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Abstract

High grade gliomas (HGG) are one of the leading causes of cancer-related deaths in children, and there is increasing
evidence that pediatric HGG may harbor distinct molecular characteristics compared to adult tumors. We have sought to
clarify the role of microsatellite instability (MSI) in pediatric versus adult HGG. MSI status was determined in 144 patients (71
pediatric and 73 adults) using a well established panel of five quasimonomorphic mononucleotide repeat markers.
Expression of MLH1, MSH2, MSH6 and PMS2 was determined by immunohistochemistry, MLH1 was assessed for mutations
by direct sequencing and promoter methylation using MS-PCR. DNA copy number profiles were derived using array CGH,
and mutations in eighteen MSI target genes studied by multiplex PCR and genotyping. MSI was found in 14/71 (19.7%)
pediatric cases, significantly more than observed in adults (5/73, 6.8%; p = 0.02, Chi-square test). MLH1 expression was
downregulated in 10/13 cases, however no mutations or promoter methylation were found. MSH6 was absent in one
pediatric MSI-High tumor, consistent with an inherited mismatch repair deficiency associated with germline MSH6 mutation.
MSI was classed as Type A, and associated with a remarkably stable genomic profile. Of the eighteen classic MSI target
genes, we identified mutations only in MSH6 and DNAPKcs and described a polymorphism in MRE11 without apparent
functional consequences in DNA double strand break detection and repair. This study thus provides evidence for a potential
novel molecular pathway in a proportion of gliomas associated with the presence of MSI.
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Introduction

Pediatric gliomas comprise a diverse group of lesions which

account for more than half of all childhood CNS tumors. In

contrast to adults, where WHO grade IV glioblastomas predom-

inate, in children the most common form are WHO grade I

pilocytic astrocytomas [1]. Despite the rarity of high grade gliomas

(HGG) in children, they are one of the leading causes of cancer-

related deaths in this age group, with a current two year survival

rate of 10–15% [2]. Although histologically similar to those which

arise in adults, HGG in children may have distinct clinical

features, including anatomical site of presentation [2] and response

to chemotherapy [3].

New evidence also demonstrates that pediatric HGG harbor

distinct genetic characteristics compared to adult tumors. Recent

large-scale genomic studies on adult glioblastomas defined the key

genetic aberrations, and proposed the ‘core signaling pathways’

driving gliomagenesis [4,5]. Similar studies on pediatric tumors

demonstrated fewer genomic events targeting these pathways, and

identified alterations in PDGF-driven signaling to be prevalent in

the majority of pediatric tumors, in contrast to adults, where

EGFR is the predominant target [6]. The finding of a significant

proportion of childhood HGG to harbor few chromosomal

imbalances is one key difference to those seen in adults [6], and

raises questions regarding the underlying biological basis for these

highly aggressive tumors.

The presence of microsatellite instability (MSI), is another feature

that has been described to be more frequent in pediatric than in

adult brain tumors [7,8,9,10,11]. Nevertheless, the results are

conflicting, with reported frequencies in pediatric gliomas varying

between 0–44%, possibly due to different sensitivities of the methods

used to detect MSI status [12,13,14,15,7,8,9,10,11,16,17]. MSI was

first described and is better characterized in hereditary non-polyposis

colorectal cancer (HNPCC, Lynch syndrome) [18], where it is

thought to arise due to germline mutations in mismatch repair

(MMR) genes, mainly in MLH1, MSH2, MSH6 and PMS2 [19].

Germline mutations in these genes have also been described in

Turcot’s syndrome, which predispose to gliomas [1].

Both in familial and sporadic colorectal cancer (CRC), the

presence of MSI is associated with mutations in genes harboring
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microsatellites in their coding or regulatory regions. Genes

involved in DNA repair, cell growth inhibition and apoptosis are

targeted, although the frequency varies between cancers [20], and

an extensive analysis has not been previously performed in MSI

gliomas. We have sought to clarify the role of MSI in pediatric

versus adult HGG, and report a higher prevalence of MSI in

childhood cases. We have further investigated the role of MMR

system proteins, genomic instability and 18 known target genes in

pediatric MSI HGG.

Methods

Cases and DNA isolation
Formalin-fixed paraffin-embedded (FFPE) HGG samples from

71 children and young people (,23 years) and 73 adults (32–79

years) were obtained after approval by Local and Multicenter

Ethical Review Committees from King’s College Hospital and St

George’s Hospital, UK and Federal University of São Paulo,

Brazil (Table S1). The pediatric cases were obtained from all three

Health Institutions. All the samples enrolled in the present study

were unlinked and unidentified from their donors. Due the

retrospective nature of the study, no written informed consent

from patients was obtained, with the exception of the UK samples

obtained after 2006, where all patients signed a written informed

consent, following the UK Human Tissue Act approved in that

year. The Local Ethical Review Committees of Federal University

of São Paulo, Brazil waived the need for written informed consent.

The presence of tumor tissue in these samples and the tumor

histology was verified on a H&E-stained section independently by

three neuropathologists (SA-S, LRB, JNS). DNA was isolated

using the QIAamp DNAMini kit (Qiagen) according to the

manufacturer’s instructions.

MSI analysis
MSI was assessed using a multiplex PCR comprising five

quasimonomorphic mononucleotide repeat markers (NR27,

NR21, NR24, BAT25 and BAT26), as previously described

[21]. Products were separated using an ABI Prism 3100 genetic

analyzer (Applied Biosystems) and results analyzed with GeneScan

Analysis software, version 3.7 (Applied Biosystems). In the absence

of matched normal DNA, MSI was defined as MSI-High (MSI-H,

instability at three or more markers) MSI-Low (MSI-L, instability

at one or two markers) or microsatellite stable (MSS, absence of

instability) [22]. The quasimonomorphic variation range (QMVR)

of each marker, previously described [23] was established in our

analysis using a series of DNA samples from 30 controls which

were randomly selected from cancer-free blood donors at the ICR,

UK and São Marcos Hospital, Portugal.

