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We study the conductivity in itinerant-electron systems near to a magnetic quantum critical
point. We show that, for a class of geometries, the universal power-law dependence of resistivity
upon temperature may be reflected in a universal non-linear conductivity; when a strong electric
field is applied, the resulting current has a universal power-law dependence upon the applied electric
field. For a system with thermal equilibrium current proportional to T α and dynamical exponent

z, we find a non-linear resistivity proportional to E
z−1

z(1+α)−1 .

PACS numbers: 72.10.Di, 72.90.+y, 75.30.Kz, 75.40.-s

The notion of quantum criticality provides one of the
few unifying theoretical principles of strongly correlated
electrons [1, 2, 3]. It describes a range of phenomena
in systems that are near to continuous, zero-temperature
phase transitions; phase transitions that are driven by
quantum rather than thermal fluctuations. In thermal
equilibrium, quantum critical systems show character-
istic spatial and temporal scaling in their response to
external probes. For example, the conductivity of an
itinerant-electron system near to a magnetic quantum
phase transition has a power-law dependence upon tem-
perature [4, 5, 6].

The behaviour of quantum critical systems out of ther-
mal equilibrium has begun to attract growing attention
over the past few years. Near to a quantum phase tran-
sition all of the intrinsic energy scales of a system, other
than the Fermi energy, renormalize to zero. In thermal
equilibrium, the only remaining energy scale is the tem-
perature itself. Because of this, quantum critical systems
are particularly susceptible to being driven out of equilib-
rium by external probes. In certain situations the univer-
sal temporal scaling near to the quantum critical point
may reveal itself in universal features of the steady-state
adopted out of equilibrium; the out-of-equilibrium state
being largely determined by a system’s dynamics.

Several recent works have addressed the question of
whether universality persists when a quantum critical
system is driven out of thermal equilibrium by the ap-
plication of a strong electric field. In particular, Refs. [7]
and [8, 9] considered two-dimensional superconductor-
insulator transitions [10, 11], the former in the case where
the quantum dynamics and phase transition were con-
trolled by coupling to a Caldeira-Leggett bath and the
latter in the case of intrinsic superconducting dynam-
ics. These systems can indeed display universality out of
equilibrium [12] in both their current response [7, 8] and
their current noise statistics[9]. The triumph of Refs. [7]
and [8] was to provide field-theoretical derivations of the
scaling predicted by näıve dimensional analysis. Numer-
ical studies of related one-dimensional systems produced

similar results [13].
Whilst these works provide interesting proofs of prin-

ciple — and indeed, may yet be compared with experi-
ment — most quantum critical systems that are studied
experimentally are of a rather different type. The criti-
cal modes at the superconductor-insulator transition are
charged and couple directly to the electric field. A more
typical situation has critical modes without a charge —
often magnetic — which affect transport by scattering
from electrons. Here we address the question of whether
universal non-linear response in transport occurs in this
more general setting.

We find that given certain conditions on size and geom-
etry, quantum critical itinerant magnets show a universal
non-linear current response. For a long, narrow sample,
with an electric field applied along its length, we predict
a universal non-linear scaling of current with field given
by

j ∝ E
z−1

z(1+α)−1 , (1)

where the thermal equilibrium resistivity is proportional
to T α and z is the dynamical exponent. In the case
of the Moriya-Hertz-Millis [4, 5, 6] model of the critical
ferromagnet, α = (d + z − 1)/z. Provided that certain
constraints upon the dimension of the system are satis-
fied, this result does not depend further upon the system
dimensions. In the following, we will take some time to
discuss this matter and compare our results to those of
related works.

We hope that these results will provide an alternative
experimental window upon quantum criticality. Despite
its successes, the theory of itinerant-electron quantum
criticality has some puzzling problems; although power
law dependencies upon temperature are seen experimen-
tally, there is often a discrepancy between the observed
and predicted powers in transport. Non-linear response
may help to resolve this issue by providing two con-
sistency checks: whether the equilibrium exponents are
consistent with the out-of-equilibrium exponents through
Eq.(1); and whether the out-of-equilibrium exponent is
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consistent with the Moriya-Hertz-Millis theory.
Our paper is outlined as follows: we begin in Section

1 with a general description of our scheme, paying par-
ticular attention to matters of geometry and heat flows
within the system. This will enable a heuristic derivation
of our main results and a detailed comparison with the
complementary work of Mitra et al. [15]. In Section 2, we
will begin with a survey of the Boltzmann treatment of
the linear response of the itinerant-electron quantum crit-
ical system in thermal equilibrium. This will allow us to
introduce some notation and familiarize the reader with
its application in this context. We follow this in Section
3 by applying the Boltzmann transport formalism to the
out of equilibrium system. This section contains a formal
derivation of our main results. Finally, in Section 4, we
turn to a discussion of the limitations of our analysis and
of the prospects for seeing the effects that we predict in
experiment.

GENERAL SCHEME

Geometry: We consider a long, narrow, quantum-critical,
itinerant electron system with an electric field applied
along its length. The system is longer than its transport
length so that an electron traversing the sample scatters
from magnons many times. The system must also be
wide enough that it displays bulk behaviour, but narrow
enough that heat generated within the sample can be
transported to the boundary.
Critical Fields: Starting from some low base tempera-
ture, T0, and gradually increasing the electric field one
may anticipate two fields at which the response may be-
come non-linear:
i. When the energy gained by an electron from the elec-
tric field between scattering events exceeds the tempera-
ture;

E1 ∼ T0

ltr
,

where ltr is the transport scattering length.
ii. When the Joule heating rate exceeds the rate at which
heat may be transported from the sample by a transverse
heat flow;

E2
2σ ∼ κT0/W 2 ⇒ E2 ∼ T0

W

√

lth/ltr

where σ and κ are the electrical and thermal conductiv-
ities. The latter result has been obtained using κ/σT0 =
lth/ltr. lth is the thermal scattering length and W is the
sample width.

In this work, we will be primarily concerned with the
former case. In order for a system to be in this regime,
we require that E1 ≪ E2, so that we hit the field E1

first when increasing the electric field from zero; i.e. we
require that W ≪

√
ltrlth. In addition, for the system

to exhibit bulk behaviour requires that it be wider than
its correlation length, W ≫ lth. Combining these two
conditions upon the sample width yields

lth ≪ W ≪
√

ltrlth. (2)

Due to additional angular factors, the transport length is
substantially greater than the thermal scattering length,
ltr ≫ lth, so that there is a large window of sample widths
over which the type of non-linear response that we en-
visage can occur. In the high-temperature limit (with
T ≪ ǫF nevertheless) in which experimental investiga-
tions of itinerant electron quantum criticality are usually
carried out, ltr ∼ lth/θ2 where θ ∼ q/kF ∼ (T/ǫF)1/z is
the angle of scattering.

