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Abstract

Carbon, along with nitrogen and oxygen, is produced by stars of differing mass and metallicity

throughout the evolutionary history of galaxies. The production of oxygen and nitrogen is be-

lieved to be dominated by stars of high and low mass respectively, while the origin of carbon

is less settled, as it can be produced by both low and high mass stars. An observational ap-

proach to determining whether low or high mass stars dominate carbon production is desirable,

via studies of the nebulae that such stars produce during their advanced evolutionary stages.

However, ionized carbon does not have forbidden emission lines in the optical range, making

optical carbon abundance measurements reliant on the use of carbon recombination lines or

neutral carbon forbidden lines. Carbonaceous dust is inferred to exist in many nebulae, though

the amount of carbon in such dust can be difficult to determine.

This thesis presents observations and numerical modelling results aimed at tracing the

origins of carbon in galaxies. The contribution of individual stars is probed, focusing first on

nebulae around massive Wolf-Rayet (WR) stars, particularly those with C-rich WC stars. The

properties of the population of Galactic and LMC circumstellar nebulae around WR stars are

examined, followed by a spectroscopic investigation of abundances in nebulae around both WN

and WC stars. Carbon production rates by low and intermediate mass stars are inferred from

published carbon abundance measurements for planetary nebulae.

The second approach used to trace the origin and evolution of carbon is through numerical

modelling of the chemical histories of galaxies. Using various formulations for the inputs of C,

N and O by low and high mass stars, models are constructed which trace the overall abundances

of these elements over the history of a galaxy, from their birth to the present day. By tuning

the input data for stellar elemental yields to best match observed abundance patterns, the mass

and metallicity ranges which are responsible for creating carbon can potentially be diagnosed.

Finally, these models are adapted to investigate the evolution of the dust content of galaxies,

including galaxies at high redshifts.
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Chapter 1

Introduction

“Life exists in the universe only because the carbon atom possesses certain

exceptional properties.”

— James Jeans

It is said that life as we know it is carbon-based, that is, all life on earth is based on the

chemistry of the element carbon. Which types of stars produce this carbon, and other elements

necessary for life, like oxygen and nitrogen? Specifically, which kinds of stars are the dominant

contributors to the carbon in present-day galaxies, and has there been any evolution in this

dominance?

Recent years have seen claims that low mass stars are responsible for carbon production

(Chiappini et al., 2003), that massive stars are largely responsible (Henry et al., 2000) and that

maybe both are significant (Cescutti et al., 2009). This debate is in sharp contrast to the other

elements mentioned which have well known production sites — oxygen is usually created in

massive stars while nitrogen is created in low mass stars.

The problem with stellar carbon production that we are investigating is essentially a de-

generacy. Low mass stars are known to produce carbon — which will be discussed at some

length later — but over very long timescales. Massive stars are also predicted to make carbon,

usually this would imply short timescales as massive stars have short lifetimes. However carbon

production by massive stars is strongly dependent on the non-hydrogen/helium mass fraction,

the metallicity. Galactic metallicity is built up by generations of stars over long periods of time

— meaning that massive stars may only produce carbon at later periods in the history of the

galaxy, the same time at which the low mass stars are producing carbon.

Investigating this question can lead us down two distinct avenues, firstly we can probe

the circumstellar environs of stars which we suspect to be producing carbon for evidence of

such production, as will be discussed later. Secondly, we can simulate the chemical enrichment

histories of galaxies using different stellar recycling models.
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1.1 Evolution of Galactic Gas and Dust
To state that there is evolution in the abundances of the chemical elements in the universe is

no longer controversial. The question has moved on to become, “how did the universe and

individual galaxies arrive at their present set of chemical abundances?”, which is an altogether

more complex issue. Possessing a complete answer to that question would imply that all the

relevant astrophysics, from the big bang to the present day, was understood.

It is possible to attempt an answer on a simpler basis, though, by modelling the chemical

evolution of individual galaxies. Such a model is normally termed a “Galactic Chemical Evolu-

tion” (GCE) model. These models include parameterisations of all of the quantities and galactic

properties which are necessary to simulate the history of a galaxy from its origin as a cloud of

gas, through the formation of the first stars, and generations thereafter. It is important to bear in

mind that such simulations are a sketch of the true evolution and that much of the sophistication

of reality is removed from these models.

Such modelling has its problems too, as the histories of galaxies, in terms of mergers and

star formation, are still very much under debate. Indeed, whether galaxies form via mergers or

through some kind of infall episode is far from settled; GCE models suggest that the stochastic

merger histories that are in vogue in cosmological N-body simulations do not produce chemical

evolutionary histories in line with what is observed.

The main input to a GCE model is a prescription for stellar recycling, that is, a descrip-

tion of how stars return processed material to the interstellar medium (ISM). This is usually

expressed as a grid of elemental mass yields for stars of varying initial mass and metallicity.

These mass yields are a quantification of stellar recycling and will be discussed later. By exper-

imenting with using different combinations of yields for the same galaxy model, we can ascer-

tain which combination best matches the abundance data we possess, where both the model and

the abundance data are functions of time. It is then possible to calculate which types of stars

dominate the creation of different elements, during which periods in the history of our galaxy

model.

The precise mathematical basis of a general GCE model will be presented in Chapter 4. A

sketch of what a GCE model does at each timestep is as follows:

1. Calculate current star formation rate (SFR) based on present conditions

2. Incorporate the nucleosynthetic contribution of all stars which would have died during

this timestep into the current metallicity and galactic gas mass

3. Calculate, based on the metallicity and star formation history of the galaxy, how many
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stars would come to the ends of their lives in this timestep and their masses

4. Calculate the nucleosynthetic contributions of this population based on a detailed knowl-

edge of stellar recycling

5. Subtract the mass of stars formed during this timestep from the galactic gas mass

6. Add inflowing gas and subtract outflowing gas to the galactic gas mass and update the

total galaxy mass

1.1.1 Primordial Nucleosynthesis

The initial abundances used in almost all models are those that arise from Big Bang Nucleosyn-

thesis (BBN), which we shall use as a starting point for the first generations of stars. This initial

set of abundances are usually referred to as primordial abundances.

In the mid 1960’s the discovery of the Cosmic Microwave Background (Penzias & Wilson,

1965), as predicted by the hot Big Bang models of Gamow and collaborators (e.g., Alpher &

Herman 1948) gave credence to the Big Bang model as a whole and sparked interest in the

nucleosynthesis that must have occurred immediately after the Big Bang.

The result that is of paramount importance to this work was published several years be-

forehand: Alpher et al. (1948) gave predictions of the ratio of hydrogen and helium produced by

the Big Bang. The process by which this ratio is established is determined by basic thermody-

namics, and, while the full treatment is not necessary here, an illustrative sketch following the

arguments of Hayashi (1950); Hayashi & Nishida (1956) runs as follows: at the high temper-

atures and densities prevalent immediately after the Big Bang, the neutron and proton species

would be in thermal equilibrium. Deuterium formation was suppressed as its binding energy

was lower than that associated with the ambient temperature. As the temperature gradually

lowered below the binding energy, deuterium started to form, leading to helium formation.

Eventually the temperature fell below that required for nuclear reactions and the then current

abundances were “frozen in” as nuclear reactions ceased.

This initial work did not include the processes necessary to make heavier elements – these

were considered in later papers (e.g., Peebles 1966a,b). The Big Bang nucleosynthesis model

is now regarded as a major success of cosmology; it accurately predicts the abundances of the

light elements created during the Big Bang. In particular the abundances of deuterium and

lithium-7 which are predicted match those observed in unevolved objects. This is important,

as there are no known stellar nucleosynthetic processes which are net producers of deuterium

and lithium-7, and these isotopes are destroyed by star formation. Therefore the lithium and
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deuterium abundances are good indicators of the level of primordial nucleosynthetic processing

and the subsequent level of processing by stellar recycling.

However the main result of interest here is the mass fraction of hydrogen to helium. The

heavier elements created by BBN (e.g 7Li) are useful as diagnostics in some cases, and may

help catalyse the collapse of clouds to form the first stars, but take little part in the chemical

evolution to follow. In almost all models it is usual to set the initial mass ratio within the

primordial gas to X=0.75, Y=0.25 and Z=0 (Wagoner et al., 1967), where X and Y represent

the hydrogen and helium mass fractions respectively and Z is the mass fraction of all heavier

elements.

We can use this approximation for two reasons: first, the initial metallicity is very low

compared to that which will be achieved later (typically by as much as five orders of magnitude)

and exists in the form of elements that will be destroyed to make heavier elements anyway;

secondly, and more importantly, our prescriptions for stellar recycling have no dependence on

these elements, as they are instantly destroyed in stars.

All models that will be used assume the primordial gas composition described above

(X0 = 0.75, Y0 = 0.25, Z0 = 0). It has been argued that in some cases this is not representative

of gas accreted at later times; specifically, galaxies in clusters may be accreting Inter-Cluster

Medium (ICM) gas which could have been enriched by galactic winds from other cluster galax-

ies (Metzler & Evrard, 1994). This situation is not commonly invoked in GCE models as the

Milky Way does not exist in such a system, making such a model difficult to constrain with

observations.

1.1.2 Galaxy-Model Ingredients

If we combine our knowledge of stellar recycling with some other vital ingredients we can

form a very simple picture of how galaxies evolve or, at least, how their chemical compositions

evolve. The other ingredients are parameterisations of our ideas about how galaxies and stars

live and die, combined with basic parameters like the mass of the galaxy (MGAL). The two most

basic influences are the Initial Mass Function (IMF, usually denoted φ(m)) and Star Formation

Rate (usually denoted ψ(t)). For more complex models we can include more accurate pictures

of galaxy formation and stellar lifetimes.

1.1.2.1 The Initial Mass Function

The initial mass function describes the relative frequency of the birth of stars in different mass

ranges. It was derived initially by counting stars in the local volume (Salpeter, 1955). This

method, although fraught with difficulty due to lack of precise knowledge of the distances to
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Figure 1.1: Comparison of Salpeter (red) and multi-slope Kroupa (green) IMF prescriptions in

log space.

stars, produced a remarkably resilient result: initial stellar masses are distributed as a power law

of the form dN/dlogM = φ(M) ∝ M−γ . Salpeter derived γ = 2.35, a value that has proven

robust over the past half century, albeit with slight issues at very low mass ranges.

Other prescriptions for the IMF have been postulated, all of which involve adding some

characteristic scale mass to the distribution in order to solve an over-prediction of low-mass

stars by the Salpeter IMF. These either take the form of having a two-(or more) slope power

law (e.g., Scalo (1986); Kroupa (2001a,b)), typically breaking at around a solar mass, or adding

some more complex function describing the behaviour of low mass stars (e.g., Chabrier 2003b).

The differences in shapes between Kroupa and Salpeter IMFs are shown in Figure 1.1.

A common question of the last decade has been whether the IMF is the same at all times

and throughout space; i.e., is the IMF the same in high-redshift galaxies under very different

star-formation conditions? It is still controversial to state that in the very earliest generations

of star formation the IMF would be different. If the conditions are dramatically different, as

they would have been for the first generations of stars (so-called Population III, which had no

metal content to facilitate cooling and hence collapse), then we might expect a different IMF.

However this is a very difficult effect to constrain with observations.

Detections of a variable IMF have been claimed in other contexts, including the bulge of



22 Chapter 1. Introduction

our own galaxy (Maness et al., 2007; Löckmann et al., 2010), ultra-compact dwarf galaxies

(Dabringhausen et al., 2010), star-forming globules (Getman et al., 2007), Extremely Metal-

Poor (EMP) stars in our galaxy (Komiya et al., 2008), young super star clusters in M82 (Smith

& Gallagher, 2001), and many others (Elmegreen, 2009). However most of these studies do not

conclude that the average IMF deviates from the standard prescriptions by a substantial margin,

merely that the IMF can be different in different situations. Averaged over entire galaxies the

standard IMF formulations appear still to be the best option.

The debate is far from settled, but we will adopt what has been described as “Bernard’s

First Law”: Thou shalt not change the stellar initial mass function. We do this because changes

in the IMF can allow us to match any data, in practice mimicking the effects we are trying to

investigate, and rendering the process futile.

1.1.2.2 The Star Formation Rate

The second major parameterisation is the Star Formation Rate, (SFR); in principle the SFR may

be a function of the gas density, turbulence, galaxy mass, and other factors. In practice, we can

use an observationally derived relationship to recover the SFR for a given set of conditions.

Such a relationship was first derived by Schmidt (1959), and has subsequently been called

the Schmidt law. The initial parameterisation was that the SFR of a patch of galaxy varied

in proportion to the surface gas density of that patch of galaxy to some exponent, which was

initially thought to be two.

This relationship has been re-examined using more recently gathered data (e.g., Kennicutt

1998). Several proxies are used as neither the surface gas density nor the star formation rate can

be measured directly. For the surface gas density, molecular gas tracers are usually used (e.g.,
12CO), as relations exist to transform their densities into surface gas densities (e.g. Arimoto

et al. 1996). Many different measurements can be made and used as a proxy for the SFR

– Kennicutt (1998) used Hα and IR observations. Kennicutt also suggests that the exponent

is close to two; however, other authors have explored varying exponents, and no conclusive

agreement has been reached other than that the SFR exponent lies somewhere between one and

three.

The product of the SFR and IMF are known as the “Birthrate Function” (Matteucci, 2003),

as these quantities are degenerate and usually used together as a product. This entanglement is

what makes it difficult to detect changes in the IMF - any change could easily be described by

a difference in the SFR.
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Figure 1.2: Result of a chemical evolution model including delayed recycling by low mass stars

(Pagel & Tautvaisiene, 1995). The upturn in Fe abundance at late times is the result of SN Ia.

1.1.2.3 Stellar Lifetimes

Stellar lifetimes are of paramount importance for GCE. It will be shown later that different

stellar masses will characteristically produce different sets of elements; therefore the way in

which stellar lifetimes vary with mass will control the timescales on which these characteristic

elements are released.

A good example of the importance of including stellar lifetimes as opposed to assuming

either a constant lifetime (not a function of mass) or zero lifetime, is the case of the [O/Fe]

trend in the Galaxy. Oxygen and iron, as we will see later, are produced by high and low-mass

stars (via Type II and Type Ia Supernovae respectively). An upturn in [Fe/O] is observed at late

times (high [O/H]1) in the [Fe/O] versus [O/H] plot (see Figure 1.2) which cannot be explained

satisfactorily by models which do not allow for finite stellar lifetimes. Conversely this trend

arises as a natural consequence of the longer lifetimes that are associated with the low-mass

stars that go on to produce Fe.

In general, massive stars have much shorter lives than low-mass stars. This is caused by

the higher temperatures and pressures at the cores of massive stars, which increases the rate of

nuclear burning and hence reduces the time over which the nuclear fuel is used up.

A review of stellar lifetime parameterisations is provided by Romano et al. (2004). They

compared the lifetimes published by Tinsley (1980); Tosi (1982); Maeder & Meynet (1989);

Padovani & Matteucci (1993) and Kodama (1997) along with lifetimes derived from the evo-

lutionary tracks published by the Geneva & Padova groups (Schaller et al., 1992; Alongi et al.,

1993; Bressan et al., 1993; Bertelli et al., 1994; Portinari et al., 1998). There is not a great

amount of variation in these stellar-lifetime prescriptions, and what variation there is is concen-

1Bracketed abundance ratios denote the logarithmic ratio of any pair of abundances with respect to the same ratio

in the Sun.
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Figure 1.3: Plot of Lifetimes from Raiteri et al. (1996) at Z=0.02 (red), Raiteri et al. (1996) at

Z=0.00002 (green), and the metallicity independent values of Maeder & Meynet (1989) (blue).

trated at the lowest and highest masses. In Figure 1.3 we show the lifetimes derived by Raiteri

et al. (1996) and Maeder & Meynet (1989). The Raiteri et al. (1996) lifetimes are parameterisa-

tions for the Padova group models mentioned earlier. The Raiteri et al. (1996) parameterisation

will be further discussed in Chapter 5 where the metallicity dependence of stellar lifetimes may

be of importance.

1.1.2.4 Stellar Yield Prescriptions

The factor that we refer to as “Stellar Yields” is simply either the total mass, or the freshly syn-

thesized mass of a set of elements emitted by the star upon its death. Published yield sets vary

drastically, depending on the authors’ scientific aims. Some cover only stellar models at solar

metallicity and some cover a range of metallicities for a very limited mass range. In general no

two cover quite the same volume in (Mi, Zi, N ; where N is the range of elements included)

however they are usually split along mass lines due to the differences in simulating low-mass

and high-mass stars. Additionally high-mass yields are further split into those covering pre-

Supernova (SN) mass loss and those covering the products of SNe (e.g. Woosley & Weaver

(1995) cover only CCSNe while Dray et al. (2003) include stellar winds and SNe).

Relatively few yield sets exist for massive pre-SNe stars. The most comprehensive are

those of Maeder (1992); Dray et al. (2003); Dray & Tout (2003); Meynet & Maeder (2002) and
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Hirschi et al. (2005) which cover pre-SNe mass-loss phases for a variety of metallicities and

masses along with the SNe yields. Woosley & Weaver (1995) give the most widely used set

of SN yields in the range 13M� < M < 40M�. The prescription of Nomoto et al. (1997) is

commonly used for stars outwith the Woosley & Weaver (1995) range, particularly at the high

end, as the Nomoto et al. (1997) set includes stars up to 70M�.

For low-mass stars several yield prescriptions exist which are suitable for GCE models.

The van den Hoek & Groenewegen (1997) (hereafter HG97) prescriptions have been used in

most recent GCE models (e.g. Calura et al. (2009)). The HG97 yields are based on the Geneva

stellar model grids (e.g. Schaller et al. 1992). Other groups have published chemical yields

based on other models, (e.g. Marigo 2001) based on the Padova stellar models (Girardi et al.,

2000). However the HG97 yields have proved very durable and as such are the baseline to

which we compare other yields.

1.1.2.5 Galaxy Formation

Earlier it was mentioned that there are disputes regarding the general picture of galaxy for-

mation. It is clear though, that galaxies do not form with their mass completely assembled.

Cosmological models of galaxy formation tend to involve either continuous infall of mass

onto a central galaxy, normally following some theoretical prescription (e.g. Larson 1976),

or multiple-merger scenarios which arise in large N-body numerical simulations. The work of

Murali et al. (2002) and Maller et al. (2006) suggests that there may be a compromise, whereby

certain types of galaxies grow by accretion (massive ellipticals) while others are indeed domi-

nated by mergers.

It has been found that double-infall scenarios produce the best fit to observational abun-

dance data (Chiappini et al., 1997) for the Milky Way. In general, it seems that we require

multiple infall episodes to create the observed abundance patterns in disk galaxies (Chiappini

et al., 1997). Ellipticals are simpler in that they are believed to have formed very quickly with

a massive starburst (Calura et al., 2009) (as we will explore further in Chapter 5); this initial

starburst predicates a single infall prescription.

1.1.2.6 Outflow Prescriptions

The main driver of galactic outflows is core-collapse (massive star) supernova events, i.e., Type

Ibc and Type II SNe (Gibson, 1997). These SNe release vast amounts of kinetic energy into

the ISM, so much so that they can drive both their own ejecta and swept-up ISM entirely out

of galaxies, should enough SNe happen near-simultaneously. This kind of situation is common

in “starburst” galaxies. This name reflects the reason for the outflow: a burst of star formation

will inevitably be followed by a burst of core collapse SNe (CCSNe) several million years later.
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Figure 1.4: The starburst galaxy M82. The red and blue in this image correspond to Spitzer and

Chandra observations, in the infrared and X-rays respectively. The observed outflows are the

result of a period of intense star formation triggering supernovae.

Such a galaxy is shown in Figure 1.4.

This process is not always as violent as that shown in Figure 1.4. While many galaxies

will go through a starburst phase at some point in their evolution, it is more common for SNe

to drive smaller outflows. In this case it is also less likely that the outflow will be efficient, as

much of the matter will accrete back onto the disk. This situation is called a “galactic fountain”

(e.g. Melioli et al. 2009).

In GCE models the effects of starbursts are usually included by including a factor which

removes gas from the system, assuming it to be well mixed (i.e. the gas removed reflects current

ISM abundances). This is usually parameterized by:

dG

dt
= −A× ψ(t)M�yr

−1 (1.1)

where G represents the total mass in the system, t represents time, ψ(t) is the star forma-

tion rate in M�yr
−1 and A is an efficiency constant. This is clearly a crude approximation to
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the actual rate of mass ejection as there it contains no dependence on galaxy mass.

In general, the star-formation rate would have to cross some threshhold value representing

the balance between the energy introduced to the ISM by SNe and the potential well in which

the gas resides. However this kind of complication is rarely introduced in general GCE models

as it is not required to match observations, while introducing an additional free parameter to the

model.

1.1.3 Simple Galaxy Models

The simplest form of galaxy model is, in principle, a closed “box” full of primordial gas al-

lowed to evolve and form stars in a manner described by the birthrate function. This type of

model has a long history; a very early version was used by van den Bergh (1962), and more

thoroughly formulated and explored by Talbot & Arnett (1971). This simplistic model can ex-

plain a number of phenomena, e.g., the build up of heavy elements to the levels observed today,

and some relationships between specific abundances. Early implementations of these simple

models tended to use parameterisations of stellar recycling as an input, as opposed to modern

models which use grids of stellar yields.

The closed box model also contains two further tacit assumptions: instantaneous recycling

and instantaneous mixing. The Instantaneous Recycling Approximation (IRA) states that all

stars die and release their nucleosynthetic products at the instant they are born.

It is interesting to explore why this approximation was adopted. Simply put, the IRA

allows the problem of chemical evolution to be solved without the aid of computers. With one

approximation the whole business of modelling the build-up of elements in a galaxy can be

solved without the aid of machines, so before the era of plentiful computing power, the IRA

was a powerful tool.

It should be noted that the approximation of instantaneous mixing is not usually thought

to be too problematic, as the effects of supernovae and stellar winds are thought to mix the ISM

on roughly the same timescales as the timesteps that will be adopted by our models. These

assumptions both break down at some level. However instantaneous recycling is particularly

egregious in the context of modelling entire galaxies.

If we are to abandon the IRA, we need a prescription for stellar lifetimes as a function of

initial stellar mass and metallicity. In practice such prescriptions are usually interwoven into

the stellar evolution tracks which are used to provide recycling descriptions.
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1.1.4 Generalised Galactic Chemical Evolution models

1.1.4.1 Incorporating Dust

A model of dust evolution in galaxies works along the same lines as one for elements in the

ISM, except that it is, in general, simpler because fewer dust species are to be included. This

simplicity is, in one respect an illusion. It is difficult to include the vast variety of dust species

as yields for the various species from different astronomical sources are not known. In fact, the

yields of all dust, regardless of species, is not known to even an order of magnitude.

There is another complication when considering galactic dust models: dust destruction and

modification. Unlike GCE models where we can assume heavy elements are not destroyed in

the ISM, dust destruction in the ISM is a significant effect. The blast waves from supernovae

drive shocks through the ISM, destroying dust particles via sputtering and grain-grain colli-

sions. Ironically, these supernova shocks may also be responsible for creating dust, although

the amount is still under debate. The type of dust can also be modified by a variety of processes

like by accretion or the formation of ice mantles.

1.1.4.2 Multi-Zone models

Thus far we have described “one-zone” models. It is common to use “multi-zone” models to at-

tempt to explain certain data, typically metallicity gradients in the disks of galaxies. In this case

a multi-zone model would consist of concentric rings forming the different zones. Normally

these models do not include flows between the different zones; however, this is starting to be

explored as certain metallicity trends cannot be explained without radial flows (Jungwiert et al.,

2004). We will not use multi-zone models as relevant data to constrain them is not available.

1.1.5 Constraining Data

The output of our general GCE model consists of a time series of abundances, and “structural”

information such as the current SFR etc. From this we can plot metallicity trends in the model

and compare them to observed data regarding astronomical objects which are presumed to be

representative of the state of galactic abundances at different times and metallicities.

The most common type of object that provides constraints on the models are stars in our

own Galaxy. The envelopes of F & G dwarfs and B stars are assumed to not have been pro-

cessed, and therefore represent galactic metallicities at the moment of their births.

Secondly we shall consider HII regions in the Milky Way and other spiral galaxies. In

some ways these are the most convenient objects to study and certainly offer the most accurate

measurements, owing to the ease of deriving abundances from nebular emission spectra (as

opposed to stellar absorption spectra).
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Lastly, we shall include samples of “Damped Lyman α systems” (DLAs) which are pos-

tulated to be the most distant objects for which we have ever measured metallicities. These

objects are relatively young galaxies at very high redshift, representing the earliest constraint

for our models.

Metallicities in these objects are derived via spectral lines observed either in emission or

absorption. For example, stellar metallicities are derived from absorption lines - which are

generated by the cooler, outer layers of the star. Derived stellar metallicities are therefore

dependent on not just the metal content of the star, but also the properties of the star. The

most important of these are its mass or radius, as these combine to give the surface gravity of a

star and play a role, along with the metallicity, in generating the observed line shape.

The situation for ionized nebulae is simpler as the emission processes are less subject

to external alteration. However the metallicities derived can be affected by a different issue.

Metallicities are derived relative to the most abundant element, hydrogen, however in ionized

nebulae the observed hydrogen (and helium) lines are formed in a very different way (recombi-

nation) than the bright heavy element lines (collisional excitation) from which metallicities are

derived. This means that while we can derive the helium abundance to great accuracy because

both the helium and hydrogen lines are emitted in the same way, the same cannot be said of any

other elements. This problem has been the focus of some debate in recent years as it has been

found that recombination lines from heavier elements (which are very faint compared to their

collisionally excited counterparts) tend to yield lower abundances than those from collisional

excitation. This phenomena is known as the “abundance discrepancy”.

1.2 Stellar Recycling

The first question posed in the preamble concerns fundamental aspects of stellar evolution for

which our understanding is still incomplete: mass loss and nucleosynthesis. Together these

topics are often referred to as stellar recycling: the processes by which the matter in stars is

nucleosynthetically processed and expelled into the ISM.

This thesis approaches stellar recycling from two opposite directions. From the point of

view of GCE modelling, stellar recycling is one of the main components of the theoretical

underpinning. In Chapters 2 and 3, we describe the visible effects of recycling by certain types

of massive star. In this section we shall discuss the theory of stellar recycling, which all stellar

yield computations are based on, before going on to discuss topics peculiar to the study of

nebulae around Wolf-Rayet stars.

The nucleosynthetic processes in stars of all masses are well known and were mainly
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derived by Bethe (1939) and by Burbidge et al. (1957). The work of this early period was

driven by debate as to whether the relative abundances of elements in the universe were constant

or evolved with time. The suggestion that stellar cores might be subject to temperatures and

pressures conducive to nuclear fusion was still a controversial issue. The competing idea was

that all elements were formed by nucleosynthesis during the Big Bang and had evolved little

since.

Our understanding of mass loss, especially by massive stars (M > 10M�), is still incom-

plete to the extent that we do not know the process driving the episodic mass-loss mechanisms

(e.g. for luminous blue variables; LBVs) thought to dominate for massive stars. Not all stars

undergo such processes, though, and the stellar-wind-driven mass loss that all stars experience

during their lives is understood much better (for a recent review, see Puls et al. (2009)). How-

ever, in recent years debate has raged as to whether wind driven mass-loss is smooth or clumpy

– the answer to which may influence the mass loss rates and the stellar yield prescriptions

described later.

Stars may be broadly split into groups along the lines of their eventual fates. High-mass

stars are those which end their lives as core-collapse supernovae (CCSNe), while isolated low-

and intermediate- mass stars suffer a less violent fate, eventually expelling their outer layers

to form planetary nebulae (PNe). The evolution of binary low-mass stars may result in type Ia

supernovae (SNe Ia) and, in general, chemical-evolution models cannot match the evolution of

Fe without them. However in order to include them, many extra free parameters describing the

evolution of binary systems must be introduced.

To quantify the nucleosynthetic contribution made by stars of different masses and metal-

licities, much theoretical work has been done to construct sets of yields. A yield is defined in

various ways, as was briefly mentioned in the previous section, most commonly it is the amount

of an element created within a star. However it is sometimes expressed as the total amount of a

certain element expelled by a star. These yields are normally calculated using models of stellar

nucleosynthesis in combination with some parameterisation of the mass loss rate over the star’s

lifetime. A synthetic HertzsprungRussell diagram for such a set of stellar models is shown in

Figure 1.5 (Schaller et al., 1992).

For a full and detailed view of stellar evolution see the monograph by Prialnik (2000), or

the relevant sections in the monographs by Matteucci (2003) or Pagel (1997).

1.2.1 Nucleosynthesis in Stars

Stars are powered by the fusion reactions taking place towards their cores; the photons that make

them shine are but a by-product of the nucleosynthesis. Stars of almost2all masses share some
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Figure 1.5: Theoretical HertzsprungRussell diagram for the synthetic stellar evolution models

of Schaller et al. (1992).
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common nuclear reaction paths which produce heavy elements from the constituent hydrogen

and helium that dominates all stellar compositions at their births. In this section the reaction

paths which lead to the creation of the CNO elements will be discussed, although initially the

processes which create helium from hydrogen will be presented. These reactions were first

shown in this form by Bethe (1939).

