
Department of Computer Science
University College London

University of London

Addressing the Cold Start Problem

In Tag-based Recommender Systems

Valentina Zanardi

Submitted in partial fulfilment of the requirements
for the degree of Doctor of Philosophy

of the University College London

2010

I, Valentina Zanardi confirm that the work presented in this thesis is my own. Where

information has been derived from other sources, I confirm that this has been indicated

in the thesis.

Abstract

Folksonomies have become a powerful tool to describe, discover, search, and navigate

online resources (e.g., pictures, videos, blogs) on the Social Web. Unlike taxonomies and

ontologies, which impose a hierarchical categorisation on content, folksonomies directly

allow end users to freely create and choose the categories (in this case, tags) that best

describe a piece of information. However, the freedom afforded to users comes at a cost:

as tags are defined informally, the retrieval of information becomes more challenging.

Different solutions have been proposed to help users discover content in this highly dynamic

setting. However, they have proved to be effective only for users who have already heavily

used the system (active users) and who are interested in popular items (i.e., items tagged

by many other users).

In this thesis we explore principles to help both active users and more importantly new or

inactive users (cold starters) to find content they are interested in even when this content

falls into the long tail of medium-to-low popularity items (cold start items). We investigate

the tagging behaviour of users on content and show how the similarities between users and

tags can be used to produce better recommendations. We then analyse how users create

new content on social tagging websites and show how preferences of only a small portion

of active users (leaders), responsible for the vast majority of the tagged content, can be

used to improve the recommender system’s scalability. We also investigate the growth of

the number of users, items and tags in the system over time. We then show how this

information can be used to decide whether the benefits of an update of the data structures

modelling the system outweigh the corresponding cost.

In this work we formalize the ideas introduced above and we describe their implementa-

tion. To demonstrate the improvements of our proposal in recommendation efficacy and

efficiency, we report the results of an extensive evaluation conducted on three different

social tagging websites: CiteULike, Bibsonomy and MovieLens. Our results demonstrate

that our approach achieves higher accuracy than state-of-the-art systems for cold start

users and for users searching for cold start items. Moreover, while accuracy of our tech-

nique is comparable to other techniques for active users, the computational cost that it

requires is much smaller. In other words our approach is more scalable and thus more

suitable for large and quickly growing settings.

2

Acknowledgements

I would like to express my gratitude to my supervisor, Dr. Licia Capra, whose expertise,

understanding, and patience, added considerably to my Phd experience. I also thank my

second supervisor, Prof. Wolfgang Emmerich, who provided a contrasting viewpoint and

whose insights and experience have been invaluable.

A very special thanks goes to my friends Franco Raimondi and Daniel Sykes, and to my

boyfriend Enrico Scalavino that kindly assisted me in writing this thesis.

I would also like to thank all my colleagues that shared with me the Malet Place Engineer-

ing Building’s 7th floor (in no particular order): Afra Mashhadi, Michalis Christodoulou,

Giovanni Quattrone, Neal Lathia, Lucia Del Prete, Tamas Jambor and Will Heaven (and

all the others that I forgot to mention).

I must also thank my family for the love and support they provided me through my entire

life.

2

Contents

1 Introduction 14

1.1 Background . 14

1.2 Motivating Scenario . 15

1.2.1 User-Based Collaborative Filtering in Tag-Based Settings 16

1.2.2 Item-Based Collaborative Filtering in Tag-Based Settings 18

1.2.3 Scalability . 20

1.3 Thesis Contributions . 21

1.3.1 Accurate Recommendations for Cold Start Users and Items 21

1.3.2 Scalable Recommendations . 21

1.3.3 Adaptive Temporal Evaluation . 22

1.3.4 Evaluation of Results . 22

1.4 Thesis Outline . 22

1.5 Publications Related to This Thesis . 23

2 Cold Start Users and Items 25

2.1 Related Work . 25

2.1.1 Recommendation Algorithms for Rating-Based Scenarios 25

2.1.2 Learning and Exploiting the Hidden Semantic of Tags 30

2.1.3 Recommendation Algorithms for Tag Based Environment 30

3

2.2 Analysis of the Problem Space . 33

2.2.1 Summary from Analysis . 36

2.3 Insight . 38

2.4 Social Ranking . 39

2.4.1 User Similarity . 39

2.4.2 Tag Similarity . 41

2.4.3 Algorithm Overview . 41

3 Evaluation of Social Ranking 45

3.1 Metrics . 45

3.2 Datasets . 46

3.3 Benchmarks . 48

3.4 Parameter Tuning . 49

3.4.1 Impact of Using Different Strategies to Build Users and Tags Profile 49

3.4.2 Results . 50

3.4.3 Impact of Using Different Strategies to Build the Expanded Tag Set 51

3.4.4 Activity-Based Tag Expansion . 51

3.4.5 Results . 53

3.4.6 Tag Expansion Using Dictionary-Based Approaches 54

3.4.7 Impact of k When Performing Tag Expansion 56

3.5 Results . 57

3.5.1 Precision and Recall Computed on Each Case Study 57

3.5.2 Precision and Recall Computed on the Whole Query Set 73

4 Scalablility 77

4.1 Related Work . 77

4

4.2 Analysis of the Problem Space . 80

4.3 Insight . 81

4.3.1 Conclusions . 82

4.4 Clustering of Leaders . 82

4.4.1 Background Literature on Clustering 82

4.4.2 Clustering of Leaders for Clustered Social Ranking 86

4.5 Algorithm Overview . 87

5 Evaluation of Clustered Social Ranking 90

5.1 Metrics . 90

5.2 Datasets . 91

5.3 Benchmark . 91

5.4 Parameter Tuning . 91

5.5 Results . 93

5.5.1 Precision and Recall Computed on Each Activity Group 95

5.6 Complexity Analysis . 100

6 Adaptive Update 108

6.1 Analysis of the Problem Space . 108

6.2 A New Update Methodology . 113

6.3 Experiment Setup . 114

6.4 Results . 115

7 Conclusions and Future Work 119

7.1 Contributions . 119

7.1.1 Cold Start Users and Items . 120

7.1.2 Scalability . 120

5

7.1.3 Adaptive Update . 120

7.2 Caveat . 121

7.3 Future Work . 121

7.3.1 Model Improvement . 121

7.3.2 New Challenges in Tag-based Environments 122

References 124

6

List of Figures

1.1 An example tagging scenario . 15

2.1 Classification of recommendation techniques for rating-based scenarios . . . 26

2.2 User activity on papers . 34

2.3 User activity on tags . 34

2.4 User activity on the same paper . 35

2.5 Tag activity on papers . 35

2.6 Tag usage by users . 36

2.7 Tag usage on papers . 37

2.8 Example of a long tail distribution . 37

2.9 Transformation of the dataset . 39

2.10 Distribution of users’ similarity . 40

2.11 Distribution of tags’ similarity . 42

2.12 Overview of SR . 43

3.1 Precision for active users and popular items on Bibsonomy 59

3.2 Recall for active users and popular items on Bibsonomy 59

3.3 Precision for active users and unpopular items on Bibsonomy 60

3.4 Recall for active users and unpopular items on Bibsonomy 60

3.5 Precision for new users and popular items on Bibsonomy 61

7

3.6 Recall for new users and popular items on Bibsonomy 61

3.7 Precision for new users and unpopular items on Bibsonomy 62

3.8 Recall for new users and unpopular items on Bibsonomy 62

3.9 Precision for active users and popular items on CiteULike 64

3.10 Recall for active users and popular items on CiteULike 64

3.11 Precision for active users and unpopular items on CiteULike 65

3.12 Recall for active users and unpopular items on CiteULike 65

3.13 Precision for new users and popular items on CiteULike 66

3.14 Recall for new users and popular items on CiteULike 66

3.15 Precision for new users and unpopular items on CiteULike 67

3.16 Recall for new users and unpopular items on CiteULike 67

3.17 Precision for active users and popular items on MovieLens 69

3.18 Recall for active users and popular items on MovieLens 69

3.19 Precision for active users and unpopular items on MovieLens 70

3.20 Recall for active users and unpopular items on MovieLens 70

3.21 Precision for new users and popular items on MovieLens 71

3.22 Recall for new users and popular items on MovieLens 71

3.23 Precision for new users and unpopular items on MovieLens 72

3.24 Recall for new users and unpopular items on MovieLens 72

3.25 Precision on Bibsonomy . 74

3.26 Recall on Bibsonomy . 74

3.27 Precision on CiteULike . 75

3.28 Recall on CiteULike . 75

3.29 Precision on MovieLens . 76

3.30 Recall on MovieLens . 76

8

4.1 Overview of the recommendation process 83

5.1 Clustering of leaders for CiteULike LM30 with random point initialization . 93

5.2 Clustering of leaders for CiteULike LM30 with real user initialization 94

5.3 Precision for active users on Bibsonomy . 96

5.4 Recall for active users on Bibsonomy . 96

5.5 Precision for new users on Bibsonomy . 97

5.6 Recall for new users on Bibsonomy . 97

5.7 Precision for active users on CiteULike . 98

5.8 Recall for active users on CiteULike . 98

5.9 Precision for new users on CiteULike . 99

5.10 Recall for new users on CiteULike . 99

5.11 Precision for active users on MovieLens . 101

5.12 Recall for active users on MovieLens . 101

5.13 Precision for new users on MovieLens . 102

5.14 Recall for new users on MovieLens . 102

5.15 Overall precision on Bibsonomy . 103

5.16 Overall recall on Bibsonomy . 103

5.17 Overall precision on CiteULike . 104

5.18 Overall recall on CiteULike . 104

5.19 Overall precision on MovieLens . 105

5.20 Overall recall on MovieLens . 105

6.1 Growth of users, items and tags in the Bibsonomy dataset 110

6.2 Experiment setup . 111

6.3 Experiment setup . 112

9

6.4 Error in prediction on Bibsonomy for different data growth 115

6.5 Cumulative error on Bibsonomy computed for 25%-75% test set 117

6.6 Cumulative error on Bibsonomy computed for 50%-50% test set 117

6.7 Cumulative error on Bibsonomy computed for 75%-25% test set 118

10

List of Tables

1.1 Rating pattern over existing items . 17

1.2 Tag pattern over existing items . 17

1.3 Rating pattern over existing items . 19

1.4 Rating pattern over existing items . 19

3.1 Datasets’ features . 47

3.2 Size of training and test sets . 48

3.3 Expanded query tags . 53

3.4 Impact of the different tag expansion on the ranking of result in terms of

coverage . 53

3.5 Percentiles of the ranking of results . 54

3.6 Impact of using different values of k when performing tag expansion on

coverage . 56

3.7 Impact of using different values of k when performing tag expansion on

accuracy . 56

3.8 Number of test queries performed . 57

4.1 Computational complexity of FR, SR and CSR 80

5.1 Datasets’ characteristics . 91

5.2 Clusters’ characteristics . 92

11

5.3 Clustering features . 93

5.4 Number of test queries performed . 95

5.5 Computational complexity of FR, SR and CSR 106

6.1 Feature of data snapshots . 110

6.2 Precision/recall loss after 1 month . 112

6.3 Number of system updates performed by each strategy 116

12

List of acronyms

CF Collaborative Filtering
UBCF User-Based Collaborative Filtering
IBCF Item-Based Collaborative Filtering
SR Social Ranking
CSR Clustered Social Ranking
kNN k-nearest neighbours
SVD Singular Value Decomposition
PCA Principal Component Analysis
Pop Popularity-based recommender system
CFUT User-based Collaborative Filtering with similarity computed with Tag usage
CFUI User-based Collaborative Filtering with similarity computed with tagged Items
FR FolkRank

13

Chapter 1

Introduction

1.1 Background

The birth and proliferation of interactive, social and customizable online resources has

transformed users from passive consumers to active producers of content. This has expo-

nentially increased the amount of available information, from videos on sites like YouTube

and MySpace to pictures on Flickr, music on Last.fm, blogs on Blogger and so on. This

trend has been further fostered by the enormous success of new-generation mobile devices

(e.g., iPhones, Android-powered devices, Blackberry) that allow users to create and share

content almost anywhere and anytime. Statistics, referring back to March 2005 [Kuchin-

skas, 2005], report that the online photo sharing website Flickr was comprising 775,000

registered users, hosting 19.5 million photos and was growing at 30% every month. De-

licious, one of the most popular social bookmarking websites, was hosting more than

5,000,000 users and adding more than 55, 000 new posts every day [Baker, 2008].

This content is no longer categorised according to pre-defined taxonomies (or ontologies).

Rather, a new trend called social (or folksonomic) tagging has emerged and has quickly

become the most popular way to describe content. Unlike taxonomies, which impose

a hierarchical categorisation on content, folksonomies directly allow end users to freely

create and choose the tags that best describe a piece of information (a picture, a blog

entry, a video clip, etc.). However, this freedom comes at a cost: since tags are defined

informally and change continuously out of any control, finding content of interest has

become a main challenge. The number of synonyms, homonyms, polysemous words, as

well as the inevitable heterogeneity of users, make searches all the more difficult.

The problem of suggesting relevant content to users according to their interests has been

widely investigated in rating-based environments, where interests are clearly expressed as

numerical ratings. In these scenarios, User-Based Collaborative Filtering (UBCF) [Breese

14

Chapter 1 1.2 Motivating Scenario

Figure 1.1: An example tagging scenario

et al., 1998] has established itself as the principal means of recommending items. The

traditional UBCF approach first identifies like-minded individuals (i.e., those users who

rated the same set of items with similar values). The collected ratings are then combined

to predict a personalised ranked list which is recommended to each user.

The model proposed by UBCF could also be applied in tag-based scenarios. However, any

such application must consider that tags introduce a new third dimension in the standard

two-dimensional relationship between users and items. Moreover, while in rating-based

scenarios users usually rate all content they know something about, regardless of the

opinion they have about it (i.e., they rate also items they do not like), in tag-based

environments users tend to tag only content they are interested in. This behavior makes

the process of learning interests even more challenging. To see why, we provide a more

detailed example next.

1.2 Motivating Scenario

Consider a community of researchers interested in storing, organizing and exchanging rel-

evant scientific papers. Rather than using the existing rigid ACM classification system1,

users could freely describe papers with tags from spoken language. Websites offering this

kind of service already exist. An example is the CiteULike website (Figure 1.1). CiteU-

Like allows users to describe scientific references with freely chosen tags which produce

1http://www.acm.org/about/class/

15

Chapter 1 1.2 Motivating Scenario

a folksonomy of academic interests. For each registered user, the system builds a user

profile based on all the papers the user tagged and the set of tags she used. Formally, a

folksonomy is defined as a tuple F := (U, T, P, Y) [Hotho et al., 2006], where:

• U , T and P are finite sets, whose elements are called users, tags and resources

(papers as in the considered example), respectively. Referring to Figure 1.1, U :=

(Alice,Bob, Paul), T := (t1, t2, t3, t5) and P := (p1, p2, p3, p4).

• Y is a ternary relation between the sets, i.e., Y ⊆ U × T × R, where each tuple

(u, t, r) is called bookmark.

Consider a registered user Alice, logging on the CiteULike website and interested in re-

ceiving recommendations about papers she may deem relevant. We analyze the impact

of applying two different state-of-the-art recommendation strategies to accomplish the

described task: User-Based and Item-Based Collaborative Filtering (UBCF and

IBCF respectively).

1.2.1 User-Based Collaborative Filtering in Tag-Based Settings

To recommend interesting content to Alice, UBCF processes all users’ profiles and identifies

a subset of users who have similar interests to Alice. In the following, we will consider

users to have similar interests if they either tag a same subset of items or use a same subset

of tags. Their opinions are then used to produce recommendations under the assumption

that users who shared interests at a given time t1 will still do so at any time t2 > t1.

However, identifying users with similar interests in our tag-based scenario is a more chal-

lenging process than in traditional rating-based environments, as users express their prefer-

ences by associating items with tags rather than using numerical ratings. We can compare

the performance of the UBCF algorithm on both rating-based and tag-based environments

by considering two simple examples depicted in Table 1.1 and Table 1.2. For the sake of

simplicity, we assume that every user has tagged each item with one tag only.

We first focus on the rating-based environment depicted in Table 1.1. User Alice shares

similar opinions on items p1 and p2 with user Bob. Both users in fact rated the two items

p1 and p2 with value 5. In this scenario, a simple UBCF algorithm would identify Bob as

a possible recommender for Alice and would suggest item p3 to her, just because Bob has

a positive opinion about it.

Consider now a similar situation but in the tag-based environment depicted in Table 1.2.

In this scenario, Bob could be identified as a possible recommender for Alice, since both

users tagged items p1 and p2. However, this is not a viable conclusion as it does not

consider that Alice and Bob used different tags to describe p1 and p2. Bob described item

16

Chapter 1 1.2 Motivating Scenario

Item

User p1 p2 p3 p4
Bob 5 5 4

Alice 5 5

Paul 4

Table 1.1: Rating pattern over existing items

Item

User p1 p2 p3 p4
Bob t1 t2 t3
Alice t3 t1
Paul t5

Table 1.2: Tag pattern over existing items

p1 with tag t1 and item p2 with tag t2, while Alice described item p1 with tag t3 and item

p2 with tag t1. This could imply that users are interested in the same items but from

different perspectives and that they are unlikely to share interests.

Similarly, identifying Bob as a possible recommender by looking at commonly used tags

(both users used tags t1 and t3) is not a viable solution either, as it does not consider

that the tags were used on different items. For example t1 might be a polysemic word and

might have two different meaning when it is associated with one paper or another.

Problem statement: applying traditional UBCF techniques in tag-based

environments implies flattening the tri-dimensional relationship between

users, items and tags to two dimensions and consequently discarding

potentially useful information.

In tag-based environments, a novel recommendation technique capable of

leveraging the tri-dimensional relationship between users, items and tags is

thus called for.

Let us focus now on user Paul, who has recently joined the system. After logging in on the

website, Paul expresses his interest for item p4 by tagging it with tag t5. Since Paul was

the only user in the system to tag the new item p4 and to use the new tag t5, a traditional

CF approach would fail in selecting a set of possible recommenders for him. This problem

is well-known in the literature as the user cold start problem and appears to be aggravated

in tag-based scenarios, as user preferences are not expressed by unambiguous ratings from

a finite and discrete numerical domain. Conversely, tags generate wide folksonomies often

in the order of thousands of keywords (e.g., CiteULike has roughtly 130,000 tags). If tag

17

Chapter 1 1.2 Motivating Scenario

t5 were a synonym of tag t2, Bob could be identified as a possible recommender for Paul

(as they would share one tag in common) and items p1, p2 and p3 could be considered by

the recommendation engine.

Problem statement: In both rating- and tag-based environments, pre-

dictions about what items a target user may be interested in cannot be

computed if there is no or little overlap between her rated/tagged items

and those rated/tagged by the community. Moreover, in tag-based en-

vironments, if a target user uses new or unpopular tags, or tags which

are synonym to the ones commonly used by the community, predictions

about what items she may be interested in cannot be computed as no

suitable recommenders can be selected.

In tag-based environments, a novel technique capable of producing recom-

mendations even for new or inactive users, and for users expressing their

preferences with unpopular or synonym tags, is thus called for.

1.2.2 Item-Based Collaborative Filtering in Tag-Based Settings

An alternative technique to suggest interesting content to Alice is Item-Based Collaborative

Filtering (IBCF). IBCF processes Alice’s profile information and identifies a subset of

items which are similar to those she tagged and which can be recommended to her. The

underpinning assumption is that users’ interests do not change over time. In other words

if Alice was interested in a set of items S1 at time t1, at any time t2 > t1 she is likely to

enjoy a set of items S2 similar to S1. However, identifying similarities between items in

tag-based environments is much more challenging than in a traditional rating-based ones.

We can compare the performance of the IBCF algorithm on both rating-based and tag-

based environments by considering the examples depicted in Table 1.3 and Table 1.4.