This regime is somewhat delicately balanced between
the macro- and microscopic. In a truly macroscopic sam-
ple where W → ∞, non-linearity always occurs due to the
failure to conduct away excess Joule heat. In our case,
the transverse size of the system must be small enough
that W ≪

√
ltrlth, but the system inherits its behaviour

from macroscopic equilibrium properties since it is larger
than the correlation length[14]. If the above constraints
are satisfied, the non-linear transport properties depend
only upon bulk properties and are independent of the
dimensions of the system.

Thermal Coupling: Determining the non-linear response
requires keeping careful track of the various heat flows.
We consider a simplified scheme of thermal couplings in
our sample:
i. The electrons couple to a heat sink at the boundaries
of the sample and scatter from magnons. We do not con-
sider electron-electron scattering since this is higher or-
der in temperature or electric field than electron-magnon
scattering and so sub-leading at low temperatures and
fields.
ii. The magnons may scatter both from one another and
from the electrons. We do not consider coupling between
magnons and the heat sink. Our reason is that magnon-
phonon relaxation is higher order in temperature or field
than magnon-electron scattering and therefore weaker at
low temperatures and field.

Heuristic Treatment: Given these descriptions of the ge-
ometry of our system and the various microscopic cou-
plings, we are now in a position to give a heuristic deriva-
tion of our main results. Heat enters the system via Joule
heating and ultimately leaves through a transverse heat
flow maintained by a transverse variation in tempera-
ture. In the absence of scattering between electrons, this
energy must pass through the magnons: Joule heating
pumps energy into higher moments of the electron dis-
tribution. This is ultimately carried away by a trans-
verse heat flow maintained by a gradient in the symmet-
rical part of the electron distribution. Energy can only
pass into the symmetrical part of the distribution due to
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scattering via magnons. In leading approximation, the
magnons are raised to an effective temperature Teff(E)
determined by a balance between the Joule heating rate
and the rate at which the magnons at Teff(E) lose energy
to the electrons at T0 ∼ 0. Equating these two rates of
change of energy leads to a self-consistency equation for
Teff.

In the high-temperature limit, the scattering time τ ,
the transport scattering time τtr and the magnon energy
decay rate dξ/dt are related as follows:

1

τtr
∼ T 2/z

τ
,

dE
dt

∼ T 2

τ
.

Using these relations for a system whose thermal equilib-
rium resistivity scales as T α, we find

Joule Heating ∝ σE2 ∝ E2T−α
eff ,

Energy Relaxation ∝ T
2(1−1/z+α)
eff ,

dE
dt

= σE2. (3)

By equating these two rates leads we deduce that Teff ∝
Ez/(z(1+α)−1) and j ∝ E(z−1)/(z(1+α)−1). The following
sections will flesh out these ideas with particular refer-
ence to the Moriya-Hertz-Millis [4, 5, 6] model of the
critical ferromagnet.

Comparison with Mitra et al.: A recent work of Mitra et

al has considered the same system as studied here, but
in a different geometry. The results obtained in Ref.[15]
are different from ours because of this geometry. In order
to allay any confusion, it is worth spending a moment to
note the main distinction between our two works. Mitra
et al[15] consider an itinerant electron system with es-
sentially two-dimensional geometry and an electric field
applied in the third short direction. In this case, an elec-
tron traversing the sample from one lead to another does
not scatter appreciably from magnons— the electron dis-
tribution is determined to leading order by the distribu-
tions in the leads and may be written directly in terms of
them using a Keldysh formalism. Mitra et al present an
appealing derivation of this zeroth order distribution and
show, using a renormalization group analysis, that an ef-
fective temperature proportional to the applied voltage
results. In our case, by contrast, an electron traversing
the sample between the two leads scatters many times off
magnons and the electron distribution must be calculated
self-consistently from the start[16].

In the rest of this paper, we will spend some time flesh-
ing out the mathematical details of this general scheme.
We begin in the next section by reviewing the Boltzmann
approach to thermal equilibrium transport in quantum
critical metals.

BOLTZMANN APPROACH IN THERMAL

EQUILIBRIUM

We will use Boltzmann transport techniques to analyse
the out-of-equilibrium response of a quantum critical sys-
tem to an electric field. Although this approach is famil-
iar in other contexts, itinerant-electron quantum-critical
transport is usually analysed by other means. Therefore,
in this section, we will spend a little time summarising
quantum critical transport in thermal equilibrium and
how this may be described using a Boltzmann equation
approach. This exposition will also serve as a useful way
of defining the notation that we will use later in our anal-
ysis of the non-linear response.

Our first step will be to describe the thermal-
equilibrium magnon propagator. We follow this by writ-
ing down the electron Boltzmann equation and construct
its linear response solution. Finally, we quote a number
of relaxation rates that will useful in our non-equilibrium
analysis. The details of the calculation of these within
a Boltzmann framework is somewhat similar to that of
the relaxation rates due to phonon scattering. We sketch
these calculations in Appendix A.

Magnon Propagator

We work within the Moriya-Hertz-Millis [4, 5, 6] ap-
proach to itinerant electron quantum criticality. The
bosonic, magnetic critical modes — the magnons — are
treated separately from the electrons (although they are,
of course, made from electrons). The effects of scatter-
ing between the magnons and electrons are treated self-
consistently; the magnon dynamics being determined by
Landau damping and the electronic transport being de-
termined by scattering from the magnon fluctuations.

The first step in the Moriya-Hertz-Millis approach to
itinerant electron quantum criticality, is to determine
the critical properties of the magnons. These critical
properties are the combined result of the magnons’ self-
interaction and their overdamped dynamics due to Lan-
dau damping. The simplest way to do this is through the
self-consistent renormalization group[4]. Alternatively,
one may use a more rigorous application of the renormal-
ization group[5, 6] in order to obtain essentially the same
results. In either case, the critical magnon propagator
takes on the following form in the equilibrium quantum
critical state:

DR(q, ω) =

[

i
|ω|
Γq

+ q2 + r(T )

]
−1

, (4)

where Γq describes the Landau damping. Γq is propor-
tional to |q| in the ferromagnet and constant in an anti-
ferromagnet (or Γq = Γ|q|z−2 in general). The magnon
gap r(T ) takes on characteristic power-law forms in tem-
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perature in the quantum critical system;

r(T ) ∝ T
d+z−2

z , (5)

where d is the dimension and z is the dynamical exponent
(z = 3 in the ferromagnet and 2 in the antiferromagnet).
Through most of our subsequent analysis, we shall con-
centrate upon the situation in three dimensions. This is
readily extended to other dimensions. The overdamping
of magnons has important consequences. Unlike their
phonon counterparts, magnon excitations do not have a
well-defined energy for a particular wave-vector. This
does not have enormous consequences for a Boltzmann
analysis in thermal equilibrium, but it does necessitate
modification of the magnon Boltzmann equation when
we consider the out-of-equilibrium situation.

