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Abstract—The displaced charge Ap at distance r from a localized perturbation V in an inhomogeneous degenerate
electron gas may be written in a lincar response framework as

Ap(n) = f V(O)F(rr) dr.

The response function F is expressed in terms of the Green function of the unperturbed system and attention is
then focussed on two cases:

(i) A perfect periodic metal crystal, perturbed by V.

(i) A metal lattice with a surface in which V is embedded.

A full discussion is given of the influence of Fermi surface topology on the anisotropy of Ap in the asymptotic
region far from the defect. Provided V(r) has certain reasonable properties, it is shown that Ap ~ r™*x oscillatory
function. For the bulk metal, # can take values between 1 and § in different directions for Fermi surfaces with
particular topologies. Possible experiments which bear on this anisotropy are briefly referred to. For a planar
surface, the displaced charge is shorter range for V embedded in the surface than for the bulk metal, in most, but

not all cases. For a closed Fermi surface with non-zero curvature, n = 5 for the parallel configuration.

1. BACKGROUND
The purpose of this paper is to consider the asymptotic
form of the displaced electron density Ap{r) say, at
distance r relative to a localised perturbation V(r). Spe-
cial cases of this are well known, ¢.g. in a uniform Fermi
gas, around a test charge, Ap falls off as

_Acos 2k;r

Ap (L.1)

the so-called Friedel oscillations having wavelength a/k,,
k; being the Fermi momentum.

In the general case of a small perturbation V" embed-
ded in an inhomogeneous electron gas we can write the
displaced charge in a linear response framework as

Ap(r) = f V(F)F(@r)dr. (1.2)

The response function F can be expressed in terms of
the Green function of the unperturbed problem as

F=i f dEG(r E)G(rrE) (13)

which can be obtained, ¢.g. by performing an energy
integration on the result given by Stoddart et al[l).

Here, for E less than the Fermi energy E,, G is the
outgoing Green function, while for E > E;, we take the
incoming wave form (see eqns 2.1 and 2.2 below).

At this stage, we note that there are several situations
arising in which the Friedel oscillations play a role:

(i) In determining clectric field gradients induced by
charged impurities in metals, as observed by nuclear
magnetic resonance experiments.

(ii) In calculating the interaction between a pair of
charged defects, say an impurity-vacancy complex, in a
metal.

(ii) In affecting the long-range form of the effective
interionic pair potential in solid and liquid metals.

Recently, Flores ef al.[2] and Lau and Kohn [3] have
studied the interaction between a pair of charged species
placed parallel to a planar metal surface and within the
spill-out electron density from the metal. Both these
investigations lead to a form for the paraliel configura-
tion in which the interaction energy falls off like
cos2k,rir’; that is the interaction has a much shorter
range than that given by (1.1) in the bulk metal
Reference should also be made to Einstein[4] for some
comments on the limits of validity of this form
r~* cos 2k,r; this point will be touched on again in the
discussion below. We must also refer here to the
early work of Grimley et al[5,6] on the oscil-

.latory interaction between adsorbed atoms on a metal
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surface. Another highly relevant study in the present
context is that by Rudnick[7] on the static density res-
ponse at a metal surface.

Though some discussion has been given of the form of
the displaced charge in the presence of a more complex
Fermi surface topology[8), there does not appear to be a
very general treatment in the literature. Our object here
is to supply this, treating both bulk metals, and metals
with planar surfaces.

It will be convenient to start out from the case of the
perfect periodic metal in Section 2 below. After discuss-
ing this case fully, we then turn in Section 3 to treat the
metal with a surface, constructing the Green function
required from the lattice Green function by appealing to
image theory. We stress that throughout we work within
the linear response framework afforded by eqns (1.2) and
(1.3).

