Search for the Higgs Boson Using Neural Networks in Events with Missing Energy and b-Quark Jets in $p \bar{p}$ Collisions at $\sqrt{s}=1.96 \mathrm{TeV}$

T. Aaltonen, ${ }^{24}$ J. Adelman, ${ }^{14}$ B. Álvarez González, ${ }^{12, w}$ S. Amerio, ${ }^{44 b, 44 \mathrm{a}}$ D. Amidei, ${ }^{35}$ A. Anastassov, ${ }^{39}$ A. Annovi, ${ }^{20}$ J. Antos, ${ }^{15}$ G. Apollinari, ${ }^{18}$ A. Apresyan, ${ }^{49}$ T. Arisawa, ${ }^{58}$ A. Artikov, ${ }^{16}$ J. Asaadi, ${ }^{54}$ W. Ashmanskas,,${ }^{18}$ A. Attal, ${ }^{4}$ A. Aurisano, ${ }^{54}$ F. Azfar, ${ }^{43}$ W. Badgett, ${ }^{18}$ A. Barbaro-Galtieri, ${ }^{29}$ V.E. Barnes, ${ }^{49}$ B. A. Barnett, ${ }^{26}$ P. Barria,,${ }^{47 c, 47 a}$ P. Bartos, ${ }^{15}$
 D. Benjamin, ${ }^{17}$ A. Beretvas, ${ }^{18}$ A. Bhatti, ${ }^{51}$ M. Binkley, ${ }^{18}$ D. Bisello, ${ }^{44 \mathrm{~b}, 44 \mathrm{a}}$ I. Bizjak, ${ }^{31, \text { dd }}$ R. E. Blair, ${ }^{2}$ C. Blocker, ${ }^{7}$ B. Blumenfeld, ${ }^{26}$ A. Bocci, ${ }^{17}$ A. Bodek, ${ }^{50}$ V. Boisvert, ${ }^{50}$ D. Bortoletto, ${ }^{49}$ J. Boudreau, ${ }^{48}$ A. Boveia, ${ }^{11}$ B. Brau, ${ }^{11, b}$ A. Bridgeman, ${ }^{25}$ L. Brigliadori, ${ }^{6,6 a}$ C. Bromberg, ${ }^{36}$ E. Brubaker, ${ }^{14}$ J. Budagov, ${ }^{16}$ H.S. Budd, ${ }^{50}$ S. Budd, ${ }^{25}$ K. Burkett, ${ }^{18}$ G. Busetto, ${ }^{44 b, 44 \mathrm{a}}$ P. Bussey, ${ }^{22}$ A. Buzatu, ${ }^{34}$ K. L. Byrum, ${ }^{2}$ S. Cabrera, ${ }^{17, y}$ C. Calancha, ${ }^{32}$ S. Camarda, ${ }^{4}$ M. Campanelli, ${ }^{31}$ M. Campbell, ${ }^{35}$ F. Canelli, ${ }^{4,18}$ A. Canepa, ${ }^{46}$ B. Carls, ${ }^{25}$ D. Carlsmith, ${ }^{60}$ R. Carosi, ${ }^{47 \mathrm{a}}$ S. Carrillo,,19,0 S. Carron,,${ }^{18}$ B. Casal, ${ }^{12}$
 L. Cerrito,,${ }^{31, \mathrm{r}}$ S. H. Chang, ${ }^{28}$ Y. C. Chen, ${ }^{1}$ M. Chertok, ${ }^{8}$ G. Chiarelli,,${ }^{47 \mathrm{a}}$ G. Chlachidze, ${ }^{18}$ F. Chlebana, ${ }^{18}$ K. Cho, ${ }^{28}$ D. Chokheli, ${ }^{16}$ J. P. Chou, ${ }^{23}$ K. Chung, ${ }^{18, p}$ W. H. Chung, ${ }^{60}$ Y. S. Chung, ${ }^{50}$ T. Chwalek,,${ }^{27}$ C. I. Ciobanu, ${ }^{45}$ M. A. Ciocci, ${ }^{4 \mathrm{c}, 47 \mathrm{a}}$ A. Clark, ${ }^{21}$ D. Clark, ${ }^{7}$ G. Compostella, ${ }^{44 \mathrm{a}}$ M. E. Convery, ${ }^{18}$ J. Conway, ${ }^{8}$ M. Corbo, ${ }^{45}$ M. Cordelli, ${ }^{20}$ C. A. Cox, ${ }^{8}$ D. J. Cox, ${ }^{8}$ F. Crescioli, ${ }^{47 \mathrm{~b}, 47 \mathrm{a} \text { a }}$ C. Cuenca Almenar, ${ }^{61}$ J. Cuevas, ${ }^{12, w}$ R. Culbertson, ${ }^{18}$ J. C. Cully, ${ }^{35}$ D. Dagenhart, ${ }^{18}$ M. Datta, ${ }^{18}$ T. Davies, ${ }^{22}$ P. de Barbaro, ${ }^{50}$ S. De Cecco, ${ }^{52 a}$ A. Deisher, ${ }^{29}$ G. De Lorenzo, ${ }^{4}$ M. Dell'Orso, ${ }^{47 \mathrm{~b}, 47 \mathrm{a} \mathrm{a}}$ C. Deluca, ${ }^{4}$ L. Demortier, ${ }^{51}$ J. Deng, ${ }^{17, \mathrm{~g}}$ M. Deninno, ${ }^{6 \mathrm{a}}$ M. d'Errico, ${ }^{44 \mathrm{~b}, 44 \mathrm{a}}$ A. Di Canto, ${ }^{47 \mathrm{~b}, 47 \mathrm{a}}$ G. P. di Giovanni, ${ }^{45}$ B. Di Ruzza, ${ }^{47 \mathrm{a}}$ J. R. Dittmann, ${ }^{5}$ M. D'Onofrio, ${ }^{4}$ S. Donati, ${ }^{47 \mathrm{~b}, 47 \mathrm{a}}$ P. Dong, ${ }^{18}$ T. Dorigo, ${ }^{44 \mathrm{a}}$ S. Dube, ${ }^{53}$ K. Ebina, ${ }^{58}$ A. Elagin, ${ }^{54}$ R. Erbacher, ${ }^{8}$ D. Errede, ${ }^{25}$ S. Errede, ${ }^{25}$ N. Ershaidat,,${ }^{45, c c}$ R. Eusebi, ${ }^{54}$ H. C. Fang, ${ }^{29}$ S. Farrington, ${ }^{43}$ W. T. Fedorko, ${ }^{14}$ R. G. Feild, ${ }^{61}$ M. Feindt, ${ }^{27}$ J. P. Fernandez, ${ }^{32}$ C. Ferrazza, ${ }^{47 d, 47 \mathrm{a}}$ R. Field, ${ }^{19}$ G. Flanagan,,$^{49, t}$ R. Forrest, ${ }^{8}$ M. J. Frank, ${ }^{5}$ M. Franklin, ${ }^{23}$ J. C. Freeman, ${ }^{18}$ I. Furic, ${ }^{19}$ M. Gallinaro, ${ }^{51}$ J. Galyardt, ${ }^{13}$ F. Garberson, ${ }^{11}$ J.E. Garcia, ${ }^{21}$ A. F. Garfinkel, ${ }^{49}$ P. Garosi, ${ }^{47 c, 47 \mathrm{a}}$ H. Gerberich, ${ }^{25}$ D. Gerdes,,${ }^{35}$ A. Gessler, ${ }^{27}$ S. Giagu, ${ }^{52 b, 52 a}$ V. Giakoumopoulou, ${ }^{3}$ P. Giannetti, ${ }^{47 \mathrm{a}} \mathrm{K}$. Gibson,,${ }^{48}$ J. L. Gimmell, ${ }^{50}$ C. M. Ginsburg, ${ }^{18}$ N. Giokaris, ${ }^{3}$ M. Giordani, ${ }^{55 b, 55 \mathrm{a}}$ P. Giromini, ${ }^{20}$ M. Giunta, ${ }^{47 \mathrm{a}}$ G. Giurgiu, ${ }^{26}$ V. Glagolev, ${ }^{16}$ D. Glenzinski, ${ }^{18}$ M. Gold,,${ }^{38}$ N. Goldschmidt, ${ }^{19}$ A. Golossanov, ${ }^{18}$ G. Gomez, ${ }^{12}$ G. Gomez-Ceballos, ${ }^{33}$ M. Goncharov, ${ }^{33}$ O. González, ${ }^{32}$ I. Gorelov, ${ }^{38}$ A. T. Goshaw, ${ }^{17}$ K. Goulianos, ${ }^{51}$ A. Gresele, ${ }^{44 \mathrm{~b}, 44 \mathrm{a}}$ S. Grinstein, ${ }^{4}$ C. Grosso-Pilcher, ${ }^{14}$ R. C. Group, ${ }^{18}$ U. Grundler, ${ }^{25}$ J. Guimaraes da Costa, ${ }^{23}$ Z. Gunay-Unalan, ${ }^{36}$ C. Haber, ${ }^{29}$ S. R. Hahn, ${ }^{18}$ E. Halkiadakis, ${ }^{53}$ B.-Y. Han, ${ }^{50}$ J. Y. Han, ${ }^{50}$ F. Happacher, ${ }^{20}$ K. Hara, ${ }^{56}$ D. Hare, ${ }^{53}$ M. Hare, ${ }^{57}$ R. F. Harr, ${ }^{59}$ M. Hartz, ${ }^{48}$ K. Hatakeyama, ${ }^{5}$ C. Hays, ${ }^{43}$ M. Heck, ${ }^{27}$ J. Heinrich,,${ }^{46}$ M. Herndon, ${ }^{60}$ J. Heuser, ${ }^{27}$ S. Hewamanage, ${ }^{5}$ D. Hidas, ${ }^{53}$ C. S. Hill, ${ }^{11}$ D. Hirschbuehl, ${ }^{27}$ A. Hocker, ${ }^{18}$ S. Hou, ${ }^{1}$ M. Houlden, ${ }^{30}$ S.