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Abstract 

Systems Engineering is not a new discipline; the term has been in use since World War II. 

Yet, whilst there has been no shortage of definitions of the term over the years (not all of 

which are consistent), there is little consensus on the scope of Systems Engineering. This is 

particularly true in relation to other overlapping disciplines such as System Dynamics, 

Operations Research, Industrial Engineering, Project Management, Soft Systems 

Methodology, Specialist Engineering and Control Theory, which share many of the origins 

and techniques of Systems Engineering. This paper presents a landscape of disciplines and 

suggests that INCOSE should ‘brand’ Systems Engineering strategically, defining explicitly 

its position within this landscape including its points of parity (overlaps) and points of 

difference with other disciplines. Actively branding Systems Engineering will broaden its 

appeal and attract more interest from stakeholders outside the current Systems Engineering 

community. INCOSE’s ‘market share’ relative to its biggest systems competitor – Project 

Management – is falling, so even though INCOSE membership is rising, more needs to be 

done to promote the profession. 

 

Key words: scope of systems engineering; branding systems engineering; selling systems 

engineering; landscape of systems disciplines; history of systems disciplines 
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1 Introduction 

 

Despite being more than sixty years old, Systems Engineering (SE) still doesn’t know very 

well what it is. When systems engineers look in the mirror, what do they see? They see 

furtive creatures, no doubt, with features that are difficult to make out with any constancy. 

They see shape-shifters, perhaps, as each day they have different roles and see themselves in 

a different light. Worse still, external observers see only shadows. Whilst the SE community 

may be occasionally confused over its purpose, there can be little doubt that those outside this 

community would be in a state of perpetual perplexity over the activities of systems 

engineers. Would be, that is, if they were the least bit interested in us. 

 

If SE is to develop into anything more than an engineering niche, it needs to be branded, so 

that those outside the community are forced to sit up and take notice. In order to create a 

brand identity for SE, though, we need better agreement within the SE community over who 

we are and what we want to be. Shape-shifters just aren’t selling at the moment. INCOSE is 

still quite young and has made positive strategic moves in the last few years, but it may need 

to be even more aggressive if it is to get discussions about SE out of the lab and into the 

boardroom. The concept of treating a profession as a brand has precedents. For example, the 

market research profession, which has some similarities to SE in the way that it combines 

quantitative analysis with creative recommendations, has had a lively debate in the last 

decade about how to market itself. This has gone as far as considering “ditching the Market 

Research name altogether” [Valentine, 2002]. 

 

We begin the search for a way to brand or market SE with a degree of introspection. It will be 

useful to start with a brief discussion of the scope and history of SE, and then to identify 

other ‘overlapping’ fields of study. We will then be in a position to discuss the ‘unique 

selling propositions’ of SE and of systems engineers. This should uncover what functions the 

discipline of SE should perform that other disciplines do not or cannot perform, and what 

competencies are required of an individual who is to perform these functions. We then 

consider who takes responsibility for setting the scope of SE and who the stakeholders of SE 

are before concluding with a discussion of how SE should brand itself within the landscape of 

overlapping disciplines and how it can go about doing this. 
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2 The scope of Systems Engineering 

 

A newcomer to the field of SE could be puzzled by the scope of the subject given how many 

other apparently similar subjects exist with the words ‘System’,  ‘Systems’ or ‘Engineering’ 

in their titles. A glance around the shelves of the British Library would do little to clarify 

matters, merely uncovering a wealth of journals with apparently overlapping scope. There 

seem to be countless societies dedicated to the promotion of ‘Systems’ and ‘Engineering’, 

each with its own journal, web page and conferences. 

 

Textbooks aren’t much help, either. Some see SE as part of Project Management [Kossiakoff 

and Sweet, 2003]. Some see Soft Systems Thinking as part of SE, others draw the distinction 

between hard SE and Soft Systems Methodology (such as Khisty and Mohammadi [2001]). 

Some texts stress the importance of economics in general engineering [Crandall and 

Seabloom, 1970], and many SE texts underline cost-benefit trade-offs as critical to good SE. 

One of the earliest recognised practitioners of modern-day SE, Arthur Hall, suggests 

“Systems engineering operates in the space between research and business, and assumes the 

attitudes of both. For those projects which it finds most worthwhile for development, it 

formulates the operational, performance and economic objectives, and the broad technical 

plan to be followed” [Checkland, 1981:130]. Prior to the 1960s, it was common to treat 

technology and cost as independent considerations in developing military systems. However, 

Hitch and McKean [1960: 3] point out that “Technology defines the possible strategies. The 

economic problem is to choose that strategy, including equipment and everything else 

necessary to implement it, which is most efficient (maximizes the attainment of the objective 

with the given resources) or economical (minimizes the cost of achieving the given objective) 

– the strategy which is the most efficient also being the most economical”. 

 

A number of questions are answered inconsistently in the literature. These include whether 

SE can be applied to non-engineering systems. In other words, is SE about engineering in the 

general sense of ‘to engineer’  - i.e. to make something happen in a clever way, or is the 

engineering referring to the traditional engineering profession which focuses on scientific 

problems? SE has an “international professional society for systems engineers whose mission 

is to foster the definition, understanding, and practice of world class systems engineering in 

industry, academia, and government” [INCOSE, 2004a] – namely the International Council 

on Systems Engineering (INCOSE). It would be appropriate to refer to the INCOSE 
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definition of SE: “Systems Engineering is an interdisciplinary approach and means to enable 

the realization of successful systems. It focuses on defining customer needs and required 

functionality early in the development cycle, documenting requirements, then proceeding 

with design synthesis and system validation while considering the complete problem: 

Operations, Performance, Test, Manufacturing, Cost & Schedule, Training & Support, 

Disposal. Systems Engineering integrates all the disciplines and specialty groups into a team 

effort forming a structured development process that proceeds from concept to production to 

operation. Systems Engineering considers both the business and the technical needs of all 

customers with the goal of providing a quality product that meets the user needs” [INCOSE, 

2004b]. It is interesting to note that the INCOSE definition includes no description of what is 

meant by a system and has no reference to engineering; it also makes no assumption that SE 

is relevant only to machines or technical systems. INCOSE should therefore consider soft 

systems analysis as within the scope of SE.  

 

In contrast, the Oxford English Dictionary (OED) defines Systems Engineering as: “the 

investigation of complex, man-made systems in relation to the apparatus that is or might be 

involved in them; so systems engineer” [Simpson and Weiner, 1989]. This definition is more 

restrictive than the one used by INCOSE, limiting attention to man-made systems, and 

underlining the importance of ‘the apparatus that … might be involved in them’ – suggesting 

a focus on physical machines rather than systems in a general sense (the OED defines 

apparatus as “…equipments, material, mechanism, machinery; material appendages or 

arrangements…” [Simpson and Weiner, 1989]). 

 

Optner [1975] proposes a rather confusing definition: “In parallel with the emerging interest 

in engineering systems, there was equally vital activity in the field of information systems. 

Where engineering systems were identified with equipment (now widely referred to as 

“hardware”), information systems were concerned with the origins, processing, and meaning 

to be inferred from data. The integration of hardware components into complex electronic or 

electromechanical end-products came to be known as systems engineering”. Perhaps the 

association between systems and computers has existed since the introduction of general 

systems theory, which predates SE: “Systems theory … is pre-eminently a mathematical 

field, offering partly novel and highly sophisticated techniques, closely linked with computer 

science” [Bertalanffy, 1968: xi]. The confusion surrounding SE in general and Information 

Systems Engineering still remains today. In 1996, the UK Engineering and Physical Sciences 
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Research Council, which funds research in UK Universities, set up a research programme to 

investigate the relationships between legacy IT systems and business processes. The research 

programme was called “Systems Engineering for Business Process Change” [Henderson, 

2002]. This is a clear and typical example of when ‘Systems Engineering’ is used to refer to 

‘Information Systems’ or ‘Computer Systems’. 

 

Some attempts to understand the scope of ‘Systems Engineering’ begin by decomposing the 

term into its constituent parts, understanding each part independently and then trying to knit 

the two together to understand the whole. Of course, it is entirely appropriate and not without 

irony that this reductionist approach to understanding the meaning of ‘Systems Engineering’ 

is a fruitless task. The situation is worsened by the fact that there seems to be so little 

agreement about what the words ‘system’ and ‘engineering’ actually mean.  

 

Goode and Machol [1957] identify a problem of definition that still seems to blight the 

profession today: “for more than a decade, engineers and administrators have witnessed the 

emergence of a broadening approach to the problem of designing equipment. This 

phenomenon has been poorly understood and loosely described. It has been called system 

design, system analysis, and often the systems approach. Rarely does the speaker using these 

terms intend to convey those concepts which are brought to the minds of his hearers, nor for 

that matter are two hearers likely to be in agreement”. The fact that there is so little 

understanding of the meaning and scope of these terms nearly fifty years after the problem 

was originally identified does not reflect well on the systems engineering ‘profession’. Indeed 

whether it is possible to be a ‘professional’ systems engineer is debatable. Pettee [1954] notes 

that “many of the descriptions convey a feeling that a ‘pro’ in this business is a jack of all 

trades and a master of none” and, if this were so, “this would not, of course, be a profession”. 

Though Pettee was actually referring to an operations researcher, he could easily have been 

referring to a systems engineer. 