The Boltzmann Equation

The electronic Boltzmann equation for scattering from
an uncharged auxiliary mode may be written

[∂t + (eE/~) · ∂k] fk

= −
∫

dq

(2π)3
[γkqfk (1 − fq) − γqkfq (1 − fk)] .

(6)

The matrices γkq describe scattering from the auxiliary
modes— magnons in our case. Quite generally, for scat-
tering from auxiliary modes that have a thermal distribu-
tion, the scattering matrices satisfy the detailed balance
relationship

γkq = γqk exp[(ǫk − ǫq)/T ]. (7)

In the case of magnon scattering, the scattering matrices
take the form

γpq = |gq−p|2
[

[1 + n(ǫp − ǫq)] ρ(p − q, ǫp − ǫq)
+n(ǫq − ǫp)ρ(q − p, ǫq − ǫp)

]

(8)
where gq−p is the matrix element for electron-magnon
scattering and ρ(q, ω) is the magnon spectral function.
In antiferromagnets, the matrix element gq−p has signifi-
cant momentum dependence, with scattering hot spots
corresponding to resonance of the magnetic ordering
wave-vector with the Fermi surface. For simplicity, we
restrict our analysis to the case of ferromagnets or long
wavelength helimagnets where the momentum depen-
dence of gq−p is weak and can be neglected. The magnon
spectral function is given by

ρ(q, ω) = − 1

π
ImDR(q, ω) =

ω/Γq

(r + q2)2 + (ω/Γq)2
. (9)

It is determined by the magnon propagator given in
Eq. (4). It contains all of the information about how
dynamics is incorporated into the critical behaviour

through the relative scaling of frequency and momen-
tum: ω ∼ qz ∼ q2Γq. In what follows, it will prove very
useful to work with the general form of the Boltzmann
equation (6) rather than the form obtained after explicit
substitution of γpq.

Linear Response Solution of the Boltzmann

Equation

The generic notation of Eq. (6) allows us to construct
a formal linear response solution of the Boltzmann equa-
tion both in thermal equilibrium and, ultimately, out of
thermal equilibrium. In order to orient ourselves for the
latter more involved calculation, let us first construct the
conventional linear response solution with this general
notation. Identifying [9]

Mkq =
γqk

γk

1 − fk

1 − fq

γk =

∫

dq γkq

1 − fq

1 − fk

(10)

and adopting an Einstein convention with implied inte-
gration over the momentum q, but not k, we may write
the Boltzmann equation in the form

[∂t + (eE/~) · ∂k] fk = −γk[1 − M]kqfq(1 − fq). (11)

Let us consider an initial thermal distribution of electrons
and auxiliary modes at the same temperature. The devi-
ation in the electron distribution from its initial thermal
distribution, f0

k, in response to an electric field is given
by a solution of the linearised equation

(eE/~) · ∂k

[
f0

k + δfk

]
= −γk[1 − M]kqδfq, (12)

where an Einstein convention has again been adopted.
There are a couple of steps required in deriving this equa-
tion. Firstly, we have used the fact that the scatter-
ing integral is zero when the electrons and magnons are
in thermal distributions at the same temperature. One
must also allow for the dependence of [1−M]kq upon fq in
obtaining the first functional derivative of the scattering
integral.

A formal solution to the linearised Boltzmann equation
(12) is readily obtained. Expanding to linear order in the
electrical field we find

δfk = [1 − M]−1
kq

1

γq

E · ∂qfq. (13)

This result may be integrated to obtain the current that
flows in response to the application of the electric field;

j =

∫
dk

(2π)d
kδfk

=

∫
dk

(2π)3
dq

(2π)3
k[1 − M]−1

kq

1

γq

E · ∂qfq, (14)

where an explicit integral over k has been restored. In
the next section, we will turn to a consideration of the
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non-linear response of the electron-magnon system using
a very similar Boltzmann transport analysis. Before this,
we identify a number of different time-scales of relevance
to our problem and calculate them in the case of magnon
scattering.

A Compendium of Relaxation Rates

The electronic scattering integral is given by the right-
hand side of Eq. (6) or Eq.(12),

(
∂fq

∂t

)

Scatt

= −
∫

dp

(2π)3

[
γqpfq(1 − fp)

−γpqfp(1 − fq)

]

= −γq[1 − M]qpfp(1 − fp)

= −γq[1 − M]qpδfp, (15)

where γq and Mqp are given by Eq. (10). Integration
over p has been suppressed in the final two expressions,
which are drawn from Eqs. (11) and (12), respectively.

We may identify several different time-scales from this
scattering integral that will appear in our later study of
the non-equilibrium response;

1

τq

= γq =

∫
dp

(2π)3
γqp

1 − fp

1 − fq

,

1

τ tr
q

= γtr
q =

∫
dp

(2π)3
γqp

1 − fp

1 − fq

[

1 − q.p

q2

γtr
q

γtr
p

]

,

dE
dt

=
1

2

∫
dp

(2π)3
dq

(2π)3
(ǫq − ǫp)

[
γqpf0

q (1 − f0
p)

−γpqf0
p(1 − f0

q)

]

.

(16)

The first of these scattering rates is simply the inverse
time between collisions. The second is the transport scat-
tering rate. This has the usual additional geometrical
factor arising since large angle scattering has more ef-
fect upon transport than small angle scattering[17]. The
ratio γtr

q /γtr
p is conventionally set to 1 since we are in-

terested in the scattering of fermions near to the Fermi
surface. The final expression is the rate of flow of energy
from auxiliary modes at a temperature T (at which γpq is
evaluated) to electrons at temperature T0 (indicated by
the superscript 0 on the electron distribution functions).

In the high-temperature limit, these relaxation rates
have the following temperature dependence within the
Moriya-Hertz-Millis [4, 5, 6] theory in d dimensions:

1/τ ∝ T (d+z−3)/z,

1/τtr ∝ T (d+z−1)/z,

dE/dt ∝ T (d+3z−3)/z. (17)

Details of how to get these results from Eqs.(16) are given
in Appendix A. After these preliminaries, we are now in
a position to adapt our Boltzmann equation to describe
the out-of-equilibrium behaviour of our system.

NON-EQUILIBRIUM RESPONSE

In this section we will turn the machinery of Boltzmann
transport to the question of non-equilibrium behaviour in
the itinerant critical ferromagnet. As discussed earlier,
for a system to have an out-of-equilibrium steady state
under the application of an electric field, it must be cou-
pled to a heat sink that can dissipate the excess energy
generated by Joule heating. We must pay careful at-
tention to the various thermal couplings. The nature of
these bears repetition at this juncture.