-C. Hsu, ${ }^{29}$ R.E. Hughes, ${ }^{40}$ M. Hurwitz, ${ }^{14}$ U. Husemann, ${ }^{61}$ M. Hussein, ${ }^{36}$ J. Huston, ${ }^{36}$ J. Incandela, ${ }^{11}$ G. Introzzi, ${ }^{47 a}$ M. Iori, ${ }^{52 b, 52 a}$ A. Ivanov, ${ }^{8,9}$ E. James, ${ }^{18}$ D. Jang, ${ }^{13}$ B. Jayatilaka, ${ }^{17}$ E. J. Jeon, ${ }^{28}$ M. K. Jha, ${ }^{6 a}$ S. Jindariani, ${ }^{18}$ W. Johnson, ${ }^{8}$ M. Jones, ${ }^{49}$ K. K. Joo, ${ }^{28}$ S. Y. Jun, ${ }^{13}$ J. E. Jung, ${ }^{28}$ T. R. Junk, ${ }^{18}$ T. Kamon, ${ }^{54}$ D. Kar, ${ }^{19}$ P.E. Karchin, ${ }^{59}$ Y. Kato, ${ }^{42, n}$ R. Kephart, ${ }^{18}$ W. Ketchum, ${ }^{14}$ J. Keung, ${ }^{46}$ V. Khotilovich, ${ }^{54}$ B. Kilminster, ${ }^{18}$ D. H. Kim, ${ }^{28}$ H. S. Kim, ${ }^{28}$ H. W. Kim, ${ }^{28}$ J. E. Kim, ${ }^{28}$ M. J. Kim, ${ }^{20}$ S. B. Kim,,${ }^{28}$ S. H. Kim, ${ }^{56}$ Y. K. Kim, ${ }^{14}$ N. Kimura, ${ }^{58}$ L. Kirsch, ${ }^{7}$ S. Klimenko, ${ }^{19}$ K. Kondo, ${ }^{58}$ D. J. Kong, ${ }^{28}$ J. Konigsberg, ${ }^{19}$ A. Korytov, ${ }^{19}$ A. V. Kotwal, ${ }^{17}$ M. Kreps,,${ }^{27}$ J. Kroll, ${ }^{46}$ D. Krop, ${ }^{14}$ N. Krumnack, ${ }^{5}$ M. Kruse, ${ }^{17}$ V. Krutelyov, ${ }^{11}$ T. Kuhr, ${ }^{27}$ N. P. Kulkarni, ${ }^{59}$ M. Kurata, ${ }^{56}$ S. Kwang, ${ }^{14}$ A. T. Laasanen, ${ }^{49}$ S. Lami, ${ }^{47 a}$ S. Lammel, ${ }^{18}$
 H. S. Lee, ${ }^{14}$ J. S. Lee, ${ }^{28}$ S. W. Lee, ${ }^{54, x}$ S. Leone, ${ }^{47 \mathrm{a}}$ J. D. Lewis, ${ }^{18}$ C.-J. Lin, ${ }^{29}$ J. Linacre, ${ }^{43}$ M. Lindgren, ${ }^{18}$ E. Lipeles,,${ }^{46}$ A. Lister, ${ }^{21}$ D. O. Litvintsev, ${ }^{18}$ C. Liu, ${ }^{48}$ T. Liu, ${ }^{18}$ N. S. Lockyer, ${ }^{46}$ A. Loginov, ${ }^{61}$ L. Lovas, ${ }^{15}$ D. Lucchesi, ${ }^{44 \mathrm{~b}, 44 \mathrm{a}}$ J. Lueck, ${ }^{27}$ P. Lujan,,29 P. Lukens, ${ }^{18}$ G. Lungu,,${ }^{51}$ J. Lys, ${ }^{29}$ R. Lysak, ${ }^{15}$ D. MacQueen, ${ }^{34}$ R. Madrak,,${ }^{18}$ K. Maeshima, ${ }^{18}$ K. Makhoul, ${ }^{33}$
P. Maksimovic, ${ }^{26}$ S. Malde, ${ }^{43}$ S. Malik, ${ }^{31}$ G. Manca, ${ }^{30, f}$ A. Manousakis-Katsikakis, ${ }^{3}$ F. Margaroli, ${ }^{49}$ C. Marino, ${ }^{27}$
C. P. Marino, ${ }^{25}$ A. Martin, ${ }^{61}$ V. Martin, ${ }^{22,1}$ M. Martínez, ${ }^{4}$ R. Martínez-Ballarín,,${ }^{32}$ P. Mastrandrea, ${ }^{52 a}$ M. Mathis, ${ }^{26}$ M.E. Mattson, ${ }^{59}$ P. Mazzanti, ${ }^{6 a}$ K. S. McFarland, ${ }^{50}$ P. McIntyre, ${ }^{54}$ R. McNulty, ${ }^{30, k}$ A. Mehta, ${ }^{30}$ P. Mehtala, ${ }^{24}$ A. Menzione, ${ }^{47 a}$ C. Mesropian, ${ }^{51}$ T. Miao, ${ }^{18}$ D. Mietlicki, ${ }^{35}$ N. Miladinovic, ${ }^{7}$ R. Miller, ${ }^{36}$ C. Mills, ${ }^{23}$ M. Milnik, ${ }^{27}$ A. Mitra, ${ }^{1}$ G. Mitselmakher, ${ }^{19}$ H. Miyake, ${ }^{56}$ S. Moed, ${ }^{23}$ N. Moggi, ${ }^{6 a}$ M. N. Mondragon, ${ }^{18, n}$ C. S. Moon,,${ }^{28}$ R. Moore, ${ }^{18}$ M. J. Morello, ${ }^{47 \mathrm{a}}$ J. Morlock, ${ }^{27}$ P. Movilla Fernandez, ${ }^{18}$ J. Mülmenstädt, ${ }^{29}$ A. Mukherjee, ${ }^{18}$ Th. Muller, ${ }^{27}$ P. Murat, ${ }^{18}$ M. Mussini, ${ }^{6,6 \mathrm{ba}}$ J. Nachtman, ${ }^{18, \mathrm{p}}$ Y. Nagai, ${ }^{56}$ J. Naganoma, ${ }^{56}$ K. Nakamura, ${ }^{56}$ I. Nakano, ${ }^{41}$ A. Napier, ${ }^{57}$ J. Nett, ${ }^{60}$ C. Neu, ${ }^{46, \text { aa }}$ M. S. Neubauer, ${ }^{25}$ S. Neubauer, ${ }^{27}$ J. Nielsen, ${ }^{29, h}$ L. Nodulman, ${ }^{2}$ M. Norman, ${ }^{10}$ O. Norniella, ${ }^{25}$ E. Nurse, ${ }^{31}$
L. Oakes, ${ }^{43}$ S. H. Oh, ${ }^{17}$ Y. D. Oh, ${ }^{28}$ I. Oksuzian, ${ }^{19}$ T. Okusawa, ${ }^{42}$ R. Orava, ${ }^{24}$ K. Osterberg, ${ }^{24}$ S. Pagan Griso, ${ }^{44 \mathrm{~b}, 44 \mathrm{a}}$ C. Pagliarone, ${ }^{55 \mathrm{a}}$ E. Palencia, ${ }^{18}$ V. Papadimitriou, ${ }^{18}$ A. Papaikonomou, ${ }^{27}$ A. A. Paramanov, ${ }^{2}$ B. Parks, ${ }^{40}$ S. Pashapour, ${ }^{34}$ J. Patrick, ${ }^{18}$ G. Pauletta, ${ }^{55 b, 55 a}$ M. Paulini, ${ }^{13}$ C. Paus, ${ }^{33}$ T. Peiffer, ${ }^{27}$ D. E. Pellett, ${ }^{8}$ A. Penzo, ${ }^{55 \mathrm{a}}$ T. J. Phillips, ${ }^{17}$
G. Pacentino, ${ }^{47 a}$ E. Pianori,,${ }^{46}$ L. Pinera, ${ }^{19}$ K. Pitts, ${ }^{25}$ C. Plager, ${ }^{9}$ L. Pondrom, ${ }^{60}$ K. Potamianos, ${ }^{49}$ O. Poukhov, ${ }^{16, a}$
 V. Ramakrishnan, ${ }^{60}$ N. Ranjan, ${ }^{49}$ I. Redondo, ${ }^{32}$ P. Renton, ${ }^{43}$ M. Renz, ${ }^{27}$ M. Rescigno, ${ }^{52 a}$ S. Richter, ${ }^{27}$ F. Rimondi, ${ }^{6 \mathrm{~b}, 6 \mathrm{a}}$ L. Ristori, ${ }^{47 \mathrm{a}}$ A. Robson, ${ }^{22}$ T. Rodrigo, ${ }^{12}$ T. Rodriguez, ${ }^{46}$ E. Rogers, ${ }^{25}$ S. Rolli, ${ }^{57}$ R. Roser, ${ }^{18}$ M. Rossi, ${ }^{5}{ }^{55 \mathrm{a}}$ R. Rossin, ${ }^{11}$ P. Roy, ${ }^{34}$ A. Ruiz, ${ }^{12}$ J. Russ, ${ }^{13}$ V. Rusu, ${ }^{18}$ B. Rutherford, ${ }^{18}$ H. Saarikko, ${ }^{24}$ A. Safonov, ${ }^{54}$ W. K. Sakumoto, ${ }^{50}$ L. Santi, ${ }^{55 b}, 55 \mathrm{a}$ L. Sartori, ${ }^{47 \mathrm{a}}$ K. Sato, ${ }^{56}$ A. Savoy-Navarro, ${ }^{45}$ P. Schlabach, ${ }^{18}$ A. Schmidt ${ }^{27}$ E. E. Schmidt, ${ }^{18}$ M. A. Schmidt, ${ }^{14}$
