Search for Pair Production of Scalar Top Quarks Decaying to a τ Lepton and a b Quark in $p \bar{p}$ Collisions at $\sqrt{s}=1.96 \mathrm{TeV}$

T. Aaltonen, ${ }^{23}$ J. Adelman, ${ }^{13}$ T. Akimoto, ${ }^{54}$ M. G. Albrow, ${ }^{17}$ B. Álvarez González, ${ }^{11}$ S. Amerio, ${ }^{42}$ D. Amidei, ${ }^{34}$ A. Anastassov, ${ }^{51}$ A. Annovi, ${ }^{19}$ J. Antos, ${ }^{14}$ M. Aoki, ${ }^{24}$ G. Apollinari, ${ }^{17}$ A. Apresyan, ${ }^{47}$ T. Arisawa, ${ }^{56}$ A. Artikov, ${ }^{15}$ W. Ashmanskas, ${ }^{17}$ A. Attal, ${ }^{3}$ A. Aurisano, ${ }^{52}$ F. Azfar, ${ }^{41}$ P. Azzi-Bacchetta, ${ }^{42}$ P. Azzurri, ${ }^{45}$ N. Bacchetta, ${ }^{42}$ W. Badgett, ${ }^{17}$ A. Barbaro-Galtieri, ${ }^{28}$ V. E. Barnes, ${ }^{47}$ B. A. Barnett, ${ }^{25}$ S. Baroiant, ${ }^{7}$ V. Bartsch, ${ }^{30}$ G. Bauer, ${ }^{32}$ P.-H. Beauchemin, ${ }^{33}$ F. Bedeschi, ${ }^{45}$ P. Bednar, ${ }^{14}$ S. Behari, ${ }^{25}$ G. Bellettini, ${ }^{45}$ J. Bellinger, ${ }^{58}$ A. Belloni, ${ }^{22}$ D. Benjamin, ${ }^{16}$ A. Beretvas, ${ }^{17}$ J. Beringer, ${ }^{28}$ T. Berry, ${ }^{29}$ A. Bhatti, ${ }^{49}$ M. Binkley, ${ }^{17}$ D. Bisello, ${ }^{42}$ I. Bizjak, ${ }^{30}$ R. E. Blair, ${ }^{2}$ C. Blocker, ${ }^{6}$ B. Blumenfeld, ${ }^{25}$ A. Bocci, ${ }^{16}$ A. Bodek, ${ }^{48}$ V. Boisvert, ${ }^{48}$ G. Bolla, ${ }^{47}$ A. Bolshov, ${ }^{32}$ D. Bortoletto, ${ }^{47}$ J. Boudreau, ${ }^{46}$ A. Boveia, ${ }^{10}$ B. Brau, ${ }^{10}$ A. Bridgeman,,24 L. Brigliadori, ${ }^{5}$ C. Bromberg, ${ }^{35}$ E. Brubaker, ${ }^{13}$ J. Budagov, ${ }^{15}$ H. S. Budd, ${ }^{48}$ S. Budd, ${ }^{24}$ K. Burkett, ${ }^{17}$ G. Busetto, ${ }^{42}$ P. Bussey, ${ }^{21}$ A. Buzatu, ${ }^{33}$ K. L. Byrum, ${ }^{2}$ S. Cabrera, ${ }^{16, r}$ M. Campanelli, ${ }^{35}$ M. Campbell, ${ }^{34}$ F. Canelli, ${ }^{17}$ A. Canepa, ${ }^{44}$ D. Carlsmith, ${ }^{58}$ R. Carosi, ${ }^{45}$ S. Carrillo, ${ }^{18,1}$ S. Carron, ${ }^{33}$ B. Casal, ${ }^{11}$ M. Casarsa, ${ }^{17}$ A. Castro, ${ }^{5}$ P. Catastini, ${ }^{45}$
D. Cauz, ${ }^{53}$ M. Cavalli-Sforza, ${ }^{3}$ A. Cerri, ${ }^{28}$ L. Cerrito, ${ }^{30, p}$ S. H. Chang, ${ }^{27}$ Y. C. Chen, ${ }^{1}$ M. Chertok, ${ }^{7}$ G. Chiarelli, ${ }^{45}$ G. Chlachidze, ${ }^{17}$ F. Chlebana,,17 K. Cho, ${ }^{27}$ D. Chokheli, ${ }^{15}$ J. P. Chou, ${ }^{22}$ G. Choudalakis, ${ }^{32}$ S. H. Chuang, ${ }^{51}$ K. Chung, ${ }^{12}$ W. H. Chung, ${ }^{58}$ Y. S. Chung,,48 C. I. Ciobanu, ${ }^{24}$ M. A. Ciocci, ${ }^{45}$ A. Clark, ${ }^{20}$ D. Clark, ${ }^{6}$ G. Compostella, ${ }^{42}$ M. E. Convery, ${ }^{17}$ J. Conway, ${ }^{7}$ B. Cooper, ${ }^{30}$ K. Copic, ${ }^{34}$ M. Cordelli, ${ }^{19}$ G. Cortiana, ${ }^{42}$ F. Crescioli, ${ }^{45}$ C. Cuenca Almenar, ${ }^{7, r}$ J. Cuevas, ${ }^{11, o}$ R. Culbertson, ${ }^{17}$ J. C. Cully, ${ }^{34}$ D. Dagenhart, ${ }^{17}$ M. Datta, ${ }^{17}$ T. Davies, ${ }^{21}$ P. de Barbaro, ${ }^{48}$ S. De Cecco, ${ }^{50}$ A. Deisher, ${ }^{28}$ G. De Lentdecker, ${ }^{48, \mathrm{~d}}$ G. De Lorenzo, ${ }^{3}$ M. Dell'Orso, ${ }^{45}$ L. Demortier, ${ }^{49}$ J. Deng, ${ }^{16}$ M. Deninno, ${ }^{5}$ D. De Pedis, ${ }^{50}$ P. F. Derwent, ${ }^{17}$ G. P. Di Giovanni, ${ }^{43}$ C. Dionisi, ${ }^{50}$ B. Di Ruzza, ${ }^{53}$ J. R. Dittmann, ${ }^{4}$ M. D'Onofrio, ${ }^{3}$ S. Donati, ${ }^{45}$ P. Dong, ${ }^{8}$ J. Donini, ${ }^{42}$ T. Dorigo, ${ }^{42}$ S. Dube, ${ }^{51}$ J. Efron, ${ }^{38}$ R. Erbacher, ${ }^{7}$ D. Errede, ${ }^{24}$ S. Errede, ${ }^{24}$ R. Eusebi, ${ }^{17}$ H. C. Fang, ${ }^{28}$ S. Farrington, ${ }^{29}$ W. T. Fedorko, ${ }^{13}$ R. G. Feild, ${ }^{59}$ M. Feindt, ${ }^{26}$ J. P. Fernandez, ${ }^{31}$ C. Ferrazza, ${ }^{45}$ R. Field, ${ }^{18}$ G. Flanagan, ${ }^{47}$ R. Forrest, ${ }^{7}$ S. Forrester, ${ }^{7}$ M. Franklin, ${ }^{22}$ J. C. Freeman, ${ }^{28}$ I. Furic, ${ }^{18}$ M. Gallinaro, ${ }^{49}$ J. Galyardt, ${ }^{12}$ F. Garberson, ${ }^{10}$ J. E. Garcia, ${ }^{45}$ A. F. Garfinkel, ${ }^{47}$ K. Genser, ${ }^{17}$ H. Gerberich, ${ }^{24}$ D. Gerdes, ${ }^{34}$ S. Giagu, ${ }^{50}$ V. Giakoumopolou, ${ }^{45, a}$ P. Giannetti, ${ }^{45}$ K. Gibson, ${ }^{46}$ J. L. Gimmell, ${ }^{48}$ C. M. Ginsburg, ${ }^{17}$ N. Giokaris, ${ }^{15, \mathrm{a}}$ M. Giordani, ${ }^{53}$ P. Giromini, ${ }^{19}$ M. Giunta, ${ }^{45}$ V. Glagolev, ${ }^{15}$ D. Glenzinski, ${ }^{17}$ M. Gold, ${ }^{36}$ N. Goldschmidt, ${ }^{18}$ A. Golossanov, ${ }^{17}$ G. Gomez, ${ }^{11}$ G. Gomez-Ceballos, ${ }^{32}$ M. Goncharov, ${ }^{52}$ O. González, ${ }^{31}$ I. Gorelov, ${ }^{36}$ A. T. Goshaw, ${ }^{16}$ K. Goulianos, ${ }^{49}$ A. Gresele, ${ }^{42}$ S. Grinstein, ${ }^{22}$ C. Grosso-Pilcher, ${ }^{13}$ R. C. Group, ${ }^{17}$ U. Grundler, ${ }^{24}$ J. Guimaraes da Costa, ${ }^{22}$ Z. Gunay-Unalan, ${ }^{35}$ C. Haber, ${ }^{28}$ K. Hahn, ${ }^{32}$ S. R. Hahn, ${ }^{17}$ E. Halkiadakis, ${ }^{51}$ A. Hamilton, ${ }^{20}$ B.