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We report the first largely model independent measurement of charged particle multiplicities in quark
and gluon jets, Nq and Ng, produced at the Fermilab Tevatron in p �p collisions with a center-of-mass
energy of 1.8 TeV and recorded by the Collider Detector at Fermilab. The measurements are made for jets
with average energies of 41 and 53 GeV by counting charged particle tracks in cones with opening angles
of �c � 0:28, 0.36, and 0.47 rad around the jet axis. The corresponding jet hardness Q � Ejet�c varies in
the range from 12 to 25 GeV. At Q � 19:2 GeV, the ratio of multiplicities r � Ng=Nq is found to be
1:64� 0:17, where statistical and systematic uncertainties are added in quadrature. The results are in
agreement with resummed perturbative QCD calculations.
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FIG. 1 (color online). The ratio of charged particle multiplic-
ities in gluon and quark jets as a function of jet hardness Q,
which is Q � Ejet�c for CDF data and Q � Ec:m: � 2Ejet for
e�e� data [9,10]. CDF results (this Letter) are obtained for cone
sizes �c � 0:28, 0.36, and 0.47 rad. The NLLA curves [2–5] are
calculated using Qeff � 230 MeV [17]. The asymptotic value
(Q! 1 [20]) of r is simply the ratio of the gluon and quark
color factors, CA � 3 and CF � 4=3, respectively.
We present a new measurement of charged particle
multiplicities in quark and gluon jets that is largely inde-
pendent of theoretical models of fragmentation. This inde-
pendence is achieved by exploiting the difference in quark
and gluon jet content of dijet events and �� jet events
in p �p collisions. The analysis is carried out in the dijet or
�� jet center-of-mass frame, where the average jet ener-
gies are Ejet � 41 and 53 GeV. Multiplicities are measured
in restricted cones with �c � 0:28, 0.36, and 0.47 rad,
where �c is the angle between the jet axis and the cone
side. The results are compared to predictions based on
perturbative QCD calculations carried out in the frame-
work of the next-to-leading log approximation (NLLA) [1]
and its extensions [2–5], supplemented with the hypothesis
of local parton-hadron duality (LPHD) [6].

In QCD, quarks and gluons have different probabilities
to emit gluons, and it is therefore expected that jets pro-
duced by quarks and gluons will show a difference in their
average hadron multiplicity. The NLLA� LPHD ap-
proach views jet fragmentation as a predominantly pertur-
bative QCD process. The NLLA calculations give the
average number of partons, Npartons�Y�, in a small cone
with opening angle �c around the jet direction as a function
of Y � lnQ=Qeff , whereQ � Ejet�c is the jet hardness and
Qeff is the lowest allowed transverse momentum of partons
with respect to the jet direction. The LPHD hypothesis
assumes that hadronization occurs locally at the end of the
parton shower development so that the properties of had-
rons are closely related to those of the partons. For in-
stance, the hadron and parton multiplicities are assumed to
be related via a constant factor KLPHD, i.e., Nhadrons �
KLPHDNpartons, which is independent of the jet energy and
of whether the jet originates from a quark or a gluon. In this
approach, the ratio of hadron multiplicities in gluon and
quark jets, r � Ng=Nq, is the same as the ratio of partons.
Various calculations for the latter ratio are presented in
Fig. 1.

Measurements of multiplicity differences between quark
and gluon jets have a long history, most of which comes
from e�e� colliders. The earliest measurements of the
ratio r were consistent with 1 [7,8]. Over the ten-year
CERN LEP era, the reported values varied from r ’ 1:1
to 1.5 [7]. For purposes of comparison, we show in Fig. 1
17180
recent CLEO [9] and OPAL [10] data points. These are
believed to be model independent and the least biased by
jet-finding algorithms [7]. The range of e�e� results mo-
tivates an independent measurement of r in a different
environment such as p �p collisions. The charged particle
multiplicities in gluon and quark jets, Ng and Nq, respec-
tively, as well as their ratio r, can be extracted by compar-
ing the multiplicities in two data samples with very
different fractions of gluon jets; thus, we do not have to
discriminate between quark and gluon jets when selecting
events. Two such samples used in the analysis are dijet and
�� jet events, for which

Njj � f
jj
g Ng � �1� fjjg �Nq; (1)

N�j � f
�j
g Ng � �1� f�jg �Nq; (2)

where Njj and N�j are the average charged particle multi-
plicities per jet in, respectively, dijet and �� jet events,
and fjjg and f�jg are fractions of gluon jets in dijet and
�� jet events. To take into account the contamination of
�� jet events by fake photons, Eq. (2) must be modified as
follows:
2-3
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N�j � ���f
�j
g Ng � �1� f�jg �Nq� � �1� ���Nfj; (3)

where �� is the fraction of real photons among the photon
candidates, and Nfj is the multiplicity in the jet opposite to
the fake photon.