Mutation analysis of MSI-targeted genes
Selected genes containing repeat sequences, previously de-

scribed as frequent targets for MSI in other cancers [24,25,26],

were chosen for mutation screening (primers available upon

request): ATM (poly(T)13), ATR (poly(A)10), AXIN2 (poly(G)7;

poly(C)5; poly(C)6), BAX (poly(G)8), BLM (poly(A)9), BRCA1

(poly(A)8), BRCA2 (poly(A)8), DNAPKcs (poly(A)10), MBD4 (poly(-

A)10), MRE11 (poly(T)11), MSH3 (poly(A)8), MSH6 (poly(C)8),

PTEN exon 7 (poly(A)6), PTEN exon 8 (poly(A)6), RAD50

(poly(A)9), TCF4 (poly(A)9), TGFbRII (poly(A)10), WISP3 (poly(-

A)9) and XRCC2 (poly(T)8). PCR and genotype analysis were

performed as previously described [21], except AXIN2, which was

directly sequenced after PCR [25]. Samples presenting abnormal

profiles were direct sequenced to confirm the presence of

frameshift mutations.

Immunohistochemistry
Immunohistochemistry for MLH1, MSH2, MSH6, PMS2 and

MRE11 was performed using the Vectastain ABC system (Vector),

according to the manufacturer’s instructions. Antigen retrieval was

achieved in boiling waterbath in Tris-EDTA pH 9.0 for 20 min

and primary antibodies MLH1 (G168-15, 1:25, BD Biosciences),

MSH2 (FE11, 1:150, Calbiochem), MSH6 (44, 1:100, BD

Biosciences), PMS2 (A16-4, 1:200, BD Biosciences) and MRE11

(12D7, 1:500, Abcam) were incubated overnight at 4uC.

For DNAPKcs staining, the Ultravision Plus Detection System

(LabVision) was used according to the manufacturer’s instructions.

Antigen retrieval was performed with microwave treatment in

citrate buffer pH 6.0 for 15 min and primary antibody (Ab-4

cocktail, 1:100, NeoMarkers) incubated 2 h at RT.

Microscopic analysis was done by a blinded pathologist (S. P.).

Sections without staining in the tumor cells were considered to

have a lost expression (2). Samples without nuclear staining but

positivity in the cytoplasm or with ,5% tumor cells with nuclear

staining were considered with diminished expression (+). Samples

with the scores ++ (5–50% nuclear staining in tumor cells) or +++
(.50% nuclear staining in tumor cells) were considered positive.

Mutation analysis and methylation-specific (MS) - PCR of
MLH1

Mutation analysis of MLH1, exons 1 to 19, was performed by

PCR, using primers previously described [27], followed by direct

sequencing.

For MLH1 promoter methylation detection, DNA was treated

with sodium bisulphite using the Epitect kit (Qiagen) according to

the manufacturer’s instructions. MS-PCR was performed using

primers previously described [28].

Cell culture and ionizing irradiation
The cell lines Daudi, Raji and Jurkat were kindly provided by Dr

Sue Colman/Prof Mel Greaves (ICR, UK). Cells were grown in

suspension in RPMI 1640 medium supplemented with 10% fetal

bovine serum at 37uC in 5% CO2. Cells were seeded in 35 mm Petri

dishes and treated with 1.5 Gy ionizing irradiation (IR) using an X-

ray source irradiator (HS-MP1, AGO) operating at 250 kv and

10 mA. Cells were allowed to recover for 1 h, 4 h or 24 h and then

processed for immunofluorescence staining or western-blot analysis.

Immunofluorescence
Cells were spun at 200 rpm for 5 min on a Shandon Cytospin 3

centrifuge (Thermo Fisher Scientific), fixed according to a

modified Strecks pre-extraction protocol, permeabilized and

blocked, as described [29]. Primary antibodies directed against

MRE11 (Sheep polyclonal, 1:500, previously described [30]),

53BP1 (NB100-304, rabbit polyclonal, 1:100, Novus Biologicals)

and phospho-Histone H2A.X (Ser139) (JBW301, mouse mono-

clonal, 1:2000, Millipore) were applied overnight at 4uC and

secondary antibodies, Alexa Fluor 594 donkey anti-goat IgG,

Alexa Fluor 488 donkey anti-rabbit IgG and Alexa Fluor 488

donkey anti-mouse IgG (Invitrogen) 1 h at RT. Cell nuclei were

stained with DAPI (Invitrogen). Images were taken using a Zeiss

Axioplan 2 microscope and Smartcapture 2 software (Digital

Scientific).

Western blot analysis
Protein extracts were separated in a 3–8% Tris-Acetate gel

(Invitrogen) and transferred to PVDF membranes (GE Health-

care). Immunodetection was performed using antibodies directed

against phospho-ATM (Ser1981) (10H11.E12, 1:500, Cell Signal-
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ing), ATM (MAT3-4G10/8, 1:1000, Sigma-Aldrich), and MRE11

(12D7, 3 mg/mL, Abcam).

Quantitative Real-Time PCR
cDNA was prepared from 1 mg of RNA by random primed

reverse transcription using Superscript III (Invitrogen). qRT-PCR

was performed using SYBR green master mix (Applied Biosys-

tems) on an ABI 7900HT loaded with the SDS2.1 software.

Primers used were as follows: total MRE11 mRNA (exons 2–4),

CCAGGGGTTCTTGGAGAAG (forward) and TTTCCTTGA-

GGGCTTATTTTCA (reverse); MRE11 distinguishing the aber-

rant and wild-type transcript (exons 2–6) included the same

forward primer and CCAGCACAACTTAAAATGTC (reverse);

GAPDH, GCCACCCAGAAGACTGTGGATGGC (forward)

and CATGATGGCCATGAGGTCCACCAC (reverse). GAPDH

mRNA levels were measured as an internal control. The number

of amplification cycles to half maximal saturation of the PCR

product was determined by measuring the integration of the

fluorescent dye into the PCR products. The ratio of the level of

MRE11 expression relative to the GAPDH control was calculated.

Samples were analyzed on a 4% agarose gel loaded after

saturation of the PCR reaction.

Statistical Analysis
All statistical tests were done in SPSSv16.0 (SPSS Inc.). Correlations between

categorical values were done using the two-tailed Chi-square and Fisher’s exact

tests. A p value of ,0.05 was considered significant.

