Correction of scaling mismatches.

After MAS5.0 normalization, we noticed that some arrays were still hampered by a scaling mismatch. To correct for this we devised a rescaling algorithm based upon finding a set of constant genes (manuscript submitted). MAS5.0 summarised data was then re-normalised by multiplying the MAS5.0 value by the following rescaling factors for each microarray:

	
	0 hours
	2 hours
	4 hours
	6 hours
	8 hours
	10 hours
	12 hours

	Repl. 1
	1.00
	0.98
	1.04
	1.04
	1.00
	1.08
	1.03

	Repl. 2
	0.99
	1.02
	1.01
	1.09
	1.22
	1.06
	1.03

	Repl. 3
	0.97
	1.00
	0.98
	1.02
	1.16
	1.16
	1.06


Derivation of the coefficients of the differential operator

In this section we give the detailed derivation of the coefficients Aik of the linear function i(x) which was introduced in Eq. (5). These are obtained by differentiating P(t) defined in Eqs (3) and (4).
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Comparing to Eq. (5), we have

Aik
=
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Note that typically, the bounds p and r will vary depending on the choice of the time point ti. It remains to give explicit formulae for E(k, p, r, ti ). Using Eqs. (4) and (5i) we have

E(k, p, r, ti )
=
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 EMBED Equation.3  [image: image6.wmf]
for k ≠ i .
(5ii)

On the other hand, if t ≠ tj for all j ≠ k, then

E(k, p, r, t)
=

[image: image7.wmf]

 EMBED Equation.3  [image: image8.wmf] ,

Evaluating at k = i and t = ti gives

E(i, p, r, ti )
=
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 EMBED Equation.3  [image: image10.wmf]  . 
(5iii)

A further refinement is to incorporate information about the slope  0 of x(t) at t0 . We assume that at t0 the levels of the transcription factors, and the genes that it regulates are at equilibrium. Furthermore, we assume that the perturbation to f (t) is at least continuous at t0 . Thus, we have  0 = 0. This can be incorporated into Lagrange’s formula.

We do this by introducing an extra (dummy) point (t–1 , x–1 ). Both t–1 and x–1 are arbitrary and we shall not need to determine their values explicitly. We will require that t–1 ≠ ti for all i = p, …, r. The role of this extra point is to encode the information that  0 = 0 and all reference to (t–1 , x–1 ) will eventually cancel out. It only makes sense to use  0 = 0 in this way if the point (t0 , x0 ) is already part of the interpolation, that is if p = 0. We shall denote the coefficients of the approximation of the first derivative using the r + 2 points (t0 , x0 ), …, (tr , xr ) and (t–1 , x–1 ) by  eq \o\ac(~,E)(k, 0, r, t). These are straightforward extensions of Eqs. (5ii) and (5iii):

 eq \o\ac(~,E)(k, 0, r, ti )
=
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for k ≠ i .
(5iv)

 eq \o\ac(~,E)(i, 0, r, ti )
=
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(5v)

The approximation of the first derivative at t0 is given by
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 eq \o\ac(~,E)(k, 0, r, t0) xk   +    eq \o\ac(~,E)(-1, 0, r, t0) x-1  .

By definition this is 0 = 0, so that

x–1
=
–
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 EMBED Equation.3  [image: image18.wmf] xk .

On the other hand the approximation i to the first derivative at ti is
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 eq \o\ac(~,E)(k, 0, r, ti ) xk   +    eq \o\ac(~,E)(-1, 0, r, ti ) x-1

=
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 eq \o\ac(~,E)(k, 0, r, ti ) xk   –    eq \o\ac(~,E)(-1, 0, r, ti )
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Note that if i = 0, we obtain

E0(k, 0, r, t0 )
=
0

for all k such that 0 ≤ k ≤ r, and the remaining E0(k, 0, r, t0 ) are 0 by definition. Hence the first row of the matrix A is identically 0, which of course it has to be for consistency with our assumption that 0 = 0. In the more general case, one can simplify Eq. (5vi) using Eqs. (5iv) and (5v) to give explicit formulae for the coefficients E0(k, 0, r, ti ) for i ≠ 0:

E0(k, 0, r, ti )
=

[image: image26.wmf]  