As described in the introduction, we consider a long,
narrow sample in which the excess Joule heat is carried
away by a transverse heat current to a heat sink at the
edge. Heat entering the electrons via Joule heating passes
to the magnons and then back to the electrons via mu-
tual scattering and leaves the electrons via coupling to
a heat sink at the boundary. The magnons themselves
interact both with the electrons and with one another.
Electron-electron scattering is neglected in our analysis—
it is higher order in temperature and hence field — as is
coupling of magnons directly to the heat sink.

Our analysis is divided into three parts. We be-
gin by writing down the Boltzmann equations for the
electron-magnon system. These equations embody the
various thermal couplings and interactions in our sys-
tem. The only subtlety enters through the form of the
magnons’ Boltzmann equation: the overdamped nature
of the magnon excitations leads to a slightly more com-
plicated equation than the comparable case of phonon
scattering. In fact, the details of the magnon Boltzmann
equation will not have a huge effect upon our main result.
Next, we will present formal solutions for the electron and
magnon distribution functions. Our main results follow
from consideration of these solutions in the limit where
magnon-magnon scattering leads to a thermal distribu-
tion of magnons with temperature determined by the
electric field. We will end with an argument why cor-
rection to this thermal distribution of magnons do not
change the scaling of our results.

The Boltzmann Equation

The electron Boltzmann equation is given by a mini-
mal modification of the thermal equilibrium Boltzmann
equation (6):

[∂t + (eE/~) · ∂k + vk · ∇] fk

= I
em
k [f, n] + Scattering to heat sink

= −
∫

dq

(2π)3

[
γkqfk (1 − fq)

−γqkfq (1 − fk)

]

+ heat sink

(18)

where I
em
k [f, n] indicates the scattering integral for elec-

trons of momentum k scattering from magnons. The gra-
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dient term vk.∇ has been added to allow for the possibil-
ity of transverse heat flow. The electron-magnon scatter-
ing matrices now take a slightly modified form compared
with that in thermal equilibrium (8). Since the magnons
are overdamped and as a result do not have a definite
relationship between their energy and momentum, the
magnon distribution is a function of both energy and
momentum. Taking this into account, the scattering ma-
trices take the form

γpq = |gq−p|2
[

[1 + np−q(ǫp − ǫq)] ρ(p − q, ǫp − ǫq)
+nq−p(ǫq − ǫp)ρ(q − p, ǫq − ǫp)

]

.

(19)
The linearised expansion about the zero-field, base-
temperature distribution f0

q takes the form

(eE/~) · ∂k

[
f0

k + δfk

]

= −
∫

dq

(2π)3

[
γkqfk (1 − fq)

−γqkfq (1 − fk)

]

−γk[1 − M]kqδfq + heat sink (20)

where γk and Mkq take a slightly modified form out of
equilibrium given by

γk =

∫
dq

(2π)3
[
γkq

(
1 − f0

q

)
+ γqkf0

q

]

γkMkq = γkqf0
k + γqk

(
1 − f0

k

)
. (21)

These reduce to our previous expressions for γk and Mkq

in thermal equilibrium (10). The simplified forms given
by (10) can be obtained by making use of the detailed bal-
ance condition, which is not satisfied out of equilibrium.
A couple of points are worth making about Eq.(20).
Firstly, there is a zeroth order term on the right-hand
side. This term is not present in thermal equilibrium
(it is zero upon applying the detailed balance condition).
This term has a different symmetry in momentum space
than the first order term in δf and we will use this in our
analysis shortly.

The added complication due to the magnons being
overdamped is compounded when we come to write down
the magnon Boltzmann equation in a moment. Luckily,
this does not affect the bulk of our calculation. We will
use the formal notation I

em
k [f, n] through as much of our

analysis as possible in order to keep algebra to a mini-
mum. When we eventually substitute the particular form
of the scattering integrals near to the end of the calcu-
lation, we will find that most of the integration of these
scattering integrals carries over directly from the thermal
equilibrium calculation.

The Magnon Boltzmann Equation takes the form

∂tnk(ǫ) = I
me
k [f, n] + I

mm
k [n]

=

∫
dp

(2π)3
dq

(2π)3
|gk|2

[
−nk(ǫ)fp(1 − fq)

+[1 + nk(ǫ)](1 − fp)fq

]

δ(ǫ + ǫp − ǫq)δ(p − q + k)

+λ

∫

dǫ1dǫ2dǫ3
dp1

(2π)3
dp2

(2π)3
dp3

(2π)3
ρ(ǫ1, p1)ρ(ǫ2, p2)ρ(ǫ3, p3)

×
[
−nk(ǫ)np1(ǫ1)[1 + np2(ǫ2)][1 + np3(ǫ3)]

+[1 + nk(ǫ)][1 + np1(ǫ1)]np2(ǫ2)np3(ǫ3)

]

δ(k + p1 − p2 − p3)δ(ǫ + ǫ1 − ǫ2 − ǫ3).

(22)

The easiest way to see the origins of the various terms
in this equation is to momentarily treat the magnons as
if they had a definite relationship between energy and
momentum. In this case, the magnon spectral function
becomes a delta-function and the scattering integrals re-
duce to the same form as those for electron-phonon scat-
tering. As for the electron Boltzmann equation, we will
carry out as much of our analysis as possible using the
formal expressions I

me
k [f, n] and I

mm
k [n] for the magnon-

electron and magnon-magnon scattering integrals.

Solving the Boltzmann Equations

Our analysis of the Boltzmann equations (18) and (22)
derived above proceeds as follows: We begin by divid-
ing the electron distribution function into two parts— a
spherically symmetric part and a non-symmetric part.
The magnon Boltzmann equation is divided similarly.
After this division, the resulting Boltzmann equations
have simple interpretations. The equation for the sym-
metric part of the distribution function describes the bal-
ance between the transverse heat flow and the flow of
energy out of the magnons into the symmetric part of
the electron distribution. The equation for the remain-
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ing part describes a balance between the flow of energy
from the electrons into the magnons and the Joule heat-
ing rate. In order to obtain useful results from these
equations, we will go to a limit where the magnon distri-
bution is assumed to be thermalised at some temperature
Teff(E). The final step in our analysis will be to show that
corrections to the thermal distribution of magnons do not
change the way in which the current response scales with
field.

Expanding the Boltzmann Equation:
The electron distribution function is divided into its sym-
metric part f0 (assumed to be a Fermi distribution at a
low base temperature that varies slowly across the sam-
ple) and the remainder δf . With this notation and after
expanding to linear order in δf , the Boltzmann equations
may be written in the form

vq · ∇f0
q =

[
I
em
q [f0, n]

]S
, (23)

E · ∂q

(
f0

q + δfq

)
=

[
I
em
q [f0, n]

]A
+

δIem
q

δfk

δfk, (24)

0 = I
me
k,ǫ [f

0, n] +
δIme

k,ǫ

δfq

δfq + I
mm
k,ǫ [n].