The current results are based on events produced in p �p
collisions with center-of-mass energy

���
s

p
� 1:8 TeV and

recorded by the Collider Detector at Fermilab (CDF) dur-
ing the 1993–1995 run period. The integrated luminosity is
95� 7 pb�1. The CDF detector is described elsewhere
[11]. The CDF coordinate system is defined with respect
to the proton beam direction (z > 0). The azimuthal angle
� is measured around the z axis. The pseudorapidity � �
� ln� tan��=2�� is used in place of the polar angle �. The
transverse energy is defined as ET � E sin�.

In this measurement, the jets are defined by a cone

algorithm with cone radius R �
���������������������������������
�'��2 � �'��2

p
� 0:7;

full details can be found in [12]. Corrections are applied to
the raw jet energy in the cone to compensate for the
nonlinearity and nonuniformity of the energy response of
the calorimeter, to subtract the energy deposited in the jet
cone by sources other than the initial parton (underlying
event, multiple interactions, etc.), and to add the energy
radiated by the initial parton out of the jet cone (out-of-
cone correction). Both jet direction and energy are derived
from the calorimeter information alone. The overall uncer-
tainty on the jet energy scale is 5%. To evaluate possible
biases that might originate from the particular choice of
jet-finding algorithm, we studied the properties of jets
reconstructed by using smaller (R � 0:4) and larger (R �
1:0) cones. Variations are taken as an estimate of the
corresponding systematic uncertainty.

The dijet sample is accumulated by using the inclusive
jet trigger with ET threshold 20 GeV. The trigger is pre-
scaled by 1000. The �� jet sample is collected using the
inclusive photon triggers with thresholds of 23 and 50 GeV
on ET .

The dijet events are required to have two jets balanced in
PT : j ~PT1� ~PT2 j=�PT1�PT2�<0:15 (�2!PT ). Only events
with both jets in the central region of the detector (j�1;2j<
0:9) are retained to ensure efficient track reconstruction.
The events are required to have no more than two well-
reconstructed primary vertices. For events with two pri-
mary interactions, all tracks are associated with vertices by
their proximity. The separation between vertices along the
beam line is required to be larger than 12 cm (�12!z for
tracks) to allow for unambiguous assignment of tracks. The
vertex that has the largest )PT of tracks from cones with
R � 0:7 around the jet directions is taken to be the one
associated with the hard collision.

The �� jet events must pass exactly the same cuts
(treating the photon as one of two jets) and satisfy specific
photon identification requirements. A cut on the fraction of
energy of the photon candidate observed in the hadronic
calorimeter, EHA=Etotal < 0:125, is applied to suppress the
hadronic background. The selected events are required to
17180
have exactly one photon candidate with ET > 20 GeV and
no more than 1 GeVof extra transverse energy in a cone of
R � 0:4 around the photon candidate. The last requirement
is the photon isolation cut. Events are rejected if they have
tracks pointing to the photon candidate cluster. The elec-
tromagnetic transverse shower profile measured by the
shower maximum detector has to be consistent with that
of a single photon.

For our data sample, the jet energy resolution is �13%
and the photon energy resolution is �3%. Applying the
same energy balance cut to dijet and �� jet events could
lead to a small difference between jets from these samples.
To evaluate this effect we use a tighter cut for �� jet
events: j ~PT1 � ~PT2 j=�PT1 � PT2�< 0:125. Variations in the
results are found to be small and are conservatively taken
as estimates of the associated systematic uncertainty. The
results of the analysis also do not show any significant
dependence on the number of primary vertices or on the
photon isolation cut.

The selected events are then subdivided into two bins
according to invariant mass, which is defined as M �������������������������������������������������������������������
�E1 � E2�2=c4 � � ~P1 � ~P2�2=c2

q
, where Ei and ~Pi are

the jet or photon energy and momentum and jets are treated
as massless objects. The bins have a width chosen to be
greater than the dijet mass spread due to the calorimeter
resolution, �MM ’ 10%. In the lower bin (72–94 GeV=c2),
our sample consists of 3602 dijet and 2526 �� jet events
with an average invariant mass of 82 GeV=c2. The other
bin (94–120 GeV=c2) has 1768 dijet and 910 �� jet
events with an average invariant mass of 105 GeV=c2.
The analysis is carried out in the dijet (or �� jet) center-
of-mass frame, so that Ejet � Mc2=2. The results are cor-
rected for a small difference (<1 GeV) in the average
invariant mass of dijet and �� jet events. This difference
is an effect of the jet trigger threshold. The small correction
of <1% is taken as an estimate of the corresponding
systematic uncertainty.