 Y. Seiya, ${ }^{42}$ A. Semenov, ${ }^{16}$ L. Sexton-Kennedy, ${ }^{18}$ F. Sforza, ${ }^{47 \mathrm{~b}, 47 \mathrm{a} \text { A. Sfyrla, }{ }^{25} \text { S. Z. Shalhout },{ }^{59} \text { T. Shears, }{ }^{30} \text { P.F. Shepard, }{ }^{48} \text {. }{ }^{3} \text {. }{ }^{2} \text {. }}$ M. Shimojima, ${ }^{56, u}$ S. Shiraishi, ${ }^{14}$ M. Shochet, ${ }^{14}$ Y. Shon, ${ }^{60}$ I. Shreyber, ${ }^{37}$ A. Simonenko, ${ }^{16}$ P. Sinervo, ${ }^{34}$ A. Sisakyan, ${ }^{16}$ A. J. Slaughter,,18 J. Slaunwhite, ${ }^{40}$ K. Sliwa, ${ }^{57}$ J. R. Smith, ${ }^{8}$ F. D. Snider, ${ }^{18}$ R. Snihur,,${ }^{34}$ A. Soha, ${ }^{18}$ S. Somalwar, ${ }^{53}$ V. Sorin, ${ }^{4}$ P. Squillacioti, ${ }^{4 \mathrm{c}, 47 \mathrm{a}}$ M. Stanitzki, ${ }^{61}$ R. St. Denis, ${ }^{22}$ B. Stelzer, ${ }^{34}$ O. Stelzer-Chilton, ${ }^{34}$ D. Stentz, ${ }^{39}$ J. Strologas, ${ }^{38}$ G. L. Strycker,,${ }^{35}$ J. S. Suh, ${ }^{28}$ A. Sukhanov, ${ }^{19}$ I. Suslov, ${ }^{16}$ A. Taffard, ${ }^{25,8}$ R. Takashima, ${ }^{41}$ Y. Takeuchi, ${ }^{56}$ R. Tanaka, ${ }^{41}$ J. Tang, ${ }^{14}$ M. Tecchio, ${ }^{35}$ P. K. Teng, ${ }^{1}$ J. Thom,,${ }^{18, i}$ J. Thome, ${ }^{13}$ G. A. Thompson, ${ }^{25}$ E. Thomson, ${ }^{46}$ P. Tipton, ${ }^{61}$ P. Ttito-Guzmán, ${ }^{32}$ S. Tkaczyk, ${ }^{18}$ D. Toback,,${ }^{54}$ S. Tokar, ${ }^{15}$ K. Tollefson, ${ }^{36}$ T. Tomura, ${ }^{56}$ D. Tonelli, ${ }^{18}$ S. Torre, ${ }^{20}$
 S. Uozumi,,28 N. van Remortel, ${ }^{24, c}$ A. Varganov, ${ }^{35}$ E. Vataga, ${ }^{47 \mathrm{~d}, 47 \mathrm{a}} \mathrm{F}$. Vázquez, ${ }^{19, \mathrm{o}}$ G. Velev, ${ }^{18}$ C. Vellidis, ${ }^{3}$ M. Vidal, ${ }^{32}$ I. Vila, ${ }^{12}$ R. Vilar, ${ }^{12}$ M. Vogel, ${ }^{38}$ I. Volobouev, ${ }^{29, x}$ G. Volpi, ${ }^{47 b, 47 \mathrm{a}}$ P. Wagner, ${ }^{46}$ R. G. Wagner, ${ }^{2}$ R. L. Wagner, ${ }^{18}$ W. Wagner, ${ }^{27, b b}$ J. Wagner-Kuhr, ${ }^{27}$ T. Wakisaka, ${ }^{42}$ R. Wallny, ${ }^{9}$ S. M. Wang, ${ }^{1}$ A. Warburton, ${ }^{34}$ D. Waters, ${ }^{31}$ M. Weinberger,,${ }^{54}$ J. Weinelt, ${ }^{27}$ W.C. Wester III, ${ }^{18}$ B. Whitehouse, ${ }^{57}$ D. Whiteson, ${ }^{46, g}$ A. B. Wicklund, ${ }^{2}$ E. Wicklund, ${ }^{18}$ S. Wilbur, ${ }^{14}$ G. Williams, ${ }^{34}$ H. H. Williams, ${ }^{46}$ P. Wilson, ${ }^{18}$ B. L. Winer, ${ }^{40}$ P. Wittich, ${ }^{18, \mathrm{i}}$ S. Wolbers, ${ }^{18}$ C. Wolfe, ${ }^{14}$ H. Wolfe, ${ }^{40}$ T. Wright, ${ }^{35} \mathrm{X}$. Wu, ${ }^{21}$ F. Würthwein,,${ }^{10}$ A. Yagil, ${ }^{10}$ K. Yamamoto, ${ }^{42}$ J. Yamaoka, ${ }^{17}$ U. K. Yang, ${ }^{14, s}$ Y. C. Yang, ${ }^{28}$ W.M. Yao, ${ }^{29}$ G. P. Yeh,,${ }^{18}$ K. Yi,,${ }^{18, p}$ J. Yoh,,${ }^{18}$ K. Yorita, ${ }^{58}$ T. Yoshida, ${ }^{42, \mathrm{~m}}$ G. B. Yu, ${ }^{17}$ I. Yu, ${ }^{28}$ S. S. Yu, ${ }^{18}$ J. C. Yun, ${ }^{18}$ A. Zanetti, ${ }^{55 a}$ Y. Zeng, ${ }^{17}$ X. Zhang, ${ }^{25}$ Y. Zheng, ${ }^{9, \mathrm{e}}$ and S. Zucchelli ${ }^{6 \mathrm{bba}}$
(CDF Collaboration)
${ }^{1}$ Institute of Physics, Academia Sinica, Taipei, Taiwan 11529, Republic of China
${ }^{2}$ Argonne National Laboratory, Argonne, Illinois 60439, USA
${ }^{3}$ University of Athens, 157 71 Athens, Greece,
${ }^{4}$ Institut de Fisica d'Altes Energies, Universitat Autonoma de Barcelona, E-08193, Bellaterra (Barcelona), Spain
${ }^{5}$ Baylor University, Waco, Texas 76798, USA
${ }^{6 a}$ Istituto Nazionale di Fisica Nucleare Bologna, Bologna, Italy
6b University of Bologna, I-40127 Bologna, Italy,
${ }^{7}$ Brandeis University, Waltham, Massachusetts 02254, USA
${ }^{8}$ University of California, Davis, Davis, California 95616, USA
${ }^{9}$ University of California, Los Angeles, Los Angeles, California 90024, USA
${ }^{10}$ University of California, San Diego, La Jolla, California 92093, USA
${ }^{11}$ University of California, Santa Barbara, Santa Barbara, California 93106, USA
${ }^{12}$ Instituto de Fisica de Cantabria, CSIC-University of Cantabria, 39005 Santander, Spain
${ }^{13}$ Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
${ }^{14}$ Enrico Fermi Institute, University of Chicago, Chicago, Illinois 60637, USA
${ }^{15}$ Comenius University, 842 48 Bratislava, Slovakia, Institute of Experimental Physics, 040 01 Kosice, Slovakia
${ }^{16}$ Joint Institute for Nuclear Research, RU-141980 Dubna, Russia
${ }^{17}$ Duke University, Durham, North Carolina 27708, USA
${ }^{18}$ Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
${ }^{19}$ University of Florida, Gainesville, Florida 32611, USA
${ }^{20}$ Laboratori Nazionali di Frascati, Istituto Nazionale di Fisica Nucleare, I-00044 Frascati, Italy
${ }^{21}$ University of Geneva, CH-1211 Geneva 4, Switzerland
${ }^{22}$ Glasgow University, Glasgow G12 8QQ, United Kingdom
${ }^{23}$ Harvard University, Cambridge, Massachusetts 02138, USA
${ }^{24}$ Division of High Energy Physics, Department of Physics, University of Helsinki and Helsinki Institute of Physics,
FIN-00014, Helsinki, Finland
25 University of Illinois, Urbana, Illinois 61801, USA

