
REVIEW Open Access

The Role of Cardiovascular Magnetic Resonance
in Pediatric Congenital Heart Disease
Hopewell N Ntsinjana, Marina L Hughes and Andrew M Taylor*

Abstract

Cardiovascular magnetic resonance (CMR) has expanded its role in the diagnosis and management of congenital
heart disease (CHD) and acquired heart disease in pediatric patients. Ongoing technological advancements in both
data acquisition and data presentation have enabled CMR to be integrated into clinical practice with increasing
understanding of the advantages and limitations of the technique by pediatric cardiologists and congenital heart
surgeons. Importantly, the combination of exquisite 3D anatomy with physiological data enables CMR to provide a
unique perspective for the management of many patients with CHD. Imaging small children with CHD is
challenging, and in this article we will review the technical adjustments, imaging protocols and application of CMR
in the pediatric population.

1. Introduction
Congenital heart disease (CHD) has an incidence of 6-8
per 1000 at birth [1,2]. The survival of CHD patients
has also increased because of improvements in early
diagnosis (including fetal echocardiography) and treat-
ment, which have led to more patients surviving into
adulthood [1-3]. Furthermore, there is an increasing
number of children with acquired heart disease, in parti-
cular related to anthracycline cardiotoxicity, following
treatment of oncological disease in early childhood.
Imaging is fundamental to the diagnosis of CHD and

is required at all stages of patient care. From the fetal
stage onwards, imaging outlines anatomy and physiol-
ogy, helps to refine management, evaluates the conse-
quences of interventions and helps guide prognosis.
However, no single available imaging modality fulfils
these roles for all patients and diseases. Therefore,
assessment for CHD must involve a variety of modal-
ities that can be used in a complementary fashion,
and that together are sensitive, accurate, reproduci-
ble, and cost effective, whilst minimizing harm.
Echocardiography remains the first-line imaging inves-

tigation for pediatric patients, as it is portable, non-inva-
sive and provides immediate, high-resolution anatomical
and physiological information [4,5]. For co-operative
patients with good acoustic windows, echocardiography

alone can define diagnosis and guide management and
prognosis. However, echocardiography fails when acous-
tic windows are poor, particularly for the assessment of
extra-cardiac vascular structures.
Where cardiac catheterization was traditionally used

to provide hemodynamic information and visualize
extracardiac great vessels, [6] cardiovascular MR (CMR)
is progressively fulfilling this role [7]. The burgeoning
availability of MR scanners and physicians’ rapid uptake
of CMR is escalating the prominence of this modality in
the management of pediatric congenital heart disease.
CMR provides a powerful tool, giving anatomical and

physiological information that echocardiography and
catheterization alone cannot provide [8,9]. Extra-cardiac
anatomy, including the great arteries, systemic and pul-
monary veins, can be delineated with high spatial resolu-
tion. Vascular and valvular flow can be assessed, [10]
shunts can be quantified, [11] and myocardial function
can be measured accurately with high reproducibility,
regardless of ventricular morphology [12]. Finally, CMR
surpasses both catheterization and echocardiography in
providing high-resolution, isotropic, three-dimensional
datasets [13]. This allows for reconstruction of data in
any imaging plane, giving complete visualization of com-
plex cardiac anomalies, without the use of ionizing
radiation [14]. In the pediatric population, CMR
could be justified for any patient in whom clinical or
echocardiographic data is insufficient for monitoring,
decision-making or surgical planning.
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Despite its widespread use CMR still has some techni-
cal limitations that have to be overcome in order to per-
form successful pediatric CMR. These technical
difficulties involve the high spatial resolution required
for imaging small anatomical structures, and the
patients’ inability to consistently follow breath-holding
commands, due to young age or developmental delay.
This review will aim to provide guidance on the indica-
tions for CMR in pediatric CHD, provide potential pro-
tocols and describe imaging techniques for the main
conditions referred for CMR.

2. Indications
The decision to perform CMR depends on the infor-
mation required, the local facilities and resources
available for scanning, the clinical state of the patient,
and the risks to the patient of carrying out the exami-
nation. Without the use of sedation or contrast, a
comprehensive CMR examination in a willing patient
carries minimal risk. However, the need for sedation,
general anesthesia or gadolinium contrast changes the
balance of risk in some patients. Furthermore, CMR is
a resource-high investigation. In addition to the costs
of purchasing, running and maintaining the MR scan-
ner, significant expertise and training is required for
all staff involved in acquiring and interpreting the
images.
The technical and diagnostic complexity of pediatric

CMR is significant. The patients’ body size is small and
heart rates are rapid. Imaging these patients requires a
radiographer trained to expedite image planning and
optimize pulse sequences in this context, and a CMR
physician with expertise in the anatomical and physiolo-
gical changes of CHD. In addition, because general
anesthesia is often necessary for the youngest children,
an anesthetic team is required, and this team must be
trained to care for cardiac patients with hemodynamic
compromise.

2.1. CMR with general anesthesia
Because of the potential increased risks involved in
pediatric patients with congenital heart disease, in our
institution, the decision for a child to undergo CMR
under general anesthesia is made in the setting of a
multidisciplinary clinical planning meeting. The deci-
sion-making involves careful analysis of potential risks
and benefits. Our unit policy is that a senior cardiac
anesthesiologist always carries out the anesthetic proce-
dure. Prior to each case there is detailed discussion
between the anesthetic and cardiac imaging teams,
regarding the specific hemodynamic and imaging issues
pertaining to the case. With these considerations, our
unit and others, have a very good safety profile for ima-
ging these complex patients [15,16].