The most important reaction is the proton-proton (PP) chain, as it can proceed in the ab-

sence of elements heavier than helium and without which there would be no significant amounts

of elements heavier than helium. The PP chain provides a path for four hydrogen atoms to pro-

duce a single 4He atom via deuterium and 3He. It was thought at first that this reaction could not

take place, as the deuterium (D) produced is unstable, but if the deuterium reacts with another

hydrogen atom before decaying then 3He can be formed. The 3He can then react with another
3He to form stable 4He.

Main PP chain:

1: 1H +1 H →D + e+ + νe

2: D +1 H →3He+ γ (1.2)

3: 3He+3 He→4He+1 H +1 H

There are multiple branches of the PP chain, the first allows 3He to react with existing 4He

atoms which then form beryllium and consequently decays into two 4He nuclei. The second

branch of the PP chain proceeds from the beryllium produced by the first branch and creates

boron which again, decays into two helium nuclei.

Ultimately, the energy released by this process is the rest mass energy difference between

the reactants 4(1H) and the product (4He):

Qpp = 4M(1H)−M(4He) = 26.7 MeV

With an energy production rate of:

εpp = 0.45ρX2

(
T /106

15

)3.95

erg g−1 sec−1 (1.3)

Where X is the hydrogen mass fraction, ρ is the density and T is the temperature.

If the star already contains some carbon, nitrogen, or oxygen, then the CNO cycle may be

the most efficient way of transmuting hydrogen atoms into helium, should the core temperature
2Excluding very low mass stars.
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be high enough. In this reaction the CNO nuclei function as catalysts, allowing the reaction

to proceed more efficiently than in the PP-chain. While the initial CNO number density is

conserved, the reactions do not proceed at the same rates, so the relative abundances of CN and

O are not preserved. The fourth reaction below is the slowest and hence the abundance of 14N

can come to represent 90%+ of the initial CNO abundance.

The CNO cycle:

1: 12C +1 H →13N + γ

2: 13N →13C + e+ + νe

3: 13C +1 H →14N + γ

4: 14N +1 H →15O + γ (1.4)

5: 15O →15N + e+ + νe

6: 15N +1 H →12C +4 He

The CNO cycle has one branch which results in the production of 14N and 4He and thus

rejoins the regular cycle at reaction 4.

CNO cycle branch 1:

6a: 15N +1 H →16O + γ

7a: 16O +1 H →17F + γ

8a: 17F →17O + e+ + νe (1.5)

9a: 17O +1 H →14N +4 He

With a net energy release of:

εCNO = 2.16× 104ρXZCNO

(
T /106

25

)16.7

erg g−1 sec−1 (1.6)

Where X is the hydrogen mass fraction, ZCNO is the abundance by mass of carbon, nitro-

gen and oxygen, ρ is the density and T is the temperature. εCNO is a function of ZCNO rather

than the individual CNO metallicities because εCNO is the average energy output at the equilib-

rium CNO abundances which the CNO cycle creates. The CNO cycle is much more sensitive

to temperature than the PP chain and it comes to dominate when the temperature exceeds 107

K. The dominance of the PP chain or CNO cycle is therefore determined by the quantity:
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Figure 1.6: The relative importance of the CNO cycle compared to the PP chain as a function

of stellar mass.

εCNO
εPP

∝

(
T /106
25

)16.7
(
T /106
15

)3.95 (1.7)

If we combine this with:

Tcore ∝M
4/7 (1.8)

(see Prialnik, 2000, chap 7) we can determine the stellar mass at which the CNO cycle

will come to dominate core helium production by calibrating Equation 1.8 using the core solar

temperature of 15× 106 K. The resulting relationship is shown in Figure 1.6.

The reactions described so far convert hydrogen into helium and thereby raise the helium

abundance to the point where it, too, can react and form heavier elements. The most common

reaction which proceeds this way is called the triple-α process, (4He nuclei are also known as

α particles). The triple α process can be represented as:

4He+4 He ⇀↽8 Be

8Be+4 He→12 C∗ →12 C + γ + γ (1.9)



1.2. Stellar Recycling 35

Initially this reaction was thought to be highly improbable due to the relative unlikeliness

of three body collisions which were thought to be neccessary to convert three helium nuclei

one carbon nucleus. However this reaction is possible because the first reaction supports a low

equilibrium abundance of unstable 8Be which, if the temperature and density are sufficient, can

then react further instead of decaying. It is important to note that due to a resonance the 12C is

produced in an excited state which increases the rate of this reaction (Hoyle, 1954).

The 12C resonance was discovered as a result of the anthropic principle. Hoyle reasoned

thus: carbon is abundant in the universe; the only way of creating carbon is via nuclear reactions

in stars; but the triple α process (without the resonance) does not proceed quickly enough to

create the observed abundance of carbon. Thus there must be a resonance of carbon at the

appropriate energy such that more carbon can be produced. The resonance was predicted in

1952 and subsequently discovered the following year by Dunbar et al. (1953).

The energy released by the triple α process is:

ε3α = 4.4× 10−8ρ2Y 3

(
T

108

)40

erg g−1 sec−1 (1.10)

This reaction mainly takes place in massive stars simply because the energy produced per

unit mass of material is proportional to T 40 and more massive stars have hotter cores (Equation

1.8). This is the main avenue for the creation of carbon in the universe.

Following the triple-α process, α captures produce elements whose compositions are an

integer number of α captures. These are known collectively as the α-process elements and are

produced in the following way:

12C +4 He→16O + γ (1.11)

16O +4 He→20Ne+ γ (1.12)

20Ne+4 He→24Mg + γ (1.13)

24Mg +4 He→28Si+ γ (1.14)

With a release of energy accompanying each reaction.

1.2.2 Massive Star recycling

Before considering the nucleosynthetic and mass-loss properties of massive stars it is important

to review their general structure, as this has a pivotal role in determining the eventual yields.

Massive stars, as might be expected, have much higher pressures and temperatures in their

cores, leading to faster nuclear burning and correspondingly shorter lifetimes.
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On the initial collapse of the star, a helium core forms from pp and CNO reactions until

there is a high enough abundance of helium to begin triple-α reactions. From this point the star

forms a characteristic onion-skin structure with the envelope at the surface, followed by a layer

of hydrogen burning then progressively heavier elements in shells: helium, carbon, etc.

There are two very different methods for massive stars to inject mass into the ISM. The

main event is the Core Collapse Supernova (CCSN) which occurs at the end of their lives.

However, during the earlier stages of their lives, another effect can dominate: stellar winds.

This distinction is important as, in principle, different sets of elements are expelled from the

star during the different phases.

It has long been known that throughout the lives of massive stars, mass is lost via radia-

tively driven stellar winds. This idea was first suggested and developed in the late 1920s and

1930s by Milne (1926); Beals (1929); Chandrasekhar (1934). During the early stages, the mass

lost is from the top of the envelope, i.e., not nucleosynthetically enriched material. Eventually

the stellar winds will carry away enriched material, either because all of the unenriched material

has already been expelled, or because mixing has driven enriched material to the surface, where

it can be driven off. Usually these winds are described as “line driven”, which means that the

continuum emission from the star has become strong enough that the radiative force of photons

on ions in the upper atmosphere can impart momentum to the material. On its own this would

not be enough to drive much matter as the ionic absorption lines are very narrow. However,

as the material accelerates, the ions redshift from the point of view of the continuum radiation,

effectively broadening the absorption lines and magnifying the effect3.

The evolutionary paths and fates of massive stars depend on their initial masses and metal-

licities. Crowther (2007) has sketched evolutionary paths as a function of initial mass (at solar

metallicity) where WN and WC represent nitrogen and oxygen rich Wolf-Rayet stars respec-

tively:

M > 75 M� O →WN(H −Rich)→ LBV →WN(H − poor)→WC → SNIc

40 M� > M > 75 M� O → LBV →WN(H − poor)→WC → SNIc

25 M� > M > 40 M� O → LBV/RSG→WN(H − poor)→ SNIb.

3The monograph by Lamers & Cassinelli (1999) provides a thorough description on stellar wind theory.
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Given that a WR star typically has a mass of 10–25 M� (Crowther, 2007), in each of these

scenarios the star must lose a considerable amount of mass. Multiplying a typical line-driven-

wind mass-loss rate by the lifetime of the star gives a mass much lower than that which must

have been lost (initial mass - remnant mass), but the mechanism to account for the rest of the

mass-loss is presently unknown. We can infer some properties of the process, though, using

other data. Some WR and LBV stars are observed to have nebulae (see 1.2.5) whose masses are

such that they must represent short, furious bursts of mass loss (Smith et al., 1988). It has been

suggested that these bursts accompany the changes between RSG, LBV and WR phases in the

evolutionary schematics above (e.g. Humphreys (1991)).

The SNe II / Ibc (CCSNe) which mark the deaths of massive stars are among the most

energetic stellar events in the universe. As we saw earlier (Section 1.1.2.6), they are power-

ful enough to drive the ISMs from galaxies. In chemical-evolution terms though, CCSNe are

the dominant producers of oxygen and contribute somewhat to the nitrogen budget. They also

create elements past the iron peak, via the rapid neutron capture process (r-process). The su-

pernovae themselves are triggered by the collapse of the core of a massive star, hence their

categorisation as CCSNe. As the collapse proceeds, the core heats up and produces gamma

rays, which decompose many of the iron nuclei. At some point during the collapse, protons and

electrons recombine into neutrons, these will eventually make up the stellar remnant (a neu-

tron star) if the remnant is not sufficiently massive to form a black hole. At some point during

the collapse, the neutron core reaches nuclear density and can collapse no further. The matter

outside the core which is still collapsing “bounces” and forms an outward propagating shock.

The neutrinos which are created during this process then impart a small fraction of their kinetic

energy into the envelope of the star, adding to the energy of the outward propagating shock.

In the shocked ejecta gas which was formerly the envelope of the now collapsed star, tempera-

tures and densities can be achieved which are suitable for dust formation (e.g. Sugerman et al.

(2006)).

1.2.3 Low- & Intermediate-mass star (LIMs) recycling

Recycling in lower mass stars is a slightly simpler affair. All isolated low mass stars evolve

in a drawn-out way, removing their outer layers and, in general, becoming Planetary Nebulae

(PNe). For such stars mass loss via winds is the dominant, indeed the only, mass loss process.

Within the LIMs mass range, there are substantial differences between the degree of nu-

cleosythetic enhancements that are found. In general, this dependence exists because of the

interplay of several effects. Firstly, the temperature dependence of the CNO cycle, as discussed

earlier, can significantly alter the abundances of carbon, nitrogen and oxygen. Secondly, LIMs
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undergo several stages of evolution where material is “dredged up” from the stellar interior

(where nuclear fusion has created new elements) to the surface, where it may be ejected. And

thirdly, the process known as “hot bottom burning” which can re-process the material which is

dredged up from the stellar interior. Each of these effects has a characteristic mass dependence,

the interplay of the three defining the eventual stellar yields. A comprehensive review of these

topics is given by Iben & Renzini (1983).

Stars at the high end of the LIMs range, (i.e. Mi > ∼ 4 M�), will suffer the most from

CNO cycling at the early stages of their evolution. The initial carbon abundance will have been

almost completely transformed into nitrogen, which is then brought to the surface in the second

dredge up episode. This can double the surface nitrogen abundance at this stage. Subsequently

the star will begin to thermally pulsate, with the energy provided by the triple-α process. The

last few thermal pulses can coincide with descent of the convective atmosphere into the triple-α

fusion zones, this initiates the third and final dredge up. At this stage more nucleosynthetically

enhanced material is brought to the stellar surface, however this time it represents the ashes of

the triple-α process, i.e. carbon, rather than the previous dredge up which brought CNO-cycled

elements to the surface. This can create a significant carbon abundance in the stellar envelope,

which can then be processed by hot bottom burning (HBB) if the temperature at the base of the

envelope is sufficient. HBB can transform the carbon abundance which has been dredged up

(12C) into first 13C and subsequently 14N via neutron captures. This envelope, which has been

enriched in nitrogen by two processes, will later be ejected as a Type I (nitrogen rich) PNe.

Stars with initial masses large enough to ignite helium burning (Mi < ∼ 1–2 M�) but

less than the mass required to ignite HBB (Mi > ∼ 4.5 M�; Boothroyd et al. 1995), undergo

similar processes as their more massive brethren. There are two important differences though,

initially the CNO cycling will not be complete for stars in this mass range, so strong nitrogen

enrichments would not be expected. After the third dredge up, stars in this mass range do not

undergo HBB and as such their surface carbon abundances remain high, usually this type of

star is called a “carbon star”. The PNe created by stars in this mass range are characteristically

carbon rich and these PNe make up roughly half of all observed PNe Kingsburgh & Barlow

(1994).

Stars with masses less than that required to ignite core helium burning but greater than that

required to ignite hydrogen (Mi >∼ 0.5 M�), become main sequence stars with very long life-

times (see Section 1.1.2.3). When they do leave the main sequence, they will become red giant

stars (RGB) with a hydrogen burning shell around a degenerate helium core. Eventually these

stars will undergo a “helium flash”, where the core conditions are conducive to the triple-α pro-
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cess without any restraints, and subsequently become a C-O white dwarf and PNe. The helium

flash can be responsible for expelling some newly created carbon into the stellar envelope (e.g.

Michaud et al. (2007)).

1.2.4 Dust Formation

The very property of carbon that makes it the basis of life on earth also makes it troublesome

to observe astronomically. The electronic structure of carbon is such that it has four elec-

trons available to form bonds with other atoms. On earth this makes it vital in creating all the

compounds for life but for astronomy is a challenge as carbon tends to form not only simple

molecules (such as carbon monoxide), but also larger compounds (such as Polycyclic Aromatic

Hydrocarbons (PAHs)) and still larger species collectively called dust4.

Astronomical dust is fairly easy to detect as it absorbs UV / optical stellar radiation and

re-emits this energy in the infrared. The chemical composition of the dust can be loosely in-

ferred based on its emission. There are believed to be two general components: carbon dust

(amorphous carbon) and silicates which have characteristic absorption features at around 10

and 20 µm.

Our knowledge of the sites and types of dust emission has blossomed in recent years with

the proliferation of infra-red observing facilities. This led to the detection of highly redshifted

(young) galaxies with anomalously high dust content (Bertoldi et al., 2003; Beelen et al., 2006)–

much higher than expected given their metallicity and what we know about stellar recycling.

It is believed that all stars produce dust, regardless of mass or metallicity. However they

produce the dust in drastically different ways. Massive stars can contribute dust formed in the

ejecta of supernovae (Sugerman et al., 2006) or in the winds of LBV stars (Gomez et al., 2010).

The masses of dust that are formed by massive stars, both before and after their SN, is currently

undergoing intense debate. This stems from the idea that certain high redshift, dusty, quasars

are young enough that low mass stars could not have contributed to the observed dust mass, yet

SNe and SNRs do not display high enough dust yields to account for the observed dust masses

if it is assumed that all pre-SN dust is subsequently destroyed by SN.

Low-mass stars can produce dust in their envelopes and outflows. In the previous section

we discussed the enrichment of the envelopes of LIMs stars — this enriched material can go on

to form dust in the cooler temperatures of the outer envelope and stellar winds (Salpeter, 1977).

The natures and contributions of the various sources of dust are in the universe will be

4Dust, in this context, is a shorthand referring to all the solid-phase matter in particle sizes from a few atoms to a

fraction of a millimeter. The vast majority of this matter is in grains far smaller than those normally associated with

terrestrial (household) “Dust”.
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explored in Chapter 5.

1.2.5 Wolf-Rayet Nebulae

It has been suggested that carbon rich WR stars (WC stars) are responsible for injecting large

amounts of carbon into the ISM. The WR phase of stellar evolution has long been known as

the prime period of pre-supernova massive star mass loss. Investigations into this phase are

hampered by the small number statistics inherent with massive stars (∼400 resolved examples

of Wolf-Rayet stars are known, the bulk of which are in our galaxy).

1.2.5.1 Surveys of WR Nebulae

Despite their low numbers, the natures of WR stars are well understood. They are the stripped

cores of stars which formed with masses greater than 20 M� (e.g. Crowther (2007) and refer-

ence therein). Successive periods of mass loss (either bursts, e.g. the LBV phases or continuous,

e.g. O star winds) have led to the outer layers being expelled. The effects of these objects on

their immediate neighbourhoods is profound. Firstly, the very intense UV radiation ionises its

surroundings; secondly, the interaction between the strong winds and the surrounding ISM, and

later with the ejecta previously expelled from the star, can produce spectacular nebulae. This

process represents the initial stages of massive-star recycling as chemically enriched material is

returned to the ISM. That such circumstellar matter was the result of stellar processes was sug-

gested by Johnson & Hogg (1965); previously any nebular ring structures had been interpreted

as a planetary nebula or a supernova remnant.

Chu (1981) was the first to devise a classification system based on nebular morphologies.

Nebulae were described as being created by Winds (W), Ejecta (E) or Radiation (R). This

scheme was used for the southern Galactic survey WR stars of Marston et al. (1994a,b) and

Marston (1997) but not for the corresponding northern survey of (Miller & Chu, 1993) which

merely described the probability of a “ring” nebula being present. A survey of the environs

of all Magellanic Cloud WR nebulae (Dopita et al., 1994) also ignored the Chu categorisation

system and commented only on the presence of a ring or whether the star was in a superbubble.

Chu’s initial survey did not utilise any spectroscopic abundances to assist with categorisa-

tion, as these were not available at the time, hence the derived morphological criteria for ejecta

nebulae were very strict. This was shown by subsequent spectroscopy (Esteban et al., 1990,

1991, 1992) which identified the presence of ejecta in nebulae that Chu’s scheme would have

excluded, such as NGC 3199 and NGC 6888, which appear to be complex structures combining

a swept-up ISM component and a bow shock but also contain processed material. This strict-

ness was addressed in later work by Chu (1991), which added the W/E classification for these
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Figure 1.7: False colour image of the Wolf-Rayet Nebula NGC 6888. The star WR 136 is

near the center. The red nebulosity is Hα emission, while the blue is [O III] emission. Image

courtesy IPHAS collaboration.

cases where the nebulosity appears to be generated by winds but are likely to contain ejecta.

Abundances can be derived for WR nebulae from spectroscopy. Samples of WR nebulae

have been observed previously, most thoroughly in the early nineties by Esteban et al. (1990,

1991, 1992); Esteban & Vilchez (1992) and Esteban et al. (1993). This series of papers observed

a sample of ∼ 10 nebulae with the same instruments in the northern and southern hemispheres.

They found a range of metallicities in their sample, some suggestive of the presence of ejecta

and others with more ISM-like patterns. These results are summarised at the beginning of

Chapter 2.

1.3 This Thesis

The overall aim of this thesis is to investigate relative importance of different sites of carbon

and dust production in the universe. This question shall be tackled from two distinct directions.

Initially, the nucleosynthetic products of massive stars in the WC phase will be investigated.

Chapter 2 regards the search for WC type stars with circumstellar nebulae that are likely to be

the product of stellar outflows. A new WR nebulae around a WC/WN transition is found and

several likely candidates in the LMC documented.

Chapter 3 will document spectroscopic observations of nebulae around WC stars drawn
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from the survey of Chapter 2. The observations were designed to allow access to the far-red

[C I] carbon lines, should they be of sufficient intensity, from which carbon abundances could

be derived along with other nebular abundances.

The second method of investigating carbon production, explored in Chapter 4, is to con-

struct GCE models, along with a thorough exploration of carbon yields in the literature. The

results of the GCE models are compared with galactic abundance data to attempt to constrain

the origin of carbon in the Milky Way. It will be shown that various different yield combinations

can adequately explain the observed galactic trends.

The penultimate chapter (Chapter 5) documents the reconfiguration of the GCE model

into a model for the dust build-up in galaxies, focusing on the mysterious high redshift dusty

galaxies. Observational dust yields are reviewed for both massive and low mass stars and these

are used in our dust evolution model to test the hypothesis that we can explain the observed dust

masses around high redshift quasars without resorting to theoretical stellar dust yields.

Conclusions are presented in Chapter 6, along with ideas for future work on this topic.
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Nebulae Around Resolved Wolf-Rayet Stars

“Reality is that which, when you stop believing in it, doesn’t go away.”

— Philip K. Dick

2.1 Introduction

Since the suggestion that some Wolf-Rayet stars could be creating nebulae via mass loss (John-

son & Hogg, 1965), efforts to detect more examples have been ongoing. The first attempt to

morphologically categorise nebulae presumed to have been created by the influence of WR stars

was performed by Chu (1981), who devised three broad categories for possible nebulae: W, R

& E.

W type nebulae are those which are assumed to be “Wind-Blown Bubbles”. These objects

were inferred to have been created when material ejected from the star interacted with the

surrounding ISM. R type nebulae were postulated to be those in which the strong radiation field

from the host star excites the surrounding ISM. These are only visible when the surrounding

ISM is of sufficient density to produce detectable emission.

Our interest lies with the E type nebulae, which were defined to be those which were

likely to contain processed ejecta from the progenitor star. These were suggested by Chu to

have been formed by a violent mass loss episode recently in the star’s history, which may

not have been isotropic or homogeneous. The nebulosity can therefore be very clumped and

irregular. The lifetime of E type nebulae should be much lower than for the other two types,

since as the ejected mass expands as it moves away from the star, its surface brightness should

diminish very quickly. It should be noted that actual Wolf-Rayet nebulae can (and do) display

any combination of the above traits. Chu (1991) modified the scheme to refine the definition

of E type nebulae, splitting the category into Stellar Ejecta nebulae and Bubble/Ejecta (W/E)

nebulae. The former covered pure E type nebulae as defined above, the latter introduced to

cover the case of ejecta shells having merged with the swept up shell.
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The Chu (1981, 1991) criteria were used for the southern galactic plane surveys of Marston

et al. (1994a,b) and Marston (1997) but not for the northern survey of Miller & Chu (1993)

which described the probability of a “ring” nebula being present. The survey of the environs of

all Magellanic Cloud WR nebulae by Dopita et al. (1994) also ignored the Chu categorisation

system and commented only on the presence of a ring or whether the star was in a superbubble.

In this work we shall consider only morphological information in our classifications of new

nebulae and will not delve into the physical details of their formation and evolution. Theory and

models of the formation of nebulae around massive stars were presented by Chu (1991, 2003).

Recent publicly available Hα surveys (Drew et al., 2005; Parker et al., 2005) allow re-

inspection of the environs of all known WR stars with a view to identifying new E type nebu-

losities which can provide constraints on the nucleosynthetic effects of WR stars.

2.2 Morphologies of Spectroscopically confirmed WR Ejecta neb-

ulae

The W, R and E categories of Chu (1981) and Chu (1991) were tested over the following decades

as spectroscopic data for the different subtypes of WR nebulae began to appear.

For the two nebulae which Chu (1981) regarded as E type (M 1-67 and RCW 58) the

nebulosities were found to be enriched relative to the ISM in nitrogen and helium but depleted

in oxygen (Kwitter, 1984; Esteban et al., 1991). The anonymous nebula surrounding WR 16

was also shown to be comprised of material with a very similar abundance pattern to those

of M1-67 and RCW 58 (Marston et al., 1999). The detection of processed material in these

nebulae was a major success for the categorisation scheme, as this showed that it is possible to

infer likely patterns in the chemical composition of a WR nebula by studying its morphology.

However, material displaying the same patterns of enrichment was also detected in NGC

6888 - a nebula Chu had initially classified as W type (Esteban & Vilchez, 1992; Moore et al.,

2000). This showed clearly that the lines between the initial Chu classes can be blurred, indeed

NGC 6888 - see Figure 2.1, top right - appears to be a mixture of different kinds of nebulosity.

The edge looks like a wind-blown shell, whilst there is evidence of flocculent nebulosity in the

central regions, suggesting ejected material. NGC 6888 was later re-classified as a W/E nebulae

by Chu (1991).

Garnett et al. (1993) noted that the nebulosity around BAT99-16 in the LMC displays the

same abundance pattern as RCW 58, M 1-67, WR 16 & NGC 6888.

The results of Esteban et al. (1990) & Esteban et al. (1991) also suggested another class

of WR nebula, those containing helium overabundances without any enrichment in heavier el-
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Figure 2.1: Morphologies of WR Ejecta nebulae spectroscopically confirmed to have a chemi-

cally processed component. Clockwise from top left: SHS imagery of NGC 2359 (WR 7,WN4);

IPHAS montage of NGC 6888 (WR 136, WN6h), kindly supplied by Nick Wright, IfA Har-

vard; IPHAS image of M1-67 (WR 124, WN8h); SHS imagery of RCW 58 (WR 40, WN8h).

North is up and east to the left in all images.
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ements. Two nebulae, NGC 2359 (Esteban et al., 1990) and G 2.4+1.4 (Esteban et al., 1991),

which present this abundance pattern display striking similarities, but appear to have been cre-

ated in different ways. G 2.4+1.4 was initially classed as a supernova remnant (Dopita et al.,

1990), but Chu (1991) categorised it as W type. G 2.4+1.4 was later found to have a mass of

4200 M� (Gosachinskij & Lozinskaya, 2002) which implies that the nebulosity is primarily

swept up, agreeing with the Chu (1991) categorisation. NGC 2359 is a very clear example of a

wind-blown bubble. The ionized mass of NGC 2359 has been estimated to be of around 70M�

and the mass of the whole complex over 1000M� (Cappa et al., 1999), which clearly precludes

a pure ejecta origin. However, both nebulae display helium enrichment - showing again that the

lines between Chu’s classes can be blurred.

The above spectroscopic results lead to the conclusion that the morphological criteria for

ejecta nebulae presented by Chu (1981) may be too stringent, a problem addressed by the intro-

duction of the Bubble/Ejecta (W/E) class (Chu, 1991). Wind-blown bubbles can also contain

ejecta in their filamentary nebulosities (e.g. NGC 6888).

The above spectroscopic information suggests the following, revised criteria: ejecta nebula

candidates must have either a highly flocculent structure, as in Chu’s scheme or, alternatively,

possess flocculent structure within their wind-blown shells, similar to that shown by NGC 2359,

NGC 6888 & NGC 3199.

Radiatively excited nebulae, (R type) are more difficult to classify under this scheme as

they tend to possess highly irregular morphologies which are dependent not on stellar outflows

but on the density distribution of material in the local ISM.

2.3 Expected Wolf-Rayet Nebular Size Scales

The angular scales over which Wolf-Rayet Nebulae have previously been detected span several

orders of magnitude, with the smallest being of the order of arcseconds in diameter (BAT99-2,

LMC, Dopita et al. (1994)) and the largest were claimed to have an angular radius of a degree or

more e.g. θ Muscae (Guillermo Gimenez de Castro & Niemela, 1998). However the nebulosity

surrounding θ Muscae has been shown not to be related to the star (Stupar et al., 2010a).

An upper limit on the angular radius of a nebula composed of ejecta from the WR or

immediate pre-WR phase is given by: θ =
τWR×Vexp

D where Vexp is the expansion velocity

of the nebula, D is the distance to the nebula and τWR is the time spent in the WR phase

∼ 3× 105 years (Crowther, 2007). We have chosen this upper bound as a representative figure

for the largest wind blown nebulae, as it is suspected that ejecta can expand much faster in

the evacuated volume within a wind-blown bubble, allowing ejecta nebulae to possibly take on
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much larger sizes. Vexp is a typical expansion velocity of a WR nebula: ∼ 25 − 50 km/s (Chu

et al., 1982; Chu, 1983) we assume this figure is typical for expanding shells around galactic

WR stars.

For a WR star at 1 kpc this predicts a maximum angular diameter of ∼ 45 arcmin. We can

also estimate the distance threshhold below which 30 arcmin extractions from the SHS could

be insufficient to encompass a WR nebula. Rearranging for distance and using θ = 0.5◦, this

yields a distance of ∼ 1.5 kpc.

2.4 SHS Hα imagery

The AAO/UKST Southern Hα Survey (SHS) took place during the early 2000’s and covered

the entire southern galactic plane (Parker et al., 2005). The survey was one of the last examples

of the use of photographic imaging in astronomy and demonstrates neatly the advantages and

disadvantages of this approach. The survey was performed using the 1.2m UK Schmidt Tele-

scope (UKST) at the Anglo-Australian Observatory (AAO), on 5 degree square photographic

plates using three hour exposures. Each plate was subsequently transported to the Royal Obser-

vatory Edinburgh (ROE) and digitised using the SuperCOSMOS plate scanning machine at a

resolution of 0.67 arcseconds/pixel. The data were then montaged and made publicly available

via the internet.

The advantages of photographic plates are twofold, firstly a large amount of data can be

captured on each 25 square degree exposure, with comparatively little effort needed to extract

images. Secondly the photographic emulsion was tuned such that the exposures were sensitive

to very faint structure. The obvious disadvantage to utilising these data is the difficulty of flux

calibration, since photographic emulsion is not a linear detector and intensity calibration can be

very troublesome.

The SHS also covered the Magellanic Clouds and while these data were digitised by the

SuperCOSMOS project they were never made publicly available. They were kindly made avail-

able to us by the Wide-Field Astronomy Unit (WFAU) at the ROE-IfA (Royal Observatory

Edinburgh - Institute for Astronomy) .

The SuperCOSMOS interface to the SHS imagery allows extractions of up to 900 square

arcminutes, in order to inspect WR nebulae larger than this the “Montage” package, produced

by NASA’s IPAC (Infrared Processing and Analysis Center), was utilized to combine SHS

extractions.

Northen galactic plane WR stars were examined using IPHAS survey data (Drew et al.,

2005). However as no disagreement was found between IPHAS imagery and the survey of
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Miller & Chu (1993) no further discussion will be presented.