 

Starting from a rather loose definition of a system, namely ‘any grouping of resources with a 

definite objective’, Jenkins and Youle [1971] provide one of the first definitions of SE to 

stress the importance of emergence: “Systems engineering is the science of designing 

complex systems … so that the individual parts (or sub-systems) making up the overall 

system can be designed, fitted together, checked and operated so as to achieve the overall 

objective in the most efficient way. Thus, systems engineering replaces a piecemeal approach 
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to problem solving in organizations by a disciplined, overall approach. An overall approach is 

necessary because many problems which arise in industry are associated not with a particular 

function in a company, but with interactions between people, functions and departments” 

 

Rechtin [1991: 13] contributes to the debate on the meaning of SE by distinguishing between 

‘systems engineering’ and ‘systems architecting’, suggesting that the architect is “not a 

‘general engineer’, but a specialist in reducing complexity, uncertainty, and ambiguity to 

workable concepts”. He describes a systems engineer, in contrast, as “the master of making 

feasible concepts work”. Rechtin [2000: 5] elaborates by suggesting that architecting is 

“generally synthesis-based, insightful, inductive” whilst engineering is “analysis-based, 

factual, logical, and deductive”. These definitions do not make clear where value for money 

analyses should be considered. Since these should be driven by market data you could argue 

that they are factual, logical and deductive, and therefore should fall under engineering. But 

Rechtin states that it is the architect’s job to “determine relative requirement priorities, 

acceptable performance, cost and schedule – taking into account such factors as technology 

risk, projected market size, likely competitive moves, economic trends, …” [Rechtin, 1991: 

13]. Furthermore, Maier and Rechtin state that “engineering is more of a science, architecting 

more of an art” [Maier and Rechtin, 2000]. Surely few with the responsibility of 

‘architecting’ complex technical systems would describe themselves primarily as artists. The 

distinction between systems engineers and systems architects therefore seems a little hazy. 

Nevertheless, some organizations must find this distinction useful, as INCOSE set up a 

Systems Architecting Working Group and the IEEE has a Software Engineering Standards 

Committee’s Architecture Working Group [Maier and Rechtin, 2000].  

 

A further twist has been introduced by MIT, who recently hosted an ‘Engineering Systems’ 

symposium. Engineering systems is defined as “an evolution of the systems approach that 

addresses the challenges imposed by the size, scope and complexity of modern organizations 

and their technical solutions” [Wolff, 2004]. This is claimed to be not just systems 

engineering, but “enterprise engineering”, or “systems engineering applied to a large 

organization”. Given the confusion concerning the scope of systems engineering, reversing 

the words seems unlikely to help, particularly since it is clear that engineering systems 

involves the same kind of approach as systems engineering. If there is a valid distinction 

between engineering systems and SE, it is hard to see how engineering systems is also 

conceptually distinct from Operations Research, defined in Section 3.1 below as “a scientific 
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approach to the solution of problems in the management of complex systems”. The geneses 

of the terms ‘engineering systems’ and ‘systems architecting’ are symptoms of the failure of 

SE to mark out its territory in the systems landscape. With SE narrowly defined, it seems 

reasonable that ‘engineering systems’ and ‘systems architecting’ could be seen as completely 

distinct from SE. However, a broader view of SE would see engineering systems and systems 

architecting as just special cases or subsets of SE. There therefore needs to be clarification of 

whether these fields are subsets of SE, overlapping disciplines or distinct disciplines. 

 

The difficulties with defining the scope of SE may be linked to its origins and history. SE 

principles have been applied as far back as for the building of the pyramids, and the Bible 

suggests that Noah’s Ark was built to a system specification (Genesis 6: 13-22). The 

emergence of SE as a distinct discipline is usually associated with the management of 

technological projects during and after World War II, though. Indeed, it wasn’t until the 

1950s and 1960s that the first textbooks emerged that referred to SE by name (such as Goode 

and Machol [1957]). Traditionally, SE arose out of a recognised need to engineer functional 

systems that spanned different disciplines of engineering. With the early projects primarily 

military and space based (see Westerman [2001]), SE was established as an approach to 

optimise complex systems with very clearly defined requirements, and with cost 

considerations of secondary importance. “The modern philosophy – the ‘why’ and the ‘how’ 

of today’s systems engineering developed largely at NASA in the 1960s and 1970s” 

[Hitchins, 2003: 76]. The early military/aerospace presentation of systems engineering 

emphasized the process involved rather than the holistic principles. The Defense Systems 

Management College produced a Systems Engineering Management Guide [DSMC, 1983] 

which explained the steps in SE, starting with ‘requirements analysis’ and ending in the 

‘synthesis’ of alternative solutions. 

 

Jenkins and Youle at Lancaster University had great expectations of the impact of SE which 

were, with hindsight, misplaced: “it is not unreasonable to claim that a new industrial 

revolution is now on its way with the advent of systems engineering, a revolution which is 

going to exert a major influence on how industry can be organized so as to integrate properly 

the potentialities of people and the possibilities of technology” [Jenkins and Youle, 1971]. SE 

has always drawn upon expertise from a broad range of disciplines, including in particular 

mathematics and the physical sciences. However, perhaps fuelled by the Lancaster school’s 

optimism, SE seems to have become more ambitious in its scope in the last twenty years. 
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From optimising well defined, ‘hard’ systems with clearly specified requirements, SE is now 

increasingly being applied to offer insights into poorly defined, ‘soft systems’ with loosely 

defined requirements. A whole session was dedicated to ‘Soft Systems Approaches’ in the 

2001 INCOSE UK Spring Symposium. But is there such a thing as Soft ‘Systems 

Engineering’? The development of Soft Systems Methodology (SSM) was an attempt to 

address questions that, by definition, were outside the scope of SE as it was defined at the 

time [Checkland, 1981]. Yet INCOSE’s definition of SE and proceedings from INCOSE 

conferences now suggest that INCOSE believes that SSM falls within its scope of operations. 

This is interesting, since there are many other disciplines on the margins of SE which SE has 

manifestly declined to take under its wing. Perhaps SE as a discipline needs to examine its 

similarities and differences to other disciplines so that it can better highlight what the essence 

of ‘Systems Engineering’ is and what the scope of SE could or should be in the future. The 

roots of ‘hard’ SE are clear, and the development of SE as a discipline is firmly tied to these 

roots. But the ‘marketplace’ of systems-related disciplines has changed in the last fifty years, 

and SE needs to consider carefully whether its current stance and scope are still optimal for 

the new world order. First we should discuss some of the disciplines which overlap with SE. 

 

3 Overlapping disciplines 

 

As SE emerged during World War II, other similar disciplines were established with similar 

goals and methods, applying mathematical and scientific rules to real-world problems. These 

include in particular Operational or Operations Research, which concerns itself with the 

optimal allocation of resources and Systems Analysis, concerned with applying economics 

and mathematics to non-engineering problems (although systems analysis now seems 

increasingly to refer to Information Systems only). In addition, SE overlaps significantly with 

several newer areas, namely Project Management, System Dynamics and Soft Systems 

Methodology. For a comprehensive history of the development of SE, Operations Research 

and Project Management see Johnson [1997]. 

 

Even before WWII, the systems idea was gaining momentum, although it wasn’t referred to 

under its modern day terms. F. W. Taylor, the pioneer of industrial efficiency and 

specialization of work, noted that “in the past, the man has been first; in the future the system 

must be first” [Taylor, 1911: 7]. Industrial Engineering was effectively born with the thinking 

of Taylor as well as Frank and Liliam Gilbreth [Martin-Vega, 2001: 1.5]. It developed with 
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Ford’s assembly lines, Elton Mayo’s Hawthorne experiments and later with the motivation 

theories of Herzberg, Maslow and McGregor into what we would consider modern scientific 

management [Brown, 1954]. Following WWII, Industrial Engineering, Operations Research 

and (to a lesser extent) SE began to converge as they attempted to answer similar questions of 

optimization. The nature of SE’s relationship with each of these other fields is discussed 

below. 

 

3.1 Operations (or Operational) Research 

 

Operations or Operational Research (OR) is a well-established area of study with many 

associated societies throughout the world. The International Federation of Operational 

Research Societies (IFORS) defines the field as follows: “OR can be described as a scientific 

approach to the solution of problems in the management of complex systems … OR has been 

used intensively in business, industry, and government. Many new analytical methods have 

evolved, such as mathematical programming, simulation, game theory, queuing theory, 

networks, decision analysis, multicriteria analysis, etc. which have powerful application to 

practical problems with the appropriate logical structure” [IFORS, 2004]. IFORS is an 

international group which represents national research societies around the world (the largest 

of which is the US-based Institute for Operations Research and Management Science, 

INFORMS). An older definition from the (UK) OR Society’s official definition is: ‘OR is the 

application of the methods of science to complex problems arising in the direction and 

management of large systems of men, machines, materials and money in industry, business, 

government, and defence. The distinctive approach is to develop a scientific model of the 

system, incorporating measurements of factors such as chance and risk, with which to predict 

and compare the outcomes of alternative decisions, strategies or controls. The purpose is to 

help management determine its policy and actions scientifically’ [Checkland, 1981]. 