Generally, children less than seven years of age will
have CMR performed under a general anesthetic. This
practice varies in different centers, depending on local
anesthetic and sedation policy. Some institutions use
various degrees of sedation, with or without the need
for an anesthetist to monitor the patient. General
anesthesia ensures prolonged cooperation and enables
reliable breath holding.
Potential indications for children undergoing CMR

under general anesthesia are outlined in Additional file
1, Table S1. The set-up of a typical CMR control room
containing anesthetic equipment is shown in Figure 1.
Other procedures can be carried out while the patient is
under anesthetic. For example, in those patients with a
functionally uni-ventricular heart and a cavo-pulmonary
shunt, the jugular venous pressure can be measured via
needle transducer, prior to surgical completion of the
total cavo-pulmonary circulation. This gives an estima-
tion of pulmonary artery pressure at the same time that
image data gives pulmonary artery morphology, flow
volume, ventricular and valvular function. Diagnostic
catheterization can be avoided in many patients who
have traditionally required catheter angiography [17,18].

2.2 CMR without anesthesia
The older pediatric patient groups for whom CMR is
indicated are listed in Additional file 2, Table S2. For
many of these patients CMR is often a single, focused
study prior to intervention. For others the benefit of
CMR lies in serial imaging leading up to, or following
intervention. While avoiding ionizing radiation, CMR
can give accurate and reproducible quantification aortic
arch dimensions [19,20], ventricular volumes, and valvu-
lar function [21]. This guides the management team
with regards to the appropriate timing for, [22] or the
effect of any intervention [23,24].

2.3 Prior to transfer to adult services
An important indication for CMR in our pediatric cen-
tre is the stage of transfer of the patient to an adult
institution for ongoing care. Prior to transfer, CMR
gives a comprehensive summary of the anatomical and
physiological status of the patient, for all types of post-
surgical situations.

2.4 Decision making
When there are local facilities and expertise in all the
modalities: CMR, cardiovascular CT and cardiac cathe-
terization, the imaging strategy for complex patients can
be discussed in a forum comprising cardiologists, car-
diac imaging specialists, interventionists and surgeons.
For many patients the imaging choice is obvious. For

example, for a cooperative 10 year old with clinical signs
of recurrent aortic coarctation, following repair in
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infancy, CMR would yield high-resolution images of the
aortic arch morphology and give the flow profile
through the arch. At the same time, the CMR would
portray and quantify aortic valve function and left ven-
tricular myocardial structure, mass and systolic function.
This data could be acquired within 40 minutes of scan-
ning time, with no need for sedation, anesthetic or
irradiation.
One could argue that for this patient, cardiac catheter-

ization could provide data on the arch morphology and
give an opportunity for arch intervention. However, the
best mode and timing of intervention is not always clear
for many patients. Imaging, with a subsequent temporal
pause or “discussion window” for consideration of all
management options would most frequently yield the
optimal outcome.

At the other end of the risk-benefit spectrum for com-
prehensive imaging is an infant with hypoplastic left
heart syndrome (HLHS), clinically deteriorating soon
after the first stage of surgical palliation. With poor
acoustic windows, urgent further imaging of the branch
pulmonary arteries and aortic arch is necessary. In this
context, general anesthetic may carry a high risk, and
CT imaging of the chest would usually be performed,
using a non-sedated “feed and wrap” technique. The CT
images would then be used to refine the decision-mak-
ing, regarding whether intervention appears justified,
which intervention would be optimal (surgical revision
or balloon angioplasty) and the specific method of inter-
vention. Our perceived advantage of non-invasive ima-
ging, in this way, rather than initial hemodynamic
investigation in the catheterization laboratory, is that we

Figure 1 CMR set-up for paediatric general anaesthetic cases. View of the MR scanner room showing the anesthetic machine (A) and
monitoring equipment (B). Ventilation tubing and leads from both pieces of equipment pass through a small opening in the wall (C) into the
control room, so that the anesthetist can control breath-holding and monitor the patient from within the control room.
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achieve an, often crucial, “window” for discussion and
procedure planning.
The potential vascular complications of catheterization

[25,26], and the dangers of exposure to radiation [27]
mean that for many centers, cardiac catheterization is
reserved for patients in whom hemodynamic data is
essential (e.g. high risk Fontan, pulmonary hyperten-
sion), or in whom it is known that interventional proce-
dures are highly likely and necessary.
Finally, some patients benefits from a combined

approach using a hybrid CMR/cardiac catheterization
laboratory, in which patients can be transferred, under
the same general anesthetic, from imaging to interven-
tional procedures and vice versa. This guides the inter-
vention procedure, and gives potential to immediately
assess the hemodynamic results of intervention with
assessment of flow and ventricular function [28,29] (see
section 6).

3. Scanning environment, sequences and
protocols
3.1. Scanning environment for general anesthetic cases
(Figure 1)
Performing general anesthesia (GA) in a magnetic reso-
nance environment is challenging for many reasons: [30]
There is limited access to the child and ventilation
equipment during the CMR scan; care is required for
staff and patient safety with regards to ferromagnetic
equipment; and there is a potential for RF interference
with monitoring. It is therefore very important to have
an appropriately trained anesthetic team (the cardiothor-
acic operative team in our institution), with excellent
monitoring equipment. Several technical factors specific
to MR in infants and small children must be taken into
consideration. Prolonged, multiple breath holds are
required, thus adequate pauses for ventilation control
between breath holds are required, to ensure that
hypoxia and hypercapnoea are avoided. Reliable moni-
toring of the electrocardiogram, pulse oximetry and
expired gas concentrations is necessary. Additionally,
patient temperature must be closely monitored. The low
ambient temperature in MR scanning room produces a
risk of hypothermia, particularly for small infants.