2.5 Results & Comparisons with previous work

2.5.1 Results

Each southern star in the Sixth catalogue of Galactic Wolf-Rayet Stars (van der Hucht, 2001)

and its annex (van der Hucht, 2006) was inspected visually using SHS imaging data as described

above. The results are summarised in Table 2.3. Each WR star in the LMC catalogue of

Breysacher et al. (1999) (hereafter BAT99) was also visually inspected and resolvable nebulae

categorised in the same way. SMC WR stars were also investigated but none appeared to possess

resolvable ejecta nebulae. In addition, the positions of several WR ring nebulae that were

discovered by Wachter et al. (2010) at mid-infrared wavelengths were inspected - yielding one

candidate ejecta nebula.

For the LMC it is difficult to identify WR nebulae whose absolute sizes are as small as

some Galactic WR nebulae such as M1-67, since their angular sizes would have been smaller

than the overexposed PSF of the host star in SHS imagery. Conversely, if we place the largest

LMC WR nebula: Anon (HD 32402) at 1 kpc, it would have an angular size of 1.5◦ which

would not have been discernable to our survey. However very few (< 10) WR stars are closer

than 1 kpc. This effect means that we cannot see details on the same scales as their galactic

counterparts; we can only determine likely candidates for further study.

2.5.2 Comparison with previous work

A comparison of our results with those presented by Chu (1991) and by Marston (1997) is

presented in Table 2.2.

The survey of Marston (1997) listed 22 southern Galactic WR ejecta nebulae, as opposed

to the 10 that we find in the SHS imagery of the same region. There are several reasons for

this disparity. We omitted WR stars that were in clusters or were heavily embedded within H II

regions, this accounts for 8 of the Marston (1997) sample which are classified as having an E

component (WR 6, 11, 18, 38, 42, 68, 85 and 98) which will not be discussed in section 2.5.3.

Secondly imagery used by Marston (1997) was obtained using the Curtis Schmidt 0.6m

telescope at the Cerro Tololo Inter-American Observatory (CTIO) in Chile, with a resolution

of 1.94 arcseconds per pixel compared to the SHS resolution of 0.66 arcseconds per pixel. A

direct comparison of SHS and Marston (1997) images of the clear nebulosity around WR 16 is

shown in Figure 2.2.
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Table 2.2: WR Nebular Classifications
Cat. No. Spectral

Typea
Chu

(1991)b
Marston

(1997)b
This

Work

WR 6 WN5 W E E

WR 7 WN4 W W/E W/E

WR 8 WN7/WC4 E

WR 11 WC8+0 E

WR 16 WN8h W/E W/E

WR 18 WN4 W W/E W/E?

WR 30 WC6+O W/E

WR 31 WN4+O E

WR 38 WC4 E?

WR 40 WN8h W/E W/E W/E

WR 42 WC7+O E

WR 42d WN4 W/E

WR 52 WC5 R E/R

WR 54 WN4 E/R

WR 57 WC7 E?

WR 60 WC8 E?

WR 68 WC7 W/E

WR 71 WN6+? E E

WR 75 WN6 W/E W W/E

WR 85 WN6 R W/E

WR 91 WN7 W/E R/E?

WR 94 WN6 E

WR 98 WC7/WN6 W/E

WR 101 WC8 W/E

WR 102 WO2 W W R/E

WR 116 WN8h E

WR 124 WN8h E E

WR 131 WN7 R

WR 134 WN6 W

WR 136 WN6h W/E W/E

a: from van der Hucht (2001), except WR 8 from Crowther et al. (1995)

b: uses the categories of Chu (1991)
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Figure 2.2: WR 16 (WN8h) The image from Marston (1997) is shown on the left, the image

from the SHS is shown on the right. The main orb of nebulosity around WR16 can be clearly

seen in the SHS image while it is less prominent in the left hand image. In the SHS image a

second and possibly a third concentric ring section can also be discerned. In these images north

is up and east is to the left.

2.5.3 Notes on Individual Objects

WR 8 - HD 62910

In the SHS imagery of the region around WR 8 (Figure 2.3) one can clearly discern nebulosity

that appears to be associated with the star. It is aligned along radial “spokes” with an especially

prominent example to the south-west. These spokes define a circular structure approximately 5

arcminutes in diameter, internal to which there are several prominent clumps of nebulosity.

The spectral type of the host star is listed by van der Hucht (2001) as WN7/WC4. Its

spectrum places WR 8 neatly between those of WN and WC stars (Crowther et al., 1995). This

was initially interpreted as a sign of binarity - a system comprising both WC and WN stars -

however Crowther et al. (1995) showed that the wind properties were the same for both the N

and C components - implying a single star origin.

The presence of an ejecta nebula around such an unusual host star - a star possibly seen

during the transition from the WN to the WC phase - is especially interesting since the compo-

sition of the nebula could be helpful towards understanding the evolutionary state of the star.

WR 30 - HD 94305

WR 30 was listed as posessing a ring nebula by Marston (1997). The SHS imagery shows some

filamentary structures around the star, some of which take the form of arcs roughly centred

on the star, shown in 2.4. The structure shown appears to be related to the star however there
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Figure 2.3: The SHS Hα image of the field around HD 62910 (WR 8, WCE+) shows newly

revealed nebulosity. North is up, east is to the left.
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Figure 2.4: SHS image subtraction (Hα - Short Red) of the field around WR 30 (WC6+O). The

filamentary structures were listed as a ring nebula of W/E type by Marston (1997). North is up

and east is to the left.
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Figure 2.5: SHS image subtraction (Hα - Short Red) of the field around WR 31 (WN4+O7).

The very faint, indistinct arc of emission to the west was suggested to be part of a ring by

Marston et al. (1994b) and Marston (1997). North is up, east is to the left.

is no morphological evidence in the form of flocculence within the arcs to indicate that this

nebulosity contains ejecta.

WR 31 - HD 94546

The nebula around this object, shown in Figure 2.5, was classified by Marston et al. (1994b) as

an R type ring nebula, with a diameter of 6.7 arcminutes and was later upgraded to ejecta (E)

type by Marston (1997). One can perhaps see faint traces of what appears to be an arc to the

east of the star, but this is inconclusive and there is no other evidence for structure on the scales

indicated by Marston or that this could be an E type WR nebula.
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Figure 2.6: SHS image of the region around WR 52 (WC5). The faint diffuse emission has

been suggested to be part of a ring, however this is not supported by the SHS imagery. North is

up, east is to the left.
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Figure 2.7: SHS image of the region around WR 54 (WN4). The filamentary nebulosity sur-

rounding the star has been proposed to possibly be part of a ring. North is up, east is to the

left.

WR 52 - HD 115473

The nebulosity around this object, shown in Figure 2.6, was identified by Marston et al. (1994a)

as a possible ring nebula with radius 60 arcminutes. Later it was classified as an R type nebula

by Marston (1997) because of diffuse [O III] emission. The region which Marston identified as

being one half of a ring is shown in the SHS imagery but does not appear to exhibit any ring-like

structures. Although WR 52 appears to be embedded in diffuse Hα emission, there appears to

be no evidence for an ejecta nebula.

WR 54

This object, shown in Figure 2.7, was noted as a possible faint ring nebula of radius 20 ar-

cminutes by Marston et al. (1994a). Subsequently this object was classified as an E/R type by
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Figure 2.8: SHS image of the region around WR 57 (WC7). The filament running east-west in

this image was suggested by Marston (1997) to be a possible ring section. North is up, east is

to the left.

Marston (1997). In the SHS image we can see an apparent arc of nebulosity to the NW but this

appears to be filamentary and of dubious relation to the star.

WR 57

WR 57 was suggested to have a possible ejecta nebula of radius 8 arcminutes by Marston (1997).

The SHS image, Figure 2.8, shows a filament running E-W across the image, with no obvious

evidence of a connection with WR 57.

WR 60

WR 60 was claimed to have a “90% complete” ring nebula with a radius of 9 arcminutes by

Marston et al. (1994b) and later tentatively ascribed E type status by Marston (1997). The SHS

image, shown in Figure 2.9, confirms the detection of a possible ring section to the NE of WR
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Figure 2.9: SHS image subtraction (Hα - Short Red) of the field around WR 60 (WC8). This

provides confirmation of the ring section previously detected by Marston et al. (1994b). North

is up, east is to the left.
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60. However there is no evidence of the star being further encircled beyond this, suggesting

that this nebulosity is merely a diffuse filament.

Stupar et al. (2010b) show that the arc of nebulosity possesses spectral features similar

to those associated with supernova remnants (SNRs) and propose a new designation for this

nebula as an SNR - G310.5 + 0.8.

WR 71

The SHS image, shown in Figure 2.10, confirms the tenuous nebula around WR 71 first noted

by Marston et al. (1994b) and later classified as an E type nebula by Marston (1997). It appears

similar to RCW 58 and anon (WR 8), in that it has highly clumped nebulosity to the south,

although much fainter than either of the above. The SHS subtracted (Hα-R) image (Figure

2.10) also shows some arcs to the west while improving on the detail of the flocculent structure

to the south. The progenitor is a runaway star and as such is significantly out of the plane

(z = 1190 pc) suggesting that this object may have unique kinematics due to the low ISM

density at this z distance. For further discussion of this object see Section 2.6.3.

WR 91

For the region around WR 91, shown in Figure 2.11, the nebulosity was classified as W/E by

Marston (1997). The structure, however, is not centred on WR 91 in the manner that would

be expected of a nebulosity created by a stellar wind. Instead the associated diffuse nebulosity

appears to be radiatively excited.

WR 94

The nebulosity around WR 94, shown in Figure 2.12, appears to be radiatively excited by the

star. It displays no signs of clumpiness or flocculence and hence we are unable to confirm this

as an ejecta nebula of radius 11 arcminutes as suggested by Marston (1997).

WR 101

The strangely shaped nebula near WR 101, shown in Figure 2.13, was detected and classified

as a W/E type nebula by Marston et al. (1994b). Upon inspection of the SHS imagery it is

clear that there is a main clump to the south east of the star that is reminiscent of other ejecta

type nebulae, however it is unusual in that it appears to be so highly asymmetric, resembling

the northern clump in the Bubble Nebula (NGC 7635) around the Of-type star BD+602522.

The arcs of nebulosity to the north and east are possibly associated with the star. Cappa et al.

(2002) showed that the ionized mass of the nebulosity is of the order 200M� for a distance of

3.2 kpc, too high to be pure ejecta. Thus this is likely a swept up ISM nebula with at best some

processed component.
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Figure 2.10: SHS image of the field around WR 71 (WN6) (Hα-red subtraction). The tenuous

flocculent nebulosity to the south strongly suggests stellar ejecta, as noted by Marston et al.

(1994b).
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Figure 2.11: SHS image subtraction (Hα - Short Red) of the field around WR 91 (WN7). North

is up, east is to the left.
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Figure 2.12: SHS image subtraction (Hα - Short Red) of the field around WR 94 (WN6). North

is up, east is to the left.
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Figure 2.13: SHS image subtraction (Hα - Short Red) for the field around WR 101 (WC8).

North is up, east is to the left.
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Figure 2.14: SHS image for the field around A48 (WN6). North is up, east is to the left.

A48: Wachter et al. (2010) - 50

This object, shown in Figure 2.14, was discovered by Abell (1966) appears to have two very

distinct complete rings. The possible implications of nebular detections with multiple rings are

discussed in Section 2.6.1. The Wachter et al. (2010) ring seen at 8 and 24 µm is coincident

with the optical ring which appears in the R band as well as Hα.

The SHS image lacks the resolution to determine whether the rings have any flocculent

structure and as such it is difficult to classify this nebulosity beyond the default classification

of W type. The Spitzer 8µm image of A48 presented by Wachter et al. (2010) appear to have

higher resolution and show more structure in the inner ring. This implies that the inner ring is

likely to be composed of ejected stellar material, if this is the case then the classification will

be W/E.
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Figure 2.15: SHS image for the field around the LMC star HD 32402 (WC4). North is up, east

is to the left.
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Figure 2.16: SHS image for the field around the LMC star HD 268847 (WN4b). North is up,

east is to the left.

BAT99-11 - HD 32402

The nebulosity around BAT99-11 (Figure 2.15) appears ovoid in the same manner as NGC

6888, a bright shock with clear internal structure. If a bona-fide WR nebula it is the largest with

the main bubble having a radius of almost 13 pc and distinct arcs at still greater distances. In

the SHS imagery it is impossible to make out the internal structure beyond several filaments

confined to the interior of the main shock.

We classify this object as a W/E type nebula based on the internal structure and obvious

crescent ring section created by wind interactions.

BAT99-15 - HD 268847

BAT99-15, shown in Figure 2.16, has two clear nebulous arcs to the south. These arcs reside

in a region of diffuse Hα emission suggesting that they are the interaction between stellar wind

and this diffuse material. Given the faintness of this object however it is impossible to clearly

rule in or out any E type contribution to this W type nebulosity.
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Figure 2.17: SHS image for the field around the LMC star HD 33133 (WN8h). North is up,

east is to the left.

BAT99-16 - HD 33133

The crescent nebulosity to the north and west of BAT99-16 (Figure 2.17) is deceptively small,

the arc of radius 3.8 pc is actually larger than for NGC 6888 which has a radius of 3.0 pc. As

with BAT99-15 we cannot see any internal structure, so it is impossible to ascertain whether the

classification should be W or W/E.

BAT99-65

The oval ring nebula around BAT99-65 (Figure 2.18) suggests a W type origin. Again, we

cannot reliably ascribe any further classification to this object.



68 Chapter 2. Nebulae Around Resolved Wolf-Rayet Stars

Figure 2.18: SHS image for the LMC field around BAT99-65 (WN4). North is up, east is to the

left.



2.6. Discussion 69

2.6 Discussion

In Table 2.3 we summarise the properties of each nebula detected in the MW and LMC surveys

along with the implied physical extent. The fractions of WR nebulae in the MW or LMC

with either WN or WC central stars are presented in Table 2.4 along with the fractions for the

complete WR population.

2.6.1 Multiple Rings?

Several WR stars have been suggested to have multiple rings, e.g. two by Marston (1995),

however WR 16 represents the clearest example of a multiple ringed object as both concentric

rings are clearly visible in Hα (Figure 2.2). The inner ring is undisputably created by stellar

outflows, as has been confirmed spectroscopically (Marston et al., 1999) - the outer ring though

could be swept up material. If the outer ring contains some component, however small, of

processed material, the relative compositions and kinematics of the structures could provide

useful constraints on the evolution of the star.

The recent discovery of a new double ring structure surrounding a WR star (Wachter et al.

(2010) - 50) presents another opportunity to study multiple epochs of a star’s history. The SHS

imagery does not reveal enough detail to reveal whether the inner ring is likely to be ejected

material. However, as mentioned in Section 2.5.3, there is some evidence of knots in the inner

ring in the 8 µm image presented by Wachter et al. (2010).

2.6.2 Central Star Properties

The most prominent WR ejecta nebulae are associated with WNh stars, namely: WR 16, 40,

124 and 136. These nebulae have all been confirmed to contain nucleosynthetic products. WNh

stars still have some hydrogen left in their atmospheres, i.e. the loss of the H dominated en-

velope is not complete (Crowther, 2007). The fact that there are bright, N and/or He enriched

nebulae around such objects is consistent with the material formerly having made up part of

their envelopes. That the shells of matter around these stars are broadly circular indicates that

the beginning of the WR phase for these objects may have been dominated by an extreme mass

loss event which created the nebulae.

In section 2.5.3 we commented on the unusual spectral type of WR 8, (WN7/WC4);

(Crowther et al., 1995). This transition star’s nebulosity is strongly reminiscent of RCW 58

- a confirmed ejecta nebula. Assuming that it is an ejecta nebula, the nebula around WR 8

may provide an opportunity to spectroscopically probe matter ejected prior to or during this

transition phase.
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Table 2.4: Results of Survey

WN WC (WN/WC

& WO)

WR

Milky Waya

WR stars with

Ejecta nebula

10 1 2 13

Total WR stars 127 87 13 227

Ratio 0.08 0.01 0.15 0.06

LMCb

WR stars with can-

didate Ejecta nebu-

lae

3 1 0 4

Total WR stars 108 24 2 134

Ratio 0.03 0.04 0.00 0.03

a: Not including WR stars discovered by Wachter et al. (2010) as they were found by

examining central stars of detected IR ring nebulae.

b: Counting all O3If*/WN6-A stars as isolated WN type.

Table 2.5: WR Nebulae with Binary Central Stars

Isolated WR Binary WR All WR

Milky Waya

Ejecta Nebulae 12 1 13

All WR Stars 141 86 227

Ratio 0.09 0.01 0.06

LMCb

Candidate Ejecta

Nebulae

4 0 4

All WR Stars 102 32 134

Ratio 0.04 0.00 0.03

a: Not including WR stars discovered by Wachter et al. (2010).

b: Counting all O3If*/WN6-A stars as isolated WN type.
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2.6.3 Binarity

From Table 2.3 a curious fact emerges: only two out of the nineteen WR Ejecta nebula central

stars listed here are binaries. In Table 2.5 we summarise the binary fractions for the WR pop-

ulations in the MW and LMC along with the fraction that we have identified as ejecta nebulae

for each case. The binarity classifications of van der Hucht (2001) and Breysacher et al. (1999)

were adopted for the Galactic and LMC populations respectively. It is striking that the fraction

of binary WR stars having ejecta nebulae is so low.

If the fraction of WR stars with ejecta nebulae was the same for binaries as single WR

stars we would expect ∼ 10% of WR binary stars to possess ejecta nebulae - which translates

to around 8–9 expected in the MW compared to 1 observed (WR 71). In the LMC there are

no binary WR stars with ejecta type nebula, whereas we might expect ∼ 1–2 LMC binary WR

stars to possess ejecta nebulae.

It has long been speculated that there are two methods of creating WR stars, mass transfer

between binary partners and mass loss of an isolated star (e.g. Smith & Payne-Gaposhkin 1968).

A possible reason for the relative absence of ejecta nebulae around binary WR stars is that mass

transfer onto a companion inhibits the mechanism that produces an ejecta nebulae around single

WR stars.

The nebulosity surrounding WR 71 (see Figure 2.10) is an exception to the previous dis-

cussion. The progenitor star is of spectral type WN6+? (van der Hucht, 2001). Isserstedt et al.

(1983) suggested that the binary partner is a low mass evolved stellar remnant, either a neutron

star or a black hole and that the supernova which created the collapsed object likely occured

when the system was in the disk of the MW. The loss of mass which occured then left the bi-

nary companion (which we now see as WR 71) travelling along whichever velocity vector it

possessed at the moment of the supernova. The large elevation of WR 71 above the Galactic

plane (z = −1185 pc) suggests that a significant component of this velocity was in the z di-

rection. The nebulosity is physically much larger than counterparts in the plane because the

density of the ISM at this elevation is much lower, implying that all the circumstellar material

is ejecta, as there is so little ISM to be swept up.

It is odd, considering the previously noted anticorrelation of ejecta nebulae and binary WR

systems, that such a clear ejecta nebulae should surround such a star. However the explanation

may lie in the very low mass of the unseen binary companion (∼ 3M� - Isserstedt et al. 1983),

since normally WR binary companions are O stars of ∼ 30M� (van der Hucht (2001) - Tables

18-19). A low mass binary companion may not influence the later creation of an ejecta nebula

to the same degree as a less evolved high mass companion. This echoes the work of Nichols &
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Fesen (1994), who discussed different scenarios for massive binary star evolution. If the WR 71

nebulosity originated in this way, then the material that comprises the nebula would be expected

to have the same enrichment pattern as other WR nebulae. If, on the other hand, the nebulosity

is the product of more complex binary interaction and mass transfer then its composition would

be more difficult to predict.

This suggests that over the history of a binary system with two close stars of high initial

mass the more massive partner will not create an ejecta nebula - all the mass will be accreted

by the partner - while the initially lower mass star can create an ejecta nebula as its mass loss is

not as influenced by its low mass post-SN companion.

2.7 Conclusions
The morphological classification scheme of Chu (1981, 1991) has been discussed and compared

with spectroscopically derived abundances of WR nebulae and a modified set of criteria for

ejecta nebulae around WR stars derived.

Using SHS Hα survey data we have examined the environs of each WR star in the Milky

Way and Magellanic Clouds for evidence of the presence of nebulae that could be composed of

stellar ejecta. This has yielded one new strong candidate (WR 8), confirmed the morphology of

another (WR 71) and shown several previously claimed examples to be unlikely candidates.

A prevalence of WNh subtypes amongst ejecta nebulae central stars was found. In addition

an anti-correlation between WR binarity and the occurence of an associated nebulosity was also

found. It is speculated that this may be because binary interactions and mass transfer may inhibit

the formation of an ejecta nebula. This hypothesis is discussed in light of the status of WR 71 -

a binary runaway star with an ejecta nebula.



Chapter 3

Spectroscopic Observations of Seven

Wolf-Rayet Nebulae

“Errors using inadequate data are much less than those using no data at all.”

— Charles Babbage

3.1 Introduction

Massive stars are known to be prodigious recyclers of the ISM, for example a 60 M� star is

thought to end its life as a > 5 M� black hole, implying that that the star will expel ∼ 55

M� of material (91% of its initial mass) into the ISM during its lifetime. This mass loss,

either as a smooth wind or a violent episode, can create circumstellar nebulae. We can help

to quantify massive star recycling, in terms of its nucleosynthetic effects, by spectroscopically

investigating the nebulae they create. In this Chapter the methods and results of such a study

will be presented, with the aim of discovering whether a selection of nebulae around massive

stars contain any abundance enhancements indicative of stellar nucleosynthesis.

In the previous chapter we surveyed and classified nebulae around WR stars, discovering

a new nebula around a WN/WC type star and identifying an LMC WC star that would be ap-

propriate for this project. These nebulae, along with a “control group” of other WR nebulae

were identified and observed with ESO’s 3.6m NTT/EFOSC2 (ESO faint object spectrograph

and camera) (Buzzoni et al., 1984; Snodgrass et al., 2008) in long slit spectroscopy mode with

grisms covering regions from 3100-10000Å that included a variety of standard nebular diagnos-

tics. Complementary service mode observations of NGC 3199 around WR 18 were performed

concurrently using ESO’s UVES instrument mounted on UT2 of the Very Large Telescope

(VLT) (Dekker et al., 2000).

Observations of WR nebulae have been performed several times in the past, usually focus-

ing on the brightest galactic examples e.g. Kwitter (1984); Esteban et al. (1990, 1991, 1992);
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Esteban & Vilchez (1992); Marston et al. (1999). As summarised in Chapter 2, the nebular

abundances found tend to fall into three groups: no enrichments (typically W type nebulae);

helium enrichment (some W/E type nebulae) and full blown He and N enrichments which are

taken to be evidence for stellar ejecta. None of the previous studies have attempted to detect

the far-red carbon lines, and therefore no neutral carbon abundances exist for these nebulae.

Furthermore, no ionized carbon abundances have ever been measured for these nebulae.

Massive stars have been mooted as possible sites of significant carbon formation (Henry

et al., 2000). Wolf-Rayet stars in their WC phase appear to be a plausible manifestation of this

idea, as they possess very carbon rich atmospheres and high mass loss rates. This assertion has

proven difficult to quantify given the challenge of observing gaseous carbon in nebulae around

evolved stars. The Collisionally Excited Lines (CELs) of carbon are elusive, lying in relatively

inconvenient parts of the electromagnetic spectrum: e.g. the [C II] fine structure line in the far

IR (158µm), various lines in the UV (e.g. C III] 1909Å) and [C I] lines in the far red (8700-

9900Å). Observations of the far-IR and UV lines rely upon satellite missions like Herschel and

the HST (Hubble Space Telescope). In contrast, the [C I] lines can be accessed from the ground,

should they have sufficient intensity.

The far-red carbon triplet ([C I] 8727, 9824, 9850Å) is routinely observed in certain astro-

physical contexts, particularly from planetary nebulae and H II regions. Liu et al. (1995) first

sucessfully identified the triplet in PN spectra, detecting all three in observations of IC 4406

and NGC 2240. The triplet is also common in the photodissociated regions (PDRs) surround-

ing H II regions, e.g. Munch & Hippelein (1982) for NGC 2024, Burton et al. (1992) for NGC

2023. However it was subsequently shown that in PDRs the lines must arise from recombina-

tion rather than collisional excitation (Escalante et al., 1991) which is also the case for some

PNe (Danziger & Goad, 1973; Jewitt et al., 1983) but not for the PNe observed by Liu et al.

(1995).

From the data obtained we derive nebular physical conditions using standard nebular den-

sity and temperature indicators and then use these to derive elemental abundances from the

CELs. We then compare these quantities with previously published nebular physical conditions

and abundances for these nebulae and with those predicted by stellar evolution models. For

the nebulae which are previously unobserved, we determine whether there is any stellar ejecta

content within the nebular material.
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Table 3.1: Target Parameters

Nebula Central

Star

Spectral

Typea
v mag.a Aav E(B-V)a α δ

Galactic

Anon WR 8 WN7/WC4 10.48 2.64 0.85 07 44 58.2 -31 54 29.6

Anon WR 16 WN8h 8.44 2.05 0.66 09 54 52.9 -57 43 38.3

NGC 3199 WR 18 WN4 11.11 2.92 0.94 10 17 02.3 -57 54 46.9

RCW 58 WR 40 WN8h 7.85 1.56 0.50 11 06 17.2 -65 30 35.2

LMC

Anon BAT99-2 WN1 16.22 < 0.5 04 49 36.1 -69 20 54.5

Anon BAT99-

11

WC4 13.95 < 0.5 04 57 24.1 -68 23 57.3

Anon BAT99-

38

WC4+O 11.50 < 0.5 05 26 03.9 -67 29 57.0

a: from van der Hucht (2001) (galactic), Breysacher et al. (1999) (LMC)

3.2 Target Selection

The LMC WC star BAT99-11 and the Milky Way WN/WC star WR 8 are carbon rich (WC type)

WR stars with ejecta-type circumstellar nebulae. One of the aims of our observing program

was to attempt to detect the far-red carbon triplet ([C I] 8727, 9824, 9850Å) in the nebulae

surrounding both stars, as such these two objects were given a higher fraction of the observing

time than the other nebulae. Four other nebulae, each around a nitrogen rich (WN type) WR star,

were chosen as a representative sample against which comparisons could be drawn; both with

the nebulae with WC central stars and nebulae analysed by previous authors. The parameters

of each of the chosen targets are summarised in Table 3.1.

Four of the targets (WR 16, NGC 3199, RCW58 and BAT99-2) have been the subject of

previous spectroscopic analyses, as briefly discussed in the previous chapter. In general helium

and nitrogen overabundances are found, however in each case the origin of the ejecta is still

subject to debate in that it is possible that the nebular material could have been ejected during

the red supergiant (RSG) or luminous blue variable (LBV) phases through which massive stars

pass prior to becoming a WR star.
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3.2.1 Previous Spectroscopic Observations

RCW 58 was the subject of several spectroscopic investigations in the years following its identi-

fication as a potential WR ejecta nebula by Chu (1981). Kwitter (1984) presented the first long

slit spectra of the nebulosity, which was found to be highly enriched in helium and nitrogen

at an assumed temperature of 7500K. Subsequently the dynamical structure of the nebula was

revealed by Smith et al. (1988) to be a combination of a quickly expanding shell interspersed

with higher density clumps. It was speculated that the higher density material was the product

of pre-WR stellar evolution and did not represent ejecta from the WR phase.

The anonymous circumstellar nebula surrounding WR 16 has been observed by Marston

et al. (1999) with surprising results. The nebular spectrum is devoid of several expected lines

e.g. [O III] 4959, 5007Å; [S II] 6717, 6731Å. Marston et al. (1999) suggested that this was due

to high densities (ne > 104 cm−3 ) suppressing these lines. They noted that the [S II] 6717,

6731Å lines reappear in the outer regions of the nebula, which was assumed to indicate a much

lower density of a tenth of the value which they assumed for the inner nebula.

NGC 3199 has been the subject of several spectral analyses, albeit none with comparable

resolution to our VLT/UVES dataset. Esteban et al. (1992) found abundances generally in

accordance with Galactic HII regions.

The circumstellar nebula around BAT99-2 was first observed spectroscopically by Garnett

& Chu (1994) and subsequently by Nazé et al. (2003) (although the star was referred to in

both cases as Brey-2). Both found that the nebula was highly ionized - displaying He II and

Ar IV lines which is not normally observed in WR nebulae. BAT99-2 is a WN2 type star

(Foellmi et al., 2003), amongst the hottest WR stars, with a surface temperature above 90,000K

(Crowther, 2007), which produces very intense UV radiation and hence ionizes its surroundings

to a greater degree than the nebulae around other, cooler, WR stars. No significant abundance

enhancements were detected in the nebula by Nazé et al. (2003).

3.3 Observations

3.3.1 NTT/EFOSC2

Most of the observations were performed in visitor mode over five days in December 2009 us-

ing the EFOSC2 instrument mounted on the 3.6m ESO New Technology Telescope (NTT) at

La Silla Observatory, Chile. Two grisms were used in long slit spectroscopy mode providing

a wavelength coverage from 3095-5085Å and 6015-10320Å. The EFOSC2 slit length was 4.1

arcmin which, due to the fact that almost all of our targets had smaller angular sizes than this,

enabled us to use the off-target portions of the slit for sky-subtraction. In all science observa-
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tions the slit width was set to 1 arcsecond, while for standard stars the widest slit (5 arcseconds)

was used.