2. LOCALISED PERTURBATION IN PERIODIC METAL CRYSTAL

Koster[9] has discussed the Green function in a per-
fect lattice and we shall utilise his results below.
However, before doing so, let us summarise how the
result (1.1) follows using the free-electron Green func-
tion in (1.3), at large distances from the localised pertur-
bation. In this plane wave case we have

G“‘(rrs)=°""(r‘f'r,|' D E-ze @

and

22

G™(rr'E) = e"_P(I_rLk.lrE[_ﬂ

The response function F(rr') given by eqn (1.3) then
takes the form

X
(-]

; Elk)

Fig. 1. Shows vector r—r and stationary phase point k; on

constant energy surface E(k). Point 0 is the centre of the

Brillouin zone. The plane perpendicular to r— r’ and tangential to
the constant energy surface is also shown.

of the surface. We note that

k=[S

is the curvature at k, which is assumed here to be
non-zero. Actually, the Green function whose asymptotic
form we seek differs from (2.4) in that, in the numerator,
Bloch waves #a(r) = in(r) exp (ik - r) replace the plane
waves, where uy(r) is periodic with the period of the
lattice. Using the reciprocal lattice vectors G one can
therefore write the Fourier series

udr) = ; Vaea exp(iG - 1)

3*E(ko) a’E(ko)]"’

e 2.5)

(2.6)

where vy.c is the momentum eigenfunction. The desired
modification to the asymptotic form (2.4) is then

G E) = 417 exp {iko- (r— 1?}“ r)u!,(r) @7

Forming the response function from eqn (1.3), one obtains
at the Fermi surface, where ko becomes ko,

Fr)~ [exp {2iko; - (r = r)}utss(r)ug

(r)+exp{- 2iko
[r-rFK

(r— r’)}u H (r)] 28)

Far)~ ‘.I X exg (2ikR) dk +i “k exp( 21kR)
o

o gy

where R=|r-r|.

2.1 General Fermi surface
We next consider the response function for a general
Fermi surface. Then Koster[9] has shown that

Ecxp{ik‘(r—r')}~_ 4n’ . _expliko-(r—r)}
¢ E-E®K fr—r] [a E(ko) 3 E(ko)]"’
okt ok
[} 2

2.4)

where ko is shown in Fig. 1 and is defined as a point of
stationary phase. The coordinates (k) and (k;) are
measured at ko along the principal directions in the plane

Two points are important here. The first is that the decay
at large distances is as Jr—r'|"® times an oscillatory
function. For the important case when r—r' is a direct
lattice vector, the reciprocal lattice vectors G do not
affect the wavelength, but only the amplitude. However,
if one was dealing with the displaced charge round an
impurity, or with the interaction between a pair of
defects, around which appreciable lattice relaxation
occurred, then one can expect that in a given direction
there will be wavelengths associated not only with ko,
but also with ko, + G where G is any reciprocal lattice
vector. Naturally the weight of the wavelength
associated with ko, + G will not only depend on the
extent of the relaxation of the lattice round the defect or
the defect complex, but also on the magnitude of the
momentum eigenfunction Vrq+c- It is to be expected
that, with an anisotropic Fermi surface, the wavelength
in the presence of relaxation will not be a pure cosine
form. Equation (2.8) shows also that the amplitude of the
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response function, and hence of the displaced charge, is
directly proportional to the group velocity at the point of
stationary phase, as well as involving the periodic modu-
lation & at the same point in k space,

We shall return to this form (2.8) of the response
function when we discuss the interaction between sur-
face adatoms in Section 3 below. However, before doing
50, we wish to make the further point that the behaviour
of G(rr') as exp (ko - r—r)r - r| depends on the Fermi
surface properties. For instance, if the curvature K in
eqn (2.5) tends to zero, that is 3> Elak,* or 3*EJok,* tend
to zero, the asymptotic behaviour of G(rr) is altered. In
the stationary phase argument given by Koster([9], what
enters is the following integral

ifr—r azE 2}
jexp{z ‘Emt| dk:

which is proportional to |VuE|"?/lr - r|'? (3*Elok\%)'".