-Y. Han, ${ }^{48}$ J. Y. Han, ${ }^{48}$ R. Handler, ${ }^{58}$ F. Happacher, ${ }^{19}$ K. Hara, ${ }^{54}$ D. Hare, ${ }^{51}$ M. Hare, ${ }^{55}$ S. Harper, ${ }^{41}$ R.F. Harr, ${ }^{57}$ R. M. Harris, ${ }^{17}$ M. Hartz, ${ }^{46}$ K. Hatakeyama, ${ }^{49}$ J. Hauser, ${ }^{8}$ C. Hays, ${ }^{41}$ M. Heck, ${ }^{26}$ A. Heijboer, ${ }^{44}$ B. Heinemann, ${ }^{28}$ J. Heinrich, ${ }^{44}$ C. Henderson, ${ }^{32}$ M. Herndon, ${ }^{58}$ J. Heuser, ${ }^{26}$ S. Hewamanage, ${ }^{4}$ D. Hidas, ${ }^{16}$ C. S. Hill, ${ }^{10, \mathrm{c}}$ D. Hirschbuehl, ${ }^{26}$ A. Hocker, ${ }^{17}$ S. Hou, ${ }^{1}$ M. Houlden, ${ }^{29}$ S.-C. Hsu, ${ }^{9}$ B. T. Huffman, ${ }^{41}$ R. E. Hughes, ${ }^{38}$ U. Husemann, ${ }^{59}$ J. Huston,,${ }^{35}$ J. Incandela, ${ }^{10}$ G. Introzzi, ${ }^{45}$ M. Iori, ${ }^{50}$ A. Ivanov, ${ }^{7}$ B. Iyutin, ${ }^{32}$ E. James, ${ }^{17}$ B. Jayatilaka, ${ }^{16}$ D. Jeans, ${ }^{50}$ E. J. Jeon, ${ }^{27}$ S. Jindariani, ${ }^{18}$ W. Johnson, ${ }^{7}$ M. Jones, ${ }^{47}$ K. K. Joo, ${ }^{27}$ S. Y. Jun, ${ }^{12}$ J. E. Jung, ${ }^{27}$ T. R. Junk,,${ }^{24}$ T. Kamon, ${ }^{52}$ D. Kar, ${ }^{18}$ P. E. Karchin, ${ }^{57}$ Y. Kato, ${ }^{40}$ R. Kephart, ${ }^{17}$ U. Kerzel, ${ }^{26}$ V. Khotilovich, ${ }^{52}$ B. Kilminster, ${ }^{38}$ D. H. Kim, ${ }^{27}$ H.S. Kim, ${ }^{27}$ J.E. Kim, ${ }^{27}$ M. J. Kim, ${ }^{17}$ S.B. Kim, ${ }^{27}$ S. H. Kim, ${ }^{54}$ Y. K. Kim, ${ }^{13}$ N. Kimura, ${ }^{54}$ L. Kirsch, ${ }^{6}$ S. Klimenko, ${ }^{18}$ M. Klute, ${ }^{32}$ B. Knuteson, ${ }^{32}$ B. R. Ko, ${ }^{16}$ S. A. Koay, ${ }^{10}$ K. Kondo, ${ }^{56}$ D. J. Kong, ${ }^{27}$ J. Konigsberg, ${ }^{18}$ A. Korytov, ${ }^{18}$ A. V. Kotwal, ${ }^{16}$ J. Kraus, ${ }^{24}$ M. Kreps, ${ }^{26}$ J. Kroll, ${ }^{44}$ N. Krumnack, ${ }^{4}$ M. Kruse, ${ }^{16}$ V. Krutelyov, ${ }^{10}$ T. Kubo, ${ }^{54}$ S.E. Kuhlmann, ${ }^{2}$ T. Kuhr, ${ }^{26}$ N. P. Kulkarni, ${ }^{57}$ Y. Kusakabe, ${ }^{56}$ S. Kwang, ${ }^{13}$ A. T. Laasanen, ${ }^{47}$ S. Lai, ${ }^{33}$ S. Lami, ${ }^{45}$ S. Lammel,,17 M. Lancaster, ${ }^{30}$ R. L. Lander, ${ }^{7}$ K. Lannon, ${ }^{38}$ A. Lath, ${ }^{51}$ G. Latino, ${ }^{45}$ I. Lazzizzera, ${ }^{42}$ T. LeCompte, ${ }^{2}$ J. Lee, ${ }^{48}$ J. Lee, ${ }^{27}$ Y. J. Lee, ${ }^{27}$ S. W. Lee, ${ }^{52, q}$ R. Lefèvre, ${ }^{20}$ N. Leonardo, ${ }^{32}$ S. Leone, ${ }^{45}$ S. Levy, ${ }^{13}$ J. D. Lewis, ${ }^{17}$ C. Lin, ${ }^{59}$ C. S. Lin, ${ }^{28}$ J. Linacre, ${ }^{41}$ M. Lindgren, ${ }^{17}$ E. Lipeles, ${ }^{9}$ T. M. Liss, ${ }^{24}$ A. Lister, ${ }^{7}$ D. O. Litvintsev, ${ }^{17}$ T. Liu, ${ }^{17}$ N. S. Lockyer, ${ }^{44}$ A. Loginov, ${ }^{59}$ M. Loreti, ${ }^{42}$ L. Lovas, ${ }^{14}$ R.-S. Lu, ${ }^{1}$ D. Lucchesi, ${ }^{42}$ J. Lueck, ${ }^{26}$ C. Luci, ${ }^{50}$ P. Lujan,,${ }^{28}$ P. Lukens, ${ }^{17}$ G. Lungu, ${ }^{18}$ L. Lyons, ${ }^{41}$ J. Lys, ${ }^{28}$ R. Lysak, ${ }^{14}$ E. Lytken, ${ }^{47}$ P. Mack, ${ }^{26}$ D. MacQueen, ${ }^{33}$ R. Madrak,,${ }^{17}$ K. Maeshima, ${ }^{17}$ K. Makhoul, ${ }^{32}$ T. Maki, ${ }^{23}$ P. Maksimovic, ${ }^{25}$ S. Malde, ${ }^{41}$ S. Malik, ${ }^{30}$ G. Manca, ${ }^{29}$ A. Manousakis, ${ }^{15, a}$ F. Margaroli, ${ }^{47}$ C. Marino, ${ }^{26}$ C. P. Marino, ${ }^{24}$ A. Martin, ${ }^{59}$ M. Martin, ${ }^{25}$ V. Martin, ${ }^{21, j}$ M. Martínez, ${ }^{3}$ R. Martínez-Ballarín, ${ }^{31}$ T. Maruyama, ${ }^{54}$ P. Mastrandrea, ${ }^{50}$ T. Masubuchi, ${ }^{54}$ M. E. Mattson, ${ }^{57}$ P. Mazzanti, ${ }^{5}$ K. S. McFarland, ${ }^{48}$ P. McIntyre, ${ }^{52}$ R. McNulty, ${ }^{29, i}$ A. Mehta, ${ }^{29}$ P. Mehtala, ${ }^{23}$ S. Menzemer, ${ }^{11, k}$ A. Menzione, ${ }^{45}$ P. Merkel, ${ }^{47}$ C. Mesropian, ${ }^{49}$ A. Messina, ${ }^{35}$ T. Miao, ${ }^{17}$ N. Miladinovic, ${ }^{6}$ J. Miles, ${ }^{32}$ R. Miller, ${ }^{35}$ C. Mills, ${ }^{22}$ M. Milnik, ${ }^{26}$ A. Mitra, ${ }^{1}$ G. Mitselmakher, ${ }^{18}$ H. Miyake, ${ }^{54}$ S. Moed, ${ }^{22}$ N. Moggi, ${ }^{5}$ C. S. Moon,,${ }^{27}$ R. Moore, ${ }^{17}$ M. Morello, ${ }^{45}$ P. Movilla Fernandez, ${ }^{28}$ J. Mülmenstädt, ${ }^{28}$ A. Mukherjee,,${ }^{17}$

Th. Muller,,26 R. Mumford, ${ }^{25}$ P. Murat, ${ }^{17}$ M. Mussini, ${ }^{5}$ J. Nachtman, ${ }^{17}$ Y. Nagai, ${ }^{54}$ A. Nagano, ${ }^{54}$ J. Naganoma, ${ }^{56}$ K. Nakamura, ${ }^{54}$ I. Nakano, ${ }^{39}$ A. Napier, ${ }^{55}$ V. Necula, ${ }^{16}$ C. Neu, ${ }^{44}$ M. S. Neubauer, ${ }^{24}$ J. Nielsen, ${ }^{28, f}$ L. Nodulman, ${ }^{2}$ M. Norman, ${ }^{9}$ O. Norniella, ${ }^{24}$ E. Nurse, ${ }^{30}$ S. H. Oh, ${ }^{16}$ Y. D. Oh, ${ }^{27}$ I. Oksuzian, ${ }^{18}$ T. Okusawa, ${ }^{40}$ R. Oldeman, ${ }^{29}$ R. Orava, ${ }^{23}$