(25)

We have adopted an Einstein convention where terms like

(δIem
q /δfk)δfk are implicitly integrated over k. The su-

perscripts S and A refer to symmetric and non-symmetric
parts of the scattering integrals in q. We have allowed for
a transverse gradient in f0 which supports a transverse
heat flow.

One might question how, given the fact that we are
interested in the non-linear response, we can use a lin-
ear analysis in δf . In a linear-response, relaxation-time
approximation, the Fermi surface is effectively shifted a
distance τtreE/~ in momentum space. Provided this is
much less than the Fermi wavevector (τtreE/~ ≪ kF) a
linear response analysis may be applied. In the present
case, it turns out that the transport relaxation time, τtr,
self-consistently becomes a power of E so that the resul-
tant current is non-linear in E.

Heat flows

The physical content of the equations (23), (24) and (25)
is most readily appreciated by considering the energy
transfers that they represent. In the case of (23) and
(24) we multiply by the electron energy ǫq and integrate
over q. In the case of (25), we multiply by the magnon
energy ǫ and the spectral density ρ(k, ǫ) and integrate
over k and ǫ. After doing this, Eqs.(23-25) reduce to

0 =

∫
dq

(2π)3
ǫq

[

vq · ∇f0
q −

[
I
em
q [f0, n]

]S
]

, (26)

0 =

∫
dq

(2π)3
ǫq

[

E · ∂q

(
f0

q + δfq

)
−

[
I
em
q [f0, n]

]A −
δIem

q

δfk

[f0, n]δfk

]

, (27)

0 =

∫
dk

(2π)3
dǫρ(ǫ, k)ǫ

[

I
me
k,ǫ [f

0, n] +
δIme

k,ǫ

δfq

[f0, n]δfq + I
mm
k,ǫ [n]

]

. (28)

Eq.(26) may be interpreted as a balance between the
transverse heat flow — described by the first term on the
right-hand side — and the energy flowing into the sym-
metrical part of the electron distribution — described by
the second term on the right hand side. The flow of heat
into the heat sink has been treated as a boundary condi-
tion in writing down this equation. Solving this equation
leads to the explicit limit on the sample width discussed
in the introduction and worked out in detail in Ref.[18].
We will not concentrate upon it further here.

Eq.(27) can be interpreted as a balance between Joule
heating — described by the first term on the right-hand-
side — and the rate at which energy flows from the non-
symmetrical part of the electron distribution into the
magnons — described by the second and third terms.
To see this requires a little manipulation. The first term

may be written explicitly as Joule heating after integrat-
ing by parts with respect to q.

Eq.(28) corresponds to a balance between the rate at
which energy flows into the magnons from the symmet-
rical and non-symmetrical parts of the electron distribu-
tion — described by the first and second terms respec-
tively. The net flow of energy into the magnons from the
electrons is zero in a steady state, if we neglect heat flow
directly from the magnons to the heat sink. The latter
process is ignored since it is much slower than magnon-
electron scattering. The third term is identically zero,
since magnon-magnon scattering conserves energy. This
fact is extremely useful. By considering this integrated
equation, one can avoid having to deal explicitly with the
magnon-magnon scattering integral.

We can transform this final equation into a more useful
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form by using the fact that electron-magnon scattering is energy conserving. This implies that

∫
dq

(2π)3
ǫqI

em
q [f0, n] =

∫
dk

(2π)3
dǫ ǫρ(ǫ, k)Ime

k,ǫ [f
0, n]

∫
dq

(2π)3
ǫq

δIem
q [f0, n]

δfk

δfk =

∫
dk

(2π)3
dǫ ǫρ(ǫ, k)

δIme
k,ǫ [f

0, n]

δfq

δfq

i.e the energy entering the electrons from the magnons
is equal to the energy entering the magnons from the
electrons. Using these results reduces Eq.(28) to the form

0 =

∫
dq

(2π)3
ǫq

[

I
em
q [f0, n] +

δIem
q [f0, n]

δfk

δfk

]

. (29)

To make further progress, we must solve the Boltzmann
equations explicitly. We will do this to leading order
through an approximation that the magnon distribution
is thermal. We will then argue that corrections to this
do not alter the scaling.

Thermal Magnon Approximation

Our leading approximation is to assume a thermal distri-
bution of magnons, nk(ǫ) = n0(ǫ) = (eǫ/Teff−1)−1, where
the effective temperature is to be determined shortly. In
this case, the linearised Boltzmann equations (23), (24)
and (25) reduce to

vq · ∇f0
q = I

em
q [f0, n0], (30)

E · ∂q

(
f0

q + δfq

)
=

δIem
q [f0, n0]

δfk

δfk, (31)

0 = I
me
k,ǫ [f

0, n0] +
δIme

k,ǫ [f
0, n0]

δfq

δfq. (32)

We have used the fact that the magnon-magnon scat-
tering is identically zero for a thermal distribution of
magnons. The second equation may be formally solved
for δf to obtain,

δfq =

[

1 −
(

δIem

δf

)
−1

E.∂q

]
−1 (

δIem

δf

)
−1

E.∂qf0,

(33)
where we have suppressed momentum labels and inte-
grals over momentum for brevity. Expressions such as
(δIem/δf)

−1
are to be understood as matrix inverses with

appropriate integrations over momentum in their prod-
ucts. In order to determine the effective temperature, we
substitute this solution for δf into the energy-integrated
form of Eq.(28) or (31) given by Eq.(29) and expand to

leading order in E. The result of this substitution is

0 =

∫
dq

(2π)3
ǫq

[

I
em
q + E · ∂q

[(
δIem

δf

)
−1

E · ∂qδf

]]

.

