
| nmrPipe -fn ZF -auto \
| nmrPipe -fn FT -auto \
| nmrPipe -fn PS -p0 $phase -p1 0.00 -di -verb \
| nmrPipe -fn EXT -left -sw \
| nmrPipe -fn TP \
| nmrPipe -fn SP -off 0.5 -end 0.98 -pow 1 -c 1.0 \
| nmrPipe -fn ZF -auto \
| nmrPipe -fn FT -auto \
| nmrPipe -fn PS -p0 -90.00 -p1 180.00 -di -verb \
| nmrPipe -fn BASE -nw 6 -nl 103ppm 105ppm 131ppm 133ppm \
| nmrPipe -fn TP \
| nmrPipe -fn BASE -nw 20 -nl 11ppm 10.8ppm 6.2ppm 5.5ppm \
-ov -out test.ft2
pipe2txt.tcl -index PPM test.ft2 >2D.txt

Script 2: nmrPipe script for the conversion and processing of 2D 1H-15N SOFAST-HQMC (similar

scripts were used for 1H-13C HMQC spectrum).
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s=0;
for k=1:9
for l=1:9
s=s+1;
row(s,1)=k;
row(s,2)=l;
for i=1:(noise_size_row-l)
for j=1:(noise_size_row-k)
neighbours_data((N15size-k+1)*i-(N15size-k+1)+j,1)=specNoise_data(i,j);
neighbours_data((N15size-k+1)*i-(N15size-k+1)+j,s)=specNoise_data((i+l-1),(j+k-1));
end
end
[rho, pval, rho_l, rho_u] = corrcoef(neighbours_data(:,1);neighbours_data(:,s));
rho_data((k),(l))=rho_temp(1,2);
pval_data((k),(l))=pval_temp(1,2);
rho_low_data((k),(l))=rho_low_temp(1,2);
rho_up_data((k),(l))=rho_up_temp(1,2);
end
end
for i=1:9
sigma_corr_temp(i,i)=1;
end

sigma_corr_temp(1,2)=rho_data(1,2);
sigma_corr_temp(2,1)=rho_data(1,2);
sigma_corr_temp(3,2)=rho_data(1,2);
sigma_corr_temp(2,3)=rho_data(1,2);
sigma_corr_temp(5,4)=rho_data(1,2);
sigma_corr_temp(4,5)=rho_data(1,2);
sigma_corr_temp(5,6)=rho_data(1,2);
sigma_corr_temp(6,5)=rho_data(1,2);
sigma_corr_temp(7,8)=rho_data(1,2);
sigma_corr_temp(8,7)=rho_data(1,2);
sigma_corr_temp(9,8)=rho_data(1,2);
sigma_corr_temp(8,9)=rho_data(1,2);
sigma_corr_temp(1,4)=rho_data(2,1);
sigma_corr_temp(4,1)=rho_data(2,1);
sigma_corr_temp(5,2)=rho_data(2,1);
sigma_corr_temp(2,5)=rho_data(2,1);
sigma_corr_temp(6,3)=rho_data(2,1);
sigma_corr_temp(3,6)=rho_data(2,1);
sigma_corr_temp(4,7)=rho_data(2,1);
sigma_corr_temp(7,4)=rho_data(2,1);
sigma_corr_temp(1,4)=rho_data(2,1);
sigma_corr_temp(4,1)=rho_data(2,1);
sigma_corr_temp(5,8)=rho_data(2,1);
sigma_corr_temp(8,5)=rho_data(2,1);
sigma_corr_temp(9,6)=rho_data(2,1);
sigma_corr_temp(6,9)=rho_data(2,1);
sigma_corr_temp(1,4)=rho_data(2,1);
sigma_corr_temp(4,1)=rho_data(2,1);
sigma_corr_temp(1,5)=rho_data(2,2);
sigma_corr_temp(5,1)=rho_data(2,2);
sigma_corr_temp(1,5)=rho_data(2,2);
sigma_corr_temp(5,1)=rho_data(2,2);
sigma_corr_temp(2,4)=rho_data(2,2);
sigma_corr_temp(4,2)=rho_data(2,2);
sigma_corr_temp(2,6)=rho_data(2,2);
sigma_corr_temp(6,2)=rho_data(2,2);
sigma_corr_temp(3,5)=rho_data(2,2);
sigma_corr_temp(5,3)=rho_data(2,2);
sigma_corr_temp(4,8)=rho_data(2,2);
sigma_corr_temp(8,4)=rho_data(2,2);
sigma_corr_temp(7,5)=rho_data(2,2);
sigma_corr_temp(5,7)=rho_data(2,2);
sigma_corr_temp(5,9)=rho_data(2,2);
sigma_corr_temp(9,5)=rho_data(2,2);
sigma_corr_temp(6,8)=rho_data(2,2);
sigma_corr_temp(8,6)=rho_data(2,2);
sigma_corr_temp(1,3)=rho_data(1,3);
sigma_corr_temp(3,1)=rho_data(1,3);
sigma_corr_temp(4,6)=rho_data(1,3);
sigma_corr_temp(6,4)=rho_data(1,3);
sigma_corr_temp(9,7)=rho_data(1,3);
sigma_corr_temp(7,9)=rho_data(1,3);
sigma_corr_temp(1,6)=rho_data(2,3);
sigma_corr_temp(6,1)=rho_data(2,3);
sigma_corr_temp(4,9)=rho_data(2,3);
sigma_corr_temp(9,4)=rho_data(2,3);