K. Osterberg, ${ }^{23}$ S. Pagan Griso, ${ }^{42}$ C. Pagliarone, ${ }^{45}$ E. Palencia, ${ }^{17}$ V. Papadimitriou, ${ }^{17}$ A. Papaikonomou, ${ }^{26}$ A. A. Paramonov, ${ }^{13}$ B. Parks, ${ }^{38}$ S. Pashapour, ${ }^{33}$ J. Patrick, ${ }^{17}$ G. Pauletta, ${ }^{53}$ M. Paulini, ${ }^{12}$ C. Paus, ${ }^{32}$ D. E. Pellett, ${ }^{7}$ A. Penzo, ${ }^{53}$ T. J. Phillips, ${ }^{16}$ G. Piacentino, ${ }^{45}$ J. Piedra, ${ }^{43}$ L. Pinera, ${ }^{18}$ K. Pitts, ${ }^{24}$ C. Plager, ${ }^{8}$ L. Pondrom, ${ }^{58}$ X. Portell, ${ }^{3}$ O. Poukhov, ${ }^{15}$ N. Pounder, ${ }^{41}$ F. Prakoshyn, ${ }^{15}$ A. Pronko, ${ }^{17}$ J. Proudfoot, ${ }^{2}$ F. Ptohos, ${ }^{17, h}$ G. Punzi, ${ }^{45}$ J. Pursley, ${ }^{58}$ J. Rademacker, ${ }^{41, \mathrm{c}}$ A. Rahaman, ${ }^{46}$ V. Ramakrishnan, ${ }^{58} \mathrm{~N}$. Ranjan, ${ }^{47}$ I. Redondo, ${ }^{31}$ B. Reisert, ${ }^{17}$ V. Rekovic, ${ }^{36}$ P. Renton, ${ }^{41}$ M. Rescigno, ${ }^{50}$ S. Richter, ${ }^{26}$ F. Rimondi, ${ }^{5}$ L. Ristori, ${ }^{45}$ A. Robson, ${ }^{21}$ T. Rodrigo, ${ }^{11}$ E. Rogers, ${ }^{24}$ S. Rolli, ${ }^{55}$ R. Roser, ${ }^{17}$ M. Rossi, ${ }^{53}$ R. Rossin, ${ }^{10}$ P. Roy, ${ }^{33}$ A. Ruiz, ${ }^{11}$ J. Russ, ${ }^{12}$ V. Rusu, ${ }^{17}$ H. Saarikko, ${ }^{23}$ A. Safonov, ${ }^{52}$ W. K. Sakumoto, ${ }^{48}$ G. Salamanna, ${ }^{50}$ O. Saltó, ${ }^{3}$ L. Santi, ${ }^{53}$ S. Sarkar, ${ }^{50}$ L. Sartori, ${ }^{45}$ K. Sato, ${ }^{17}$ A. Savoy-Navarro, ${ }^{43}$ T. Scheidle, ${ }^{26}$ P. Schlabach, ${ }^{17}$ E. E. Schmidt, ${ }^{17}$ M. A. Schmidt, ${ }^{13}$ M. P. Schmidt, ${ }^{59}$ M. Schmitt, ${ }^{37}$ T. Schwarz, ${ }^{7}$ L. Scodellaro, ${ }^{11}$ A. L. Scott, ${ }^{10}$ A. Scribano, ${ }^{45}$ F. Scuri, ${ }^{45}$ A. Sedov, ${ }^{47}$ S. Seidel, ${ }^{36}$ Y. Seiya, ${ }^{40}$ A. Semenov, ${ }^{15}$ L. Sexton-Kennedy, ${ }^{17}$ A. Sfyrla, ${ }^{20}$ S. Z. Shalhout, ${ }^{57}$ M. D. Shapiro, ${ }^{28}$ T. Shears, ${ }^{29}$ P. F. Shepard, ${ }^{46}$ D. Sherman, ${ }^{22}$ M. Shimojima, ${ }^{54, n}$ M. Shochet, ${ }^{13}$ Y. Shon, ${ }^{58}$ I. Shreyber, ${ }^{20}$ A. Sidoti, ${ }^{45}$ P. Sinervo, ${ }^{33}$ A. Sisakyan, ${ }^{15}$ A. J. Slaughter, ${ }^{17}$ J. Slaunwhite, ${ }^{38}$ K. Sliwa, ${ }^{55}$ J. R. Smith, ${ }^{7}$ F. D. Snider, ${ }^{17}$ R. Snihur, ${ }^{33}$ M. Soderberg, ${ }^{34}$ A. Soha, ${ }^{7}$ S. Somalwar, ${ }^{51}$ V. Sorin, ${ }^{35}$ J. Spalding, ${ }^{17}$ F. Spinella, ${ }^{45}$ T. Spreitzer, ${ }^{33}$ P. Squillacioti, ${ }^{45}$ M. Stanitzki, ${ }^{59}$ R. St. Denis, ${ }^{21}$ B. Stelzer, ${ }^{8}$ O. Stelzer-Chilton, ${ }^{41}$ D. Stentz, ${ }^{37}$ J. Strologas, ${ }^{36}$ D. Stuart, ${ }^{10}$ J. S. Suh,,${ }^{27}$ A. Sukhanov, ${ }^{18}$ H. Sun, ${ }^{55}$ I. Suslov, ${ }^{15}$ T. Suzuki, ${ }^{54}$ A. Taffard, ${ }^{24, e}$ R. Takashima, ${ }^{39}$ Y. Takeuchi, ${ }^{54}$ R. Tanaka, ${ }^{39}$ M. Tecchio, ${ }^{34}$ P. K. Teng, ${ }^{1}$ K. Terashi, ${ }^{49}$ J. Thom, ${ }^{17, g}$ A. S. Thompson, ${ }^{21}$ G. A. Thompson, ${ }^{24}$ E. Thomson, ${ }^{44}$ P. Tipton, ${ }^{59}$ V. Tiwari, ${ }^{12}$ S. Tkaczyk, ${ }^{17}$ D. Toback, ${ }^{52}$ S. Tokar, ${ }^{14}$ K. Tollefson, ${ }^{35}$ T. Tomura, ${ }^{54}$ D. Tonelli, ${ }^{17}$ S. Torre, ${ }^{19}$ D. Torretta, ${ }^{17}$ S. Tourneur, ${ }^{43}$ W. Trischuk, ${ }^{33} \mathrm{Y}$. Tu, ${ }^{44}$ N. Turini, ${ }^{45}$ F. Ukegawa, ${ }^{54}$ S. Uozumi, ${ }^{54}$ S. Vallecorsa, ${ }^{20}$ N. van Remortel, ${ }^{23}$ A. Varganov, ${ }^{34}$ E. Vataga, ${ }^{36}$ F. Vázquez, ${ }^{18,1}$ G. Velev, ${ }^{17}$ C. Vellidis, ${ }^{45, a}$ V. Veszpremi, ${ }^{47}$ M. Vidal, ${ }^{31}$ R. Vidal, ${ }^{17}$ I. Vila, ${ }^{11}$ R. Vilar, ${ }^{11}$ T. Vine, ${ }^{30}$ M. Vogel, ${ }^{36}$ I. Volobouev, ${ }^{28, q}$ G. Volpi, ${ }^{45}$ F. Würthwein, ${ }^{9}$ P. Wagner, ${ }^{44}$ R. G. Wagner, ${ }^{2}$ R. L. Wagner, ${ }^{17}$ J. Wagner-Kuhr, ${ }^{26}$ W. Wagner, ${ }^{26}$ T. Wakisaka, ${ }^{40}$ R. Wallny, ${ }^{8}$ S. M. Wang, ${ }^{1}$ A. Warburton, ${ }^{33}$ D. Waters, ${ }^{30}$ M. Weinberger, ${ }^{52}$ W. C. Wester III, ${ }^{17}$ B. Whitehouse, ${ }^{55}$ D. Whiteson, ${ }^{44, \mathrm{e}}$ A. B. Wicklund, ${ }^{2}$ E. Wicklund, ${ }^{17}$ G. Williams, ${ }^{33}$ H. H. Williams, ${ }^{44}$ P. Wilson, ${ }^{17}$ B. L. Winer, ${ }^{38}$ P. Wittich, ${ }^{17, g}$ S. Wolbers, ${ }^{17}$ C. Wolfe, ${ }^{13}$ T. Wright, ${ }^{34}$ X. Wu, ${ }^{20}$ S. M. Wynne, ${ }^{29}$ A. Yagil, ${ }^{9}$ K. Yamamoto, ${ }^{40}$ J. Yamaoka, ${ }^{51}$ T. Yamashita, ${ }^{39}$ C. Yang, ${ }^{59}$ U. K. Yang, ${ }^{13, \mathrm{~m}}$ Y. C. Yang, ${ }^{27}$ W. M. Yao, ${ }^{28}$ G. P. Yeh, ${ }^{17}$ J. Yoh, ${ }^{17}$ K. Yorita, ${ }^{13}$ T. Yoshida, ${ }^{40}$ G. B. Yu, ${ }^{48}$ I. Yu, ${ }^{27}$ S.S. Yu, ${ }^{17}$ J. C. Yun, ${ }^{17}$ L. Zanello, ${ }^{50}$ A. Zanetti, ${ }^{53}$ I. Zaw, ${ }^{22}$ X. Zhang, ${ }^{24}$ Y. Zheng, ${ }^{8, b}$ and S. Zucchelli ${ }^{5}$