${ }^{26}$ The Johns Hopkins University, Baltimore, Maryland 21218, USA
${ }^{27}$ Institut für Experimentelle Kernphysik, Karlsruhe Institute of Technology, D-76131 Karlsruhe, Germany
${ }^{28}$ Center for High Energy Physics: Kyungpook National University, Daegu 702-701, Korea; Seoul National University, Seoul 151-742, Korea; Sungkyunkwan University, Suwon 440-746, Korea;
Korea Institute of Science and Technology Information, Daejeon 305-806, Korea;
Chonnam National University, Gwangju 500-757, Korea;
Chonbuk National University, Jeonju 561-756, Korea
${ }^{29}$ Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
${ }^{30}$ University of Liverpool, Liverpool L69 7ZE, United Kingdom
${ }^{31}$ University College London, London WC1E 6BT, United Kingdom
${ }^{32}$ Centro de Investigaciones Energeticas Medioambientales y Tecnologicas, E-28040 Madrid, Spain
${ }^{33}$ Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
${ }^{34}$ Institute of Particle Physics: McGill University, Montréal, Québec, Canada H3A 2T8; Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6;

University of Toronto, Toronto, Ontario, Canada M5S 1A7; and TRIUMF, Vancouver, British Columbia, Canada V6T 2A3
${ }^{35}$ University of Michigan, Ann Arbor, Michigan 48109, USA
${ }^{36}$ Michigan State University, East Lansing, Michigan 48824, USA
${ }^{37}$ Institution for Theoretical and Experimental Physics, ITEP, Moscow 117259, Russia
${ }^{38}$ University of New Mexico, Albuquerque, New Mexico 87131, USA
${ }^{39}$ Northwestern University, Evanston, Illinois 60208, USA
${ }^{40}$ The Ohio State University, Columbus, Ohio 43210, USA
${ }^{41}$ Okayama University, Okayama 700-8530, Japan
${ }^{42}$ Osaka City University, Osaka 588, Japan
${ }^{43}$ University of Oxford, Oxford OX1 3RH, United Kingdom
${ }^{44 \mathrm{a}}$ Istituto Nazionale di Fisica Nucleare, Sezione di Padova-Trento, I-35131 Padova, Italy
${ }^{44 \mathrm{~b}}$ University of Padova, I-35131 Padova, Italy
${ }^{45}$ LPNHE, Universite Pierre et Marie Curie/IN2P3-CNRS, UMR7585, Paris, F-75252 France
${ }^{46}$ University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
${ }^{47 a}$ Istituto Nazionale di Fisica Nucleare Pisa, I-56127 Pisa, Italy
${ }^{47 \mathrm{~b}}$ University of Pisa, I-56127 Pisa, Italy
${ }^{47 \mathrm{c}}$ University of Siena, I-56127 Pisa, Italy
${ }^{47 \mathrm{~d}}$ Scuola Normale Superiore, I-56127 Pisa, Italy
${ }^{48}$ University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
${ }^{49}$ Purdue University, West Lafayette, Indiana 47907, USA
${ }^{50}$ University of Rochester, Rochester, New York 14627, USA
${ }^{51}$ The Rockefeller University, New York, New York 10021, USA
${ }^{52 \mathrm{a}}$ Istituto Nazionale di Fisica Nucleare, Sezione di Roma 1, I-00185 Roma, Italy
${ }^{52 \mathrm{~b}}$ Sapienza Università di Roma, I-00185 Roma, Italy
${ }^{53}$ Rutgers University, Piscataway, New Jersey 08855, USA
${ }^{54}$ Texas A\&M University, College Station, Texas 77843, USA
${ }^{55 \mathrm{a}}$ Istituto Nazionale di Fisica Nucleare Trieste/Udine, I-34100 Trieste, I-33100 Udine, Italy
${ }^{55 \mathrm{~b}}$ University of Trieste/Udine, I-33100 Udine, Italy
${ }^{56}$ University of Tsukuba, Tsukuba, Ibaraki 305, Japan
${ }^{57}$ Tufts University, Medford, Massachusetts 02155, USA
${ }^{58}$ Waseda University, Tokyo 169, Japan
${ }^{59}$ Wayne State University, Detroit, Michigan 48201, USA
${ }^{60}$ University of Wisconsin, Madison, Wisconsin 53706, USA
${ }^{61}$ Yale University, New Haven, Connecticut 06520, USA
(Received 24 November 2009; published 8 April 2010)
We report on a search for the standard model Higgs boson produced in association with a W or Z boson in $p \bar{p}$ collisions at $\sqrt{s}=1.96 \mathrm{TeV}$ recorded by the CDF II experiment at the Tevatron in a data sample corresponding to an integrated luminosity of $2.1 \mathrm{fb}^{-1}$. We consider events which have no identified charged leptons, an imbalance in transverse momentum, and two or three jets where at least one jet is consistent with originating from the decay of a b hadron. We find good agreement between data and background predictions. We place 95% confidence level upper limits on the production cross section for several Higgs boson masses ranging from $110 \mathrm{GeV} / c^{2}$ to $150 \mathrm{GeV} / c^{2}$. For a mass of $115 \mathrm{GeV} / c^{2}$ the observed (expected) limit is 6.9 (5.6) times the standard model prediction.