3.2 Sequences
Additional file 3, Table S3 describes the sequences that
can be used for assessing patients with CHD. In Addi-
tional file 4, Table S4 suggestions are given for which
sequences are most useful for a range of clinical
indications.
Although time consuming, a full scanning protocol,

including 3D data acquisition, is necessary for most
patients because their complexity brings a high likeli-
hood of previously undiagnosed or unexpected

morphological or physiological findings. Acquiring a
complete image data set gives the opportunity for full
delineation of the sequential segmental anatomy in
every patient.
3.2.1. 3D imaging
The 3D capabilities of CMR play a key role for pediatric
CHD. There are two conventional methods of acquiring
3D data. One uses angiographic techniques with gadoli-
nium-based contrast agents that can be injected via any
peripheral vein [31]. The other uses a 3D balanced-SSFP
sequence, which is respiratory and cardiac gated, but
does not require contrast [32,33]. Both data sets are
acquired in such a way to give isotropic voxels, so that
the images can be viewed with the same spatial resolu-
tion in any anatomical plane. These data can be used
during the scan to plan image planes for further scan-
ning, as well as during the reporting phase to assess 3D
relationships between structures, quantify vessel size and
view morphology. The high-signal, isotropic 3D images
that are achieved using gadolinium-contrast angiography
allow complex modeling of structures so that interven-
tional techniques can be optimized [34].
3.2.2. Cine imaging
Cine imaging using balanced-steady state free precession
or fast gradient echo sequences, gives multiphase data
that shows myocardial or valvular motion over the
entire cardiac cycle. These cines have up to 40 frames
per cardiac cycle, a temporal resolution adequate for
accurate physiological representation. Cines can be per-
formed in any plane to assess the dynamic function of
any structure, including the outflow tracts, valves and
great arteries. Furthermore, short-axis cine images,
acquired in equal-width slices, perpendicular to the
long-axis of the heart from base to apex (short axis ima-
ging), or similar long-axis imaging in an axial plane, can
be used to accurately assess cardiac function and mea-
sure the ventricular volumes.
The post-processing of cine images to calculate ventri-

cular volumes and function is performed off-line, using
commercially available software. The segmentation of
the blood pool and myocardial border can be performed
manually, or by using automated signal thresh-holding
techniques. There is currently a wide range of software
available, and a wide variation in segmenting practice
and procedures. A fundamental issue, particularly for
pediatric patients and those with congenital disease, is
that of inclusion or non-inclusion of the trabeculae in
the blood pool. If a simple endocardial contour is drawn
and the trabeculae ignored and included in the blood
pool, the manual segmentation process is more efficient
and more reproducible [35]. However, this leads to erro-
neously large volume estimates for the ventricles, and
prohibits internal validation of stroke volumes using
great arterial flow volumes. Additionally, this could lead
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to the miscalculation of atrio-ventricular valve
regurgitation.
3.2.3. Flow assessment
Accurate quantification of flow volume is crucial in
patients with known or suspected CHD. For volume
quantification, we favor a free-breathing, velocity
encoded, phase-contrast sequence with a temporal reso-
lution of at least 30 frames per cardiac cycle. Slice posi-
tioning and velocity encoding must be optimized [36]. If
these parameters are rigorously controlled, flow can be
assessed in large and small arteries, systemic and pul-
monary veins [10,37]. Aortic and pulmonary valve
regurgitant fractions can be calculated. Phase contrast
flow sequences also enable the profiling of flow accelera-
tion jets, with velocity estimation. More importantly,
with appropriate combinations of arterial and venous
flow volume assessment, the technique allows accurate
assessment of inter-atrial, inter-ventricular, arterial and
venous shunt volumes. In the context of atrio-ventricu-
lar valve regurgitation, knowledge of the ventricular
stroke volume, combined with knowledge of the forward
arterial flow volume from that ventricle allows for calcu-
lation of mitral or tricuspid valve regurgitant fraction.
For every patient in whom ventricular function is quan-
tified, the practice of our unit is to undertake great
arterial flow volume assessment to guide the volumetric
analysis. This greatly enhances the accuracy and repro-
ducibility of our reporting procedure [38].
3.2.4 Black-blood Imaging
Spin echo pulse sequences can still play a role in ima-
ging CHD. These sequences are effective for the assess-
ment of the 2D morphology of the blood vessels and
cardiac chambers, [39,40]. This is particularly useful
when turbulent flow at the site of stenosis reduces the
accuracy of balanced-SSFP or MRA images. Black blood
imaging is also useful for elucidating the relationship
between airway and blood vessels. This helps in identify-
ing airway abnormality associated with various airway
diseases, or in airway problems occurring as a complica-
tion of CHD [41]. Black-blood imaging is also useful
when tissue characterization is necessary, in particular
when fat infiltration of the myocardium is suspected.
Though black-blood imaging has been suggested as a
good method for assessing stents, we believe that this
can give false re-assurance about stent patency (non-
visualization of the stent interior) and hence we recom-
mend other MR techniques to define stent morphology
using CMR. These include using high-flip-angle gradient
echo cine images, to assess the stent in longitudinal and
cross-sectional planes [42].
3.2.5. Late-gadolinium enhancement (LGE)
LGE-CMR has become an integral part of imaging both
congenital and acquired cardiovascular diseases. This is
achieved through the use of gadolinium-based agent and

specific MR pulse sequences that help to differentiate
between the normal and the diseased myocardium. The
role of LGE-CMR in adults with ischemic cardiomyopa-
thy has long been established [43], and its impact in the
imaging work-up in pediatric population is growing. For
patients with previously repaired tetralogy of Fallot, LGE
has been associated with RV dilatation and worsening
hemodynamics [44,45]. LGE has also been shown to be
a good indicator of systemic RV failure in patients fol-
lowing atrial switch repair of transposition of great
arteries [46]. Late after Fontan operation it has also
been shown that LGE is associated with dilated and
hypertrophied systemic ventricles, systolic dysfunction,
regional dyskinesis and ventricular arrhythmias [47].
Areas of myocardial fibrosis following coronary artery
re-implantation during repair of congenital heart dis-
eases are also detected with LGE-CMR [48]. Moreover,
the extent of late enhancement is associated with
increased risk of arrhythmias and sudden death in adult
patients with hypertrophic cardiomyopathy [49]. LGE-
CMR has been shown to have a high diagnostic accu-
racy in patients with acute myocarditis [50].
3.2.6. Stress perfusion CMR - adenosine and dobutamine
Myocardial perfusion CMR can be performed at rest
and during stress with coronary vasodilatation induced
by adenosine. This defines myocardial viability and the
stress/rest adenosine perfusion deficit, while a bolus of
gadolinium contrast agent is being administered. Indica-
tions for pharmacological perfusion CMR in the pedia-
tric age group include suspected ischemia secondary to
acquired coronary artery disease, such as Kawasaki’s, or
suspected ischemia following surgical transfer of coron-
ary arteries during repair of CHD. The clinical value of
adenosine perfusion CMR is similar to that of myocar-
dial scintigraphy, with an advantage that adenosine per-
fusion is performed over a single 45-minute session,
with no radiation exposure, as compared to two long
sessions of scintigraphy. The high specificity and sensi-
tivity of adenosine perfusion studies have been validated
in adult patients with coronary artery disease [51,52].
There is very little data regarding the use of dobuta-