(CDF Collaboration)

[^0]```
 \({ }^{23}\) Division of High Energy Physics, Department of Physics, University of Helsinki and Helsinki Institute of Physics, FIN-00014, Helsinki, Finland
\({ }^{24}\) University of Illinois, Urbana, Illinois 61801, USA
\({ }^{25}\) The Johns Hopkins University, Baltimore, Maryland 21218, USA
\({ }^{26}\) Institut für Experimentelle Kernphysik, Universität Karlsruhe, 76128 Karlsruhe, Germany
\({ }^{27}\) Center for High Energy Physics: Kyungpook National University, Daegu 702-701, Korea; Seoul National University, Seoul 151-742, Korea; Sungkyunkwan University, Suwon 440-746, Korea;
Korea Institute of Science and Technology Information, Daejeon, 305-806, Korea;
Chonnam National University, Gwangju, 500-757, Korea
\({ }^{28}\) Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
\({ }^{29}\) University of Liverpool, Liverpool L69 7ZE, United Kingdom
\({ }^{30}\) University College London, London WC1E 6BT, United Kingdom
\({ }^{31}\) Centro de Investigaciones Energeticas Medioambientales y Tecnologicas, E-28040 Madrid, Spain
\({ }^{32}\) Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
\({ }^{33}\) Institute of Particle Physics: McGill University, Montréal, Canada H3A 2T8; and University of Toronto, Toronto, Canada M5S 1A7
\({ }^{34}\) University of Michigan, Ann Arbor, Michigan 48109, USA
\({ }^{35}\) Michigan State University, East Lansing, Michigan 48824, USA
\({ }^{36}\) University of New Mexico, Albuquerque, New Mexico 87131, USA
\({ }^{37}\) Northwestern University, Evanston, Illinois 60208, USA
\({ }^{38}\) The Ohio State University, Columbus, Ohio 43210, USA
\({ }^{39}\) Okayama University, Okayama 700-8530, Japan
\({ }^{40}\) Osaka City University, Osaka 588, Japan
\({ }^{41}\) University of Oxford, Oxford OX1 3RH, United Kingdom
\({ }^{42}\) University of Padova, Istituto Nazionale di Fisica Nucleare, Sezione di Padova-Trento, I-35131 Padova, Italy
\({ }^{43}\) LPNHE, Universite Pierre et Marie Curie/IN2P3-CNRS, UMR7585, Paris, F-75252 France
\({ }^{44}\) University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
\({ }^{45}\) Istituto Nazionale di Fisica Nucleare Pisa, Universities of Pisa, Siena and Scuola Normale Superiore, I-56127 Pisa, Italy
\({ }^{46}\) University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
\({ }^{47}\) Purdue University, West Lafayette, Indiana 47907, USA
\({ }^{48}\) University of Rochester, Rochester, New York 14627, USA
\({ }^{49}\) The Rockefeller University, New York, New York 10021, USA
\({ }^{50}\) Istituto Nazionale di Fisica Nucleare, Sezione di Roma 1, University of Rome "La Sapienza," I-00185 Roma, Italy
\({ }_{51}^{51}\) Rutgers University, Piscataway, New Jersey 08855, USA
\({ }^{52}\) Texas A\&M University, College Station, Texas 77843, USA
\({ }^{53}\) Istituto Nazionale di Fisica Nucleare, University of Trieste/Udine, Italy
\({ }^{54}\) University of Tsukuba, Tsukuba, Ibaraki 305, Japan
\({ }^{55}\) Tufts University, Medford, Massachusetts 02155, USA
\({ }^{56}\) Waseda University, Tokyo 169, Japan
\({ }^{57}\) Wayne State University, Detroit, Michigan 48201, USA
\({ }^{58}\) University of Wisconsin, Madison, Wisconsin 53706, USA
\({ }^{59}\) Yale University, New Haven, Connecticut 06520, USA
```

(Received 27 February 2008; published 13 August 2008; publisher error corrected 14 August 2008)
We search for pair production of supersymmetric top quarks $\left(\tilde{t}_{1}\right)$, followed by $R$-parity violating decay $\tilde{t}_{1} \rightarrow \tau b$ with a branching ratio $\beta$, using $322 \mathrm{pb}^{-1}$ of $p \bar{p}$ collisions at $\sqrt{s}=1.96 \mathrm{TeV}$ collected by the upgraded Collider Detector at Fermilab. Two candidate events pass our final selection criteria, consistent with the standard model expectation. We set upper limits on the cross section $\sigma\left(\tilde{t}_{1} \bar{t}_{1}\right) \times \beta^{2}$ as a function of the top-squark mass $m\left(\tilde{t}_{1}\right)$. Assuming $\beta=1$, we set a $95 \%$ confidence level limit $m\left(\tilde{t}_{1}\right)>153 \mathrm{GeV} / c^{2}$. The limits are also applicable to the case of a third-generation scalar leptoquark $\left(L Q_{3}\right)$ decaying $L Q_{3} \rightarrow$ $\tau b$.

