
Journal of Fluid Mechanics
http://journals.cambridge.org/FLM

Additional services for Journal of Fluid Mechanics:

Email alerts: Click here
Subscriptions: Click here
Commercial reprints: Click here
Terms of use : Click here

Freesurface adjustment and topographic waves in 
coastal currents

E. R. Johnson and M. K. Davey

Journal of Fluid Mechanics / Volume 219 / October 1990, pp 273  289
DOI: 10.1017/S0022112090002944, Published online: 26 April 2006

Link to this article: http://journals.cambridge.org/abstract_S0022112090002944

How to cite this article:
E. R. Johnson and M. K. Davey (1990). Freesurface adjustment and topographic waves in 
coastal currents. Journal of Fluid Mechanics, 219, pp 273289 doi:10.1017/S0022112090002944

Request Permissions : Click here

Downloaded from http://journals.cambridge.org/FLM, IP address: 144.82.107.45 on 30 Oct 2012



J .  Fluid Mech. (1990), vol. 219, p p .  273-289 

Printed in Great Britain 
273 

Free-surface adjustment and topographic waves in 
coastal currents 

By E. R. JOHNSON' AND M. K. DAVEY? 
Department of Mathematics, University College London, Gower Street, 

London WClE 6BT, UK 

Meteorological Office Unit, Hooke Institute for Atmospheric Research, Clarendon Laboratory, 
Parks Road, Oxford OX1 3PU, UK 

(Received 18 April 1989 and in revised form 16 March 1990) 

The adjustment of rotating free-surface flow over a step-like escarpment abutting a 
vertical wall is discussed in the context of the shallow-water equations. The problem 
is simplified by considering an escarpment of small fractional depth, so that on the 
slow topographic timescale the initial, fast Poincare' and Kelvin wave adjustment of 
the free surface is effectively instantaneous, and further simplified by considering the 
surface displacement to be small compared with the escarpment height so that 
particle velocities are negligible during the topographic adjustment. Direct solution 
of the resulting linear system is not straightforward as arbitrarily small-scale 
motions are generated at sufficiently large times. The problem is reduced by a 
Green's function technique to one spatial dimension and the wall boundary layers 
resolved by introducing a scaling based on previously obtained limit solutions. 
Solutions verify the information-propagation arguments of Johnson ( 1985) and Gill 
et al. (1986) and also show interchange of fluid across the escarpment as eddies 
formed as the current crosses the step travel along the step with shallow water to 
their right. The pattern of evolution of the system is independent of the direction of 
the flow, depending solely on the sign of the topographic step. If the escarpment is 
such that topographic waves travel away from the wall, then a tongue of fluid moves 
outward along the step: the initial jet along the wall is diverted to flow parallel to, 
rather than across, the step. If waves travel towards the wall then the current is 
pinched into the wall and fluid crosses the escarpment in a thinning jet. 

1. Introduction 
Long topographic waves in the ocean propagate with shallow water to their right 

(in the Northern hemisphere). This introduces an asymmetry into the evolution of 
flows above uneven bathymetry. In  particular, flow forced over a rectilinear step 
deviates in opposite directions depending on whether the step is upwards or 
downwards. For infinitely long rectilinear ridges or steps the linear evolution of the 
flow can be followed straightforwardly by a Fourier superposition of the wave modes 
supported by the topography, and no singularities develop. A closed-form example 
of this is given in $3. 

In  the oceans and the laboratory rectilinear topography cannot extend indefinitely 
and is eventually interrupted by sidewalls of the ocean basin or rotating vessel. 
Energy carried towards the wall by long waves is in general reflected as short waves. 
At large time the flow is dominated by the waves of lowest frequency and the energy 
contained in the reflected waves is increasing confined to the neighbourhood of the 
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sidewall. The straightforward decomposition of arbitrary initial conditions into the 
propagating modes found over infinitely long topography is no longer possible, and 
an unsteady boundary layer forms a t  the wall. 

This development is especially simple above topography consisting of a single 
vertical escarpment. There is then no reversal of group velocity for short waves, 
energy propagation is unidirectional, and so energy carried towards a wall 
accumulates there, forming a singularity at infinite time. The topographic waves in 
this limit are double Kelvin waves (Longuet-Higgins 1968 ; Rhines 1969). 