mine stress CMR in pediatric patients with congenital
disease. Currently our unit does not use this methodol-
ogy, but many centres are gathering experience. The fea-
sibility has been shown in one small study [53]. Some
centres are utilizing dobutamine stress methodology for
additional decision support in the decisions regarding
timing for intervention, for example in the population of
patients with repaired tetralogy of Fallot [54,55].
3.2.7. Sequence optimization
Pediatric CMR poses various technical challenges that
need to be considered in order to obtain optimal images
to answer the clinical question being investigated. These
include: fast heart rate in neonates and infants (100-150
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beats per minute) requiring a high temporal resolution
for accurate ventricular volume and flow measurements;
small-sized heart and blood vessels requiring greater
spatial resolution;[56,57] and potential arrhythmias as
complications surgical procedure or the congenital
anomaly itself. These will render CMR difficult, and will
require adjustments to normal CMR imaging protocols.
To meet the needs of successful pediatric CMR, some

adjustments are as follows. Due to small size of the
heart and blood vessels, slice thickness is reduced to 3-5
mm. The field of view is also reduced, but this is at the
expense of signal:noise ratio (SNR). Sometimes, smaller
size, pediatric radiofrequency coils or the application of
multiple signal averages can help to maintain the SNR
at high spatial-resolution for these small hearts. To
avoid image blurring due to fast heart rate in newborns
and infants, it is necessary to improve the temporal
resolution. Reducing the number of views to be acquired
per segment in the segmented k-space and minimizing
repetition time (TR) during each cardiac cycle in retro-
spective sequences such as balanced SSFP cine, will help
improve the temporal resolution. In prospectively gated
sequences such as turbo spin echo (TSE) every other
heart beat techniques can be applied [57-59]. In patients
with arrhythmias, real time imaging can be used [60,61].
In patients having difficulty with breath-holding, or with
respiratory motion artifacts, averaging techniques or a
respiratory navigator can be applied.
3.2.8. A note on normal values in children
The rapid uptake of CMR and exponential rise in use
for pediatric cardiology accentuates the paucity of CMR
data giving normal reference values for pediatric
patients. Normal data for ventricular volumes, function
and other structural measurements has been published
[19,62,63] and multicentre data is now being accumu-
lated. It is crucial that these data incorporate, or at least
attempt to unify, the multitude of different imaging and
post-processing conventions that have evolved in the
international centers developing pediatric CMR.

4. Clinical applications
4.1. Cardiovascular shunts
The suspicion of significant systemic to pulmonary
shunt at any level; intrapulmonary, atrial, ventricular or
systemic arterial, can be an indication for CMR, with
the aim to assess the anatomy, quantify the shunt, and
measure the effect of any volume loading on the atrial
and ventricular chambers.
Conventionally, the most common methods of evalua-

tion of these shunts have been invasive oximetry or
thermal dilution, non-invasive first-pass radionuclide
angiography or color Doppler echocardiography. All of
these techniques have significant limitations [64]. CMR
techniques have been shown to correlate well with

oximetry and Doppler echocardiography in quantifica-
tion of the shunt volume [65-67].
Importantly, CMR also gives morphological informa-

tion to guide intervention and management. Gaps in
septal signal in dark-blood acquisitions may suggest the
presence of defects, but this may be due to partial
volume effects and possible signal drop out [65]. Sus-
pected defects should be investigated further by appro-
priately aligned cine and velocity map acquisitions [68].
Signal artefact caused by flow turbulence through the
defect can be visualized during different phases of the
cardiac cycle by white-blood cine imaging techniques
such as SSFP, orientated perpendicular to the adjacent
septum, and acquired in stacks of relatively thin slices,
without gaps. This can be followed by a through-plane
or in-plane flow velocity acquisition, transecting the jet
emerging through the defect [69], prior to flow velocity
mapping within the great vessels [70] to quantify the
shunt volume.
Quantification of the left to right shunt is traditionally

based on Flick’s principle, which looks at the ratio of
pulmonary (Qp) to systemic (Qs) flow. The feasibility of
CMR to quantify intra-cardiac shunt has been shown to
correlate well with the other methods. Quantification of
blood flow is done using velocity encoded cine CMR
(VENC-CMR), carefully optimized for spatial and tem-
poral resolution, and planned in a plane perpendicular
to the direction of flow in the relevant great vessels. At
the simplest level, by measuring the flow volume in
both the main pulmonary artery and the proximal
ascending aorta, a Qp/Qs ratio is obtained [11,70-74].
Correlating this data with ventricular stroke volumes,
can give the level of the shunt.