(34)
Integrating the second term by parts reduces it to the
form

0 =

∫
dq

(2π)3
ǫq

[

I
em
q − 1

3
E2vq ·

(
δIem

δf

)
−1

∂qδf

]

. (35)

The second term is now explicitly the leading order con-
tribution to the Joule heating rate. This is balanced
against the first term which describes the decay of en-
ergy from a thermal distribution of magnons at tempera-
ture Teff(E). Since both the electron and magnon distri-
butions involved in the expressions are thermal distribu-
tions — at T = 0 and T = Teff(E) respectively — we may
evaluate Eq.(35) using the results of Section 3. Writing
Eq.(35) in terms of the scattering matrices of Section 3,
it can be reduced to

∫
dq

(2π)3
ǫqγq[1 − M]qpfp(T0) (1 − fp(T0)) ,

=

∫
dq

(2π)3
ǫqγq[1 − M ]qpδfp. (36)

Substituting for δf to leading order in E from Eq. (31)
into Eq. (36), we obtain

∫
dq

(2π)3
ǫq.∂q

[
[1 − M]−1

qpγ−1
p E.∂qfq(T0)

]

︸ ︷︷ ︸

Joule Heating

=

∫
dq

(2π)3
ǫqγq[1 − M]qpfp(T0) [1 − fp(T0)]

︸ ︷︷ ︸

Energy decay from Teffto T0

(37)

This equation may be written in the form dE/dt ∝ E2τtr

as before in Eq,(3). Since the magnon distribution is
thermal at temperature Teff, using the temperature scal-
ing of the various relaxation rates given in Eq.(17), we
find

Teff ∝ Ez/(d+2z−2)
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in the high-field/temperature limit and d dimensions, im-
plying a non-linear current

j ∝ E(z−1)/(d+2z−2)

as suggested in Section 1.

Corrections to Thermal Magnon Approximation

Corrections to a thermal distribution of magnons may
be rather large, since in the absence of the electric field
the magnons are essentially in a zero-temperature distri-
bution. We argue, nevertheless, that corrections to the
thermal distribution of magnons considered above do not
change the scaling of current response. The analysis is
similar to the calculation of phonon drag in thermal equi-
librium (which similarly does not change the scaling with
temperature).

We expand the magnon distribution to linear order
about the effective thermal distribution; n = n0 + δn.
Substituting into the Boltzmann Eqs.(23,24) and (25),
we obtain

vq · ∇f0
q = I

em
q [f0, n0] +

δIem
q [f0, n0]

δnk,ǫ
δnS

k,ǫ, (38)

E · ∂q

(
f0

q + δfq

)
=

δIem
q [f0, n0]

δfk

δfk +
δIem

q [f0, n0]

δnk,ǫ
δnA

k,ǫ,

(39)

0 = I
me
k,ǫ[f

0, n0] +
δIme

k,ǫ[f
0, n0]

δfq

δfq (40)

+
δIme

k,ǫ[f
0, n0]

δnq,ξ
δnS

q,ξ +
δImm

k,ǫ [n0]

δnq,ξ
δnq,ξ.

(41)

In Eqs.(38) and (39), δn has been divided into symmetric
and non-symmetric parts δnS and δnA. These contribute
to the equations for the symmetric and non-symmetric
parts of the electron distribution respectively. Eq.(41)
can be solved formally for δn with the result

δn = −
(

δIme

δn
+

δImm

δn

)
−1

I
me

︸ ︷︷ ︸

δnS

(42)

−
(

δIme

δn
+

δImm

δn

)
−1

δIme

δf
δf

︸ ︷︷ ︸

δnA

(43)

We have identified the spherically symmetric and non-
symmetric parts of δn. Substituting this back into

Eq.(38) and (39) one obtains

vq · ∇f0
q = I

em
q [f0, n0]

−
δIem

q

δn

(
δIme

δn
+

δImm

δn

)
−1

I
me (44)

E · ∂q

(
f0

q + δfq

)
=

δIem
q [f0, n0]

δfk

δfk

−
δIem

q

δnk,ǫ

(
δIme

δn
+

δImm

δn

)
−1

δIme

δf
︸ ︷︷ ︸

δIeme

δf

δf

(45)

In the second of these equations, we have adopted the no-
tation of Lifshitz-Pitaevskii[19] identifying this as a term
describing a magnon-mediated electron-electron interac-
tion. The argument that magnon drag does not affect
scaling is completed by showing that δIeme/δf scales with
at least as high a power of T as δIem/δf . This requires us
to go beyond the generic form of the scattering integrals
to use their explicit expressions for magnon-electron scat-
tering given in the Boltzmann equations (18) and (22).
We ignore the magnon-magnon scattering (it is higher
order in T —and hence E— than the magnon-electron
scattering) we may write

δIeme

δf
= −

δIem
q

δnk,ǫ

(
δIme

δn
+

δImm

δn

)
−1

δIme

δf
. (46)

Taking the explicit form of the scattering integrals, the
various functional derivatives may be written as

δIem
q

δnk,ǫ
= −|g|2ρ(k, ǫ)

[
(fq − fk−q)δ(ǫ − ǫq + ǫk−q)

+(fq − fk+q)δ(ǫ − ǫq+k + ǫq)

]

δIme
k,ǫ

δnl,ν
= |g|2δ(l − k)δ(ν − ǫ)

×
∫

dp

(2π)3
(fp+k − fp)δ(ǫ + ǫp − ǫp+k)

δIme
kǫ

δfl

= |g|2
[
−(nkǫ + fl+k)δ(ǫ + ǫl − ǫl+k)

+(1 + nkǫ − fl−k)δ(ǫ + ǫl−k − ǫl)

]

Substituting these equations back into Eq.(46) shows
that the corrections due to magnon drag lead to con-
tributions to the electron scattering integral that are at
least of the same order in temperature as the direct con-
tribution.

CONCLUSIONS AND PROSPECTS

We have considered non-linear transport near to an
itinerant electron quantum critical point. Since the dy-
namics near to a quantum critical point are universal,
and since steady-state, out-of-equilibrium distributions
are determined by dynamics, we have argued that the
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universality present near to an equilibrium quantum crit-
ical point may be reflected in the out-of-equilibrium be-
haviour.

There are two ways in which a quantum critical itiner-
ant electron system may be driven out of equilibrium by
an electric field. At the highest fields, the rate of Joule
heating overwhelms the rate at which heat may be trans-
ported out of the system by thermal conduction and the
system heats up until the two balance. This mechanism
leads to non-linear response in truly bulk samples. We
have considered non-linear response in a restricted ge-
ometry where we anticipate that conductivity becomes
non-linear at a lower field governed by the rate at which
energy can scatter between electrons and magnons. The
resulting conductivity is expected to be independent of
sample size and geometry (provided that certain con-
straints are satisfied). At the lowest fields, the response
will return to the linear, thermal equilibrium response.

The existence of the intermediate range of non-
linearity requires restrictions upon the sample width so
that thermal conduction can be maintained at a sufficient
rate to transport away heat generated by Joule heating.
The sample width must nevertheless be sufficient that the
magnons demonstrate their bulk behaviour- i.e it must
be larger than the magnon correlation length. Because
of the rather different scaling of transport and thermal
relaxation lengths with temperature (and hence field),
there is a large window of fields within which the type of
non-linearity that we investigate should exist.