We first focus on the rating-based environment depicted in Table 1.3. Alice expresses a

preference for item p1, rating it with value 4. In this scenario, a simple IBCF algorithm

would identify item p2 as similar to p1, since both users Bob and Paul share similar opinions

on them (they both rated p1 and p2 with value 5). The system would thus suggest item

p2 to Alice, given the fact that it appears to be similar to her rated item p1.

Consider now the tag-based scenario depicted in Table 1.4. In this case, identifying item

p2 as similar to item p1 simply because it was tagged by both Bob and Paul is not a viable

solution as it does not consider that the tags used were different. Bob described item p1
with tag t1 and item p2 with tag t3, while Paul described item p1 with tag t2 and item p2
with tag t1.

Let us focus now on item p3, belonging to a narrow and unpopular research field and

18

Chapter 1 1.2 Motivating Scenario

User

Item Bob Paul Steve Alice

p1 5 5 4

p2 5 5

p3 5

Table 1.3: Rating pattern over existing items

User

Item Bob Paul Steve Alice

p1 t1 t2 t1
p2 t3 t1
p3 t5

Table 1.4: Rating pattern over existing items

thus tagged by user Steve only. Since p3 cannot be identified as similar to any other

existing item, it will never be recommended to any user. This problem is well-known in

the literature as the item cold start problem and appears to be aggravated in tag-based

scenarios, as user preferences are not expressed by unambiguous ratings. For example, if

tag t5 were a synonym of tag t1, p3 could be considered similar to p1 and p2 and would

thus be considered by the recommendation engine.

Problem statement: In rating- and tag-based environments, new items

cannot be recommended to users if they are not similar to any other

existing item. Moreover, in tag-based environments not only new items

but also items tagged with new or unpopular tags, or with tags which

are synonyms of existing ones, cannot be recommended to users as they

cannot be identified as similar to any of the other existing items.

In tag-based environments, a novel technique capable of producing recommen-

dations even for items described by unpopular or synonym tags is thus called

for.

The user and item cold start problems are dominant in recommender systems where new

users join and new items are uploaded everyday. As for March 2007, the Citeulike website

had 33,000 registered users and was gaining new registrations at the rate of 100 per day. At

that time there were 505,402 items in the database tagged 1,676,130 times using 130,548

distinct tags [Emamy and Cameron, 2007]. These numbers have been continuously growing

since then. In this scenario, an effective search and recommender system must be capable

of recommending items even when little information is available about user interests and

items.

19

Chapter 1 1.2 Motivating Scenario

Furthermore, as also emphasized by Anderson in his book “The Long Tail” [Anderson,

2006], the almost endless variety of items which can be suggested to users and the increased

demand for medium-to-low popularity items make traditional recommendation strategies

unsuitable to meet preferences of users interested in niche products. In the rest of this

work we will refer to items tagged by few users as “medium-to-low popularity” or “non-

mainstream” items. An effective search and recommender system must be capable of

including non-mainstream items in order to satisfy users with atypical preferences.

1.2.3 Scalability

In addition to the cold start problems, tag-based recommender systems have to face bigger

scalability problems than traditional rating-based ones. This is because almost everyone

can produce content and the number of users and items grows at a very high rate. Further-

more, we are dealing with a tri-dimensional problem, where not only users and items but

also tags grow at a very high rate. In recent years, the research community has been very

active to devise algorithms capable of producing ever more accurate recommendations,

but partly left aside the scalability problem. The Netflix prize competition2, promising an

award of 1 million dollars to whoever could improve the accuracy of the Netflix system by

10%, has further fostered research towards accurate systems, while neglecting scalability.

Indeed, the proposed solutions took into account several hundred different algorithms and

trillions of different variables and their complexity put scalability at risk. Even Neil Hunt,

Netflix’s chief product officer, has admitted the advantages of more precise recommenda-

tions may be outweighed by the cost of the additional computation required.

Problem statement: There is a conflicting tradeoff between system ac-

curacy and system scalability.

A scalable technique capable of producing accurate recommendations at low

computational cost is thus called for.

Recommender system techniques specifically developed for tag-based scenarios need to

be lightweight not only during the online recommendation process. The offline process of

building and periodically updating the pre-computed data structures which are required to

produce online recommendations must be very efficient too. Given the high computational

cost, traditional strategies perform data updates at fixed time intervals (for example, every

week or every fortnight). As a consequence, the system periodically relies on stale data

structures that might hinder recommendations.

Problem statement: There is a conflicting tradeoff between the benefits

of frequent data updates and their corresponding costs.

2http://www.netflixprize.com

20

Chapter 1 1.3 Thesis Contributions

A novel strategy to perform data updates only when the benefits outweigh the

corresponding costs is thus called for.

1.3 Thesis Contributions

In this thesis we focus on scenarios where items are characterised by descriptive tags.

Numerical ratings are not available and users preferences can only be inferred from tagged

items. The goal of this thesis is to develop new, effective and scalable recommendation

techniques capable of suggesting interesting items even when little information is available

about user interests. In addition, the set of recommendations must include unpopular

items, if these are relevant to the target user. An overview of the main contributions of

this thesis is given in the following.

1.3.1 Accurate Recommendations for Cold Start Users and Items

We start our investigation by analyzing the key features of CiteULike, a typical tag-based

social tagging website. The results of this analysis point out that the considered dataset

is rather sparse. Most of the users belonging to the system have seldom used it and most

of the tags and items have been used/tagged by a small subset of users only. This data

sparsity causes traditional recommender systems to be particularly sensitive to both the

user and item cold start problems. In this thesis, we propose a new technique capable of

suggesting even unpopular items both to active and new or inactive users. To achieve

this goal, we project the existing tri-dimensional relationship between users, items and

tags onto two two-dimensional relationships, users-tags and tags-items respectively. We

use the former to compute similarities between users and to find suitable recommenders,

and the latter to compute similarities between tags and to discover potentially useful tags

which can bring the attention of users on interesting items.

We develop an algorithm called Social Ranking (SR) that exploits these similarity metrics

to effectively suggest relevant items to all users of the system.

1.3.2 Scalable Recommendations

As the results of our previous investigation point out, and as also confirmed by current

statistics, the vast majority of items is tagged by a rather small proportion of users (lead-

ers), while other users (followers) mainly browse them. Moreover, leaders tend to share

interests with a rather small group of other users only, suggesting that they have clearly

defined interests that map to a small subset of all the existing items. In this thesis, we

propose a technique that identifies the leaders and clusters them in different domains of

21

Chapter 1 1.4 Thesis Outline

interests on the basis of their tagging activity. We develop an algorithm called Clustered

Social Ranking (CSR) that exploits the interests of this small core set of selected leaders

to provide effective recommendations for both active and new users. The small but mean-

ingful information subset exploited by CSR ensures that the system scales well with the

data.

1.3.3 Adaptive Temporal Evaluation

Since all recommendation algorithms rely on pre-computed data structures which must be

kept up-to-date, studying how data grows is crucial. We have thus performed an extensive

analysis of the growth of tag-based datasets to understand the rate at which new users,

tags and items appear and the impact they have on accuracy, should the underlying data

structure not be kept up-to-date. Results suggest that data growth is not consistent

between users, tags and items and, more importantly, differs between different datasets.

Based on this observation, we define a new adaptive methodology capable of deciding

when the data structure must be updated depending on the growth of data and thus the

expected accuracy loss. This allows us to perform system updates only when the expected

benefits outweigh the cost.

1.3.4 Evaluation of Results

To prove the effectiveness and efficiency of the proposed techniques, we have implemented

both SR and CSR and evaluated them on three different social tagging websites, each

dealing with different media resources: 1) CiteULike organizes scientific references; 2)

Bibsonomy organizes both scientific references and general URLs and 3) MovieLens orga-

nizes movies.

We evaluate the performance of our proposed techniques against state-of-the-art recom-

mendation algorithms and show that they produce more effective recommendations for

cold start users and cold start items across all datasets. For active users, our techniques

ensure comparable recommendations while achieving significantly better scalability.

1.4 Thesis Outline

The remainder of this thesis is structured as follow:

Chapter 2 introduces the approach devised to enhance recommendation accuracy for

cold start users and items. We first present state-of-the-art recommendation tech-

niques and then discuss their limitations. We then analyze the CiteULike website

22

Chapter 1 1.5 Publications Related to This Thesis

to illustrate the problem we are dealing with. Finally, we describe Social Ranking,

the technique we propose to tackle the cold start problems in our the scenario.

Chapter 3 offers a thorough evaluation of SR in terms of precision and recall on three

different social bookmarking websites, namely CiteULike, Bibsonomy and Movielens.

Performance achieved by SR are compared against four common benchmarks.

Chapter 4 introduces the approach devised to enhance the scalability of the recommen-

dation process. We first analyze a number of state-of-the-art recommendation ap-

proaches and their computational complexity. We then describe the key properties of

our target scenario. We then present Clustered Social Ranking, a technique we have

devised to achieve precision and recall comparable to state-of-the-art approaches,

while significantly improving the scalability of the system.

Chapter 5 offers a thorough evaluation of CSR both in terms of precision and recall and

in terms of scalability. Performance achieved by CSR are again compared against

four state-of -the-art benchmarks.

Chapter 6 describes our temporal investigation of the growth of social tagging websites.

We first describe and evaluate the results of our experiments, to show how data

growth affects the performance of our recommender system. Finally, we describe a

temporal adaptive technique to predict the accuracy loss that using stale data would

cause, and thus to decide whether the benefits of a data update are worth its cost.

Chapter 7 summarises and evaluates the contribution of our work and explores possible

directions for future research.

1.5 Publications Related to This Thesis

The following publications are related to this thesis:

• Valentina Zanardi and Licia Capra. A Scalable Tag-based Recommender System

for New Users of the Social Web. Paper under review for the 22nd International

Conference on Database and Expert System Applications (DEXA 2011).

• Valentina Zanardi and Licia Capra. Dynamic Updating of Online Recommender

Systems via Feed-Forward Controllers. In Proceedings of the 6th Intl. Symposium

on Software Engineering for Adaptive and Self-Managing Systems (SEAMS 2011).

Waikiki, Honolulu, Hawaii, USA, May 2011.

• Valentina Zanardi and Licia Capra. Social Ranking: Uncovering Relevant Content

Using Tag-based Recommender Systems. In Proceedings of the 2nd ACM Inter-

national Conference on Recommender Systems (RecSys). Lausanne, Switzerland,

October 2008.

23

Chapter 1 1.5 Publications Related to This Thesis

• Valentina Zanardi and Licia Capra. Social Ranking: Finding Relevant Content

in Web 2.0. In Proceedings of ECAI 2008, Workshop on Recommender Systems.

Patras, Greece, July 2008.

• Daniele Quercia, Licia Capra and Valentina Zanardi. Selecting Trustworthy Content

Using Tags. Invited paper at SECRYPT, Special Session on Trust in Pervasive

Systems and Networks. Porto, Portugal. July 2008.

24

Chapter 2

Cold Start Users and Items

The first contribution of this thesis is the development of a new methodology to deal with

the cold start user and item problems. In this chapter, we first introduce state-of-the-

art recommender system techniques for the social web (Section 2.1) and highlight their

limitations. We then analyse the problem domain in detail (Section 2.2) and present the

key principles we exploit to address it (Section 2.3). Finally, we describe Social Ranking

(SR), the innovative technique we have developed (Section 2.4).

2.1 Related Work

2.1.1 Recommendation Algorithms for Rating-Based Scenarios

The amount of information available online has long exceeded the capacity of individual

users to process it. This caused a strong interest in research fields and technologies that

could help manage information overload. Recommender systems have thus been created to

suggest relevant data to potentially interested users. Dating back to 1992, Tapestry [Gold-

berg et al., 1992] can be considered one of the first recommender systems. Tapestry was

specifically designed to improve the functionalities of simple mailing lists. To ensure that

all users interested in an e-mail received the message, Tapestry allowed users to put anno-

tations on e-mail messages so that recipients could filter them through specific commands.

Although very simple, the recommendation methodology proposed by Tapestry was not

automated. Users had to explicitly query the system to receive the e-mails they were in-

terested in. The birth of a wide number of rating websites, where users can explicitly rate

their preferred items, further pushed research in this field. In these scenarios, Collaborative

Filtering (CF) [Su and Khoshgoftaar, 2009] has been considered as the state-of-the-art of

recommender techniques. The fundamental assumption of CF is that similarities between

users’ interests are persistent. If users have shown similar interests in the past (e.g., they

25

Chapter 2 2.1 Related Work

rated items similarly), they are likely to do so in the future too. CF techniques store

users’ preferences and identify users with similar rating behaviours. Whenever a target

user asks for recommendations, ratings expressed by similar users are used to produce a

list of potentially interesting items to suggest. In the following sections, we review a set of

CF approaches we consider relevant for this thesis. Following a traditional classification,

CF algorithms can be partitioned into three main categories: Memory-Based, Model-Based

and Mixed or Hybrid Approaches.

Collaborative Filtering
CF

Memory-Based Model-Based

User-Based Item-Based

 Mixed Approaches

Principal Component Analysis

Singular Value Decomposition

Bayesian Networks

Rule-Based Strategies

Clustering Strategies

Figure 2.1: Classification of recommendation techniques for rating-based scenarios

Memory-Based Collaborative Filtering algorithms rely on all user-item informa-

tion to produce recommendations. These algorithms first store all the users’ ratings into

memory and combine them to predict users’ interests on items. The two existing variants

of memory-based recommendation algorithms are both based on the k-nearest neighbour

algorithm (kNN) [Aha et al., 1991]: User-Based Collaborative Filtering and Item-Based

Collaborative Filtering.

User-Based Collaborative Filtering algorithms (UBCF) [Herlocker et al., 1999] produce

recommendations for a target user uj by first identifying a subset Nuj of existing users

expressing interests similar to uj and using them as recommenders. In other words, for

each user pair (uj , ul) the similarity sim(uj , ul) is calculated and Nuj is built accordingly.

In the following we will refer to Nuj as the neighbourhood of uj . The interest of uj for each

item can be predicted by combining her neighbours’ preferences. A recommendation list

containing the top k most interesting items is then given in output. Different strategies can

26

Chapter 2 2.1 Related Work

be used to compute the subset Nuj and to combine the preferences of users in Nuj . Each

user is first modeled by a profile vector, containing for each rated item oi the corresponding

numerical rating. Then, one of the many similarity measures analyzed by Breese et al.

[Breese et al., 1998] can be used to compare profiles. One of the most popular is perhaps

cosine similarity that measures the cosine of the angle between two user profiles vectors

uj and ul:

sim(uj , ul) =

|O|∑
i=1

ruj ,oi ∗ rul,oi√∑|Oj |
i=1 r

2
uj ,oi

√∑|Ol|
i=1 r

2
ul,oi

(2.1)

where O is the set of items rated by both uj and ul, Oj and Ol are the set of items rated by

uj and ul respectively and ruj ,oi is the rating uj gave to item oi. GroupLens [Resnick et al.,

1994, Konstan et al., 1997] proposes instead a UBCF algorithm for Usenet news articles

that uses the Pearson correlation to compute Nuj . This statistical coefficient measures

the linear dependence between two user profiles uj and ul:

sim(uj , ul) =

∑|O|
i=1(ruj ,oi − ruj)(rul,oi − rul)√∑|Oj |

i=1 (ruj ,oi − ruj)2
∑|Ol|

i=1(rul,oi − rul)2
(2.2)

where ruj refers to the mean rating of uj . The most traditional approach to compute the

predicted rating r′uj ,oi of item oi for the target user uj (used also by GroupLens) is to

calculate the weighted average of the ratings of the users in Nuj :

r′uj ,oi =

∑
∀ul∈Nuj

(rul,oi ∗ sim(uj , ul))∑
∀ul∈Nuj

sim(uj , ul)
(2.3)

Item-Based collaborative filtering algorithms (IBCF) [Linden et al., 2003] follow the same

general principle as UBCF. The two approaches differ in the usage of the stored rating data.

While UBCF considers it as a collection of users who have rated items, IBCF considers it as

a collection of items that have been rated by users. IBCF does not identify a neighborhood

of similar users but explores the relationships between items first. In particular, each item

is first modeled as a vector containing, for each user, the corresponding numerical rating.

IBCF then scans the items oi ∈ Ruj the target user has rated in the past, and finds

the set R′uj of the k most similar items not rated yet. Similarities between items can be

computed using the same measures used by UBCF for users. The predicted rating r′uj ,oi of

item oi ∈ R′uj for the target user uj is usually computed as the weighted average similarity

with all items oq in Ruj :

27

Chapter 2 2.1 Related Work

r′uj ,oi =

∑
∀oq∈Ruj

(sim(oi, oq) ∗ r(ui, oq))∑
∀oq∈Ruj

sim(oi, oq)
(2.4)

Traditionally, since available datasets tend to have many more users than items, IBCF

is often preferred over UBCF. Sarwar et al. [Sarwar et al., 2001] analyze and evaluate

different implementations of IBCF, comparing performance when the Pearson correlation

or cosine similarity are adopted to generate R′. They also compare performance when

using weighted average or regression to obtain the final predictions. Regression is similar

to the weighted sum method but, rather than directly using the ratings of similar items,

it uses an approximation of the ratings based on the following regression model:

rauj ,oi = αruj ,oi + β + ε (2.5)

where rauj ,oi is the approximated rating, α and β are the regression model parameters

and ε is the error of the regression model. Experimental results computed over the Movie-

Lens dataset demonstrate that adopting the cosine similarity measure leads to improved

performance. Moreover, the authors demonstrate that using regression leads to improved

performance only in sparse datasets, while weighted average appears to be more suitable

as the density of the dataset increases.

The commercial success of memory-based Collaborative Filtering techniques led to the

creation of a number of more effective variants. Several studies have focused on improving

the methodology used when generating neighborhoods. The Ringo Music Recommender

[Shardanand and Maes, 1995] improved the performance of UBCF by limiting neighbor-

hood’s membership only to those users whose similarity was greater than a fixed threshold.

However, even if such technique could provide more accurate recommendations, the higher

threshold sensibly reduced the number of items Ringo was able to generate predictions

for. The Bellcore Video Recommender [Hill et al., 1995] combined opinions of a randomly

selected neighborhood in order to generate recommendations instead. Other studies have

focused on creating better user models integrating different information sources such as

contextual [Anand and Mobasher, 2007], bibliografic [Krulwich, 1997], or a domain on-

thology [Haase et al., 2004, Anand et al., 2007]. Finally, other methods propose to fuse

together UBCF and IBCF. Wang et al. [Wang et al., 2006] use a probabilistic method

to compute the predicted rating r′uj ,oi on the basis of: 1) the ratings given to the same

item by similar users, 2) the ratings given to similar items by the same user and 3) the

ratings given to similar items by similar users. Note that this list does not intend to be

exhaustive but gives an idea of the success and evolution of memory-based Collaborative

Filtering algorithms. Despite their wide-spread use, these systems still suffer from data

sparsity and from the scalability problem.

28

Chapter 2 2.1 Related Work

Recommender systems are generally used to recommend items from large sets, so even the

most active users usually express preferences for a rather restricted number of selected

items only. In this scenario, a recommender system using memory-based CF techniques

may be unable to find like-minded users and thus to provide any useful recommendation.

This problem, referred to as the data sparsity problem, occurs whenever users show non-

overlapping profiles (e.g., they rated different items) and makes the similarity evaluation

impossible or not reliable. Furthermore, memory-based CF strategies suffer from excessive

complexity whenever the number of users and items grows too large. Whenever a user

asks for recommendations, these strategies need to compare all existing users to identify

the target user’s neighborhood and to combine neighbours’ preferences to produce a top-k

recommendation list. Given the size of the dataset these strategies deal with, memory-

based recommender systems suffer from serious scalability problem.