This latter geometry has been considered in Johnson (1985) (called I herein) and 
Gill et al. (1986) (called I1 herein). Paper I1 considers the evolution of the free surface 
of a shallow layer of fluid confined in a semi-infinite domain by a vertical sidewall 
with topography consisting of a vertical escarpment perpendicular to the wall. The 
initial surface profile is taken to be a single step parallel to  the sidewall (figure 1):  in 
the absence of topography the free surface adjusts to geostrophy, in a time of order 
the inertial period, to give an alongshore current (i.e. a flow parallel to the wall). 
Steady solutions are obtained in I1 using the unidirectional propagation of 
information to  infer that  if the escarpment is such that long waves travel outwards 
then the eventual surface elevation over the escarpment coincides with that initially 
a t  the wall, whereas if long waves travel inwards the eventual elevation over the 
escarpment is that  initially far from the wall, i.e. zero. This information argument is 
supported in I1 by time-dependent numerical integrations of finite-difference 
approximations to the two-dimensional equations of motion. For inwardly 
propagating waves a t  sufficiently large times these integrations are unable to resolve 
the increasingly small scales generated near the wall-step junction. A rigorous 
justification of the argument is given in I for the rigid-lid limit of infinite deformation 
radius where conformal mapping allows the domain to be transformed into one in 
which the evolution can be described in closed form by a Fourier superposition of 
modes. Asymptotic evaluation of the resulting integrals verifies the information 
propagation argument. 

It is the purpose of the present paper to describe the transient development of the 
steady flows discussed in I1 without restriction to the rigid-lid limit. The solution 
combines the developing singularity of I with the finite speed of propagation and 
confinement of the flow in 11. Section 2 shows that for topography of small fractional 
height two distinct timescales emerge. The linear shallow-water equations reduce to 
a fast, inertial-timescale system describing the adjustment to  geostrophy of the 
initial unbalanced surface displacement and a slow, vortex-stretching-timescale 
system describing the subsequent evolution of this now geostrophic state. The 
topographic evolution over an escarpment is shown to be particularly simple, 
satisfying a steady Helmholtz equation in a quarter-plane with time-dependent 
boundary conditions. Section 3 gives the closed-form solution obtained by Fourier 
superposition for an infinitely long escarpment and presents an alternative derivation 
using a Green’s function representing free-surface point vortices. This reduces the 
problem to an integral equation in one spatial dimension which is easily integrated 
numerically. The method is not restricted to infinite domains and in $4  i t  is applied 
to the more difficult problem with a bounding wall. Knowledge of solutions close to 
and far from the wall leads to the introduction of a stretched coordinate system that 
resolves the short lengthscales present when energy is incoming. The results are 
discussed briefly in $5. 
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FIGURE 1. The geometry considered and the initial surface profile. The domain is semi-infinite with 
average depth H ,  and a rigid vertical wall a t  y* = 0. An escarpment (later taken to be vertical) of 
height 2h, stretching perpendicularly away from the wall is present on the lower boundary. 
Initially the free surface has a discontinuity of height voo along the line y* = L* parallel to the wall. 

2. Governing equations 
Consider a horizontally semi-infinite layer of incompressible inviscid homogeneous 

fluid of average depth H, rotating as a rigid body with constant angular velocity Q 
about a vertical axis. Take Cartesian axes Ox*y*z* so that the bounding vertical wall 
is given by y* = 0 and the rigid lower boundary by z* = h, h(x*/L*) where h is order 
one. Measure the deviation, from the horizontal plane z* = H,, of the free surface 
by r*, and let the free surface initially have a downward step from y* = yoo in 
0 < y* < L* to y* = 0 in y* > L*. This geometry (figure 1 )  is the same as in 11. As 
in the classical work of Rossby (1937a, b) ,  the free surface adjusts to geostrophy in 
a time of order the inertial period (2Q)-'. The geostrophic flow has lengthscale of 
order the Rossby radius, a = (gH,)t/ZQ and velocity of order U = 9~,~,,/2Qa. 
Topographic compression of vortex filaments generates vorticity of order 2526, where 
8 = ho/Ho, and so introduces a second, topographic vortex-stretching, timescale 
T = (252e)-' (Johnson 1984). This timescale is long compared with the inertial time 
provided E 4 1 and short compared with the advection time a /U provided yao/ho 4 1. 
Under these conditions the classical Rossby adjustment is fast, followed by a slow, 
evolution controlled by topographic waves of timescale T before advection becomes 
important. 