DOI: 10.1103/PhysRevLett.101.071802
PACS numbers: 12.60.Jv, 11.30.Er, 13.85.Rm, 14.80.Ly

In supersymmetric (SUSY) models [1], the spin- $1 / 2$ quarks and leptons have spin- 0 quark and lepton partners. Experimental data suggest that the superpartners of the first and second generations are heavier than those of the standard model (SM) particles, while the mass of the lighter
scalar top quark (top squark or $\tilde{t}_{1}$ ) is weakly constrained and can be below that of the top quark [2]. This is due to the mixing between the left- and right-handed interaction eigenstates which is a function of the large Yukawa coupling of the top quark. At the Fermilab Tevatron, scalar top
quarks and antiquarks can be produced in pairs in strong interactions $\left(g g / q \bar{q} \rightarrow \tilde{t}_{1} \tilde{\tilde{t}}_{1}\right)$. A single top squark could also be produced at the Tevatron, e.g., via $b g \rightarrow \tilde{t}_{1} \tau$ [3]; however, unlike pair production, this process requires an $R$-parity $\left(R_{p}\right)$ violating vertex. In regions of parameter space not excluded by data, $R_{p}$ violating $\left({ }_{R_{p}}\right)$ couplings are small [4], making single top-squark production negligible compared to pair production. Top squarks can decay into lighter SUSY and SM particles if $R_{p}$ is conserved or into ordinary quarks and/or leptons if $R_{p}$ is violated. Within the framework of $k_{p}$ SUSY [4], theoretical studies indicate that the dominant decay mode for the light top squark is the lepton number violating decay $\tilde{t}_{1} \rightarrow \tau b$ for a wide range of SUSY model parameters, including the region allowed by neutrino oscillation data [5].
Leptoquarks appear in various SM extensions [6]. Charge $2 / 3$ and $4 / 3$ third-generation scalar leptoquarks $\left(L Q_{3}\right)$ are expected to decay into $\tau$ and $b$ with $\mathcal{B}\left(L Q_{3} \rightarrow\right.$ $\tau b)=1$ for all $L Q_{3}$ states when $m\left(L Q_{3}\right)<m(t)$. The next-to-leading-order (NLO) cross section for $L Q_{3} \overline{L Q}_{3}$ production is very close to the $\tilde{t}_{1} \bar{t}_{1}$ production cross section $\sigma\left(\tilde{t}_{1} \overline{\tilde{t}}_{1}\right)$ as diagrams with virtual gluino exchange are strongly suppressed with the existing limits on the gluino mass [7]. Thus, the limits obtained for the $\not \mathscr{R}_{p}$ top squark should be fully applicable to the $L Q_{3}$ case.

In this Letter, we describe a search for $\tilde{t}_{1} \bar{t}_{1} \rightarrow \tau^{+} \tau^{-} b \bar{b}$ with the upgraded Collider Detector at Fermilab (CDF II) [8] and set an upper limit on $\sigma\left(\tilde{t}_{1} \bar{t}_{1}\right) \times \beta^{2}$, neglecting additional decay modes that may pass selections of this analysis when $\beta \equiv \mathcal{B}\left(\tilde{t}_{1} \rightarrow \tau b\right)<1$. We look for a final state with either an electron or a muon from the decay $\tau \rightarrow$ $\ell \nu_{\ell} \nu_{\tau}(\ell=e$ or $\mu)$, a hadronically decaying tau $\tau_{h}$, missing transverse energy $\mathscr{E}_{T}[9]$ from the neutrinos, and two or more jets. We do not require jets to be consistent with originating from the hadronization of a $b$ quark, as our studies have shown that the increase in purity from such a requirement would be outweighed by the loss in signal acceptance. This analysis uses approximately 3 times more data at a higher $\sqrt{s}$ than the previous CDF result [10] that set a $95 \%$ C.L. limit of $m\left(\tilde{t}_{1}\right)>122 \mathrm{GeV} / c^{2}$. The increased $\sqrt{s}$ is expected to give a substantial increase in the $\tilde{t}_{1} \bar{t}_{1}$ production rate, e.g., $\sim 35 \%$ for $m\left(\tilde{t}_{1}\right)=$ $155 \mathrm{GeV} / c^{2}$.

CDF II features several main subsystems critical to this analysis. The tracking system consists of multilayer silicon detectors and an open-cell cylindrical drift chamber enclosed in a 1.4 T superconducting magnet. At $|\eta|<1$ [9] charged particle trajectories traverse all chamber layers, while at larger $|\eta|$ the chamber coverage is reduced progressively. The calorimeter system is organized into electromagnetic and hadronic sections segmented in a projective tower geometry and covers $|\eta|<3.6$. A set of strip and wire chambers is located within the central electromagnetic calorimeter at approximately the depth of
shower maximum and aids in reconstructing electrons and photons for $|\eta|<1.1$. The muon detection system is located outside of the calorimeter and covers $|\eta|<1.0$.

The analysis begins with a data sample collected by inclusive lepton-plus-track triggers [11]. These triggers select events containing an electron (muon) candidate with $E_{T}>8 \mathrm{GeV}\left(p_{T}>8 \mathrm{GeV} / c\right)$ and a second track, which is required to be consistent with originating from a tau decay by demanding that there be no other nearby tracks with $p_{T}>1.5 \mathrm{GeV} / c$ between the cones of 0.175 and 0.524 radians around the track. The integrated luminosity of the data sample is $L_{\text {int }}=322 \pm 19 \mathrm{pb}^{-1}$ [12].

We select events off-line by identifying at least one lepton with $p_{T}^{\ell}>10 \mathrm{GeV} / c$ and at least one $\tau_{h}$ candidate in $|\eta|<1$. The details of the $\tau_{h}$ identification algorithm can be found in Refs. [13,14]. We require $p_{T}^{\tau}>15 \mathrm{GeV} / c$. Jets are reconstructed using a fixed-cone algorithm with $\Delta R \equiv \sqrt{\Delta \eta^{2}+\Delta \phi^{2}}=0.4$ within $|\eta|<2.4$.

The dominant SM backgrounds are vector boson production, QCD, and $t \bar{t}$ production. In QCD multijet events, for example, semileptonic $b$ quark decays or $\gamma$ conversions can be selected as lepton candidates, and narrow jets can be misidentified as $\tau_{h}$ candidates. We require the sum of the $p_{T}$ of the tracks within $\Delta R<0.4$ around the lepton candidate $\left(I_{\text {trk }}\right)$ to be less than $2 \mathrm{GeV} / c$ and no jet with $E_{T}>$ 15 GeV within $0.3<\Delta R<0.8$ around the lepton. Further, we reject events where the $\mu$ or $e$ candidate is consistent with a cosmic ray muon or $\gamma$ conversion electron (see Ref. [13] for details). To suppress $Z \rightarrow \ell \ell$ events, we veto those for which the invariant mass of the primary $e$ ( $\mu$ ) and a reconstructed $e(\mu)$ candidate, which is required to pass loose identification criteria [13], is $76<m_{\ell \ell}<$ $106 \mathrm{GeV} / c^{2}$. We also reject events with $76<m_{e \tau}<$ $106 \mathrm{GeV} / c^{2}$ and azimuthal separation of $\left|\Delta \phi_{e \tau}\right|>$ 2.9 rad. To suppress further QCD and $Z \rightarrow \tau \tau$ events [10], we require $S_{T} \equiv\left|\vec{p}_{T}^{\ell}\right|+\left|\vec{p}_{T}^{\tau_{n}}\right|+\left|\overrightarrow{\mid}_{T}\right| / c>110 \mathrm{GeV} / c$.