4.2. Diseases of the aorta
4.2.1. Coarctation of the aorta (CoA) is a congenital
narrowing of the aorta, usually at the site of ductal
insertion (aortic isthmus) [75]. The treatment of choice
in infancy is surgery, though in older subjects balloon
angioplasty or stent implantation can give effective relief
of arch stenosis.
CMR is the first line assessment in the follow-up of CoA

(Figure 2), and can identify the arch geometry and mor-
phology (residual stenosis or aneurysm formation), as well
as assess aortic valvular morphology, and left ventricular
systolic function and hypertrophy. A “gothic” arch is asso-
ciated with high risk of resting hypertension despite suc-
cessful repair [76]. CMR can characterise coarctation
stents, using black blood and gradient echo cine
sequences. Stent-associated stenosis can also be diagnosed
with phase contrast flow mapping and angiography, or
high-flip angle gradient echo cine images [42]. However,
often cardiovascular CT may also help to assess internal
stent morphology and adjacent complications.
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4.2.2. Interrupted aortic arch (IAA) is rarely imaged
pre-operatively in the neonate with CMR, as echocardio-
graphy can usually define the arch anatomy and asso-
ciated intracardiac anomalies [77]. Post-operative CMR
imaging has the same advantages as for simple coarcata-
tion aorta, and the imaging protocols used generally
correlate.
4.2.3. Anomalies of the aortic arch are due to failure

of fusion and regression of the brachial arches in a
usual manner during the embryologic development of
the aortic arch, pulmonary arteries and ductus arteriosus
[78,79]. The diagnosis of these abnormalities using CMR
can be achieved by contrast enhanced (CE-MRA) and
non-contrast enhanced 3D SSFP sequences, which
delineate the anatomy very well, [80] and can often
depict associated airway anomalies.

4.3. Disease that predominantly affect the right ventricle
4.3.1. Tetralogy of Fallot is the most common cyanotic
congenital heart disease accounting for 420 per million
live births [1]. CMR has become a prominent diagnostic
and monitoring tool for both pre- and post- operative
assessment of tetralogy of Fallot [81-83].
Echocardiography is usually sufficient to define anat-

omy prior to surgery in most patients during infancy,
however those with complex pulmonary stenosis or atre-
sia can be effectively assessed with CMR [84], with the
aim of identifying the presence and the size of the native
pulmonary arteries and the source of pulmonary blood
supply (Figure 3). CMR defines the degree of RVOT
obstruction [40,85,86], and with the use of 3D SSFP
sequences, can define the coronary anatomy, to exclude
the presence of a large coronary artery branch crossing
the RV outflow tract.

The degree of RV dilatation secondary to chronic
volume load, as a result of pulmonary regurgitation, has
a deleterious impact on biventricular systolic function
and functional efficiency [87-89] (Figure 4). Currently
the main treatment of severe pulmonary regurgitation in
this population is the replacement of the pulmonary
valve. This can be achieved surgically or trans-catheter
percutaneous pulmonary valve implantation (PPVI).
CMR provides a basis for deciding which route to
employ in replacing the pulmonary valve and has
demonstrated significant physiological improvement fol-
lowing PPVI [90,91].
Pulmonary stenosis following Tetralogy repair can be

well characterised by CMR, using cine imaging and flow
mapping. PC-MRI is the best modality in demonstrating
the relative volume of blood flow to each lung after the
repair of Tetralogy of Fallot [92]. CMR has been shown
to be sensitive and specific in detecting branch pulmon-
ary artery stenosis following Tetralogy repair especially
3-D MRA [93-95]. RV diastolic function can be assessed
with tricuspid valve inflow volumetric curves using PC-
MRI [96].
4.3.2. Transposition of the great arteries (TGA)

comprises 3% of all congenital heart disease [1]. CMR is
seldom required for pre-operative assessment of simple
TGA, as echocardiography usually provides adequate
diagnostic information [97]. The main indication for
CMR in TGA is the evaluation of post-operative
complications.
Surgical therapy for this condition was revolutionized

in the 1960’s with the introduction of the Senning and
the Mustard procedures (atrial switch operations), which
involved the diversion of systemic venous return to the
left ventricle and pulmonary venous return to the right

Figure 2 Aortic coarctation. A. ‘Black-blood’ oblique sagittal view showing discrete, tight coarctation at the aortic isthmus (arrow). B. 3D,
contrast-enhanced CT angiogram showing mildly narrowed bare metal stent (arrow) that partially overlies the left subclavian artery origin. The
arrowhead shows a subtle pseudo-aneurysm at the distal end of the stent. C. 3D, contrast-enhanced MR angiogram showing aortic arch
hypoplasia and coarctation with a ‘jump’ by-pass graft posteriorly (arrow). D. 3D, contrast-enhanced MR angiogram showing large pseudo-
aneurysm (arrowhead) after previous patch angioplasty repair. The true lumen is shown posteriorly (arrow).
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ventricle. This creates a physiological correction of the
problem with a very abnormal anatomy.
Post-atrial switch assessment involves cine and 3D

imaging of the venous pathways for baffle leaks or
obstruction, and assessing systemic RV systolic function
and tricuspid valve function (Figure 5). Late gadolinium
enhancement of the ventricular myocardium after atrial
switch operation has been found to correlate with out-
come [98,99].
In the current era, the surgical procedure of choice for

neonates diagnosed with TGA is the arterial switch
operation [100,101]. This produces both physiological
and anatomical correction.
Although the arterial switch operation (ASO) has

excellent long-term outcomes, there can be serious
complications concerns related to this surgical proce-
dure. The main complications of ASO are main pul-
monary artery or branch pulmonary artery stenosis,
related to the LeCompte maneuver [102] (Figure 6).
Additionally, dilatation of the neo-aortic root and regur-
gitation of the neo-aortic valve can cause hemodynamic
complications in the long term. Assessment of these
post operative complications involve CMR techniques
previously described in this review; stenosis, valve func-
tion and baffle leaks are assessed using PC-MRI and
anatomical and physiological assessment employs the
use of spin echo, gradient echo and 3-D MRA [103,104].
Proximal coronary artery geometry can be assessed by

MRA or MDCT and the presence of reversible damage
caused by the stenosis is assessed by pharmacologically
induced myocardial perfusion stress using adenosine or
dobutamine [48,51,105].