With lengthscale a, timescale (252)-', velocity scale U,  and surface displacement 
scale roo, the non-dimensional linear shallow-water equations can be written 

uT-w = -y,, w7+u = -yu, (2 . la ,  b)  

(2.14 

(2.2) 

U ,  + Wy - EV . (hu) = - 3,. 

(v,  - uY - q) ,  + EV * (hu) = 0. 

These combine to give the vorticity equation, 

2.1. The initial, fast, inertial adjustment (€-to, 7 fixed) 
In  the limit s+O,  i.e. on the inertial timescale, topographic effects vanish from the 
equations. The initial conditions can be written 

u = o ,  v = o ,  v=H(L-y) ( y20 ,7=0) ,  (2.3) 
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FIGURE 2. Cross-sections of surface elevation perpendicular to the wall during the initial, inertial 
adjustment to geostrophy. (a)  7 = 0, the initial step profile with L = 1 ; ( b )  T = $L two fronts 
propagate in opposite directions away from the position of the original discontinuity ; ( c )  T = 9, 
the front that initially moved inwards has reflected at  the wall and now follows the other front 
outwards a distance 2L behind; ( d )  T = $5; ( e )  T = $5 ; ( f )  7+ co, the geostrophically adjusted 
surface elevation 7 = ~ ~ ( y ) .  The dashed curves in ( b ) ,  ( c ) ,  ( d )  and ( e )  show the evolution without 
rotation. 
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where H ( y )  is the Heaviside unit function and L gives the width in Rossby radii of 
the initial raised section of the free surface. The impermeability condition a t  the wall 
is 

It is sufficient to look for solutions independent of x. Then by a similar argument to 
Gill (1982, chapter 7) ,  (2.1), (2.3) and (2.4) can be combined to give the forced 
KleinGordon equation 

where S(y) is the Dirac delta function. The solution of (2.4), (2.5) follows by extending 
v to be odd about y = 0, by introducing the image of the forcing, to give 

v = 0 (y = 0 , ~  > 0). (2.4) 

v,-vzlyy+v = S(L-y)S(7), (2.5) 

2~ = J0([r2- (Y--L)~]$H(T- Iv-LI) - J O ( [ T ~ -  (y+ L)2]$H(~-  ~zJ+LI). (2.6) 

Figure 2 gives the surface elevation for L = 1 ,  obtained by integrating r,i7 = -vyr at 
various times after the free surface is released. Two vertical wave fronts of amplitude 
one half travel a t  unit speed, initially in opposite directions, away from the position 
of the original discontinuity (figure 2b). The wavefront propagating towards the wall 
is reflected at  the wall a t  time r = L and propagates outwards a distance 2L behind 
the original outward-propagating front (figure 2 c ,  d ,  e ) .  For small T the surface 
elevation evolves similarly to the solution in the absence of rotation, shown dotted 
in figure 2 (b ,  c ,  d ,  e )  for comparison. For large T the effect of the Coriolis force is more 
evident, altering the evolution and raising permanently the surface at the wall (figure 

As in the problem without a wall, a t  large time the flow decays as 7-i towards a 
steady geostrophically adjusted solution. In  the present geometry this steady 
solution can be obtained from (2.6), or directly by conservation of potential vorticity 
and noting that u vanishes at the wall by (2.4) since u, = v. It thus follows from (2.2), 
the initial displacement (2.3) and (2.lb) that  the steady adjusted flow satisfies 

2 f  1. 

7yzly-7 = -H(L-y) (y > O ) ,  Vzly = 0 (y = 0). (2.7) 

r,io(y) = e-ysinhL+[l-cosh(L-y)]H(L-y) (T+ co), (2.8) 

Both the asymptotic form of (2.6) and the solution of (2.7) give 7 +v,,(y) as 7+ co 
where 

the profile given in figure 2 (f ). 