Duckworth offers a similar definition of OR: “the study of administrative systems in the same 

scientific manner in which systems in physics, chemistry and biology are studied in the 

natural sciences” [Duckworth, 1965: 8]. 

 

There seems to be a strong overlap between the questions that Operational Research seeks to 

answer and the questions that SE could help to answer if applied to non-engineering projects, 

since both are systems approaches [Churchman, Ackoff and Arnoff,  1957]. The key 

difference in emphasis between SE and OR is that SE tends to focus on the development of 
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optimum new or modified systems, whereas OR generally strives to get the best performance 

out of existing systems. Hall [1962] explains that “operations research is usually concerned 

with the operation of an existing system, including both men and machines. Thus we find 

operations research looking at military operations, supermarkets, factories, farms, etc., and 

examining specific functions within these operations such as inventory control, distribution of 

raw and finished materials, waiting lines, advertising, etc. The object is usually to optimise or 

to make better use of materials, energies, people, and machines already in existence and at 

hand. In contrast, systems engineering emphasizes the planning and design of new systems to 

better perform existing operations, or to implement operations, functions or services never 

before performed.” A slightly different emphasis is offered by Goode and Machol: “The 

operations analyst is primarily interested in making procedural changes, while the system 

engineer is primarily interested in making equipment changes” [Goode and Machol, 1957: 

130].  

 

Nevertheless, there is much common ground between the two disciplines. “Both engage in 

the analysis of complex man and machine systems … both utilize multi-discipline teams; 

both employ the scientific method; both emphasize the “whole system” rather than the 

component approach; and, above all, both are staff elements of organization whose mission is 

the analysis of operations … The differences are much less important than the 

similarities…The differences between operations research and systems engineering lie more 

in the people who do the work than in concept, philosophy, or procedure” [Flagle, Huggins, 

and Roy, 1960]. However, Flagle, Huggins and Roy also point out that “detractors could not 

distinguish between systems engineering and operations research but agreed that both lacked 

substance” and that “some alleged that operations research was nothing but industrial 

engineering”. Hughes [1998: 9] recalls that “In the 1960s, advocates of the systems approach 

developed a package of techniques and theory that included not only systems engineering but 

also systems analysis and operations research. While systems engineering was developed to 

manage large projects, operations research was designed to analyze military operations in 

place, and systems analysis was developed to analyze the anticipated costs and benefits of 

alternative planned projects, especially military ones. Together, these techniques have 

generated a managerial revolution comparable to that brought about earlier by Taylor’s 

scientific management”. The commonality between OR and SE is highlighted well by 

Johnson, who examines the technical content of early textbooks on OR and SE finding 

“substantial overlap and no universal consensus” [Johnson, 1997: 913]. The core subjects of 
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OR in the 1950s and 1960s were probability and statistics, linear programming, queuing 

theory, and game theory. The content of SE texts varied more, with the most significant 

topics including probability and statistics and control theory.  

 

3.2 Industrial Engineering 

 

Although he didn’t use the term ‘industrial engineering’, F. W. Taylor’s writing on efficiency 

and specialization of work is generally regarded as the foundation of the discipline [Martin-

Vega, 2001: 1.5]. OR and Industrial Engineering (IE) shared a common goal – getting the 

most out of existing systems, such as finding the best way to produce and distribute goods. 

After the end of WWII, some operations researchers therefore extended their areas of activity 

to include industrial problems. “This resulted in considerable interaction between industrial 

engineers and members of other scientific disciplines and in an infusion of new ideas and 

approaches to problem solving that dramatically impacted the scope of industrial engineering 

education and practice” [Martin-Vega, 2001: 1.10]. From the 1960s, industrial engineers 

came to use OR as a tool to model and better understand the behaviour of large problems and 

systems. Coupled with the development of the digital computer, this “essentially changed 

industrial engineering from a field primarily concerned with the individual human task 

performed in a manufacturing setting to a field concerned with improving the performance of 

human organizations” [Martin-Vega, 2001: 1.11]. The distinction between OR and IE is 

therefore slight. Hicks [2001: 1.85] points out that “the theoretical basis of industrial 

engineering is a science of operations … Almost always, the goal of industrial engineering is 

to ensure that goods and services are being produced or provided at the right quality at the 

right time at the right cost”, which sounds very much like a description of OR applied to a 

business problem. Yet, Hicks adds that a practising engineer uses ‘soft’ as well as ‘hard’ 

science, and “in the final analysis, the industrial engineer’s job is to make both new and 

existing operations perform well”, which blurs the previously drawn distinction between SE 

and OR (that OR focuses on existing processes). Perhaps, then, the scope of IE overlaps with 

SE as well as with OR. This view would be supported by Greene, who states that “there have 

been many suggestions for new terms that would better define industrial engineering. At 

times, over the last several decades, the terms systems engineer, management engineer, 

productivity engineer, quality engineer, and improvement engineer have been suggested to 

describe the future and direction of industrial engineering” [Greene, 2001: 1.100]. 

Furthermore, in an IE handbook published in cooperation with the Institute of Industrial 



 12 

Engineers [Salvendy, 2001], an ‘industrial and systems engineer’ is defined as “one who is 

concerned with the design, installation, and improvement of integrated systems of people, 

material, information, equipment, and energy by drawing upon specialized knowledge and 

skills in the mathematical, physical, and social sciences, together with the principles and 

methods of engineering analysis and design to specify, predict, and evaluate the results to be 

obtained from such systems” [Sink, Poirier and Smith, 2001: 5]. These authors further present 

a view of how they see the overlap between the activities of the industrial and systems 

engineer (ISE) and that of other disciplines (Figure 1).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1: Overlap of ISE activity with other disciplines [Sink, Poirier and Smith, 2001] 

 

 

Martin-Vega [2001: 1.13] supports the idea that industrial engineers and systems engineers 

have common skills, feeling that industrial engineers were “uniquely qualified to play the 

integrative, systems-oriented role that was now required to enhance the effectiveness of 

organizations”. This and the number of combined Systems Engineering and Industrial 

Engineering departments in US universities suggest a significant synergy between the two 

fields. 
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3.3 Systems Analysis 

 

‘Systems Analysis’ was developed in the 50s in the US as a technique for comparing the 

alternatives facing a decision maker by the RAND Corporation (www.rand.org), a non-profit-

making organisation. This was possible because of the involvement of scientifically-trained 

civilians in the planning of military operations in World War II: “During the 1950s the 

pattern of RAND-style ‘systems analysis’ became clearer. The work done consisted of broad 

economic appraisal of all the costs and consequences of various alternative means of meeting 

a defined end. It was a refinement of the kind of cost-benefit analysis which had been 

developing in government since the 1930s and of the ‘requirements approach’ especially 

associated with the Department of Defense” [Checkland, 1981: 135]. Essentially, Systems 

Analysis was a forward looking extension of Operations Research: “During the war, 

operations researchers focused on the tactical operations of existing weapons. RAND 

researchers extended OR techniques to investigate the potential value of future systems, using 

many of the techniques developed by operations researchers and extending them with best-

guess assumptions regarding the future. They called this future-oriented operations research 

systems analysis” [Johnson, 1997: 898]. ‘Systems Engineering’ and ‘Systems Analysis’ are 

both methods of ‘hard’ systems thinking, which assume that problems can be structured as a 

choice between alternative ways of achieving a known objective. 

 

Hitch [1973] describes the elements of systems analysis as: 

 

1. An objective or objectives we desire to accomplish 

2. Alternative techniques or instrumentalities (or ‘systems’) by which the objective 

may be accomplished 

3. The ‘costs’ or resources required by each system 

4. A mathematical model or models; i.e. the mathematical or logical framework or 

set of equations showing the interdependence of the objectives, the techniques and 

instrumentalities, the environment, and the resources 

5. A criterion, relating objectives and costs or resources for choosing the preferred or 

optimal alternative 

 

This approach clearly has much in common with SE. 
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Checkland [1981: 137] notes that in business and management there is some confusion of 

‘systems analysis’ in the broad , RAND, sense with the more limited kind of computer 

systems analysis which must precede the installation of computers. Checkland goes on to 

summarize the overlap between Systems Analysis and SE. “Systems Engineering is the 

totality of an engineering project in the broadest sense of that term; Systems Analysis is a 

type of appraisal relevant to both the decision-making which ought to precede the setting up 

of any engineering project and to the early stages of such a project once it is started” 

[Checkland, 1981: 138]. 

 

Over the years since the inception of Systems Analysis, its scope seems to have drifted. 

Initially, it referred to formal optimisation of complex problems with known objectives. Over 

time it became implicit that the analysis of the systems would require application of advanced 

quantitative techniques that were only possible using computers. Systems Analysis therefore 

came to mean the solution of systems problems using computer systems. Today, the terms 

‘systems analysis’ and ‘systems analyst’ are mostly used to refer to situations where 

computer systems are designed to solve problems of a general kind. In other words, the 

‘systems’ in ‘Systems Analysis’ has changed from referring to the nature of the object of 

study for which a solution is required (i.e. complex systems), to the nature of the mechanism 

used to achieve the solution (computer systems). In fact, a general confusion exists between 

the distinction between information technology, systems, and information systems 

[Checkland, 1998]. Stoddart also highlights the misconception “that all systems are based on 

computers and that systems engineering is closely allied to software engineering” [Stoddart, 

1999: 129]. 