The fractions of gluon jets in dijet events, fjjg , and
pure �-jet events, f�jg , are determined from HERWIG 5.6
and PYTHIA 6.115 [13] Monte Carlo generators with
parton distribution function (PDF) sets [14] CTEQ4M,
CTEQ4A2, and CTEQ4A4. Typical values are found to
be fjjg � 60% and f�jg � 20%. The systematic uncertainty
of �2% on these fractions is estimated from the differ-
ences observed with the two Monte Carlo generators and
three different PDF sets.

To estimate the fraction �� of real photons among
photon candidates, we use a procedure described in [15].
The fraction is found to be 75%� 7% and 90%� 10%
for events with Ejet � 41 and 53 GeV, respectively. The
method is based on measuring the fraction of events with
conversions in the material in front of the calorimeter. Fake
photons are mostly energetic $0’s or �’s from one of the
jets in a dijet event. Therefore fakes, being two almost
collinear photons, have a higher conversion probability
2-4
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than does a single prompt photon. The uncertainty in the
fraction of real photons, ��, is taken into account in
evaluating the corresponding systematic uncertainty in
our measurements.

To measure the multiplicity of charged particles as-
sociated with jets in dijet and �� jet events (Njj and
N�j), we count three-dimensionally reconstructed tracks
and use vertex cuts on the impact parameter, d, and 'z �
jztrack � zvertexj [16]. These cuts exclude tracks originating
from secondary interactions in the same bunch crossing, �
conversions, K0S and - decays, cosmic rays, and other
backgrounds. The vertex cuts are varied to study the sys-
tematic uncertainties associated with them. After applying
all the vertex cuts, there still remains a small number of
tracks due to � conversions and K0S or - decays, which is
estimated using HERWIG 5.6 and the CDF detector simula-
tion package. The corrections are typically �3:5% (�
conversions) and �4% (decays) of the measured multi-
plicity. The systematic uncertainties assigned to these cor-
rections are equal to their magnitudes.

The measured multiplicities are corrected for track re-
construction inefficiency. The inefficiency was studied by
embedding tracks found in one jet into the opposite jet at
the hit level and redoing the full track reconstruction [17].
The size of these corrections on average multiplicities is
6%–8%, depending on the jet energy and cone size �c. The
associated systematic uncertainties are estimated by vary-
ing the tightness of the criteria used in matching the
parameters of the embedded tracks to those of the re-
reconstructed tracks.

Tracks coming from the underlying event and multiple
interactions in the same bunch crossing (with unresolved z
vertices) are subtracted on average using complementary
cones. A pair of complementary cones is defined such that
their axis is in the plane normal to the dijet direction and at
the same polar angle as the dijet axis. These cones are
assumed to collect statistically the same uncorrelated back-
ground as the cones around the jets. This correction varies
with cone size from 0.2 to 0.5 tracks per cone.

We also apply a correction for losses of very low PT
tracks due to bending in the magnetic field of the solenoid.
The efficiency for reconstructing tracks with PT <
200 MeV=c is almost zero. The correction obtained from
the HERWIG simulation is typically less than 2%. The
systematic uncertainty on this correction is taken to be
the correction itself.
TABLE I. Charged-particle multiplicities in small cones around g
Ng=Nq, respectively. Multiplicities do not include charged particles

Ejet 41 GeV
Cone size, �c 0.28 rad 0.36 rad 0.47 rad
Q � Ejet�c 11.5 GeV 14.7 GeV 19.2 GeV

Ng 4:98� 0:07� 0:52 6:02� 0:08� 0:55 6:94� 0:08�
Nq 3:28� 0:11� 0:37 3:70� 0:11� 0:40 4:23� 0:12�
r � Ng

Nq
1:52� 0:08� 0:13 1:63� 0:09� 0:14 1:64� 0:09�
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The charged particle multiplicity in the jet opposite to
the fake photon, Nfj, is estimated based on Monte Carlo
studies of �fake �� � jet events. It is found that fake pho-
tons, on average, carry only �90% of the original jet
energy (mainly because fake photons can be accompanied
by other particles from the original jet), which results in
mismeasurement of the event invariant mass by �5%.
Such events have a true invariant mass higher than it would
appear in the analysis and, consequently, the jets have
higher multiplicities. We estimate Nfj by considering the
ratio ' � Nfj=Njj using HERWIG and PYTHIA, and by tak-
ing the dijet data sample and shifting the energy of one of
the jets down by 10% to mimic a fake photon. The average
of all three methods gives ' ’ 1:04. The spread in values
of ' (�1:3%) is used to estimate the corresponding sys-
tematic uncertainty.