2.2. The subsequent, slow, topographic adjustment ( F  + 0, t = €7 $xed) 
Now consider (2.1 ) in the limit e + 0 on the topographic vortex-stretching timescale, 
i.e. with t = €7 fixed. In  terms of the dimensional time t* and the topographic 
timescale T ,  t = t * /T .  Then (2.1~2, b) reduce to the geostrophic relations 

u=--ry, v = 7 , >  
and (2.2) gives the field equation 

(2.9a, b) 

(V2q-7) t+a(q ,h)  = 0 (y > O,t > 01, (2.10) 

where a(7, h) = ( u - V )  h = 7, h,-Ty h,, relating vorticity generation and free-surface 
deformation to topographic compression of vortex lines. The adjusted surface 
displacement (2.8) gives the geostrophic initial condition 

7 = 7o(Y) ( t  = 0,Y > O ) ,  (2.11) 

required by (2.10). With (2.9b), the impermeability condition (2.4) becomes a 
condition that 7 is independent of position along the wall. In particular y is given by 
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its value at x = - 00. Provided no waves travel with undiminished amplitude to 
x = - co, where the topography is taken to be flat, 7 is determined there for all 
t > 0 by its initial geostrophically adjusted value there, giving 

7 =vO(O) = l -eTL (y = 0, t  > 0). (2.12) 

A posteriori support for this condition comes from noting that high velocities are 
generated in the subsequent evolution only where the escarpment meets the wall and 
topographic waves are incoming. Any Poincarc! waves generated in this case would 
spread isotropically and so have amplitude decreasing algebraically with distance. 
The sole constant-amplitude high-frequency wave is the Kelvin wave trapped 
against the wall. This wave, however, propagates in the positive x-direction only and 
so does not affect the surface elevation at  x = - co. 

Introducing the deviation from the initial geostrophically adjusted elevation, 
$ = 7 - qo, gives the problem 

(V2$-$)t+a($. ,h)  = -a(7o>h), (2.13) 

$ = 0 (y > O , t  = 0) and (y = 0, t  > 0), (2.14a, 6 )  

V ~ + O  (x2+y2+ m , t  > 0). (2.15) 

It is shown in Johnson (1990a, 6) that  the periodic response to low-frequency 
periodic forcing of (2.13), (2.14), (2.15) is closely modelled for ridges, valleys and 
escarpments by considering only the fundamental long topographic wave. For an 
escarpment this wave can be retained and others filtered out by taking the 
escarpment to be vertical. This removes short waves carrying energy away from the 
wall and hence corresponds to weakly dissipative flow with energy being destroyed 
a t  the wall over downwards escarpments (Johnson 1989). Since (2.13) is linear the 
required solution of the present initial-value problem can be expressed as a 
superposition of these periodic responses and hence the general features for 
continuous escarpments obtained by considering a vertical escarpment. Thus 
consider the step change in depth 

h = y sgn x, (2.16) 

where y = & 1 depending on whether shallow water lies to  the right or left looking 
away from the bounding wall. Except a t  the step, (2.13) and ( 2 . 1 4 ~ )  give 

V"-$=O (x*O,y>O, t>O) .  (2.17) 

Integrating (2.13) by parts across the step gives the matching conditions 

[$I = 0, [$/,tl-2y$, = -2YU0, (x = 0,y > 0, t > O ) ,  (2.18% 6) 

where [ . ]  denotes the jump in the enclosed quantity across the step and 

UO(Y) = -%o/??l (2.19) 

is the initial cross-step velocity. Flow across the step generates a vortex sheet along 
the step and gives the jump in (2.186). The distribution of vorticity along the step 
in turn alters the cross-step flow and this interaction controls wave propagation 
along the step. 