Now if 3°Elak,*=0, then we have to replace this
integral by one of the form

if_r, l 6‘35 3 l J‘E 4
jexp{Hv.E [ﬁa—k.’k' +z§'a'k'?h +"~]dk|.

Here the most important term gives a contribution
behaving as

1 1
- [P Eok

unless, for some specific reason, 3’°El3k,’ were to
vanish, in which case we would have to consider the next
term. This implies, for 3*Elak,” not equal to zero that

exp {iko * (r—r)
r—e{"Jr-v|

X uly(rhinlr’)

G(r) ~
29

while if the third derivative happened to vanish we

would obtain
_cxp ik (r-r)}
G(m) r-r| Jr-r

X b (r)un(r’) (2.10)

The corresponding forms of the response function F in
these two cases are

Flre) ~ [exp {2ikey - (r— P)u 3 (Dudy(P)
+complex conjugate]

X|Vao,Elflr - v*? 2.1
and for the case when 3’ E/dk,* vanishes

F(rr) ~ [exp {2ikos - (r — Vs ()ui(r)
+complex conjugate]

X|Vug, Ellfe—rP?. @12

In the exceptional case when tall the derivatives

d"E]dk," are zero, the response function decays in the
direction perpendicular to the surface at the stationary
phase point as |r—r|"* times an oscillatory function.
This, we stress, is the behaviour which will be found in
the case when the Fermi surface i$ an ideal cylinder, as
discussed quite explicitly in the Appendix. Further cases
also treated there in relation to the range of the displaced
charge can be found by having the second or higher
derivatives with respect to k, zero. When derivatives
with respect to both k, and k, are zero to all orders,
which is the planar Fermi surface case, then the response
function can have a range as great as [r— |’

This leads us to comment on a Fermi surface having
the schematic form shown in Fig. 2 which is ap-
propriate to the noble metals. The new property here is
that along some direction there is no point of stationary
phase on the Fermi surface. We shall see, in contrast to
the above cases, that this can lead to an asymptotic
behaviour of the displaced charge corresponding to a
more rapid decay than in any of the previous examples.

Fig. 2. Schematic form of a Fermi surface with necks such as in
copper. BZ is the Brillouin zone boundary contacted by the
Fermi surface. The vector r~r' is again shown for the inflexion
point. Rotation about a line through P perpendicular to BZ
geverates the three-dimensional Fermi surface. The cone
generated by the dashed arrowed lines divides the directions in
coordinate space into the two regions discussed in the text.

As Fig. 2 shows, we can divide the directions in which
to discuss the decay of the displaced charge Ap into two
regions separated by the cone shown there. The cone is
defined by the points where the second derivative of the
energy with respect to k, vanishes, that is points of
inflexion. Outside the cone, the long distance behaviour
of the displaced charge is as r times an oscillatory
function, while over the surface of the cone this gives
way to the form r~*°. The question then comes up as to
the asymptotic form inside the surface of the cone.
Applying the argument of Koster for obtaining G(rv),
one appears to have a situation that insofar as no sta-
tionary point exists, instead of a decay like

G(rr') ~ ,r—_l?] x oscillatory function
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one would have

Glr)~ ;T—lﬁ’ x oscillatory function.

This would then lead to a response function decaying in
this region as

F(rr') ~ I_r——l—r’[’ x oscillatory function.

3. METAL SURFACE, WITH EMBEDDED IMPURITY

To deal now with the displaced charge round an ada-
tom embedded in a metal surface, we note that, with an
infinite barrier at the surface, and a plane of symmetry
parallel to the surface coinciding with the infinite barrier
position, the Green function can be constructed from the
bulk Green function G, through

Grr E) = Go(rv’' E) - Go(1r4 E) 3.1
where r, is the image of ¢’ as shown in Fig. 3.

Though this assumption is somewhat specific, it is
possible that it leads to results for the surface adatom
interaction of wider generality; we believe in fact that
this is so. But failing a proof of that, the results we
obtain below for this case appear of sufficient interest to
present in some detail.