Grisms 14 (hereafter Blue) and 16 (hereafter Red) respectively have resolutions (FWHM)

of 8Å and 14Å respectively. This allowed us to use 2*2 binning throughout our observations

without losing any information as the line profiles were still adequately sampled in this binning

mode. This translated to 1030 pixels in both the dispersion and spatial axes.

A log of the nebular observations is presented in Table 3.2. Included in Table 3.2 is the

offset of each observation from the parallactic angle as this is thought to be at least partially

responsible for reddening problems which emerged later. A corresponding log of our observa-

tions of the central stars of our target nebulae is presented in Table 3.3. It did not prove possible

to observe two of the LMC WR central stars as they were too faint. A summary of the total

integration times in both blue and red grisms is shown in Table 3.4.

Multiple spectroscopic standard stars were observed each night, notably LTT 1788,

HR718, and LTT 3864. Observing templates for these stars existed in the EFOSC2 database

and were used each night so as to acquire the appropriate signal to noise level for each object

to allow later flux calibration.

3.3.2 VLT/UVES

Service mode VLT/UVES observations of NGC 3199 were peformed almost concurrently with

the NTT/EFOSC2 observations (see Table 3.2). These were designed to assist with the main

science goal while also potentially detecting heavy element recombination lines. The data cover

the wavelength region from 3000-10400Å with only small gaps between 5700-5800Å and 8500-

8650Å1. The UVES dataset had a resolving power of λ
δλ = 40000 with a 0.6 arcsecond slit.

Its high resolution allowed us to forego the sky subtraction process, as night-sky emission lines

appear at the instrumental resolution as opposed to the nebular lines for which we could measure

their true widths.

The slit length of up to 30 arcseconds of the UVES instrument is much shorter than that

of the EFOSC2 instrument as it is an echelle spectrograph and thus disperses in both planes of

the CCD as opposed to long slit spectroscopy using a simple grism where the dispersion is only

along one axis (as illustrated in Figure 3.10).

Due to the service mode nature of our observations several calibration steps were unnec-

essary (or performed on our behalf by ESO). The characteristics of the UVES instrument are

very well known, and as such standard flux calibration functions exist for each potential spectral

range. Hence we did not need to observe standard stars in the same manner as with EFOSC2.

1The red arm of the UVES instrument uses two CCDs with a small gap between them.
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Table 3.3: Journal of Stellar Observations
Star Date Grism ∆λ (Å) Exposure Time (s)

BAT99-11 2009 Dec 22/23 14 3095-5085 300

BAT99-11 2009 Dec 22/23 16 6015-10320 300

WR 8 2009 Dec 22/23 14 3095-5085 10

WR 8 2009 Dec 22/23 16 6015-10320 10

WR 16 2009 Dec 22/23 14 3095-5085 4

WR 16 2009 Dec 22/23 16 6015-10320 3

WR 40 2009 Dec 22/23 14 3095-5085 2

WR 40 2009 Dec 22/23 16 6015-10320 2

Table 3.4: Total integration times by target

Nebula Central Star Total Red (hours) Total Blue (hours)

Anon WR 8 4.5 2.33

Anon WR 16 1.5 1.5

NGC3199 WR 18 1.6 1.6

RCW 58 WR 40 1.5 1.66

Anon BAT99-2 2 2

Anon BAT99-11 6.33 3.16

Anon BAT99-38 0.75 0.75
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Figure 3.1: Location of slit for the nebula around BAT99-2. Entire slit length (5’) is not shown.

3.3.3 Individual Objects

BAT99-2

The slit position adopted for the LMC WR nebula around BAT99-2 is shown in Figure 3.1.

This position was adopted as it placed the greatest extent of the arc shaped nebulosity under the

EFOSC2 slit. The slit position we adopted roughly matches the position described as “arc” by

Nazé et al. (2003).

BAT99-11

The slit position adopted for the nebula around BAT99-11 in the LMC is shown in Figure 3.2.

The nebulosity around BAT99-11 is physically much larger than that normally associated with

WR ejecta nebulae, so the slit position was chosen to intersect the inner portions of the nebula

as this may be more recently expelled material.

BAT99-38

The slit position adopted for the nebulosity near BAT99-38 is shown in Figure 3.3. It was

discovered later that BAT99-38 was not the star which appears at the center of the arc, but

embedded in the arc itself. This was due to an error in the WCS system of the digitised SHS

survey plates which were used to identify WR nebulae in the LMC (see previous chapter). The

slit position shown unexpectedly included BAT99-38 spectra along with the nebulosity. The

slit was subseqently moved slightly such that BAT99-38 was no longer included in the slit.
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Figure 3.2: Location of slit for the nebula around BAT99-11. Entire slit length (5’) is not shown.

Figure 3.3: Location of slit for the nebula around BAT99-38. Entire slit length (5’) is not shown.
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Figure 3.4: Location of slit for the nebula around WR 8. Entire slit length (5’) is not shown.

This fact called into question our preliminary morphological identification of this nebula as a

possible ejecta nebula.

WR 8

As with BAT99-11, it is unclear whether the knots which appear interior to the outer ring of

nebulosity are in the same sphere as the visible ring, or are really spatially closer to WR 8.

The slit position was chosen to encompass the two brightest Hα emitting knots which did not

coincide with stars. The slit position adopted is shown in Figure 3.4.

WR 16

The adopted slit position for WR 16 is shown in Figure 3.5. Due to the large size of this nebula

the slit shown in Figure 3.5 is appoximately the true length of the EFOSC2 slit (∼ 5’). The slit

position was chosen such that it encompassed some of the brighter Hα knots seen in the SHS

imagery, along with enough off-nebula sky to perform a reasonable sky subtraction.

NGC 3199 (WR 18)

The slit position adopted for NGC3199 is shown in Figure 3.6. Given the shorter (30”) UVES

slit the brightest knot visible in the short red SHS exposure was chosen. For this object the Hα

SHS image is saturated and so not useful in terms of selecting the brightest parts of the nebulos-

ity. While NGC 3199 is very much brighter in Hα than our other targets, it was still important

to select the brightest possible section of nebulosity such that the likelihood of detecting weak

lines was maximised.
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Figure 3.5: Location of slit for the nebula around WR 16.

Figure 3.6: SHS short red image of NGC3199 (location of WR 18 indicated with dashes), ∼ 15

arcsecond VLT/UVES slit is shown in the expanded section.
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Figure 3.7: Location of slit for RCW 58 (WR 40).

RCW 58 (WR 40)

The slit position used for observations of RCW 58 is shown in Figure 3.7. This slit position was

adopted to maximise the amount of bright nebulosity on the western side of RCW 58 in the slit.

3.3.4 Calibration Frames For EFOSC2

3.3.4.1 Bias

Modern astronomical CCD (Charge Coupled Device) chips include many features to ensure the

accuracy of the data they produce. First amongst these is the presence of a bias level on the

chip. In practice this means that each CCD pixel begins each frame with a certain initial value

which should be identical from pixel to pixel, this ensures that each pixel has a positive value

(i.e. some signal) regardless of the length of the exposure.

Despite having been designed to be uniform, manufacturing tolerances mean that each

CCD pixel will be slightly different in terms of gain and initial bias level. To remove the bias

from our science exposures we simply observe the bias level on the CCD several times by

taking zero length exposures, take the median of these frames (called the master bias frame)

and subtract this from all of our observations. At the beginning and end of each observing night

we took a series of ten bias frames using the same binning settings as our science frames (2 by

2).
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Figure 3.8: 1D He-Ar arc blue spectra extracted from the archived arc frames (black) and from

the arc frames from our run (red). Note the absent strong lines in our spectra.

3.3.4.2 Arcs

To calibrate the wavelength scale of our data a known spectrum is necessary to compare with

our astronomical observations. The EFOSC2 instrument provides a Helium-Argon lamp for this

purpose. As recommended by the manuals supplied by ESO, we used 30s exposures for grism

14 and 3 second exposures for grism 16. These frames were taken before and after observations

during each observing night.

Unfortunately during our run the He lamp in the EFOSC2 instrument did not function

correctly, leading to underexposed or absent He lines in our arc frames. In grism 16 this is not

a problem, owing to the large number of Ar lines in that spectral region. Grism 14 presented

a larger problem as there were very few Ar lines in this region (Figure 3.8), and those that are

there are close together and in the centre of the frame - a recipe for extremely poor wavelength

calibrations.

In order to fix this problem it was necessary to use an arc frame from a later observing

session to calibrate our data. The same grism was used by an observing program (084.B-0711)

several weeks after our data were taken and the instrument was not removed from the telescope

in this time. The arc frames which were taken as part of the subsequent observing program

were retrieved from the ESO archive2. The resulting wavelength solution was used for all blue

frames.

The red calibration proved stable over the five days of our run. It was therefore possible

2http://archive.eso.org/
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to derive a single calibration from all the red arc frames, which was then used to derive the

wavelength solution used for all red frames.

3.3.4.3 Flat Fields

In long slit spectroscopy (LSS) different types of flat fields serve two distinct purposes. The first

type of flat field, known as a “dome flat” is a spectroscopic image of a uniformly illuminated

surface. This provides a two dimensional spectrum of the fringing effects in the telescope optics

combined with the spectrum of the illuminating lamp. By averaging the spectrum in the spatial

direction and smoothing, the lamp spectrum can be obtained. Upon dividing the original image

by this lamp spectrum all that remains is the fringing pattern which we wish to eliminate in our

science observations.

The second type of flat field that will be used is created by taking an image of an illumi-

nated screen within the EFOSC2 instrument, these are known as “internal flats”. These perform

the same function as dome flats and are treated in the same way but with one important dif-

ference, they can be taken with the telescope in any position. This allows for the removal of

fringing effects due to flexure of the CCD chip at different angles.

The final type of flat field, a “sky flat”, serves a different purpose, it allows corrections for

variations in the spatial direction, that is, along the slit. To make this correction we take images

of the sky through the slit during civil twilight (immediately following sunset and preceding

sunrise). We then average these frames along the spectral direction, smoothing as necessary.

After division by the spectral average the resulting frame provides a measure of the relative

illumination of the slit - allowing corrections to be made. This kind of correction is vital for

extended objects as there will typically be significant variation in throughput along the slit.

A known flaw of the EFOSC2 instrument CCD detectors is their introduction of significant

fringing in the far red region (>8000Å). Almost all of this fringing is removed by the dome

flat fields, but a these flat fields can prove insufficient to remove all fringing effects in some

cases, thought to be caused by flexure of the CCD chip when oriented at different angles. To

compensate for this, internal flat fields, using the quartz-halogen lamp, were observed for each

target immediately following the red exposures.

3.3.4.4 Standard Stars

The standard stars LTT 1788 and LTT 3864 were observed at the beginning and end of each

night to allow flux calibration of that night’s observations. Standard observing blocks were

available in the ESO database facilitating this process for each grism setting. Standard stars

were observed with the widest available slit (5”) to ensure that all of the stellar flux was in-

cluded.



88 Chapter 3. Spectroscopic Observations of Seven Wolf-Rayet Nebulae

Figure 3.9: Response functions calculated at the beginning and end of the second observing

night using the blue grism. The red line is the response function derived using LTT 1788 at the

beginning of the second night, the black line is the LTT3864 response function derived at the

end of the night.

An absolute flux calibration was not necessary to achieve our science goals, and would

have proved impossible anyway as none of the nights we were allocated were photometric.

Instead the goal was to achieve the correct relative flux calibration, so that the detected lines

have the correct relative intensities. The nebular information is contained in the relative, as well

as the absolute strengths of the lines.

The spectrophotometric response curves derived for the beginning and end of each night

did not reliably cross-calibrate as the conditions changed throughout each night as shown in

Figure 3.9. Despite that, the shape of each star’s curve was constant from night to night in

both the blue and red spectral regions. The choice of spectrophotometric response curves is

discussed below.

3.4 Data Reduction

3.4.1 EFOSC2

At the beginning and end of each night a series of calibration frames were acquired, including

bias, arc and flat field frames. The reduction of the data was performed using ESO-MIDAS

and gaussian line measurements were performed using Dipso/ELF. A typical result of the data

reduction process, a 2D spectral image showing nebular lines, is shown in Figure 3.10

Sky subtraction was performed using the ESO-MIDAS routine ”SKYFIT/LONG”, which,
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Figure 3.10: 2D Spectra of the nebulosity around WR 8 in the 3000-5050Å wavelength region

(Grism #14). The nebular lines at the top are from the nebulosity shown in Figure 3.4. The

apparent nebulosity in the lower portion of this spectrum is the scattered light of the WR central

star.
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given two sky windows either side of the object spectrum, calculates a 2D frame of the night

sky lines by interpolating across between the windows. This can then be subtracted from the

data frame to leave just the object spectrum in the resulting frame. The 7000-9000Å region is

particularly blighted by night sky lines, as shown in the composite Figure 3.11, which displays

a non-sky subtracted frame, an interpolated sky frame and the sky-subtracted image. Post sky-

subtraction, some evidence of fringing appears which we were not able to remove using any

combination of internal flats or dome flats. This residual fringing is not thought to be a problem

as there were very few lines being measured in the 7000-9000Å spectral region.

For each 2D co-added sky-subtracted nebular spectrum, every row of pixels which was

thought to contain an uncontaminated nebular spectrum was co-added to produce 1D spectra.

Subsequently each line was measured using Dipso/ELF.

The dereddening was derived using the Balmer series ratios to calculate c(Hβ) - the loga-

rithmic extinction at Hβ - derived using pairs of Balmer lines (one of which was always Hβ).

The relationships between the ratios of the H I Balmer series recombination lines is set by

atomic physics (e.g. Hummer & Storey (1987)) such that deviations from these relationships

can be used to quantify the degree by which the light has been reddened by interstellar dust and

gas. The derived reddening values (Table 3.5) were consistent with literature values derived

by previous authors in the cases of WR 16 (Marston et al., 1999), WR 40 (Kwitter, 1984) and

BAT99-2 (Nazé et al., 2003). They were also checked against the galactic extinction maps of

Schlegel et al. (1998). In every case the galactic WR nebulae had derived E(B-V) values lower

than the Schlegel et al maximum value (indicating that they are, in fact, resident in the Galaxy -

a useful sanity check). However for the LMC nebulae the Schlegel dust maps indicated E(B-V)

values which were too high by at least a factor of five, possibly because the Schelgel et al values

included the entire LMC dust columns. For LMC nebula we resorted to the Burstein & Heiles

(1982) E(B-V) maps which were found to agree much better with our data.

In some cases the dereddening process highlighted a lack of a reliable flux calibration be-

tween the blue and red spectra. For the nebulae around WR 16 and BAT99-11, this manifested

itself as very different c(Hβ)’s when comparing Hα in the red spectra to Hβ in the blue, com-

pared with those derived from just the blue spectra (using Hδ and Hγ). For the nebula around

WR 8, the converse situation applied in that a very low c(Hβ) was found between the blue lines

and a high c(Hβ) was found for Hα. This is likely to be caused by changing conditions through-

out our allocated nights making the flux calibrations derived for the beginning and end of each

night inappropriate for the middle of each night. This was minimised by using the nearest (in

time) flux calibration to each observation.
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0Å

G
ri

sm
#1

6)
;

ce
nt

re
:

E
SO

-M
ID

A
S

“S
K

Y
FI

T
/L

O
N

G
”

ge
ne

ra
te

d
2D

sk
y

sp
ec

tr
um

fo
rt

he
fr

am
e

sh
ow

n;
ri

gh
t:

Sk
y

su
bt

ra
ct

ed
sp

ec
tr

a
of

th
e

re
gi

on
ar

ou
nd

W
R

8.



92 Chapter 3. Spectroscopic Observations of Seven Wolf-Rayet Nebulae

A futher complication was intoduced via the choice to deviate from the parallactic angle

in order to maximise the amount of nebulosity falling under the slit. In cases where the nebulae

were large and of fairly constant surface brightness, this did not cause a problem. However,

the nebulae with discordant blue/red reddening values were those where the slit passed through

several small clumps, e.g. WR 8 (See Figure 3.4). In these cases the effects of atmospheric

dispersion combined with the small angular scales of the clumps of nebulosity may be the

cause of the reddening issues. The offsets from the parallactic angle for each object are listed

in Table 3.2.

By adopting a different reddening solution for the red spectra we effectively de-redden

and flux calibrate Hα and the adjacent lines ([N II], [S II], He I 6678Å) but lose flux calibration

for lines far from Hα ([S III] 9069, 9531Å for example). For the nebulae which required this

technique (around WR 8, WR 16 and BAT99-11), this would render their [S III] diagnostic

temperatures unreliable.

Due to the relatively low resolution in both the blue and red spectra, blended lines are a

problem in these data. Most seriously, the standard density diagnostic line pairs [S II] 6717,

6731Å and [O II] 3727. 3729Å were blended to some degree. The [O II] doublet is completely

unresolved: its measured FWHM is very close to instrumental. The [S II] doublet is marginally

resolved in that there are clearly two components. This situation is far from ideal as this leaves

the [S II] doublet as the only density diagnostic, and with a larger uncertainty on the [S II]

doublet ratio due to its semi-blended nature. The profile of the [S II] doublet in the nebulosity

surrounding BAT99-38 is shown in Figure 3.12 along with a Dipso/ELF line fit.

The line blend between [Ne III] 3967Å and H5 3970Å was only an issue from the point

of view of calculating the neon abundance. However the [Ne III] 3868Å line is isolated in this

dataset and could be easily used for that purpose. The blended higher order hydrogen/helium

lines (e.g. H8, 3889Å and He I 3888.6Å ) were not problematic as we do not have sufficient

S/N to use the lines as diagnostics.

It was also found that the observed intensity ratio of the [O III] lines of 5007Å to 4959Å

was incorrect. This intensity ratio is fixed and by can be derived from atomic transition prob-

abilities (e.g. Storey & Zeippen 2000) and has a value of 2.98, whereas we observed it to be

nearer 2.0 in all cases. This is attributed to the 5007Å line falling very close (3–4 pixels) to the

edge of the detector, and the flux calibration being unreliable there. It was therefore assumed

that the 4959Å line was correctly flux calibrated and it was used on its own at the [O III] tem-

perature diagnostic stage. The cause of this problem has not been ascertained as it is present in

all of the EFOSC observations despite the smoothness of the derived response functions at the
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Figure 3.12: The blended [S II] 6717, 6731Å doublet in BAT99-38 along with a Dipso/ELF line

fit (red). The lines to the left and right are HeI 6678Å and the second order contaminant [O II]

3727, 3729Å.

red edge of the detector.

A further complication to finding the correct intensities of the lines was the contamination

of the red spectra by second order lines. The first order red spectral region (6000Å - 10000Å)

is overlapped by the second order blue spectral region (3000Å - 5000Å), essentially the same

wavelength coverage as the blue (Grism #14), except these lines are not correctly flux calibrated

in the red spectra. Order blocking filters were available, but since they also removed the lines

which we must use to derive nebular diagnostics and abundances from the 6000-7000Å region,

they were not used.

This effect is most clear if we compare the spectrum of WR 40, in which the [O III]

4959, 5007 Å lines are missing, with the spectrum of BAT99-11 which has strong [O III] lines

(See Figure 3.13). In the spectrum of BAT99-11 [O III] 4959, 5007 Å appear at 9550 Å and

9650 Å respectively. This causes a slight problem as the 9550 Å feature is blended with [S

III] 9532 Å, which will be used as a temperature diagnostic. The deblended [S III] 9532 Å

line strength falls below that expected given its intrinsic relationship with [S III] 9069 Å (i.e.

I(9532 Å)/I(9069 Å) < 2.483) which indicates that not only is the [S III] 9532 Å blended, it is

also tellurically absorbed, as discussed by Liu et al. (1995).

These second order lines are present throughout the red spectral region, starting with [O

3Derived using atomic data published by Mendoza & Zeippen (1982a) and Mendoza (1983)
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II] 3727 Å+3729 Å which appears slightly redward of the [S II] doublet at ∼6755Å, although

at much reduced strength due to the lower efficiency of the CCD at this wavelength (∼3728Å).

The second order lines do not occur at precisely twice their rest wavelengths, the second order

5007Å line occuring at 9650Å. We attribute this offset to the refractive index of the material

used to make the grism, as the observed ratio of the wavelengths of second order lines to first

order lines is itself a function of wavelength.

3.4.2 The UVES Spectra

As briefly mentioned in Section 3.3.2, the UVES instrument is very popular and as such has

a variety of standard calibrations available. For service mode observations ESO provides the

raw spectra along with reduced spectra and appropriate calibration files produced using their

standard calibrations and the publicly available pipeline.

The reduced observations provided by ESO are intended for point source objects, however,

and included a sky-subtraction step which was inappropriate for our observations. By default

the UVES reduction pipeline assumes that two strips along the edges of the slit are free of the

science target spectrum and treats them as sky pixels. The pipeline then averages between these

sky pixels and subtracts this from the overall reduced spectrum. The nebulosity of NGC 3199

is very much larger than the ∼ 30” slit and as such no region of the slit represented a “sky”

spectrum. The reduced spectra provided to us by ESO had strange line profiles due to this

subtraction and were very much fainter than expected. The pipeline was therefore re-run with

the sky subtraction phase excluded for all the UVES observations.

Cosmic ray subtraction was performed for the UVES observations by median combina-

tion of our four science frames for each setting. This then produced a final science frame for

each setting. The flux calibration was checked by comparing line fluxes in the overlap regions

between detectors, which were found to agree to slightly better than 10%.

The EFOSC2 problem of line blends was, of course, absent from the UVES observations

and lines which are usually blended in lower resolution spectra are well resolved, e.g. [O II]

7319, 7320, 7330, 7331Å. In fact the higher resolution of the UVES instrument made the ve-

locity structure of the nebula evident in the bright lines. The best resolution of this velocity

structure is seen in the far red [S III] lines, due to their high atomic weight minimising ther-

mal broadening effects (Figure 3.14). It was found that the best fit to this structure utilised

four components, two of which comprised the majority of the emission while a further two are

distinctly seen redward of the main emission.

The lines generated by lower mass ions are subject to a greater degree of thermal broad-

ening, widening the redshifted components to the point where they are indistinguishable. As
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Figure 3.14: Velocity profile of [S III] 9531Å, observed profile in black, four component

Dipso/Elf fit in red.

such it proved difficult to derive a separate reddening solution for the second component. In

fact it proved difficult to fit the line profiles with a consistent number of velocity components.

The adopted solution was to fit the brighter component with one gaussian, if it produced an

accurate fit (the strongest lines: Hα, [N II], [O III] etc) and to use an extra component where it

was required and subsequently to sum the components in the bright section.

Reddening was derived for the UVES NGC 3199 data in exactly the same way as der-

scribed for the EFOSC2 dataset earlier. However there were no calibration errors apparent in

the derivation, the derived c(Hβ) was constant regardless of the line combination chosen. The

c(Hβ) that we derived, listed in Table 3.5 with those of the other nebulae, largely agreed with

previous derivations by Kwitter (1984) and Esteban et al. (1992). The minor differences in

reddening are likely due to the fact that each study has observed a different section of a large

nebula.

3.5 Results

Observed and dereddened relative line intensity lists for each nebula can be found in Tables 3.6

– 3.12.

The [C I] 8727, 9824, 9850Å triplet was not detected in our NTT/EFOSC2 observations.

However, in the VLT/UVES observations of NGC 3199 we did detect the [C I] triplet, giving
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Table 3.6: EFOSC2 Line Detections - BAT99-2
Line Ion Observed ± Dereddened±

3727.0 [O II] 58.53 0.72 75.00 0.92

3868.7 [Ne III] 53.11 0.69 66.36 0.86

4101.7 Hδ 24.49 1.43 29.19 1.71

4340.5 Hγ 42.11 1.43 47.60 1.61

4363.2 [O III] 12.85 1.42 14.45 1.60

4471.5 He I 1.77 0.32 1.94 0.35

4685.7 He II 72.52 0.68 75.61 0.71

4711.4 [Ar IV] 13.21 0.63 13.69 0.65

4740.2 [Ar IV] 8.64 0.62 8.89 0.63

4861.3 Hβ 100.00 0.82 100.00 0.82

4958.9 [O III] 212.87 1.48 208.00 1.45

5006.8 [O III] 592.93 1.73 572.82 1.67

6312.1 [S III] 2.62 0.33 1.99 0.25

6562.8 Hα 394.99 1.64 289.88 1.20

6583.5 [N II] 6.55 1.42 4.79 1.04

6716.4 [S II] 18.95 1.66 13.62 1.19

6730.8 [S II] 11.29 1.67 8.10 1.20

7005.4 [Ar V] 3.43 1.30 2.37 0.90

7135.8 [Ar III] 11.16 1.39 7.61 0.95

9068.6 [S III] 16.10 0.77 9.14 0.43

9530.6 [S III] 22.26 1.33 12.25 0.73

4861.3 Hβ 1.359 × 10−18 erg cm−2 s−1 Å−1
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Table 3.7: EFOSC2 Line Detections - BAT99-11
Line Ion Observed ± Dereddened±

3727.0 [O II] 260.95 0.97 286.59 1.06

3868.7 [Ne III] 4.21 0.80 4.58 0.87

4101.7 Hδ 23.23 0.80 24.82 0.85

4340.5 Hγ 46.15 0.79 48.33 0.83

4363.2 [O III] 2.76 0.79 2.88 0.82

4471.5 He I 4.73 0.78 4.90 0.81

4861.3 Hβ 100.00 0.81 100.00 0.81

4958.9 [O III] 140.47 0.83 139.25 0.82

5006.8 [O III] 352.67 0.96 348.10 0.95

6312.1 [S III] 3.06 1.38 2.04 0.92

6562.8 Hα 449.79 3.05 284.95 1.93

6583.5 [N II] 20.82 2.51 13.13 1.58

6678.2 He I 6.29 2.51 3.89 1.55

6716.4 [S II] 18.36 3.15 11.28 1.93

6730.8 [S II] 12.93 3.12 7.92 1.91

7135.8 [Ar III] 19.45 2.51 11.05 1.42

9068.6 [S III] 29.56 0.71 12.84 0.31

9530.6 [S III] 49.91 0.88 20.69 0.36

4861.3 Hβ 1.460 × 10−17 erg cm−2 s−1 Å−1
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Table 3.8: EFOSC2 Line Detections - BAT99-38
Line Ion Observed ± Dereddened±

3727.0 [O II] 168.10 8.94 174.01 9.26

3868.7 [Ne III] 9.58 6.91 9.89 7.13

4101.7 Hδ 24.51 0.70 25.12 0.72

4340.5 Hγ 43.66 0.69 44.41 0.71

4471.5 He I 3.82 0.70 3.87 0.70

4861.3 Hβ 100.00 1.13 100.00 1.13

4958.9 [O III] 76.92 0.74 76.67 0.74

5006.8 [O III] 178.59 0.85 177.73 0.85

6312.1 [S III] 0.71 0.27 0.69 0.26

6562.8 Hα 290.15 2.07 277.89 1.98

6583.5 [N II] 13.80 1.69 13.22 1.62

6678.2 He I 3.44 1.71 3.29 1.63

6716.4 [S II] 15.83 2.12 15.11 2.03

6730.8 [S II] 11.66 2.12 11.13 2.02

7135.8 [Ar III] 9.72 1.67 9.21 1.58

9068.6 [S III] 10.98 0.77 10.15 0.71

9530.6 [S III] 5.03 1.15 4.62 1.06

4861.3 Hβ 3.536 × 10−18 erg cm−2 s−1 Å−1
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Table 3.9: EFOSC2 Line Detections - WR 8
Line Ion Observed ± Dereddened±

3727.0 [O II] 60.72 6.98 62.05 7.13

4101.7 Hδ 23.93 4.04 24.30 4.11

4340.5 Hγ 48.52 4.03 49.05 4.07

4861.3 Hβ 100.00 4.20 100.00 4.20

4958.9 [O III] 109.15 4.27 108.93 4.26

5006.8 [O III] 226.13 4.84 225.45 4.82

6548.1 [N II] 108.59 7.83 30.40 2.19

6562.8 Hα 1026.07 9.40 284.87 2.61

6583.5 [N II] 438.50 4.91 120.32 1.34

6678.2 He I 43.01 4.69 11.19 1.22

6716.4 [S II] 16.99 6.30 4.32 1.60

6730.8 [S II] 11.27 6.13 2.84 1.55

7135.8 [Ar III] 47.69 4.63 9.76 0.94

9068.6 [S III] 65.30 6.31 6.28 0.60

9530.6 [S III] 84.69 9.40 7.14 0.79

4861.3 Hβ 2.992 × 10−19 erg cm−2 s−1 Å−1

Table 3.10: EFOSC2 Line Detections - WR 16
Line Ion Observed ± Dereddened±

4101.7 Hδ 22.63 2.12 34.28 3.22

4340.5 Hγ 28.86 2.12 38.56 2.84

4861.3 Hβ 100.00 2.52 100.00 2.52

4958.9 [O III] 7.17 2.18 6.79 2.06

5006.8 [O III] 7.67 2.12 7.07 1.95

6548.1 [N II] 288.38 14.40 48.57 2.42

6562.8 Hα 1711.12 16.04 284.82 2.67

6583.5 [N II] 1140.75 12.77 186.78 2.09

6678.2 He I 55.69 12.10 8.46 1.84

7135.8 [Ar III] 43.66 10.92 4.74 1.18

4861.3 Hβ 2.473 × 10−19 erg cm−2 s−1 Å−1
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Table 3.11: UVES Line Detections - NGC 3199
Line Ion Observed ± Dereddened±

3726.0 [O II] 87.62 0.43 175.51 0.86

3728.8 [O II] 107.42 0.52 214.88 1.05

3868.7 [Ne III] 36.24 0.22 67.62 0.41

3967.5 [Ne III] 11.16 0.19 19.72 0.34

4101.7 Hδ 15.11 0.22 24.70 0.36

4340.5 Hγ 32.91 0.25 46.38 0.35

4363.2 [O III] 2.45 0.08 3.41 0.11

4471.5 He I 3.37 0.13 4.37 0.17

4861.3 Hβ 100.00 0.24 100.00 0.24

4958.9 [O III] 218.60 0.81 204.88 0.76

5006.8 [O III] 680.69 2.26 618.02 2.05

5517.7 [Cl III] 1.85 0.14 1.22 0.09

5537.6 [Cl III] 1.40 0.08 0.91 0.05

5577.3 [O I] 0.25∗ 0.22 0.16 0.14

5875.7 He I 21.93 0.14 12.27 0.08

6300.3 [O I] 17.17 0.39 8.01 0.18

6312.1 [S III] 5.92 0.07 2.75 0.03

6363.8 [O I] 5.78 0.14 2.62 0.06

6548.1 [N II] 91.97 0.40 38.90 0.17

6562.8 Hα 675.20 1.33 283.96 0.56

6583.5 [N II] 287.83 1.16 120.09 0.48

6678.2 He I 8.79 0.11 3.54 0.04

6716.4 [S II] 118.35 0.88 46.96 0.35

6730.8 [S II] 96.39 0.65 38.04 0.26

7135.8 [Ar III] 61.93 0.37 21.19 0.12

7318.9 [O II] 11.40 0.09 3.67 0.02

7320.0 [O II] 11.40 0.09 3.67 0.02

7329.7 [O II] 6.15 0.08 1.97 0.02

7330.7 [O II] 6.15 0.08 1.97 0.02

8727.1 [C I] 1.11 0.06 0.24 0.01

9068.6 [S III] 480.20 5.56 98.72 1.14

9530.6 [S III] 1416.72 14.39 266.44 2.70

9824.1 [C I] 3.44 0.20 0.61 0.03

9850.2 [C I] 8.94 0.13 1.59 0.02

4861.3 Hβ 3.536 × 10−14 erg cm−2 s−1 Å−1

* upper limit
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Table 3.12: EFOSC2 Line Detections - RCW 58 (WR 40)
Line Ion Observed ± Dereddened±

3727.0 [O II] 22.43 6.32 42.23 11.91

4101.7 Hδ 17.36 0.86 27.17 1.35

4340.5 Hγ 35.20 0.87 48.12 1.19

4471.5 He I 6.00 0.85 7.60 1.08

4861.3 Hβ 100.00 1.03 100.00 1.03

5006.8 [O III] 8.82 0.86 8.08 0.79

6548.1 [N II] 144.02 5.77 65.73 2.63

6562.8 Hα 631.23 6.23 286.59 2.83

6583.5 [N II] 543.30 5.04 244.89 2.27

6678.2 He I 17.91 4.67 7.81 2.03

6716.4 [S II] 13.82 5.51 5.95 2.37

6730.8 [S II] 9.92 5.47 4.25 2.34

7135.8 [Ar III] 13.58 4.75 5.11 1.78

9068.6 [S III] 19.45 1.71 4.60 0.40

9530.6 [S III] 41.63 2.56 9.07 0.55

4861.3 Hβ 3.048 × 10−18 erg cm−2 s−1 Å−1

an example of what their expected intensity might be. The ratio of the dereddened intensities of

[C I] 9850Å to [S III] 9531Å in NGC 3199 is 0.006. If we apply this ratio to the NTT/EFOSC2

observations we find expected line fluxes of less than half the faintest detected line. We conclude

from this that the [C I] triplet is not strong enough in any of the NTT/EFOSC2 observed sample

to be detected with the NTT/EFOSC2 in the configuration which we utilised, or indeed with

any of the available grisms for EFOSC2.