A different group of approaches, generally referred to as Model-Based Collaborative

Filtering algorithms, has been proposed to ease the scalability problem. These algo-

rithms develop a model of user ratings rather than identify a neighborhood of similar users.

Recommendations are then produced simply using the developed model. Models can be

built with various strategies, such as Singular Value Decomposition (SVD) or Principal

Component Analysis (PCA) [Takacs et al., 2009, Goldberg et al., 2000, Sarwar et al., 2000],

rule-based strategies [Mobasher et al., 2001] and clustering strategies [Connor and Her-

locker, 2001, Suryavanshi et al., 2005]. The most representative model-based techniques

will be described in more detail in Section 4.1. Since these techniques exploit only the

developed model to compute predictions rather than focusing on the original database of

ratings, they can provide accurate recommendations while easing the scalability problem.

However, these techniques are still affected by the data sparsity problem: developing a

model of user ratings is challenging when data is missing.

Different techniques [Xue et al., 2005, Ungar and Foster, 1998] propose to combine the

strengths of memory-based and model-based approaches together to better deal with both

the scalability and the data sparsity problems. Xue et al. [Xue et al., 2005] propose to

apply first a model-based technique that groups users into clusters based on their rating

patterns. Given a target user, her cluster is first found and the opinions of users in

that cluster are combined to compute the final prediction as in memory-based techniques.

Similarly, in [Ungar and Foster, 1998] the authors propose a repeated clustering technique

that separately groups both users and items. The final predicted rating r′uj ,oi is then

computed by first selecting the cluster of uj and of item oi and by using the corresponding

information. Despite their efficacy, model-based techniques for rating-based environments

have been developed to model a strictly two-dimensional scenario were only users and

items are involved in the recommendation process.

All previously described techniques share the common goal of recommending items that

users will probably be interested in. In particular, these algorithms could be reused and

adapted to accomplish the same task in tag-based environment where users’ tastes are

29

Chapter 2 2.1 Related Work

not clearly expressed as numerical ratings but as freely chosen tags associated with items.

However, folksonomies are so large and dynamic that traditional web recommendation

techniques are no longer effective [Heymann et al., 2008]. Novel techniques to help users

find relevant content are thus called for.

2.1.2 Learning and Exploiting the Hidden Semantic of Tags

A number of studies [Sen et al., 2006, Halpin et al., 2007, Cattuto et al., 2007, Golder and

Huberman, 2006] have been conducted to investigate users’ tagging behavior and to derive

a model of vocabulary evolution in social tagging communities. These studies show that

the tagging activity of users does not solely depend on their personal preferences but is

also influenced by the general tagging behavior of the entire community. For this reason,

the set of applied tags remain limited, as tags are being reused. In other words, users with

similar interests (members of the same community) are likely to employ tags on items in

similar ways. Relationships between users and the set of tags they selected can therefore

be usefully leveraged for different tasks.

One stream of research focused on inferring the semantic relationship between tags, start-

ing from an analysis of how users employ them. Heymann et al. [Heymann and Garcia-

Molina, 2006] tried to build a navigable hierarchical taxonomy of tags, purely starting

from tag usage. Shen et al. [Shen and Wu, 2005] propose to describe the tagging be-

havior of users as a probabilistic model and to automatically derive relationships between

tags. Yeung et al. [Yeung et al., 2007] propose a simple technique to disambiguate tags,

i.e., to interpret the correct meaning of a tag based on an analysis of the relationships

between users, tags and items. Capocci et al. [Capocci and Caldarelli, 2008] study tag

co-occurrence by modeling the network of users, tags and items as a tri-partite graph.

Once again, the aim is to discover semantic relationships between tags, starting from

information about how users associate them with items.

Other approaches [Hassan-Montero and Herrero-Solana, 2006, Kaser and Lemire, 2007]

have built upon these studies to develop tag cloud visualization algorithms. A tag cloud

is a set of the most popular tags, or the most recently used tags, usually displayed with

different font sizes according to their popularity. In a tag cloud, users can click on tags

and obtain an ordered list of items described by that tag. These techniques, which focus

only on the number of times each tag has been used, are aimed at providing a simple

visual interface which can be useful to browse information.

2.1.3 Recommendation Algorithms for Tag Based Environment

Many researcher have started to investigate how to exploit the previously learned tags

relationships to develop recommendation algorithms that assist users finding relevant items

30

Chapter 2 2.1 Related Work

within folksonomies.

A few approaches propose to associate tags with a fixed ontology of concepts to better

answer users’ queries. In [Passant, 2007] and [Pan et al., 2009], authors propose to link

each query tag to a specific class of an ontology to expand the original query with a set

of useful tags. Doing so, authors provide a method to address the limitations of simple

recommendations techniques based on common tags’ matching. The first limitation is

caused by tag variations. If related items are described by synonyms, the system cannot

recognise them as similar and fails in recommending them all. The second limitation is

caused by tag ambiguity. If two tags have the same spelling but two different meanings, the

system is not aware that the items the two tags are associated with are different. However,

the high overhead to create and maintain the ontology makes these approaches feasible

only in specific scenarios where the set of tags which can be used is limited or where the

cost of maintaining such ontology can be afforded (e.g., in medical environments).

Other approaches have proposed methods inspired by traditional recommender system

techniques for rating-based scenarios, where the tagging activity of users is analysed to

find relationships between tags. Some approaches have focused on mixed scenarios where

both numerical ratings and tags are available. For example, Tso et al. [Tso-Sutter et al.,

2008] propose an extension of a traditional UBCF algorithm where similarity between

users depends not only on co-rated items, but also on commonly used tags. Similarly,

in [Nakamoto et al., 2007] the authors propose to analyse only commonly used tags to

calculate similarity between users. The predicted score for each item is then computed as

in traditional collaborative filtering solutions, depending on the ratings of similar users.

Other approaches have been developed to target pure folksonomic settings where numeri-

cal ratings are not available and user preferences can only be inferred by analyzing users’

tagging activity. In [Ji et al., 2007] and [Bogers and van den Bosh, 2009] the authors

propose two variants of the traditional UBCF and IBCF algorithms for folksonomic sce-

narios. The user-based version of the algorithm first evaluates users similarity based on

commonly used tags and builds the target user’s neighborhood. The set of items already

tagged by the neighborhood is then suggested, weighted according to the similarity be-

tween the target user and the tagging user. The item-based version of the algorithm works

similarly. Items’ similarity is first computed based on commonly used tags and the set of

items which are most similar to those previously tagged by the target user is suggested.

Wetzker et al. [Wetzker et al., 2009] propose a probabilistic approach to item recom-

mendation in folksonomies. By using Probabilistic Latent Semantic Analysis strategies,

the authors derive a model of users’ tagging behaviour. By analyzing the item-tag and

the item-user co-occurrance, the authors provide two separate tagging models which are

merged together using Expectation-Maximization strategies. The authors tested their ap-

proach on a large part of the Delicious dataset and found it outperforms popularity-based

algorithms.

In addition, a variety of approaches have been proposed to suggest useful tags that users

31

Chapter 2 2.1 Related Work

could use to describe their favourite items. Gemmel et al. [Gemmell et al., 2009] propose

instead to use first a modified version of the standard kNN strategy to compute similarities

between users based on commonly used tags. Once the target user’s neighborhood has

been built, all tags used by the neighborhood and associated with the target item are

suggested. The relevance of each tag is then computed as a weighted average similarity

between the target user and the tagging user in the neighborhood. Symeonidis et al.

[Symeonidis et al., 2008] propose instead a unified framework to model the three types

of entities that exist in a social tagging system: users, items and tags. This data is

represented by a binary 3-dimensional matrix Mt called tensor, so that Mt(uj , oi, tk) = 1

if user uj tagged item oi by using tag tk and 0 otherwise. The authors propose to apply

first a dimensionality reduction algorithm over Mt to obtain three approximated matrices

that preserve only a percentage of information of the original data. These matrices are

then combined together so that the original 3-dimensional matrix Mt can be reconstructed

into an approximated matrix M̂t. Based on the values stored in M̂t, a set of tags can be

recommended to the target user. This approach, called Tensor Reduction approach, is

able to reveal the hidden associations between users, items and tags that can be used to

improve the tag recommendation process. Rendle et al. [Rendle et al., 2009] propose a

slightly different version of the Tensor Reduction approach, aimed at improving the data

model that is used to construct the original matrix Mt. Mt is built so to include not

only positive or negative examples (Mt(uj , oi, tk) = 1 or 0 according to the users tagging

activity), but also missing data (Mt(uj , oi, tk) =? if item oi was not tagged at all by

user ui). By discarding missing data when applying the Tensor Reduction approach, the

authors are able to outperform the standard Tensor Reduction algorithm both in terms

of precision and recall. Hotho et al. [Hotho et al., 2006, Jschke et al., 2008] propopose

FolkRank, a PageRank-like algorithm that employs the traditional random surfer model

on the tri-partite graph of users-items-tags, producing very accurate tag recommendations

in well connected networks. To be effective, FolkRank requires that every user, item and

tag appear in the system at least p times so to ensure that there is a minimum amount

of information shared between users. Every time a user asks for recommendations, the

algorithm ranks users, tags and items according to the number of their mutual connections

in the graph. It then returns the best k tags.

As for traditional rating-based recommender systems, major issues left open by state-of-

the-art tag-based recommender systems are the user and item cold start problems. How-

ever, these problems are aggravated in tag-based scenarios since users’ preferences are not

expressed as unambiguous numerical ratings, but as freely chosen tags. When new users

join the system, very little is known about their interests and predictions about what items

they may be interested in are difficult to compute. Similarly, when new items are tagged

only by a small subset of users, or when different tags are used to describe similar items,

the system does not have enough information to produce reliable recommendations. In sit-

uations of such sparsity which are all but rare in tag-based scenarios, different techniques

specifically developed to support new users and items are called for. Some researches have

32

Chapter 2 2.2 Analysis of the Problem Space

already moved in this direction. For example, Massa et al. [Massa and Avesani, 2007]

propose to replace the old concept of similarity between users (which is not computable

if users have not rated enough common items), with a new concept of trust where users

explicitly state who their trusted recommenders are. Such approaches are viable only in

scenarios where creating a user’s social network comes at no extra cost. Other researchers

[Schein et al., 2002, Leung et al., 2007, Lam et al., 2008] try to exploit metadata informa-

tion concerning both users (e.g., age, gender and job) and items (e.g., genre and cast of

movies), to compute recommendations when tagging/rating information is scarce. Unfor-

tunately, in most tag-based websites metadata is not available. The applicability of these

approaches is therefore limited.

In the next sections we provide a detailed analysis of the problem space on which we focus

and underline its characteristics to build a solution that can specifically address the user

and item cold start problems.

2.2 Analysis of the Problem Space

To analyse the characteristics of our scenario, we chose a typical social tagging website:

CiteULike (http://www.citeulike.org). CiteULike is a social tagging website for the sharing

of scientific references. Similar to the cataloging of web pages within Delicious and of

photographs within Flickr, CiteULike allows scientists to organize their libraries with

freely chosen tags which constitute a folksonomy of academic interests. The CiteULike

dataset is freely available and contains a list of user-item-tag tuples, indicating what article

(item) has been tagged by whom and with which tags. Note that since user-item pairs

can be associated with several tags, in the following we will refer to bookmark as the set

of user-item-tag triples with the same user-item pair. The downloaded archive contains

bookmarks made between November 2004 and November 2009. We preprocess the dataset

to get rid of noise by removing all non-alphanumeric tags, following the same methodology

proposed by the organisers of the ECML PKDD Discovery Challenge 20091. The so-pruned

archive contains 41,246 users who have tagged 1,254,406 papers with 210,385 distinct tags.

We analysed the dataset in terms of users’ activity, papers’ popularity, and tags’ usage.

Note that we verified the results reported below by also analysing two other datasets,

namely Bibsonomy and MovieLens, and we concluded we can consider them to be valid

for general social tagging websites.

User Activity. We studied how many papers were tagged on average by each user in

the system (Figure 2.2) and found that 66% of the users tagged less than 10 papers

(low activity), 20% tagged between 10 and 50 papers (medium activity) and the

1http://www.kde.cs.uni-kassel.de/ws/dc09/

33

Chapter 2 2.2 Analysis of the Problem Space

0%  10%  20%  30%  40%  50%  60%  70%  80% 

<10 papers 

10‐50 papers 

50‐200 papers 

Percentage of users 

N
um

be
r 
of
 p
ap

er
s 

Figure 2.2: User activity on papers

0%  10%  20%  30%  40%  50%  60%  70%  80%  90% 

< 20 tags 

20‐60 tags 

60‐100 tags 

> 100 tags 

Percentage of users 

N
um

be
r 
of
 ta

gs
 

Figure 2.3: User activity on tags

remaining 14% tagged between 50 and 200 papers (high activity). Note that even

the most active users only tagged a tiny portion of the whole paper set. This suggests

that users have very focused and scoped interests within the much broader scientific

community.

We also analysed the tagging vocabulary, i.e., how many different tags each user

used to define her preferred items (Figure 2.3). We found that 77% of the users used

less than 20 different tags, 15% used between 20 and 60 tags and the remaining 8%

used between 60 and 120 tags. Once again, the small set of tags used by each user

supports our idea that users have scoped interests.

Paper Popularity. We then studied how many users tagged the same paper (Figure 2.4)

34

Chapter 2 2.2 Analysis of the Problem Space

0%  10%  20%  30%  40%  50%  60%  70%  80%  90%  100% 

< 5 users 

5‐15 users 

> 15 users 

Percentage of papers 

N
um

be
r 
of
 u
se
rs
 

Figure 2.4: User activity on the same paper

0%  10%  20%  30%  40%  50%  60%  70%  80%  90%  100% 

< 10 tags 

10‐15 tags 

15‐20 tags 

20‐25 tags 

> 30  tags 

Percentage of papers 

N
um

be
r 
of
 ta

gs
 

Figure 2.5: Tag activity on papers

and found that 87% of the papers were tagged by less than 5 users (low popularity),

12% were tagged by 5 to 15 users (medium popularity) and the remaining 1% were

tagged by more than 15 users (high popularity). This suggests that there is a small

subset of highly popular papers and a very long tail of less popular ones.

We also analysed how many different tags were used to describe each paper (Figure

2.5) and found 85% of the papers were tagged with less than 10 different tags (and

more than 54% with less than 5), 14% of the papers were tagged by 10 to 30 tags

and the remaining 1% were tagged with more than 30 different tags. This suggests

that only a small subset of the whole folksonomy is needed to describe each of the

papers, and this is true for the vast majority of them.

Tag Usage. Finally, we studied how many users used the same tags, regardless of their

35

Chapter 2 2.2 Analysis of the Problem Space

0%  10%  20%  30%  40%  50%  60%  70% 

< 10 users  

10‐40 users 

40‐60 users 

> 60 users 

Percentage of tags 

N
um

be
r 
of
 u
se
rs
 

Figure 2.6: Tag usage by users

context of usage (Figure 2.6). We found that 63% of the tags were used by less than

10 users, 14% were used by 10 to 40 users, 13% were used by 40 to 60 users and the

remaining 10% were used by more than 60 users. This suggests that there exists a

small subset of tags that are widely used and a very long tail of less popular ones.

We also studied how spread the usage of tags was, i.e., how many different papers

were associated with the same tag (Figure 2.7). We found that more than 72% of

the tags were used to tag less than 20 papers, 16% were used to tag between 20

and 40 papers and the remaining 12% were used to tag more than 40 papers. This

indicates that, despite the large number of tags in the CiteULike folksonomy, tags

are shared by small groups of users and are used to describe a selected number of

papers only.

2.2.1 Summary from Analysis

To analyse the frequency distributions of users, papers and tags reported in Section 2.2,

we can refer back to an article published in an October 2004 Wired magazine by Chris

Anderson [Anderson, 2006]. Here, the author defined for the first time the behaviour of

the rating distribution over the Amazon and Netflix rating-based websites as a “long-tailed

behaviour”. By plotting a standard demand curve (Figure 2.82) showing for each item

the number of users interested in it, Anderson pointed out that there existed few highly

requested products and many less requested ones which gradually “tailed off” asymptot-

ically. Moreover, the most popular 20% items represented less than 50% of all available

ratings. This indicates that most of the users are interested in non-mainstream items.

2http://www.longtail.com

36

Chapter 2 2.2 Analysis of the Problem Space

0%  10%  20%  30%  40%  50%  60%  70%  80% 

< 20 papers 

20‐40 papers 

> 40 papers 

Percentage of tags 

N
um

be
r 
of
 p
ap

er
s 

Figure 2.7: Tag usage on papers

Figure 2.8: Example of a long tail distribution

Focusing on our target scenario (the CiteULike dataset), we observed two relevant long-

tailed distributions.

Long tail distribution of papers’ popularity: the distribution curves of papers’

popularity reported in Figure 2.4 showed a small portion of popular (mainstream)

papers and a long tail (roughly 87%) of (non-mainstream) papers tagged by less

than 5 users.

Long tail distribution of tags’ popularity: the distribution curves of tags’ popularity

reported in Figure 2.6 showed a small portion of highly popular tags and a long tail

(roughly 60%) of tags used by less than 10 users.

37

Chapter 2 2.3 Insight

The long tail distribution of papers’ popularity demonstrates that most of the users are not

interested in “hits” (mainstream products belonging to the head of the demand curve) but

in a vast number of “niches” (unusual products belonging to the tail of the demand curve).

Similarly, the long tail distribution of tags’ popularity reveals a broad range of interests

that goes well beyond the small set of highly popular tags. As also explained by Anderson

[Anderson, 2006], this behavior is caused by the changed business model introduced by

digital distribution. When consumers are offered infinite choices, the true shape of the

demand curve is revealed and niche items can be as economically attractive as mainstream

ones. Therefore, from a recommender system perspective, suggesting niche products is

crucial to satisfy users with atypical preferences. However, the data sparsity caused by

the long tail distribution leads to a significant decrease in performance of traditional CF

techniques because of the item cold start problem. Furthermore most of the users have

had little interaction with the system and thus their preferences are almost unknown.

Therefore, beside the item cold start problem, recommender systems must also face a

severe user cold start problem. A novel technique capable of suggesting even niche items

to unknown users is thus called for.

2.3 Insight

To overcome the data sparsity problem described in Section 2.2.1 and to effectively suggest

relevant items to users, we leverage the previous observations about the target domain

reported in Section 2.2.

Exploit users’ similarities over expressed interests: the vast majority of users uses

only a small subset of the whole folksonomy (77% of users use less than 20 tags).

This suggests that users have clearly defined interests that map to a small propor-

tion of the whole CiteULike content and that these interests can be identified using

tags. This is why we choose, as some existing works do, to calculate users’ simi-

larities by looking at users’ tagging activity and use such similarities as part of the

recommending process.

Exploit tags’ similarities over tagged content: despite of the large folksonomy, each

tag is used to describe a narrow subset of papers. This means users roughly agree

on which tag to use on each paper. This is why we calculate tags’ similarities by

looking at which tags were associated with which papers and exploit such similarities

as part of the recommending process.

Based on these two key observations, we have developed Social Ranking (SR), a technique

to suggest relevant items addressing both user and item cold start problems. In the next

section we describe how SR works.

38

Chapter 2 2.4 Social Ranking

Users

Ta
gs

Resource
s

Users

Tags

R
es

ou
rc

es
Ta

gs

U
se

rs

Users

Ta
gs

Tags

Figure 2.9: Transformation of the dataset

2.4 Social Ranking

Before going through the details of SR (Section 2.4.3), we will describe how we compute

users’ (Section 2.4.1) and tags’ (Section 2.4.2) similarities using the information from the

previous dataset analysis. We can derive a definition of similarity between users and

between tags by projecting the typical tri-dimensional relationship between users, items

and tags onto two two-dimensional spaces (Figure 2.9). The details of these projections

for both users and tags are given next.

2.4.1 User Similarity

To measure similarities between users we analyse the set of tags they adopted to define

their preferred items, using an approach similar to the one described in [Andriy et al.,

2008].