The Higgs boson is the last particle of the standard model (SM) of particle physics that remains to be discovered. The existence of the Higgs boson is expected to be the direct physical manifestation of the mechanism that provides mass to fundamental particles [1]. Expectations from electroweak data collected at the Tevatron, LEP, and SLD indirectly constrain the Higgs boson mass to $m_{H}<$ $157 \mathrm{GeV} / c^{2}$ at 95% confidence level (C.L.) [2]. Direct searches at LEP have excluded $m_{H}<114.4 \mathrm{GeV} / c^{2}$ at 95% C.L. [3]. Upper limits on the production cross section from searches in the region $110<m_{H}<135 \mathrm{GeV} / c^{2}$ remain well above the standard model prediction [2], and greatly benefit from improvements of the experimental sensitivity. In this mass region, $b \bar{b}$ is the main decay mode. The b quarks fragment into jets of hadrons, and the signal can be reconstructed as a resonance in the invariant mass distribution of the two jets. Large multijet backgrounds can be reduced by searching for a Higgs boson (H) with an associated vector boson $V(V=W, Z)$.

This Letter presents a search for the standard model $V H$ associated production in events with b-quark jets and large missing transverse energy with data corresponding to an integrated luminosity of $2.1 \mathrm{fb}^{-1}$. This analysis significantly increases the acceptance for signal with respect to previous Tevatron searches [4,5] and introduces advanced analysis methods. We consider $Z H$ production, where $Z \rightarrow$ $\nu \bar{\nu}$ and the neutrinos (ν) escape detection, or $Z \rightarrow \ell \ell$ when both charged leptons (ℓ) are undetected or are identified as jets. For $W H$ production we are sensitive to events where $W \rightarrow e \nu$ or $W \rightarrow \tau \nu$ when the charged lepton is identified as a jet, and $W \rightarrow \ell \nu$ when ℓ is undetected. The $W H$ events accepted by this analysis contain $50 \% W \rightarrow \tau \nu, 30 \% W \rightarrow$ $\mu \nu$ and $20 \% W \rightarrow e \nu$. Critical challenges for this analysis are to achieve a high signal-to-background (S / B) ratio and to model the multijet background production accurately. We employ artificial neural networks (ANNs) [6] to improve the event selection and signal discrimination and implement a novel data-driven determination of the multijet background.