Results

MSI is more common in pediatric HGG than in adults
MSI analysis was performed in 144 HGG, 71 pediatric and 73

adults, using a pentaplex PCR of quasimonomorphic markers as

recommended by the revised Bethesda guidelines [18]. A total of

19 samples (13.2%) presented instability, 1 MSI-H (,1%) and 18

MSI-L (12.5%) cases, with the remaining 125 tumors stable

(86.8%). The MSI-H case, RMH2452, was a three year old girl

with glioblastoma, presenting instability at four markers (NR27,

NR21, BAT25 and BAT26) (Figure 1). Overall, there were 14/71

(19.7%) MSI-positive pediatric cases, significantly more than

observed in adults (5/73, 6.8%; p = 0.02, Chi-square test). The

pediatric MSI cases comprised 11 glioblastomas, two anaplastic

astrocytomas and one anaplastic oligodendroglioma, with an age

range of between 4 months and 20 years. The adult MSI-L cases

were glioblastomas of ages 62–75 years (Table 1). Individual

microsatellite data for each case is provided in full in Table S1.

Inactivation of mismatch repair proteins in familial and
sporadic MSI pediatric HGG

Aiming to determine the underlying nature of the MSI observed

we sought to investigate whether key components of the MMR

system were intact, screening the MSI-positive samples for

expression of MLH1, MSH2, MSH6 and PMS2 by immunohis-

tochemistry (Table 1, Figure S1). 10/13 (76.9%) pediatric samples

with MSI showed an absent or diminished expression of MLH1 in

the tumor cells, often in concert with reduced MSH2 (4/10, 40%)

or PMS2 expression (4/10, 40%). There was, however, no

evidence of mutation (assessed by direct sequencing) or hyper-

methylation (by MS-PCR) of MLH1 in these cases. Due to the

FFPE nature of the samples, it was not possible to screen for

MLH1 mutations and promoter methylation in all MSI samples

(Table 1). Moreover, on samples screened for MLH1 mutations,

the rate of successful exons sequenced ranged from 58% (11/19

exons) to 100% (19/19 exons), according sample DNA quality. In

contrast to pediatric, the four adult MSI-L cases presented positive

immunoreactivity for MMR proteins.

A single case was negative only for MSH6. This patient

(RMH2452, MSI-H) presented multiple café-au-lait spots in the

absence of other clinical features of neurofibromatosis-1 (NF1).

There was no family history of NF1, although the maternal great

grandmother had endometrial cancer in her early forties. Although

constitutional DNA was not available for testing, this patient’s

clinical history is consistent with an inherited MMR deficiency such

as Turcot’s syndrome, associated with germline MSH6 mutation.

MSI-positive pediatric HGG have distinct genomic
profiles and differential target genes compared with
other tumor types

As the presence of MSI reflects a nucleotide-level form of genetic

instability, work in CRC suggests that large scale chromosomal

instability is reduced or absent in MSI-positive cases [31,32]. In

order to determine whether this may also be true for pediatric

HGG, we examined copy number profiles on 9/14 MSI-positive

cases for which sufficient quantity and quality of DNA was

available, and compared this to a similarly profiled cohort of 26

pediatric MSS cases (Array Express accession number E-TABM-

857) [33]. A total of four MSI-positive cases harbored a ‘flat’ or

‘stable’ profile, with minimal or no copy number alterations

detectable on the 32K tiling-path BAC array platform used

(Figure 2, Table 2). This is a pattern of genomic stability present

in approximately 20% of pediatric HGG, but almost entirely absent

from similar adult tumors [6,34]. Four MSI-L cases harbored a

small number of whole chromosome arm gains or losses, and fell

into the ‘aneuploid’ category of genomic profile. There was a single,

MSI-L, case (RMH3954) that had a highly rearranged genome,

with 19 distinct alterations. No MSI-positive cases contained any

high-level amplifications or homozygous deletions. Overall there

were less copy number changes in MSI (mean 5.78, range 0–19)

than MSS cases (mean 8.35, range 0–25), although there was no

statistical difference in the groups (p = 0.37, t test), reflecting the

highly rearranged MSI-L case, and the presence of 4/26 (15.4%)

genomically stable cases by array CGH that were also MSS.

The presence of MSI confers an increased susceptibility for

acquiring mutations in various target genes containing single

nucleotide repeat sequences [20]. Selected CRC target genes

involved in apoptosis (BAX), tumor growth (TGFbRII), WNT

pathway (AXIN2, TCF4, WISP3), DNA repair (ATM, ATR, BLM,

BRCA1, BRCA2, DNAPKcs, MBD4, MRE11, MSH3, MSH6,

RAD50, XRCC2) and PI3-kinase signaling (PTEN) were analyzed

for mutations in MSI-positive HGG samples (Table 2).

The pediatric MSI-H sample was found to contain a homozygous

single base insertion in the poly(C)8 tract of MSH6 poly(C)9, a

frameshift which results in a truncated protein, confirmed in duplicate

by genotyping and direct sequencing (Figure 3A). Somatic mutations

on the poly(C)8 sequence of MSH6, are strongly associated with

initiating MSH6 germline mutations [35], adding further evidence to

this patient having an inherited MMR deficiency syndrome.

A further MSI-L sample (RMH3969) presented a heterozygous

single base deletion in the poly(A)10 sequence on the exon 5 of

DNAPKcs (poly(A)9/10), however this mutation did not influence

protein expression, as observed by immunohistochemistry

(Figure 3B). Two other MSI-L cases, RMH2444 (Figure 3C)

and RMH3952 harbored a heterozygous single base insertion in

the poly(T)11 tract on the intron 4 of MRE11 (poly(T)11/12).

Immunohistochemistry again revealed positivity of the protein

(Figure 3C). This insertion was also observed in 1/5 adult cases

with MSI-L (RMH3248). No additional target gene mutations

were observed in our series (Table 2).

MSI in Pediatric High Grade Glioma
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MRE11 poly(T)11/12 is a previously unrecognized
polymorphism with no apparent functional consequence
in DNA double strand break detection and repair

As MRE11 represented a potentially unknown contributor to

the pathogenesis of HGG associated with MSI, we determined

whether the specific MRE11 poly(T)11/12 mutation affects the

normal function of the protein, a member of the MRE11-RAD50-

NBS1 (MRN) complex involved in DNA repair. As models we

used three leukemia/lymphoma cell lines (Figure 4A): Daudi,

MRE11 poly(T)11/12; Raji, MRE11 poly(T)11/11, wild type, and

DNA repair proficient; and Jurkat, MRE11 poly(T)10/11 known

to generate alternative splicing in exon 5 of MRE11 (Figure 4B)

and DNA repair deficient [26]. The presence of an aberrant

Figure 1. Microsatellite instability in pediatric HGG. Representative electropherogram traces for three MSI-positive pediatric HGG, presenting
sequence alterations in more than one quasimonomorphic marker. Case RMH2452 (MSI-H) presented alterations in NR27, NR21, BAT25 and BAT26;
RMH2458 (MSI-L) in NR21 and BAT25; and RMH4816 (MSI-L) in NR21 and NR24. Alterations in relation to a control trace are indicated with arrows.
doi:10.1371/journal.pone.0020588.g001

Table 1. Clinical characterization and MMR status of MSI cases.