The detection of [C I] 8727, 9824, 9850Å in NGC 3199 is largely due to the high res-

olution of the UVES instrument. The enhanced resolution did not yield the detection of any

recombination lines (other than those of hydrogen and helium). The brightest recombination

line (C II 4267Å) was not detected despite experimenting with spectral binning of the high res-

olution observations to attempt to increase the S/N. The relatively high reddening of NGC 3199

(E(B-V) = 0.81), does not help.

3.6 Analysis

3.6.1 Plasma Diagnostics

In total, four different density diagnostic line doublets were employed during the analysis. The

[S II] doublet was present in most cases, however the [O II], [Ar IV] and [Cl III] doublets were
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Figure 3.15: Energy-level diagrams for the 2p3 ground configuration of [O II] and the 3p3

ground configuration of [S II]

also used when the instrumental resolution and nebular ionisation permitted.

An energy level diagram for [O II] and [S II] is shown in Figure 3.15. These two ions

share structural properties which allows their use as density diagnostics. A sketch of the density

sensitive properties of these ions runs as follows4: In the limit of very low electron density,

the ratio between the two excited lines of [O II] or [S II] (2D 3/2, 5/2) is given simply by the

ratio of their emission coefficients as each collisional excitiation is followed by the emission of

a photon. In the high density regime however, the lines will be in the ratio of their statistical

weights as the effects of collisional excitiation and de-excitation dominate - such that the relative

populations reflect the Boltzmann populations ratio. The transition between these two regimes

allows the use of such lines to quantify the importance of collisional de-excitation and hence

the density. The [O II] and [S II] doublets are usually employed for this purpose as the lines are

very close in energy, which suppresses the temperature sensitivity of the intensity ratio.

All but one of the nebulae (WR 16) displayed the [S II] doublet at 6716 Å,6731 Å, which

allowed calculation of their electron densities. Possible reasons for the absence of these lines

4see Osterbrock & Ferland (2006, Chapter 5) for a complete description and mathematical derivation of the

density sensitive properties.
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in the nebula around WR 16 are discussed in Section 3.7. In each case where the [S II] doublet

was detected, its ratio indicated electron densities near the low density limit (1 < ne <∼ 300

cm−3). In cases where the [S II] doublet ratio indicated a density less than 50 cm−3, a density

of 50 cm−3 was adopted. As discussed in Section 3.4, the NTT/EFOSC detections of the [S

II] doublet are blended. This results in a high uncertainty on both the line measurements and

subsequently the ratio of the two lines. In contrast the ratio of the [S II] lines detected in NGC

3199 with UVES carries a much lower uncertainty as both lines were well resolved.

The higher excitation nebulosity around BAT99-2 displayed the [Ar IV] 4711Å, 4740Å

doublet. It yielded a density consistent with the [S II] density, i.e. the low density limit.

The increased resolution and wavelength coverage of the UVES instrument allowed the use

of the other two line pairs mentioned, [O II] and [Cl III]. The densities yielded were consistent

with each other and with the [S II] density (see Table 3.14). The [O II] density in particular

agrees very well with the [S II] density and carries a low uncertainty. The [Cl III] lines are

comparatively weak, so the ratio δI(λ)/I(λ) is much higher. This results in a less well constrained

diagnostic, albeit one that peaks in roughly the same place as the [O II] and [S II] densities.

Since the derived electron densities were all below the critical densities of the abundance

diagnostic lines, the uncertainties associated with the electron densities will have no effect on

the abundance uncertainties we will derive.

In general, the electron temperature diagnostics are more important to the final abundance

determinations due to the emissivity of collisionally excited lines being dependent on a Boltz-

mann factor of e−
E
kTe where E is the excitation energy above the ground state of the upper level

of the transition. With this in mind then, it was of importance to exploit all the available tem-

perature diagnostics. The NTT/EFOSC observations were designed to access the [O III] 5007,

4959, 4363 Å triplet in the blue and the [S III] 9532, 9069, 6312 Å triplet in the red. These diag-

nostics are strongly dependent upon the very weak, temperature sensitive, [O III] 4363 Å and [S

III] 6312 Å lines. These lines were detected in some cases, typically where high temperatures

might be expected (BAT99-2 for example). The [S III] 6312 Å line detections, in particular,

should be treated as upper limits as they were typically blended with [O I] 6300.

The VLT/UVES observations yielded a richer set of temperature diagnostics. In addition

to those outlined, which should be regarded as the primary temperature diagnostics that we

can derive from the detected lines, temperature diagnostics involving [O I], [O II] and [C I]

were also detected. The UVES instrument, in the dichroic configuration we utilized, has an

unfortunate wavelength coverage gap between the red and blue arms of the spectrograph in the

region of [N II] 5755 Å which precluded the use of the [N II] 6584, 6548, 5755 Å triplet as a
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w
as

tellurically
absorbed,its

intensity
w

as
calculated

using
the

ratio
I(9531Å

)/I(9069Å
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temperature diagnostic.

The [O I] triplet diagnostic (5577Å, 6300Å and 6363Å) is only available as an upper limit

since the temperature sensitive component ([O I] 5577Å) was not detected from the nebula.

The [O II] temperature diagnostic (7319Å + 7320Å + 7330Å + 7331Å versus 3726Å +

3729Å) was calculated but was ultimately disregarded for two reasons. Firstly, the uncertainty

on the diagnostic ratio is rather high due to the weakness of the [O II] lines at around 7325Å;

secondly, this ratio has proven vulnerable to several further systematic uncertainties due to the

large wavelength separation between the lines and the possibility of a significant recombination

line contribution to the 7320+7330 Å lines (e.g. Liu et al. 2000).

The [C I] triplet ratio derived for NGC 3199 (8.9±0.5) implies that the [C I] lines are

predominantly generated by recombination rather than by collisional excitation. Figure 2 of

Liu et al. (1995), reproduced here as Figure 3.16, shows the sensitivity to electron temperature

and density of collisionally excited [C I] 9850Å + 9824Å/ 8727Å(dotted lines). For Case B

recombination (indicated by ratios of 8-9) the temperature dependence is very weak (solid lines)

(Escalante & Victor, 1990). It should be noted though that the 9824Å and 9850Å lines are

emitted in a fixed ratio (2.96), we observe these lines to have a ratio of 2.6 – suggesting that

the uncertainty on the [C I] triplet ratio is higher than that quoted. From Figure 3.16 we can

see that at T=12,000K the difference between the ratios expected of Case B recombination and

collisional excitation (using the lowest density track) is of the order 5-10. Using the quoted

line ratio we can find the [C I] triplet ratio using either 9850Åor 9824Å, the maximum ratio

occuring when we use only the 9824Å line – this gives a ratio of around 10.

When the [C I] triplet is observed as recombination lines it is usually though to be ema-

nating from a photo-dissociation region (PDR) surrounding the ionized regions. Escalante et al.

(1991) showed that these lines can emanate from PDRs next to high density molecular material,

which has been detected in the vicinity of NGC 3199 (Marston, 2001).

For each nebula, diagnostic uncertainties were computed via a novel Monte-Carlo tech-

nique. The “NEAT” (Nebular Empirical Analysis Tool) software, developed at UCL, allows

an exploration of the parameter space defined by the uncertainties associated with nebular line

measurements. A full description of this code and its capabilities will be forthcoming (Wesson

et al., 2011, in prep). Briefly, NEAT reads in a list of measured spectral lines (their wave-

lengths, relative intensities and uncertainties), and generates a “possible” line list by randomly5

offsetting the line intensities using the quoted uncertainties as limits. It then performs a full

5The random numbers in this case are drawn from a gaussian distribution with mean zero and standard deviation

one.
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Figure 3.16: The temperature sensitivity of the [C I] 9850Å+ 9824Å/ 8727Å ratio, in cases

where the lines are generated from recombination, (solid lines labelled for Case A & B recom-

bination respectively, Escalante & Victor 1990) and for cases where the lines are collisionally

excited (dotted lines plotted for various electron densities). Reproduced from Liu et al. (1995).
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Figure 3.17: NEAT uncertainty distributions generated for [O III] (red) and [O II] (green)

temperature diagnostics for NGC 3199 after 10,000 iterations. The Y axis in this plot represents

the number of iterations which fell into each bin, for a temperature in the appropriate range.

empirical analysis on this “possible” line list, calculating all diagnostic ratios and plasma pa-

rameters, along with a full abundance analysis using a three-zone ionization model by default.

It will repeat this process as many times as the user requires, building up a picture of the uncer-

tainties associated with each diagnostic, abundance, etc as the number of data points increases.

We then bin these values to obtain an uncertainty distribution. An example of the distributions

generated by NEAT using ten thousand iterations is shown in Figure 3.17. NEAT was used to

generate all of the values and uncertainties in Table 3.14, along with the abundance derivations

described later.

3.6.1.1 Line Broadening Temperatures

The observed width of a spectral line depends upon several factors, primarily the nebular tem-

perature, turbulence and expansion along with the instrumental line profile. Thus if we can

measure the widths of several lines from ions of different atomic weight to sufficient accuracy,

it is possible to derive the temperature of the line-emitting plasma. Historically this process has

usually been performed using only a single pair of lines, [N II] 6584Å and Hα, due to both their

proximity and strengths (e.g. Dopita 1972). The velocity profiles of [N II] 6584Å and Hα in

our UVES observations are shown in Figure 3.18. Given the resolution of the VLT/UVES ob-
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Table 3.14: NGC 3199 Nebular Diagnostics

Ion Diagnostic Ratio Electron Density or Temperature

[S II] 6716Å
6731Å

1.23 ± 0.01 220 ± 20 cm−3

[O II] 3729Å
3726Å

1.22 ± 0.01 230 ± 20 cm−3

[Cl III] 5717Å
5737Å

0.744+0.069
−0.058 500 ± 330 cm−3

[S III] 9069Å+9531Å
6312Å

133 ± 2 7650 ± 50 K

[O III] 5007Å+4959Å
4363Å

241 ± 7 9600 ± 100 K

[O II] 7319Å+7320Å+7330Å+7331Å
3726Å+3729Å

34.5 ± 0.50 12200 ± 100 K

[O I] 6300Å+6364Å
5577Å

51.5 +70
−20 12250∗ K

[S II] 4076Å+4068Å
6717Å+6731Å

13.90 ± 0.50 9000 ± 1000 K

[C I] 9850Å+9824Å
8727Å

8.90 ± 0.50

* upper limit

servations it is possible to accurately determine the widths of a large number of strong emission

lines (including the traditional pair) and to derive temperatures from more than one pair.

The major obstacle which must be overcome to perform this process is a detailed descrip-

tion of the intrinsic line shapes. For collisionally excited lines this is relatively simple: most

have negligible intrinsic fine structure broadening and all broadening in excess of the instru-

mental broadening must be a combination of thermal and turbulent broadening. The situation

is rather different for recombination lines, which are often comprised of several very closely

spaced fine-structure components. The first work done to describe the fine structure compo-

nents of the Hα line in this context found that the “natural” profile of the line could have a

significant effect on the derived electron temperature (Dyson & Meaburn, 1971). In our anal-

ysis we shall use the fine structure correction term provided by Clegg et al. (1999) [Equation

9] for Hα, which follows the same form as those derived from earlier formulations while intro-

ducing a correction factor δ which combines with the Hα FWHM in quadrature :

Te =
FWHM(Hα)2 − δ2 − FWHM([N II])2

8kln2[ 1
mH
− 1

mN
]

(3.1)

where Te is the electron temperature, FWHM(Hα) and FWHM(N II) are the FWHMs of

Hα and [N II], mH and mN are the atomic weights of hydrogen and nitrogen respectively and

k is the Boltzmann constant. An explicit equation for calculating δ is not quoted, but a table of

values suitable for interpolation was included by Clegg et al. (1999).

We can generalise Equation 3.1 to apply it to other species, replacing FWHM([N II])
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Figure 3.18: Observed velocity profiles of Hα (black) and [N II] 6584Å (red) in NGC 3199.

The Hα line is broadened by fine structure components along with the thermal and turbulent

broadening that also affect [N II]. (Flux coordinate has been normalised to allow better com-

parison.)
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Figure 3.19: Temperatures derived by comparing line widths of CELs with the Hα line width.

and mN with values appropriate for the line and species we wish to use (e.g. Equation 3.2).

Te =
FWHM(Hα)2 − δ2 − FWHM([X])2

8kln2[ 1
mH
− 1

mX
]

(3.2)

The results of using this method for the strongest collisionally excited lines with Hα appear

in Table 3.15 and are presented graphically in Figure 3.19. Singlet He I lines can be included

as they have no fine structure components. The only singlet He I line found with sufficient

strength to measure its width accurately was He I 6678.2 Å. In cases where an electron temper-

ature has also been calculated from strong line methods we can compare the two temperatures

(Figure 3.21).

In Figure 3.20, we show the line broadening temperature versus the ionization potential for

each species. We see the same general trend that is evident from Figure 3.19 in that the species

with higher ionisation potentials generally have lower temperatures by at least 1000K. This

trend can be attributed to an effect known as “radiation hardening” (see Tielens, 2005, Section

7.3.2). The ionization cross section of HI is proportional to ν−3, meaning that the lowest energy

photons are absorbed by the inner regions of the nebula. Hence as radius increases the average

energy of the escaping photons also increases while the number of photons decreases. When the

hardened radiation field encounters the outer regions of the nebula the extra energy is deposited

as kinetic energy – increasing the nebular temperature.
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Table 3.15: Temperature determinations from line broadening

Species Line (Å) FWHM (km s−1) Te ±

HI 6562.80 27.113 ± 0.045 – –

[N II] 6548.10 13.411 ± 0.055 11580 72

[N II] 6583.50 13.505 ± 0.050 11520 66

[O II] 3726.03 13.250 ± 0.062 11570 81

[O II] 3728.82 13.373 ± 0.062 11490 80

[S II] 6716.44 12.629 ± 0.087 11560 120

[S II] 6730.82 12.597 ± 0.080 11570 110

[O III] 4958.91 15.975 ± 0.054 9730 52

[O III] 5006.84 15.840 ± 0.047 9820 47

[S III] 9068.90 14.250 ± 0.142 10570 151

[S III] 9531.00 14.695 ± 0.175 10290 175

[Ne III] 3869.06 15.036 ± 0.086 10260 86

[Ne III] 3967.79 14.578 ± 0.234 10570 241

[Ar III] 7135.90 14.267 ± 0.075 10510 82

He I 6678.15 18.739 ± 0.219 9380 157

Figure 3.20: Line broadening temperatures for various ions relative to Hα, versus the ionization

potential to obtain the parent ion.
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Figure 3.21: Comparison of line broadening temperatures T(LB) (x axis) with forbidden line

ratio temperatures T(FLR) (y axis). The black solid line corresponds to T(LB) = T(FLR).

3.6.2 Nebular Abundances

The NEAT code, mentioned earlier, uses the same statistical equilibrium methods as the earlier

EQUIB code (also developed at UCL) to derive abundances for CELs. That is, we solve the

equation:
N(ion)

N(H+)
×A =

I(line)

I(Hβ)
(3.3)

Where A is related to the emissivities of the two ions, with the following basic relationship:

A ∝ ε(line)

ε(Hβ)
∝ n(ion)nee

− E
kTe

N(H+)neT
−0.9
e

(3.4)

The A value for the specific ion at given ne and Te is calculated and then used to pro-

vide N(ion)
N(H+)

, the linear abundance of the specific ion as indicated by the particular line chosen.

NEAT derives uncertainties on the abundance determinations in the same manner as described

for the temperature and density diagnostics. The provenance of the atomic data used is shown

in Table 3.16.

In the simplest cases, only one of each type of diagnostic was available per nebula e.g.

BAT99-38, where T([S III]) and ne([S II]) were available. This led to a very simple abundance

determination where the same temperature and density was used for every ion. This was the

situation for each of the LMC WR nebulae.

For NGC 3199, multiple density and temperature diagnostics were calculated. Each den-

sity diagnostic was found to place the nebula in the diagnostic’s low density limit. The forbidden
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Table 3.16: Sources of Atomic data
Ion Reference

C0 Pequignot & Aldrovandi (1976), Johnson et al.

(1987), Nussbaumer & Rusca (1979)

Cl++ Mendoza & Zeippen (1982b), Butler & Zeippen

(1989),

O+ Berrington & Burke (1981), Berrington (1988),

Baluja & Zeippen (1988)

O++ Pradhan (1976), Zeippen (1982)

S++ Mendoza & Zeippen (1982a), Mendoza (1983)

All others Landi et al. (2006)

line ratio temperature diagnostics indicated that a multi-zone ionisation model may be appro-

priate, in that lower ionisation species (e.g. [O II] and [S II]) gave higher temperatures than

those from moderate ionisation species (e.g. [O III] and [S III]). This trend was corroborated

by the line broadening temperature measurements (see Figure 3.20). Ultimately it was decided

to use a two zone model where we used the average of the [O II] and [S II] forbidden line ratio

temperatures for the low ionisation species, the [S III] temperature for [S III], and the [O III]

temperature for all other ions.

The results of the abundance calculations for the LMC WR nebulae and NGC 3199 are

listed for individual ions in Table 3.17 and total abundances are listed in Table 3.18 with ICFs

(Ionisation Correction Factors) from Kingsburgh & Barlow (1994).

The remaining nebulae in our NTT/EFOSC2 Galactic sample have no observed tempera-

ture diagnostic. As discussed earlier in this Section, the abundances from CELs are proportional

to a factor of e−
E
kTe and as such are very sensitive to the adopted electron temperature.

Previous authors have adopted temperatures for some of these objects based on matching

the oxygen abundance to those of H II regions in the same galaxy. However I do not think

this approach is appropriate in this situation, as the oxygen abundance could easily be depleted

relative to the galactic H II regions due to CNO cycling by the massive star prior to it becoming

a WR star. A sensible solution might be to assume a nebular temperature that yields Galactic

H II region neon abundances, as neon should not have been astrated by stellar processing.

Unfortunately the higher reddening in the galactic plane meant that we had no detections of

[Ne III] 3868, 3967Å for RCW 58 or the nebulae around WR 8 and WR 16, and hence no neon

abundance for these objects.
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However we can infer that the abundance pattern in these nebulae is not the same as in H II

regions, or indeed in the other WR nebulae in our sample, by simple inspection of the line lists.

WR 16 and RCW 58 in particular display [N II] lines comparable in intensity to Hα, indicating

likely nitrogen enhancement.

In the absence of a temperature diagnostic for these nebulae, we employed a different

approach to finding one important diagnostic - log(N/O). We know, from our observations and

from previous authors, that WR nebulae are likely to possess electron temperatures in the range

8000-12000K.

The EQUIB code, as mentioned previously, can be used to generate the appropriate line

emissivities ε across this range. We can then plot log(N+/O+) as a function of electron temper-

ature Te as:

log
N+

O+
(Te) =

I([N II] 6548Å)/ε[N II] 6548Å(Te)

I([O II] 3727 + 3729Å)/(ε[O II] 3727Å(Te) + ε[O II] 3729Å(Te))
(3.5)

Where I(line) is the line intensity relative to Hβ = 100 and ε(Te) is the lime emissivity at

temperature Te. This N+/O+ relationship is shown in Figure 3.22 for RCW 58 and the nebula

around WR 8. As expected, the ratio is not a strong function of temperature and therefore

provides a reasonable constraint upon the value of logN
+

O+ and hence the degree of enrichment

within each nebula.

As mentioned in this Section, we used the icf scheme of (Kingsburgh & Barlow, 1994)

which specifies identical icfs for N+ and O+. This means that the N+/O+ ratio that we calculate

should be the same as the overall N/O ratio. The range of N/O ratios derived for RCW 58 and

for the nebula around WR 8 will be discussed in Section 3.7.

3.7 Discussion of Individual Objects

BAT99-2

The EFOSC2 optical spectrum of the nebula around BAT99-2 (WN2) is in good agreement with

that presented by Nazé et al. (2003). The nebula is highly ionized which manifests itself as the

presence of [Ar IV] lines along with HeII 4686 Å, which was only detected in BAT99-2.

The nebula around BAT99-2 does not display any significant overabundances relative to

LMC H II regions (see Table 3.18). There is a hint of an N/O overabundance but the uncertain-

ties are consistent with normal H II region values. In general the abundances we derive agree

with those derived by Nazé et al. (2003) and we agree with their conclusion that BAT99-2 does

not contain any abundance enhancements.
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Table 3.17: Ionic Abundances
BAT99-2 BAT99-11 BAT99-38 NGC 3199

He+ / H+ 0.041 ± 0.008 0.103 ± 0.015 0.082 ± +0.014 0.088 ± 0.01

He++ / H+ 0.066 ± 0.002

O0 / H+ (×105) 1.86 ± 0.09

O+ / H+ (×104) 0.05 ± 0.01 0.50+0.01
−0.05 0.27+0.53

−0.09 1.73 ± 0.08

O++ / H+ (×104) 0.53 ± 0.01 1.16+0.55
−0.22 0.40+0.53

−0.11 2.89 ± 0.08

N+ / H+ (×105) 0.03 ± 0.01 0.02 ± 0.01 0.12+0.12
−0.03 2.18 ± 0.06

C0 / H+ (×107) 6.05 ± 0.20

Ne++ / H+ (×105) 1.31 ± 0.02 0.36+0.26
−0.09 0.33+1.10

−0.19 10.1 ± 1.0

S+ / H+ (×106) 0.19 ± 0.03 0.39+0.15
−0.08 0.39+0.32

−0.10 2.10 ± 0.06

S++ / H+ (×106) 0.51 ± 0.06 1.41+0.37
−0.15 0.91+0.56

−0.20 15.6 ± 0.50

Ar++ / H+ (×106) 0.26 ± 0.05 0.80+0.34
−0.12 0.50+0.46

−0.12 2.37 ± 0.05

Ar3+ / H+ (×106) 0.82 ± 0.14

Ar4+ / H+ (×106) 0.17 ± 0.07
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BAT99-11

The nebula encircling BAT99-11 (WC4) displays a lower degree of ionization which is more

typical of WR nebulae despite having a relatively high excitation (WC4) central star. The

[Ne III] and [Ar IV] lines seen in the nebula around BAT99-2 are not observed. Instead we see

pronounced higher order Balmer series lines along with several HeI lines, most prominently

HeI 4471Å.

The nebular abundances display no signs of stellar processing (see Table 3.18). Since

BAT99-11 is a WC4 star it had been anticipated that the nebula might contain an ejecta compo-

nent. Based on our analysis, the nebula around BAT99-11 is a wind-blown shell.

BAT99-38

The spectrum of the nebula surrounding BAT99-38 (WC4+O) is very similar to that of the

nebula around BAT99-11, albeit roughly a factor of five fainter in surface brightness. Many HeI

lines are present, including 7065Å, 6678Å, 4471Å and several higher order Balmer lines are

present blue-wards of 4000Å.

The nebula near BAT99-38 displays no abundance enhancements (see Table 3.18). Based

on our results, it is dubious whether the nebula near BAT99-38 is actually related to BAT99-38

at all.

WR 8

The nebulosity surrounding WR 8 (WC7/WN4) presents clear evidence of nitrogen enrichment

in the form of strong [N II] 6548, 6584Å emission lines relative to Hα. There is also some

evidence of WR features scattered into the slit, a wide bump at around 4650Å corresponds to a

known WR emission feature.

From Figure 3.22 we can see that the range of log(N/O) indicated, -0.2 < log(N/O) <

0.1, is well above the N/O ratio found for the M17 Galactic H II region (-0.91). Even the lower

bound, -0.2, is a factor of five above the Galactic ISM value, indicating a high degree of nitrogen

overabundance compared to oxygen. This supports the conclusion of Chapter 2 that this nebula

has a significant stellar ejecta component.

WR 16

The nebulosity around WR 16 (WN8) displays a sparse, but interesting spectrum. It was noted

earlier that previous observations (Marston et al., 1999) had not detected the [S II] doublet,

a result repeated in our spectrum. The spectrum also contains the strongest [N II] lines in

our sample along with no trace of [O III], [O II] or [O I] lines, making an N/O determination

impossible. This kind of composition is precisely what one might expect from stellar outflows
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of a WN type WR star. There is a strong sign of helium overabundance though, with HeI

6678Å present and stronger than in all but the nebula around WR 8. Given the non-detection of

the [O II] doublet at 3727Å we cannot employ our ‘bootstrapping” approach to calculating an

approximate log(N/O) value for the nebulosity, except to say that it must be strongly nitrogen

enriched (log(N/O) > 0) since if we assume a conservative upper limit for the [O II] 3727Å

intensity, for example [OII]3727Å
Hβ ∼ 1, then we find log(N/O) > 1.95.

Marston et al. (1999) claimed that the lack of [S II] and [O III] lines in the spectrum of the

WR 16 nebula was evidence of extremely high nebular density (> 10000 cm−3). The critical

densities of [S II] and [O III] do indeed lies in this range, however we attribute the weakness of

these lines to the low effective temperature of the WN8 central star.

NGC 3199 (WR 18)

NGC 3199 displays very similar abundances to Galactic H II regions (see Table 3.18). We

conclude that the nebulosity is mainly a swept-up ISM shell. Previous observations of this

nebula have derived an expansion velocity of around 15 km s−1 (Chu, 1982; Marston, 2001).

This value is suspiciously similar to the velocity-space positions of the main nebular emission

components (see Figure 3.14). The low intensity of the red-shifted component suggests that

it is unlikely to have the same intrinsic luminosity as the blue-shifted component as the mass

of dust required to produce the required (A(Hα) > 4mags) extinction is unphysical. However

by inspection of Figure 3.6 it is obvious that NGC 3199 is not spherically symmetric, its shape

suggesting a swept up origin, in which case the relative intensities and velocities of the emission

components most likely represent variations in the local ISM density.