4.3.3. Double outlet right ventricle (DORV) is a rare
cyanotic congenital heart malformation in which both
great arteries arise predominantly from the right ventri-
cle. There is almost always a VSD that acts as an outlet
from the left ventricle. DORV is classified according to
the relationship (commitment) of the VSD to each of
the great vessel’s valve and the most common sub-
groups are:

• Sub-aortic VSD (Fallot physiology) has pulmonary
stenosis and if there is no associated pulmonary ste-
nosis it presents with VSD physiology. This is the
most common type of DORV.
• Sub-pulmonic VSD with transposition of the great
vessels (Taussig-Bing type) DORV [86].
• Double committed: where the VSD is committed
to both great arteries.
• Non-committed VSD

The ultimate goal of management of these patients is
to align LV with systemic outflow tract and RV with the
pulmonary outflow tract. The LV can be hypoplastic,
and these are the groups that pose challenges to the sur-
geon. Detailed imaging is therefore mandatory to assess
the anatomical relations and ventricular physiology
before deciding surgical strategy for a biventricular or
single ventricular repair. CMR has replaced invasive car-
diac catheterization for this cause and has been shown
to correlate very well with surgical findings in investigat-
ing the exact position of great arteries and their rela-
tionship to the VSD [106,107]. The 3-D isotropic CMR
is ideal for assessing this complex type of anatomy.

Figure 3 A. Coronal view from a contrast-enhanced MR angiogram showing a modified BT shunt (arrowhead). It originates from the
innominate artery and inserts into a dilated right pulmonary artery. B. 3D, contrast-enhanced MR angiogram viewed from left posterior lateral
showing several major aorto-pulmonary collateral arteries (MAPCAs). The arrow shows the largest MAPCA to the right lung.
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Post-operative complications are usually imaged using a
combination of black-blood images, balanced-SSFP, PC-
CMR and 3-D MRA. With the tetralogy physiology
complications are similar to those experienced with tet-
ralogy of Fallot, and with the Taussig-Bing type compli-
cations are similar to those experienced in TGA (see
previous sections).

4.4. Complex congenital heart disease
4.4.1 The single ventricle heart is a complex entity
that encompasses varying degrees of anatomic and
physiologic states in which only one ventricle supports

the circulation. Specific anatomical examples include
hypoplastic left heart syndrome (HLHS), which is char-
acterized by the underdevelopment of the left-sided
heart structures, and tricuspid atresia (hypoplastic
right heart).
For simplicity we will use HLHS as our reference

point to illustrate imaging issues of the uni-ventricular
heart. Management of a single ventricle involves a series
of staged palliative procedures. CMR can valuably con-
tribute intervention planning before and after each stage
of the palliative surgical process, and keeps radiation
exposure at a minimum (Figure 7). CMR has been

Figure 4 Repaired tetralogy of Fallot. A. 3D rapid prototyping models of the right ventricular outflow tract, pulmonary trunk and branch
pulmonary arteries (reconstructed from 3D, contrast-enhanced MR angiogram data) from 12 patients with tetralogy of Fallot, all repaired in
infancy and imaged 12-15 years later. Note the wide variation in morphology, size and narrowings. B. End-diastolic, balanced-SSFP, mid-
ventricular, short-axis view showing severely dilated right ventricle (RV), flattened septum and small left ventricle (LV). C. (sagittal) &D. (axial), end-
systolic, balanced-SSFP images of an aneurismal right ventricular outflow tract (arrow).
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shown to be superior to both x-ray angiography and
echocardiography in this group of patients [17,108-110].
Prior to any procedure, a number of centres are using

CMR methodology to give decision support for patients
with “borderline size” ventricles. For those within the
spectrum of hypoplasia of the left ventricle, LGE techni-
ques can often identify significant endocardial fibroelas-
tosis [111]. Long-term outcome data for patients studied
and classified with these techniques remains under
investigation.
After the first stage of surgery, CMR, using black-

blood sequences or gadolinium-enhanced angiography
can delineate the aortic arch and branch pulmonary
artery anatomy, and visualize the aorto-pulmonary
shunt. The second surgical stage is most frequently the
bidirectional superior cavopulmonary connection

(BCPC) at age 4-6 months. There are various aspects of
the haemodynamics that need to be considered when
assessing a patient post-BCPC and before the final stage
of palliation - formation of the total cavopulmonary cir-
culation. These include the ventricular function, the aor-
tic arch for obstruction, the caliber and patency of the
branch pulmonary arteries, shunting through the collat-
eral vessels, and adequacy of inter-atrial communication
[112]. The BCPC is a low flow velocity circuit and its
CMR is achieved using cine, contrast enhanced and PC-
CMR sequences. Assessment of a BCPC circuit non-
invasively for collaterals using the PC-CMR is reliable
[113].
The final stage of a single ventricular repair is the

creation of a Fontan-type circuit in which the SVC and
IVC blood is directed into the pulmonary arteries and

Figure 5 Transposition of the great arteries - Atrial switch (Senning or Mustard) operation. All images taken from frames of balanced-
SSFP data. A. Oblique sagittal view through the ventricular outflow tracts showing the aorta arising anteriorly from the right ventricle (RV) and
the pulmonary trunk posteriorly form the left ventricle (LV). B. Oblique coronal view through the systemic venous baffle, with both the SVC and
IVC directed to the left atrium and then to the LV. C. Oblique axial view showing the pulmonary venous baffle (arrow) connecting the
pulmonary veins to the right atrium and then RV. D. Oblique coronal view showing SVC baffle narrowing (arrow).
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completely bypasses the heart to enter the lungs. CMR
presents valuable 3D morphological and functional
information regarding the Fontan circulation, as well as
the possibility to sensitively assess for thrombus.
4.4.2. Defining atrial morphology and associated

findings: Abnormal atrial situs is often associated with
complex cardiac malformations and abnormal abdom-
inal and thoracic anatomy [86]. 3D balanced-SSFP
images are valuable for determining the atrial situs. Iso-
merism of the right atrial appendages is associated with
bilateral right bronchi and tri-lobed lungs, bilateral right
atrial appendages, asplenia and midline liver. The left
atrial isomerism is associated with bilateral left bronchi;
bi-lobed lung, bilateral left atrial appendages, polysplenia
and interrupted IVC [114,115].