The problem can be further simplified by looking for solutions of the form $ = 

$ ( [ X I ,  y, t) ,  where $ is required only in the quarter-plane x 2 0, y 2 0 where it satisfies 

VZ@-$ = 0 (x > 0,y > O , t  > O ) ,  (2.20) 

@ = 0 (x = 0,y > 0 , t  = 0) and (y = 0,x > 0 , t  > 0), (2.21a, 6) 
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V$+O (x2+y2+03,t > O ) ,  (2.22) 

$z,-y$4u=-yuo (x=O,y>O,t>O). (2.23) 

For lengths small compared with the Rossby radius the displacement of the free 
surface can be neglected in the vorticity equation (2.2), and (2.20) reduces to 
Laplace’s equation. The surface is effectively rigid, and the system becomes that 
solved in I by conformal mapping and Fourier transforms. The forcing appears solely 
through U,, the initial cross-step flow, driven in I by a source-sink pair. Note that 
changing the sign of y is equivalent to reversing the time direction. 

3. The unbounded case 
The difficulty in the problem posed by (2.20)-(2.23) lies in the presence of the wall. 

This section considers an unbounded domain first using direct Fourier-transform 
techniques and then using a Green’s-function method that can be adapted to include 
a wall. Consider system (2.20)-(2.23) without (2.21 b ) ,  allowing y to extend to - 00, 

and, for simplicity, taking the origin of y to be a t  the step in the free surface, so 
7 = 1 -H(y) before adjustment. The analysis closely parallels that in I. The initial 
surface displacement after geostrophic adjustment is 

3.1. The Fourier-transform solution 
Denoting the Fourier transform with respect to y, parameter I, by gives 

i j ,  = [xS(Z) - (iZ)-l]/( 1 + Z2).  

The form of 4 follows from (2.20) as 

4 = A(Z, t )  exp { - (1  + ~2)6x}, 
where A satisfies, from (2.23), 

(3.3) 

A, + yiZ(l+ ~ 2 1 - 4 ~  = y(1+ 121-1. (3.4) 

The complementary function is a negative exponential in t (and so decays) provided 
the inversion contour passes below (above) the pole a t  Z = 0 for y positive (negative). 
This is compatible with the initial form Q,. The steady solution of (3.4) is A ,  = 
[il( 1 + Z2)]-l, so 

exp { - (1 + Z2)i [xi} sin Zy dZ 4 = -be-14+- , (3.5) 
2x ‘ I  --m 2( 1 + Z2) 

where the integrand is well-behaved on the whole real axis, the contribution from the 
pole a t  the origin having been made explicit. For large JyI the integrand is dominated 
by the contribution near 1 = 0 and 

4 s  + te-”[r + sgn Y1 (lYl-+ m). 

For y = 1 the steady state has 7 = 1 along x = 0 while for y = - 1 the steady state 
has 7 = 0 along x = 0. There is no flow across the step in the steady solution. 

The solution at intermediate times is given by 

7 (3.6) 
O0 exp [ - ( 1  + Z2)i 1x11 [sin (Zy- ot) -sin Zy] dZ 

I( 1 + 1 2 )  
T = To-; J-, 
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FIGURE 3. Contours of surface elevation 7 and thus streamlines for the evolution in an infinite 
domain (no wall) of a step along y = 0 in the free surface above topography consisting of a vertical 
step from deep fluid in z < 0 to shallow fluid in 5 > 0 ( y  = 1). When as here the initial surface is 
higher in y < 0 then y > 0 a raised tongue of fluid moves out along the escarpment, and flow is from 
left to right. When the initial surface is higher in y > 0 a valley forms along the escarpment and 
flow is from right to left. Eddies formed in the region of the initial step in surface elevation 
propagate outwards along the escarpment with shallow water to their right. (a) t = 0, q = qo(y) 
after initial rapid geostrophic adjustment ; ( b )  t = 10; (c )  t = 20. Contours are a t  0.01 (dashed) and 
then at 0.2,0.4, ... . 

X X X 

where o(Z) = yZ(1 +Z2)-i is the dispersion relation giving the frequency of a 
topographic wave of wavenumber 1. The waves have phase speed y (  1 + P - f  and 
group velocity y( 1 + P-;. These are single-signed and thus represent unidirectional 
propagation of phase and energy. The integrand in (3.6) is non-singular and thus in 
a form for ready evaluation by fast Fourier transforms (FFTs). 