Following Liu et al. (1995)[Section 4.1], the dominant excitation mechanism for the ob-

served [C I] triplet in NGC 3199 appears to be recombination of C+ in a PDR, as was discussed

in Section 3.6.1. It is surprising then that the [C I] lines have the same width as the collisionally

excited [O I] and [O II] lines from the ionized nebula as shown in Figure 3.23. Line broaden-

ing temperatures can be derived for the [C I] lines via the measured line FWHMs relative to

Hα in the same manner as before. This yields a value of 12900 ± 800K from [C I] 9850Å,

the strongest [C I] line, which is in the same range as the temperature derived using the same

method for [O I], [O II] and [S II].

This temperature consistency is surprising as PDR recombination lines should originate

from much lower temperature regions (< 1000K). It is important to note that the observed line

widths are at least a factor of five wider than the instrumental value, so there is no systematic

reason for these lines to have the same width. This may be evidence that the [C I] ratio we

derived is incorrect and that these lines are being emitted by collisional excitiation in the outer



122 Chapter 3. Spectroscopic Observations of Seven Wolf-Rayet Nebulae

Figure 3.23: Comparison of the velocity profiles of [O I] 6300Å (black), [C I] 9850Å (green)

and [O II] 3726Å (red) in the UVES spectrum of NGC 3199. The narrow component of the

[O I] 6300Å line arises from night sky emission.
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regions of the ionized nebula.

RCW 58 (WR 40)

RCW 58 displays typical a spectrum with much in common with the other Galactic WR nebulae

in our sample. Strong [N II] features are combined with weak [O III] lines and a clear He I

spectrum.

From Figure 3.22 it is clear that RCW 58 has a very high measured log(N/O) lying in

the range 0.39 < log(N/O) < 0.70. The lower limit on this value (assuming a factor of two

uncertainty) is still very high. This implies that the material posesses a CNO-cycle processed

stellar ejecta component.

This finding agrees with previous results, however the analysis of Rosa & Mathis (1990)

relied upon the method of tuning the electron temperature until the “correct” oxygen abundance

was achieved (in this case the Galactic ISM oxygen abundance). This methodology may be

inappropriate for nebulae which are believed to contain processed material as the true oxygen

abundance is likely to differ from the ISM oxygen abundance. Rosa & Mathis (1990) found

log(N/O)=-0.3 for RCW 58, however the authors did not include lists of line detections, or

finding charts indicating which part of RCW 58 they observed so it is impossible to draw further

comparisons.

3.8 Conclusions

A secondary goal of this project was to determine whether [C I] abundances could be derived for

nebulae around carbon rich WR stars. Technical limitations have precluded us from finding [C I]

around the WC nebulae which we targetted. However it has been shown that the [C I] triplet

could be detected from NGC 3199, albeit as likely PDR recombination lines, in a relatively

modest amount of time with a suitably high resolution instrument.

We did not detect any heavy element recombination lines in the UVES spectra of NGC

3199. Since these lie mainly in the blue this is likely due to the high reddening towards targets

in the Galactic plane. A similar set of UVES observations of a suitable nebula in the LMC

could yield both the [C I] triplet and the C II 4267Å recombination line, which would allow

quantification of the abundance discrepancy in WR nebulae.

The lack of appropriate temperature diagnostics for several nebulae made calculating abun-

dances for them impossible. The non-detections of the [O III] 4363Å line in galactic WR neb-

ulae is likely due to several effects: low resolution, high reddening and low O2+ abundances.

However, we did not have spectral coverage of the 5700Å region which would have allowed us

to measure [N II] 5755Å. The UVES instrument can reach these regions using different dichroic
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settings, however we felt at the proposal stage that the chosen setting would maximise spectral

coverage. Given the very high intensities of the observed [N II] 6584, 6548Å lines, the [N II]

temperature diagnostic would seem an ideal candidate for future spectroscopic observations of

these nebulae with UVES.

We found evidence of significant nitrogen abundance enhancements in the nebula around

WR 8, the newly discovered nebula (see Chapter 2) which we morphologically categorised as an

ejecta type nebula. The Galactic nebulae, with the exception of NGC 3199, were found to have

significantly enhanced N/O ratios compared to the M17 Galactic H II region value. The nebu-

losity around WR 16 is the most enriched (log(N/O) ∼ +2), followed by RCW 58 (log(N/O) ∼

+0.5), both of which have WN8h exciting stars. The nebula around WR 8 (WN7/WC4) is also

significantly enriched in nitrogen (log(N/O) ∼ 0), but not to the degree derived for the nebulae

with WN8 central stars.

The nitrogen abundances derived for the LMC nebulae were all consistent with LMC H II

region values (log(N/O) = -1.49). The nebula around BAT99-2 would seem to be the best

candidate for displaying an abundance enhancement, however it is certainly not as pronounced

as for the Galactic nebulae.



Chapter 4

The Chemical Evolution of Carbon and

Oxygen

“On two occasions I have been asked, -‘Pray, Mr. Babbage, if you put into the

machine wrong figures, will the right answers come out?’ ... I am not able rightly

to apprehend the kind of confusion of ideas that could provoke such a question.”

— Charles Babbage

4.1 Introduction

The origins of the nitrogen and oxygen present in the universe are well established. The dom-

inant source of oxygen is the core collapse SNe (see, for example, Woosley & Weaver 1995)

– from massive stars which form shells of the α elements over their lifetimes which are then

expelled as SN ejecta. For nitrogen, however, the dominant source is thought to be via CNO

cycling in intermediate-mass stars where the production can be both primary (independent of

the initial abundances) and secondary (some of the intial metallicity is transformed into nitro-

gen) (Renzini & Voli, 1981; Vila Costas & Edmunds, 1993). As a consequence, this Chapter

will focus mainly on the origins of carbon.

The key goal of this Chapter is to investigate the likely production sites of the carbon that is

at large in the universe. In Figure 4.1 observations are plotted in log(C/O) versus 12 + log(O/H)

of various astrophysical objects thought to display representative abundances of some epoch in

the history of the Milky Way. The rise in the C/O ratio at late times (high 12+log(O/H)), can be

explained in two distinct ways. Firstly, it could be produced by low mass stars (1–8 M�) of all

metallicities, as one might guess given the long lifetimes of such stars and the timescale needed

for this enrichment. Conversely, it could be produced by massive stars (M > 10 M�) with

strongly metallicity dependent carbon yields. This degeneracy in the stellar recycling history of

galaxies has been the cause of some debate in the last decade.
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Two general camps have emerged which are split along the following lines. The first group

(e.g. Chiappini et al. 2003), support the proposition that carbon is mainly produced by low mass

stars. The second group dispute this, instead invoking massive stars as carbon producers (e.g.

Henry et al. 2000, Akerman et al. 2004). More recently, suggestions have been made that the

influence of massive and low/intermediate mass stars might be roughly equal, at least in the

galactic disk (Carigi et al., 2005; Cescutti et al., 2009). The prediction of carbon production

equality between low/intermediate mass stars and massive stars is not a new one though, as it

was first mooted by Iben & Truran (1978).

While this question has been vigorously examined in recent years, it originates from an era

in which the concept of chemical evolution was still novel. The idea that certain phases of stellar

evolution contribute carbon to the ISM originated with Burbidge et al. (1957). That carbon

may be preferentially contributed by massive stars however, was first suggested by Arnett &

Schramm (1973). The theme was continued into the first yield prescriptions (e.g. Talbot &

Arnett 1974), which featured carbon production only by massive stars.

The possible contributions from lower mass stars were not recognised until the late sev-

enties/early eighties1. Around this time it was realised that the thermally pulsing AGB phase

could dredge up freshly produced carbon from the interior of AGB stars (e.g. Dearborn et al.

1978). That this carbon may be recycled into the ISM is implied by the presence of carbon rich

planetary nebulae and carbon rich AGB stars with high mass loss rates (Tinsley, 1978).

Massive stars contribute to stellar recycling in two distinct ways. Firstly, at solar metal-

licity they lose well over half their initial mass via winds and sporadic outbursts as they pass

through different phases of their lives. Secondly, they will eventually undergo a core-collapse

SN event (either of Type II or Type Ibc) which can scatter much of their remaining mass into

the ISM in one violent outburst. It is known that carbon is present in SN ejecta, but not in large

quantities compared to oxygen. The carbon contribution from evolved massive stars before their

SN events is not well known. However there are ideal candidates for such production in the form

of carbon rich WR stars (WC stars) which have surface carbon abundances of 60%+ and strong

mass loss rates (Crowther, 2007). Futhermore, WC stars are thought to form preferentially at

high metallicities as it is thought that massive star mass loss rates are dependent on metallicity.

Maeder (1992) presented a concise outline of theis idea, while Georgy et al. (2009) provide the

most recent and thorough exploration of the initial mass and metallicity requirements for stars

which become WC stars.

We will investigate this problem using chemical evolution models, as described in Chap-

1See Iben & Renzini (1983) and references therein.
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ter 1. We can combine various sets of published yields – as described in Section 4.3 – into a

simple, one-zone, GCE model and plot the resulting metallicity history against galactic abun-

dance data (see Section 4.2) and search for agreement. This technique was used by each of the

groups mentioned earlier with respect to their assumptions regarding the likely sites of carbon

formation. Our model has been formulated to match that of Henry et al. (2000) in most respects,

and we will test agreement with their models as part of our results (Section 4.5).

4.2 Model Constraints

In order to constrain our GCE models, we require data regarding the average chemical abun-

dances of galaxies throughout their history. This can be measured for a variety of objects which

we take to be representative of average Galactic abundances at the time of their formation. We

will primarily be investigating the carbon abundance relative to oxygen, so our main require-

ment is accurate observational abundance determinations for these elements.

The objects whose abundances can be used as proxies for galactic abundances fall into

three broad groups. Firstly, we can assume that the envelopes of certain types of stars represent

material at the same metallicity as that from which the star formed. This assumption is valid

for hot, massive, main sequence, stars, e.g. B stars, as they have had little time to evolve since

their formation. Gummersbach et al. (1998) provide a catalog of the surface abundances of B

stars. Given the short lives of massive stars, these might be expected to display current galactic

abundances. This seems to be the case for oxygen, however there is a large spread in the carbon

abundance. It is interesting to note that the B star carbon abundances were determined using

the same [C I] lines in absorption which in Chapter 3 we were attempting to detect in emission

from nebulae.

The assumption of unenriched stellar envelopes is also valid for some less massive main

sequence stars. Gustafsson et al. (1999) measured abundances for a large sample of solar ana-

logue F and G stars in the Galactic disk. However this assumption is usually applied to halo

stars, as they represent a significantly different epoch of the abundance evolution of the Milky

Way e.g. Tomkin et al. (1992). More recently, a study of Galactic halo stars concluded that

there is a significant upturn in the log(C/O) ratio at very low metallicity (12 + log(O/H) < 6.5)

which is evident in Figure 4.1 (Akerman et al., 2004; Fabbian et al., 2009).

The second major source of abundance data is extragalactic. Izotov & Thuan (1999) mea-

sured carbon abundances in blue compact dwarf (BCD) galaxies, or rather, in H II regions

within BCG galaxies. Izotov & Thuan (1999) made use of the HST, and as such were able to

observe UV carbon lines for their analysis.
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The final constraint is closely related to the second, but distinct enough to form its own

category. Damped Lyman-α systems, or DLAs, are thought to be proto-galactic objects (for a

comprehensive review, see Wolfe et al. 2005). They are observable only as absorption systems

on the sightlines to distant quasars. This makes abundance determinations very difficult and

time consuming. Pettini et al. (2008) measured abundances in four of the highest redshift DLAs

and found a continuation of the upturn in log(C/O) at low metallicities in agreement with the

Akerman et al. (2004) halo star abundances.

Each of these data sources is shown in Figure 4.1 along with the latest published solar

abundances (Asplund et al., 2009). There is a general trend evident in this data of high log(C/O)

at early times (12+log(O/H) ∼ 6), followed by a minimum at 12+log(O/H) ∼ 7–8 and subse-

quently a rise towards and beyond solar metallicity (12+log(O/H) ∼ 8.5). These points roughly

correspond to phases of the galaxy’s history, as could be inferred from the types of objects listed

previously in this section. The low metallicity objects represent the halo of our Galaxy which

formed early in its history while the B,F and G stars represent the Galactic disk which is thought

to have formed more recently and shows a trend of increasing carbon abundance above 12 +

log(O/H) = 8.0.

4.3 Yield Data

It is important, before embarking on a discussion of yields, to be clear as to what the word

“yield” implies. It is normally used to denote the newly created mass of a certain element

which is expelled by the star, as a fraction of the star’s mass (denoted qi). This quantity can

be negative for a specific element, implying that the star has further processed that element

into other species. This is not always the manner in which yields are presented however, in

some cases yields are stated as the total mass of that element which is expelled. In certain

circumstances these two formulations can be very similar, e.g. in SNe ejecta where the material

ejected is believed to be totally processed.

Stating yields as masses is very convenient from the point of view of GCE models as they

allow for very simple inclusion via interpolation. The total expelled mass of a certain element

is related to qi in the following way:

EiM = (M −MF )X0
i +Miqi (4.1)

where EiM is the total expelled mass of a certain element over the lifetime of a star of

initial mass Mi, final mass MF and initial metallicity X0
I .

From the perspective of attempting to ascribe a likely origin site for carbon, the quantity qi
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Table 4.1: Published massive star yields for CN and O which explicitly include pre-SN and SN

mass loss
Mass Range (M�) Metallicity Range (Z1)

Maeder (1992) 9–120 0.001, 0.02

Henry et al. (2000)2 9–120 0.001, 0.02

Meynet & Maeder (2002) 2–60 10−5

Hirschi et al. (2005) 12–60 0.02

Dray et al. (2003) 10.2–181.8 0.02

Dray & Tout (2003) 10.4 – ∼155 10−4 – 0.03

1: Where Z� ' 0.02
2: The Henry et al. (2000) yields are a modified version of the Maeder (1992) yields.

is the most useful as it quantifies creation, rather than simple recyling of the initial abundance.

4.3.1 Pre-SN Massive Star Yields

Yields for massive stars come in two different flavours, based on the stages of massive star

evolution that are being considered. In Table 4.1 we summarise the published yields massive

stars that explicitly include mass loss via winds along with SNe.

As was discussed in the introduction, it is primarily the pre-SNe yields which we are

interested in as a possible significant source of carbon. The SNe yields must also be included

though as they allow us to be thorough in our treatment of oxygen.

We compare the carbon yields of massive stars from those works which include pre-SN

mass loss in Figure 4.2. As would be expected, the onset of the WC phase (Mi >∼ 30 M�,

Georgy et al. (2009)) brings a large increase in the carbon yield. While the data in Figure 4.2

includes the effects of SNe, a large fraction (90%+) of the carbon is being expelled via winds

in pre-SN phases (see Dray et al. (2003) Figure 4, for example).

For solar metallicity then, the WC phase is the dominant phase of evolution during which

massive stars eject carbon. We would expect this effect to vary with metallicity though, as the

passage through the WC phase is thought to be metallicity dependent (Georgy et al., 2009).

In Figure 4.3 we show the metallicity dependence of the carbon yields from different authors

listed in Table 4.1 for a 40 M� star2 as a function of overall metallicity. As expected, the carbon

yields from close to solar metallicity are much higher than those at lower metallicities. An

interesting point arises from Figure 4.3; because the metallicity regime is sparsely sampled by

2Dray et al. (2003); Dray & Tout (2003) did note use consistent masses in their grids, so for Z6=Z� the qc

presented is for 41.6 M�, while for Z=Z� the mass was 40.4 M�.
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Figure 4.2: Total (winds + SNe) carbon yields for massive stars at solar metallicity (Z=0.02).

Yields are from Maeder (1992) (red), Dray et al. (2003) (blue) and Hirschi et al. (2005) (green).

published stellar yields (with the exception of Dray et al. (2003)), linear interpolations between

the metallicity datapoints are potentially problematic as they transform a very sharp transition

into a shallow ascent.

It is important to note though that because Meynet & Maeder (2002) and Hirschi et al.

(2005) included the effects of stellar rotation, their carbon yields are, in general, higher by a

factor of roughly 1.5 (for lower mass stars) than those of Maeder (1992). This arises because

stellar rotation increases the mixing within the outer layers and allows processed material to

reach the surface earlier than for stationary models. This causes an increase in mass loss due

to the increased surface abundances. This mechanism is frequently invoked to increase early

universe yields since, for example, fast rotating stars with enhanced yields can be used to explain

nitrogen and carbon abundances at early times (e.g. Chiappini et al. (2006)). However this idea

has been questioned by Hunter et al. (2008), who found that there were significant discrepancies

in the VLT/FLAMES Survey of Massive Stars dataset, specifically that there were relatively

unenriched fast rotators and relatively enriched slow rotators.

It is worth noting that the yields listed in Table 4.1 are not necessarily the most common

to appear in chemical evolution models. To constrain the chemical evolution of most elements,

detailed prescriptions of pre-SN evolution are unnecessary, and as such several yield sets which

focus solely on the SN yields are used e.g. Woosley & Weaver (1995), Nomoto et al. (1997),
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Figure 4.3: Total (winds + SNe) carbon yields for 40 M� star as a function of metallicity (Dray

et al., 2003; Dray & Tout, 2003) (red), Meynet & Maeder (2002); Hirschi et al. (2005) (green),

Maeder (1992) (blue) and Henry et al. (2000) (purple).

Kobayashi et al. (2006), Nomoto et al. (2006).

4.3.2 Low- And Intermediate-Mass stars (LIMS)

There are three major yield prescriptions in use for LIMs, firstly there are those of van den Hoek

& Groenewegen (1997) (hereafter HG97), which are complete in the mass range 0.9–8 M� and

metallicity range Z = 0.001–0.04. These were based on the pre-AGB stellar model tracks of

the Geneva group (see Schaller et al. 1992 etc). The HG97 prescription accounted for all mass

loss between the star leaving the main sequence and becoming a planetary nebula. Almost all

successful GCE models have incorporated the HG97 yields as a baseline. Subseqently Marigo

(2001) published a similar set of yields, although over a restricted mass/metallicity interval

(0.8–5 M�; Z=0.004,0.008,0.019), these were based on a different set of stellar models, those

published by the Padova group (e.g. Bressan et al. (1993); Portinari et al. (1998)). More recently

Karakas & Lattanzio (2007) published a set of yields which largely agree with those of HG97

but extend the grid of elemental yields by more than an order of magnitude in terms of the

number of elements considered.

In Figure 4.4 we show the carbon yields, as a function of mass, at solar metallicity for stars

in the LIMs mass range. The carbon yields shown in Figure 4.4 peak between 1.5 and ∼4 M�.
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Figure 4.4: Carbon yields from LIMs in solar masses at solar metallicity (Z∼0.02). Data from:

van den Hoek & Groenewegen (1997) (red); Marigo (2001) (blue); and (Karakas & Lattanzio,

2007) (green)

The HG97 and Karakas & Lattanzio (2007) values are in rough agreement, whereas the Marigo

(2001) yield is almost a factor of two higher in the 1 – 5 M� range.

These yields all attempt to model the same processes: the dredging up and expulsion of

enriched material from He-burning zones within thermally pulsing AGB stars. Helium burning

occurs via the triple-α process, as discussed in the introduction, the primary product of which

is carbon. On inspection of the yields in Figure 4.4, we see that the carbon yield is only sig-

nificant over a moderate mass range (∼ 1.5 – ∼ 4 M�). The reasons for this mass range are

well established. The lower bound arises because a minimum mass, for both the core mass

(∼ 0.7 M�) and the total stellar mass (∼ 2 M�) is required to produce a situation where the

convective envelope of the star can descend into regions containing processed material. If the

star is sufficiently massive (M >∼ 5 M�), the bottom of the convective envelope is sufficiently

hot to further process the newly created C12 into first C13 and subsequently N14 via successive

neutron captures (Iben & Renzini, 1983). In this way the range of stars recycling carbon is nar-

rowed, however the nitrogen yields from such stars are thought to be the dominant contributors

of nitrogen in the galaxy (e.g. Vila Costas & Edmunds 1993).
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4.4 Models

4.4.1 Initial Conditions and Parameterisations

The initial mass function (IMF) can be of profound importance to chemical evolution studies.

The aim of considering the relative contributions of low and high mass stars cannot be realised

without having a reliable measure of the relative numbers of such stars. Measurements of

the IMF began with studies of the relative numbers of different masses of stars in the solar

neighbourhood (Salpeter, 1955). The result of that landmark paper was that the relationship

between the relative number of stars and their masses is a power law with a slope of−2.35. This

result has endured many subsequent follow-up studies with only minor corrections. Salpeter’s

initial description of the IMF was stated as:

[
dN

d(log10M)

]
= φ(M) ∝M−γ (4.2)

where γ = 2.35, this is sometimes refered to as the “Salpeter Slope” (Bastian et al., 2010).

Currently there are several competing formulations of the IMF along with that of Salpeter,

e.g. those of: Larson (1998), Kroupa (2002) and Chabrier (2003a). Kroupa adopts a similar

functional form to Salpeter but replaces the single power law with four power laws to reduce

the number of low and high mass stars to more closely match observations. This is usually

expressed as follows:

[
dN

d(log10M)

]
= φ(M) ∝



M−2.3 M ≥ 1M�

M−2.7 0.5M� < M ≤ 1M�

M−1.3 0.08M� < M ≤ 0.5M�

M−0.3 M < 0.08M�

(4.3)

where the normalisation can be found by integrating over an appropriate mass range and

the condition that the function is continuous at 0.5M�, 1M� and 0.08M�. A comparison of

Kroupa and Salpeter IMF’s is shown in Figure 1.1, where we can clearly see the break at low

values of M.

As we discussed in Section 4.3, the yields with which we are concerned are primarily for

the mass ranges 1.5–4 M� and 20–100 M�. In any particular IMF scheme, the proportions of

stars in these two groups is fixed, for example using a Salpeter IMF there are a factor of 20

more stars in the low mass range than the high mass range. The factor controlling this ratio is

the IMF exponent in the 1–120 M� range. As each of the competing IMF prescriptions feature

very similar IMF exponents in this range (∼ 2.3), using the Salpeter IMF should not adversely
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affect the results. Later in this Chapter the result of switching between Salpeter and Kroupa

IMFs will be shown.

We also require a prescription for the star formation rate (SFR). As discussed in the intro-

duction, this is normally taken to be the Schmidt law (Schmidt, 1959), or some variant thereof.

GCE models do not in general use the same units as the “vanilla” Schmidt law, however previ-

ous authors have derived appropriate relations using the same functional form. In this work we

will follow the prescription of Timmes et al. (1995); Henry et al. (2000) and express the SFR as

a Schmidt function with dependence on the total mass and a free parameter describing the star

formation efficiency (SFE):

ψ(t) = νM

(
G

M

)2

M�Gyr
−1pc−2 (4.4)

Where M is the total mass of the system, G total gas mass and ν, the SFE, is defined by:

ν = ν0

(
1 +

z

0.001

)
Gyr−1pc−2 (4.5)

The star formation efficiency normalisation factor ν0 is a parameter multiplying the SFR

that controls how efficient the star formation process is. Appropriate values of ν0 are discussed

by Henry et al. (2000) and cover a range from 0.03 to 0.20. This parameter is an attempt to

describe how much of the material that is involved in the star formation process actually goes

on to become stars. It is important to note that this is not the same SFE as is used by those

working in the star formation field3, it is merely a numerical parameterisation of the same idea.

Galactic inflows and outflows can be influential in GCE simulations. The first attempts

to address the issue were made by Tinsley (1980). The obvious main conclusion arrived at

was that inflows of unenriched material always leave the system less metal rich than it would

have otherwise been. The exact masses and timescales involved with inflows are complex, the

question is not solely about gas inflowing onto a galaxy but of how the galaxy formed at all.

Common ideas of having the galaxy form in one infall episode have been explored thoroughly

and this is the approach that will be taken here. Fundamentally though this is a very simplistic

approach. More physical approaches have included the Chiappini et al. (1997) dual infall model

which attempted to reconcile the different formation timescales of the halo and disk of our

Galaxy by having two infall episodes which occur at different times and at different rates.

As with Henry et al. initially we shall adopt the Timmes et al. (1995) infall rate Λ(t) to be:

3The star formation efficiency is sometimes quantified as the ratio of the luminosity generated by young, massive

stars to the molecular mass of the galaxy e.g. Rownd & Young (1999).
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Λ(t) = Σt0

{
τscale

[
1− exp

(
− t0
τscale

)]}−1

exp

(
− t

τscale

)
M�Gyr

−1pc−2 (4.6)

adopted from models of the effect of SNeII on galactic disks by Timmes et al. (1995). In

the preceeding equation τscale and t0 are free parameters describing the timescale of collapse

of the disk and the age of the universe. Σt0 represents the surface density of the Milky Way at

the current epoch in units of M�pc
−2.

Outflows are a very different problem to describe within GCE simulations. Whereas in-

flows can be averaged over the whole disk and taken as part of formation scenarios, outflows

tend to be the chaotic results of SNII events. When a SNII occurs it can throw off vast amounts

of chemically enriched materials in all directions, including out of the disk. The upshot is that

SNII can drive galactic winds and thus drive losses of chemically enriched materials. This is a

very difficult problem to quantify and it is usually left as a free parameter or ignored entirely as

in our model.

In addition to these simple parameterisations, some fundamental constants of the GCE

model require definitions. Galaxies have had only the time since the big bang to evolve, hence

it is needless to extrapolate beyond this point. The most recent estimate of the age of the

universe is around 13.7 billion years (Jarosik et al., 2010).

The upper and lower IMF mass limits can be imposed with a combination of observational

and common sense arguments. The higher end of the mass scale is determined observationally

in that we do not generally see stars with masses greater than about 120M�. This upper limit

has been called into question recently by Crowther et al. (2010) who have detected multiple

stars with masses greater than 150 M� in the R136 star cluster at the heart of the 30 Dor nebula

in the LMC. The exact value of this limit is less rigorous than the lower mass boundary as it

does not introduce a significant error into the results due to the nature of the IMF. There is also

a pragmatic reason for adopting a 120 M� upper limit in that published stellar yields above this

mass range are much less common than those in the more accepted region. The lower limit is

also introduced for several pragmatic reasons, firstly, previous authors have adopted the value

of 0.1 M� and we wish to compare our model results with theirs. Secondly, using this value

sets the Salpeter IMF normalisation such that it closely matches the Kroupa IMF in the 1–120

M� range. It is important to note that stars under a certain mass (around 0.5 – 0.7 M�) will

never contribute to the model nucleosynthetically as their lifetimes are much longer than the

age of the universe.
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4.4.2 Numerical Model

The building blocks are now in place for us to lay out a numerical model of GCE. This section

follows very closely the formulation laid out in Section 5.1 of Henry et al. (2000). Suppose at

some time we have a box with some gas and some stars, the total mass would be:

M = G+ S (4.7)

Where G is the gas mass and S is the mass of stars. In general:

[
dG

dt

]
= Λ(t)− ψ(t) + e(t) (4.8)

Where Λ(t) (see Equation 4.6) is the rate at which gas is infalling, ψ(t) (see Equation 4.4)

is the rate at which new stars are being formed and e(t) is the rate of gas explusion from existing

stars. Conversely:

[
dS

dt

]
= ψ(t)− e(t) (4.9)

These are the basic equations governing what takes place in the model. The balance of

stars and gas is controlled by the SFR and the stellar gas expulsion rate.

In all of the following the quantity Zx can be thought of as a vector representing the

fractional abundances of each of the elements x that are taken into account in the model. Using

this notation the non-stellar mass of each element in the model is represented by GZx. The

quantity we need for modelling is the rate of change of Zx w.r.t time. To find this we must

differentiate GZx w.r.t time:

[
d(GZx)

dt

]
=

[
dG

dt

]
Zx +

[
dZx
dt

]
G = −Zx(t)ψ(t) + ZfxΛ(t) + ex(t) (4.10)

Where ex(t) is the rate at which element x is ejected by stars (like Zx, a vector over all x)

and Zfx is the metallicity of the infalling gas. We can rearrange this equation and substitute dG
dt

for Equation 4.8 to give us an equation for the rate of change of Zx w.r.t time:

[
dZx
dt

]
=

(
Λ(t)[Zfx − Zx(t)] + ex(t)− e(t)Zx(t)

G

)
(4.11)

This is the main equation used in the modelling. It tells us how the proportion of different

elements changes given the basic building blocks of the system. The last (and most important)

quantities yet to be defined are e(t) and ex(t). Expressions for these can be constructed logi-

cally. For example, e(t) is all of the mass ejected by stars. Therefore e(t) must be an integral
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over all of the masses of stars that could be ejecting matter at time t, taking into account the

number of such stars, the total amount of stars formed at the epoch which each stellar mass rep-

resents and the amount of matter that could be ejected (initial mass of the star, m - the remnant

mass, w(m)). This assumes that individual stars lose all of their mass (minus the remnant mass)

at the end of their lifetime; this is thought to be a reasonable assumption as all stars spend the

bulk of their lives on the main sequence where their mass loss is relatively minor.