4.5. Assessment of coronary artery problems
Congenital coronary artery anomalies are rare, affecting
0.3-0.8% of the population [116]. CMR is a valuable

adjunct for the assessment of anomalous coronary
arteries [117,118]. 3D mapping of the coronary mor-
phology using respiratory and cardiac-gated balanced
SSFP imaging can reveal the proximal course of the cor-
onary arteries and delineate aneurismal dilatation. The
definition of the proximal course of the coronary
arteries is becoming increasingly important in the
assessment of patients who are undergoing interventions
to cardiac structures in close proximity to the coronary
arteries for example percutaneous pulmonary valve
implantation into the pulmonary trunk [119], or stenting
of the branch pulmonary arteries in ASO.
Multi slice CT coronary angiography has been shown

to have sensitivity, specificity and negative predictive
value of almost 100% in assessing coronary artery pro-
blems following ASO for TGA [120].
Though CMR does not portray lumen patency well,

CMR myocardial stress perfusion and late gadolinium
studies are the gold standard for assessment of end-

Figure 6 Transposition of the great arteries - Arterial switch operation. A. Axial reformat from contrast-enhanced MR angiogram &B. 3D,
contrast-enhanced MR angiogram. Both A and B show Lecompte maneuver with the pulmonary artery anterior to the ascending aorta (AAo)
with the right (RPA) and left pulmonary arteries passing either side of the aorta, note descending aorta (DAo). C. (axial reformat from contrast-
enhanced MR angiogram) &D. (3D, contrast-enhanced MR angiogram) Showing alternative arterial switch operation, with the main pulmonary
artery (arrow) seen to pass on the right side, between the superior vena cava (SVC), and aorta.
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organ function in adults: characterizing myocardial
ischemia, scarring and viability respectively [44,46,121].
There are many pediatric and adolescent populations
with congenital heart disease (post arterial switch opera-
tion [48], post Kawasaki’s disease, post coronary re-posi-
tioning surgery) who may benefit from assessment of
coronary adequacy. Many centers are exploring this, and
finding success in pediatric patients [53,122].

5. Emerging indications
There are other patient groups in which the benefits of
and indications for CMR are well validated in the adult
population, but where there is currently a paucity of
data pertaining to patients in the pediatric age range.
Many factors limit the comparability of adult and

pediatric populations, however the potential for pediatric
CMR in these fields is rapidly being realized.

5.1. Cardiomyopathy assessment
CMR is showing great potential in the pediatric popula-
tion for the diagnostic assessment and therapeutic mon-
itoring of patients with all types of cardiomyopathies
[123,124] (Figure 8). CMR has the capacity to acquire
images without acoustic limitations, in 3-dimensions,
with tissue contrast and myocardial border definition
that is often superior to echocardiography. This gives
great advantage for pre-clinical diagnosis or family
screening [125,126]. CMR has the advantage of accurate
quantification of segmental function, ventricular volume
and systolic shortening, while sensitively imaging

Figure 7 Hypoplastic left heart syndrome. A. End-diastolic, balanced SSFP, 4 chamber-view showing hypoplastic left ventricle (LV). Pulmonary
venous return passes from left atrium to the right atrium, via a large atrial septostomy. B. 3D, contrast-enhanced MR angiogram after Stage 1,
Norward operation, with a modified BT shunt (arrowhead) supplying the pulmonary arteries [153]. Note the hypoplastic native ascending aorta
(arrow). C. 3D, contrast-enhanced MR angiogram after Stage 2 bi-directional cavo-pulmonary connection operation. This connects the SVC to the
branch pulmonary arteries (pale blue). Again arrow shows hypoplastic native ascending aorta. D. 3D, contrast-enhanced MR angiogram after
Stage 3, total cavo-pulmonary connection operation. This further connects the IVC into the pulmonary circulation (pale blue).
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myocardial architecture. The extent of LGE in patients
with HCM has been independently associated with
adverse outcome and worsening clinical symptoms, sug-
gesting its link to prognosis and its ability to be used as
an independent risk factor in these patients [127,128].
This comprehensive assessment also enlightens clinical
and pharmacological management in the many types of
dilated cardiomyopathies and skeletal myopathies with
cardiac involvement [129].

5.2. Iron loading
Cardiac T2* assessments for myocardial iron loading [130]
are an increasing referral source for CMR assessment.
Pediatric patients with thalassemia major, or other chronic
anemias requiring multiple transfusions are at risk of myo-
cardial iron deposition, progressive fibrosis and systolic
impairment. The optimal timing for screening of these
young patients by CMR is under debate. Some evidence
suggests that initiation of assessment should be deter-
mined according to the patient’s age and transfusional
burden [131]. When the appropriate chelation therapy has
been administered since birth, CMR can be postponed

until 8 years of age, so that anesthesia is not required for
the scan. Patients with suboptimal chelation or with
increased transfusional requirements should be tested
sooner. However, as with many other pediatric patholo-
gies, the CMR T2* technique for iron assessment has only
been validated in adults. No validation or range of normal
values exists for the infant and pediatric population.

6. Role of the hybrid CMR/catheter laboratory
The hybrid MR/X-ray catheter suite (XMR) is emerging
as a useful diagnostic and interventional tool for cardio-
vascular diseases in both children and adults (Figure 9).
There are many attractive attributes to these hybrid
suites as compared to purely X-ray techniques, which
have been the gold standard imaging modalities in car-
diovascular medicine.
XMR reduces the amount of radiation exposure to

both patients and medical staff due to the lack of ionis-
ing radiation of the MR imaging component [132,133].
This is mainly important for children who are prone to
DNA and chromosomal damage by radiation exposure
leading to development of malignancies [134,135].