Using the form (3.1) in the response function formula
(1.3), the response function is evidently

Fier) =i [ dBGH )~ GurrIIGum) - Gt

= [ AEIGo(r*)Go(rr) + Gorr)Golery)
2G()Gulrri)] 32)

First of all, for free electrons, it is readily shown that
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Fig. 3. Shows planar metal surface, with points r and r defining
direction in metal paralle] to surface. Point r, is the image of r.

i f dEG,(r)Gylrrl) ~ i [ “kexp {'k[f'*r—_r’ mt l:",— re))} dk
|

=k exp {~ikllr —r]+r—rjl} dk
& fr—rlir—r,

2k cos k{r—rl+]r-r,
lr Clle~rallle -+ e —rlly

Hence the free electron response function has the asymp-

totic form
COs 2&:]{ l‘"l COs 2*[1’ rtl
F(re) ~ r—r] fr-raf
dcos kflr—r'|+]r—r, 3.3)

Tr-rlr-rfc-r|

This decreases as R™* x oscillatory function in the driec-
tion parallel to the planar surface, where R=lr-r|.

3.1 Bloch wave case

We have now to consider the Bloch wave
modifications in the terms involving r—r and r—r; in
eqn (3.3), the latter involving the image of r'. Cor-
responding to this, we have two different vectors des-
cribing the stationary phase point, ko, and ki, The
response function must then be generalised to

rl+ir—edl

[exp{2iko, - (r - P)}usd(r)ui @)+ c.c)|Vay E| |, lexp {2iko - (r - rp)lusl
T r-ri

_ 4exp {ilkor - (r=r') +kiy - (r = 1) ]} oy (F)itngy (¥ )it gy (Pitngy(F) + c..]

[R—— {H

_Hexp{ilkos - (r—r) +kos - (¢

since un(r') = uu(rd).

_ lexp{2iko; - (r- r')[u;,!' Dt () + ¢.¢.]|Vay E| 4+ lexp {2ikgy - (e robuad(Nude(r) + c.c )V E|
le—v¢

jr—r

— 1 o)1} Mg (P g ()t e (D)itay () + €.}
- lle- g { =21 o =il
oy &

the separate terms have the asymptotic forms

i f dEG ()G (rv) ~ u‘ﬁ—f—"f}ﬁ'—'ﬂ
i f dEGu(rr)Gulrry) ~ 5&?’%{%—5’1

The leading terms in the asymptotic forms then cancel
again, as for free electrons, and we obtain an interaction
between adatoms parallel to the planar surface having
the form

i . .
m x oscillatory function.
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Again, as in the bulk metal, if the adatoms cause ap-
preciable relaxation of the metal atoms then it is possible
for reciprocal lattice vectors to enter the wavelength.

In the bulk metal, we referred to some exceptional
cases, and in particular to ideal cylindrical and to planar
Fermi surfaces. In the former case, the interaction of
adatoms paralle! to the planar surface turns out to decay
like r~* times an oscillatory function,

For the Fermi surface appropriate to the noble metals
shown in Fig. 3, inside the cone depicted there the
interaction between a pair of adatoms parallel to the
surface decays as

Jr ~ |77 x oscillatory function.

Along the surface of the cone, on the other hand, the
interaction decreases as |r—r|™ ' times an oscillatory
function.

We wish to stress that there are circumstances which
can occur when exceptional behaviour obtains. Thus,
when 3°EJak,*=0 and 3°E/ak,’ # 0, the Fermi surface
region giving the most important contribution to the
stationary phase integral has the length along k, of order
Jr~ """ and along k, of order jr-¢/|~'”. But when the
derivatives of different orders become zero, 3’Efok, =
3*E/ok\*,...=0, the Fermi surface region becomes
greater and greater, going along k, like jr—r|™"*". In
the limit when all the derivatives are zero, this region
becomes the whole cylindrical Fermi surface. In order to
obtain the result that the interaction between atoms
decreases in an order fr—r/|”* with respect to the bulk,
one must have that the region around the stationary
phase point dominating the integral must be smajl com-
pared with the whole Fermi surface. Such arguments, as
elaborated a little below, and in the Appendix, do not
apply to cylindrical or planar Fermi surfaces. If the
Fermi surface has a very small curvature; that is, it is
close to the cylindrical or planar forms, then [r—r| has
to be very large indeed if we wish to apply the arguments
of the paper. In other words, for relatively short dis-
tances, for an almost planar Fermi surface, the inter-
action will fall off like 1/r, but for very large distances
this will go over into the r~* form.