Thus the equation describing e(t) is:

e(t) =

∫ Mup

MτM

[M − w(M)]ψ(t− τM )φ(M)dM (4.12)

where the quantity τM is the main sequence lifetime of a star of mass M . Similarly, the

equation describing ex(t) can be described as:

ex(t) =

∫ Mup

MτM

{[M − w(M)]Zx(t− τM ) +Mpx,zt−τM }ψ(t− τM )φ(M)dM (4.13)

where px,zt−τM , is the yield of element x of a star with initial metallicity zt−τM . The

value of px,zt−τM was found by linearly interpolating over the published yields discussed in

Section 4.3.

The remnant mass functionw(M) was interpolated from Yoshii et al. (1996). The quantity

MτM which appears above is the turnoff mass, that is the stellar mass which at the current time

is just leaving the main sequence having been born at the beginning of the system. It represents

the lowest possible mass that can have had a nucleosynthetic effect on the system.

These equations describe a recipe for how the fractions of each element in our model, Zx,

change over each timestep:

1. calculate the current SFR ψ(t)

2. calculate the solution to Equation 4.11 at time t = t+δt (where δt is the chosen timestep

size) and multiply by δt to find the change in abundances over this timestep

3. add resulting increments to Zx

4. solve Equations 4.8 and 4.9 and multiply the results by δt, add results to G and S

A program was written to implement this process over the time t=0,Tend (where Tend =

13.7 billion years) which also keeps track of other data of interest e.g. the fractions of different

elements created by stars in specific mass ranges. In order to choose an appropriate value for

the timestep size we run the code with many different values of timesteps (all of which are less
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Table 4.2: Yield Combinations used in GCE models
Model No. LIMs Yields Massive Star Yields

1 van den Hoek & Groenewegen

(1997)

Maeder (1992)

1a van den Hoek & Groenewegen

(1997)

Henry et al. (2000)

2 van den Hoek & Groenewegen

(1997)

Dray et al. (2003); Dray & Tout

(2003)

3 van den Hoek & Groenewegen

(1997)

Meynet & Maeder (2002) +

Hirschi et al. (2005)

A Marigo (2001) + van den Hoek

& Groenewegen (1997)

Maeder (1992)

B Marigo (2001) + van den Hoek

& Groenewegen (1997)

Dray et al. (2003); Dray & Tout

(2003)

C Marigo (2001) + van den Hoek

& Groenewegen (1997)

Meynet & Maeder (2002) +

Hirschi et al. (2005)

than the lifetime of the shortest lived, most massive stars) and choose the largest one that still

produces convergence of the model. That is to say we choose the timestep that produces the

shortest runtime while preserving the integrity of the results. This was found to be around δt =

1 Myr. Previous authors have adopted variable timesteps which increase with time, but this was

never implemented as each model run was found to last less than ∼ 5 minutes.

4.5 Model Yields, Results & Discussion

4.5.1 Model Yield Combinations

The yield combinations adopted have been numbered and are presented in Table 4.2. In the low

mass range we have restricted the yields utilised to either those of van den Hoek & Groenewegen

(1997) for the entire 1 < M < 8 M� range or those of Marigo (2001) for the 1 < M < 5 M�

range and van den Hoek & Groenewegen (1997) for 3 < M < 8 M�. This was done as van

den Hoek & Groenewegen (1997) and Marigo (2001) show the greatest contrast in carbon

production (see Figure 4.4).

In Figure 4.5 I show my model 1, 1a and the model presented by Henry et al. (2000).

The Henry et al. (2000) model in Figure 4.5 differs from model 1 in that their model enhanced

the massive star carbon yields at high metallicities; when their carbon enhanced yields were
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Figure 4.5: Model 1 (blue), and 1a(red) plotted with the same observational data points as

presented in Figure 4.1 (although reduced to black points) compared to the model presented by

Henry et al. (2000) (black). The model of Henry et al. used enhanced carbon yields to reach

agreement with the observational data. Our model which also uses these yields (1a) agrees well

at high O/H, with a slight disparity below this value.
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included in our model 1a we find agreement at late times. The slight discrepancy (0.1 dex)

in log(C/O) between our model 1a and that of Henry et al. (2000) at low metallicities (12 +

log(O/H) < 8 is puzzling. The parameters of our models were thoroughly checked to match

those used by Henry et al. (2000) in every respect, yet the cause of this disagreement was never

discovered.

4.5.2 Results

In Figure 4.6 we show the tracks of six models (1–3, A–C; see Table 4.2) in log(C/O) versus

12 + log(O/H) space along with model 1a. In general, the spread of observational data in the

log(C/O) versus 12 + log(O/H) plane is quite wide, allowing most of the models to become

plausible in some respect.

It is clear (see Figure 4.6, middle) that the models using the Dray et al. (2003) and Dray &

Tout (2003) yields do not match the desired C/O ratios at late times, although they do provide

a plausible match at early times. The late upturn observed in model 2 is too shallow to be said

to match the data. This is likely a result of the Dray et al. (2003); Dray & Tout (2003) carbon

yields not being a strong enough function of metallicity. Model B, which is the same as model 2

except that it uses the enhanced carbon yields from low mass stars predicted by Marigo (2001),

overpredicts C/O at in the regime 7.5 < 12 + log(O/H) < 8.5 and reaches the galactic disk

abundances at around solar metallicity. Both could plausibly be said to match the abundances

within the galactic halo.

The yields of Meynet & Maeder (2002) and Hirschi et al. (2005) for rotating massive stars

(Models 3 and C, Figure 4.6, bottom) also do not produce matches to the galactic trend at high

metallicities. They also significantly under-predict the C/O ratio at low O/H. Model 3 replicates

the general behaviour, and shows a steeper gradient than model 2, however this happens at

a significantly higher 12+log(O/H) than the abundance data suggests. Model C exhibits the

same behaviour as model B except that it deviates from the observed abundance data to an even

greater degree.

Models 1, 1a and A (see Figure 4.6, top) display the best adherence to the late-time galactic

abundance data. Models 1a and A in particular display the best matches to the abundance data

for the galactic disk at 12+log(O/H) ∼ 8.5. This might have been expected of model 1a, which

used yields tuned to match the observed data, as discussed in the previous section. However the

combination of the Maeder (1992) massive star yields and the Marigo (2001) LIMs yields in

model A produces a model which fits the disk abundance data as well as model 1a.

At low metallicity (12 + log(O/H) < 7.5) we find that the models using Dray et al. (2003)

and Dray & Tout (2003) yields (models 2 and B) provide the best matches to the observed



142 Chapter 4. The Chemical Evolution of Carbon and Oxygen

Figure 4.6: Top: Models 1 (red), 1a (black dotted) and A (blue). Middle: Models 2 (red)

and B (blue). Bottom: Models 3 (red) and C (blue). All: Black crosses represent all of the

observational data shown in Figure 4.1. See Table 4.2 for the yield combinations used in models

1-3, A-C.



4.5. Model Yields, Results & Discussion 143

Figure 4.7: Model A, using the Salpeter (1955) IMF (green) and Kroupa (2002) IMF (red) along

with the data points from Figure 4.1.

abundances. The other models all significantly underpredict the C/O ratio in this regime (with

the exception of model 1a due to its very high carbon yields).

In Figure 4.7 we show the effects of adopting the Kroupa (2002) IMF, as discussed in Sec-

tion 4.4. Use of the Kroupa IMF has a detectable effect, but ultimately this is small compared

to the scatter in galactic abundances evident in Figure 4.1. The Kroupa IMF has the effect of

increasing the O/H at every point in the model. This arises because more massive stars are

made per unit star formation by a Kroupa IMF than by the Salpeter IMF, due to the difference

in normalisation in the low mass range.

4.5.3 Discussion

Models 1a and A are interesting demonstrations of a rather general point, that is that we can

reproduce the carbon abundance trend in the galactic disk and the later part of the chemical

evolution of the halo by invoking high carbon yields from either massive or low mass stars. In

the case of model A, the low mass star yields of Marigo (2001) are roughly a factor of 1.5–2

greater than those of van den Hoek & Groenewegen (1997) over the LIMs range. For model 1a,

the agreement was forced by Henry et al. (2000) who boosted the Maeder (1992) massive star

carbon yields by a factor of just under two.

As we saw in the previous two Chapters, there is very little observational evidence, in
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the form of circumstellar carbon enhancements at least, that WC stars produce large amounts

of carbon. This is especially strange in light of the fact that large nitrogen enhancements are

routinely observed in nebulae around WN stars. It is possible that there is a simple explanation

for this observation. When the observed nebulae around WR stars display abundance enhance-

ments (usually nitrogen, as mentioned), the enhancements imply that the circumstellar nebula

may have been generated by the expulsion of a red supergiant or LBV atmosphere e.g. Smith

et al. (1988). If the transition from WN to WC star is not accompanied by a significant mass loss

event, the nebulae which are observed may not have had time to show carbon enhancements.

For LIMs, we find very different circumstances in terms of carbon and nitrogen abun-

dances, Stanghellini et al. (2005) find general agreement between the yields of van den Hoek &

Groenewegen (1997), Marigo (2001) and an HST observed sample of LMC PNe. Stanghellini

et al. (2005) found the greatest degree of agreement came in the lower mass range for both

sets of yields (M < 3.5 M�) — the very LIMs mass range which both predict to be producing

carbon preferentially.

4.6 Conclusions

In this Chapter we have shown that it is possible to match carbon abundance data over the

majority of our Galaxy’s history, using different combinations of published stellar yields for

low- and high-mass stars. This broadly agrees with recent work (Carigi et al. (2005); Cescutti

et al. (2009)) and not-so-recent work (Iben & Truran, 1978), suggesting that the contributions of

carbon from low- and high-mass stars may be comparable, at least in the solar neighbourhood.

We have found that the yield combinations which represent opposite extremes are the best

fitting models. Other combinations could reproduce the Galactic halo abundances but most

either significantly under- or over-predicted the C/O ratio at low O/H, with the exception of

those using the yields provided by Dray et al. (2003) and Dray & Tout (2003).

The degeneracy in the results for massive stars having strongly metallicity dependent car-

bon yields and low mass stars having very long lifetimes, as was noted in the introduction, may

render GCE modelling an inadequate approach to solving this problem. The large scatter in

galactic abundances adds to this problem as it increases the number of models which could be

said to “fit”.

It should be noted that while some specific results of this chapter are available in the

literature, an unbiased comparison of each of the available theoretical yield combinations as

presented here is not. We have not attempted to alter the published yields in pursuit of a desired

result - leading to models which do not fit the data as well as some which have been published.
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However, altering the theoretical yields to fit the data is useful in the sense of asking the question

”what would the yields have to be in order to achieve the best fit to the data?”, e.g.Henry et al.

(2000).

The Marigo (2001) low-mass yields suggest that massive stars may not have a major role

in the chemical evolution of carbon. Likewise the Henry et al. (2000) suggest that low mass

stars are irrelevant for carbon evolution. Clearly these are mutually contradictory extremes, the

answer may lie somewhere in between as we have already mentioned. However if massive stars

do play a significant role in carbon enrichment, as we are suggesting, then there ought to be

some tangible circumstellar evidence of this phenomenon — which remains elusive.



Chapter 5

Dust Evolution in High Redshift Galaxies

“With four parameters I can fit an elephant, and with five I can make him wiggle

his trunk.”

– John von Neumann

5.1 Introduction

The recent detection of dusty (MD > 108 M�) high redshift (z > 6) galaxies over the last

decade (Beelen et al. 2006, Bertoldi et al. 2003, Wang et al. 2008 etc) has sparked debate

regarding the likely formation mechanisms for the dust in such galaxies. Two major dust sources

have been proposed: formation by grain accretion within the ISM (Draine, 2009) and stellar

dust production (e.g. stellar outflows and core collapse supernovae (CCSNe)). An additional

complication arises because the actual age of the high redshift galaxies is unknown. Their

redshift tells us the age of the universe at the time that the light we observed was emitted; it

does not provide any information regarding when the galaxy actually formed.

The issue of time also dominates the main question regarding stellar dust sources: were

massive stars largely responsible or do lower mass stars also play a role? Much work has

been done on this subject, however in every case the stellar dust sources have been described

by parameterised theoretical models e.g. Morgan & Edmunds (2003); Valiante et al. (2009).

The aim of this Chapter is to determine whether observational constraints of local stellar dust

sources are sufficient to explain high dust masses inferred for high redshift galaxies.

The two major sources of stellar dust in the universe arise from very different types of

stars, intermediate- and high-mass stars. While it is known that high-mass stars do produce

dust before their deaths as CCSNe, this dust may be destroyed by the SN (e.g., Zhukovska et al.

(2008), Jones et al. (1996)). Although as we shall see in Section 5.2.3, this picture is becoming

more murky with the detection of light-echos implying survival of previously created dust e.g.

Mattila et al. (2008); Wesson et al. (2010). However if we accept the pre-SN dust total destruc-
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tion model, the main source of dust production by massive stars becomes the CCSN itself, or

rather, the post shocked ejecta of the SN. The general picture is that as the SN ejecta expands

and cools, shock waves propagate through it and create overdensities where the conditions are

such that dust grain formation ensues. The precise quantity of dust expected from such an event

is dependent on the assumptions made regarding the SN ejecta material, its temperature struc-

ture etc. Bianchi & Schneider (2007) modelled the process of dust forming in SN ejecta, along

with the associated shocks which create and destroy dust. They considered a range of stellar

initial metallicities, (0,10−4,10−2,10−1,1)Z�, and calculated the mass and composition of dust

produced in each model (for stars in the initial mass range 10–40 M�
1). Bianchi & Schneider

(2007) found very different dust compositions than alternative works (e.g., Nozawa et al. 2007)

which used different SNII yields as a starting point.

A further source of interstellar dust, albeit one which is less significant in terms of the mass

of dust produced, arises from novae. Despite being many orders of magnitude more frequent

than SNe (van den Bergh & Tammann, 1991), they are thought to produce comparatively little

dust (Gehrz, 1988; Dwek, 1998).

Dust yields from low- to intermediate-mass stars (LIMS) may also be important in high

redshift, dusty galaxies. The asymptotic giant branch (AGB) phase of LIMS is accompanied

by a cool, dense atmosphere (1000–1800K) and thermal pulsations — a suitable environment

for dust formation (Salpeter, 1977). The stellar mass-loss rate at this stage is comparatively

high (compared to the rest of the stars’ lifetime) and these outflows are known to be sites of

cosmic dust formation. The onset of the stellar wind which carries away the dust may actually

be triggered by dust formation (Bowen & Willson, 1991). The most common theoretical sets

of dust yields to describe this avenue of dust formation were provided by Ferrarotti & Gail

(2006). Further work by the same group (Gail et al., 2009), compared these yields with data

regarding the isotopes found in pre-solar grains. The models were found to match well, in the

solar metallicity regime.

The relative contributions of the two sources of dust in high redshift galaxies have long

been thought to be heavily weighted towards dust from CCSNe (Morgan & Edmunds, 2003;

Dunne et al., 2003; Marchenko, 2006). This result seems sensible, on grounds of both stellar

lifetimes, which we will discuss later, and the reddening law derived from the dust, which

has been claimed to match the abundances expected of CCSNe dust (Maiolino et al., 2004).

However, observations of dust formation in CCSNe ejecta do not totally support this picture.

1This range arises from the SNII stellar ejecta yields of Woosley & Weaver (1995) which were used as a starting

point.
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Observations quantifying dust formation by SNe are rare, owing more to the lack of suit-

ably IR-bright SNe than lack of interest. Studies quantifying the dust created by CCSN exist for

less than ten CCSN, e.g., SN1987A (Wooden et al., 1993), SN1999em (Elmhamdi et al., 2003),

SN2003gd (Sugerman et al., 2006; Meikle et al., 2007), 2004et (Kotak et al., 2009), SN2006jc

(Mattila et al., 2008) and Cas A (Rho et al., 2008; Barlow et al., 2010). The derived dust masses

for these SN ejecta are generally below ∼ 10−3M�, which has been interpreted as suggesting

that they are not major producers of dust (Meikle et al., 2007), although the opposite view has

also been proposed (e.g., Sugerman et al. (2006)).

AGB dust yields are normally measured in a slightly different way. Unlike SNe, AGB stars

create dust over a long period of time and as such the dust production is normally measured in

M� yr−1. This creates a dependence upon the AGB lifetime (τAGB , by which we mean the

length of time stars of different masses spend on the AGB, rather than the total lifetime of stars

which will become AGB stars in their lives. Several attempts at constraining this parameter

have been made, beginning with Vassiliadis & Wood (1993). Combining mass loss rates with

τAGB allows direct access to the dust contributions in M� per star, allowing direct comparison

with CCSNe. A further complexity for AGB stars is the split between carbon and oxygen

rich subtypes, which are often found to have differing mass loss rates2. An inventory of dust

producing AGB stars in the local solar neighbourhood was given by Jura & Kleinmann (1989)

who found that the average gas mass loss rate per AGB star was around 10−5 M� yr−1 (at Z ≈

Z�). At lower metallicity, Groenewegen (2006) provided AGB mass loss rates for the LMC as

a function of AGB colours in different filters. These rates, along with Spitzer survey data, have

subsequently been used to catalog the dust inventory of the LMC (Matsuura et al., 2009).

A third possible source of dust has been discovered recently. It is possible that some stars

lying in the uncertain mass range between the AGB and CCSNe regimes ( 8M� < M < 12M�)

undergo a dust enshrouded phase before undergoing some SN-like transient event. A possible

prototype for this kind of ‘Super-AGB’ object is discussed in Wesson et al. (2010), and we will

further discuss the possible effects of this object, should it be typical of stars in this mass range.

Since the discovery of high redshift dusty galaxies, attempts have been ongoing to explain

their inferred high dust masses using gas and dust phase GCE models. With one exception, all

such GCE models have assumed theoretical models of dust formation for both CCSNe and AGB

stars. This technique allows quantification of certain dust properties, primarily composition,

that our approach will not. The first such model, presented by Morgan & Edmunds (2003),

2They will also of course produce dust of very different composition, but that is not a factor that we are consid-

ering.
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showed that it was possible to make large amounts of dust in the early universe, under the

assumptions that dust destruction was ineffectual and grain formation was efficient. Dwek et al.

(2007) utilised the Woosley & Weaver (1995) SNII yield computations to derive maximal dust

contributions for stars in the 10–40M� range. They used these with a combined gas & dust

phase GCE model to model a range of galactic properties under the assumption that AGB stars

played a negligible role, i.e., that the galaxy had formed recently. Dwek et al. (2007) found that

unless the average CCSN produces around 1M� of dust, then it was impossible to reproduce

the dust mass observed. Subsequently Valiante et al. (2009), challenged the assertion that the

dust mass produced by AGB stars was negligible. They pointed out that an 8 M� star would

have evolved off the main sequence at an age of 30 Myr. Subsequently their dust contribution

could become dominant under certain conditions.

More recent models (e.g. Valiante et al. 2009) have utilised star formation rates derived

from cosmological simulations of specific high-z galaxies e.g. SDSS J1148+5251 (Li et al.,

2007) rather than assuming an average, constant, level of star formation. An interesting note

regarding the Li et al. (2007) SFR result is that the most intense burst of star formation is offset

from the time at which we are observing a high dust mass. This suggests that this model will

favour high dust masses being produced by lower mass stars as they have lifetimes around the

same order of magnitude as this difference. The work of Dwek & Cherchneff (2011) followed

a similar path, although they concluded that the amount of star formation required to create the

requisite dust mass was unphysical given the dynamical mass of the galaxy.

The aim of this work is to determine whether this complex approach is necessary to explain

the high dust masses and contributions of AGB and CCSN dust respectively. To do this we

will first review the observationally determined estimates of dust formation in SN ejecta and

AGB stars and estimate an average value from these data (Section 5.2). Subsequently we will

construct a simple model of the dust build up in high redshift galaxies, including only the most

important effects to dust formation - the initial mass function, dust creation and dust destruction

(Section 5.3). We will then compare our models to those previously published and show the

results for models based on SDSS J1148+5251, the prototypical high redshift dusty galaxy

(Section 5.4).

5.2 Observationally Derived Dust Yields

5.2.1 AGB Dust Yields

The simplest model of AGB dust formation runs as follows: if we assume that every star in the

mass range 1M� < M < ∼ 8 M� ends its life as a ∼ 0.6 M� white dwarf3, then the mass lost
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Figure 5.1: Equation 5.1 plotted for the initial masses of AGB stars. Both axes in units of solar

masses (M�).

over its lifetime is: Mlost = Mi - 0.6 M�. If we apply the gas to dust mass ratio which we will

discus later (∼ 200) to this value then we attain a relation for the average dust produced per star

of:

MD =
Mi − 0.6

200
M� (5.1)

where Mi is the initial mass of the star. This relationship is plotted in Figure 5.1. This

relationship is the upper limit to the dust mass we might expect as the gas-to-dust mass ratio

which is relevant to AGB stars is extrapolated to all periods of mass loss.

Infrared (IR) observations of AGB stars can yield information regarding their mass loss

rates via their IR colours (Jura, 1987; Jura & Kleinmann, 1989; Whitelock et al., 1994; Le

Bertre, 1997; Groenewegen, 2006). If we assume a gas-to-dust mass ratio, along with an esti-

mate of the time each star spends on the AGB, we can calculate an approximate dust contribu-

tion per star.

The gas-to-dust mass ratio is usually assumed to be in the region of 200 for carbon- and

oxygen-rich stars in both the Galaxy and the LMC (Jura, 1986; Justtanont et al., 1994; Mat-

3In reality, the top end of the mass range quoted will produce slightly more massive white dwarfs, with the

Chandrasekhar mass of 1.4 M� as a rigid upper limit.
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Figure 5.2: Vassiliadis & Wood (1993) prescription of AGB lifetimes as a function of initial

mass and metallicity, the different lines correspond to different metallicities whose values are

indicated by the figure key.

suura et al., 2005; Wachter et al., 2008). This value is largely repeated throughout the galaxy

(Phillips, 2007), although it decreases at higher galactocentric radii (which correspond to lower

metallicities).

The time each star spends on the AGB is a function of both age and initial metallicity.

Vassiliadis & Wood (1993) provide such a scheme, for stars in the mass range of 1–5 M� (Fig-

ure 5.2). However it is clear that we cannot multiply the Vassiliadis & Wood (1993) lifetimes

by the derived gas mass loss rates (which can be as high as 10−5 M�/yr) as this would provide a

rough MD per star of around 2 × 10−5 M�/yr × 107 yrs × 2×10−2 ≈ 1 M�, which is unphys-

ical for all stars in the 1M� < M < ∼ 7M� mass range, as it greatly exceeds their maximum

total metal yield.

It is thought that the extremely high mass loss rates arise from a superwind phase of an

AGB star rather than being the general case (e.g. Bowen & Willson 1991; Lagadec & Zijlstra

2008). In this picture the range of mass loss rates are interpreted as representing whether the

star is currently in a superwind phase. Lower mass loss rates (< 10−5 M� yr−1), correspond

to weak-winded, thermally pulsing, AGB stars, while the stars with mass loss rates higher than

this are assumed to be in a dusty superwind phase. This superwind is thought to last around
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104 yrs (Tanabé et al., 1997), as opposed to the∼ 107 yrs AGB lifetime mentioned earlier. This

reduces the dust mass lost per star to roughly: MD ≈ 1 × 10−5 M� yr−1 × 104 yrs × 2×10−2

≈ 0.0005 M�.

A further check on these numbers exists in the form of Planetary Nebulae. Taking our gas-

to-dust mass ratio of 200, we can apply it to calculated ionized masses of optically thin PN (e.g.

Barlow 1987; Meatheringham et al. 1988). Studies of LMC PNe tend to arrive at a mass range

of 0.2–0.4 M� for the ionized component, which translates to a dust contribution of 5 ×10−5 –

0.002 M� for the dust component. This approach should be valid for low mass, optically thin

PN which are thought to arise from the lower end of the LIMs mass range (1 < Mi < 3–4 M�).

The adopted dust yields for AGB stars are shown in Table 5.2, along with those adopted

for other mass ranges.

It should be noted that these recipes for AGB dust yields are only valid at non-zero metal-

licities. At zero metallicity, low and intermediate mass stars is suppressed as the only dust

which can be produced is from freshly synthesized heavy elements (mainly carbon) as there is

no initial abundance of heavy elements which can form dust without being processed by the

star (Morgan & Edmunds, 2003).

5.2.2 Core Collapse SNe Dust Yields

Table 5.1 summarises the published yields of dust observed from SNe or SNRs. In general,

these yields were computed indirectly by comparing models of SN ejecta spectral energy dis-

tributions (SEDs) with observed SEDs. The models are optimised by altering the dust mass

and composition until the best fit to the observed SED is determined. This technique has been

widely used to constrain masses of warm (∼ 100K) dust which emits strongly in the spectral

range accessible to the Spitzer Space Telescope. The same technique was also used to mea-

sure colder dust in SNRs, at correspondingly longer wavelengths, with the SCUBA instrument

mounted on the JCMT (e.g. Dunne et al. (2003)). More recently longer wavelength studies

have been performed using the Herschel Space Observatory (e.g. Barlow et al. 2010).

Generally, the (warm) dust masses yielded by these studies have been in the range of 10−4

– 0.02M�. Some authors had suggested dust masses in SNRs of the order of several solar

masses (e.g., Dunne et al. (2003) 2-4 M� of dust for Cas A). However their results were shown

to be subject to significant contamination by foreground interstellar dust (Krause et al., 2004).

Cas A was later re-examined at far-IR and sub-mm wavelengths by Sibthorpe et al. (2010) at

balloon altitudes and by Barlow et al. (2010) using the Herschel Space Observatory. These

more recent papers found much lower dust masses (see Table 5.1) and explicitly corrected for

the contamination by cold foreground interstellar dust.
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Table 5.1: Published observations of SNII Dust Yields
SN/SNR τobs (years) T (K) Yield (M�) Ref

1987A 3.2 150 5 × 10−4 Dwek et al. (1992)

1987A 2.1 307 > 10−4 Wooden et al. (1993)

1987A 17-18 166 2.6 × 10−6 Bouchet et al. (2006)

1987A 2.1 1.3 × 10−3 Ercolano et al. (2007)

1999em 1.8 ∼ 10−4 Elmhamdi et al. (2003)

2003gd 1.4 1.7 × 10−3 Sugerman et al. (2006)

2003gd 1.3-1.8 250 4 × 10−4 Meikle et al. (2007)

2004dj 3.4 115 8 × 10−4 Szalai et al. (2010)

2004et 2.2 400 < 2 × 10−4 Kotak et al. (2009)

2006jc 1.4 3 × 10−4 Mattila et al. (2008)

2007od 1.3 4 × 10−4 Andrews et al. (2010)

2007it 2.0 1.3 × 10−4 Andrews et al., (2011) submitted

Cas A 324a < 0.054 Rho et al. (2008)

Cas A 326a 35 0.06 Sibthorpe et al. (2010)

Cas A 328a 35 0.075 Barlow et al. (2010)

a Assuming SN date of 1681 (Fesen et al., 2006)

A further possible complication arises from the breakdown of one of the major assumptions

mentioned in the introduction. It has previously been assumed that all dust created by pre-SN

phases of massive star evolution was destroyed by the SN shock (Jones et al., 1996; Zhukovska

et al., 2008). The discovery of IR echoes from dust around SNe (e.g. Mattila et al. 2008)

suggests that significant quantities of dust can be ejected by SN progenitors. In the case of SN

2006jc, Mattila et al. (2008) attributed the echo to a dust shell produced by the star while it was

a luminous blue variable (LBV). It is far from certain though that any of the pre-CCSN dust can

survive the SN shock once it reaches is, so we may be observing the dust immediately prior to

its destruction. However if the dust-survival fraction is significant, of the order of ∼ 1–2%, this

could be a major effect, and one that is difficult to quantify at present due to lack of data.

The average of recent dust mass estimates (Sibthorpe et al. (2010); Barlow et al. (2010))

for Cas A, the youngest SNR observed at far-IR and submm wavelengths (∼ 250 years old),

is around 0.067 M�. The SN which created the Cas A remnant was Type IIb (Krause et al.,

2008), implying a larger progenitor mass (20-30 M�) than other “normal” SNII (8-20 M�).

Observations of recent, extragalactic, SNe which are all thought to have been “normal” Type II
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Figure 5.3: Adopted observational CCSN dust yields (green points); Red: Dwek et al. (2007)

maximum model dust yields; Blue Nozawa et al. (2003) unmixed models dust yields; Purple:

Valiante et al. (2009) model dust yields inferred from Bianchi & Schneider (2007) (purple). The

units of each axis are solar masses (M�).

SN, consistently indicate much lower dust masses, of around (3–17)× 10−4 M� (see Table 5.1).

We can draw from this some general conclusions, “normal” Type II SN can be shown to

create, at most, 2× 10−3 M� of dust. This figure is more likely to be in the range of a few ×

10−4 M�, due to differences in the initial mass of the SN listed in Table 5.1. SN II with more

massive progenitors can potentially produce more dust due to the increased mass of their ejecta.

If we take Cas A to be typical of the upper mass range of SNII’s then the mass of dust produced

per star could be in the 0.06-0.075 M� range. CCSNe of higher masses (Type Ib, Ic) are very

difficult to constrain due to a lack of observational evidence. In Figure 5.3 we show our adopted

dust mass yields along with theoretical predictions of dust yields from CCSNe. These adopted

yields are summarised in Table 5.2.