CDF II is a multipurpose detector that is described in detail elsewhere $[7,8]$. Jets are reconstructed from energy depositions in the calorimeter towers using a jet clustering cone algorithm [9] with a cone size of radius $\Delta R=$ $\sqrt{(\Delta \phi)^{2}+(\Delta \eta)^{2}}=0.4$. In addition to standard jet energy corrections [9], we further correct using momentum measurements provided by the tracker, using a method similar to that described in [10]. The more precise measurement of the jet energies improves the candidate Higgs boson mass resolution by $\approx 10 \%$ and increases the signal acceptance by $\approx 10 \%$. Both the magnitude and direction of \mathscr{E}_{T} are recomputed after the jet energies are corrected.

The events used in this search are selected by a threelevel trigger system that selects events with \mathbb{E}_{T} and two jet clusters. After offline reconstruction, the event selection requires $\mathbb{E}_{T}>50 \mathrm{GeV}$, and the transverse energies $E_{T}^{J_{1}}$ and $E_{T}^{J_{2}}$ of the two jets with the highest transverse energy, J_{1}
and J_{2} ("leading jets"), satisfy the conditions $E_{T}^{J_{1}}>$ 35 GeV and $E_{T}^{J_{2}}>25 \mathrm{GeV}$. We consider an event to have three jets if the E_{T} of the third leading jet, J_{3}, is greater than 15 GeV . Events with four or more jets with $E_{T}>15 \mathrm{GeV}$ and $|\eta|<2.4$ are rejected. Events passing these criteria are denoted as the "pretagged" sample. After these selections, the expected S / B ratio is around $1 / 20000$.

We veto events with at least one $p_{T}>10 \mathrm{GeV} / c$ isolated electron or muon [11], deliberately using fairly loose identification criteria. These selections ensure that the sample used in this analysis is statistically independent from the one utilized in the search for $W H$ in a final state containing an identified charged lepton [12].

Large backgrounds originating from light-flavor jet production can be reduced by identifying b jets in the candidate events. Because of their relatively long lifetime, b and c hadrons can travel a few millimeters from the primary vertex before decaying into lighter hadrons. Jets originating from a b quark can be identified ("tagged") by the SECVTX algorithm [13], which reconstructs vertices that are significantly displaced from the $p \bar{p}$ interaction point, and the JETPROB algorithm [14], which classifies jets using the probability that tracks within the jet are consistent with originating from the primary vertex. To enhance the expected signal significance we subdivide the sample into three independent categories: events with two jets tagged by SECVTX ($\mathrm{SV}+\mathrm{SV}$), events with one jet tagged by SECVTX and another by JETPROB (SV + JP) and events with only one jet tagged by SECVTX (SV).

The selected sample is dominated by background from the production of multijet (MJ), top quark (pair and electroweak production), W or Z plus jets, and $W W, W Z$ or $Z Z$ events. Significant \mathscr{L}_{T} in multijet events appears when b quarks decay semileptonically or when jet energies are mismeasured. In both cases \vec{E}_{T} is often aligned with $\vec{E}_{T}^{J_{2}}$. Therefore, events with $\Delta \phi\left(\vec{E}_{T}, \vec{E}_{T}^{J_{2}}\right)<0.4$, no identified leptons, and $50<\mathscr{E}_{T}<70 \mathrm{GeV}$ are used to measure the rates with which the heavy-flavor jets (HF, originating from a b or c quark) from multijet production and lightflavor jets mistakenly identified as b jets ("mistags") are tagged. The tagging rate (TR) is parametrized as a function of H_{T} [8] of the event and E_{T}, η, and ζ of the jet. The observable ζ is defined as $\zeta=c \sum_{i} p_{T \text {,track }}^{i} / E_{T}$ where $p_{T, \text { track }}^{i}$ includes tracks within a jet with a significant impact parameter and $0.5<p_{T, \text { track }}^{i}<200 \mathrm{GeV} / c$. Jets originating from b quarks are expected to have a large ζ. The multijet background in the single (double) tagged sample is determined by the probability to tag one (two) jet(s) from the pretagged (single-tagged) sample [11,15], after subtracting all Monte Carlo (MC) simulated contributions. The validity of the tagging rate modeling is verified in various control regions, which are defined below. The remaining backgrounds are estimated using PYTHIA [16] simulations, and single top production is simulated with

FIG. 1 (color online). The distribution of $\mathrm{ANN}_{\mathrm{MJ}}$ for doubletagged events.

MADEVENT [17]. The signal MC samples are generated with PYTHIA. The normalizations of the MC samples are described in [11].

We start the selection of the signal region by requiring no identified charged leptons, $E_{T}>50 \mathrm{GeV}$, $\Delta \phi\left(\vec{E}_{T}, \vec{E}_{T}^{J_{1}}\right) \geq 1.5$, and $\Delta \phi\left(\vec{E}_{T}, \vec{E}_{T}^{J_{2,3}}\right) \geq 0.4$. These selection criteria remove $\approx 10 \%$ of the signal in the pretag sample while reducing the backgrounds by approximately an order of magnitude. We employ an ANN, denoted as $\mathrm{ANN}_{\mathrm{MJ}}$, using kinematic variables to separate signal from multijet background. To discriminate against events with \mathbb{E}_{T} due to mismeasurements in the calorimeter, we use the momentum imbalance in the tracker, $\not P_{T}^{\mathrm{tr}}$ [8]. The magnitude of $\mathscr{E}_{T} \not P_{T}^{\mathrm{tr}}$, the angle between them, the azimuthal angles between $\mathbb{E}_{T}, \not \mathscr{P}_{T}^{\mathrm{tr}}$ and the jet directions, and several other less discriminating variables are used as inputs to $\mathrm{ANN}_{\mathrm{MJ}}$ [11]. The distribution of $\mathrm{ANN}_{\mathrm{MJ}}$, shown in Fig. 1, peaks at +1 for the signal and at -1 for the backgrounds that are due to mismeasured jets. Selecting events with

FIG. 2 (color online). Dijet invariant mass distribution for double-tagged events in signal region.
$\mathrm{ANN}_{\mathrm{MJ}} \geq 0$ rejects over 50% of the total background and retains 95% of the signal, yielding an S / B ratio of $\approx 1 / 250$, which is similar to the one obtained in the $W H$ search [12]. This region is defined as the signal region and is analyzed for the presence of the Higgs boson signal.