 

3.4 System Dynamics 

 

System Dynamics is a methodology for studying and managing complex feedback systems. 

“The methodology identifies a problem, develops a dynamic hypothesis explaining the cause 

of the problem, builds a computer simulation model of the system at the root of the problem, 

tests the model to be certain that it reproduces the behaviour seen in the real world, devises 

and tests in the model alternative policies that alleviate the problem, and implements this 

solution” (System Dynamics Society, 2004). The field developed initially from the work of 

Jay W. Forrester and his publication of Industrial Dynamics [Forrester, 1961]. This focused 

on “the information-feedback character of industrial systems and the use of models for the 
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design of improved organizational form and guiding policy.” Industrial Dynamics grew out 

of four previous lines of development: “information-feedback theory, automatizing military 

tactical decision making, experimental design of complex systems by the use of models, and 

digital computers for low-cost computation” [Forrester, 1961]. The origins of System 

Dynamics are described by Sterman: “System dynamics is grounded in the theory of 

nonlinear dynamics and feedback control developed in mathematics, physics, and 

engineering. Because we apply these tools to the behavior of human as well as physical and 

technical systems, system dynamics draws on cognitive and social psychology, economics, 

and other social sciences” [Sterman, 2000: 5]. Since the publication of Industrial Dynamics, 

the span of applications has grown extensively and now extends to corporate planning and 

policy design, public management and policy, biological and medical modelling, energy and 

the environment, theory development in the natural and social sciences, dynamic decision 

making, and complex nonlinear dynamics. System Dynamics has been applied in a range of 

fields including health care (see for example Dangerfield [1999]), defence [Coyle, Exelby 

and Holt, 1999] and energy [Corben, Stevenson and Wolstenholme, 1999]. 

 

Although System Dynamics seems to share some of the heritage and raison d’être of SE, 

there are now relatively few areas of overlap between the two fields. System Dynamics tends 

to focus on improving the understanding of existing systems, whilst SE is almost entirely 

applied to the development of new systems. Furthermore, the ‘systems’ to which ‘System 

Dynamics’ is applied are often business or social systems, whereas SE has traditionally been 

applied almost exclusively to technical systems. Nevertheless, there are many techniques 

applied in System Dynamics which might usefully be applied in SE. For example, System 

Dynamics models have been developed to estimate the repercussions of design changes 

during major engineering projects. These models have been pivotal in determining the 

responsibility for project cost overruns and have thereby settled legal disputes [Sterman, 

2000: 55-66]. But the real value of System Dynamics models for project managers and 

systems engineers lies in “using these models proactively so overruns and delays are avoided 

in the first place” [Sterman, 2000: 65]. There is even greater overlap between research in 

System Dynamics and research in OR. Lane points out that “at its inception, the paradigm of 

system dynamics was deliberately made distinct from that of OR. Yet developments in soft 

OR now have much in common with current system dynamics modelling practice … a 

dialogue between the two would be mutually rewarding” [Lane, 1994]. Hughes notes how 

Forrester distinguishes between system dynamics and operations research: “The applier of 
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system dynamics is compared to an airplane designer, while one doing operations research is 

like an airplane pilot. OR, he continues, is for the decision-making manager, while system 

dynamics is for the designer of corporate policies. Just as an engineer designs a physical 

system for desired performance, a manager or political leader can aspire to design policies for 

social systems” [Hughes, 1998: 176].  

 

3.5 Systems Thinking/Soft Systems Methodology 

 

There are significant areas of common ground between Systems Thinking and System 

Dynamics: “Systems Thinking looks at exactly the same kind of systems from the same 

perspective as System Dynamics but rarely takes the additional steps of constructing and 

testing computer simulation models, and testing alternative policies in the model” [Systems 

Dynamics Society, 2004]. ‘Soft Systems Methodology’ first emerged in the public domain 

[Wilson, 2001] with the publication of Checkland’s [1981] ‘Systems Thinking, Systems 

Practice’. Checkland [1981: 318] defines SSM as a “systems-based methodology for tackling 

real-world problems in which known-to-be-desirable ends cannot be taken as given. Soft 

systems methodology is based upon a phenomenological stance” (i.e. where human 

perception and interpretation are taken to influence reality). Jackson [1991] highlights the 

role of Systems Thinking within the modernism/post-modernism debate: “Post-modernism 

seeks to puncture the certainties of modernism, particularly the belief in rationality, truth and 

progress; and it delights in doing so. It denies that science has access to objective truth”.  

Systems Thinking, as a response to the practical limitations of ‘hard’ SE, is therefore 

consistent with a post-modernist worldview. 

 

A distinction between systems thinking and systems science is not always drawn, but one 

1964 IEEE definition of systems science sees it “embracing operations research, systems 

analysis, and systems engineering” [Hughes, 1998: 141]. Systems Thinking, on the other 

hand, tends to focus on ‘soft’ systems engineering. There has been an International Society 

for the System Sciences (http://www.isss.org/) since 1954 (established as the Society for 

General Systems Research) and a UK Systems Society (UKSS) since 1977 [Stowell, 2002]. 

UKSS is “committed to the development and promotion of 'systems' philosophy, theory, 

models, concepts and methodologies for improving decision-making and problem-solving for 

the benefit of organisations and the wider society” [UKSS, 2004]. UKSS stated interests 

include “understanding human behaviour, general management and specific management 
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(e.g. public sector), approaches to problem solving, information handling and computing, 

mathematical modelling and optimisation, general problems of technology (e.g. safety and 

failures), particular problem application areas (e.g. agriculture), biology and medicine, and 

education” – many of which overlap with INCOSE areas of interest. According to UKSS, 

“the concept of ‘system’ embodies the notion of a collection of elements connected together 

to form a whole. Systems Thinking uses this concept to help understand the world. Central to 

the approach are the ideas of emergence and hierarchy, and communication and control. 

Systems practice employs systems ideas to design and manage complex processes and 

artefacts for the benefit of individuals, organisations and society” [UKSS, 2004].  

 

3.6 Project Management 

 

The term ‘project management’ emerged in the late 1950s when the “size, scope, duration, 

and resources required for new projects began to deserve more analysis and attention” [PMI, 

2000]. Established in 1969, the Project Management Institute (PMI) is the world’s largest 

project management professional association and provides some useful definitions relating to 

Project Management: “A project is a temporary endeavour undertaken to achieve a particular 

aim and to which project management can be applied, regardless of the project’s size, budget, 

or timeline … project management is the application of knowledge, skills, tools, and 

techniques to a broad range of activities in order to meet the requirements of a particular 

project” [PMI, 2000]. The PMI Body of Knowledge goes on to describe project management 

as comprised of five processes: “Initiating, Planning, Executing, Controlling, and Closing” as 

well as nine knowledge areas, focusing on: “management expertise in Project Integration, 

Project Scope, Project Time, Project Cost, Project Quality, Project Human Resources, Project 

Communications, Project Risk Management and Project Procurement”. OR makes theoretical 

contributions to the study of Project Management, but these contributions are often too 

theoretical and mathematical to be useful in practice. For example, see Schmidt and 

Grossman [2000] who predict the “exact overall time distribution of a project with uncertain 

task durations”. There is, however, a significant overlap between the activities of project 

managers and those of systems engineers. Indeed, it has been claimed that “Systems 

engineering is an inherent part of project management” [Kossiakoff and Sweet, 2003]. 

Furthermore, projects that deliver systems can be viewed as systems in their own right 

[Stoddart, 1999]. 
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A project can be defined as “a complex, coherent, interdependent group of activities, which 

combine to deliver common, novel objectives in a finite duration within a fixed amount of 

resource … Projects can be viewed as the interaction of three types of abstraction: quality, 

time and resource” [Cowper and Smith, 2002]. Tension exists between the three abstractions 

(shown in Figure 2) and Project Management must balance and trade these off to achieve a 

successful project.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2: Abstraction Model of a Project 

 

 

It can be argued that traditional SE focuses on delivering Quality, whilst Project Management 

focuses more on Time and Resource management. Eisner identifies a ‘project triumvirate’ of 

‘Project Manager’, ‘Chief Systems Engineer’ and ‘Project Controller’ as performing a critical 

role in integrating a successful project [Eisner, 2002]. Each has a distinct role, but each must 

be capable of effective communication. Shinners points out that “The successful program 

manager must be a competent systems engineer, economist and manager” [Shinners, 1976: 

xix], emphasizing the overlap between SE and project (or programme) management. Systems 

Engineering Management, which plays a crucial role in ensuring the delivery of excellent SE 

projects, effectively describes the intersection of SE and Project Management. 