Case Gender/Ag e WHO grade Diagnosis MSI status Immunohistochemistry

MLH1
mutation
screening

MLH1
methylation
status

MLH1 MSH2 MSH6 PMS2

Pediatric

2452 F/3 IV GBM MSI-H +++ +++ 2 ++ ND ND

2458 F/9 IV GBM MSI-L +++ +++ +++ ++ A A

4816 M/14 IV GBM MSI-L + ++ ++ ++ A NA

2444 M/19 IV GBM MSI-L 2/+ +++ +/++ ++ A A

2457 F/13 IV GBM MSI-L 2/+ ++ +++ 2/+ A A

2470 F/14 IV GBM MSI-L MC MC +/++ MC A A

3952 F/14 IV GBM MSI-L 2 NS NA ++ NA NA

3954 M/20 IV GBM MSI-L +++ ++ +++ +++ A A

3962 F/0.3 III AA MSI-L + 2 ++/+++ 2/+ A A

3967 F/8 III AO MSI-L + ++ ++/+++ NS A A

3969 F/14 IV GBM MSI-L MC MC +/++ MC A A

4820 M/16 IV GBM MSI-L + + + ++ NA NA

4823 M/15 IV GBM MSI-L + ++ 2 ++ NA NA

4839 M/16 IV GBM MSI-L NS ++ ++ ++ NA NA

Adult

3248 M/67 IV GBM MSI-L +++ +++ +++ ++ A NA

3283 M/63 IV GBM MSI-L +++ ++ ++/+++ +++ A NA

3415 M/70 IV GBM MSI-L NA NA NA NA NA NA

3416 F/75 IV GBM MSI-L 2 +++ +++ +++ A NA

3465 F/62 IV GBM MSI-L NS +++ +++ +++ A NA

Abbreviations: M, male; F, female; GBM, glioblastoma; AA, anaplastic astrocytoma; AO, anaplastic oligodendroglioma; MSI-H, microsatellite instability-High; MSI-L,
microsatellite instability-Low; MC, mostly cytoplasmatic; NS, non-specific; A, absent; ND, not done; NA, not available.
doi:10.1371/journal.pone.0020588.t001
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transcript was detected by RT-PCR of exons 2 to 6with a

truncated product detected in Jurkat cells (Figure 4B). Levels of

total MRE11 mRNA were quantified by qRT-PCR amplification

of exons 2 to 4 which generates a single size product, for both wild-

type and the aberrant transcript. The ratios of the mRNA

expression levels of MRE11, relative to GAPDH, were similar

across all cell lines (Figure 4B) while protein levels were lower in

Jurkat (Figure 4B).

To assess the proficiency of MRE11-associated DNA repair in

MRE11 poly(T)11/12 Daudi, we monitored the repair response

following DNA damage induced by ionizing radiation. After

exposure to irradiation, auto-phosphorylation of ATM on serine-

1981 takes place in response to the formation of DNA double

stranded breaks (DSB) [36]. 1.5 Gy IR resulted in no ATM

phosphorylation in Jurkat, while Raji and Daudi, presented an

increase of ATM phosphorylation 1 h after IR followed by a slight

decrease in longer time points (Figure 4C). Another response to

ionizing radiation is the accumulation of DNA repair proteins

after exposure to irradiation that can be visualized in the form of

foci associated with recruitment of essential repair complexes to

the sites of DNA damage [37]. After 1.5 Gy IR, 53BP1 foci

formation after IR was proficient in all cell lines as these can form

even in the absence of a functional MRN complex (Figure 4D). In

Daudi and Raji, the co-localization between MRE11 and 53BP1

foci observed was suggestive of the formation of functional repair

complexes, in contrast to Jurkat, where no MRE11 foci were

present. Compared to Jurkat and Daudi, Raji non-irradiated cells

showed higher background levels of DNA damage as detected by

formation of cH2AX foci (Figure S2). In summary, these results

suggest that the MRE11 poly(T)11/12 mutation does not result in

a compromised DNA damage repair response in Daudi cells.

Although MRE11 poly(T)11/12 alteration could not be found in

the dbSNP database, this specific base change was recently

identified in the germline of a Caucasian male [38]. We

subsequently screened a series of 72 control DNA samples, and

discovered MRE11 poly(T)11/12 to be present in 5/72 (6.9%)

healthy volunteers. Although this frequency is less than that

observed in the MSI-positive cases (3/19, 15.8%), the difference is

Figure 2. Genomic stability in MSI pediatric HGG. Array CGH genome plots are shown for two MSI-positive pediatric HGG, the MSI-H RMH2452
(A) and the MSI-L RMH2458 (B), demonstrating lack of large scale alterations detectable on the 32K BAC platform. Log2 ratios for each clone (y axis)
are plotted according to chromosomal location (x axis). The centromeres are represented by vertical lines.
doi:10.1371/journal.pone.0020588.g002
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not statistically significant (p = 0.23, Chi-square test). Thus we

conclude that MRE11 poly(T)11/12 is a previously unrecognized

polymorphism with no functional consequences on the DNA

repair response.

Discussion

Published studies on MSI in HGG have produced contradictory

results. These differences have variously been attributed to the

number of samples studied, the heterogeneity and accuracy of

methods used to determine MSI status. We sought to address this

by carrying out a large study of HGG using the most robust and

sensitive screens available, and report a significantly elevated

frequency of MSI in pediatric (19.7%) versus adult (6.8%) tumors.

One of the key considerations in the assessment of MSI is in the

use of mononucleotides versus polynucleotides in the panel of

markers used. The quasimonomorphic nature of the mononucle-

otides we used makes these most suitable for MSI detection,

particularly when matching germline DNA is not available, and

display a higher sensitivity [23,39]. Many of the early studies used

polynucleotide markers only and found a frequency of MSI

ranging from of 0 to 37% in series of 7 to 56 gliomas from

pediatric or age not discriminated series [12,13,14,15]. Including

both mononucleotide and polynucleotides did little to improve

consistency, with contrasting results of 0 to 44% in small series of

pediatric gliomas [8,9,10] and 4% MSI reported in a recent study

using a larger series of 68 pediatric HGG [40]. Recent studies

using mononucleotides only were also contradictory. Alonso et al.