1

t

k

-

t

i



 EMBED Equation.3  [image: image27.wmf]  

j

=

0

j

¹

i

,

k

r

Õ



 EMBED Equation.3  [image: image28.wmf]  

t

i

-

t

j

t

k

-

t

j

 
[image: image29.wmf]  

t

0

-

t

i

t

0

-

t

k



=
E(k, 0, r, ti )
[image: image30.wmf]  

t

0

-

t

i

t

0

-

t

k


for k ≠ 0, i

E0(i, 0, r, ti )
=
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E0(0, 0, r, ti )
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Given the general derivation above, we have a wide choice in the precise selection of the coefficients of the matrix A in Eq. (6). We could do a 3-point estimation throughout, as outlined in the previous section. At the other extreme, we could include the whole time course, i.e. perform an n-point interpolation. Using trial and error with artificially generated data, we chose to perform a symmetric 5-point interpolation (so that p = i – 2 and r = i + 2) wherever this was possible (i.e. for 2 ≤ i ≤ n–2). For i = 0, 1, n–1 and n we used the closest possible choice to this. More precisely, the choices of p and r were thus

	i
	p
	r

	0
	0
	2

	1
	0
	3

	…
	
	

	2 ≤ i ≤ n–2
	i – 2
	i + 2

	…
	
	

	n–1
	N–3
	N

	n
	N–2
	N


In our case n = 6, and we used the modified coefficients E0(k, 0, r, ti ) for the first three rows. The matrix A was thus
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Our data was sampled at t0 = 0, t1 = 2, t2 = 4, t3 = 6, t4 = 8, t5 = 10 and t6 = 12. Evaluating the above coefficients explicitly gives

A
=

[image: image39.wmf]  .

Note that each row sums to 0.

Extension of model fitting to replicate measurements

As is common, the microarray experiments were carried out in triplicate. Initially, we fitted the parameters for each experiment separately. We found, however, that we obtained more robust results if all three experiments were fitted simultaneously. Specifically, we assumed, that for each gene j, the kinetic parameters Bj, Sj and Dj were the same in each replicate experiment, but that the transcription factor profiles were different in each replicate. In the case of three replicates the parameter vector in the first phase thus becomes


=
( B1, …, Bm, S1, …, Sm, D1, …, Dm,
 f0,1, …, fn,1, f0,2, …, fn,2, f0,3, …, fn,3 )

where fi,a denotes the value of fi for replicate a. In the second phase j remains unchanged. The error function in Eq. (7) for each gene j becomes the sum of the errors for the corresponding replicates

Mj
=
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 EMBED Equation.3  [image: image41.wmf]  +  
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Here xj,a is computed from the model using f0,1, …, fn,1. The definition of the total error in Eq. (8) remains unchanged. The assumption of equality across replicates introduces additional constraints and hence causes a deterioration in the overall model score both in the training and screening schemes. This is, however, counterbalanced by tighter confidence intervals for the kinetic parameters. It also explains why we were rather lenient in the model score criteria (< 100 for 18 degrees of freedom) in the screening scheme to select for candidate p53 targets and probably also why the robustness of the estimation for the sensitivity Sj appears to be a better predictor for p53-dependency

Estimation of the measurement error
To compute the merit function in Eq. (7) we require an estimate of the measurement error j(ti ) for a given observed signal  eq \o\ar(ˆ,x)j(ti ). Initially, we assumed the relative measurement error to be constant i.e. j(ti ) =   eq \o\ar(ˆ,x)j(ti ), with typically  = 0.2 . However, this did not produce satisfactory results, because signals with a high amplitude are more precise than weaker signals. As a result the latter were relatively speaking over-fitted. Furthermore, this simple scheme did not take into account the fact that some microarrays (those with a high background and/or a high scaling factor) are more noisy than others. This resulted in higher model scores for those replicate time courses which had a larger number of such microarrays.

We therefore decided to estimate measurement error from the data, allowing this to vary with both the signal intensity and the microarray. In others words, we assumed that the measurement error  eq \o\ar(ˆ,s)j,a for gene j in microarray a is a function Ga of the signal intensity    eq \o\ar(ˆ,x)j,a, i.e.
 eq \o\ar(ˆ,s)j,a
=
Ga( eq \o\ar(ˆ,x)j,a ) .

Note that this dependency of measurement errors on the signal intensity has already been proposed elsewhere in various guises [43-46]. In our in-house implementation we did not attempt to represent Ga in terms of mathematical functions, but instead used a look-up table. Its entries were computed as follows.