In order to avoid potential bias in the search, we test our understanding of the SM background in several control regions where the amount of signal events is negligible. The control region called EWK, sensitive to electroweak processes and top production, contains events with at least one lepton and $\Delta \phi\left(\vec{Z}_{T}, \vec{E}_{T}^{J_{2}}\right) \geq 0.4$. We also define several control regions dominated by multijet processes where we have no identified leptons. The region denoted as MJ1 contains events with $\Delta \phi\left(\overrightarrow{\mathbb{Z}}_{T}, \vec{E}_{T}^{J_{2}}\right)<0.4$ and $\mathscr{E}_{T} \geq$ 70 GeV . The region denoted as MJ2 contains events with $\Delta \phi\left(\vec{E}_{T}, \vec{E}_{T}^{J_{1}}\right) \geq 1.5, \Delta \phi\left(\vec{E}_{T}, \vec{E}_{T}^{J_{2,3}}\right) \geq 0.4$, and $\mathrm{ANN}_{\mathrm{MJ}}<$ -0.5 . The predictions of the multijet background are tested in MJ1 and MJ2. The distributions of kinematic variables,

FIG. 3 (color online). The distribution of $\mathrm{ANN}_{\text {sig }}$ for (a) single- and (b) double-tagged events.

TABLE I. Comparison of the total number of expected and observed events in the signal region for different b-tagging categories. The uncertainties contain both MC statistical error and systematic uncertainties.

Process	SV + SV or SV +JP	SV
Multijet	120.1 ± 21.3	941.2 ± 86.0
Single top	15.7 ± 3.0	43.2 ± 7.9
Top pair	54.5 ± 7.9	124.5 ± 17.0
Diboson	9.2 ± 1.8	35.6 ± 6.8
$W+$ HF	32.0 ± 14.7	296.9 ± 129.5
$Z+$ HF	22.1 ± 11.5	107.0 ± 45.8
Total prediction	254 ± 39	1548.4 ± 168.1
Observed	253	1443
Expected signal for $m_{H}=115 \mathrm{GeV} / c^{2}$		
$Z H \rightarrow \nu \nu b b$	1.8 ± 0.2	2.1 ± 0.2
$W H \rightarrow(\ell) \nu b b$	1.6 ± 0.2	1.8 ± 0.2
$Z H \rightarrow(\ell \ell) b b$	0.07 ± 0.01	0.09 ± 0.01

such as the invariant mass of the two leading jets $m\left(J_{1}, J_{2}\right)$, have been found to be in agreement with observations in the control regions [11].

To achieve a greater separation between signal and background we deploy a second ANN, denoted as $\mathrm{ANN}_{\text {sig }}$, for discriminating the remaining backgrounds from the expected signal. Six input variables are used in $\mathrm{ANN}_{\text {sig }}$: the invariant mass of the two leading jets $m\left(J_{1}, J_{2}\right)$ (Fig. 2), the invariant mass of the \mathscr{E}_{T} and all jets, $H_{T}-\mathscr{E}_{T}$, $\not \mathscr{H}_{T}-\not \mathscr{E}_{T}$, TRACKMET [18] and the maximum $\Delta R\left(\vec{E}_{T}^{J_{i}}, \vec{E}_{T}^{J_{k}}\right)$. The variable TRACKMET is the output of a ANN developed using tracking information to enhance the separation of events with real \mathscr{E}_{T}. The most discriminating variable of the $\mathrm{ANN}_{\text {sig }}$ is $m\left(J_{1}, J_{2}\right)$.

The distribution of $\mathrm{ANN}_{\text {sig }}$ is shown in Fig. 3 for singleand double-tagged events. The number of signal and background events after the final selection are shown in Table I. Since no significant excess is observed, we compute 95% C.L. upper limits for the Higgs boson production cross section times the branching fraction $B(H \rightarrow b \bar{b})$. For $m_{H}=115 \mathrm{GeV} / c^{2}$ we expect a total of 4.0 (3.5) signal events with one (two) b-tagged jets [19].

We analyze the binned $\mathrm{ANN}_{\text {sig }}$ discriminant distribution to test for a $W H$ or $Z H$ signal in the presence of SM backgrounds. The systematic uncertainties included in the calculation are classified as correlated (uncorrelated) depending on if they do (do not) affect both signal and the background processes [11,18]. The uncorrelated systematic uncertainties are the multijet normalization (between 5.5% and 20.6%) and MC statistical fluctuations. Additionally we assign the following uncertainties due to cross sections: 15.9% and 15.2% to single top in s and t channels, 8.6% to top pair, 11.5% to diboson and 40% to $W+$ HF and $Z+$ HF The shapes obtained by varying the TR probabilities by $\pm 1 \sigma$ are applied as systematic uncertainties to each bin of $\mathrm{ANN}_{\text {sig }}$. The correlated systematic

TABLE II. Expected and observed 95\% C.L. upper limits, with ratios to SM cross section.

m_{H} $\left(\mathrm{GeV} / c^{2}\right)$	Expected (pb)	Observed (pb)	Ratio expected	Ratio observed
110	1.3	1.5	$4.9_{-1.4}^{+2.1}$	5.8
115	1.2	1.5	$5.6_{-1.4}^{+2.4}$	6.9
120	1.2	1.5	$7.2_{-2.1}^{+2.9}$	8.9
130	1.0	1.4	$10.3_{-2.3}^{+4.9}$	14.4
140	0.9	1.0	$18.6_{-5.4}^{+7.8}$	21.0
150	0.8	1.0	$43.3_{-12.4}^{+19.0}$	49.8

uncertainties are the following: luminosity measurement $(6.0 \%), b$-tagging efficiency in MC simulations (between 4.3% and 12.4%), trigger efficiency $(<3 \%)$, lepton veto efficiency (2%), parton distribution function uncertainty (2%) and $3.8 \%-13.0 \%$ for jet energy scale (JES) [9]. We also assign systematic uncertainties on the shape of $\mathrm{ANN}_{\text {sig }}$ due to JES and trigger efficiency uncertainties. Initial- and final-state-radiation systematic uncertainties (between 1\% and 5%) are applied to the signal predictions.

Including all the uncertainties, the expected and observed upper limits at the 95% C.L. on $V H$ production cross section times branching fraction $\operatorname{Br}(H \rightarrow b \bar{b})$ are shown in Table II. Expected limits are obtained by generating pseudoexperiments from the expected SM ANN ${ }_{\text {sig }}$ shapes to calculate the median ZH and WH contribution which could be excluded at the 95% C.L. in the zero signal hypothesis. The limits are computed using the Bayesian likelihood method [20] with a flat prior probability for the signal cross section and Gaussian priors for the uncertainties on acceptance and backgrounds. We combine the search channels $\mathrm{SV}+\mathrm{SV}, \mathrm{SV}+\mathrm{JP}$, and SV by taking the product of their likelihoods and simultaneously varying the correlated uncertainties. The observed limits agree with the expected ones.

In summary, we have performed a direct search for the SM Higgs boson decaying into b-jet pairs using data with integrated luminosity of $2.1 \mathrm{fb}^{-1}$ accumulated in Run II by the CDF II detector. The combination of all improvements described above increases the sensitivity of this search by a factor of 2 with respect to [4], and by 30% with respect to [5] once the difference in luminosity is accounted for.