2001 [11] reported a frequency of 27% MSI in 45 pediatric HGG

using BAT25 and BAT26 as markers, while Eckert et al. 2007 [16]

found no evidence of MSI in 41 cases using CAT25, BAT25 and

BAT26. Vladimirova et al. 2007 [17] used the same panel of five

mononucleotides as in the present study, and yet found a reduced

frequency of 3.2% MSI in 126 pediatric HGG in comparison to

our 19.7%. One major difference between our studies that possibly

accounts for the diversity of frequencies is the use of 30 controls to

establish the QMVR in our work. As recently demonstrated, this

approach obviates the need for amplification of matched normal

DNA to determine instability in the tumor tissue, and provides the

most robust strategy to identify MSI tumors [39]. In addition, this

approach allowed us to assess smaller allelic shifts of the markers as

any variation outside the QMVR was considered as instability.

Although the data presented by previous studies do not allow for

re-analysis using this technique, we speculate that our increased

frequency of MSI may be related to enhanced detection sensitivity

[39]. In fact, a study in malignant gliomas, that used a panel of

markers similar to the one used in our work and performed a

QMVR using DNA from 7 normal controls, described the

presence of MSI-L in 15% (8/52) of cases, a frequency

comparable to our results (13%) [41].

Another important analytical difference may be found in the use

of an alternative classification of MSI which takes into account the

size of the allelic shifts in the markers, rather than the number of

markers with alterations. In this classification, samples presenting

small length change (#6 bp) are considered Type A, whilst those

presenting more drastic alterations are described as Type B MSI,

as reported for CRC [42]. Pediatric HGG with constitutive MMR

deficiency have been previously described as possessing Type A

MSI [43] and we also observed Type A MSI in our sporadic, and

likely syndromic cases. This is also consistent with our previous

observations in medulloblastoma [21], and appears to be a

consistent difference in MSI reported in CNS tumors compared

with the classic MSI positive epithelial tumors such as colorectal

and gastric carcinomas. The observation that brain tumors present

smaller changes in the MSI markers may represent a cause of the

inconsistency found on MSI frequencies reported in literature.

Having established that a proportion of our pediatric HGG

cases harbored MSI, we were keen to determine how this related

to other genomic abnormalities. Microsatellite and chromosomal

instability have been considered to be mutually exclusive [31], and

although recent reports have demonstrated that a minority of

tumors can present both MSI-H and chromosomal instability, the

frequency and degree of chromosomal alterations in colorectal and

gastric MSS cancers is much higher than in the MSI-H cases [32].

Pediatric HGG differ from those found in adults by comprising a

proportion of tumors with few or no detectable copy number

changes by microarray analysis [6]. The MSI-H sample in our

current cohort fell into that category. The MSI-L cases also had

relatively fewer alterations than the population as a whole, while

the presence of MSI and chromosomal instability were not

mutually exclusive. In particular, there were several cases with

‘stable’ genomes which did not present MSI, suggesting that

although this phenotype was associated with a proportion of cases

with no gross alterations, it was not a general explanation for this

key difference between the childhood and adult disease.

Table 2. Genomic alterations and Candidate MSI target
genes frameshift mutations in MSI samples.

Case
MSI
status

Genomic
subtype

Copy number
changes

Altered MSI
Target Genes

Pediatric

2452 MSI-H Stable 5q31+, 21q212 MSH6 (C)9

2458 MSI-L Stable None -

4816 MSI-L NA NA -

2444 MSI-L Aneuploid 1q+, 9q+ MRE11 (T)11/12

2457 MSI-L Aneuploid 4q2, 5q2,7p12+,
9p212, 13q2, 19+

-

2470 MSI-L Aneuploid 5q2, 10q2, 14q2,
15q2, 19+, 20p2,
Xp2

-

3952 MSI-L Aneuploid 1p2, 6p2, 12q2

13q2, 192, 22q2

-

3954 MSI-L Rearranged 1p2, 1q+, 2q+, 3q2,
4p+, 4q+, 4q2, 5q2,
6p2, 6q+, 7+, 8p+,
8q2, 11p2, 11q+,
12q2, 13q2, 182,
19q2

-

3962 MSI-L Stable None -

3967 MSI-L Stable None -

3969 MSI-L NA NA DNAPKcs (A)9/10

4820 MSI-L NA NA -

4823 MSI-L NA NA -

4839 MSI-L NA NA MRE11 (T)11/12

Adult

3248 MSI-L NA NA MRE11 (T)11/12

3283 MSI-L NA NA -

3415 MSI-L NA NA -

3416 MSI-L NA NA -

3465 MSI-L NA NA -

Abbreviations: MSI-H, microsatellite instability-High; MSI-L, microsatellite
instability-Low; NA, not available.
doi:10.1371/journal.pone.0020588.t002
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MSI is a molecular feature resulting mainly from inactivating

alterations of the MMR system [19]. We studied MMR inactivation

by immunohistochemistry on the 11 MSI tumors and observed that

MLH1 expression was absent or reduced in 10 samples, 5 of which

also presented reduced PMS2 and/or MSH2 expression. Consid-

ering the high percentage of pediatric HGG lacking MLH1

Figure 3. Target gene screening in MSI pediatric HGG. Electropherogram traces, direct sequencing, and immunohistochemistry for MSI target
genes presenting frameshift mutations in pediatric HGG (DNA alterations indicated with arrows). (A) Case RMH2452 (MSI-H) presenting a
homozygous insertion of one bp in the MSH6 poly(C)8 tract and loss of protein expression. (B) RMH3969 (MSI-L) presenting a heterozygous deletion
of one bp in the DNAPKcs poly(A)10 tract, and retention of protein expression. (C) RMH2444 (MSI-L) presenting a heterozygous insertion of one bp in
the MRE11 poly(T)11 tract and retention of protein expression.
doi:10.1371/journal.pone.0020588.g003
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expression, molecular deficiencies in this gene appear to be the

origin of the MSI phenotype in most of the cases, although we did

not observe point mutations or hypermethylation in these samples.