Quality
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3.7 (Specialist) Engineering 

 

A dictionary definition of engineering is “the application of scientific principles to practical 

ends; as the design, construction and operation of efficient and economical structures, 

equipment and systems” [Kossiakoff and Sweet, 2003: 3]. A focus on value for money is 

therefore not peculiar to SE. Indeed, much of what is now described as SE is seen by some as 

just good engineering: “many systems practitioners do not believe that systems engineering is 

a separate discipline – instead they prefer to think of it as common sense, although they 

generally concede that such sense may be far from common” [Hitchins, 1992: 264]. Flagle, 

Huggins and Roy note that opponents of SE derided the subject as “nothing but people who 

can draw block diagrams or merely ‘the engineering process’ itself – that is, nothing new at 

all” [Flagle, Huggins, and Roy, 1960]. In the days before SE was established as a discipline 

in its own right, it was certainly the case that elements of ‘Systems Engineering’ would have 

been performed under the banner of just ‘Engineering’. However, “industrial engineering 

lacked precedents for combining a number of professional disciplines in a single project 

effort” [Optner, 1973], highlighting the need for ‘Systems Engineering’. Shinners [1976: xix] 

supports the distinction between systems engineers and specialist engineers, noting that the 

systems engineer “must have an adaptive capability which distinguishes him from the 

engineering specialist who is concerned with only one aspect of a well-defined engineering 

discipline”. Incredible cross-disciplinary engineering projects were certainly completed long 

before the term ‘Systems Engineering’ was in popular use, though. From the start of the 

industrial revolution in Britain in the early nineteenth century to the completion of the 

Hoover Dam in 1935, there are countless examples of engineers achieving ‘the impossible’. 

Often, however, ‘the impossible’ was achieved at great financial and human cost [Cadbury, 

2003], and to a large extent SE’s role has traditionally been to facilitate the delivery of 

spectacular feats of engineering without incurring spectacular costs. As the application of SE 

has grown, so the responsibility of traditional ‘Engineering’ for the delivery of cross-

disciplinary projects has diminished. Now, according to the Guide to the Systems 

Engineering Body of Knowledge (SEBoK), “Science determines what is, component 

engineering determines what can be, and systems engineering determines what should be” 

[Bayhill, Brown, Buede and Martin, 2002]. Of course, this overstates the authority of systems 

engineering, which doesn’t have the consciousness necessary to make value-judgments 

(determining ‘what should be’). A more accurate statement would be ‘Science determines 
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what is, component engineering determines what can be at component level, systems 

engineering determines what can be at system level, and leaders determine what should be’. 

 

3.8 Control Theory 

 

The IEEE Control Systems Society (CSS) was founded in l954 as a “scientific, engineering 

and professional organization dedicated to the advancement of the theory and practice of 

systems and control in engineering.” Control systems focus on dynamic systems, with 

feedback a key concept. Values of system variables are sensed, fed back and used to control 

the system. The control law decision process is therefore based not only on predictions about 

the behaviour derived from the system model (as in open-loop control), but also on 

information about the actual system behaviour (closed-loop feedback control). 

 

There is clearly a strong relationship between SE and Control Theory. One only needs to 

study the contents of the ‘Journal of Systems Engineering (1991-1996)’ or the ‘Journal of 

Systems and Control Engineering – Part 1’ (IMechE, 1991-present) to see that many 

deterministic dynamic systems can be usefully described and better understood by applying 

control theory. Much of modern ‘Systems Engineering’ lies outside the scope of Control 

Theory, though, in particular the focus on procedures, best practice heuristics and lifecycles. 

There is now probably more common ground between Control Theory and System 

Dynamics, which applies Control Theory to business and social systems. 

 

3.9 Landscape of competing disciplines 

 

Having ascertained that SE has areas of overlap with many other fields, it would be 

interesting to postulate a ‘landscape’ of fields (see Figure 3). A few fields that have no 

obvious direct overlap with SE are included for completeness. Note that there is no intended 

scale – the difference in shapes and sizes of the loops is merely intended to allow possible 

overlaps to be demonstrated. Of course, what one conceives the scope of each field to be 

strongly affects the position of the different disciplines within the landscape, and since many 

of the fields have rather loosely defined scopes, the landscape shown in Figure 3 is very 

subjective and open to debate.  
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Figure 3: Landscape of disciplines ‘competing’ with Systems Engineering 

 

 

With the landscape presented as in Figure 3, there is a part of the ‘Systems Engineering’ 

scope that is independent of other surrounding fields. This represents the competencies 

unique to SE. We can also consider the relationship between elements in terms of their 

‘building blocks’ as in Figure 4.  

 

 

 

SE

SC

EC

EN

PM

CS

SD

IT SA

SS

CT

PS

‘Management’

OR

IE

MM

SE – Systems Engineering

OR – Operations Research

PM – Project Management

SA – Systems Analysis

SD – System Dynamics

CT – Control Theory

EN – (Specialist) Engineering

SS – Soft Systems Methodology

IE – Industrial Engineering

IT – Information Technology

PS – Psychology

EC – Economics

HR – Human Resource Strategy

CS – Corporate Strategy

MM – Marketing Management

SC – Supply Chain Management

Legend

HR

SE

SC

EC

EN

PM

CS

SD

IT SA

SS

CT

PS

‘Management’

OR

IE

MM

SE – Systems Engineering

OR – Operations Research

PM – Project Management

SA – Systems Analysis

SD – System Dynamics

CT – Control Theory

EN – (Specialist) Engineering

SS – Soft Systems Methodology

IE – Industrial Engineering

IT – Information Technology

PS – Psychology

EC – Economics

HR – Human Resource Strategy

CS – Corporate Strategy

MM – Marketing Management

SC – Supply Chain Management

Legend

HR



 22 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Roots of ‘Systems’ related disciplines 

 

At the fundamental level these include the disciplines of the Physical Sciences, Mathematics, 

Social Science and Systems Thinking. The next level includes Engineering, Economics and 

Psychology, with Control and Management Theory dependent on more basic elements. It can 

be seen here that SE, System Dynamics and Operations Research share much ancestry, 

although the application domains vary significantly. Industrial Engineering is shown 

coincident with Operations Research although, as discussed in 3.2 above, some may argue 

that it has more in common with SE. It is interesting to note that ‘Management Theory’ is a 

component of all 6 disciplines, but the dependence on Control Theory, Engineering, 

Economics and Systems Thinking varies by discipline. Note that Systems Analysis is not 

shown on Figure 4 as the ‘Systems’ interpretation of Systems Analysis would see it 

subsumed within SE or OR, whilst the ‘IT’ interpretation would be outside the scope of 

Figure 4. 
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Having spent a little time trying to understand the scope and origins of SE as well as the other 

disciplines with which it has areas in common, we are now in a position to ask some 

fundamental questions of SE as a discipline. 

 

3.10 How is Systems Engineering performing compared to other disciplines? 

 

It would be useful to consider the relative sizes of some of the disciplines with which SE 

might ‘compete’. The easiest way of doing this is by comparing the membership of the 

professional institutions that represent the disciplines. Table I shows the names, sizes and 

ages of some of the largest (US-based) international professional institutions that could be 

considered as competitors to SE in attracting members (membership information was 

obtained from institution websites and from personal communications with institutions). 

 

Society Representing Established
Membership 
2003 ('000) Website

PMI Project Management 1969 120 www.pmi.org
ISSS Systems Sciences 1956 1.4* www.isss.org
SDS System Dynamics 1983 0.9 www.systemdynamics.org

IFORS Operations Research 1952 30* www.ifors.org
IIE Industrial Engineering 1948 15 www.iienet.org

INCOSE Systems Engineering 1991 4.8 www.incose.org
IEEE Electrical and Electronic Engineering 1884 361 www.ieee.org
ASME Mechanical Engineering 1880 116 www.asme.org
AIAA Aeronautics and Astronautics 1931 29 www.aiaa.org
SAME Military Engineers 1920 23 www.same.org
SAE Automotive Engineers 1905 85 www.sae.org
SME Manufacturing Engineering 1932 39 www.sme.org

AIChE Chemical Engineering 1908 43 www.aiche.org
ISA Instrumentation, Systems and Automation 1945 33 www.isa.org

ASCE Civil Engineering 1852 133 www.asce.org
AIA Architecture 1857 72 www.aia.org

NSPE Professional Engineering 1934 50 www.nspe.org
*Estimated from sizes of member institutions  

Table I: US-based international professional institutions 

 

These institutions can be split into the categories of engineering institutions, and ‘systems-

related’ institutions (including project management). INCOSE and the Institute of Industrial 

Engineering (IIE) could consider themselves as either (or both). The membership figures for 

2000 and 2003 are shown graphically in Figure 5. It is clear that, compared to the large 

engineering institutions, INCOSE is very small, but is at least growing quite quickly. If we 

consider each institution’s share of the total membership (Table II), we see that in 2000 

INCOSE had 0.35% of the share, and in 2003 it had risen to 0.44%. If we consider INCOSE 

as an engineering institution and restrict our attention to engineering institutions, INCOSE’s 
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share of the total membership rises to 0.39% in 2000 and 0.51% in 2003 – a tiny but growing 

share of the total (Table III). If, on the other hand, we focus on ‘systems-related’ institutions, 

INCOSE’s share is larger again – 3.04% in 2000, but falling to 2.75% in 2003 (Table IV). 