5.2.3 Super-AGB (S-AGB) stars

The work of Thompson et al. (2009) suggests that a new category of dust-producing stars should

be included. Stars with initial masses around 7-10M� may experience a dust enshrouded phase

which manifests itself via obscuration in the visible along with extremely red mid-infrared

colours.
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Table 5.2: Adopted Dust Yields

Mass Range (M�) Average (M� per star)

SN II 9–20 5 × 10−4

SN IIb 20–30 0.075

SN Ibc 30+ ?

S-AGB1 6–9 0.01

AGB 1–82 0.001

1: Where adopted
2: When S-AGB stars are included this range was 1–6

This is interpreted as representing an optically thick, short-lived, dust shell. In the case of

SN2008S the dust was detected as a “light echo” when the dust was illuminated by the SN some

months after the explosion, which allowed a lower limit to the mass of dust in the shell to be

calculated (Wesson et al., 2010). Such relatively low luminosity events are rare in SN studies

but it is not inconceivable that this is a phase through which many intermediate mass stars pass.

For S-AGB stars then, where we include them, we will take the Wesson et al. (2010)

value of 0.01 M� for the mass of dust produced by all stars in the mass range 6-9 M� as their

contribution to the overall dust budget of the galaxy. This value is ten times larger than that

adopted for CCSNe with 9–20 M� progenitors. Standard IMFs predict many more stars in this

S-AGB mass range than for CCSNe progenitors, indicating that these stars may have a greater

effect than CCSNe.

Models not involving S-AGB stars will be included, since the inherent danger of extrapo-

lating from one object is well understood, however their contribution could be vital in order to

match the extremely large dust masses observed in the early universe.

5.3 Galactic Dust Evolution Model

5.3.1 Applicability of “local” dust yields to high redshift objects

For the purposes of our models of high redshift dusty galaxies and quasars we will assume that

the dust production of individual objects varies negligibly with metallicity, i.e. we will use our

solar metallicity dust yields at very low metallicity. This approximation is due to a lack of data,

as the dust yields discussed in the previous section are neccessarily all from progenitors at near

solar metallicity - i.e. those close enough that dust yields can be ascertained.

Massive, dusty high redshift quasars are presumed to be the progenitors of todays massive

elliptical galaxies (Thomas et al., 2005). These galaxies are believed to have formed in a mas-
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sive burst of star formation activity with star formation rates reaching 104 M� / year (Calura

et al., 2009). Galactic Chemical Evolution models of these galaxies show that the oxygen abun-

dance can reach within 0.2 dex of solar within the first gigayear (Calura et al., 2009).

This result has recently been strengthened by Matsuoka et al. (2009) who showed using

VLT observations that high redshift radio galaxies at z∼ 5 had largely completed their chemical

evolution.

Our assumption that CCSNe dust yields are independent of redshift should hold as massive

stars are known to produce the elements necessary for dust formation in the ejecta. For lower

mass stars though the picture is less clear, stars with close to zero initial metallicity will have

negligible secondary element production. This implies that they will only produce dust from

elements they have directly synthesized – mainly carbon.

5.3.2 Stellar lifetimes

The relationship between stellar lifetimes τm and initial stellar masses m is relatively well

constrained by theory. The stellar lifetime prescription has a large effect on the overall dust

mass produced by the models as lower stellar lifetimes allow a given galactic dust mass to be

reached faster.

In this work we will use the prescription of Raiteri et al. (1996) which paramaterised the

models of the Padova group (Alongi et al. 1993, Bressan et al. 1993, Bertelli et al. 1994). This

has the added advantage of being metallicity dependent, unlike other stellar lifetimes prescrip-

tions (e.g. Maeder & Meynet 1989). The exact form of this parameterisation is:

log(τm) = a0(Z) + a1(Z) logm+ a2(Z)(logm)2 (5.2)

where

a0(Z) = 10.13 + 0.07547 log10 Z − 0.008084(log10 Z)2, (5.3)

a1(Z) = −4.424− 0.7939 log10 Z − 0.1187(log10 Z)2, (5.4)

a2(Z) = 1.262 + 0.3385 log10 Z + 0.05417(log10 Z)2. (5.5)

and where τm is expressed in yr, m in solar units and Z is the metal mass fraction (Z� '

0.02).

5.3.3 Initial Mass Function

Of the many Initial Mass Function (IMF) prescriptions available, most groups have used either

a simple Salpeter IMF (Salpeter, 1955) or the multi-slope Kroupa IMF ( e.g. Kroupa 2001a).

Valiante et al. (2009) used the Larson (1998) prescription. Differing IMF prescriptions can have
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Figure 5.4: Plot of Lifetimes from Raiteri et al. (1996) at Z=0.02 (red), Raiteri et al. (1996) at

Z=0.00002 (green), and the metallicity independent values of Maeder & Meynet (1989) (blue).

The region shown is that of the AGB, S-AGB and low mass Type II SN progenitors - the

differences in lifetimes at low metallicity can be important to acquire the high dust masses seen

at high redshift.

a large influence on dust formation in the early universe as they define the relative numbers of

high and low mass stars, which produce dust on different timescales. In this work we shall use a

Salpeter type IMF with γ equal to 2.35, as we have previously seen in Chapter 4, Equation 4.2:

[
dN

d(log10M)

]
= φ(M) ∝M−γ (5.6)

In the context of our model we require a recipe for determining the number of stars N

formed in given mass ranges corresponding to our input data for the stellar sources of dust

discussed in Section 5.2. We can derive such an equation for the Salpeter IMF by re-arranging

and integrating equation 5.6 to give:

N =
N0

−1.35
× (M−1.35

u −M−1.35
l ) (5.7)

where Mu and Ml are the upper and lower masses between which we would like to calcu-

late the number of stars and in this formulationN0 describes the total number of stars we would

expect from 1 M� of star formation.

N0 =
−0.35

M−1.35
ul −M−1.35

ll

(5.8)
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where Mul and Mll are the upper and lower limits over which we are calculating our IMF,

in this case 0.1 – 120 M�.

5.3.4 Dust Destruction Timescales

The timescales on which dust is destroyed in galaxies have been the subject of some debate.

Simple parameterisations dependent on the rate of supernovae have been mooted which take

the following form (Dwek, 1998; Dwek et al., 2007):

τdwek =
Mg(t)

mISMRSNII
yr (5.9)

where Mg(t) is the gas mass of the galaxy, mISM is the mass of gas in which a single

SNe will destroy all the dust and RSN is the rate of supernovae over the whole galaxy. With a

Salpeter intial mass function RSN takes the form:

RSNII =
ψ(t)

147
yr−1 (5.10)

where ψ is the star formation rate (SFR) in M� yr−1 and assuming that massive stars

have effectively zero lifetime. Equation 5.9 presents a way of quantifying dust destruction by

massive stars over correspondingly short timescales.

Type Ia SNe have been shown (Blinnikov & Sorokina, 2004) to have roughly equivalent

energies to CCSNe, and as such we propose that at later times dust destruction by SNIa would

have a similar effect upon the galactic dust mass. Following the Dwek (1998) parameterisation

we arrive at the following:

τSNIa =
Mg(t)

mISMRSNIa
yr (5.11)

where the quantities have the same meaning as in Equation 5.9, except RSNIa which is

the rate of SNIa.

Before proceeding it is useful to examine the meaning of these quantities. The form of

τ is such that we are assuming that both types of SN are evenly spread throughout the entire

galaxy. The long lifetimes of low mass stars suggest that this is a good approximation for

τSNIa, however massive stars are known to exist mainly in clusters. If we consider the lifetime

of a massive star cluster, we would guess that the most massive star would become the first

supernova, its blast waves would destroy all of the dust in a certain mass of dust as quantified

earlier. The subsequent SNe are unlikely to destroy the same amount of dust as they are co-

located with the first SN. We might then formulate an equation such that:
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τSNII =
Mg(t)

mISM

(
RSNII
ω

) (5.12)

Where the CCSN clumping factor, ω is the average number of stars which will explode

as CCSNe in an average massive star cluster. Using a Salpeter IMF in the range 0.1–120 M�,

roughly 0.2% of stars will have masses greater than the ∼ 10 M� required to become a CCSN.

Portegies Zwart et al. (2010) suggests that young massive star clusters contain 103 – 106 stars

implying that ω should range between 2 and 2000. This is at best a crude approximation, albeit

one worthy of future study as the limit set on ω here allows τ values which will go from almost

no dust destruction to dust destruction as quantified by Dwek (1998). It is also important to

note that ω could, in principle, be very different in different types of galaxies in that starburst

galaxies tend to have very massive star clusters4while more quiescent galaxies have smaller

clusters.

In both equations mISM , the mass of gas in which all dust is destroyed, is taken to be

around 500M� following Dwek (1998). The main uncertainty with this value arises not from

SN having different explosive energies, SN Ia and CCSNe both produce around 1051 ergs, but

from differences in the density and composition of the surrounding ISM; CCSNe will usually

reside in star formation regions while SN Ia should be evenly distributed in the disk and bulge.

5.3.5 Numerical Modelling

For a galaxy with a known Star Formation History (SFH) we can construct a simple model to

estimate the maximum amount of dust formed over a given time frame. At each time step dt

we can find the number of stars formed in different mass ranges by multiplying Equation 5.7 by

the SFR ψ(t):

NMu
Ml

= ψ(t)× N0

−1.35
× (M−1.35

u −M−1.35
l ) (5.13)

By iterating through mass ranges from 0.7 − 120M� with a granularity of around dM =

0.01M� we can apply the stellar lifetime prescriptions to find when the dust formed by stars in

each mass range will be returned to the ISM. The quantity of dust created as a function of time

can be thought of as a one dimensional array with bins of size dt, at each point in this array we

store the cumulative mass of dust that would be released by each star which would return its

dust to the ISM in this epoch.

In the simplest model of galactic dust formation - one with no destruction - the total dust

mass at time tn = n×dt is simply the sum of each of the n bins of our array which lie between

4M82 for example, posesses at least five “super” star clusters with masses up to 105 M� (Smith et al., 2006).
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t = 0 and t = tn. In our models though we complicate this slightly such that we can track the

relative contributions of the three main sources of dust: SNII, AGB & S-AGB stars. The dust

produced at each timestep can be stated as:

dMd(t)

dt
=

∫ 120

MτM

ψ(t− τM )φ(M)
(qdust
M

)
dm− ψ(t)

Md

Mg
− Md(t)

τ(t)
(5.14)

where τM is the age of a star of initial massM ,MτM corresponds to the lowest mass where

τM > t and qdust is the dust yield as presented in Table 5.2 and Md, Mg represent the galactic

dust and gas masses respectively. The first factor in Equation 5.14 represents dust creation, the

second dust destruction via SN and the third dust astration via star formation. This is a closed

box model as we are not invoking infalls or outflows of matter. Equation 5.14 is in essence a

restatement of Dwek et al. (2007)[Equation 16].

Our model tracks the masses of dust created by our three classes of dust producers as

described above. The dust created by AGB and S-AGB stars is assumed to be instantly mixed

into the disk (as this is where the majority of low mass stars will end their lives). The assumption

of perfect mixing allows us to apply the dust destruction lifetime as a dust survival fraction per

timestep based on the dust destruction rate (Dwek, 1998)):

dMD(t)

dt
∝ −MD(t)

τ
(5.15)

Where τ represents the appropriate dust destruction lifetime, MD is the mass of dust in

the model and dMD(t)/dt is the rate of change of the dust mass. Neglecting other factors and

considering merely the rate of dust destruction, i.e.:

(
dMD(t)

dt

)
dd

= −MD(t)

τ
(5.16)

Where (dMD(t)/dt)dd is the rate of dust destruction, we find an equation that is trivially

integrable to the form:

MD(t+ dt) = MD(t)× e−
dt
τ (5.17)

This allows us to calculate the remaining dust mass after any timestep given the dust de-

struction lifetime.

SNII dust is assumed to be confined, at least during period of intense star formation, to the

high mass star formation regions in which it is created. This implies that it should be susceptible

to dust destruction driven by the coincident massive stars exploding as SNe and not strongly

influenced by the evolution of lower mass stars until the star formation episode ceases and the
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dust which has survived in the SF region merges with the rest of the dust in the disk. Thus SNII

dust is created and destroyed on a different timescale to that created by AGB/S-AGB stars, until

the galaxy enters a quiescent, phase whereupon the dust destruction rate is solely dependent on

SNIa dust destruction.

It is important to note that this model is not self consistent in that we are not attempting to

model the parameters which can control, for example, star formation. The star formation rate

is typically treated as a function of the surface gas density and/or total galactic mass (Salpeter

1955; Kennicutt 1998. We have to define a Star Formation History (SFH) as an input to the

model, however several specimen SFHs can be drawn from the literature and from successful

Galactic Chemical Evolution (GCE) models.

5.3.6 Simple Galaxy models

The first test of this model is to compare it against previously published simple galaxy models.

The first such example, was that presented by Morgan & Edmunds (2003) in their Figure 8. We

show a comparison of the current model versus that of Morgan & Edmunds (2003) in Figure 5.5

using a constant SFR of 1 M� per year for a galaxy of mass 2 × 1010 M�. The two models

agree over the regime which was presented by Morgan & Edmunds; we have also shown the

subsequent evolution of this galaxy. In the regime of a constant SFR, the dust from AGB stars

will come to dominate (as shown in Figure 5.6) and dust destruction/creation processes start to

find an equilibrium state. The dust destruction process is important at late times in this model

as the Type Ia SNe begin to occur in significant numbers.

As mentioned in Section 5.3.1, the kinds of galaxies we ultimately wish to model have very

different star formation histories than that presented in Figure 5.5. Massive elliptical galaxies

have been inferred to complete almost all of their star formation at the start of their lives, usually

in a very intermittent manner5. To sketch this process, I invoke a SFR which has bursts of star

formation followed by periods of quiescence for the first 250 Myrs of its history. The behaviour

of the dust mass is shown in Figure 5.7.

In Figure 5.7 the influence of dust destruction is obvious. The total dust mass reaches a

equilibrium state where the dust destruction by Type Ia SNe is balanced by the dust created by

AGB stars. The effect that dust destruction has on the total dust mass in this model is shown in

Figure 5.8, where we compare the same model as shown in Figure 5.7 with a model which is

identical except for dust destruction which has been disabled. In the first model dust destruction

processes are destroying more than 50% of the dust created.

5This may be via intermittent starbursts quenching star formation via galactic mass ejection or multiple mergers.
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Figure 5.5: Comparison of the dust mass versus age model we have developed here (total dust

mass in red, SN dust mass in green, AGB dust mass in blue) versus that presented by Morgan

& Edmunds (2003) (mauve points).

Figure 5.6: The fraction of total dust mass provided by SNe (red) and AGB stars (green), as a

function of time.
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Figure 5.7: Simple dust mass versus age model for an elliptical galaxy with bursts of star

formation. Shown are the total dust mass (red), SN II dust mass (green), AGB dust mass (blue),

plus 2000 × SFR (multiplied for visibility, black dashed). See text for more details.

Figure 5.8: Simple model of an elliptical galaxy with bursts of star formation as in Figure 5.7.

Shown are the total dust mass from the model with dust destruction (red) and the total dust mass

for the same model where dust destruction has been disabled (green).
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Figure 5.9: Simple model of an elliptical galaxy with bursts of star formation with the effects

of S-AGB stars included. Shown are the total dust mass as a function of time from Figure 5.7

(red) along with the same model with S-AGB stars included (green).

5.3.6.1 Simple Models with S-AGB stars

In Figure 5.9 we show the effects of using a SFH with intermittent bursts of star formation

identical to that used in Figure 5.7 but including the effects of S-AGB stars in the manner

described in Table 5.2. The peak total dust mass is more than doubled by the inclusion of these

objects, implying that if 6–9 M� stars do create as much dust as suggested by Wesson et al.

(2010), they could be the dominant producers of dust in high redshift galaxies.

5.4 SDSS J1148+5251 Models

The classic example of a high redshift dusty galaxy, SDSS J1148+5251 (Bertoldi et al., 2003),

has been studied in some detail by various groups. The intial observations, by Bertoldi et al.

(2003), showed that SDSS J1148+5251 was at redshift z=6.42, had a far-IR luminosity of LFIR

= 1.2 × 1013 L� and an inferred dust mass of ∼ 7 × 108 M�. Subsequent observations by

Beelen et al. (2006) largely agreed with these findings, finding LFIR = 2.2 × 1013 L� and MD

= 4.2× 108 M�. We will adopt a total galaxy mass in line with that adopted by previous studies

— of the order MJ1148+5251 ∼ 1012 M� (Valiante et al., 2009).

From the point of view of this study, the most important result was derived by Li et al.

(2007). In that work the star formation history (SFH) of SDSS J1148+5251 was computation-
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Figure 5.10: Star formation history (SFH) of J1148+5251 as modelled by Li et al. (2007) and

adopted by Valiante et al. (2009). The horizontal line represents the average SFR before the

time of observation, the vertical line represents the epoch at which the quasar was observed.

ally modelled to best match the observed properties of the galaxy. The star formation history,

in the form which we will use, was presented by Valiante et al. (2009); (Figure 5) and is repro-

duced here as Figure 5.10.

According to Figure 5.10, SDSS J1148+5251 has undergone intermittent phases of intense

star formation and relative quiescence. This arose in the models of Li et al. (2007) because they

employed a multiple merger model. As was mentioned in the introduction, the peak SFR in

the Li et al. (2007) model occurs significantly before (∼ 270 Myrs before) the epoch at which

the dust mass is being measured. This suggests an AGB origin for the dust should the Li et al.

(2007) SFH be correct. However the SFH of this galaxy is assumed to start at t∼ 250 Myr after

the Big Bang and to finish at around 1.5 Gyr, so it is quite plausible that the strongest burst of

star formation could be somewhat later, thus reducing the gap and increasing the likely CCSN

dust contribution. For our models of SDSS J1148+5251, if the peak dust mass achieved is in

the range that has been derived observationally for SDSS J1148+5251 we would consider that

model to match the observations.

When the SFH from Figure 5.10, is incorporated into our model, as shown in Figure 5.11,
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Figure 5.11: Total dust masses generated by models without S-AGB stars (red lines) and models

with S-AGB stars (blue lines). The thin lines represent models where dust destruction was

disabled. The model of Valiante et al. (2009) is shown in green while the black error bar

represents the estimated dust mass in SDSS J1148+5251 (Bertoldi et al. 2003; Beelen et al.

2006).

it is clear that the dust mass observed in SDSS J1148+5251 cannot be reached by models which

feature dust destuction. The Valiante et al. (2009) model is also shown in Figure 5.11. We

attribute the larger dust masses that they found post-starburst to the fact that SNIa dust destruc-

tion was not included in their model. Their model includes only CCSN dust destruction, as

discussed earlier, such that when the starburst has ceased, dust destruction ceases and the dust

created by AGB stars is no longer destroyed.

In Figure 5.12 the effects are shown of disabling SNIa dust destruction and changing the

dust yields to roughly match those used by Valiante et al. (2009). The general behaviour of

the Valiante et al. (2009) model is reproduced in that we see an early peak in the dust mass

which is largely generated by SNII, followed by a slight dip caused by astration during the most

intense period of star formation activity. Subsequently AGB dust comes to dominate as it has

no destruction mechanism in this model.
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Figure 5.12: Modifying the model to match the parameters used by Valiante et al. (2009). Blue:

our model with enhanced yield and disabled SNIa dust destruction; Pink: the Valiante et al.

(2009) model; and Red: our model with enhanced yields but including the effects of SNIa dust

destruction. The black error bar is the estimated SDSS J1148+5251 dust mass as shown in

Figure 5.11, see text for more details.
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Figure 5.13: The effect of including an η Carinae-like dust production of 0.4 M� per star for

stars with initial masses greater than 60 M�. The red line is the total dust mass as in Figure 5.11

(without S-AGB contributions), the blue line is the total dust mass including the η Car-like

enhanced dust production rate. The black error bar is the SDSS J1148+5251 dust mass estimate

as shown in Figure 5.11 .

5.5 Discussion

5.5.1 Pre-SNe Dust Yields

In the introduction it was briefly mentioned that it was usually assumed that Type II SNe com-

pletely destroyed all pre-existing dust. Luminous Blue Variable stars (LBVs) and certain types

of carbon rich WR stars (WC binaries) are known to produce dust. For example 0.4 M� of dust

has been measured around the LBV η Carinae (Gomez et al., 2010) which is thought to have

been formed during one of its “giant eruptions” in the 19th century.

If we assume that the 0.4 M� produced by η Carinae is typical of stars with initial masses

above 60 M�, we get almost a factor of 2.6 increase in the peak dust mass produced by our

model (see Figure 5.13).

5.5.2 The effects of varying τSNII

In Figure 5.14 we show the effects of varying the CCSN clumping factor ω discussed in Sec-

tion 5.3.4. Models were computed using omega factors of 1 (as used in all previous models),

2, 20 and 2000. The ω = 2000 model is almost identical to the model in which SNII dust

destruction was suppressed entirely and hence not shown in Figure 5.14.
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Figure 5.14: Exploring the effects of changing the dust destruction timescale for SNII dust.

The red lines of increasing peak dust mass correspond to ω = 1, 2, 20 where ω is the CCSN

clumping factor. The thick blue line corresponds to a model where SNII dust destruction was

disabled.

When the ω value is increased, the peak dust mass, relative to the ω = 1 peak dust mass,

also increases by the following factors: 1.4 (ω = 2), 2.3 (ω = 20) and 2.5 (ω = 200 / CCSN

dust destruction disabled). Most of the variation in this factor comes in the range ω = 2 – 20,

which corresponds to average cluster masses in the range of 103 – 104 M�; so if average cluster

masses exceed 104 M�, CCSN dust destruction effecrs will be negligible.

5.6 Conclusions

In order to reach the lower bound of the amount of dust in SDSS J1148+5251 (∼ 2 × 108 M�)

with SN dust only, then in common with Dwek & Cherchneff (2011), we find that a SN dust

yield of 0.1 M� is required for every star with an initial mass above 10 M�. However, this

is about two orders of magnitude above the current observational dust mass limits discussed

earlier (Table 5.1) for “normal” Type II SNe in the mass range 10 – 20 M�.

If all stars above 60 M� produce 0.4 M� of dust and the majority of this dust survives the

eventual SN event, then the total dust mass produced can enter the J1148+5251 range.

Using the yields specified in Table 5.2 we cannot match the dust mass in SDSS

J1148+5251 using the SFH presciption of Li et al. (2007). Under certain conditions6we can

match the results of several previous dust evolution models such as those presented by Morgan
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& Edmunds (2003) and Valiante et al. (2009).

The effects of S-AGB stars can be dominant if we follow the assumption that SN 2008S

has produced a typical amount of dust for a star in the upper section of the AGB mass range ∼

6 – ∼ 9 M�.

We have introduced two new ideas in terms of dealing with dust destruction, firstly, that the

CCSNe destruction is attenuated by a factor describing the co-location of CCSNe (the CCSN

clumping factor) which is introduced as a modification to the Dwek (1998) prescription (see

Equation 5.9) and secondly, that Type Ia SNe can have comparable effects to those of CCSNe.

Dwek & Cherchneff (2011) noted in their conclusions that the Dwek (1998) dust destruction

timescale (Equation 5.9) does not account for the spatial component of CCSNe dust destruction.

However they did not quantify this as it has been in this Chapter.

The intoduction of the CCSN clumping factor implies that CCSNe driven dust destruction

may be negligible under certain circumstances — where we would expect large clusters of

massive stars. However, as we noted in Section 5.3.5, this factor is an initial approximate

correction for the true dust destruction rate as in principle one would have to include the effects

of “runaway” massive stars which have escaped the clusters in which they were born, and the

physical dimensions of clusters. However, it does provide a plausible route to maximise the

fraction of dust that can survive — which may go some way towards explaining the high dust

masses observed.

Type Ia SN driven dust destruction may be of importance to high redshift, dusty galaxies —

however the relative importance of this avenue increases dramatically at late times and it allows

us to explain why massive galaxies have high dust masses at high redshifts and comparatively

low dust masses, as massive elliptical galaxies, in the local universe.

6Primarily neglecting dust destruction, but also with slight tweaks to the stellar dust yields.
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Conclusions

“I try not to think with my gut. If I’m serious about understanding the world,

thinking with anything besides my brain, as tempting as that might be, is likely to

get me into trouble. Really, it’s okay to reserve judgment until the evidence is in.”

— Carl Sagan

In this thesis a search for evidence regarding the origins and evolution of elemental car-

bon and of dust has been presented. This work was prompted by the realisation that while

massive stars are predicted to have large carbon yields, there is absolutely no observational

evidence to corroborate this idea. The opening half of the thesis describes the search for neb-

ulae around evolved, massive stars which may have exhibited evidence for high carbon yields

and subsequent spectroscopic investigation in which it was shown that the nebulae which were

deemed the most likely targets (those around carbon rich WR stars) did not display any traces

of anomalous carbon abundances. Clearly, this does not rule out the idea that WC stars can

produce copious amounts of carbon, it merely shows us that enhanced carbon is not present in

those circumstellar nebulae which we observed.

However this does not render the search unfruitful, in Chapter 2 previous claims that ejecta

type nebulae were present around many WR stars were shown to be false, and a new ejecta type

nebulae was discovered around WR 8. A tentative anti-correlation between binarity and ejecta

type nebulae was also established. The newly discovered ejecta type nebula around WR 8 was

shown to display striking abundance enhancements in Chapter 3, a success for the concept of

being able to categorise the origins of circumstellar nebulae via morphological categorisation.

As mentioned, the carbon lines which were going to be used to derive carbon abundances were

not detected in the sample of nebulae, with one puzzling exception: NGC 3199. The [C I]

lines detected around NGC 3199 were found to most likely not be collisionally excited, but a

product of C+ recombination in PDRs — though with the mysterious and unexpected property

of having the same FWHM as the collisionally excited lines from the ionized gas.
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The question of “where is all the carbon that should be produced by massive stars?” re-

mains unanswered though, and the position remains that where more observational evidence is

needed to be certain that massive star carbon yields are of the same order of magnitude as have

been predicted – possible avenues of investigation will be discussed below.

Chapters 5 and 4 investigated the evolution of gas-phase abundances in the Milky Way

(MW) and dust masses in high redshift galaxies respectively. These topics may seem rather

disparate, however they are linked by the tools used to investigate them. In Chapter 4 the

evolution of carbon and oxygen in the MW was examined using chemical evolution models.

It was found that, in line with other recent studies, low- and high-mass stars can both play a

significant role in carbon production. In particular, using different combinations of published

stellar yields, either mass range can be dominant in the production of carbon. Clearly, the true

story may be somewhere between the two extremes, however in light of the previous discussion

it is currently difficult to justify the position that massive stars produce a great deal more carbon

than lower mass stars.

In Chapter 5 the GCE models of the previous chapter were re-purposed such that the

yields involved now represented dust yields — allowing the same kind of model to be used

for a very different context. The models were then computed with prameters aimed at closely

matching those of high redshift, dusty galaxies and quasars discusssed. Several potentially

important effects were included regarding dust destruction that have not been discussed by

previous authors. Firstly, Type Ia SN have similar explosive energies as CCSNe, and therefore

could also contribute to dust destruction. Secondly, a CCSN clumping factor was introduced as

a way of allowing for the co-location of CCSN progenitors in clusters. The CCSN clumping

factor suggests that CCSNe dust destruction may be negligible in some types of galaxy that

preferentially form stars in high mass clusters (> 104 M�).

6.1 Future Work

This work has suggested several new avenues of enquiry that may be fruitful. In the first chapter

survey imagery from the SHS survey was used to search for nebulae around WR stars. The next

large survey of the southern galactic plane, VPHAS+1, will be digital rather than photographic

and deeper than the SHS survey. This should enable a new search for fainter WR nebulae in

the galactic plane. The resolution and sensitivity of the SHS survey also precluded an equiva-

lent search for nebulae around LMC WR stars, a situation which could be rectified by using a

suitably adaptive optics equipped instrument to improve the angular resolution.

1http://www.vphas.org/
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A further proposal utilising the UVES instrument on the VLT is in preparation to observe

the now bona-fide ejecta nebulae around WR 8 and possibly WR 16. The nebula around WR 8

in particular may yield the heavy element recombination lines which were not detected in NGC

3199 and allow quantification of the CEL versus recombination line abundance discrepancy.

The WR 8 nebula also has the advantage of a stronger ionizing source (WR 8 is WC4/WN7

spectral type) which favours the detection of oxygen lines which will allow the determination of

an accurate N/O ratio. In the new proposal UVES will be set up in such a way that we can access

the temperature sensitive [N II] 5755Å line, which will allow the first accurate determination

of the nebular temperature in a WR ejecta nebula. Any progress in finding evidence of carbon

around massive stars would help constrain their carbon yields, which in turn would increase our

faith in using massive star yields with significant carbon components in GCE models.

Further work regarding the models presented here would focus on a more formal treatment

of massive star dust destruction and creation. The CCSN clumping factor discussed earlier is

an interesting starting point, however it may be too simple to be an accurate representation

of the true role CCSNe play in galactic dust evolution. The next stage of investigating this

idea would be to model individual star formation regions using the current estimates of their

size and mass to see how much overlap we would expect between the ejecta from each SN.

Using Monte-Carlo techniques we could then generalise this process across various physically

plausible cluster mass ranges which would allow quantification of the effects of CCSNe on the

dust content of galaxies.

Should the search for carbon in nebulae around WR stars prove fruitless, there are other

ways to begin to quantify the carbon yields of WR stars. The carbon mass loss rate can be

derived via spectroscopy of the WR winds, however this ties the total carbon yield to the lifetime

of the WR star in its carbon rich phase – which is very uncertain.
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