To summarise then, for a cylindrical Fermi surface,
the interaction between ions in both bulk and surface

E (k)

Fig. 4. As in Fig. 1 except that region contributing to stationary

phase integral is shown by the new curve. The linear dimen-

sion of this region, i.e. the distance between the two crosses, is
of order r—r| 12,
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cases will fall off like r~2. However, if one has a small
curvature, rather than zero, then the bulk behaviour will
be like 72 at shorter distances, but will go over into r~>
at very large separations. For the surface case, the
shorter distance behaviour of r°* will give way at
sufficiently large distances to 7~°.

For the planar Fermi surface, in contrast, the bulk and
surface interactions fall off as r~'. However, the intro-
duction of a small curvature leads to shorter distance
behaviour in the bulk as r~°, giving way at large dis-
tances to r>. In the surface, the shorter distance
behaviour of 7~ eventually goes over into r~°.

4, DISCUSSION

The effects of an anisotropic Fermi surface on the
screening of a charged impurity in a metal will be ac-
cessible, in favourable cases, from nuclear magnetic
resonance experiments. Unfortunately, to date we can
find but one experiment of this kind which bears on the
anisotropy of the screening charge round an impurity in a
metal. Thus Drain[10] has observed structure due to
nuclear quadrupole interaction in the “Al magnetic
resonance from dilute alloys of zinc in Al These results
support the existence of an oscillatory displaced charge
round the zinc impurity atoms, as do other examples. But
the point to be made here is that Drain can demonstrate
from his measurements the necessity to consider depar-
tures from spherical symmetry of the displaced charge
round the Zn atoms.

There are, of course, a number of points to be made
immediately. First, the effects he sees may not be
sufficiently well represented by appeal to merely the
asymptotic form of the displaced charge. Secondly, the
Zn atom, having a different core from the matrix Al
atoms, may well be poorly treated in linear response.
Also, since Al is normally discussed as a rather free
electron metal, the Brillouin zone effects discussed here,
while undoubtedly present, may be quite small in this
case. Nevertheless, we think it of interest that anisotro-
pic effects can be demonstrated by NMR in the dilute
AlZn alloys, and this may be an interesting area for
further work, using matrices with more anisotropic
Fermi surfaces than Al

Regarding area (ii) referred to in Section 1, it scems
also possible that there will be different interaction
energies in different orientations for charged complexes
of defects in metals with highly non-spherical Fermi
surfaces.

The third area referred to above concerns force fields
in pure metals. Johnson[11] has pointed out that it ap-
pears to be difficult to describe the lattice properties of
gold by means of central pair potentials. It is tempting to
associate this with the necks on the Fermi surface (see
Fig. 2), and the corresponding anisotropic screening of
Au” ion itself in the pure metal. But, of course this will
involve a full investigation of the electron screening. and
perhaps also consideration of relativistic effects quite
carefully. Nevertheless, we anticipate that, in the future,
such departures from sphericity in the screening clouds
will have to be incorporated into the lattice dynamical
treatment of not only a noble metal such as gold but in
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numerous transition metals. However, we need to cau-
tion the reader that before the quantitative discussion
could be made in this general area, self-consistency
would have to be imposed between the displaced charge
Ap and the localised perturbation V(r} and this goes
beyond the scope of the present paper. That such self-
consistency is important quantitatively is clear, c.g. from
the work of Rudnick and Stern{12].