We consider a simple yet effective similarity measure such that the more tags two users

have used in common, the more similar they are. Note that this definition does not consider

information about the tagged items. This implies flattening the tri-dimensional space of

users-items-tags by projecting it onto a two-dimensional space of users-tags (Figure 2.9).

This can be done because in scenarios similar to the one we have considered users interests

are a rather small subset of the broader range of topics in the whole website, as demon-

strated by the analysis reported in Section 2.2. As a consequence, the information we

discard by performing the projection is not significant. Note that this projection can be

problematic in scenarios where users have broader interests. However, such investigation

goes beyond the scope of this thesis.

We describe each user uj with a vector vj where vj [m] counts the number of times that

39

Chapter 2 2.4 Social Ranking

0% 

10% 

20% 

30% 

40% 

50% 

60% 

70% 

80% 

90% 

100% 

0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1 

Pe
rc
en

ta
ge
 o
f u

se
r 
pa

ir
s 

Cosine similarity 

Figure 2.10: Distribution of users’ similarity

user uj used tag tm. We then calculate the similarity sim(uj , ul) between two users uj
and ul as the cosine of the angle between their vectors:

sim(uj , ul) = cos(vj , vl) =
vj · vl

||vj || ∗ ||vl||

where 0 ≤ sim(uj , ul) ≤ 1. We also evaluate the impact of using different values to

represent the relevance of each tag for the considered user (rather than simply count-

ing the number of usages of each tag). The results of this evaluation are reported in

Section 3.4. Various similarity measures can also be used other than the cosine-based

similarity [Herlocker et al., 1999]. For example, concordance-based similarity [Agresti,

1984] could be used, so that the more tags two users share, the more similar they are,

regardless of how many times they have used each tag. Alternatively, Pearson Correlation

and its variations, e.g., the weighted Pearson Correlation [Polat and Du, 2003] could be

used. We chose cosine-based similarity because of its good performance with respect to

other similarity measures, as described in [Lathia et al., 2008] and [Sarwar et al., 2001].

Figure 2.10 depicts the cumulative distribution of the similarity between pairs of users on

CiteULike. The vast majority of pairs have very low similarity (below 0.1), while there

exists a non-negligible amount of highly similar pairs. This suggests that on average each

user can receive recommendation from a small portion of other users only. They in fact

exhibit shared interests for a small set of topics (represented by tags). Our SR algorithm

exploits this important characteristic of folksonomies.

40

Chapter 2 2.4 Social Ranking

2.4.2 Tag Similarity

To measure similarity between tags, we analyse the set of items they have been used on,

again using an approach similar to the one described in [Andriy et al., 2008]. We consider

that the more items have been tagged with the same pair of tags, the more similar the

two tags are. This implies flattening the tri-dimensional space of users-items-tags by

projecting it onto a two-dimensional space of items-tags (Figure 2.9). This can be done

because in scenarios similar to the one we have considered tags are used by few users in the

whole website, as demonstrated by the analysis reported in Section 2.2. As a consequence,

the information we discard by performing the projection is not significant. As stated

above, this projection can be problematic in scenarios where users have broader interests.

However, we leave such investigation for future work.

We describe each tag tj with a vector wj where wj [i] counts the number of times that tag

tj was associated with item oi. We then calculate the similarity sim(tj , tl) between two

tags tj and tl as the cosine of the angle between their vectors:

sim(tj , tl) = cos(wj , wl) =
wj · wl

||wj || ∗ ||wl||

where 0 ≤ sim(tj , tl) ≤ 1. Again we also evaluate the impact of using different values to

represent the relevance of each item for the considered tag (rather than simply counting

the number of tagged items). The results of this evaluation are reported in Section 3.4.

As above, we chose cosine-based similarity because of its good performance with respect

to other similarity measures.

Figure 2.11 depicts the cumulative distribution of the similarity between pairs of tags on

CiteULike. Each tag is related to only a very small subset of other tags, again suggesting

that only a small portion of tags are used to describe each item. Our SR algorithm exploits

this important characteristic of folksonomies.

2.4.3 Algorithm Overview

Figure 4.1 depicts the SR algorithm [Zanardi and Capra, 2008] which takes into consider-

ation both similarity measures discussed above when suggesting interesting items to users.

To understand how it works, let us consider a concrete example. A user u wants interesting

items to be recommended to her (in the CiteULike case, papers). We use the term “users

query” qu to represent both a (proactive) search and a (reactive) recommendation. The

former represents the case where the user interacting with the system explicitly defines

what she is looking for, by means of user-entered tags. The latter represents the case

where the system recommends items to the user, based on all tags she has used so far. In

41

Chapter 2 2.4 Social Ranking

0% 

10% 

20% 

30% 

40% 

50% 

60% 

70% 

80% 

90% 

100% 

0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1 

Pe
rc
en

ta
ge
 o
f t
ag
 p
ai
rs
 

Cosine similarity 

Figure 2.11: Distribution of tags’ similarity

the following, we do not distinguish between the two cases, and represent a user query qu
as a set of query tags qu = {t1, t2, . . . , tn}.

SR uses the two similarity measures discussed above to answer to the given query. Two

different steps are thus performed:

1. Query Expansion: the set of query tags qu is expanded to include the tags

tn+1, . . . , tn+m that are deemed similar to the query tags. The expanded tag set

q∗ is constructed to include, for each tj ∈ qu, its top k most similar tags, as for

the kNN strategy in traditional recommender systems. A thorough analysis of the

impact of different choices of k, as well as different tag expansion methods, on the

algorithm performance will be presented in Section 3.4.

2. Ranking: all items tagged with at least one tag from the expanded query set q∗ are

retrieved and suggested to the query user in a ranked list L. The ranking depends on

two factors. First, the relevance of the tags associated with each item with respect

to the expanded query tags. Items tagged with tags tj ∈ qu should be ranked higher

than those tagged with tl ∈ q∗ \ qu. Second, the similarity of the tagging user with

respect to the querying user u. Items tagged by users similar to u should be ranked

higher, as these users are more likely to share interests with u and thus are in a

better position to recommend relevant items.

Let U∗(o) be the set of users u who tagged item o with a tag from the expanded query q∗.

Also, let q∗(u, o) be the set of tags used by a user u ∈ U∗(o) to tag item o and belonging

to the expanded set. We define sim(qu, q
∗(u, o)) as:

42

Chapter 2 2.4 Social Ranking

t2
t8

t5
t3

t4
t6

t9

t1

t1
t1 t2 t3 t4

t2
t3

s12
s12

s13

s13 s14

s23

s23 s24

s34
...

...
u1

u1 u2 u3 u4

u2
u3

s12
s12

s13

s13 s14

s23

s23 s24

s34
...

...

Tags' similarity
matrix

Users' similarity
matrix

1: Query
expansion

Web/user interface

Query q = (t1, t2)

2:Selection of
items

q* = (t1, t2, t3 ...)

Recommended items

3: Ranking of
items

CiteULike

CiteULike

System initialisation

Online process

Figure 2.12: Overview of SR

sim(qu, q
∗(u, o)) =

∑
tj∈qu

tl∈q∗(u,o)

sim(tj , tl)

||qu||
(2.6)

where sim(qu, q
∗(u, o)) quantifies how relevant the expanded tags tl associated by u ∈

U∗(o) with o are with respect to the tags tj belonging to the original query set qu. Note

that sim(tj , tj) = 1 so that original tags are always considered more important in the

calculation. The ranking of an item o is then computed as:

L(o) =
∑

u∈U(o)

sim(qu, q
∗(u, o)) ∗ (sim(u, u) + 1) (2.7)

Intuitively, an item has a higher ranking if it is tagged by many users similar to the

querying user (with a high sim(u, u)) and with many expanded tags similar to the query

tags (with a high sim(qu, q
∗(u, o))). Note that in the formula the value of the similarity

between the querying user u and each user u is increased with a “+ 1” factor. This

ensures that relevant items defined by similar tags (for which sim(qu, q
∗(u, o) 6= 0) are

43

Chapter 2 2.4 Social Ranking

still suggested to u even if they were only tagged by users outside her neighborhood (for

which sim(u, u) = 0).

SR outperforms traditional CF techniques. First, the tag expansion phase, which is based

on all users’ activity, broadens the set of recommendable items. A new item tagged with

few tags have an higher probability to be recommended if one of the expanded query tags

has been also used to tag it. This helps improve the algorithm’s coverage. Recommendable

items are then ranked based on both tags’ and users’ similarities. Therefore, even if

recommenders cannot be found (e.g., for new users who are not similar to anyone), a valid

ranking can still be found. Also note that the algorithm’s accuracy is not compromised by

the query expansion. Using both tags’ and users’ similarities guarantees that non-relevant

items introduced by the query expansion will not be ranked high in the recommended list.

Moreover, when users run queries with new tags (i.e., tags no one has ever used before)

the algorithm runs correctly as long as the user also includes in the query other not new

tags that can be used for the tag expansion.

In the following chapter, we present the results obtained when evaluating this approach.

44

Chapter 3

Evaluation of Social Ranking

In this chapter we thoroughly analyse the performance of Social Ranking (SR) on the

CiteULike, Bibsonomy and MovieLens datasets. Before discussing the results of our ex-

periments, we describe the metrics we used (Section 3.1), illustrate the characteristics of

the datasets we experimented on (Section 3.2), and the benchmarks we used for compari-

son (Section 3.3). As SR relies on a number of customisable parameters, we also discuss

how these were set (Section 3.4). We then analyse the obtained results (Section 3.5).

3.1 Metrics

To evaluate our recommendation technique, we adopt the standard precision/recall metrics

computed on the recommended list, cut at the first Lcut best items. More precisely:

Precision =
|relevantItems| ∩ |retrievedItems|

|retrievedItems|

Recall =
|relevantItems| ∩ |retrievedItems|

|relevantItems|

Precision indicates how many relevant items are retrieved out of all returned items. In

other words, it measures the accuracy of the approach. Recall indicates how many relevant

items are retrieved out of all relevant items. In other words, it measures the coverage

of the recommended list. The set of items that we considered relevant for each query

will be defined in Section 3.2. Both metrics have been computed after cutting the final

recommendation list at the first 10, 20, 50, 100, 500, 1000 recommended items.

In the rest of this thesis we will refer to the combined precision and recall metrics with

45

Chapter 3 3.2 Datasets

the term efficacy or performance.

3.2 Datasets

We conducted experiments on three social tagging websites: CiteULike, Bibsonomy and

MovieLens.

CiteULike is a social tagging website that aims at promoting the sharing of scientific

references amongst researchers. CiteULike lets scientists label their libraries with freely

chosen tags which produce a folksonomy of academic interests. CiteULike produces a daily

snapshot summary of what articles have been posted by whom and with what tags up to

that day. We downloaded one such archive in November 2009, containing bookmarks made

between November 2004 and November 2009. We first preprocessed the dataset to remove

all non-alphabetical and non-numerical tags, following the same methodology proposed

by the organisers of the ECML PKDD Discovery Challenge 20091. The so-pruned archive

contained 41,246 users, 1,254,406 papers and 210,385 distinct tags. To further remove

noise in the data, we used the p-core preprocessing strategy [Gemmell et al., 2009]. Users,

items and tags are iteratively removed from the dataset to produce a smaller but denser

subset where each user, item and tag occurs in at least p bookmarks. For the CiteULike

dataset and in general for all the social tagging websites that we used in our experiments,

the value of p has been selected so to keep a comparable amount of users, items and tags

across the three datasets. This is a desirable property as experimental results will not

be influenced by the datasets’ different dimensions. According to the results reported in

[Jschke et al., 2008], the p-core strategy does not affect the performance difference between

algorithms. Note that this preprocessing only ensures that there exists a minimum amount

of information for each user (i.e., each user has at least p tags/items in her profile).

The user and item cold start problems are still an issue. The final CiteULike dataset

containing 2,484 users, 7,310 papers, 3,137 tags, 59,820 bookmarks and obtained by setting

p = 5, is still composed by over 40% of cold start users tagging less than 10 items overall

and by over 40% of cold start items tagged by less than 5 users. We refer to Section 3.5

for a more detailed description of the methodology which has been followed to select these

parameters.

Bibsonomy is a social tagging website that aims at promoting the sharing of both sci-

entific references and general URLs. We downloaded a snapshot of the website in June

2009, with bookmarks made between January 1989 and June 2009. We applied the same

preprocessing steps described above. Also in this case we removed all non-alphabetical

and non-numerical tags and then computed the p-core pruned dataset with p = 2. At

the end we obtained a dataset with 1,360 users, 23,649 items, 11,668 tags, and 72,741

1http://www.kde.cs.uni-kassel.de/ws/dc09/

46

Chapter 3 3.2 Datasets

bookmarks.

MovieLens is a rating-based recommendation website that suggests to users movies they

might like. For each registered user, the system stores information on what movies she

has seen, how much she liked them (in the form of a numerical rating in the range from

1 to 5) and what tags she associated with each of them. We downloaded a snapshot of

the website in January 2009, with bookmarks made between December 2005 and January

2009. Again, we removed all non-alphabetical and non-numerical tags and computed the

p-core pruned dataset with p = 2. At the end we obtained a dataset with 1,270 users,

3,400 movies, 2,237 tags, and 23,380 bookmarks.

Table 5.1 summarizes the characteristics of the three described datasets.

Feature CiteULike Bibsonomy MovieLens
Users 2,484 1,360 1,270
Items 7,310 23,649 3,400
Tags 3,137 11,668 2,237

Bookmarks 59,820 72,741 23,380

Table 3.1: Datasets’ features

Each dataset has been used as follows during the experiments. First, we ordered the

bookmarks according to their original posting date. We then performed a temporal split

so that the first 90% bookmarks could be used for training purposes, while the most

recent 10% could be used for testing. We chose a temporal split rather than a random

one to reproduce the normal evolution of a real social tagging website. Table 3.2 reports,

for each dataset, the size of the training (NTrain) and of the test (NTest) sets in terms

of number of bookmarks. Note that the p-core pre-processing strategy has been applied

before splitting each dataset into NTrain and NTest. This will cause a number of users

to belong to the test set only and will stress the cold start problem even more. For each

training set, SR has been executed to pre-compute users and tags similarities (Section 2.4).

Each test bookmark has then been used as a query. The user who registered the bookmark

is treated as the querying user and the tags associated to the bookmark as the query tags.

This information is given in input to SR and a list of recommendations is thus produced.

Precision and recall have then been measured considering as relevant the one item (i.e.,

paper, URL or movie) the test bookmark refers to. In the following we will refer to this

item as the “hidden” item. This is similar to the approach proposed by Gemmell et al.

[Gemmell et al., 2009] and Hotho et al. [Hotho et al., 2006].

Note that since every test query aims to retrieve only one relevant item in the recom-

mendation list (whose length has been cut to values between 10 to 1000), the measured

precision is always very small. What is important is not the absolute precision value, but

rather the precision that SR obtains with respect to our benchmarks, described next.

47

Chapter 3 3.3 Benchmarks

Dataset NTrain NTest
CiteULike 53,838 5,982
Bibsonomy 65,467 7,274
MovieLens 21,042 2,338

Table 3.2: Size of training and test sets

3.3 Benchmarks

We compare the precision/recall that SR achieves with those of four benchmarks solutions:

1. Popularity-Based approach (Pop) - Every time a user performs a query, the system

suggests her all items belonging to the dataset, sorted according to the number of

times they have been tagged. The query tags are thus not taken into account, and

the position of an item in the final recommendation list depends only on the number

of users who tagged it (the higher the number of users who tagged it, the higher its

score, the closer its ranking to the top).

2. User-based Collaborative Filtering with similarity computed with Tag usage (CFUT)

- This technique adopts the traditional kNN Collaborative Filtering approach with

users’ similarity computed as follows. Each user uj in the system is represented as

a vector vj where vj [m] counts how many times user uj has used tag tm (the values

are normalised in the range [0 . . . 1]). The similarity between user uj and user ul is

then computed as cos(vj , vl). All items tagged by the k most similar neighbours are

retrieved and ranked according to the similarity between the querying user u and

the tagging users u. In our experiments we considered an unlimited value of k, thus

taking all possible neighbours.

3. User-based Collaborative Filtering with similarity computed with tagged Items (CFUI)

- This technique differs from the previous one only in the way users’ similarity is com-

puted: rather than considering tags’ usage, each user uj is represented as a vector vj
where vj [i] is 1 if uj has tagged item oi and 0 otherwise. The higher the number of

commonly tagged items between ui and uj , the higher their similarity value. Also in

this case we considered an unlimited value of k, thus taking all possible neighbours.

4. FolkRank (FR) - This technique models the system as a weighted tri-partite graph

where nodes refer to users, tags and items. FR uses a random surfer strategy to rec-

ommend items to users, following the idea that an item that has been tagged with

important tags and by important users becomes important itself (where “important”

is intended as in the PageRank sense). Note that FolkRank was originally developed

to recommend tags. We have implemented a simple modification of the algorithm

so that the random walk starts from the nodes representing users and tags, differ-

ently from the original FR algorithm where the random walk starts from the nodes

48

Chapter 3 3.4 Parameter Tuning

representing users and items. This simple modification enables FR to recommend

items instead of tags. We have included this method as a benchmark because of its

accuracy [Hotho et al., 2006].

3.4 Parameter Tuning

Running SR requires the setting of a number of parameters that are dependent on the

selected database. In this section, we describe a number of experiments we have conducted

to decide the best setting. We have considered CiteULike dataset as target for these

experiments and the selected parameters strictly depend on the characteristics of this

social tagging website that have been described in Section 2.2. In this thesis, we will

reuse some of the parameters which have been set for CiteULike over Bibsonomy and

MovieLens datsets, given the fact that these three datasets show similar characteristics of

tags’ distribution and growth. A more fine grained tuning has been left as future work.

While tuning parameters, we display results of the experiments performed in terms of

accuracy/coverage rather then in terms of precision/recall, as this enables us to highlight

results in a more fine-grained manner. Precision and Recall display average results com-

puted on the whole set of performed queries and they do not differ significantly across the

several approaches that we considered. In other words, we decided to evaluate:

• the percentage of queries where each approach was not able to recommend the hid-

den item. This measure is useful to evaluate the performance of each considered

technique in terms of coverage.

• the percentile ranking of the hidden item. This measure is useful to evaluate the

performance of each considered technique in terms of accuracy.

The best strategy would be the one capable of minimizing the percentage of queries in

which the hidden item is not suggested while maximizing instead the percentage of queries

in which the hidden item is found at the top of the recommendation list.

3.4.1 Impact of Using Different Strategies to Build Users and Tags Pro-

file

The first factor affecting SR is the strategy used to build users’ and tags’ profiles and to

measure their similarity.

As described in Sections 2.4.1 and 2.4.2, SR relies on the information stored in the users’

and tags’ similarity matrices to compute recommendations. To calculate these matrices,

49

Chapter 3 3.4 Parameter Tuning

users’ and tags’ profiles are created first. Different strategies can be used to build profiles,

considering different methods to represent the relevance of each tag for the considered

user, or the relevance of each item for the considered tag:

1. Simple counters: We describe each user uj with a vector vj where vj [m] counts

the number of times that uj used tag tm. All tags used by uj are considered relevant

to define her interests. Similarly, we also describe each tag tm with a vector wm
where wm[i] counts the number of times that tm was associated with item oi. All

items tagged with tm are considered relevant when building the tag’s profile. In both

situations, values have been normalized in the [0 . . . 1] range. Note that this method

is the one used when we described SR in Section 2.4.

2. Tf-idf weights: We describe each user uj with a vector vj , where vj [m] represents

the number of times that uj used tag tm divided by the total number of items

tagged by uj . Similarly, we also describe each tag tm with a vector wm, where wm[i]

represents the number of times that tm was associated with item oi divided by the

total number of users who used tm.