The major sources of systematic uncertainty in the mea-
surement of charged particle multiplicity in quark and
gluon jets are as follows: background track removal,
7%–10%; jet-finding algorithm, 1%–7%; jet energy mea-
surements, 2%–5%; and photon sample purity, 1%–4%.
The major sources of systematic uncertainty in the mea-
surement of the ratio, r, are as follows: jet energy mea-
surements, 4%–9%; photon sample purity, 4%–6%; track
cuts and corrections, 3%–6%; and energy balance, 1%–
5%. The individual systematic uncertainties for results
with different jet hardnesses are strongly correlated.

The average multiplicities of charged particles in gluon
and quark jets,Ng andNq, for two different jet energies and
three opening angles, as well as their ratio r, are summa-
rized in Table I and presented in Figs. 1 and 2. The ratio
agrees well with resummed perturbative QCD calculations,
1:4 � r � 1:8 [2–5], and is consistent with recent results
from OPAL, r ’ 1:5 [10]. The ratio is also in good agree-
ment with the previous CDF model-dependent measure-
ment, r � 1:7� 0:3 [18]. From Fig. 1, one can see that the
ratio r tends to increase with energy scale. This trend is
statistically significant, because both statistical and sys-
tematic uncertainties are strongly correlated. At jet energy
Ejet � 41 GeV and opening angles �c � 0:28 and 0.47 rad
(Q � 11:5 and 19.2 GeV), we find 'r � r�19:2 GeV� �
r�11:5 GeV� � 0:12� 0:02�stat� � 0:05�syst�. The aver-
age charged particle multiplicities follow the predicted
evolution with jet energy and opening angle as a function
of Q � Ejet�c. To fit our data, we use the recent NLLA
expressions [4] with the normalization constant as the only
luon and quark jet directions and their ratio: Ng, Nq, and r �
from K0S and - decays.

52.5 GeV
0.28 rad 0.36 rad 0.47 rad

14.7 GeV 18.9 GeV 24.7 GeV

0:58 5:94� 0:12� 0:69 7:02� 0:13� 0:72 8:08� 0:14� 0:72
0:47 3:70� 0:17� 0:43 4:22� 0:18� 0:49 4:86� 0:19� 0:57
0:14 1:60� 0:12� 0:19 1:66� 0:13� 0:20 1:66� 0:13� 0:18
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uds-quark jets:

OPAL
DELPHI

LEP-1 & SLD
MARK-2 & TPC
CDF, quark jets

3NLLA fit (CDF 
data), quarks

Gluon jets:
OPAL
CLEO
CDF, gluon jets

3NLLA fit (CDF 
data), gluons

FIG. 2 (color online). Average charged particle multiplicities
in gluon and quark jets as a function of jet hardness Q, which is
Q � Ejet�c for CDF data and Q � Ec:m: � 2Ejet for e�e� data.
For the purpose of comparison to the e�e� measurements
[9,10,19], CDF results on this plot include charged particles
from K0S and - decays and are multiplied by two. The fits to
CDF data are obtained by using the recent NLLA expressions [4]
(see text). The width of the bands corresponds to the uncertainty
in the overall normalization.
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free parameter (the other parameter,Qeff , is set to 230 MeV
[17]). The fits for gluon and quark jet data points are
independent. One can see that the e�e� results, except
for CLEO data points around 5–7 GeV, fall within the fit
bands.

We compare PYTHIA 6.115 and HERWIG 5.6 predictions
with the results of this analysis. For the range of jet hard-
ness, Q, used in our analysis, both HERWIG and PYTHIA

predict the ratio r to be 1.2–1.4. PYTHIA systematically
gives �3%–4% higher multiplicities than does HERWIG.
Both Monte Carlo generators are found to reproduce the
gluon jet multiplicities fairly well, but they systematically
overestimate the multiplicities in quark jets by as much as
30% (�2!syst discrepancy).

In summary, we have measured the multiplicities in
gluon and quark jets and their ratio, r � Ng=Nq, for aver-
age jet energies Ejet � 41 and 53 GeV and opening angles
�c � 0:28, 0.36, and 0.47 rad. The results are found to
agree with the resummed NLLA calculations and are con-
sistent with recent e�e� measurements [9,10,19].
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