Figure 3 for y = 1 gives contours of the surface elevation, and thus streamlines, a t  
times t = 0, 10 and 20 showing a raised tongue of fluid moving outwards along the 
escarpment. Flow is from left to  right. Fluid travels outwards beside the escarpment, 
crosses in an unsteady front and returns on the far side. As in I, eddies form where 
flow approaches the escarpment and travel outwards in the tongue. In the present 
case the eddies remain narrow, confined by free-surface deformation. 

If the sign of the initial step in surface elevation is reversed, then the sole change 
is a reversal of the sign of 7 and hence of the velocity field. The patterns of figure 3 
again give the development of the flow, which in this case is a valley of fluid growing 
along the escarpment, with flow from right to left. If instead the sign of the 
topographic step is reversed (y  = - 1, so the escarpment separates shallow fluid in 
x < 0 from deep in x > 0), then the flow pattern is reflected about y = 0, with 
respectively a valley or ridge growing into y < 0 when the initial surface elevation is 
higher or lower there. 

The patterns are symmetric about x = 0 as the escarpment has been taken to be 
vanishingly small. For finite-height escarpments patterns are similar but the 
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currents are wider on the deeper side, reflecting the larger Rossby radius there. As 
noted in 11, continuity of interface height across the escarpment means that the 
outward volume flux is greater than the return flux, thus feeding the advancing 
front. 

Asymptotic evaluation of (3.6) following I shows that the wavefront is composed 
of thc longest waves travelling outwards with unit speed leaving behind a dispersive 
wavetrain decaying as t-4. Figure 4 gives cross-sections of surface elevation a t  three 
stations in x .  Short dispersive waves are evident behind the wavefront above the 
escarpment but are absent away from the escarpment owing to their rapid decay 
with 1x1. Adjustment is thus rapid at  distances over a Rossby radius from the step. 

3.2. The Green’s function solution 

Although the Fourier-transform techniques and evaluation by FFTs are the most 
transparent and straightforward approach to wave problems in infinite domains, 
they are inappropriate in general for the semi-infinite geometry of (2.20)-(2.23). A 
Green’s-function approach, that  can be extended to bounded domains, is thus also 
presented here. 

Consider the function 

G , ( ~ ~ y > ~ o ~ y o )  = ~ o ~ ~ ~ ~ - - o ~ 2 + ~ ~ - ~ o ~ ” l ” ~ + ~ o ~ ~ ~ ~ + ~ o ~ 2 + ~ ~ - ~ O ~ 2 1 ~ ~ ~  (3.7) 

where KO is the modified Bessel function of the second kind of order zero. The 
function Go consists of two free-surface point vortices a t  (xo,  yo) and ( -xo,  yo). Thus 
for (z, y)  =I= (xo, yo), Go satisfies (2.20), and (2.22). Further, Go is even in x0 so aGo/axo 
vanishes on zo = 0. Applying Green’s theorem in the half-plane x0 > 0 yields 

where the solution has been extended to  be continuous from the right a t  x = 0 so that 
the free-surface elevation 1,4 is continuous across x = 0 as required.? Knowledge of qz 
along the line of the step determines 7 everywhere. Using (2.23) allows the time rate 
of change of (3.8) to be written as 

with the initial condition (3.10) 

This equation for 7 has been integrated numerically using predictor-corrector time 
stepping. For a time step At = 0.1 and a uniform grid spacing Ay = 0.1 for 
-5 < y 6 20 (for y = l ) ,  the results are indistinguishable from those of the FFT 
method. The same time-stepping and integration algorithms are used in the following 
section for the quarter-plane problem to which no FFT solution is available. 

The equivalence of expression (3.4) and the solution to (3.9) and (3.10) follows by 
noting that the kernel in (3.9), 2K0(ly-y01), is of the convolution type so that the 
Fourier transform of (3.9) is 

- a$ (0, I, t )  = iZ(l+ ~ - f y ^ ( ~ ,  Z, t ) ,  
at 

(3.11) 

which, with initial condition (3.2), gives (3.5) restricted to  x = 0. 

functions. 
t Morse & Feshbach (1953, pp. 801-806) briefly discuss boundary values determined by Green’s 
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0.001 1 1 10 
Y Y 

FIGURE 5. The stretched coordinate system for semi-infinite domain, 5 = log (sinh y) so y = 
log{ef+(l +e")f}. (a) Near the wall (y 6 l ) ,  the scaling is exponential with E - logy. (b)  At large 
distances the scaling is linear with - y. ( E  = -6.9, 0.16, 9.3 for y = 1 , l O ) .  