What are the prospects for seeing these effects exper-
imentally? We have described a particular experimental
geometry in which the heat current is transverse to the
electrical current. This enabled the algebra to be readily
negotiated. In order to see these effects experimentally,
we suggest a slightly different geometry [22]. One pos-
sibility is the following: take a bow tie shaped sample
with current injected and removed along opposite wings
of the bow tie. A current sent through this sample should
demonstrate a non-linear steady-state of the type that
we have described. The constriction at the centre of the
bow tie will have enhanced field and current densities
and will operate in a non-linear regime. The injection
of current along the extended edge of the bow tie will
reduce contact heating; performing the experiment in a
pulsed manner will further mitigate these effects. The
large heat capacity of the wings of the bow tie compared
to the constriction will allow a relatively long pulse time
before heat effects become significant; the wings will ef-
fectively act as a low-temperature heat sink. A sketch of
this arrangement is shown in Fig. 1.

It remains to estimate what field strengths give rise
to the non-linear effects that we anticipate. For a typical
quantum-critical itinerant magnet (e.g. Sr3Ru2O7, which
has n = 2 × 1027 m−3, σ = 108 Ω−1m−1) and typical
cryogenic temperatures of around 100 mK, the electric
field required to observe these non-linear effects is of the

FIG. 1: Schematic diagram of proposed experimental

system: i. Current enters and leaves the bow tie shaped
sample along the edges of the wings, reducing contact heating.
ii. Enhanced field and current density in the constriction leads
to non-linear response in this regime. iii. The extended wings
act as a low-temperature heat sink.

order

E =
kBT

evFτ
≈ 50 Vm−1

(We have used the Drude formula σ = ne2τ/m and n =
4πk3

F/3) or a voltage drop of 0.25 V over a typical sample
length of 5 mm.

In conclusion, the universal power-law scaling of con-
ductivity near to an itinerant, magnetic, quantum criti-
cal point is reflected in a universal power law scaling with
electric field in the non-linear conductivity regime. This
provides a new way to investigate the consistency be-
tween theoretically predicted power-laws and those seen
experimentally.
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APPENDIX A

In this appendix, we outline the evaluation of the scat-
tering rates given in Eq.(16). The details of the calcula-
tion is somewhat similar to that of the same relaxation
rate due to phonon scattering. Because of this similar-
ity, our analysis follows quite closely — and makes ex-
plicit reference to — the calculation of electron-phonon
relaxation rates presented in Chapter 8 of the textbook
of Mahan[23]. We shall carry out the calculations in d-
dimensions, where d = 2 or 3 in the physical system.

Our first task is to make a few manipulations of the
energy relaxation rate to put it in a simplified form. The
first step involves using the detailed balance relation ex-
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pressed in the form

γpq = γqp

fT
q (1 − fT

p )

fT
p (1 − fT

q )
= γqp

nT (∆ǫq)

nT (∆ǫq) + 1
,

where nT (∆ǫq) is the Bose distribution at temperature T
and ∆ǫq = ǫq − ǫp. The next step is to integrate over |q|
assuming that the |q|-dependence of terms other than
the Fermi-distribution functions is small and also that
the density of electronic states is constant at the Fermi
surface. In so doing, we encounter two integrals

I1(ω) =

∫

dǫf(ǫ)(1 − f(ǫ − ω)) = ωn(ω),

I2(ω) =

∫

dǫf(ǫ − ω)(1 − f(ǫ)) = ω(n0(ω) + 1).

After these manipulations, the energy relaxation may be
expressed as

dE
dt

=
1

2

∫
ddpddq̂

(2π)2d
ρF

γqp∆ǫ2q
nT (∆ǫq) + 1

[
n0(∆ǫq) − nT (∆ǫq)

]
,

where ρF is the electronic density of states at the Fermi
surface and the remaining integral over q is just angular;
functions of q are to be interpreted as having |q| equal
to the Fermi wavevector. The superscripts 0 and T on
the Bose-distribution function indicate that they are at
the base temperature or the elevated temperature, T ,
respectively. Notice that this is automatically zero when
T 0 = T .

In the limit T 0 → 0, we may neglect n0(∆ǫq). Also,
in the limit where ∆ǫq ≪ T , we may write the energy
relaxation in the same form as the other relaxation rates
using nT (∆ǫq)/(nT (∆ǫq)+1) ≃ (1−fT

p )/(1−fT
q ). As all

the terms in our scattering rates are now at the elevated
temperature T , we will from now on omit this superscript
for clarity.

So far, we have reduced our scattering rates to the
forms

1

τq

= γq =

∫
ddp

(2π)d
γqp

1 − fp

1 − fq

,

1

τ tr
q

= γtr
q =

∫
ddp

(2π)d
γqp

1 − fp

1 − fq

[

1 − q.p

q2

γtr
q

γtr
p

]

,

dE
dt

= −1

2

∫
ddp

(2π)d

ddq̂

(2π)d
ρF∆ǫ2qγqp

1 − fp

1 − fq

. (47)

In the present case, we are interested in scattering from
critical magnons. γpq then takes the form given by
Eq. (8). In order to calculate the various relaxation rates
explicitly, it is useful to introduce a generalization of the
McMillan function. In the discussion of electron-phonon
scattering, this takes the form[23]

α2F (E, ω) =
~

2π

∫
ddq

(2π)d
|gq|2δ(ω − ωq)δ(E − ǫk+q),

(48)
where ωq is the frequency of a phonon with momentum
q and ǫp is the energy of an electron with momentum p.
The generalisation of this to scattering from overdamped
modes is given by

α2F (E, ω) =
~

2π

∫
ddq

(2π)d
|gq|2ρ(q, ω)δ(E − ǫk+q), (49)

where ρ(q, ω) = ImDR(q, ω) is the magnon spectral
function. The analogous McMillan function for trans-
port is given by

α2
t F (E, ω) = − ~

2π

∫
ddq

(2π)d
|gq|2

q.k

k2
ρ(q, ω)δ(E − ǫk+q).

(50)
The additional angular factors weight scattering at dif-
ferent angles in the usual way. Eqs. (49,50) are the gen-
eralisations of Eqs.(8.145,8.146) in Ref.[23].