sigma_noise=std(specNoise_data(:));
sigma(:,:)=sigma_corr_temp(:,:)*sigma_noise*sigma_noise;

Script 3: Matlab commands used to calculate the correlation between neighbouring points

(rho_data). specNoise_data is a region of the spectrum where there is only noise (10-10.5ppm

in the 1H dimension and 110-130ppm in the 15H). The correlation matrix (sigma) is build for use

in script 4.
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for i=1:243
noise_intensity_data(1,i)=spec_data(noise_position(i,1),noise_position(i,2));
end
std_noise_data=std(noise_intensity_data);

for j=1:243
noise_intensity_data(1,j)=max(reshape(spec_data(noise_position(j,1)-1:noise_position(j,1)+1,noise_position(j,2)-1:noise_position(j,2)+1),1,9));
end

for i=1:73
peak_intensity_data(1,i)=max(reshape(spec_data(peak_position(i,1)-1:peak_position(i,1)+1,peak_position(i,2)-1:peak_position(i,2)+1),1,9));
end

step_x=(max(peak_intensity_data(1,:))-min(noise_intensity_data(1,:)))/50;
step_y=(max(noise_intensity_data(1,:))-min(noise_intensity_data(1,:)))/50;
x=(min(noise_intensity_data(1,:)-10*step_x):step_x:max(peak_intensity_data(1,:))+10*step_x);
y=(min(noise_intensity_data(1,:)-10*step_y):step_y:max(noise_intensity_data(1,:))+20*step_y);
[noise_distribution_data]=histc(noise_intensity_data,y);
[peak_distribution_data]=histc(peak_intensity_data,x);

size_n=size(y);
for i=1:9
mu(1,i)=mean(noise_intensity_data(1,:));
end
for i=1:size_n(1,2)
for k=1:9
y_mvncdf(i,k)=[y(1, i)];
end
Mvn_pdf(:,i)=mvnpdf(y_mvncdf(i,:),mu(1,9),sigma(1:9,1:9));
F_data(1,i)=mvncdf(y_mvncdf(i,:),[000000000],sigma(1:9,1:9));
end
threshold=find(F_data >= 0.95,1,’first’);

size_p=size(x);
mu_peak=mean(peak_intensity_data);
std_peak=std(peak_intensity_data);
for i=1:size_p(1,2)
gaus_p(1,i)=exp(-(x(1,i)-mu_peak)ˆ 2/(2*std_peakˆ 2));
end

hold on
bar(y/std_noise_data,noise_distribution_data/max(noise_distribution_data),’FaceColor’,[0.5,0.5,0.5],’EdgeColor’,’none’)
bar(x/std_noise_data,peak_distribution_data/max(peak_distribution_data),0.85,’m’,’EdgeColor’,’none’)
plot(y/std_noise_data,Mvn_pdf(1,:)/max(Mvn_pdf(1,:)),’k’)
plot(x/std_noise_data,Mvn_pdf(1,:)/max(Mvn_pdf(1,:)),’m’)
plot([y(threshold)/std_noise_data y(threshold_1)/std_noise_data],[0 1],’:k’)

Script 4: Matlab commands used to generate the intensity distribution plots shown in Chapter 2.

spec_data is the entire 2D spectrum. noise_position contains the positions within the spectrum

that does not correspond to RNC or L7/L12 resonances. peak_position contains the position of

the RNC resonances. sigma is defined in Script 3.
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