3. Singular Value Decomposition. We use SVD to reduce the original dataset

to a concentrated one containing only the signicant information extracted from the

original data. In particular from the original nu×nt user-tag matrix and the original

nt×no tag-item matrix SVD obtains an nu× rt and nt× ro reduced matrices where

nu is the number of users, nt is the number of tags and no is the number of items.

rt and ro are instead freely chosen parameters that indicates the reduced number

of tags and items. In our experiments we considered three different values for rt

and ro: 64, 14 and 5. Although increasing the values of rt and ro results in better

system performance, we decided to keep them limited (64 at most) to avoid increasing

system complexity.

3.4.2 Results

The experiment results suggest that even the simple counter strategy performs well when

measuring users’ and tags’ similarities. Applying more refined techniques such as tf-idf

weights and SVD actually lowered the performance of the system. When using SVD

coverage falls (the number of unanswered query rises from 22% to 29%), while accuracy

remains unchanged (the percentile ranking of the top 50% queries remains 5 for both

strategies). The main reason behind the performance loss is that reducing the number of

considered tags and items eliminates very important information for the recommendation

process. Using SVD has in fact sense when comparing similarities between documents,

where most of the words, such as connectors and articles, can be ignored. On the contrary

in tagging environments every tag is meaningful. Using tf-idf weights on users and tags

50

Chapter 3 3.4 Parameter Tuning

matrices does not seem to be effective either, since coverage drops of 1 percentage point

and accuracy of 5 positions (the percentile ranking of the top 50% queries is 5 when we

use simple counters, while it is 10 when we use tf-idf weights).

3.4.3 Impact of Using Different Strategies to Build the Expanded Tag

Set

The second factor affecting SR is the strategy used to expand the query. We evaluated

the impact of different criteria to select meaningful tags, focusing on their usage and on

conceptual-semantic and lexical relations existing between words (see Section 3.4.6 for

further details).

3.4.4 Activity-Based Tag Expansion

We first considered different expansion strategies based on the analysis of the usage of

tags.

Average tag expansion

In this technique we consider for each tag tj belonging to the original query qu, the k most

similar tags according to the cosine similarity measure. The selected tags are then included

in the expanded tag set q∗. Their weight in the final ranking calculation is then computed

as the average similarity across all original query tags (Formula 2.6). As we will show in

Section 3.4.5, this technique provides the best results in terms of accuracy/coverage and

is therefore the one used when we described SR in Section 2.4. The main advantages of

this average tag expansion are:

1. It considers equally each query tag, so that the final expanded query tag set q∗ is

balanced. By the term balanced we mean that q∗ contains the k most similar tags

for each tag tj ∈ qu.

2. It gives more importance to expanded tags which are similar to more than one

tj ∈ qu.

3. Tags that are not similar to some of the query tags are penalised.

Let qu be a query containing tags t1 and t2. Both t1 and t2 are expanded with their top

k neighbours. If k = 2, q∗ will be composed of 6 tags overall: the 2 query tags, 2 tags

coming from the expansion of t1 and 2 tags coming from the expansion of t2. By keeping

q∗ balanced, we aim at providing users with an item list L that answers the query more

effectively. L will be in fact composed by an almost equal amount of items tagged with t1

51

Chapter 3 3.4 Parameter Tuning

and its neighbours and with t2 and its neighbours. Consider an example expanded tag t3,

similar to tag t1 (sim(t1, t3) = 0.8) but not to tag t2 (sim(t1, t3) = 0.2). By considering

the average similarity value across both original tags (0.8 + 0.2)/2 = 0.5, we take into

consideration the fact that t3 is related only to t1 and that it could introduce in L items

which are not related at all with t2.

Sum-score-rank tag expansion

While the average tag expansion takes into consideration differences between expanded and

original tags and thus penalises in the final ranking of items tags that are not similar to

some of the query tags, the Sum-score-rank expansion considers the sum of the similarity

values and builds a non-balanced q∗, giving priority in the final ranking of items to query

tags with a bigger and highly similar neighborhood.

Let qu be a query containing n tags, in this case t1 and t2. For each tag, we take the

first k ∗ n expanded tags. If k = 2, we therefore take 8 expanded tags: 4 tags coming

from the expansion of t1 and 4 tags coming from the expansion of t2. If this set contains

duplicated tags, e.g. if both tags t1 and t2 were expanded with tag t3, their similarity

values are summed and the overall similarity value of t3 is boosted. The whole expanded

set is then ordered according to the overall similarity values and the best (k ∗n) expanded

tags are extracted. Finally, the final expanded query q∗ is composed with the 2 query tags

in qu and the best 4 expanded tags. We make this cut to produce a set q∗ as large as the

expanded set produced by the average technique. Moreover, this choice limits the size of

the expanded tag list so to focus only on the meaningful expanded tags. The final score of

the tags in q∗ is then rescaled in the [0 . . . 1] range. It is also important to note that the

expanded query might be unbalanced. If t1 were for example expanded only with one tag

(which can happen if t1 is not used much by users) and t2 were expanded by 4 tags, the

final tag set would contain mainly tags which come from the expansion of t2. This could

introduce in L non relevant items, highly related to tag t2 but not to tag t1. As shown

by the experiment reported in Section 3.4.5, this results in worse performances than those

obtained with the average expansion.

Score=1 tag expansion

This technique considers for each original tag in qu = {t1, t2} the first k × n most similar

expanded tags. If k = 2 we consider 8 expanded tags overall. Each expanded tag tj is

associated with two different scores. A count score that counts the number of tags in qu
tj is similar to and a sum score that is computed as the sum of all similarity scores of tj
with the original query tags. All the expanded tags are then ranked according to the first

score, while we use the second one only to sort out equally ranked tags. When calculating

L(o) according to Formula 2.7, the expanded query q∗ is composed by the original tags

and only the first k× n expanded tags. Moreover, when calculating the result of Formula

2.6 we consider that
∑

tj∈qu sim(tj , tl) = 1. We do this to give to all tags the maximum

52

Chapter 3 3.4 Parameter Tuning

Example expanded query tags

Original query tags t3 t4 t5 t6 t7
t1 0.3 0.6 0 0 0

t2 0.3 0 0.8 0.8 0.6

Count score 2 1 1 1 1

Sum score 0.6 0.6 0.8 0.8 0.6

Table 3.3: Expanded query tags

Experiment Uncovered

Average 5%

Sum-score-rank 10%

Score=1 8%

Table 3.4: Impact of the different tag expansion on the ranking of result in terms of
coverage

similarity score.

This technique gives priority to tags which are similar to many query tags in qu. This

avoids that the expanded tag set came from the expansion of one original tag only as it

happens when using the sum-score-rank expansion. Furthermore, it equally weights all

expanded tags, no matter what their similarity value with the original query tags is. This

is done to avoid the situation that sometimes occurs with the other expansions where the

tag similarity values are so low to be meaningless with respect to user similarity values.

Consider a query qu performed with tags t1 and t2. Table 3.3 shows the similarities between

the original tags and the expanded ones. In this situation score=1 returns an expanded

tag set q∗ composed of the original tags t1 and t2, tag t3 (similar to both), tags t5 and

t6 (similar to t2) and tag t4 (similar to t1). Consider an item oi tagged with tags t1, t3
and t5 by user uj (i.e., q∗(uj , oi) = {t1, t3, t5}). The value of sim(qu, q

∗(uj , oi)) = 3. As

shown by the experiments results reported in Section 3.4.5, the score=1 expansion does

not achieve better performances then the average expansion.

3.4.5 Results

Tables 3.4 and 3.5 report the results obtained by the different implementations of SR

varying the expansion strategy (and using the simple counter strategy to build users’ and

tags’ profiles). As reported in Table 3.4, the tag expansion method that achieves the best

performance in terms of coverage is the average expansion. Only in 5% of the performed

queries it was not able to recommend the hidden item, compared to 10% of the sum-score-

rank expansion and 8% of the score=1 expansion. As reported in Table 3.5, the average

53

Chapter 3 3.4 Parameter Tuning

Experiment
Percentile

5 10 25 50 75 95

Average 1 1 1 3 10 53

Sum-score-rank 1 1 1 9 21 77

Score=1 1 1 1 8 21 76

Table 3.5: Percentiles of the ranking of results

expansion achieves also better accuracy performance, since the percentile ranking of the

hidden item is always smaller than in all other approaches, i.e., the hidden item is always

returned in a higher position in the recommendation list.

3.4.6 Tag Expansion Using Dictionary-Based Approaches

A complementary approach to activity-based tag expansion is represented by dictionary-

based approaches that rely on tags’ similarities as statically defined by a dictionary. In

particular, this approach selects the expanded tags according to their conceptual-semantic

and lexical relations with the original query tags, based on the WordNet dictionary classifi-

cation (http://wordnet.princeton.edu/). WordNet is a large lexical database where words

are grouped into sets of synonyms, each expressing a distinct concept. These concepts

are interlinked by means of conceptual-semantic and lexical relations. On the basis of the

taxonomic structure of terms in WordNet, the amount of information shared between two

concepts can be evaluated and a similarity value between word pairs can be computed

[Seco et al., 2004]. The values obtained are comprised between 0 and 1, where 1 indicates

semantical coincidence and 0 indicates no correlation. Dictionary-based techniques could

be particularly useful to reduce the noise (i.e., irrelevant results) of activity-based tag

expansion approaches.

We performed a wide variety of experiments trying to assess the performance of this

approach. First of all, we directly compared the results obtained when using the average

expansion (the best activity-based expansion) or a dictionary-based expansion. In the

performed experiments, we also added a similarity threshold in the tag expansion phase

to further reduce noise. More specifically, we decided to expand each original query tag

by considering only neighbour tags with a similarity value greater than 0.1 for the average

expansion and equal to 1.0 for the dictionary-based expansion (i.e., we consider only

synonyms). The obtained results reveal that while the average expansion achieved better

performance in terms of coverage (the percentage of queries where the hidden item could

not be found was 16% for the average expansion, 21% for the dictionary-based expansion),

the dictionary-based expansion was outperforming it in terms of accuracy (the percentile

ranking of the top 25% queries was 10 for the dictionary-based expansion and 15% for

the average expansion). This is due to the fact that only 60% of the tags belonging to

54

Chapter 3 3.4 Parameter Tuning

the original dataset were recognized as valid words from the WordNet dictionary. In most

situations the dictionary approach could thus not perform any tag expansion. When the

expansion was performed instead, the approach was capable of identifying useful related

tags to expand the query with. This first result suggested us to try to combine both

approaches. We therefore combined the two sets of expanded tags in two different ways:

• We first performed two separate tag expansions using each one of the two presented

approaches and took only the tags returned by both. However, this approach did

not return good results as only 1% of the tags returned by the average expansion

was also returned by the dictionary-based expansion.

• We then tried to consider all tags returned by the two expansions together. This

strategy was not producing good results either, because in the vast majority of cases

synonyms introduced by the dictionary-based approach only helped retrieving items

not related to the query.

These results support the observations reported in [Sheung-On and Lui, 2006], where the

authors studied the weaknesses of recommender systems based on simple tag matching.

In particular they noted that the existence of synonyms and different inflexions of words

(modifications of words due to singular/plural forms and tenses) generate linguistic incon-

sistencies that lower performance. Even if inconsistencies can be solved in theory by using

an online dictionary (such as WordNet), in practice this is not always possible because

users tend to associate different items to linguistically related words. As an example, the

authors analyzed the top 5 words which are related to the “video” and “videos” tags in the

Delicious dataset and found that the two sets of words were totally unrelated (“YouTube”,

“Conference”, “Media”, “Television” for “video” and “Erotica”, “Public”, “Sex”, “Teen”

for “videos”). The obtained results confirmed also the considerations reported in [Cattuto

et al., 2008]. According to the study, activity-based similarity measures alone are already

capable of selecting, for each considered tag, its most meaningful synonyms.

We therefore decided to use the average expansion alone for two main reasons:

1. It equally rewards each original tag’s neighbours (it considers the top k most similar

expanded tags for each original one). This property assures that, if query tags refer

to different topics, an almost equal percentage of the recommended items will refer

to each of them. As also underlined in [Collins-Thompson, 2009], tag expansion

strategies aimed at returning balanced results lead to better recommendations.

2. It outperforms dictionary-based techniques as it considers only a meaningful subset

of semantically related words which can be useful for the given query. As also

explained in [Sheung-On and Lui, 2006], users tend sometimes to associate different

items to linguistically related words, causing the failure of recommender systems

based on simple tag matching.

55

Chapter 3 3.4 Parameter Tuning

Experiment Percentage of failed queries

k=0 k=5 k=10 k=20 k=50

average expansion 36% 22% 17% 14% 8%

Table 3.6: Impact of using different values of k when performing tag expansion on coverage

Percentile Ranking

k=0 k=5 k=10 k=20 k=50

5 1 1 5 8 10

10 1 1 5 8 10

25 1 2 5 8 10

50 3 5 15 29 40

75 10 15 30 42 54

95 53 58 72 87 96

Table 3.7: Impact of using different values of k when performing tag expansion on accuracy

3.4.7 Impact of k When Performing Tag Expansion

The final factor affecting SR is the choice of the number k of similar tags considered for

each original one during the query expansion phase. Table 3.6 reports, for different values

of k (from k = 0 meaning no expansion to k = 50), the percentage of queries where SR

was not able to retrieve the hidden item. Table 3.7 reports instead, for each considered

percentile and for different values of k, the ranking of the hidden item.

As Table 3.6 illustrates, the percentage of items not found when no expansion is performed

is approximately 36%, but it quickly decreases to 17% for k equal to 10 and to 8% for k

equal to 50. This result suggests that, since different users tag the same items differently,

searching techniques based on user-specified query tags only (where no tag expansion is

performed) are unable to find unpopular yet relevant items. On the other end, higher

values of k introduce uninteresting items inside the recommendation list, as shown in

Table 3.7. In fact, for higher values of k, the position in the recommended list of the

hidden item indicated by the percentiles is higher (i.e., its ranking is lower). To avoid

this, we decided to fix the value of k to 5. Note that an alternative approach that can be

adopted during the query expansion phase consists in using a similarity threshold when

selecting each tag’s neighbours. In particular, instead of including in the expanded tag

set the top k most similar tags for each original query tag tj , we could include all tags tl
provided that sim(tj , tl) ≥ simTh, where simTh refers to a specific similarity threshold

that needs to be defined a priori. Both techniques require a fine-grained tuning to decide

values for k or for simTH. They both have possible drawbacks too: while expanded tags

with a low similarity value might be introduced using a k-nearest neighbour approach,

considering a similarity threshold might cause some query tags to be expanded too much

56

Chapter 3 3.5 Results

Dataset Total n queries UM10OM5 UM10OL5 UL10OM5 UL10OL5
Bibsonomy 1342 117 636 88 501
CiteULike 4575 1733 1423 839 580
MovieLens 2038 350 419 809 460

Table 3.8: Number of test queries performed

(if all its neighbours have a similarity value higher than simTh) or too little (if instead

all its neighbours have a similarity value lower than simTh). In this thesis, we decided

to use a k-nearest neighbour approach, while we leave a similarity threshold approach for

future works.

3.5 Results

We now compare, for each of the three datasets under consideration, SR tuned as described

in the previous sections with the benchmarks described in Section 3.3. As our approach

has been devised to help cold start users looking for cold start items, we experimented with

four different types of queries: 1) queries performed by active users, that is, those who have

tagged at least 10 items in the training set (UM10); 2) queries performed by new users

(cold starters), that is, those who have tagged less than 10 items in the training set (UL10);

3) queries where users are looking for mainstream items, that is, those tagged by more

than 5 other users overall (OM5); 4) queries where users are looking for non mainstream

items (cold start items), that is, those tagged by less than 5 other users overall (OL5).

Note that these values have been selected only to emphasize the difference in performance

between SR and the considered benchmarks depending on the characteristic of the query

user and searched item. The lower these values, the greater the difference between the

algorithms. We also report in Section 3.5.2 a more general analysis of the precision/recall

performance of SR on the whole set of considered queries.

In both cases, we discarded from the test set all queries for which the hidden item did

not belong to the training set, since none of the implemented algorithms would have been

able to answer such queries successfully. Table 3.8 reports, for each dataset, the number

of test queries performed in total and in each case study.

3.5.1 Precision and Recall Computed on Each Case Study

In this section we describe the results of the experiments we performed over the three

different datasets Bibsonomy, CiteULike and MovieLens. In particular we report the

percentage increase in precision and recall of SR with respect to the other approaches.

57

Chapter 3 3.5 Results

3.5.1.1 Bibsonomy

As Figures 3.1 and 3.2 illustrate, FolkRank is the best approach, both in terms of precision

and recall, when dealing with active users searching for mainstream items. However,

while the gain over standard collaborative filtering approaches (e.g., CFUT and CFUI) is

considerable, the gain over SR is not significant, and it becomes lower with the growth

of the recommendation list (x axis). For example, when the recommendation list is cut

at the top 50 results, FR has a 19% improvement over SR both in terms of recall and

precision, while the gap is 66% against CFUT.

If we now look at all the other considered query types which, according to Table 3.8,

represent 90% of the test queries, the situation is completely different and SR outperforms

all other approaches. As Figures 3.3 and 3.4 illustrate, FR looses 27% with respect to SR

both in terms of precision and recall when dealing with active users and non-mainstream

items. The gap between SR and the three approaches based on popularity (Pop) and

CF (CFUI and CFUT) is consistent across all graphs. In particular in this case the gap

between SR and CFUT is 85% for both precision and recall and for recommendation lists

cut at the top 50 results.

The performance loss of all strategies over SR increases when considering new users and

mainstream items (Figures 3.5 and 3.6). In this case the gap between SR and FR reaches

35%, while it reaches 96% between SR and CFUT (for recommendation lists of 50 ele-

ments). As Figures 3.7 and 3.8 illustrate, the query type for which SR obtains the best

results is represented by queries performed by new users searching for non-mainstream

items. In this case the performance gain of SR over FR and over CF strategies is al-

most constant and independent of the recommendation list size. If we consider the case

where the recommendation list is cut at the top 50 results, SR gains a 65% and a 88%

improvement over FR and CFUT respectively.

These results confirm the success of SR in answering queries from both active and new

users looking for non-mainstream items (which constitute 90% of all performed queries).

The performance gain in precision/recall achieved by SR confirms that our approach can

deal better with both the user and item cold start problems.