The fall in share of membership in 2003 is because of the very large increase in membership 

of the Project Management Institute. This has interesting implications for whether we view 

SE as competing more closely with other engineering societies or with systems based 

societies for members. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Sizes of professional institutions, 2000 and 2003 

 

 

2000 2003
PMI 6.4% 11.1%
ISSS 0.13% 0.13%
SDS 0.07% 0.09%
IFORS 2.8% 2.8%
IIE 1.6% 1.4%

INCOSE 0.35% 0.44%
IEEE 34.5% 33.3%
ASME 11.3% 10.7%
AIAA 2.9% 2.7%
SAME 2.4% 2.1%
SAE 7.6% 7.8%
SME 4.9% 3.6%
AIChE 4.6% 3.9%
ISA 3.7% 3.1%
ASCE 11.6% 12.3%
NSPE 5.1% 4.6%      

2000 2003
IIE 1.7% 1.6%

INCOSE 0.39% 0.52%
IEEE 38.1% 38.8%
ASME 12.5% 12.5%
AIAA 3.2% 3.1%
SAME 2.7% 2.5%
SAE 8.4% 9.1%
SME 5.4% 4.1%
AIChE 5.1% 4.6%
ISA 4.1% 3.6%
ASCE 12.8% 14.3%
NSPE 5.6% 5.4%      

2000 2003
PMI 56.6% 69.7%
ISSS 1.16% 0.81%
SDS 0.65% 0.54%
IFORS 24.8% 17.4%
IIE 13.7% 8.7%

INCOSE 3.11% 2.80%  

    Table II: All Institutions Table III: Eng.Institutions     Table IV: ‘Systems’ Institutions 

Shares of Membership by professional institution (2000 and 2003) 
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We can examine the growth of the institutions using the Boston Consulting Group (BCG) 

Growth-Share matrix (explained in Kotler [1997: 72], for example). This is really intended to 

examine and categorize an organization’s portfolio of business interests to determine where 

to invest more money and which enterprises to get rid of. Business units are plotted as 

bubbles on a chart with the x-axis representing the market share of each business unit relative 

to its biggest competitor, and the y-axis representing the market growth rate. The area of the 

bubble represents the size of the business unit.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Growth-Share Matrix for Professional Institutions 

 

Although it isn’t using the model as it was originally intended, the growth-share matrix can 

be used to map the relative performances of the different professional institutions, by taking 

the ‘market’ in each case to be the relevant institutions with which each professional body 

competes for members and the area of each bubble to be the membership of the institution it 

represents (Figure 6). Such a comparison might be interesting for organizations that invest 

heavily in different types of engineering, or for students considering careers in different 

fields. 
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According to the BCG system, INCOSE would be classified as a ‘Dog’ if it were viewed as 

an engineering discipline, since it has a weak (but rising) relative share in a low growth 

market (negative growth in this case). A company should consider whether it is holding onto 

a ‘Dog’ for good business reasons such as an expected reverse in the market growth rate or a 

chance of market leadership. Neither of these seems plausible for INCOSE, so an investor in 

SE as an engineering discipline would have to think seriously about whether to continue to 

back it. 

 

INCOSE would be classified at best as a ‘Question Mark’ if viewed as a ‘systems’ discipline, 

since it has a low (but falling) relative share in a growing market. In fact, INCOSE is so small 

relative to other engineering and systems institutions that it wouldn’t even appear on the chart 

if we used the conventional x-axis range of 0.1 to 10 (hence the greyed out area on Figure 6). 

Most businesses start off as question marks, entering high-growth markets in which there is 

already a market leader (in this case, PMI). Question Mark businesses require a lot of 

investment to keep up with the established market leader. In the case of INCOSE, most of the 

investment needed is in promoting the merits of SE (or promoting the SE ‘brand’) to potential 

customers. The other two quadrants of the growth-share matrix represent ‘Stars’, market 

leaders in high-growth markets which also require substantial investment to keep up with the 

fast-growing market, and ‘Cash Cows’, market leaders in low growth markets which generate 

high profit for businesses.  

 

So even though INCOSE is growing fast, it has a tiny share in a declining market if we 

consider it an engineering discipline. In the best case if we view it as a systems/management 

discipline it has a low and shrinking (in relative terms) share in a growing market. This has 

striking implications for how INCOSE should brand itself if it is to survive in the long term 

(as a systems/management discipline or as a systems/engineering discipline). It also suggests 

that SE is not being ‘sold’ very well at the moment to potential ‘customers’ for 

systems/management ideas. 

 

4 What sells Systems Engineering? 

 

Cowper and Smith identify the key barriers to promoting and ‘selling’ systems engineering 

as: the lack of SE awareness and understanding, the lack of a clear message about what SE is 

or is not, the confusion over the Systems Engineer’s skill set, the need for a business case for 
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SE, and the management of implementation risks [Cowper and Smith, 2003]. The first three 

of these barriers could be classed as ‘branding’ issues.  It has also been argued that the 

adoption of SE has been restricted by its limited appeal to universities: “because operations 

research and systems engineering borrowed their methods from other disciplines, and were 

commonsense – that is, procedural – disciplines themselves, their claims to academic 

legitimacy were tenuous” [Johnson, 1997: 913]. Worse still, neither OR nor SE could point to 

a clear theoretical or empirical base. Johnson notes that “traditional disciplines, such as 

biology, physics, and mechanical engineering, demarcated boundaries by their claim to 

theory of or application to specific natural or physical phenomena. Others, such as 

mathematics and control theory, identified with unique theories and mathematical methods, 

even if broadly applied. Operations research and systems engineering were hampered on both 

counts” [Johnson, 1997: 913]. 

 

Whilst SE, fundamentally viewed as an engineering discipline, struggled to be accepted into 

the academic curricula of engineering degrees, project management enjoyed much greater 

success in being adopted by business schools. “Because business schools focused their 

attention at least in part on procedural knowledge, project management was an acceptable, 

easily accommodated change to business school teaching and research. By contrast, 

procedural knowledge was (and is) consistently underrepresented and undervalued in the 

mathematically oriented curricula of science and engineering departments” [Johnson, 1997: 

915]. Perhaps SE would enjoy greater success if it, too, were taught in business schools as a 

management skill rather than in engineering departments? Wherever we want to ‘sell’ SE, 

though, we need to define clearly what we are talking about and to distinguish SE from other 

related disciplines. 

 

4.1 What is unique about Systems Engineering? 

 

If we can agree that there are certain areas that SE has in common with other fields, we must 

next address the question of what components of ‘Systems Engineering’ are unique to this 

field. Perhaps there are no such elements unique to SE, and SE is defined merely by the 

combination of techniques that it employs? 

 

The INCOSE UKAB (United Kingdom Advisory Board) is investigating the ‘core 

competencies’ of SE and has found these to be: ‘Systems Thinking’, ‘Holistic Lifecycle 
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View’ (including system design, integration, validation etc.), ‘Systems Engineering 

Management’ (concurrent engineering; plan, monitor and control, etc.) and 

‘Interdisciplinary’. Clearly, ‘Systems Thinking’ is not unique to SE (see Figure 4). One could 

argue that a unique competency with SE is its ‘Interdisciplinary’ approach. But is it 

fundamentally any more interdisciplinary than the task facing an electronic engineer who has 

to integrate different types of electronic components on a circuit board? Surely this is just 

‘Systems Engineering’ on a component level. Perhaps, then, it is the fact that historically our 

engineers have not had a broad enough engineering education that means that we see 

designing a spacecraft with electrical, thermal and mechanical constraints as a task for a 

systems engineer, whilst we see designing a circuit board with resistors, capacitors, etc. as a 

task for an electronic engineer.  

 

Good engineering requires not just good knowledge of specialist engineering disciplines such 

as Mechanical Engineering, Civil Engineering, etc., but also complementary knowledge such 

as Systems Engineering, Economics and Management (see Figure 7). If universities taught 

general engineering courses instead of specialist courses, and retained an element concerning 

overall system design (as opposed to teaching a ‘general engineering’ course by breaking it 

down into ‘mechanical engineering’, ‘civil engineering’, etc. and teaching these parts 

independently), then surely an understanding of ‘Systems Engineering’ would automatically 

be developed. That SE is interdisciplinary, whilst undisputedly true, may therefore be 

something of an artefact of the way we teach engineering. 

 

Maybe the essence of SE lies in the Holistic Lifecycle View, or in Systems Engineering 

Management? Perhaps, but even these contain significant elements of Project Management, 

albeit with peculiarities derived from the technical domain in which SE is mostly practised.  

Perhaps SE’s competencies are truly unique, then, only in the way that they are combined. If 

SE has no unique core competencies, Figure 3 should really be redrawn with no part of SE 

not overlapping with one or more surrounding disciplines. This has interesting implications. 

It suggests that if we put together a team of experts including one from each of the disciplines 

in Figure 3, then we could afford to do without the expert in SE, as his or her expertise would 

be completely covered by the remainder of the team. The critical importance of the Systems 

Engineer, though, is often not in possessing unique knowledge, but in possessing a diversity 

of knowledge from several different domains that allows that person to make holistic trade-

offs and judgments that no other individual in the team could make. 
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Figure 7: Partitioning Engineering 

 

Kossiakoff draws an analogy between military campaigns and large systems projects, 

characterizing the systems engineer as a technical general who understands the language of 

specialists and coordinates the team [Kossiakoff, 1960]. Successful coordination relies on the 

ability to communicate in both directions with a diverse range of team members and external 

stakeholders. When receiving information, this requires empathy and an understanding of the 

information provided. When giving information, this requires empathy and a way of 

communicating information and decisions in a language that will be understood. This ability 

is arguably more important for the systems engineer than for any other team member. Unless 

the system engineer understands the language and needs of each other team member, each 

other team member will have to be educated in SE, which is unrealistic (in the short term at 

least). Sacrificing the systems engineer might seem possible, but in reality would seriously 

hamper the performance of the team.  