With this identification, expressions for the various
scattering integrals may be obtained in the limit ∆ǫq ≪
T as follows (see for example Section 8.3.1 of Ref.[23] —
we use (1 − fp)/(1 − fq) ≈ n(∆ǫq)):
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1

τk

= 2
2π

~

∫
∞

0

dωn(ω)α2F (ǫk, ω) = 2

∫
∞

0

dω
ddq

(2π)d
|gq|2n(ω)ρ(q, ω)δ(ǫk+q − ǫk), (51)

1

τ tr
k

= 2
2π

~

∫
∞

0

dωn(ω)α2
t F (ǫk, ω) = −2

∫
∞

0

dω
ddq

(2π)d
|gq|2n(ω)

q.k

k2
ρ(q, ω)δ(ǫk+q − ǫk), (52)

dE
dt

= 4π~
2ρF

∫
∞

0

dωn(ω)ω2α2F (ǫk, ω) = 2~
3ρF

∫
∞

0

dω
ddq

(2π)d
|gq|2n(ω)ω2ρ(q, ω)δ(ǫk+q − ǫk). (53)

These integrals may be simplified by first linearising the
electron energy near to the Fermi surface; ǫk+q − ǫk ≈
vk.q = vF cos θ|q|, where vk is the Fermi velocity and θ
is the angle between k and q. Assuming that the matrix
element does not have a significant angular dependence—
an assumption that is only true for ferromagnets; anti-
ferromagnets have hot lines of scattering on the Fermi
surface where electron states are related by the order-
ing wave-vector that lead to complications in this latter
case[24]— the angular integrals over q may then be car-
ried out. One then obtains

1

τk

=
2g2

(2π)2vF

∫
∞

0

dωn(ω)

×
∫ T/vF

d|q||q|d−2ρ(q, ω)

1

τ tr
k

=
2g2

(2π)2vF

1

2k2
F

∫
∞

0

dωn(ω)

×
∫ T/vF

d|q||q|dρ(q, ω)

dE
dt

= ~
3ρF

2g2

(2π)2vF

∫
∞

0

dωn(ω)ω2

×
∫ T/vF

d|q||q|d−2ρ(q, ω)

(54)

The momentum integral has acquired an explicit cut-off
at T/vF after linearising the electron energy at the Fermi
surface. The remaining integrals may be calculated after
explicit substitution of the magnon spectral function.

We will evaluate these expressions in both high- and
low-temperature limits. Which of these limits one is in
is determined by a comparison of r(T ) with the typical
value of |q|2. The former varies with temperature accord-

ing to r(T ) ∼ T
d+z−2

z and the latter as T 2. In the low-
temperature limit, r ≫ q2 and in the high-temperature
limit r ≪ q2. In both cases, we consider temperatures
much less than the Fermi energy, T ≪ ǫF.

Carrying out the integrals in the low-temperature limit,

we find

1

τk

=
2g2

(2π)2vF

∫
∞

0

dω n(ω)

∫ T
vF

0

d|q||q|d−2ρ(q, ω)

∼
∫ T

vF

0

d|q||q|d−2

∫
∞

0

dω n(ω)
ω/Γq

r2 + (ω/Γq)2

∼
∫ T

vF

0

d|q||q|d−2Γq

∫
∞

0

dω

rΓq

n(ω)
ω/Γq

1 + (ω/rΓq)2

∼
∫ T

vF

0

d|q||q|d−2Γq

∫
∞

0

du n(urΓq)
u

1 + u2

∼ T

r(T )

∫ T
vF

0

d|q||q|d−2

∫
∞

0

du
1

1 + u2

∼ T d

r(T )
,

where we have used the fact that r ≫ q2 at low tem-
peratures. The frequency integral is dominated by the
region where ω is up to order r(T )Γq. For q ∼ T , at
these frequencies ω/T ∼ Γr(T )T z−3 ≪ 1 and the Bose
distribution can be approximated by its low-frequency
limit n(x) ∼ T/x. As a final consistency check, we need
to make sure that the dominant momentum q is of the
order of T as indeed it is.

A similar evaluation of the transport scattering rate
yields the result

1

τ tr
k

∼ T d+2

r(T )
. (55)
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The energy relaxation is given by

dE
dt

= ~
3ρF

2g2

(2π)2vF

∫
∞

0

dω ω2n(ω)

∫ T
vF

0

d|q||q|d−2ρ(q, ω)

∼
∫ T

vF

0

d|q||q|d−2

∫
∞

0

dω ω2n(ω)
ω/Γq

r2 + (ω/Γq)2

∼ rT

∫ T
vF

0

d|q||q|d−2Γ2
q

∫ T/rΓq

0

du
u2

1 + u2

∼ rT

∫ T
vF

0

d|q||q|d−2Γ2
q

[
T

rΓq

− π

2

]

∼ T 2

∫ T
vF

0

d|q||q|d−2Γq

∼ T 2

∫ T
vF

0

d|q||q|d+z−4

∼ T d+z−1. (56)

Carrying out the same integrations in the high-

temperature limit, we find

1

τk

=
2g2

(2π)2vF

∫
∞

0

dωn(ω)

∫ T
vF

0

d|q||q|d−2ρ(q, ω)

∼
∫

∞

0

dωn(ω)

∫ T
vF

0

d|q||q|d−2 ω/Γ|q|z−2

q4 + (ω/Γ|q|z−2)2

∼
∫

∞

0

dωn(ω)

∫ T
vF

0

d|q||q|d+z−4 ω

Γ2q2z + ω2

∼
∫

∞

0

dω
n(ω)

ω

∫ T
vF

0

d|q| |q|d+z−4

Γ2q2z/ω2 + 1

∼
∫

∞

0

dωn(ω)ω
d−3

z

∫ T
vF

( Γ
ω )

1/z

0

du
ud+z−4

u2z + 1

∼ T
d+z−3

z

∫
∞

0

dv n(vT )v
d−3

z

∫
∞

0

du
ud+z−4

u2z + 1

∼ T
d+z−3

z (57)

In carrying out these manipulations we have used the fact

that T
vF

(
Γ
ω

)1/z → ∞ at high temperatures, which is con-
sistent since the dominant contribution to the frequency
integral comes from ω ∼ T . We have rescaled the mo-
mentum and frequency integrals and then and used the
explicit substitution Γq = Γ|q|z−2. A similar evaluation
of the transport scattering rate yields

1

τ tr
k

∼ T
d+z−1

z , (58)

i.e. it carries an extra factor of q2 ∼ T 2/z compared with
the scattering rate. Finally, the energy relaxation rate is

given by

dE
dt

= ~
3ρF

2g2

(2π)2vF

∫
∞

0

dω n(ω)ω2

×
∫ T

vF

0

d|q||q|d−2ρ(q, ω)

∼
∫

∞

0

dωn(ω)ω2

∫ T
vF

0

d|q||q|d+z−4 ω

Γ2q2z + ω2

∼
∫

∞

0

dωn(ω)ω

∫ T
vF

0

d|q| |q|d+z−4

Γ2q2z/ω2 + 1

∼
∫

∞

0

dωn(ω)ω
d+2z−3

z

∫ T
vF

( Γ
ω )1/z

0

du
ud+z−4

u2z + 1

∼ T
d+3z−3

z

∫
∞

0

dv n(vT )v
d+2z−3

z

∫
∞

0

du
ud+z−4

u2z + 1

∼ T
d+3z−3

z (59)
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