MSH6 expression was absent in a single sample that also

presented a homozygous insertion of a single nucleotide in

the poly(C)8 track of MSH6, which is a target of MSI. This

Figure 4. MRE11 poly(T)11/12 sequence variant has no apparent functional consequence on DNA damage detection and repair. (A)
Electropherograms and sequencing traces of the MRE11 poly(T)11 tract in leukemia/lymphoma cells: Daudi (heterozygous insertion of one bp,
poly(T)11/12); Jurkat (heterozygous deletion of one bp, poly(T)10/11); and Raji (wild-type, poly(T)11). (B) MRE11 expression in Daudi, Jurkat and Raji
cells. qRT-PCR was used to calculate the ratio of MRE11 expression (amplification of exons 2 to 4) relative to the GAPDH control, independently of the
presence of the aberrant transcript observed in Jurkat. PCR products were loaded on the gel at saturation of the reaction, being not quantitative.
MRE11 protein levels were assessed by Western blot, and were considerably lower in Jurkat. (C) ATM-pS1981 levels were assessed by Western blot in
Daudi, Jurkat and Raji after 1.5 Gy irradiation of cells and 1 h, 4 h or 24 h recovery. There was an increase of ATM phosphorylation 1 h after irradiation
in Daudi and Raji cells that decreased at the later time points. Jurkat showed no ATM phosphorylation after exposure to irradiation. (D) DNA repair
foci was observed by immunofluorescence after 1.5 Gy IR followed by 1 h and 4 h recovery. Irradiation resulted in the formation of both MRE11 and
53BP1 foci in Daudi and Raji cells, whereas Jurkat failed to form MRE11 foci. Nuclei were counterstained with DAPI. Merged figure presents co-
localization of MRE11 and 53BP1 foci visualized in yellow.
doi:10.1371/journal.pone.0020588.g004
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is the first report of this mutation in brain tumors. MSH6

poly(C)9 leads to a truncated protein and is probably the

cause of the total absence of protein assessed by immuno-

histochemistry. MSH6 mutations in the poly(C)8 microsatel-

lite are thought to arise due to germline mutations of the

MMR genes, making of MSH6 a target for somatic

mutations in the presence of MMR germline mutations

[35]. These germline mutations usually occur in the context

of familial tumors and accordingly this patient had a clinical

history consistent with a MMR deficiency syndrome such as

Turcot, in which Type A MSI has been reported in affected

children with glioblastoma [44]. Recently, MSH6 mutations

have been demonstrated to arise in gliomas as a consequence

of treatment with temozolomide, and have been implicated

in drug resistance and the presence of a hypermutated

phenotype [4,45]. Apart from the sample RMH2458, which

did not harbor any MSH6 mutation, the tumors analyzed in

this study, including the MSH6 mutated RMH2452, were

primary tumors, and have not been previously exposed to

radio or chemotherapy treatment. Therefore MSH6 findings

are not related with a previous exposure to temozolomide.

A major consequence of MSI is the accumulation of additional

mutations in key oncogenic target genes. To our knowledge, only

five known MSI target genes have been screened, with mutations

reported in a single case each of IGFIIR [7] and PTEN [9], and of

TGFbRII in 71% cases [14], although this latter observation was

not seen elsewhere [7,9]. We investigated the mutational status of

18 classical target genes in MSI HGG and, apart from MSH6,

found alterations only in two other target genes, DNAPKcs and

MRE11 which are involved in DNA DSB repair. The DNAPKcs

poly(A)9/10 sequence variant has been described in samples of

gastric and endometrial tumors [46,47], but has not been

previously reported in gliomas. In subclones of the CRC cell line

HCT-8 it failed to confer additional deficiency to DNA DSB

repair compared to the parental line [48], and we found no

alterations in protein expression in the MSI glioma sample

presenting this mutation. MRE11 poly(T)11/12 has previously

been reported in a single case of MSI CRC [49], a single case of

MSI medulloblastoma [21], and in the Daudi lymphoma cells

[26]. Our findings here demonstrate that it appears to be an

undocumented polymorphism with no functional consequences on

DNA damage detection and repair. Thus it seems that the classical

target genes for MSI in other tumor types are not frequently

mutated in gliomas, and the field would benefit from a

bioinformatic approach focusing on specific repeat sequences in

coding regions for identifying novel, possibly glioma-specific MSI

target genes as has been carried out in other tumor types [50].

The presence of MSI in pediatric HGG may have important

translational implications. Specifically, in CRC, MSI-positive

patients appear to show a differential response to 5-fluorouracil

alone [51] as well as adjuvant therapy with irinotecan,

fluorouracil, and leucovorin [52]. Furthermore, the majority of

MSI-positive tumor cell lines of different tissue origins (endome-

trial, ovarian, prostate, and colorectal carcinomas) appear

hypersensitive to drugs that produce DNA DSBs such as

bleomycin [48]. Given the considerable impact of abrogated

DNA repair capacity on gliomagenesis, identification of even a

subset of cases with a differential response to existing chemother-

apeutics would be of immense clinical benefit in these extraordi-

narily treatment refractory tumors.

In conclusion, we identified a subset of glioma patients

presenting MSI with molecular alterations distinctive of this

phenotype suggesting an association of MSI with the development

of gliomas.

Supporting Information

Table S1 Clinicopathological characteristics and mi-
crosatellite screening data of all HGG samples. Full

QMVR range is provided.

(TIFF)

Figure S1 Immunohistochemistry of MMR proteins in
MSI-positive samples. H&E staining as well as expression of

MLH1, MSH2, MSH6 and PMS2 are shown for cases

RMH2452, RMH2458 and RMH4816. Original magnification

6200 (inset 6600).

(TIFF)

Figure S2 Immunofluorescence for cH2AX foci in
Daudi, Jurkat and Raji cells. Cells were treated with

1.5 Gy IR and allowed to recover for 1 h and 4 h. Higher

background levels of DNA damage were observed in Raji cells as

seen by the formation of foci in the non-irradiated cells.

(XLS)

Acknowledgments

The authors would like to thank Dr. Steve Jackson’s Laboratory at the

University of Cambridge for the MRE11 antibody and Dr. Sandra Costa

from ICVS, University of Minho, for the disease-free controls DNA.

Author Contributions

Conceived and designed the experiments: MV-P AL CJ RMR. Performed

the experiments: MV-P AL DAB. Analyzed the data: MV-P AL SP DAB

CJ RMR. Contributed reagents/materials/analysis tools: SA-S LRB JNS

DH. Wrote the paper: MV-P CJ RMR.