58

Chapter 3 3.5 Results

0 

0.005 

0.01 

0.015 

0.02 

0.025 

0.03 

0.035 

0.04 

N=10  N=20  N=50  N=100  N=500  N=1000 

Pr
ec
is
io
n 

Number of items in the recommenda3on list 

FR 

SR 

CFUI 

CFUT 

Pop 

Figure 3.1: Precision for active users and popular items on Bibsonomy

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1 

N=10  N=20  N=50  N=100  N=500  N=1000 

Re
ca
ll 

Number of items in the recommenda4on list 

FR 

SR 

CFUI 

CFUT 

Pop 

Figure 3.2: Recall for active users and popular items on Bibsonomy

59

Chapter 3 3.5 Results

0 

0.002 

0.004 

0.006 

0.008 

0.01 

0.012 

N=10  N=20  N=50  N=100  N=500  N=1000 

Pr
ec
is
io
n 

Number of items in the recommenda3on list 

SR 

FR 

CFUI 

CFUT 

Pop 

Figure 3.3: Precision for active users and unpopular items on Bibsonomy

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

N=10  N=20  N=50  N=100  N=500  N=1000 

Re
ca
ll 

Number of items in the recommenda4on list 

SR 

FR 

CFUI 

CFUT 

Pop 

Figure 3.4: Recall for active users and unpopular items on Bibsonomy

60

Chapter 3 3.5 Results

0 

0.002 

0.004 

0.006 

0.008 

0.01 

0.012 

0.014 

0.016 

N=10  N=20  N=50  N=100  N=500  N=1000 

Pr
ec
is
io
n 

Number of items in the recommenda3on list 

SR 

FR 

CFUI 

CFUT 

Pop 

Figure 3.5: Precision for new users and popular items on Bibsonomy

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

N=10  N=20  N=50  N=100  N=500  N=1000 

Re
ca
ll 

Number of items in the recommenda4on list 

SR 

FR 

CFUI 

CFUT 

Pop 

Figure 3.6: Recall for new users and popular items on Bibsonomy

61

Chapter 3 3.5 Results

0 

0.005 

0.01 

0.015 

0.02 

0.025 

0.03 

0.035 

0.04 

N=10  N=20  N=50  N=100  N=500  N=1000 

Pr
ec
is
io
n 

Number of items in the recommenda3on list 

SR 

FR 

CFUI 

CFUT 

Pop 

Figure 3.7: Precision for new users and unpopular items on Bibsonomy

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

N=10  N=20  N=50  N=100  N=500  N=1000 

Re
ca
ll 

Number of items in the recommenda4on list 

SR 

FR 

CFUI 

CFUT 

Pop 

Figure 3.8: Recall for new users and unpopular items on Bibsonomy

62

Chapter 3 3.5 Results

3.5.1.2 CiteULike

We now analyse the results obtained on the CiteULike dataset. Similarly to our previous

considerations, FR achieves better performance both in terms of precision and recall when

dealing with active users searching for mainstream items. However, as Figures 3.9 and 3.10

illustrate, while FR obtains a substantial gain over traditional CF and Pop approaches

(50% and 87% respectively in both precision and recall), the gain over SR is rather small

(9% only).

We now consider all the other query types that represent 62% of the performed queries. FR

is outperformed by SR when dealing with active users looking for non-mainstream items.

As Figures 3.11 and 3.12 illustrate, precision and recall of SR are 15% and 96% better

than those of FR and CFUT respectively (for recommendation lists of 50 elements). The

gain in performance of SR increases when dealing with new users searching for mainstream

items. As described by Figures 3.13 and 3.14, SR has a 27% and 91% improvement for

both precision and recall over FR and CFUT respectively.

As for Bibsonomy, SR produces the best results when dealing with new users and non-

mainstream items. As Figures 3.15 and 3.16 show, the performance gain of SR reaches 44%

and 79% over FR and CFUT respectively for both precision and recall (for recommendation

lists of 50 elements).

63

Chapter 3 3.5 Results

0 

0.005 

0.01 

0.015 

0.02 

0.025 

0.03 

0.035 

0.04 

0.045 

0.05 

N=10  N=20  N=50  N=100  N=500  N=1000 

Pr
ec
is
io
n 

Number of items in the recommenda3on list 

FR 

SR 

CFUI 

CFUT 

Pop 

Figure 3.9: Precision for active users and popular items on CiteULike

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1 

N=10  N=20  N=50  N=100  N=500  N=1000 

Re
ca
ll 

Number of items in the recommenda4on list 

FR 

SR 

CFUI 

CFUT 

Pop 

Figure 3.10: Recall for active users and popular items on CiteULike

64

Chapter 3 3.5 Results

0 

0.005 

0.01 

0.015 

0.02 

0.025 

N=10  N=20  N=50  N=100  N=500  N=1000 

Pr
ec
is
io
n 

Number of items in the recommenda3on list 

SR 

FR 

CFUI 

CFUT 

Pop 

Figure 3.11: Precision for active users and unpopular items on CiteULike

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

N=10  N=20  N=50  N=100  N=500  N=1000 

Re
ca
ll 

Number of items in the recommenda4on list 

SR 

FR 

CFUI 

CFUT 

Pop 

Figure 3.12: Recall for active users and unpopular items on CiteULike

65

Chapter 3 3.5 Results

0 

0.002 

0.004 

0.006 

0.008 

0.01 

0.012 

0.014 

0.016 

N=10  N=20  N=50  N=100  N=500  N=1000 

Pr
ec
is
io
n 

Number of items in the recommenda3on list 

SR 

FR 

CFUI 

CFUT 

Pop 

Figure 3.13: Precision for new users and popular items on CiteULike

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

N=10  N=20  N=50  N=100  N=500  N=1000 

Re
ca
ll 

Number of items in the recommenda4on list 

SR 

FR 

CFUI 

CFUT 

Pop 

Figure 3.14: Recall for new users and popular items on CiteULike

66

Chapter 3 3.5 Results

0 

0.005 

0.01 

0.015 

0.02 

0.025 

0.03 

0.035 

0.04 

0.045 

0.05 

N=10  N=20  N=50  N=100  N=500  N=1000 

Pr
ec
is
io
n 

Number of items in the recommenda3on list 

SR 

FR 

Pop 

CFUI 

CFUT 

Figure 3.15: Precision for new users and unpopular items on CiteULike

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1 

N=10  N=20  N=50  N=100  N=500  N=1000 

Re
ca
ll 

Number of items in the recommenda4on list 

SR 

FR 

Pop 

CFUT 

CFUI 

Figure 3.16: Recall for new users and unpopular items on CiteULike

67

Chapter 3 3.5 Results

3.5.1.3 MovieLens

The last dataset we analyse is MovieLens. As Figure 3.17 and Figure 3.18 illustrate, FR is

again the best approach when dealing with active users looking for popular items (15% of

gain over SR in both precision and recall). The same cannot be said for situations where

the user is new or looking for non-mainstream items (as in 80% of the test queries). As

Figures 3.19 and 3.20 illustrate, in scenarios where the user is active but the searched item

is non-mainstream, SR achieves the best performance, with a gap of 14% against FR in

both precision and recall. The performance gap increases even to 100% when comparing

SR with CFUT.

The performance gain of SR over FR and CF increases when considering new users and

non-mainsteram items. In particular, when considering new users looking for mainstream

items (Figures 3.21 and 3.22), the performance improvement of SR over FR and CFUT

reaches 92% and 98% respectively for both precision and recall. When considering new

users looking for non-mainstream items (Figures 3.23 and 3.24), the performance improve-

ment of SR over FR and CFUT reaches 88% and 100% respectively.

It is worth noting that on MovieLens the recall achieved by all approaches is much lower

than on the other datasets we have examined. However, this behavior does not affect the

performance difference between algorithms. To explain this behaviour, we have analysed

the dataset in more detail and found that 70% of MovieLens’ items have been tagged by less

than 5 users (compared to 30% of CiteULike). This means that very little information (in

terms of tags) is known about the vast majority of items. In other words, the information

that recommender systems leverage to discover relevant items is not sufficient to obtain

good results.

Based on the experiments conducted over the Bibsonomy, CiteULike, and MovieLens

datasets, we can thus conclude that SR is the most effective technique to recommend

non-mainstream items to new users, with a clear gain over other techniques. In order to

have a full performance comparison, we report in the next section a more general analysis

of the precision/recall performance of SR on the whole set of considered queries.

68

Chapter 3 3.5 Results

0 

0.005 

0.01 

0.015 

0.02 

0.025 

N=10  N=20  N=50  N=100  N=500  N=1000 

Pr
ec
is
io
n 

Number of items in the recommenda3on list 

FR 

SR 

CFUT 

CFUI 

Pop 

Figure 3.17: Precision for active users and popular items on MovieLens

0 

0.05 

0.1 

0.15 

0.2 

0.25 

0.3 

0.35 

0.4 

0.45 

0.5 

N=10  N=20  N=50  N=100  N=500  N=1000 

Re
ca
ll 

Number of items in the recommenda4on list 

FR 

SR 

CFUT 

CFUI 

Pop 

Figure 3.18: Recall for active users and popular items on MovieLens

69

Chapter 3 3.5 Results

0 

0.001 

0.002 

0.003 

0.004 

0.005 

0.006 

0.007 

0.008 

0.009 

0.01 

N=10  N=20  N=50  N=100  N=500  N=1000 

Pr
ec
is
io
n 

Number of items in the recommenda3on list 

SR 

FR 

CFUT 

CFUI 

Pop 

Figure 3.19: Precision for active users and unpopular items on MovieLens

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

N=10  N=20  N=50  N=100  N=500  N=1000 

Re
ca
ll 

Number of items in the recommenda4on list 

SR 

FR 

CFUT 

CFUI 

Pop 

Figure 3.20: Recall for active users and unpopular items on MovieLens

70

Chapter 3 3.5 Results

0 

0.005 

0.01 

0.015 

0.02 

0.025 

0.03 

0.035 

0.04 

0.045 

N=10  N=20  N=50  N=100  N=500  N=1000 

Pr
ec
is
io
n 

Number of items in the recommenda3on list 

SR 

Pop 

FR 

CFUI 

CFUT 

Figure 3.21: Precision for new users and popular items on MovieLens

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

N=10  N=20  N=50  N=100  N=500  N=1000 

Re
ca
ll 

Number of items in the recommenda4on list 

SR 

Pop 

FR 

CFUI 

CFUT 

Figure 3.22: Recall for new users and popular items on MovieLens

71

Chapter 3 3.5 Results

0 

0.002 

0.004 

0.006 

0.008 

0.01 

0.012 

N=10  N=20  N=50  N=100  N=500  N=1000 

Pr
ec
is
io
n 

Number of items in the recommenda3on list 

SR 

FR 

CFUI 

CFUT 

Pop 

Figure 3.23: Precision for new users and unpopular items on MovieLens

0 

0.05 

0.1 

0.15 

0.2 

0.25 

0.3 

0.35 

N=10  N=20  N=50  N=100  N=500  N=1000 

Re
ca
ll 

Number of items in the recommenda4on list 

SR 

FR 

CFUI 

CFUT 

Pop 

Figure 3.24: Recall for new users and unpopular items on MovieLens

72

Chapter 3 3.5 Results

3.5.2 Precision and Recall Computed on the Whole Query Set

The overall results computed on the whole set of considered queries show that SR achieves

the best performance across all considered datasets, both in terms of precision and recall.

For Bibsonomy (Figure 3.25 and Figure 3.26), the performance gain of SR over FR and

CFUT reaches 19% and 74% respectively for both precision and recall. For CiteULike

(Figure 3.27 and Figure 3.28) the performance gain of SR over FR and CFUT reaches

11% and 83% respectively, for both precision and recall. Finally, for MovieLens (Fig-

ure 3.29 and Figure 3.30), the performance gain of SR over FR and CFUT reaches 70%

and 93% respectively, for both precision and recall. The reported percentages refer to

recommendation lists cut at the top 50 results.

It is worth noting that the performance gain of SR over all the other considered techniques

change depending on the considered dataset. This is mainly due to the different percent-

ages of new users and non-mainstream items. In fact, the performance improvement is

larger for MovieLens, which is the dataset where such values are the largest (74% and

23% of new users and non-mainstream items respectively, with respect to 47% and 4% on

CiteULike and 57% and 2% on Bibsonomy).

73

Chapter 3 3.5 Results

0 

0.002 

0.004 

0.006 

0.008 

0.01 

0.012 

0.014 

0.016 

0.018 

N=10  N=20  N=50  N=100  N=500  N=1000 

Pr
ec
is
io
n 

Number of items in the recommenda3on list 

SR 

FR 

CFUI 

CFUT 

Pop 

Figure 3.25: Precision on Bibsonomy

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

N=10  N=20  N=50  N=100  N=500  N=1000 

Re
ca
ll 

Number of items in the recommenda4on list 

SR 

FR 

CFUI 

CFUT 

Pop 

Figure 3.26: Recall on Bibsonomy

74

Chapter 3 3.5 Results

0 

0.005 

0.01 

0.015 

0.02 

0.025 

N=10  N=20  N=50  N=100  N=500  N=1000 

Pr
ec
is
io
n 

Number of items in the recommenda3on list 

SR 

FR 

CFUI 

CFUT 

Pop 

Figure 3.27: Precision on CiteULike

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

N=10  N=20  N=50  N=100  N=500  N=1000 

Re
ca
ll 

Number of items in the recommenda4on list 

SR 

FR 

CFUI 

CFUT 

Pop 

Figure 3.28: Recall on CiteULike

75

Chapter 3 3.5 Results

0 

0.005 

0.01 

0.015 

0.02 

0.025 

0.03 

N=10  N=20  N=50  N=100  N=500  N=1000 

Pr
ec
is
io
n 

Number of items in the recommenda3on list 

SR 

FR 

Pop 

CFUI 

CFUT 

Figure 3.29: Precision on MovieLens

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

N=10  N=20  N=50  N=100  N=500  N=1000 

Re
ca
ll 

Number of items in the recommenda4on list 

SR 

FR 

Pop 

CFUI 

CFUT 

Figure 3.30: Recall on MovieLens

76

Chapter 4

Scalablility

Social Ranking was developed to improve the recommendation efficacy for cold start users

and items. However, there is another challenge recommender systems have still to face:

scalability. The amount of data recommender systems consider increases constantly due

to the subscription of new users and the constant tagging activity of the community.

Memory-based techniques that directly use the raw data to provide recommendations suffer

particularly from this problem. However, also model-based techniques that generate offline

models of the data still have to deal with it. In fact they must anyway perform periodic

updates of their models to guarantee good recommendations. In the following we propose

Clustered Social Ranking (CSR), a novel technique that addresses the scalability problem.

CSR has a smaller computational cost and thus allows more efficient system updates then

the existing methodologies. In this chapter we first introduce existing solutions to the

problem of scalability for recommender systems, highlighting their limitations (Section 4.1

and 4.2). We then discuss the key principles we exploit to tackle the problem (Section 4.3)

and describe the corresponding technique we developed (Section 4.4 and 4.5). We will

evaluate CSR in Chapter 5.

4.1 Related Work

The problem of scalability of rating-based collaborative filtering approaches has been

widely studied. A variety of different solutions have been proposed whose focus is on

providing comparably accurate and complete recommendations while handling growing

amounts of data. Two main directions have been followed. The first direction proposes to

build a model of user ratings rather than directly using the original available information.

The main advantage of these techniques is that since the model can be created offline,

the online recommendation process is not affected by the data growth. This general idea

has been applied to improve standard memory-based Collaborative Filtering and resulted

77

Chapter 4 4.1 Related Work

in the creation of model-based techniques. A subset of these techniques employs matrix

factorization stategies such as Principal Component Analysis (PCA) or Singular Value

Decomposition (SVD) [Takacs et al., 2009, Goldberg et al., 2000, Sarwar et al., 2000] to

compress the original nu × no matrix R of user-item ratings. In other words, given the

matrix R, these techniques compute matrices P and Q which satisfy

R = PαQT

where P is a (nu × ro) matrix, Q is a (ro × no) matrix and ro represent the reduced

number of items considered. The matrix P can be considered as an approximation of the

original matrix R in a space of ro items, with ro 6= no, which describes the level of interest

of each user on each reduced item. The decomposed matrices are then used to compute

the predicted rate for a user-item pair using the user vector extracted from P and the

item vector extracted from Q. In other words, given a specific user uj and an item oi, the

predicted rating r′(uj , oi) is computed as:

r′(uj , oi) =
ro∑
f=0

P (uj , f)×Q(f, oi)

Although matrix factorization techniques address the scalability issue, the computation

of P and Q can be expensive. This is because the optimal value for ro considered is not

fixed a-priori but decided repeating the algorithm several times and choosing the value

that returned the best result. Moreover, the approximation can be challenging if some

rating values are missing in the original R matrix. Unknown ratings cannot in fact be

represented as zeros, as this would hinder the calculation described above. Furthermore,

as also shown by the results of our experiment reported in Section 3.4, making predictions

using P and Q can result in non-accurate recommendations.

Mobasher et al. [Mobasher et al., 2001] propose instead an association rule technique to

recommend interesting web-pages to users. The technique is applied to transactional data,

where a transaction is defined as a set of pages visited by a user in the same session. By

analyzing a list of transactional logs, the authors employ the Apriori mining algorithm to

capture the relationships between visited pages based on their co-occurrence patterns. In

other words, the Apriori algorithm identifies groups of pages occurring frequently together

in many transactions and defines a set of association rules. Given two sets of pages X and

Y , each rule, expressed as X ⇒ Y , indicates that users visiting pages in X are also likely

to visit pages in Y . The recommendation engine takes in input the generated collection of

association rules and generates a recommended set of web pages for a user by matching the

current user activity (i.e., the set of pages the user has already visited during the current

session) with all association rules. Since association rules can be discovered during an

78

Chapter 4 4.1 Related Work

offline pre-processing phase, the recommendation process scales well. However, the rule

discovery phase appears to be computationally heavy and needs to be accurately tuned

to avoid a common problem introduced by the mining algorithm. By focusing only on

the most frequently occurring web pages in the transactional data, the algorithm fails in

fact to consider rare but important web pages. Sarwar et al. [Sarwar et al., 2002] propose

to apply an offline clustering algorithm over the user-item rating matrix to group users

with similar profiles. The online recommendation process that they propose is inspired by

traditional UBCF. Given a user uj , the technique identifies the cluster c she belongs to

and generates the predicted rating r
′
(uj , oi) as follows:

r
′
(uj , oi) = ruj +

∑
ul∈c(r(ul, oi)− rul) ∗ sim(uj , ul)∑

ul∈c |sim(uj , ul)|

where r(ul, oi) denotes the rating given by each user ul belonging to the cluster c, ruj and

rul denote the average ratings of users uj and ul respectively and sim(uj , ul) denotes the

correlation between uj and each user ul. The main drawback of the described approach is

that it is heavily affected by the user cold start problem. If the user asking for recommen-

dations is a new user or if her profile contains few ratings, the clustering fails to classify

her.

Scalability can be achieved also with a distributed implementation of traditional CF solu-

tions. A simple decentralised implementation based on peer-to-peer networks is proposed

in [Peng et al., 2004]. The originally centralised user-item matrix is first divided into

fractions, called buckets, that are assigned to different peers. Each bucket stores, for each

item-rating pair, the list of all users who rated the selected item with the considered rating.

When making predictions for a user uj , an adapted CF solution is used combining only

the ratings of all users appearing in at least one bucket with uj . A more advanced decen-

tralized technique is proposed by MapReduce [Dean and Ghemawat, 2004]. MapReduce is

a framework developed by Google to support distributed computations on large datasets.

In April 2009, Apache released Mahout (http://mahout.apache.org/), a collection of scal-

able machine learning libraries implemented following the MapReduce paradigm. Mahout

provides a distributed version of the Collaborative Filtering algorithm as well as libraries

supporting different clustering algorithms (e.g., k-means, fuzzy k-means, etc.), SVD de-

composition, Naive Bayes classification and frequent itemset mining.

Even if all the described solutions have been devised for rating-based environments, their

general concepts could be reused in tag-based ones. However, in tag-based environments

the scalability problem is worsened by the larger amount of information to process (in-

cluding also tagging information). Heymann et al. [Heymann et al., 2008] showed that

folksonomies are so large and dynamic that traditional recommendation techniques are no

longer effective. Our goal is to define an effective and scalable recommendation algorithm

for tag-based environments that provides comparably accurate recommendations even for

79

Chapter 4 4.2 Analysis of the Problem Space

Approach Offline Online

CF O(nu×(nu−1)
2) O(nu× no)

FR - O(iterations× na)

SR O
(

nu×(nu−1)
2 + nt×(nt−1)

2

)
O(no× nt)

Table 4.1: Computational complexity of FR, SR and CSR

cold start users.

In the next section we analyse more in depth the scalability problem for tag-based en-

vironments by comparing the computational complexity and recommendation efficacy of

state-of-the-art techniques.

4.2 Analysis of the Problem Space

We now focus on the three different recommendation algorithms considered in Section 3.3,

namely CF, SR and FR. For each technique, we consider two different costs: offline cost

and online cost. Offline cost is the cost to pre-compute all the data structures each

algorithm relies on (for example, the matrix of users’ similarities), while online cost is the

cost to execute a query. Table 4.1 reports the computational complexity of each approach.