Our other main comments concern our findings for
adatoms in a metal surface. Here, provided the Fermi
surface is spherical, the displaced charge out along a
direction parallel to the plane surface will be short-
ranged compared with eqn (1.1). But we have seen again
how Fermi surface topology can affect the range. While
these results are in principle relevant to area (ii); e.g. to
the interaction between suitable adsorbed atoms on the
surface of high electron density transition metals, some
additional comments are called for here. Thus,
Einstein{4] has cautioned against assuming that the
asymptotic regime treated here is necessarily going to be
directly reflected in the interaction between chemisorbed
atoms at the small separations at which it is significant.

Furthermore we want to stress that the surface cal-
culations reported here can only be applied to:

(i) Neutral covalently, bonded impurities with rela-
tively weak adatom-substrate coupling. Einstein’s
work [4) indicates that with strong coupling between the
adatom and the substrate the law r™* x oscillatory func-
tion can be strongly modified.

(ii) Impurities embedded in the metal; i.e. with the
impurities located in a region with high electronic den-
sity. Indeed, for ions outside the surface the most rele-
vant interaction is the dipole~dipole one as discussed by
Kohn and Lau[i3]. The role of elastic interactions must
also be kept in mind at large separations{14, 15].

The problem of the Ruderman-Kittel indirect inter-
action between localised spins in metallic matrices{16]
has many similarities with the problem of dispicaced
charge treated in the present paper. Work on magnetic
interactions by Caroli[17) should also be referred to in
this context. We can, e.g. expect different ranges of
exchange interactions between localised spins embedded
in a metal surface and the same spins treated in the bulk.
Indeed, for a closed Fermi surface and the case of a bulk
metal, the approach of Roth et al.{18] for spin polariza-
tion could be applied to obtain similar results to the ones
given here for the displaced charge, for this particular
case.
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APPENDIX

Relation 1o other models

In this Appendix, we make more explicit the relation of the
general method employed in this paper to specific models, and
especially to that of Lau and Kohn[3]. We shall find it con-
venient to return to the cases of (i) a planar Fermi surface and (i)
a cylindrical Fermi surface, on which we commented in the main
text.

(i) Planar Fermi surface, Let the x direction be perpendicular
to the planar Fermi surface. For the Green function

G~ }; VEDRONE - EY

we note that E, depends only on k,. Thus, introducing the Bloch
wave function we can write

m'E)= zcxp(zk,X) exp (ik,Y)

x exp (k. 2)us(r)uy(r)

with X=x-x.¥=y-yand Z=
For Y = Z =0, this shows that

G(rr'E} ~ exp (ik,0X)

(AD)

-7

(A2)

where E(k,o) = E, while for Y and Z going to infinity

G(rr' E) ~ exp (ik,0X) iy%
xoscillatory functionsin Y and 2. (AY)

This demonstrates, by means of eqn (1.3), that for the response
function we have

F(",)Ncos Zk,qX 11

X vz
xoscillatory functionsin Y and Z
for X, Y. Zo» (Ad)
or
c_os_zxk,y_,_\’_ for x»x, Y=2=0 (AS)

From these results, and.using the arguments of Section 3, it is
straightforward to show that the interaction between two im-
purities placed on the surface containing the x-direction behaves
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asymptotically as

<08 2k,.(X
X
which is in agreement with the model cakulation of Lau and
Kohn.
(i) Cylindrical Fermi surface. For a cylindrical Fermi surface,
we can follow again the above line of argument to show that

G(r'E)~ ﬂ’%&”ﬁ % x oscillatory function in Z

(A6)

(AT

Z being along the axis of the cylinder. Then the response

function has the form
F(rr)~ go_si_(lf;ﬂ % x oscillatory functionin Z.  (A8)

These results are appropriate to the bulk metal.

For a model of a surface corresponding to the Green function
(3.1), the interaction between two adatoms parallel to the planar
surface goes like

1
yicos 2kyor X. (A9).