20 

Y 

0 
-5 5 -5 5 -5 5 

FIQURE 6. The surface elevation 9 for the same topography as figure 3 with, however, an 
impermeable wall at  y = 0. The initial step in surface elevation is at y = 1. (a) t = 0, ( b )  t = 10, (c) 
t = 20. The outward-propagating eddies above the escarpment are clearly visible. The evolution of 
the flow is almost unaffected by the presence of the wall. The contours are a t  the same levels as in 
figure 3. 

X X X 

4. The wall included 

semi-infinite domain. Introduce the Green's function 
The Green's-function method of the previous section extends immediately to a 

(4.1) G(z1 Y, 2 0 ,  Yo) = GO(Z? Y120, Yo) -Go(z, Y, 2 0 ,  -Yo), 
consisting of the previous vortices and their images in the line y = 0. Then G is odd 
in y and so vanishes on y = 0. Applying Green's theorem in the quarter-plane 
x 2 0, y 2 0 yields 

(4.2) 

10 FLM 219 
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FIGURE 7 .  Cross-sections of the surface elevation parallel to the topographic step at t = 10. (a) 
2 = 0, above the step, ( b )  one Rossby radius from the step, (c) 1x1 = 2, two Rossby radii from the 
step. The close resemblance to the cross-sections of figure 4 shows the negligible influence of the wall 
on the outgoing waves. Displacement to is dashed. 

and (2.23) gives the evolution equation 

with initial condition 
(4-4) 

Useful information for tackling the numerical solution of (4.3) and (4.4) can be 
obtained from the two limit cases already studied. Far from the wall, y $ 1, the 
second term in (4.1) is exponentially small so G - Go and the flow develops 
independently of the wall, governed by the equations of 53. The free surface can be 
expressed as a dispersive sinusoidal wavetrain with spatial coordinate y. Near the 
wall, y -4 1, both terms in (4.1) are equally important. However, free-surface 
displacement there is negligible compared with its curvature and the rigid-lid 
analysis of I shows the solution to be a dispersive wavetrain in the stretched spatial 
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FIQURE 8. The surface elevation for the same geometry as figure 6 but for a topographic step from 
shallow water in z < 0 to deep in z > 0 (y = 1). (a) t = 0, ( 6 )  t = 2, ( c )  t = 5. The wail-step 
singularity develops rapidly and inwardly propagating eddies closely confined to the step are 
clearly visible. Contours as in figure 3. 

coordinate logy. This follows in the present case by first integrating (4.3) by parts to 
give 

and writing 5 = logy so tha t  

where 

Then in the limit C, C o + -  m (close to the wall) 

Gl(C, Co) = [K,(eC-e50) +K,(ec+e&)] eco. 

G, + (eC-50- l)-l+ (ec-Co+ l)-l = cosech ( C - C o ) ,  

(4.5) 

10.2 
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FIGURE 9. Cross-sections of surface elevation parallel to the topographic step. (a) t = 5, ( b )  
t = 10. (i) Above the step the far-field condition propagates towards the wall, with a narrow time- 
dependent boundary-layer structure at  the wall. (ii) At one Rossby radius from the step (5 = 1) the 
flow alters little after t = 1. The dashed curves give ~ ~ ( 9 ) .  

a convolution kernel in these coordinates. The Fourier transform of (4.6) gives 

Gt = y(tanh$k)G, (4.7) 

the governing equation solved directly in I. 
The two cases can be combined by introducing the stretched coordinate 6 where 

= log (sinh y). (4.8) 
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FIGURE 10. The surface elevation 71 above the topographic step at  time t = 10 for y = - 1.  (a) In 
the unstretched coordinate y the wavefront is indistinguishably close to the wall. (b) In the 
stretched coordinate 6 the wavefront is resolved. The front has just reached 6 = -20. 