References

1. Louis DN, Ohgaki H, Wiestler OD, Cavenee WK (2007) WHO Classification of
Tumours of the Central Nervous System. Lyon: IARC.

2. Broniscer A, Gajjar A (2004) Supratentorial high-grade astrocytoma and diffuse

brainstem glioma: two challenges for the pediatric oncologist. Oncologist 9:
197–206.

3. Furnari FB, Fenton T, Bachoo RM, Mukasa A, Stommel JM, et al. (2007)
Malignant astrocytic glioma: genetics, biology, and paths to treatment. Genes

Dev 21: 2683–2710.

4. Cancer Genome Atlas Research Network (2008) Comprehensive genomic
characterization defines human glioblastoma genes and core pathways. Nature

455: 1061–1068.

5. Parsons DW, Jones S, Zhang X, Lin JC, Leary RJ, et al. (2008) An integrated
genomic analysis of human glioblastoma multiforme. Science 321:

1807–1812.

6. Paugh BS, Qu C, Jones C, Liu Z, Adamowicz-Brice M, et al. (2010) Integrated

molecular genetic profiling of pediatric high-grade gliomas reveals key

differences with the adult disease. J Clin Oncol 20: 3061–3068.

7. Leung SY, Chan TL, Chung LP, Chan AS, Fan YW, et al. (1998) Microsatellite
instability and mutation of DNA mismatch repair genes in gliomas. Am J Pathol

153: 1181–1188.

8. Cheng Y, Ng HK, Zhang SF, Ding M, Pang JC, et al. (1999) Genetic alterations
in pediatric high-grade astrocytomas. Hum Pathol 30: 1284–1290.

9. Kanamori M, Kon H, Nobukuni T, Nomura S, Sugano K, et al. (2000)
Microsatellite instability and the PTEN1 gene mutation in a subset of early onset

gliomas carrying germline mutation or promoter methylation of the hMLH1

gene. Oncogene 19: 1564–1571.

10. Martinez R, Schackert HK, Appelt H, Plaschke J, Baretton G, et al. (2005) Low-

level microsatellite instability phenotype in sporadic glioblastoma multiforme.
J Cancer Res Clin Oncol 131: 87–93.

11. Alonso M, Hamelin R, Kim M, Porwancher K, Sung T, et al. (2001)

Microsatellite instability occurs in distinct subtypes of pediatric but not adult
central nervous system tumors. Cancer Res 61: 2124–2128.

12. Dams E, Van de Kelft EJ, Martin JJ, Verlooy J, Willems PJ (1995) Instability of

microsatellites in human gliomas. Cancer Res 55: 1547–1549.

MSI in Pediatric High Grade Glioma

PLoS ONE | www.plosone.org 9 May 2011 | Volume 6 | Issue 5 | e20588



13. Amariglio N, Friedman E, Mor O, Stiebel H, Phelan C, et al. (1995) Analysis of

microsatellite repeats in pediatric brain tumors. Cancer Genet Cytogenet 84:
56–59.

14. Izumoto S, Arita N, Ohnishi T, Hiraga S, Taki T, et al. (1997) Microsatellite

instability and mutated type II transforming growth factor-beta receptor gene in
gliomas. Cancer Lett 112: 251–256.

15. Sobrido MJ, Pereira CR, Barros F, Forteza J, Carracedo A, et al. (2000) Low
frequency of replication errors in primary nervous system tumours. J Neurol

Neurosurg Psychiatry 69: 369–375.

16. Eckert A, Kloor M, Giersch A, Ahmadi R, Herold-Mende C, et al. (2007)
Microsatellite instability in pediatric and adult high-grade gliomas. Brain Pathol

17: 146–150.
17. Vladimirova V, Denkhaus D, Soerensen N, Wagner S, Wolff JE, et al. (2007)

Low level of microsatellite instability in paediatric malignant astrocytomas.
Neuropathol Appl Neurobiol 34: 547–554.

18. Umar A, Boland CR, Terdiman JP, Syngal S, De La Chapelle A, et al. (2004)

Revised Bethesda Guidelines for hereditary nonpolyposis colorectal cancer
(Lynch syndrome) and microsatellite instability. J Natl Cancer Inst 96: 261–268.

19. Karran P (1996) Microsatellite instability and DNA mismatch repair in human
cancer. Semin Cancer Biol 7: 15–24.

20. Duval A, Hamelin R (2002) Mutations at coding repeat sequences in mismatch

repair-deficient human cancers: toward a new concept of target genes for
instability. Cancer Res 62: 2447–2454.

21. Viana-Pereira M, Almeida I, Sousa S, Mahler-Araujo B, Seruca R, et al. (2009)
Analysis of microsatellite instability in medulloblastoma. Neuro Oncol 11:

458–467.
22. Wong YF, Cheung TH, Lo KW, Yim SF, Chan LK, et al. (2006) Detection of

microsatellite instability in endometrial cancer: advantages of a panel of five

mononucleotide repeats over the National Cancer Institute panel of markers.
Carcinogenesis 27: 951–955.

23. Buhard O, Cattaneo F, Wong YF, Yim SF, Friedman E, et al. (2006)
Multipopulation analysis of polymorphisms in five mononucleotide repeats used

to determine the microsatellite instability status of human tumors. J Clin Oncol

24: 241–251.
24. Miquel C, Jacob S, Grandjouan S, Aime A, Viguier J, et al. (2007) Frequent

alteration of DNA damage signalling and repair pathways in human colorectal
cancers with microsatellite instability. Oncogene 26: 5919–5926.

25. Thorstensen L, Lind GE, Lovig T, Diep CB, Meling GI, et al. (2005) Genetic
and epigenetic changes of components affecting the WNT pathway in colorectal

carcinomas stratified by microsatellite instability. Neoplasia 7: 99–108.

26. Ham MF, Takakuwa T, Luo WJ, Liu A, Horii A, et al. (2006) Impairment of
double-strand breaks repair and aberrant splicing of ATM and MRE11 in

leukemia-lymphoma cell lines with microsatellite instability. Cancer Sci 97:
226–234.

27. Hegde M, Blazo M, Chong B, Prior T, Richards C (2005) Assay validation for

identification of hereditary nonpolyposis colon cancer-causing mutations in
mismatch repair genes MLH1, MSH2, and MSH6. J Mol Diagn 7: 525–534.