 

5 Who sets the scope of Systems Engineering? 

 

The next question we should address is who decides what SE is? Since SE cannot point to a 

clear theoretical or empirical base [Johnson, 1997: 913], its definition is open to 
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interpretation and manipulation. Who should do the interpreting? Is it the body that represents 

it, namely INCOSE, or is it the practising engineers? Of course, in an ideal world the 

objectives of INCOSE’s leadership and of its members would be continuously and perfectly 

aligned, but it would be idealistic to assume that this happened in practice. Perhaps ‘Systems 

Engineering’ is simply the activity of people who call themselves systems engineers? Or did 

the practice of SE predate the existence of people who thought of themselves as systems 

engineers? The latter seems more likely and indeed is supported by the Oxford English 

Dictionary’s definition of SE: “the investigation of complex, man-made systems in relation to 

the apparatus that is or might be involved in them; so systems engineer” [Simpson and 

Weiner, 1989]. This view is supported by the INCOSE Systems Engineering handbook, 

which defines a systems engineer as “An engineer trained and experienced in the field of 

Systems Engineering” [Whalen et al, 2000]. 

 

 

 

 

 

Figure 8: The logical link between systems engineer and Systems Engineering 

 

It seems possible, though, that whilst the discipline of SE predates the existence of systems 

engineers, the discipline of SE has since evolved to include all of the activities undertaken by 

people who now see themselves, rightly or wrongly, as systems engineers. This begs the 

question: ‘what is the logical link between systems engineers and SE?’ We could certainly 

say, as in Figure 8, that a systems engineer performs SE as it is clearly true to say that all 

systems engineers must perform some SE. It is rarely true to say that all of the SE performed 

within an organisation is done by people with the job title ‘systems engineer’, though. Neither 

is it generally true that ‘systems engineers’ spend all of their time doing ‘Systems 

Engineering’. But assuming that the scope of SE is malleable, and recognising INCOSE’s 

unique position to influence this scope, one wonders whether INCOSE should define the 

scope of SE via points of principle or under the influence of ‘customer’ demand? A similar 

conundrum faces politicians when determining party policies. It could certainly be argued in 

the United Kingdom, for example, that Tony Blair’s Government alienated traditional Labour 

Party supporters by moving away from its socialist roots towards the centre-ground of 
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politics, where the ‘demand’ was greatest. It is dubious that the Labour Party changed its 

stance merely due to a change in principles of the party’s leadership; it was influenced by the 

needs of the ‘customer’ – the voter. Is it INCOSE’s responsibility to define the scope of SE? 

If so, has it provided a definition satisfactory to its stakeholders? Who are INCOSE’s 

stakeholders, by the way? 

 

6 Who are the stakeholders of Systems Engineering? 

 

Searching INCOSE’s website revealed several documents which referred to INCOSE’s 

stakeholders, such as INCOSE Strategic Directions [Rhodes, 2002] and INCOSE’s 2002 

annual report [INCOSE, 2002]. Strangely, none of these included a list of who INCOSE 

thought its stakeholders actually were. Luckily, inferring who INCOSE thinks its 

stakeholders are is not too difficult from the ‘Strategic Directions’ document. Since INCOSE 

represents systems engineers, perhaps its primary stakeholders are the engineers and 

industries that it represents. But if the purpose of INCOSE is to represent systems engineers’ 

interests, then one could argue that the most important stakeholders of INCOSE are not the 

systems engineers but the ‘customers’ of SE – i.e. government, public and private 

organisations and the general public, all of which rely on the provision of SE. INCOSE 

should therefore be concerned with ensuring that quality work is delivered to the buyers of 

SE services, and to grow the demand for SE services. In practice, INCOSE surely has to keep 

its members happy in the short term, whilst keeping customers of SE happy in the longer 

term (without upsetting its members!) A combination of initiatives will be necessary to 

satisfy both sets of stakeholders. Note that the number of members of INCOSE is not a 

particularly useful metric for measuring the level of satisfaction of INCOSE’s stakeholders. 

The fact that INCOSE membership is growing does not necessarily mean that SE is doing a 

great job of satisfying stakeholders (it could achieve the same effect by dropping the 

membership fee for new entrants to $1, for example). Furthermore, many of INCOSE’s 

stakeholders (in particular the customers for SE) would not want to be members of INCOSE. 

We should next consider how INCOSE should position SE in order to satisfy its stakeholders. 

 

7 How should Systems Engineering position itself within this landscape? 

 

To put this another way: what should SE try to be, and what should it not try to be? Perhaps 

we should also ask ourselves: what should INCOSE’s role be? If it is to serve its stakeholders 
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well, INCOSE should focus on creating as much value as possible for the customers and 

providers of SE. But how can it achieve this? There are two limiting strategies. At one end of 

the spectrum, SE could focus on a small niche market and perform activities that no other 

discipline can offer within this market. At the other end of the spectrum, SE could attempt to 

target a much broader market and address problems that other disciplines might traditionally 

answer. The scope of traditional hard SE was nearer the first end of the spectrum, focusing 

mainly on technical military and aerospace projects. Today, we seem to be moving away 

from hard SE and the mature engineering market, perhaps seeking the growing market of 

systems thinking and systems management. Is this change in emphasis being managed? How 

broad a scope should SE ultimately take on? 

 

For too long, SE’s scope and purpose have been poorly defined. It seems strange given SE’s 

apparent early promise [Jenkins and Youle, 1971] that it took thirty-four years after the first 

SE textbook was published for (I)NCOSE to be established [Honour, 1998]. But now that 

INCOSE is established, can we expect SE to be managed more strategically in the future? 

INCOSE certainly has strategic intentions, having established a ‘strategic planning 

framework’, which is described in its annual report [INCOSE, 2002] and having published its 

‘Strategic Directions’ [Rhodes, 2002]. The latter is particularly interesting; it includes a list of 

strategic priorities: to “gain further recognition by industry, government, academia, and other 

professional societies of the importance of systems engineering; achieve wide acceptance of 

INCOSE as the leading systems engineering society, and position INCOSE as a unifying 

force across engineering communities and specialties; to provide high value products and 

services to (INCOSE) members and corporate sponsors, and opportunities for professional 

networking; to promote growth through diversification of (INCOSE) stakeholders, products, 

services, and initiatives; to provide the infrastructure and a well-balanced leadership 

organization to accomplish targeted initiatives, and attract highly qualified leaders for all 

leadership positions”. It seems, then, that INCOSE now has the architecture in place to effect 

strategic changes, and to guide the SE profession. What is not so clear, though, is how 

INCOSE sees SE’s role relative to overlapping disciplines and their professional societies. 

Should SE try to broaden its scope and try to answer ‘soft systems’ questions, for instance, or 

should SE focus on its traditional strength – the development of excellent technical systems? 

 

Jenkins and Youle [1971] note that “a systems approach is centred round the human being; 

… the efficient design of systems is influenced decisively by the people who have to operate 
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them”. Perhaps this crucial dependence on humanity will limit the ultimate achievements of 

SE, and our aspirations for the profession should reflect this. After all, humans simply aren’t 

very good at making decisions. There is no end of evidence about the limitations of human 

cognitive capability (for example, Miller [1956]). Even highly trained humans make 

mistakes, but the average human’s sheer ‘humanity’ is simply depressing. Susceptibility to 

social pressures [Hogg and Vaughan, 2002], cognitive limitations [Reisberg, 2001] and 

misleading heuristics [Kardes, 2002] lead the casual decision maker astray. Even the careful 

decision maker can at best be described as having ‘bounded rationality’ – building simplified 

models of reality and making decisions based on these models, which usually prove to be 

wholly inappropriate [Simon, 1957]. Poor decision making is not just bad value for money - 

it is dangerous. Analyses of industrial accidents have found that around 80% are caused by 

‘human errors’ [Rasmussen, Pejtersen and Goodstein, 1994: 135]. 

 

Despite the problems associated with humans in systems, systems engineers seem recently to 

have warmed to Soft Systems Methodology and ‘Human Activity Systems’ [Wilson, 2001]. 

This is no more within the domain of (hard) SE than are Operational Research or Systems 

Dynamics, for example, yet these disciplines receive little attention from systems engineers. 

One wonders whether the warming to SSM is because it is seen as interesting, accessible and 

requires limited formal training, particularly since it is not very quantitative. Sadly, that it is 

not quantitative does not mean that it is not difficult; any system involving humans is many 

times more complicated than the relatively predictable world of traditional engineering, and 

becoming an ‘expert’ in the systems approach may be an elusive goal. Churchman [1968: 

231] concludes that “the systems approach begins when first you see the world through the 

eyes of another … The systems approach goes on to discovering that every world view is 

terribly restricted” and ultimately finds that “There are no experts in the systems approach”. 