Let nu, no and nt be the total number of users, items and tags. CF requires the compu-

tation of a nu× nu matrix. The matrix stores for each pair of users uj , ul their similarity

value that depends either on commonly tagged items or commonly used tags. The com-

plexity of calculating the symmetric user matrix is O(nu× (nu−1)/2) (the cost of finding

every pair of users). The online cost depends instead on the total number of items tagged

by all neighbours of the quering user. In the worse case, the online complexity there-

fore is O(nu × no). As confirmed by the results of our experimental evaluation reported

in Chaper 3, the low performance in terms of precision and recall makes CF unsuitable

to produce effective recommendations. Moreover, its quadratic costs (offline and online)

make scalability a major issue.

FR requires no offline computation instead. For each query, it traverses the tri-partite

graph of users-tags-items for a number of iterations (typically 30-35) and computes a score

for all items. If we indicate with na the number of edges in the graph (where in the worst

case na is proportional to nu×no×nt), the online complexity of FR is O(iterations×na).

Even if FR can produce effective recommendations for highly connected graphs (i.e., where

users tagged many items), its online cubic cost makes it unsuitable for large folksonomies

[Gemmell et al., 2009].

SR requires the offline computation of two matrices: one storing users’ similarities, and

80

Chapter 4 4.3 Insight

another storing tags’ similarities. The matrices are symmetric, thus its offline cost is

O(nu × (nu − 1)/2 + nt × (nt − 1)/2). The online cost depends instead on the number

of items and tags used to answer queries. In the worst case where all no items have been

tagged with all nt tags, the complexity is O(no × nt). Despite its good performance in

producing recommendation especially for cold start users and items, SR does not scale

well.

We can conclude that state-of-the-art recommendation algorithms fail in achieving both

good scalability and recommendation efficacy. New solutions are thus called for. In

Section 4.3, we analyze some key properties of social tagging environments that gave

us insights on how to design a solution to the problem. In Sections 4.4 and 4.5 we describe

the solution we devised and present the specific implementation we realized to experiment

on. Note that the implementation is based on SR, even if the proposed methodology is

general and other recommendation techniques could be used.

4.3 Insight

The technique we developed leverages two observations described in the following.

Leaders and Followers

According to our analysis of the CiteULike dataset, there exists a rather small proportion

of users (leaders) who tag the vast majority of items. This suggests that it is possible

to make comparably accurate recommendations by considering opinions from the set of

leaders only. Studies on the Netflix and Rotten Tomatoes rating-based datasets [Amatrian

et al., 2009] also confirm this idea. The authors demonstrate that it is possible to make

effective recommendations without considering the whole set of existing users. They in

fact apply CF techniques using only the opinions of a small set of active “experts” selected

as professionals who wrote more than 250 reviews.

Domains of Interest

According to our analysis of the CiteULike dataset (Section 2.2), users are usually active

only on a small portion of the whole set of existing items, thus showing focused and scoped

interests within the broader scientific community. Furthermore, the analysis also shows

that only a small subset of the whole folksonomy is used by users to describe each item,

thus showing that users agree on which tags are useful to describe each item. These ideas

are also confirmed by our studies of users’ and tags’ similarities described in Sections 2.4.1

and 2.4.2. Each user is similar only to a small subset of other users (who have the same

scoped interests) and each tag is related only to a very small subset of other tags (that are

used to tag items in the same area of interest). This suggests that the best recommenders

for a target user u may just be her similar users and that we could use only this small

81

Chapter 4 4.4 Clustering of Leaders

subset to produce accurate recommendations. Let us consider a clustering of the users

based on their interests. To give recommendations to a member of a cluster c we could

use only the tagging information from users of the same cluster. This would also allow us

to filter out noise and to improve the efficacy of the recommendation process.

4.3.1 Conclusions

Figure 4.1 depicts the approach we take to address the scalability problem in tag-based

scenarios. We first identify the group of leaders and cluster them into domains of interest.

In particular, the clusters are created according to the commonly tagged items rather than

to the commonly used tags. This is done to avoid ambiguities introduced by synonyms

or homonyms. Let T (ci) be the set of tags used by users in cluster ci. Whenever a

user sends a query qu, our solution first identifies the clusters ci whose tags T (ci) best

represent the query (further details will be given in Section 4.5). It then runs SR within

the selected clusters only. Note that inside cluster ci any technique can be used to produce

recommendations. We decided to use SR for its properties we already described in Section

3. We called this implementation Clustered Social Ranking (CSR). Experiments combining

our clustering recommendation approach with different techniques have been left as future

work. We therefore propose to scale the recommendation process by first identifying the

relevant portion of data. This does not prevent us from decentralising our approach, for

example by using frameworks like MapReduce or assigning one cluster per host.

In the next section, we describe in further details our technique: we describe how leaders

are identified and clustered in Section 4.4, while we illustrate how queries are associated

with the best cluster to answer them in Section 4.5.

4.4 Clustering of Leaders

The literature on clustering algorithms is very rich and we could rely on different solutions

to group users into categories of interests. In the following section, we describe the main

characteristics of some of them, underlining how they can fit in our domain and explaining

the motivation for our final choice.

4.4.1 Background Literature on Clustering

Clustering is the assignment of a set of objects into subsets (called clusters) so that objects

in the same cluster are similar according to some characteristics. Each cluster is often

represented by a centroid, i.e., an object (that may also not exist) whose characteristics

82

Chapter 4 4.4 Clustering of Leaders

1: Identification of
the leaders

2: Clustering of
the leaders

3: Selection of
suitable clusters

System initialisation

Web/user interface

Query q = (t1, t2, t3)

4: Recommendation
process

CiteULike

Recommended
items

Online process

Figure 4.1: Overview of the recommendation process

are average across all objects in the cluster. Clustering algorithms [Omran et al., 2007,

Schaeffer, 2007] can be divided into two major categories:

• In vector clustering algorithms, entities are represented as vectors that contain the

score of each entity on a specific characteristic. The similarity between two entities

is calculated as the distance between the respective vectors. Vector clustering al-

gorithms can further be distinguished between partitional clustering algorithms and

hierarchical clustering algorithms.

– Partitional clustering techniques determine a specified number of partitions by

optimizing a certain criterion function.

– Hierarchical clustering techniques and k-nearest neighbor pattern classification

algorithms decompose the target data into different partitions that are organ-

ised in a tree structure where leaves are the single items. The tree is constructed

either top-down or bottom-up using divisive or agglomerative strategies respec-

tively. Divisive strategies split the whole database into smaller groups itera-

83

Chapter 4 4.4 Clustering of Leaders

tively. Agglomerative strategies group items or clusters of items iteratively.

• In graph clustering algorithms entities are represented as nodes in a graph with edges

as mutual relationships.

We describe for each category the most widely used algorithms that have been used in the

literature.

Partitional Algorithm: K-Means

One of the simplest partitional algorithm is K-Means [Manning et al., 2008]. The algorithm

starts by considering a fixed set of k non-overlapping clusters, each represented by a

specified centroid ci ∈ C = {c1, c2, .., ck}. Note that in the following we will indicate both

a cluster and its centroid with the same term ci. Each centroid is a randomly initialized

vector. The algorithm then performs a series of iterations where each object xi belonging

to the original object set X = {x1, x2, .., xn} is assigned to the closest cluster, trying to

maximize the within-cluster total similarity

W (X,C) =
∑
ci∈C

∑
xj∈ci

sim(xj , ci)

where sim refers to the similarity function between each object xj and its closest centroid.

At the end of each iteration, centroids are updated and moved towards the center of the

group they represent:

ci ∈ C : ci =

∑
xj∈ci xj

|ci|

where |ci| is the number of objects xj belonging to cluster ci. The process is iterated until

convergence is reached (i.e., until assignments no longer change). The K-means algorithm

is very easy to implement and its linear time complexity O(iterations× k×n) (iterations

and k are usually predefined constants, [Jain et al., 1999]) makes it suitable for very large

amounts of data. However, the algorithm can assign each object to one cluster only, while

objects might be similar to several centroids with different levels of similarity. Fuzzy

C-Means has been proposed to address this problem.

Partitional Algorithm: Fuzzy C-Means

The Fuzzy C-Means algorithm [Bezdek, 1981] is based on a fuzzy extension of the total

similarity function reported in the previous section where objects can belong to more than

one cluster:

W (X,C) =
∑
ci∈C

∑
xj∈ci

sim(xj , ci) ∗ umij

where umij refers to the degree of membership of object xj to cluster ci. The fuzziness ex-

ponent m is a real number greater than 1 that determines the amount of overlap between

groups. Note that both K-Means and Fuzzy C-Means can be performed only after spec-

84

Chapter 4 4.4 Clustering of Leaders

ifying the number of groups k. Existing solutions to evaluate the best value of k iterate

the K-Means or Fuzzy C-Means algorithms with different values of k and use different

heuristics to choose the best cluster [Tibshirani et al., 2000].

Hierarchical Algorithms and K-Nearest Neighbor Pattern Classification

Hierarchical methods find clusters of similar objects by applying a sequence of agglomera-

tive or divisive steps, with the goal of grouping (or separating) the closest pair of existing

elements (or the farthest) at each iteration. The most used hierarchical algorithms are:

Birch [Zhang et al., 1996], Cure [Sudipto et al., 1998], Clope [Yang et al., 2002] and Rock

[Rajeev et al., 1999]. Similar algorithms have been used in template reorganization algo-

rithms (k-neares neighbor pattern classification algorithms) adopted to improve the speed

of data retrieval on database tables [Broder, 1990, Friedman et al., 1975, Faragó et al.,

1993, Zhang and Srihari, 2004]. These algorithms build a dynamic clustering tree where

each level represents a specific subclustering with a different granularity. They differ in

the distance function which is used at each step to guide the agglomerative or divisive

step and in the strategy they use to build the clustering tree. In addition, they require

a great amount of memory as the clustering tree must be kept in memory and must be

updated at each iteration. Moreover, since the tree does not provide a unique clustering,

choosing the best level to obtain the correct partition can be challenging. Since we do

not use the discovered clusters at different granularity levels (which can be useful instead

when browsing information), we decided not to use these approaches in our solution.

Graph Clustering

Several algorithms have been proposed to identify clusters of users in large scale networks.

These algorithms consider the objects to cluster as nodes of a graph whose edges represent

the objects’ relations. In particular, these techniques use methodologies from graph theory

to find highly connected sets of nodes. In [Ruan and Zhang, 2008] the authors propose a

modified version of the minimum k-cut algorithm to generate all the possible clusterings.

Clustering are then further refined via local search techniques that merge highly connected

clusters. The algorithm then finds the best clustering using the Newman and Girvan

modularity function. The function decides the best clustering as the one where for each

node the number of edges coming from the node’s cluster is greater than the number of

outgoing edges directed towards any external cluster. In [Du et al., 2007] the authors

propose an approach for clustering based on the enumeration of cliques, where a clique

is defined as a subset of adjacent vertices such that every two vertices in the subset are

connected by an edge. In particular, the authors propose to identify all maximal cliques,

i.e., cliques that are not subsets of any other clique. Each maximal clique is regarded as

a clustering kernel. They then perform an agglomerative process to assign the remaining

vertices to their closest kernel according to a proposed distance measure. Highly connected

clusters are finally merged together.

85

Chapter 4 4.4 Clustering of Leaders

Conclusion

The literature on clustering algorithms is very rich. We chose to experiment with the Fuzzy

c-Means algorithm as it has been effectively applied in different scenarios. Moreover, it

has the property that each object can be part of more that one cluster at a time. In our

domain, this means that each user is allowed to belong to different clusters, as she can

be interested in multiple topics. Moreover, as for K-Means, Fuzzy C-Means has small

computational complexity, linear in the number of existing clusters, in the number of

items clustered and in the number of iterations performed (the latter being rather small,

as Table 5.3 will confirm). Experiments with other clustering techniques has been left as

future work.

4.4.2 Clustering of Leaders for Clustered Social Ranking

To implement CSR in our target scenario, we first select the group of nl leaders as the users

who tagged more than nohigh items, following an approach similar to the one proposed by

[Amatrian et al., 2009]. We experimented with different values of nohigh as discussed in

Section 5.4. Even if leaders have been selected so that they tagged most of the existing

items overall, niche users who might provide useful recommendation could be ignored. We

plan to consider alternative strategies to avoid this in future works.

We then modeled each leader uj as a binary vector vj over items, where vj [i] = 1 if uj has

tagged item oi. k ≈ (nl/2)1/2 clusters are initially created, with k chosen following the

empirical rule of thumb described in [Mardia et al., 1979]. The initialisation of centroids

is done by selecting leaders with non-overlapping item sets. We also experimented with

a random point initialisation (i.e., each value ci[j] was set to either 0 or 1 at random).

However, we found that intra-group similarity was much higher if real non overlapping

leaders’ vectors were chosen (as we will show in Section 5.4).

After this initialisation phase, Fuzzy c-Means (with m = 2) performs a series of iterations

where each leader is associated to one or more clusters, depending on how well the leader

is represented by the cluster she is being assigned to. In practice, this is computed as the

cosine similarity between the leader’s vector and each centroid’s vector:

sim(uj , ci) = cos(vj , ci) =
vj · ci

||vj || ∗ ||ci||

Moreover, the centroid of each cluster is updated to be the mean of all leaders’ vectors

assigned to it, weighted by their similarity with the cluster. This process is repeated

until the algorithm has converged, that is, the change in the similarity values between two

iterations is no more than a given sensitivity threshold.

Once the clustering of leaders has been completed, we maintain, for each cluster ci, the

86

Chapter 4 4.5 Algorithm Overview

following information:

• Item Vector: a vector ovi, where ovi[j] counts how many leaders within the cluster

have tagged item oj . In the following we use the notation oj ∈ ci to indicate an

object tagged by a user in cluster ci.

• Tag Activity Vector: a vector tai, where tai[j] counts how many times tag tj has

been used. In the following we use the notation tj ∈ ci to indicate a tag used by a

user in cluster ci.

• Tag Popularity Vector: a vector tpi where tpi[j] counts how many distinct users

within cluster ci have used tag tj .

The above values have all been normalized in the [0 . . . 1] range. In the next section,

we explain how these vectors are used to answer users’ queries. We note that different

strategies can be alternatively used to build the item and tag vectors, such as the tf-idf

weighting scheme, but they have been left as future work.

4.5 Algorithm Overview

In order to answer user u’s query qu = {t1, t2, . . . , tn}, CSR performs the following two

steps:

1. Query association. First, CSR finds what clusters can best answer qu. To do so,

it analyses the user’s activity so far and the query tags. If u had little interaction

with the system (i.e., she tagged less than nolow items, where nolow is not necessarily

the same threshold value used to define leaders), the clusters-query association is

based on the query tags (tag similarity association). If u had many interactions

with the system, CSR further looks into the query tags. If {t1, t2, . . . , tn} have been

rarely used by u (that is, they have been used less than the average tag usage for

u), the clusters-query association is also based on the query tags. Otherwise, it is

based on the items tagged by u (item similarity association). The underpinning

idea is that, for active users who are querying the system within their well defined

domain of interest, their profiles give more information about what the best cluster

is (i.e., who the best recommenders are) to answer a query. However for inactive

users (cold-starters) or users who are looking for items outside their usual domain

of interest, the query tags give more information on what they are looking for.

The clusters-query association is then performed as follows. For tag similarity asso-

ciation, we transform the query qu into a vector of integers such that qu[j] is equal to

87

Chapter 4 4.5 Algorithm Overview

1 if tag tj is included in qu and 0 otherwise. We then calculate the cosine similarity

between such query vector and both the tag activity vectors tai (simta = cos(qu, tai))

and the tag popularity vectors tpi (simtp = cos(qu, tpi)) for all clusters k. Groups

are ranked based on the highest value between simta and simtp, and those with

the value higher than a given threshold are elected to answer the query. In all our

experiments, we decided to use a threshold of zero (all clusters are elected to answer

the query) to ensure the highest possible coverage, provided that accuracy will not

be compromised thanks to the ranking we adopted and that is described below. A

more detailed evaluation of the impact of the threshold value on both accuracy and

coverage has been left as future work. In addition, note that we use both ta and tp

as they provide complimentary information about the cluster. The former indicates

how many different items are a potential match for the query. The latter indicates

how many different users within the cluster have the same interests as the querying

user (i.e., use the very same tags). Both simta and simtp are equally important to

select the best clusters.

For item similarity association, we compute the cosine similarity between the user’s

profile v and the item vector ovi for all clusters ci. Clusters are then ranked based on

cos(v, ovi), and those with a similarity higher than a given threshold are elected to

answer the query (once again, in all our experiments, we used a threshold of zero).

For both associations, if the similarity with all clusters is zero, the query is associated

with all of them. In practice, this means that we rely on all leaders to answer the

query, regardless of their domain of interest. Note that, as leaders are substantially

fewer than users, this is still a much lighter process than relying on the whole com-

munity as SR and traditional recommender systems approaches do. Furthermore,

in all experiments reported in the next chapter, less than 3% of the queries required

associations with all groups.

2. Item discovery and ranking. Once the clusters of best recommenders have been

identified, SR is used to discover and rank items. Note that tag expansion is now

performed considering only the tag similarity matrix inside the cluster. We therefore

redefine q∗i as the expanded query in cluster ci and q∗i (u, o) as the set of tags used by

a user in cluster ci to tag item o and belonging to q∗i . Since the domain of interest

is now better scoped than when considering the whole community, we expect more

suitable tags to be added to the query. To rank items, rather than considering the

similarity between the querying user u and each user uj within the selected clusters,

we use the similarity computed during the association. In this way, the difference in

ranking of items found within the same cluster solely depends on the query tags. If

the query is associated with more than one cluster, recommendations coming from

the closest cluster are ranked higher. To further mark the difference, we magnify

the value of the query association by raising it to the power of a positive constant

α > 1.

88

Chapter 4 4.5 Algorithm Overview

The rationale for this ranking process is the following: if the querying user is a cold

starter, or if she is known to the system but has interests in a different domain

with respect to the current query, computing similarity between users would give

meaningless values (in the former case) or misleading values (in the latter). In this

case, only the query tags hold meaningful information for the ranking. If the user is

well known to the system and she is looking for recommendations within her domain

of interest, then the similarity between the querying user and the cluster should

provide the same information as calculating the similarity with every leader in the

cluster, but is cheaper to compute.

The ranking of an item o found within cluster ci is thus computed as:

L(o) =
∑
u∈ci

sim(qu, q
∗
i (u, o)) ∗ (simASSOC + 1)α (4.1)

where simASSOC is the item or tag association similarity and

sim(qu, q
∗
i (u, o)) =

∑
tl∈q
∗
i
(u,o)

tj∈qu

sim(tj , tl)

||qu||
(4.2)

If an item belongs to more than one cluster, the highest ranking for the object is con-

sidered. This is done because combining the rankings from different clusters would mean

considering more than once the tags associated with the item by users who belong to more

than one cluster.

In the following chapter, we present the results obtained when evaluating this approach.

89

Chapter 5

Evaluation of Clustered Social

Ranking

In this chapter we describe how we evaluated Clustered Social Ranking (CSR). We define

the metrics we used (Section 5.1), illustrate the datasets we experimented on (Section 5.2),

and the benchmark we used for comparison (Section 5.3). As CSR relies on a number of

customisable parameters, we also discuss how these were set (Section 5.4). We finally

analyse the results obtained (Section 5.5) on three different social tagging datasets. We

will also compare the computational cost of CSR with the benchmarks considered (Section

5.6).

5.1 Metrics

To evaluate the efficacy of CSR, we adopted the same metrics (namely Precision and Re-

call) we used to evaluate the performance of Social Ranking (SR) described in Section 3.1.