28. Park SJ, Rashid A, Lee JH, Kim SG, Hamilton SR, et al. (2003) Frequent CpG
island methylation in serrated adenomas of the colorectum. Am J Pathol 162:

815–822.
29. Mirzoeva OK, Petrini JH (2001) DNA damage-dependent nuclear dynamics of

the Mre11 complex. Mol Cell Biol 21: 281–288.

30. Goldberg M, Stucki M, Falck J, D’Amours D, Rahman D, et al. (2003) MDC1 is
required for the intra-S-phase DNA damage checkpoint. Nature 421: 952–956.

31. Remvikos Y, Vogt N, Muleris M, Salmon RJ, Malfoy B, et al. (1995) DNA-
repeat instability is associated with colorectal cancers presenting minimal

chromosome rearrangements. Genes Chromosomes Cancer 12: 272–276.

32. Jones AM, Douglas EJ, Halford SE, Fiegler H, Gorman PA, et al. (2005) Array-
CGH analysis of microsatellite-stable, near-diploid bowel cancers and

comparison with other types of colorectal carcinoma. Oncogene 24: 118–129.
33. Bax DA, Mackay A, Little SE, Carvalho D, Viana-Pereira M, et al. (2010) A

distinct spectrum of copy number aberrations in pediatric high grade gliomas.

Clin Cancer Res 16: 3368–3377.

34. Bredel M, Bredel C, Juric D, Harsh GR, Vogel H, et al. (2005) High-resolution

genome-wide mapping of genetic alterations in human glial brain tumors.
Cancer Res 65: 4088–4096.

35. De Leeuw WJF, Dierssen J, Vasen HFA, Wijnen JT, Kenter GG, et al. (2000)

Prediction of a mismatch repair gene defect by microsatellite instability and

immunohistochemical analysis in endometrial tumours from HNPCC patients.

J Pathol 192: 328–335.

36. Uziel T, Lerenthal Y, Moyal L, Andegeko Y, Mittelman L, et al. (2003)

Requirement of the MRN complex for ATM activation by DNA damage.

EMBO J 22: 5612–5621.

37. Haaf T, Golub EI, Reddy G, Radding CM, Ward DC (1995) Nuclear foci of

mammalian Rad51 recombination protein in somatic cells after DNA damage

and its localization in synaptonemal complexes. Proc Natl Acad Sci U S A 92:

2298–2302.

38. Levy S, Sutton G, Ng PC, Feuk L, Halpern AL, et al. (2007) The diploid genome

sequence of an individual human. PLoS Biol 5: e254.

39. Goel A, Nagasaka T, Hamelin R, Boland CR (2010) An optimized pentaplex

PCR for detecting DNA mismatch repair-deficient colorectal cancers. PLoS

ONE 5: e9393.

40. Pollack IF, Hamilton RL, Sobol RW, Nikiforova MN, Nikiforov YE, et al. (2010)

Mismatch repair deficiency is an uncommon mechanism of alkylator resistance

in pediatric malignant gliomas: a report from the Children’s Oncology Group.

Pediatr Blood Cancer 55: 1066–1071.

41. Maxwell JA, Johnson SP, McLendon RE, Lister DW, Horne KS, et al. (2008)

Mismatch repair deficiency does not mediate clinical resistance to temozolomide

in malignant glioma. Clin Cancer Res 14: 4859–4868.

42. Oda S, Maehara Y, Ikeda Y, Oki E, Egashira A, et al. (2005) Two modes of
microsatellite instability in human cancer: differential connection of defective

DNA mismatch repair to dinucleotide repeat instability. Nucleic Acids Res 33:

1628–1636.

43. Giunti L, Cetica V, Ricci U, Giglio S, Sardi I, et al. (2009) Type A microsatellite
instability in pediatric gliomas as an indicator of Turcot syndrome. Eur J Hum

Genet 17: 919–927.

44. Hegde MR, Chong B, Blazo ME, Chin LH, Ward PA, et al. (2005) A

homozygous mutation in MSH6 causes Turcot syndrome. Clin Cancer Res 11:

4689–4693.

45. Yip S, Miao J, Cahill DP, Iafrate AJ, Aldape K, et al. (2009) MSH6 mutations

arise in glioblastomas during temozolomide therapy and mediate temozolomide

resistance. Clin Cancer Res 15: 4622–4629.

46. Lee HS, Choe G, Park KU, Park dJ, Yang HK, et al. (2007) Altered expression

of DNA-dependent protein kinase catalytic subunit (DNA-PKcs) during gastric

carcinogenesis and its clinical implications on gastric cancer. Int J Oncol 31:

859–866.

47. Duval A, Reperant M, Compoint A, Seruca R, Ranzani GN, et al. (2002) Target
gene mutation profile differs between gastrointestinal and endometrial tumors

with mismatch repair deficiency. Cancer Res 62: 1609–1612.

48. Li HR, Shagisultanova EI, Yamashita K, Piao Z, Perucho M, et al. (2004)

Hypersensitivity of tumor cell lines with microsatellite instability to DNA double
strand break producing chemotherapeutic agent bleomycin. Cancer Res 64:

4760–4767.

49. Alemayehu A, Fridrichova I (2007) The MRE11/RAD50/NBS1 complex

destabilization in Lynch-syndrome patients. Eur J Hum Genet 15: 922–929.

50. Mori Y, Sato F, Selaru FM, Olaru A, Perry K, et al. (2002) Instabilotyping

reveals unique mutational spectra in microsatellite-unstable gastric cancers.

Cancer Res 62: 3641–3645.

51. Fallik D, Borrini F, Boige V, Viguier J, Jacob S, et al. (2003) Microsatellite
instability is a predictive factor of the tumor response to irinotecan in patients

with advanced colorectal cancer. Cancer Res 63: 5738–5744.

52. Bertagnolli MM, Niedzwiecki D, Compton CC, Hahn HP, Hall M, et al. (2009)

Microsatellite instability predicts improved response to adjuvant therapy with
irinotecan, fluorouracil, and leucovorin in stage III colon cancer: Cancer and

Leukemia Group B Protocol 89803. J Clin Oncol 27: 1814–1821.

MSI in Pediatric High Grade Glioma

PLoS ONE | www.plosone.org 10 May 2011 | Volume 6 | Issue 5 | e20588