 

Furthermore, there is a danger that traditional SE could ‘deskill’ by becoming too familiar 

with SSM. Whilst OR was accused of ‘mathematical masturbation’ [Ackoff, 1979] and 

marginalized its contribution through lack of real world application, perhaps too great a 

familiarity with SSM would put SE in danger of the reverse – watering down its quantitative 

rigour with common sense heuristics. This could make it even harder for universities to 

accept SE as an engineering discipline. Systems science has its roots in biology and control 

engineering [Checkland, 1981], but seems in danger of becoming purely social science, with 

more ‘social’ than ‘science’. It is all very well saying that we should ignore questions of 
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terminology and definition, embracing all of the disciplines that overlap with SE, but by 

doing this SE risks losing focus on what it is, and what it is good at. Furthermore, it paints a 

confusing picture to outsiders trying to understand the distinction between SE, SSM, System 

Dynamics, OR and IE, for instance. Is the apparent warming to soft systems a conscious 

strategic decision on the behalf of INCOSE and/or the scientific community of systems 

engineers (for who else steers the ship)?   

 

Operations Research seems to have lost momentum in the last two decades, and SSM, too, 

now seems to be sailing over turbulent waters. Its most well-known practitioners seem to 

share disillusionment with its achievements, but differ in their emphasis on the cause of its 

failings. Whilst Checkland suggests that a lack of rigour in the application of SSM and in the 

understanding of its core concepts has stifled its growth [Checkland, 2002], Mingers suggests 

that SSM could have been more successful if used in conjunction with other techniques 

[Mingers, 2002]. Mingers argues that much of Checkland’s application of SSM is seen as 

‘isolationist’. Given the overlap of interest between ‘systems societies’ and INCOSE 

discussed in Section 3.5 above, does INCOSE see systems societies as competitors or as 

potential collaborators? Lane argues that “today, system dynamics is perhaps at its most 

confident. At the same time, because it aspires to deliver so much, the field is entering a high-

risk period in which it risks an ‘overshoot and collapse’ mode … if it is unable to deliver 

convincingly on those promises. Collapse might occur because of our isolation from other 

techniques” [Lane, 1994]. What has SE learnt from the successes and failures of other 

systems disciplines? Furthermore, how do the expected future activities of these disciplines 

influence the optimal positioning of SE? As a discipline, it should not simply drift over time; 

there needs to be a long term strategy for what SE is and what it aspires to be. SE needs to be 

managed as a ‘brand’, establishing its Points of Difference (like unique selling propositions) 

and Points of Parity (features deemed necessary by consumers to ‘compete’ in the 

marketplace) with other ‘brands’ [Keller, 2003]. 

 

Interestingly, INCOSE UK signed a Memorandum of Understanding with the Institution of 

Electrical Engineers (IEE) on the 14th October 2003 to encourage (further) collaboration 

between the two societies, including among other things: “Promotion of Systems Engineering 

as a technical discipline…; Professional development of Systems Engineers … leading to 

internationally recognised status; Joint sponsorship of events…” 

(http://www.incose.org.uk/mou-iee.htm). The IEE has also established a ‘Professional 
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Electronic Network for Systems Engineering (PeNSE)’. There is therefore some momentum 

(in the UK at least) towards closer partnership with the specialist engineering societies. Why 

INCOSE UK’s strategy is to pursue closer links with the IEE but not, for example, the Project 

Management Institute or the UK Systems Society, is not obvious. 

 

INCOSE’s strategy for partnering with other institutions should be clarified, as a lack of 

purposeful direction in such a critical area could have disastrous consequences. De Geus 

[1999] identified that even large organizations can die. “If you look at them in the light of 

their potential, most commercial corporations are dramatic failures – or, at best, 

underachievers … The average life expectancy of a multinational company – Fortune 500 or 

its equivalent – is between 40 and 50 years ... A full one-third of the companies listed in the 

1970 Fortune 500, for instance, had vanished by 1983 – acquired, merged or broken to 

pieces.” De Geus looked into the characteristics of long-lived organizations and found them 

to be: (i) sensitive to their environment (ii) cohesive – with a strong sense of identity (iii) 

tolerant to exploring the boundaries of their activities (iv) conservative in financing. 

Interestingly, return on investment and longevity were uncorrelated. Small organisations can 

be even more vulnerable. The implication of this for INCOSE and its constituent chapters is 

stark: continue to adapt and evolve, or die. How well would INCOSE score against De Geus’ 

four characteristics of long-lived organizations? INCOSE’s membership has risen 

impressively since its conception in 1990, but strategic directions determined now will 

determine the fate of the organisation in ten years’ time. We must therefore continue to learn 

even when we seem to be growing. Senge [1990] notes that organizations’ inability to learn 

can be fatal: “Perhaps under the laws of ‘survival of the fittest’, this continual death of firms 

is fine for society…But what if the high corporate mortality rate is only a symptom of deeper 

problems that afflict all companies, not just the ones that die? What if even the most 

successful companies are poor learners – they survive but never live up to their potential?” 

Senge proposes five disciplines of the learning organization: “systems thinking, personal 

mastery, mental models, building shared vision and team learning”. It seems appropriate that 

Systems Thinking should be identified as one of the disciplines that can ensure the survival of 

SE. Furthermore, the popularity of Senge’s ideas has put Systems Thinking on the radar of 

senior management thinking, which is to be welcomed. But nearly 15 years after Senge 

identified its importance, the opportunity still hasn’t been seized and developed. For too long, 

Systems Thinking has been waiting patiently outside the boardroom; now it’s up to the SE 

community to figure out its sales pitch.  
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Perhaps, ultimately, the SE community could do a better job of practising what it preaches, 

by applying systems thinking to the question of how to position SE strategically. SE as a 

discipline can be thought of as an organism that must adapt to its environment in order to 

prosper and survive. This is certainly true of INCOSE. It seems like SE has been skulking in 

the shadows for a long time now, with no clear identity, and poor understanding of its scope 

and purpose, particularly amongst those outside the SE community. SE is faced with a stark 

decision: whether to attempt to expand its scope, with INCOSE possibly attempting to 

embrace elements of neighbouring disciplines to form a coherent SE or Systems Management 

society (as it is apparently already doing with soft systems thinking), spreading the gospel of 

SE into the world of management, or whether to refocus on its traditional strengths, namely 

the development of technical systems that span traditional engineering disciplines. If SE is to 

expand its scope, it will encroach on the neighbouring disciplines of Project Management, 

Systems Dynamics, Systems Analysis, Engineering, Economics, Operational Research, IE, 

SSM, IT, Control Theory and Marketing Management. Some of these areas (Engineering, 

Project Management, Control Theory, Systems Analysis) represent more traditional areas of 

‘hard’ SE. Other areas such as SSM, Systems Dynamics, Economics and Marketing 

Management would be relatively novel fields for SE to explore. Either way, we must define 

SE’s scope clearly (but not microscopically in an endless navel-gazing exercise), recognising 

and managing carefully the overlaps with other fields. We must do more than merely 

acknowledge that not everyone that engages in Systems Engineering is called a Systems 

Engineer. 

 

8 Conclusions 

 

The authors would not advocate a return to the academic disputes of the 1950s over the 

scopes of the different ‘systems’ subjects [Johnson, 1997: 909]. But, for the sake of those 

outside the SE community, we need to clarify what SE represents. Hughes notes that 

“Americans take the ‘West’ and the ‘machine’ as symbols providing perspectives on their 

early and recent history. After a century of system building, they might as well see the 

‘system’ as their hallmark” [Hughes, 1989: 185]. Why, then, does SE receive so little 

recognition compared to more established engineering disciplines and project management? 

There seems to be a consensus that SE truly does make a valuable contribution to the 

management of scientific developments. The only logical conclusion is therefore that the SE 
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community is not doing a good enough job of ‘selling’ its achievements and its competencies 

to the world at large. 

 

Let us imagine that we were outside the SE community looking in. What would make us 

want to embrace SE? First impressions would be important; a strange creature lurking in the 

shadows would turn us away. We would want to turn on the lights and look this beast in the 

eye. Once we understood what the creature was and felt we could introduce it to our masters 

(stakeholders) without embarrassment, SE would have a foot in the door. Only then would we 

care whether SE could provide a quality product or service (which it can), and whether it 

represented good value for money (the proof of which INCOSE’s (2002) Corporate Advisory 

Board (CAB) has identified as its top priority). Getting the foot in the door is largely a 

question of brand positioning and advertising, a puzzle which SE has failed to solve so far.  

 

A three-pronged attack is suggested to scatter the shadows and dispel the mystery of SE. 

Firstly, work must continue to define the core competencies of SE. The work by the INCOSE 

UK Advisory Board, for example, should be supported to define what the essence of SE 

really is. Secondly, INCOSE should take a strategic view on which of the overlapping fields 

it wants to embrace, in particular answering the questions of whether soft systems analysis is 

considered formally within the scope of SE and whether SE is fundamentally a management 

discipline or an engineering discipline (because this affects where it should be taught). In 

doing this, INCOSE should trade off the benefits of reaching a larger market with the 

potential costs of spreading SE thinly over diverse fields, which may paint a confusing 

message to outsiders (as SE is currently defined). Thirdly, having taken a position on what 

surrounding disciplines INCOSE considers applicable to SE, INCOSE must associate with 

these disciplines more actively, such as through more shared conferences and publications 

and through concessions on memberships to related professional societies. 

 

Once we’ve decided what modern SE really is, it might be appropriate to consider whether 

the words ‘systems’ (which is misunderstood and in a complex world not very descriptive) 

and ‘engineering’ (an exciting term in the heady days of the industrial revolution but less 

fashionable in today’s knowledge-based, service-driven economy) are still the best words to 

label it. 
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