Our experiment consists of biological triplicates: that is each microarray time course was used to measure expression time evolution for a different biological sample. It is impossible to estimate the measurement error from this. We thus resorted to publicly available data (www.affymetrix.com/support/technical/sample_data/datasets.affx). We used Affymetrix’s spike in experiment, which was performed using the same type of microarray as that used in our experiments and in which the replicates were technical replicates (i.e repeated measurements from the same biological sample). We denote the measurement of gene j in replicate a for this data by  eq \o\ar(_,x)j,a . From this spike in experiment, we select the first three microarrays (so that a = 1,2,3). For each gene j we then compute the following quantities:

 eq \o\ar(_,x)j
=

[image: image44.wmf]  

1

3



 EMBED Equation.3  [image: image45.wmf]  

a

=

1

3

å



 eq \o\ar(_,x)j,a  ,

 eq \o\ar(_,s)j2
=

[image: image46.wmf]  

1

3

-

1



 EMBED Equation.3  [image: image47.wmf]  

a

=

1

3

å

( eq \o\ar(_,x)j,a  –   eq \o\ar(_,x)j )2  .

We then divide the genes among thirty classes Hb (b =1, …, 30) of equal amplitude where lb and ub are the lower and upper bounds of these classes. We have

ub
=
lb+1
b = 1, …, 29

ub – lb
=

[image: image48.wmf](
[image: image49.wmf]log ( eq \o\ar(_,x)j )  –  
[image: image50.wmf]log ( eq \o\ar(_,x)j ))
b = 1, …, 30
and therefore

u30
=

[image: image51.wmf]log ( eq \o\ar(_,x)j )  ,

l1
=

[image: image52.wmf]log ( eq \o\ar(_,x)j )  .

We then say that a gene j belongs to a class Hb if lb ≤ log ( eq \o\ar(_,x)j ) ≤ ub and call mb the total number of genes belonging to the class Hb . We finally define thirty pairs of values xb and b as follows, for b = 1, …, 30:

log(xb)
=
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We thus have a measurement error estimate for thirty centres of classes which we are going to use to calibrate our own data.

With our own data, we have ñ microarrays in total (a = 1,…, ñ), including different time-points and possibly replicates. We determine the following quantities for each gene j:

 eq \o\ar(ˇ,x)j
=
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 eq \o\ar(ˇ,s)j,a eq \d \ba4 ()2
=
( eq \o\ar(ˆ,x)j,a  –   eq \o\ar(ˇ,x)j )2
a = 1,…, ñ
We proceed by using the same classes defined above and say that a gene j belongs to a class Hb if lb ≤ log ( eq \o\ar(ˇ,x)j ) ≤ ub and call  eq \o\ac(ˆ,m)b the total number of genes belonging to the class Hb . We then define for each class Hb and microarray a:

 eq \o\ar(ˆ,s)b,a eq \d \ba8 ()2
=

[image: image56.wmf]

 eq \o\ar(ˇ,s)j,a eq \d \ba4 ()2
We thus have for each microarray a first rough estimate  eq \o\ar(ˆ,s)b,a for the measurement error for each centre of the class which we need to connect with the more accurate estimate we made with the spike-in experiment. We select among our own experiment a subset of ñ' microarrays with a low background and low scaling factor (in practice, we selected 10 out of 21 microarrays). This subset, denoted by J, is therefore composed of less noisy microarrays and we assume they have a measurement error similar to the one observed in the spike-in data. We proceed by determining, for each class Hb:

 eq \o\ar(ˆ,s)b eq \d \ba3 ()2
=

[image: image57.wmf]
Rb
=

[image: image58.wmf]  .

Finally, we obtain for each microarray a in our experiment for each of its classes Hb

b,a eq \d \ba7 ()2
=
Rb  eq \o\ar(ˆ,s)b,a eq \d \ba8 ()2
The quantity b,a represents our final estimate for the measurement error in microarray a for a signal  eq \o\ar(ˆ,x)j,a whose logarithm would have the exact value of the centre of class of class Hb defined above, in other words  eq \o\ar(ˆ,s)j,a = b,a if  eq \o\ar(ˆ,x)j,a = xb . In practice, most of the signals we observe do not coincide with the centre of classes, so that we need a last step to compute the measurement error for an arbitrary signal  eq \o\ar(ˆ,x)j,a . It is obtained by linear interpolation between the two centres of class adjacent to log( eq \o\ar(ˆ,x)j,a), which we denote by log(xb' ) and log(xb'+1 ). We have:

 eq \o\ar(ˆ,s)j,a
=

[image: image59.wmf]
where

yb'
=
log (xb' )  ,

yb'+1
=
log (xb'+1 )  ,

 eq \o\ar(ˆ,y)j,a
      =
      log( eq \o\ar(ˆ,x)j,a).
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