Figure 8 Examples of cardiomyopathies. A. 4-chamber, balanced-SSFP view in hypertrophic cardiomyopathy. Note the marked thickening of
the septum with compression of the RV cavity. B. 4-chamber, balanced-SSFP view in left ventricular non-compaction. Note the arrowheads show
areas of thin compacted myocardium. C. 4-chamber, late gadolinium enhancement (LGE) image in idiopathic dilated cardiomyopathy. Note no
LGE. D. Short-axis, LGE image in a patient with critical aortic stenosis, restrictive cardiomyopathy secondary to global, sub-endocardial fibrosis.
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CMR provides a detailed anatomy, which is useful in
pre-procedural planning for electrophysiological studies
and cardiac interventional procedures. In electrophysiol-
ogy, CMR helps to identify the scar tissue acting as the
focus for the abnormal electrical impulse and it also
gives a detailed anatomy of adjacent structures to pre-
vent ablation therapy related complications
[132,136,137]. Various studies have shown the feasibility
of CMR guided intervention due to its superior soft tis-
sue quality and having an XMR means the X-ray can be
used as a bail out if need arise [138-142].
CMR use in physiological studies such as pulmonary

vascular resistance (PVR) and left and right heart cathe-
terization seems to be coming out of its shell. In an
XMR suite both invasive pressure data and flow data
can be acquired. This is particularly good in PVR studies
and in quantification of collateral flow in cavo-pulmon-
ary connection patients including ventricular function
assessment [17,29,133,143,144].

7. Role of cardiovascular CT
CT imaging also plays an important role in the manage-
ment of pediatric CHD. This modality provides very
high-resolution 3D data sets with an extremely short
acquisition period and therefore can usually be per-
formed in infants and small children without general
anesthetic. The expense of this imaging is the exposure
of patients to potentially large doses of ionizing radia-
tion, particularly for ECG-gated studies, though this
continues to fall. Its use for serial evaluations is there-
fore very limited. CT imaging is useful for patients who
are unable to co-operate with CMR or who are too
clinically unstable to undergo general anesthetic. Addi-
tionally, when CMR provides inadequate images for

clinical decision-making, CT angiography is the modality
of choice in:

• Patients with vascular rings, where it is important
to visualize the airway anatomy.
• Patients in whom we are investigating pulmonary
venous anatomy (in our experience MR imaging of
the pulmonary veins can be problematic).
• Patients in whom we are assessing pulmonary atre-
sia with major aorta pulmonary collateral arteries
(MAPCAs) - our protocol for assessing these
patients is to perform a CT scan prior to cardiac
catheterization. The CT scan will identify the num-
ber of large aorta pulmonary collaterals and the pre-
sence of any central pulmonary arteries, and this
information can be used to guide cardiac catheteri-
zation. The main purpose of the cardiac catheteriza-
tion is to identify the temporal distribution of blood
flow and define which areas of the lungs the pul-
monary arteries, the MAPCAs, or both supply. This
significantly aids the surgeons in unifocalisation in
these patients.
• Patients who have metallic implants - e.g. routine
CT following aortic coarctation stenting at 3 months
to exclude pseudo-aneurysm formation at the distal
ends of the stent.
• Patients in whom there is contraindication to CMR
(e.g. permanent pacemaker).

8. Future directions and conclusions
8.1. Real-time imaging
This technique employs continuous imaging of dynamic
cardiovascular processes in real time using (SENSE,
SMASH and their variants). Data acquisition is

Figure 9 Hybrid CMR/cardiac catheterization laboratory. Fish-eye view of a hybrid CMR/cardiac catheterization lab - The bi-plane catheter
lab (left) is connected to the MR scanner room (right), via a set of sliding doors (open). The pedestal of the catheter table slides toward the MR
scanning room to join with the MR scanner table. The patient then slides across between the two tabletops, using Miyabi table technology
(Siemens AG).
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accelerated for any CMR pulse sequence with the use of
parallel imaging. Importantly, there is no need of cardiac
gating and breath holding, which is an added advantage
for an uncooperative and poor breath-holder pediatric
patient [145,146]. The fact that it is real-time means
that it is very useful in interventional CMR with endo-
vascular devices and in CMR guided catheterization
where position of catheters or devices can be tracked in
real-time.

8.2. 4D flow
Time resolved 3D (4D) phase contrast flow velocity
acquisition allows the reconstruction of multidirectional
flow velocities; measurements for each phase of the
cycle being effectively averaged over many heart cycles.
Such acquisitions typically take 10 minutes or more, so
beat-to-beat variations related to respiration or flow
instabilities are not represented. Besides the visualization
of principal multidirectional flow paths, this offers the
potential to retrospectively quantify flow through
selected planes in the volume covered [147]. Reported
applications include the depiction of large-scale flow
patterns in the aortas of patients with bicuspid aortic
valves and the retrospective measurements of flow in

the presence of more than one shunt [148,149]. More-
over, this method has also been used in the evaluation
of Fontan pathway dynamics [150,151].

8.3. Exercise
Progressive worsening of the symptoms related to cardi-
ovascular disease can be masked at rest and only
brought out through pharmacological stress or physical
exercise. Physiological response seems to differ between
pharmacological and exercise induced stress, with exer-
cise more superior to pharmacological stress [152]. Real
time biventricular volumetric assessment has been vali-
dated and found to be feasible and reproducible [145].
This helps to ensure that the physiological CMR
changes secondary to exercise are acquired simulta-
neously, with the use of an MR compatible ergometer
(Figure 10).

8.4. Conclusion
CMR is now a major imaging tool in pediatric congeni-
tal heart disease. It is made attractive by its non-inva-
siveness and lack of ionizing radiation. The
technological advancements, with improved image reso-
lution and ultra-short imaging time, have allowed real-

Figure 10 Real time data. Short-axis ventricular volumes (top) and flow data (bottom) acquired during increasing exercise within the MR
scanner (0, 4, 8, 12W). Because the data is acquired in real-time, there is no need for the patient to attempt breath-holding during peak exercise,
which is often difficult to achieve.
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time imaging to come to the fore. This lends towards
the added advantage of CMR-guided catheterization and
interventions. Promising studies done in this and the
many other areas described in this review show that
CMR will revolutionise pediatric cardiology practice due
to the radiation-free environment it provides [153].
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