$N_{\text {jet }}$ is the number of jet candidates that have $E_{T}>$ 20 GeV and are separated from any of $e, \mu$, or $\tau_{h}$ by $\Delta R>$ 0.8. We define six regions in the $m_{T}\left(\ell, \mathscr{E}_{T}\right) \equiv$ $\sqrt{2 p_{T}^{\ell} \boldsymbol{E}_{T}\left(1-\cos \Delta \phi_{\left.\ell, \dot{K}_{T}\right)}\right.}$ versus $N_{\text {jet }}$ plane and denote them as $A_{j} \quad\left(B_{j}\right)$ for $m_{T} \leq 35 \mathrm{GeV} / c^{2} \quad\left(m_{T}>\right.$ $35 \mathrm{GeV} / c^{2}$ ) and $j=0,1$, or 2 for $N_{\text {jet }}=0,1$, or $\geq 2$. The minimal values of $S_{T}$ and jet $E_{T}$ are optimized for maximum significance in the $A_{2}$ region for $140-160 \mathrm{GeV} / c^{2} \tilde{t}_{1}$ 's. The $m_{T} \leq 35 \mathrm{GeV} / c^{2}$ cut effectively separates the signal from $W+$ jet and $t \bar{t}$ backgrounds. The $N_{\text {jet }} \geq 2$ requirement strongly suppresses the Drell-Yan contribution. The data in region $A_{2}$ are not examined until the analysis procedure is finalized. The regions with $N_{\text {jet }}=0$ or 1 contain mostly background and are used mainly as control samples for validation. Region $B_{2}$ has an appreciable signal acceptance ( $\sim 40 \%$ of that in region $A_{2}$ ) but a substantially higher background expectation. For statistical interpretation of the data, we
employ a likelihood method that, in addition to our primary signal region $A_{2}$, utilizes sideband regions $A_{0}, B_{0}$, and $B_{2}$, which are used to perform data-driven $W+$ jet background estimations and to improve the sensitivity of the analysis.

The total event acceptance is $\alpha \equiv \epsilon_{\mathrm{MC}} \epsilon_{\text {trig. }}$. Here $\epsilon_{\mathrm{MC}}$ is the product of geometrical and kinematical acceptances, efficiencies to identify lepton and $\tau_{h}$ candidates, including isolation requirements, and the efficiency for all of the remaining cuts. We use the PYTHIA Monte Carlo (MC) generator [15] and the GEANT3-based [16] CDF II detector simulation to calculate $\epsilon_{\mathrm{MC}}$. Our nominal choice for the parton distribution functions (PDFs) is CTEQ5L [17] with the renormalization scale $Q \equiv \sqrt{m\left(\tilde{t}_{1}\right)^{2}+p_{T}\left(\tilde{t}_{1}\right)^{2}}$. The trigger efficiency $\epsilon_{\text {trig }}$ is measured using data [14]. In region $A_{2}, \alpha$ increases nearly linearly from about $0.6 \%$ at $m\left(\tilde{t}_{1}\right)=100 \mathrm{GeV} / c^{2}$ to $2.7 \%$ at $170 \mathrm{GeV} / c^{2}$ for both the $e$ and the $\mu$ channels.

The combined systematic uncertainty on $\alpha$ decreases almost linearly from $11 \%$ for $m\left(\tilde{t}_{1}\right)=100 \mathrm{GeV} / c^{2}$ to $7.2 \%$ for $170 \mathrm{GeV} / c^{2}$ and is similar in both channels. The largest contribution comes from the PDF systematic uncertainty, which is estimated using the uncertainty sets of CTEQ6.1m PDFs [17] and the technique described in Ref. [18]. For a $150 \mathrm{GeV} / c^{2}$ top squark, this uncertainty on $\alpha$ is $4.0 \%$. The uncertainty due to an imperfect knowledge of the jet energy scale, determined by varying the scale by $\pm 1 \sigma$, is $2.9 \%$. The uncertainty due to the amount of initial and final state radiation is found to be $2.5 \%$. Other sources of systematic uncertainty include the uncertainties in lepton and $\tau_{h}$ identification and isolation and $\mathscr{C}_{T}$ resolution and amount to a $5.1 \%$ relative contribution. The uncertainty on the integrated luminosity is $6 \%$.

The SM backgrounds come from two sources: (i) events with a true $\ell \tau_{h}$ pair from $Z / \gamma^{*}(\rightarrow \tau \tau)+$ jets, $t \bar{t}, W W, W Z$, and $Z Z$ production and (ii) events where lepton or $\tau_{h}$ candidates do not originate from a true lepton or tau but from the jets in $W+$ jet, $Z / \gamma^{*}(\rightarrow \ell \ell)+$ jets, and QCD multijet events. We first estimate the background from SM processes excluding the $W+$ jet contribution. DrellYan, $t \bar{t}$, and $W W$ production are estimated using PYTHIA and the CDF II detector simulation. For Drell-Yan backgrounds we use scale factors that improve the agreement between the yield predicted in MC simulation and the yield observed in data. The QCD multijet contribution is estimated by extrapolating the number of observed events in data for events with nonisolated leptons, defined by $2<$ $I_{\text {trk }}<10 \mathrm{GeV} / c$, into the class of events with an isolated lepton, defined by $I_{\text {trk }}<2 \mathrm{GeV} / c$ [13]. The NLO cross sections of $6.7 \pm 0.7$ [19] and $13.5 \pm 0.5 \mathrm{pb}$ [20] for $t \bar{t}$ and $W W$ production, respectively, are used. The contributions from $W Z$ and $Z Z$ are negligible.

The PYTHIA MC simulation does not accurately predict the absolute rate of the $W+$ jet background contribution $\left(N^{W}\right)$ in this analysis. To estimate $N^{W}$ in each region, we use the differences between the data and all other

TABLE I. Numbers of events observed in data $N_{\text {obs }}$ along with the expected numbers of SM background events. The $W+$ jet contributions are shown separately.

|  | $e+\tau_{h}$ channel |  |  |  | $\mu+\tau_{h}$ channel |  |
| :--- | ---: | ---: | :---: | :---: | :---: | :---: |
|  | SM backgrounds |  |  | SM backgrounds |  |  |
| Reg | $N_{\text {obs }}$ | Other | $W+$ jet | $N_{\text {obs }}$ | Other | $W+$ jet |
| $A_{2}$ | $\mathbf{1}$ | $2.0_{-0.4}^{+0.5}$ | $0_{-0}^{+0.4}$ | $\mathbf{1}$ | $1.0_{-0.2}^{+0.4}$ | $0_{-0}^{+0.5}$ |
| $B_{2}$ | 4 | $2.8_{-0.3}^{+0.5}$ | $1.0_{-1.0}^{+2.0}$ | 4 | $2.3_{-0.3}^{+0.4}$ | $1.7_{-1.5}^{+2.0}$ |
| $A_{1}$ | 4 | $3.3_{-0.5}^{+0.5}$ | $0.2_{-0.2}^{+1.2}$ | 3 | $2.6_{-0.4}^{+0.6}$ | $0.1_{-0.1}^{+0.8}$ |
| $B_{1}$ | 9 | $2.3_{-0.3}^{+0.4}$ | $6.7_{-2.2}^{+3.2}$ | 6 | $2.3_{-0.3}^{+0.5}$ | $3.8_{-2.1}^{+2.7}$ |
| $A_{0}$ | 11 | $9.1_{-1.1}^{+1.2}$ | $1.6_{-1.6}^{+2.7}$ | 8 | $5.2_{-0.5}^{+0.7}$ | $2.5_{-2.1}^{+2.4}$ |
| $B_{0}$ | 25 | $4.5_{-0.6}^{+0.7}$ | $21.1_{-4.3}^{+5.6}$ | 28 | $5.4_{-0.6}^{+0.8}$ | $23.6_{-5.7}^{+4.9}$ |

backgrounds plus signal in regions $A_{2}, B_{2}, A_{0}$, and $B_{0}$ and the assumption that $\mathcal{R} \equiv\left[N^{W}\left(A_{2}\right) / N^{W}\left(B_{2}\right)\right] \times$ $\left[N^{W}\left(B_{0}\right) / N^{W}\left(A_{0}\right)\right] \sim 1$. The ratios in $\mathcal{R}$ are determined by the kinematics of the $W+$ jet events at fixed $N_{\text {jet }}$ and are well modeled in the MC simulation. Based on MC predictions and cross checks with data vs MC comparisons, we conclude that $\mathcal{R}=1.0 \pm 0.5$ is a conservative assumption. We define a likelihood as a function of $\sigma\left(\tilde{f}_{1} \overline{\tilde{t}}_{1}\right)$ and $N^{W}$ in one of the regions using Poisson statistics convoluted with the uncertainties on the signal efficiency and on $\mathcal{R}$. The input parameters to the likelihood are the numbers of observed and expected events in each of the four regions.