We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. This work was supported by the U.S. Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science and Technology of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; the Swiss National Science Foundation; the A.P. Sloan Foundation; the Bundesministerium für Bildung und Forschung, Germany; the World Class University Program, the National Research Foundation of

Korea; the Science and Technology Facilities Council and the Royal Society, UK; the Institut National de Physique Nucleaire et Physique des Particules/CNRS; the Russian Foundation for Basic Research; the Ministerio de Ciencia e Innovación, and Programa Consolider-Ingenio 2010, Spain; the Slovak R\&D Agency; and the Academy of Finland.
${ }^{\text {a }}$ Deceased
${ }^{\mathrm{b}}$ Visitor from University of Massachusetts Amherst, Amherst, MA 01003, USA.
${ }^{\mathrm{c}}$ Visitor from Universiteit Antwerpen, B-2610 Antwerp, Belgium.
${ }^{\mathrm{d}}$ Visitor from University of Bristol, Bristol BS8 1TL, United Kingdom.
${ }^{\mathrm{e}}$ Visitor from Chinese Academy of Sciences, Beijing 100864, China.
${ }^{f}$ Visitor from Istituto Nazionale di Fisica Nucleare, Sezione di Cagliari, 09042 Monserrato (Cagliari), Italy.
${ }^{g}$ Visitor from University of California Irvine, Irvine, CA 92697., USA
${ }^{h}$ Visitor from University of California Santa Cruz, Santa Cruz, CA 95064, USA.
${ }^{\mathrm{i}}$ Visitor from Cornell University, Ithaca, NY 14853, USA. ${ }^{\mathrm{j}}$ Visitor from University of Cyprus, Nicosia CY-1678, Cyprus.
${ }^{\mathrm{k}}$ Visitor from University College Dublin, Dublin 4, Ireland.
${ }^{1}$ Visitor from University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom.
${ }^{m}$ Visitor from University of Fukui, Fukui City, Fukui Prefecture, Japan 910-0017.
${ }^{\mathrm{n}}$ Visitor from Kinki University, Higashi-Osaka City, Japan 577-8502.
${ }^{\circ}$ Visitor from Universidad Iberoamericana, Mexico D.F., Mexico.
${ }^{\mathrm{p}}$ Visitor from University of Iowa, Iowa City, IA 52242, USA.
${ }^{\text {q }}$ Visitor from Kansas State University, Manhattan, KS 66506, USA.
${ }^{\mathrm{r}}$ Visitor from Queen Mary, University of London, London, E1 4NS, England.
${ }^{\text {s }}$ Visitor from University of Manchester, Manchester M13 9PL, England.
${ }^{\mathrm{t}}$ Visitor from Muons, Inc., Batavia, IL 60510, USA.
${ }^{\mathrm{u}}$ Visitor from Nagasaki Institute of Applied Science, Nagasaki, Japan.
${ }^{\mathrm{v}}$ Visitor from University of Notre Dame, Notre Dame, IN 46556, USA.
${ }^{\text {w}}$ Visitor from University de Oviedo, E-33007 Oviedo, Spain.
${ }^{x}$ Visitor from Texas Tech University, Lubbock, TX 79609, USA.
${ }^{y}$ Visitor from IFIC(CSIC-Universitat de Valencia), 56071 Valencia, Spain.
${ }^{\text {z }}$ Visitor from Universidad Tecnica Federico Santa Maria, 110v Valparaiso, Chile.
${ }^{\text {aa }}$ Visitor from University of Virginia, Charlottesville, VA 22906, USA.
${ }^{\text {bb }}$ Visitor from Bergische Universität Wuppertal, 42097 Wuppertal, Germany.
${ }^{\text {cc }}$ Visitor from Yarmouk University, Irbid 211-63, Jordan.
${ }^{\text {dd }}$ On leave from J. Stefan Institute, Ljubljana, Slovenia.
[1] P. W. Higgs, Phys. Lett. 12, 132 (1964).
[2] LEP-Tevatron-SLD Electroweak Working Group, arXiv:0811.4682; Tevatron New Phenomena and Higgs Working Group, arXiv:0903.4001, and references therein.
[3] R. Barate et al. (LEP Working Group for Higgs boson searches), Phys. Lett. B 565, 61 (2003).
[4] T. Aaltonen et al. (CDF Collaboration), Phys. Rev. Lett. 100, 211801 (2008).
[5] T. Abazov et al. (D0 Collaboration), Phys. Rev. Lett. 104, 071801 (2010).
[6] K. Hornik, M. B. Stinchcombe, and H. White, Neural Networks 2, 359 (1989).
[7] D. Acosta et al. (CDF Collaboration), Phys. Rev. D 71, 032001 (2005).
[8] CDF uses a cylindrical coordinate system with the z axis along the proton beam axis. Pseudorapidity is $\eta=$ $-\ln \left(\tan \left(\frac{\theta}{2}\right)\right)$, where θ is the polar angle, and ϕ is the azimuthal angle relative to the proton beam direction, while $p_{T}=p \sin \theta, E_{T}=E \sin \theta$. The $\not E_{T}$ is defined as the magnitude of $\vec{E}_{T}=-\sum_{i} E_{T}^{i} \hat{n}_{i}$, where \hat{n}_{i} is a unit vector perpendicular to the beam axis and pointing at the i th calorimeter tower, and E_{T}^{i} is the transverse energy therein. The scalar sum of transverse energies of the leading jets is denoted as H_{T}, and the vector sum of jet E_{T} 's is denoted as \mathscr{H}_{T}. The $\ddot{\not P}_{T}^{\text {tr }}$ is defined as negative vector sum of track p_{T} 's.
[9] A. Bhatti et al., Nucl. Instrum. Methods Phys. Res., Sect. A 566, 375 (2006), and references therein.
[10] C. Adloff et al. (H1 Collaboration), Z. Phys. C 74, 221 (1997).
[11] A. Apresyan, Ph.D. thesis, Purdue University, [FERMILAB-THESIS-2009-09].
[12] T. Aaltonen et al. (CDF Collaboration), Phys. Rev. Lett. 103, 101802 (2009).
[13] D. Acosta et al. (CDF Collaboration), Phys. Rev. D 71, 052003 (2005).
[14] A. Abulencia et al. (CDF Collaboration), Phys. Rev. D 74, 072006 (2006).
[15] T. Aaltonen et al. (CDF Collaboration), arXiv:1001.4577 [Phys. Rev. D (to be published)].
[16] T. Sjostrand et al., Comput. Phys. Commun. 135, 238 (2001).
[17] J. Alwall et al., J. High Energy Phys. 09 (2007) 028.
[18] B.S. Parks, Ph.D. thesis, The Ohio State University, [FERMILAB-THESIS-2008-18].
[19] T. Han and S. Willenbrock, Phys. Lett. B 273, 167 (1991); A. Djouadi, J. Kalinowski, and M. Spira, Comput. Phys. Commun. 108, 56 (1998).
[20] J. Heinrich et al., arXiv:physics/0409129.