This choice has the advantage of an explicit inverse: 

Figure 5 illustrates the stretching. For small y, figure 5(a ) ,  the stretching is 
exponential (y N el) whereas for large y, figure 5 ( b ) ,  the scaling is linear (y N 6 ) .  In 
this scaling a wavetrain maintains an approximately constant wavelength at all 
distances from the wall. A grid evenly spaced in E gives good spatial resolution for 
the motion, and the time stepping of (4.3) is thus based on such a grid. 

Figure 6 gives the development of the surface elevation for an outgoing wave 
(y  = I), for L = 1. The eddies in the tongue are clearly visible. Figure 7 gives cross- 
sections of the elevation along three lines x = constant at  time t = 10. The rapid 
decay with distance perpendicular to the step of the slowly travelling short waves 
means that adjustment is rapid even a few Rossby radii from the step and there is 
little signature of the oscillatory dispersive wavetrain so evident above the step. As 
expected, the results differ little from those in $3 for which the wall is absent. 

For an incoming wave, the steady-state flow is nipped in at a wall-step singularity 
as in figure 11 of 11. Solving (4.3) shows how this state is effectively set up in the time 
taken for a topographic long wave to travel from the initial step in surface elevation 
at  y = L to the wall. Figure 8 gives the surface elevation at times t = 0, 2 and 5 for 
L = 1. As in the rigid-lid flow of I, eddies composed of short waves form over the step 
and travel inwards towards the wall. These short waves decay rapidly away from the 
step and once again have little effect at  any distance further than a Rossby radius 
from the step as can be seen from the cross-sections in figure 9. On this lengthscale 
the wavefront has effectively reached the wall by t = 5 .  Figure 10(a) shows 7 along 
x = 0 close to the wall at  t = 10. The surface displacement has not changed at the 
wall (y = 0) but now drops to a slightly negative value by y w 0.01. The velocity at 
the wall remains zero but a strong alongshore jet has formed close to the wall. Figure 
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lO(6) also shows 7 along x = 0 at t = 10 but now in the stretched coordinate 6. The 
wavefront has just reached 6 = - 20 for 5 < - 20 the surface displacement remains 
equal to ?lo. At later times the wavefront comes ever closer to the wall without 
actually reaching it. The time step for the numerical integration was At = 0.2 and the 
grid was equally spaced in 5 with A6 = 0.25 for -20 < 5 < 5 (i.e. 2 x lopg < y < 5.7). 

As noted in I, as the strength of the alongshore jet increases, the initially small 
effects of advection and dissipation become increasingly important near the wall-step 
junction. Allen (1988) considers advection and obtains a finite boundary-layer 
width. 

5. Discussion 
The free-surface adjustment problem above a topographic step of I1 has been 

solved in detail numerically by reducing it to one spatial dimension and introducing 
the exponential scaling of I to resolve the development of the singularity at the 
wall-step junction. The results combine the singularity and eddies of I with the 
confinement due to free-surface deformation in 11. In order to obtain these results in 
a simple form two limits have been applied to the full shallow-water equations. First, 
so that the initial free-surface adjustment by Poincard and Kelvin waves is 
instantaneous on the topographic timescale, the fractional depth e occupied by the 
escarpment has been taken to be vanishingly small. For higher escarpments the 
topographic speed increases to become comparable with the Kelvin wave speed and 
a solution to the present initial-value problem requires simultaneous consideration of 
both sets of waves. Secondly, so that advection is negligible the initial step in the free 
surface has been taken to be small compared with the height of the escarpment. For 
larger free-surface elevations stronger currents are generated by the initial Rossby 
adjustment and their speeds become comparable with topographic wave speeds. 
Advection of potential vorticity (a conserved quantity) then affects the motion. For 
step-like escarpments the topographic waves are unidirectional. When waves 
propagate away from the wall, the wall has little effect on the general flow pattern. 
When waves propagate towards the wall a thiuning boundary layer forms near the 
wall-step junction together with a narrow jet of increasing velocity. 
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