FIG. 1 (color online). Distribution of the number of jets ( $E_{T}>$ 20 GeV ) for events with $m_{T}\left(\ell, \mathbb{E}_{T}\right) \leq 35 \mathrm{GeV} / c^{2}$ (regions $A_{0}$, $A_{\tilde{1}}$, and $A_{2}$ ) compared to the SM expectations and prediction for $\tilde{t}_{1} \tilde{t}_{1}\left[m\left(\tilde{t}_{1}\right)=150 \mathrm{GeV} / c^{2}\right]$ events.


FIG. 2 (color online). $\quad 95 \%$ C.L. limit curves for $\sigma\left(\tilde{t}_{1} \overline{\tilde{t}}_{1}\right) \times \beta^{2}$ for the cases when the theoretical uncertainty on the cross section is (dashed line) and is not (dotted line) considered in the limit calculation (see text for details). The previous constraint $m\left(L Q_{3}\right)>99 \mathrm{GeV} / c^{2}[21]$ is also shown.

The number of expected events in region $i$ is given by $N_{i}=$ $\sigma\left(\tilde{t}_{1} \overline{\tilde{t}}_{1}\right) \cdot \mathcal{B}\left(\tau \tau \rightarrow \ell \tau_{h}\right) \cdot L_{\mathrm{int}} \cdot \alpha_{i}+N_{i}^{\mathrm{BG}}+N_{i}^{W}$, where the branching ratio $\mathcal{B}\left(\tau \tau \rightarrow \ell \tau_{h}\right) \simeq 0.23, N_{i}^{\mathrm{BG}}$ includes all SM backgrounds except $W+$ jet events, and $\alpha_{i}$ is the total event acceptance for the signal in region $i$. To define the likelihood $\mathcal{L}\left(\sigma\left(\tilde{t}_{1} \overline{\tilde{t}}_{1}\right) \times \beta^{2}, N^{W}\left(A_{2}\right)\right)$, we treat $N^{W}\left(A_{0}\right)$, $N^{W}\left(B_{0}\right)$, and the ratio $\mathcal{R}=1.0 \pm 0.5$ as nuisance parameters with flat prior distributions. Note that $N^{W}\left(B_{2}\right)$ becomes a function of the above parameters and $N^{W}\left(A_{2}\right)$ and the large uncertainty on $\mathcal{R}$ does not affect our final results because $N^{W}\left(A_{2}\right)$ is expected to be small. This twodimensional likelihood can be used to estimate $N^{W}$ for each region and to calculate upper limits on $\sigma\left(\tilde{t}_{1} \overline{\tilde{t}}\right) \times \beta^{2}$. Note that the resulting $N^{W}$ depends on the observed number of events in the data, $N^{\mathrm{BG}}$, and a possible top-squark quark contribution.

In Table I, we show the numbers of events observed in the data along with the SM expectation. In Fig. 1, we present the $N_{\text {jet }}$ distribution for events with $m_{T} \leq$ $35 \mathrm{GeV} / c^{2}$. Two events are found in region $A_{2}$, consistent with the SM prediction. To set upper limits on $\sigma\left(\tilde{t}_{1} \overline{\tilde{t}}_{1}\right) \times$ $\beta^{2}$, we further integrate out $N^{W}\left(A_{2}\right)$ in the likelihood function defined above and use a Bayesian technique to calculate a $95 \%$ C.L. limit on $\sigma\left(\tilde{t}_{1} \overline{\tilde{t}}_{1}\right) \times \beta^{2}$. The electron and muon channels are treated as two separate measurements, taking into account the correlations among the systematic uncertainties.

The $95 \%$ C.L. limits on $\sigma\left(\tilde{t}_{1} \overline{\tilde{t}}_{1}\right) \times \beta^{2}$ as a function of $m\left(\tilde{t}_{1}\right)$ are shown in Fig. 2 and Table II. The dotted curve is our experimental result, compared to the NLO cross section (solid line) obtained using PROSPINO version 2 [22] with our nominal choice of CTEQ6.1M PDFs [17] and $Q$. The theoretical uncertainty of $\pm 18 \%$ on $\sigma\left(\tilde{t}_{1} \overline{\tilde{t}}_{1}\right)$ is due to the choice of $Q$ (varying the scale from its nominal value by a factor of 2 or a half) and PDFs. Taking this

TABLE II. $95 \%$ C.L. upper limit on $\sigma\left(\tilde{t}_{1} \tilde{t}_{1}\right) \times \beta^{2}$ (in pb ) as a function of $m\left(\tilde{t}_{1}\right)$ for the cases when uncertainty on the theoretical cross section is considered ( $\sigma_{\text {with uncert }}^{95 \%} \times \beta^{2}$ ) and is not considered ( $\sigma_{\text {no uncert }}^{95 \%} \times \beta^{2}$ ).

| $m\left(\tilde{t}_{1}\right)\left(\mathrm{GeV} / c^{2}\right)$ | 100 | 110 | 120 | 130 | 140 | 150 | 160 | 170 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\sigma_{\text {with uncert }}^{95 \%} \times \beta^{2}(\mathrm{pb})$ | 4.73 | 3.37 | 2.50 | 1.99 | 1.61 | 1.38 | 1.26 | 1.14 |
| $\sigma_{\text {no uncert }}^{95 \%} \times \beta^{2}(\mathrm{pb})$ | 4.48 | 3.11 | 2.27 | 1.81 | 1.47 | 1.26 | 1.16 | 1.04 |

uncertainty into consideration, the limits are reevaluated (dashed line in Fig. 2). The corresponding mass limits for the first and second cases are 156 (compared to 122 [10]) and $153 \mathrm{GeV} / c^{2}$, respectively.

In conclusion, we have searched for $\tilde{t}_{1} \overline{\tilde{t}}_{1}$ production in the final state of a lepton ( $e$ or $\mu$ ), a hadronically decaying tau, and two jets using $322 \mathrm{pb}^{-1}$ of $p \bar{p}$ collision data at $\sqrt{s}=1.96 \mathrm{TeV}$. We observe no excess of events in the data over the SM expectation. In an $\not R_{p}$ SUSY scenario, we set a $95 \%$ C.L. lower limit on the $\tilde{t}_{1}$ mass of $153 \mathrm{GeV} / c^{2}$ taking into account the theoretical uncertainties on the NLO cross section and assuming $\mathcal{B}\left(\tilde{t}_{1} \rightarrow \tau b\right)=1$. These results are also applicable to $L Q_{3}$ pair production.

We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. This work was supported by the U.S. Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science and Technology of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; the Swiss National Science Foundation; the A.P. Sloan Foundation; the Bundesministerium für Bildung und Forschung, Germany; the Korean Science and Engineering Foundation and the Korean Research Foundation; the Science and Technology Facilities Council and the Royal Society, United Kingdom; the Institut National de Physique Nucleaire et Physique des Particules/CNRS; the Russian Foundation for Basic Research; the Comisión Interministerial de Ciencia y Tecnología, Spain; the European Community's Human Potential Programme; the Slovak R\&D Agency; and the Academy of Finland.
${ }^{a}$ Visiting scientist from University of Athens, 15784 Athens, Greece.
${ }^{\mathrm{b}}$ Visiting scientist from Chinese Academy of Sciences, Beijing 100864, China.
${ }^{\mathrm{c}}$ Visiting scientist from University of Bristol, Bristol BS8 1TL, United Kingdom.
${ }^{\mathrm{d}}$ Visiting scientist from University Libre de Bruxelles, B-1050 Brussels, Belgium.
${ }^{\mathrm{e}}$ Visiting scientist from University of California Irvine, Irvine, CA 92697, USA.
${ }^{\mathrm{f}}$ Visiting scientist from University of California Santa Cruz, Santa Cruz, CA 95064, USA.
${ }^{g}$ Visiting scientist from Cornell University, Ithaca, NY 14853, USA.
${ }^{\mathrm{h}}$ Visiting scientist from University of Cyprus, Nicosia CY-1678, Cyprus.
${ }^{\text {i }}$ Visiting scientist from University College Dublin, Dublin 4, Ireland.
${ }^{\mathrm{j}}$ Visiting scientist from University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom.
${ }^{\mathrm{k}}$ Visiting scientist from University of Heidelberg, D-69120 Heidelberg, Germany.
${ }^{1}$ Visiting scientist from Universidad Iberoamericana, Mexico D.F., Mexico.
${ }^{m}$ Visiting scientist from University of Manchester, Manchester M13 9PL, United Kingdom.
${ }^{n}$ Visiting scientist from Nagasaki Institute of Applied Science, Nagasaki, Japan.
${ }^{\circ}$ Visiting scientist from University de Oviedo, E-33007 Oviedo, Spain.
${ }^{\mathrm{p}}$ Visiting scientist from Queen Mary, University of London, London, E1 4NS, United Kingdom.
${ }^{\mathrm{q}}$ Visiting scientist from Texas Tech University, Lubbock, TX 79409, USA.
${ }^{\text {r }}$ Visiting scientist from IFIC(CSIC-Universitat de Valencia), 46071 Valencia, Spain.
[1] H. P. Nilles, Phys. Rep. 110, 1 (1984); H. E. Haber and G. L. Kane, ibid. 117, 75 (1985).
[2] K. Inoue, A. Kakuto, H. Komatsu, and S. Takeshita, Prog. Theor. Phys. 68, 927 (1982); 70, 330 (1983); L. E. Ibanez and C. Lopez, Nucl. Phys. B233, 511 (1984); J. R. Ellis and S. Rudaz, Phys. Lett. 128B, 248 (1983).
[3] A. Alves, O. Eboli, and T. Plehn, Phys. Lett. B 558, 165 (2003).
[4] S. Weinberg, Phys. Rev. D 26, 287 (1982); G. R. Farrar and S. Weinberg, ibid. 27, 2732 (1983); S. Dawson, Nucl. Phys. B261, 297 (1985); for a recent review on $\not \not_{p}$ SUSY, see R. Barbier et al., Phys. Rep. 420, 1 (2005).
[5] F. de Campos et al., arXiv:hep-ph/9903245; D. Restrepo, W. Porod, and J.W.F. Valle, Phys. Rev. D 64, 055011 (2001); S. P. Das, A. Datta, and S. Poddar, Phys. Rev. D 73, 075014 (2006).
[6] For a review, see S. Davidson, D. C. Bailey, and B. A. Campbell, Z. Phys. C 61, 613 (1994).
[7] V. M. Abazov et al. (D0 Collaboration), Phys. Lett. B 638, 119 (2006). For example, the difference in $\sigma\left(\tilde{t}_{1} \bar{t}_{1}\right)$ for the case of gluino mass of $200 \mathrm{GeV} / c^{2}$, and the case of a very heavy gluino is $3 \%$ [for $m\left(\tilde{t}_{1} \tilde{t}_{1}\right)=150 \mathrm{GeV} / c^{2}$ ].
[8] D. E. Acosta et al. (CDF Collaboration), Phys. Rev. D 71, 032001 (2005).
[9] The polar and azimuthal angles ( $\phi$ and $\theta$ ) are defined with respect to the proton beam axis. The pseudorapidity is $\eta=-\ln [\tan (\theta / 2)]$. The transverse momentum and energy are defined as $p_{T}=p \sin \theta$ and $E_{T}=E \sin \theta$, respectively. The uncorrected missing transverse energy $\mathscr{E}_{T}{ }^{\text {unc }}$ is the magnitude of $\vec{E}_{T}^{\text {unc }} \equiv-\sum E_{T}^{i} \hat{n}_{i}$, where $\hat{n}_{i}$ is the unit vector in the transverse plane pointing from the interaction point to the energy deposition in calorimeter cell $i . \not \mathscr{E}_{T}$ is $\mathscr{E}_{T}^{\text {unc }}$ further corrected for the muon $p_{T}$ and for the effects of nonideal response of the calorimeter to $e, \tau$, and jets.
[10] D. E. Acosta et al. (CDF Collaboration), Phys. Rev. Lett. 92, 051803 (2004).
[11] A. Anastassov et al. (CDF Collaboration), Nucl. Instrum. Methods Phys. Res., Sect. A 518, 609 (2004).
[12] D. Acosta et al., Nucl. Instrum. Methods Phys. Res., Sect. A 494, 57 (2002); S. Klimenko et al., Report No. FERMILAB-FN-0741, 2003.
[13] A. Abulencia (CDF Collaboration), Phys. Rev. D 75, 092004 (2007).
[14] V. Khotilovich, Ph.D. thesis, Texas A\&M University [Report No. FERMILAB-THESIS-2008-05, 2008 (unpublished)].
[15] T. Sjöstrand et al., Comput. Phys. Commun. 135, 238 (2001). We use PYTHIA version 6.216.
[16] R. Brun et al., Report No. CERN-DD-EE-81-1, 1989.
[17] J. Pumplin et al. (CTEQ Collaboration), J. High Energy Phys. 07 (2002) 012.
[18] A. Abulencia et al. (CDF Collaboration), J. Phys. G 34, 2457 (2007).
[19] M. Cacciari et al., J. High Energy Phys. 04 (2004) 068; N. Kidonakis and R. Vogt, Phys. Rev. D 68, 114014 (2003).
[20] J. M. Campbell and R. K. Ellis, Phys. Rev. D 60, 113006 (1999).
[21] F. Abe et al. (CDF Collaboration), Phys. Rev. Lett. 78, 2906 (1997); G. Abbiendi et al. (OPAL Collaboration), Eur. Phys. J. C 31, 281 (2003).
[22] W. Beenakker, R. Hopker, M. Spira, and P. M. Zerwas, Nucl. Phys. B492, 51 (1997).


[^0]:    ${ }^{1}$ Institute of Physics, Academia Sinica, Taipei, Taiwan 11529, Republic of China
    ${ }^{2}$ Argonne National Laboratory, Argonne, Illinois 60439, USA
    ${ }^{3}$ Institut de Fisica d'Altes Energies, Universitat Autonoma de Barcelona, E-08193, Bellaterra (Barcelona), Spain
    ${ }^{4}$ Baylor University, Waco, Texas 76798, USA
    ${ }^{5}$ Istituto Nazionale di Fisica Nucleare, University of Bologna, I-40127 Bologna, Italy
    ${ }^{6}$ Brandeis University, Waltham, Massachusetts 02254, USA
    ${ }^{7}$ University of California, Davis, Davis, California 95616, USA
    ${ }^{8}$ University of California, Los Angeles, Los Angeles, California 90024, USA
    ${ }^{9}$ University of California, San Diego, La Jolla, California 92093, USA
    ${ }^{10}$ University of California, Santa Barbara, Santa Barbara, California 93106, USA
    ${ }^{11}$ Instituto de Fisica de Cantabria, CSIC-University of Cantabria, 39005 Santander, Spain
    ${ }^{12}$ Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
    ${ }^{13}$ Enrico Fermi Institute, University of Chicago, Chicago, Illinois 60637, USA
    ${ }^{14}$ Comenius University, 84248 Bratislava, Slovakia; Institute of Experimental Physics, 04001 Kosice, Slovakia
    ${ }^{15}$ Joint Institute for Nuclear Research, RU-141980 Dubna, Russia
    ${ }^{16}$ Duke University, Durham, North Carolina 27708, USA
    ${ }^{17}$ Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
    ${ }^{18}$ University of Florida, Gainesville, Florida 32611, USA
    ${ }^{19}$ Laboratori Nazionali di Frascati, Istituto Nazionale di Fisica Nucleare, I-00044 Frascati, Italy
    ${ }^{20}$ University of Geneva, CH-1211 Geneva 4, Switzerland
    ${ }^{21}$ Glasgow University, Glasgow G12 8QQ, United Kingdom
    ${ }^{22}$ Harvard University, Cambridge, Massachusetts 02138, USA