More precisely:

Precision =
|relevantItems| ∩ |retrievedItems|

|retrievedItems|

Recall =
|relevantItems| ∩ |retrievedItems|

|relevantItems|

90

Chapter 5 5.2 Datasets

Feature CiteULike Bibsonomy MovieLens
Users 2,484 1,360 1,270
Items 7,310 23,649 3,400
Tags 3,137 11,668 2,237

Bookmarks 59,820 72,741 23,380

Table 5.1: Datasets’ characteristics

5.2 Datasets

We conducted experiments using the same social tagging websites also used to evaluate

the performance of SR: CiteULike, Bibsonomy, and MovieLens. A thorough description

of these datasets can be found in Section 3.2. Table 5.1 summarizes their characteristics.

5.3 Benchmark

We compared the precision/recall values that CSR achieves with those of the five bench-

marks described in Section 3.3: popularity-based approach (Pop), user-based Collabora-

tive Filtering with similarity computed with Tag usage (CFUT), user-based Collaborative

Filtering with similarity computed with tagged Item (CFUI) and FolkRank (FR). In this

chapter we also compare the performance of CSR with SR (Section 2.4.3) to demonstrate

that it can achieve comparable recommendation performance while being more scalable.

5.4 Parameter Tuning

Implementing CSR requires the setting of a number of parameters. In this section, we

report a number of experiments we conducted to select their values.

The first parameter refers to the threshold nohigh used to distinguish leaders from followers.

This parameter is set by studying the average tagging activity of users over the selected

dataset and by selecting a value to elect as leaders the smallest set of users who collectively

tagged most of the items. We experimented with two different thresholds: the first elects

as leaders those users who have tagged more than 10 items (shortly called LM10), the

second selects as leaders those users who have tagged more than 30 items (shortly called

LM30). Table 5.2 reports, for each dataset, how many users are elected as leaders, how

many items they have collectively tagged and how many tags they have collectively used

with respect to the original dataset. Note that when using the threshold nohigh equal to

30, less than 20% of the users are elected as leaders but they are still responsible for 94%

of the tagged items. This confirms the fact that a small portion of users is responsible for

91

Chapter 5 5.4 Parameter Tuning

the vast majority of the tagged items. We thus expect recall not to be severely affected

when we restrict our attention to this small set of users only.

Dataset Num. of Users/Leader Num. of Items Num. of Tags
Bibsonomy 1,360 23,649 11,668

Bibsonomy UM10 450 (33%) 23,103 (97%) 11,061 (94%)
Bibsonomy UM30 279 (20%) 22,386 (94%) 10,612 (90%)

CiteULike 2,484 7,310 3,137
CiteULike UM10 1,189 (47%) 7,291 (99%) 3,056 (97%)
CiteULike UM30 432 (17%) 7,116 (97%) 2,811 (89%)

MovieLens 1,270 3,400 2,237
MovieLens UM10 305 (24%) 3,334 (98%) 2,108 (94%)
MovieLens UM30 128 (10%) 3,278 (96%) 1,988 (88%)

Table 5.2: Clusters’ characteristics

The second parameter affecting CSR is the number k of clusters, as well as the strategy

used to initialise them. As explained in Section 4.4.2, the value of k has been chosen

following the empirical rule of thumb described in [Mardia et al., 1979]. Moreover, to

show that leaders were correctly classified by the Fuzzy c-Means algorithm, we plot in

Figure 5.2 the similarity of each leader with the centroid of the cluster she is placed into.

Note that, in the graph, leaders (x axis) are ordered according to the cluster they belong

to and to their similarity value (y axis) within the centroid. The graph shows that most

of the leaders have a high similarity with the centroid and that it never drops below 0.1.

This indicates that leaders were correctly classified inside clusters.

To initialise the clusters, we experimented both with a random point initialization (i.e.,

each cluster centroid is chosen as a random point in the item space) and with a real

users initialization (i.e., each cluster centroid is chosen as a real user, so that different

centroids have no tagged items in common). For each strategy we measured the intra-

group similarity (i.e., the similarity of each user with her centroid) as an indication of the

clustering quality. Figure 5.1 illustrates an example of the measured intra-group similarity

computed over the CiteULike LM30 dataset, with k = 14 and random-point initialisation,

while Figure 5.2 illustrates the intra-group similarity with real-users initialisation. Note

that, in the former case, most users have a similarity with the centroid of their cluster

in the order of 0.001, while in the latter such value is never below 0.1. The use of real,

non overlapping users’ vectors for initialisation yielded better results (i.e., higher intra-

group similarity). This is why we adopted this strategy throughout our experiments. The

number of clusters we worked with (calculated as described in Section 4.4.2) is reported

in Table 5.3, together with the number of iterations which were required to reach a stable

state (clusters do not change anymore from one iteration to the next one).

We set the remaining parameters required by CSR as follows: query expansion was limited

to a maximum of 5∗n tags, with n being the number of query tags. For query association,

92

Chapter 5 5.5 Results

Leaders

C
e
n
t
r
o
i
d

S
i
m
i
l
a
r
i
t
y

Figure 5.1: Clustering of leaders for CiteULike LM30 with random point initialization

the value of nolow required for a user not to be considered in the cold start region was

set to 10. Finally, the α exponent used to mark differences between recommendations

coming from clusters of different relevance was set to 5. As shown in the experiment results

reported in Section 5.5, these settings for n, nolow and α guarantee that the performance of

CSR are better than the benchmarks’ one. A more fine-grained tuning of these parameter

has been left as future work.

5.5 Results

We now present the results of our evaluation. We will focus on efficacy first, thus analysing

precision/recall values of the various approaches on each of the three datasets under con-

Dataset Num. of Leaders Num. of Clusters Num. of Iterations
Bibsonomy LM10 450 17 49
Bibsonomy LM30 279 13 14

CiteULike LM10 1189 26 12
CiteULike LM30 432 14 5

MovieLens LM10 305 13 7
MovieLens LM30 128 8 4

Table 5.3: Clustering features

93

Chapter 5 5.5 Results

Leaders

C
e
n
t
r
o
i
d

S
i
m
i
l
a
r
i
t
y

Figure 5.2: Clustering of leaders for CiteULike LM30 with real user initialization

sideration (Section 5.5.1). In particular, we consider two different settings. In the first

one, shortly called CSRLM10, we select the group of leaders as the users who tagged more

than 10 items, while in the second one, shortly called CSRLM30, we select the group of

leaders as the users who tagged more than 30 items. As already pointed out in Section 5.4,

these parameters are specific for the selected dataset and they cannot be generalized. They

are set by studying the average tagging activity of users and by electing as leaders the

smallest set of users who collectively tagged most of the items. As our approach has

been devised to recommend items to new users, we present results divided in two groups:

queries performed by active users (UM10), that is, those who have tagged at least 10 items

in the training set, and queries performed by new users (UL10), that is, those who have

tagged less than 10 items in the training set. These two groups have been selected only to

emphasize the difference in performance between CSR and the considered benchmarks de-

pending on the characteristic of the query user and searched item. The lower these values,

the greater the difference between the algorithms. Note that to evaluate the performance

of CSR we do not further split results according to the popularity of the searched item.

We have already demonstrated that our proposed technique outperforms state-of-the-art

ones in terms of efficacy. Our goal in this section is to demonstrate that CSR can achieve

performance comparable to SR while improving scalability. In both settings, we discarded

from the test set all queries for which the hidden item did not belong to the training set,

since none of the implemented algorithms would have been able to answer such queries

successfully. Table 5.4 reports, for each dataset, the number of test queries performed.

We report in Section 5.5.1.3 a more general analysis of the precision/recall performance

94

Chapter 5 5.5 Results

of CSR on the whole set of queries. We then evaluate the efficiency of CSR by analysing

its computational complexity (Section 5.6).

Dataset Total number of queries UM10 UL10
Bibsonomy 1,342 753 589
CiteULike 4,575 3,156 1,419
MovieLens 2,038 769 1,269

Table 5.4: Number of test queries performed

5.5.1 Precision and Recall Computed on Each Activity Group

5.5.1.1 Bibsonomy

As Figures 5.3 and 5.4 illustrate, FolkRank is the best approach, both in terms of precision

and recall, when dealing with active users. However, while the gain over standard CF

approaches (e.g., CFUT and CFUI) is significant, the gain is much less with respect to

CSR and SR. Moreover, as the recommendation list grows (x axis), this gain becomes

lower. For example, when the recommendation list is cut at the top 50 results, FR has

only a 14% improvement over CSRLM10 in terms of recall and 16% in terms of precision,

while the improvement is 71% and 70% for precision and recall respectively, over CFUI.

If we consider new users instead (Figures 5.5 and 5.6) the situation is different and CSR

(both CSRLM10 and CSRLM30) exhibits performance similar to SR and clearly outper-

forms all other approaches. In this case, FR looses as much as 47% in terms of precision

and 44% in terms of recall with respect to CSRLM10 when looking at the top 50 results

in the recommendation list. Note that CSR achieves performance comparable to that

of the original SR, but it does so while leveraging information about a fraction of users

only. These first results confirm the suitability of CSR to answer queries from new users

(which constitute a non negligible fraction of all performed queries). Furthermore, CSR

has performance that remains close to the best approach (i.e., FR) for active users too.

In Section 5.6, we will extend the comparison between FR and CSR in terms of computa-

tional complexity, to prove that CSR is a better alternative to FR overall when scalability

is a concern.

5.5.1.2 CiteULike

We now focus on the results obtained on the CiteULike dataset. As shown in Figures 5.7

and 5.8, CSR (CSRLM10 and CSRLM30), SR and FR all achieve very similar precision and

recall values for active users (with (C)SR being slightly better than FR), outperforming

both traditional CF approaches and simple Pop approaches. We now turn our attention

95

Chapter 5 5.5 Results

0 

0.005 

0.01 

0.015 

0.02 

0.025 

 N=10  N=20  N=50  N=100  N=500  N=1000 

Pr
ec
is
io
n 

Number of items in the recommenda3on list 

FR 

SR 

CSRLM10 

CSRLM30 

CFUI 

CFUT 

Pop 

Figure 5.3: Precision for active users on Bibsonomy

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

 N=10  N=20  N=50  N=100  N=500  N=1000 

Re
ca
ll 

Number of items in the recommenda4on list 

FR 

SR 

CSRLM10 

CSRLM30 

CFUI 

CFUT 

Pop 

Figure 5.4: Recall for active users on Bibsonomy

96

Chapter 5 5.5 Results

0 

0.002 

0.004 

0.006 

0.008 

0.01 

0.012 

0.014 

0.016 

0.018 

 N=10  N=20  N=50  N=100  N=500  N=1000 

Pr
ec

is
io

n

Number of items in the recommendation list

SR 

CSRLM10 

CSRLM30 

FR 

CFUI 

CFUT 

Pop 

Figure 5.5: Precision for new users on Bibsonomy

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

 N=10  N=20  N=50  N=100  N=500  N=1000 

Re
ca
ll 

Number of items in the recommenda4on list 

SR 

CSRLM10 

CSRLM30 

FR 

CFUI 

CFUT 

Pop 

Figure 5.6: Recall for new users on Bibsonomy

97

Chapter 5 5.5 Results

0 

0.005 

0.01 

0.015 

0.02 

0.025 

 N=10  N=20  N=50  N=100  N=500  N=1000 

Pr
ec
is
io
n 

Number of items in the recommenda3on list 

SR 

CSRLM10 

CSRLM30 

FR 

CFUI 

CFUT 

Pop 

Figure 5.7: Precision for active users on CiteULike

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1 

 N=10  N=20  N=50  N=100  N=500  N=1000 

Re
ca
ll 

Number of items in the recommenda4on list 

SR 

CSRLM10 

CSRLM30 

FR 

CFUI 

CFUT 

Pop 

Figure 5.8: Recall for active users on CiteULike

98

Chapter 5 5.5 Results

0 

0.005 

0.01 

0.015 

0.02 

0.025 

0.03 

 N=10  N=20  N=50  N=100  N=500  N=1000 

Pr
ec
is
io
n 

Number of items in the recommenda3on list 

SR 

CSRLM10 

CSRLM30 

FR 

CFUI 

CFUT 

Pop 

Figure 5.9: Precision for new users on CiteULike

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

 N=10  N=20  N=50  N=100  N=500  N=1000 

Re
ca
ll 

Number of items in the recommenda4on list 

SR 

CSRLM10 

CSRLM30 

FR 

CFUI 

CFUT 

Pop 

Figure 5.10: Recall for new users on CiteULike

99

Chapter 5 5.6 Complexity Analysis

to new users instead. As Figures 5.9 and 5.10 illustrate, FR cannot compute good recom-

mendations, as too little information is available about the users. However, CSR exploits

the little information available in the query and about leaders and obtains precision and

recall values which are comparable to those of SR, and 28% and 40% respectively better

than those obtained by FR (for recommendation lists of 50 elements).

5.5.1.3 MovieLens

The last dataset we analyse is MovieLens. As Figures 5.11 and 5.12 illustrate, FR, SR

and CSR have very similar performance for active users. The same cannot be said for

new users. As Figures 5.13 and 5.14 illustrate, SR and CSR achieve the best performance

(with a gap of more than 85% for both precision and recall values and for recommendation

lists of 50 elements).

Based on the experiments conducted over the Bibsonomy, CiteULike, and MovieLens

datasets, we can thus conclude that SR and CSR are the most effective techniques to

recommend items to new users, with a significant gain over other techniques. When

considering active users, both SR and CSR have a performance (in terms of precision

and recall) comparable to the best state-of-the-art approaches (FR). However, as we shall

discuss next, the CSR has lower computational cost than FR and SR, and is thus the most

suitable approach in scenarios where both efficacy and efficiency are important.

Precision and Recall Computed on the Whole Query Set

For completeness, we have analyzed precision and recall considering the overall set of per-

formed query as a whole. As Figures 5.15-5.20 illustrate, CSR and SR achieve the best

performance, both in terms of precision and recall. The performance gain for CSR both

in terms of recall and precision goes from a 4% improvement over FR on the Bibsonomy

dataset to 68% on the MovieLens dataset (for recommendation lists of 50 elements). These

results again reinforce our previous conclusions: CSR outperforms state-of-the-art recom-

mending techniques and achieves performance comparable with SR despite using only a

fraction of the available data.

5.6 Complexity Analysis

In this section we focus on FR, SR and CSR, that is, the three approaches that exhibit

higher efficacy, and analyse their computational complexity. When quantifying the com-

putational cost of the different approaches, we distinguish between offline cost and online

cost, as defined in Section 4.2. Table 5.5 reports the computational complexity of each

approach.

100

Chapter 5 5.6 Complexity Analysis

0 

0.002 

0.004 

0.006 

0.008 

0.01 

0.012 

0.014 

0.016 

 N=10  N=20  N=50  N=100  N=500  N=1000 

Pr
ec
is
io
n 

Number of items in the recommenda3on list 

SR 

FR 

CSRLM10 

CSRLM30 

CFUT 

Pop 

CFUI 

Figure 5.11: Precision for active users on MovieLens

0 

0.05 

0.1 

0.15 

0.2 

0.25 

0.3 

0.35 

0.4 

 N=10  N=20  N=50  N=100  N=500  N=1000 

Re
ca
ll 

Number of items in the recommenda4on list 

SR 

FR 

CSRLM10 

CSRLM30 

Pop 

CFUT 

CFUI 

Figure 5.12: Recall for active users on MovieLens

101

Chapter 5 5.6 Complexity Analysis

0 

0.005 

0.01 

0.015 

0.02 

0.025 

0.03 

0.035 

 N=10  N=20  N=50  N=100  N=500  N=1000 

Pr
ec
is
io
n 

Number of items in the recommenda3on list 

SR 

CSRLM10 

CSRLM30 

Pop 

FR 

CFUI 

CFUT 

Figure 5.13: Precision for new users on MovieLens

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

 N=10  N=20  N=50  N=100  N=500  N=1000 

Re
ca
ll 

Number of items in the recommenda4on list 

SR 

CSRLM10 

CSRLM30 

Pop 

FR 

CFUI 

CFUT 

Figure 5.14: Recall for new users on MovieLens

102

Chapter 5 5.6 Complexity Analysis

0 

0.005 

0.01 

0.015 

0.02 

0.025 

N=10  N=20  N=50  N=100  N=500  N=1000 

Pr
ec
is
io
n 

Number of items in the recommenda3on list 

SR 

CSRLM10 

CSRLM30 

FR 

CFUI 

CFUT 

Pop 

Figure 5.15: Overall precision on Bibsonomy

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

N=10  N=20  N=50  N=100  N=500  N=1000 

Re
ca
ll 

Number of items in the recommenda4on list 

SR 

CSRLM10 

CSRLM30 

FR 

CFUI 

CFUT 

Pop 

Figure 5.16: Overall recall on Bibsonomy

103

Chapter 5 5.6 Complexity Analysis

0 

0.002 

0.004 

0.006 

0.008 

0.01 

0.012 

0.014 

0.016 

0.018 

N=10  N=20  N=50  N=100  N=500  N=1000 

Pr
ec
is
io
n 

Number of items in the recommenda3on list 

SR 

CSRLM10 

CSRLM30 

FR 

CFUI 

CFUT 

Pop 

Figure 5.17: Overall precision on CiteULike

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

N=10  N=20  N=50  N=100  N=500  N=1000 

Re
ca
ll 

Number of items in the recommenda4on list 

SR 

CSRLM10 

CSRLM30 

FR 

CFUI 

CFUT 

Pop 

Figure 5.18: Overall recall on CiteULike

104

Chapter 5 5.6 Complexity Analysis

0 

0.005 

0.01 

0.015 

0.02 

0.025 

0.03 

N=10  N=20  N=50  N=100  N=500  N=1000 

Pr
ec
is
io
n 

Number of items in the recommenda3on list 

SR 

CSRLM10 

CSRLM30 

Pop 

FR 

CFUI 

CFUT 

Figure 5.19: Overall precision on MovieLens

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

N=10  N=20  N=50  N=100  N=500  N=1000 

SR 

CSRLM10 

CSRLM30 

Pop 

FR 

CFUI 

CFUT 

Figure 5.20: Overall recall on MovieLens

105

Chapter 5 5.6 Complexity Analysis

Approach Offline Online Offline Online
(per query) actual actual

(all queries)
FR - O(iterations×na) - 23M

SR O
(

nu×(nu−1)
2 + nt×(nt−1)

2

)
O(no× nt) 8M 10M

CSR O
(
i× k × nu+ k × nt′×(nt−1)

2

)
O(k × no× nt) 1.5M 4M

Table 5.5: Computational complexity of FR, SR and CSR

We already described both offline and online costs of FR and SR (Section 4.2). We now

focus on the computational complexity of CSR. CSR requires two offline computations:

the execution of the Fuzzy C-Means algorithm to cluster leaders and the computation

of the tags’ similarity matrix for each cluster to perform the tag expansion. The former

computation is linear in the number of leaders to cluster (nu in the worst case) as the

number of iterations i required to converge and the number of clusters k are usually fixed

in advance [Jain et al., 1999]. The latter computation involves a symmetric matrix, so the

offline cost of CSR is O(i×k×nu+k×nt×(nt−1)/2). The online computational complexity

can be estimated as O(k × no × nt) in the worst case where the query is associated to

all clusters k, in which all no items have been tagged with all nt tags. Note that both

the offline and online complexities are still quadratic. However, these complexities are

just upper bounds as the real number of leaders that are clustered and of items and tags

used is much smaller then the corresponding totals. To give an idea of the actual cost of

each approach in a real scenario, we have counted the number of operations during both

offline and online processes when answering all 4575 queries from the CiteULike LM30

dataset. The results are reported in the last two columns of Table 5.5. As shown, the

online cost of FR is the highest amongst all approaches. In fact FR’s main disadvantage

is that it requires a complete computation of the Page Rank vector for each query, making

it unsuitable for large datasets (as also confirmed by [Gemmell et al., 2009]). Both CSR

and SR have a much smaller computational cost overall (offline + online).

We now take a closer look at CSR and SR. The offline cost of CSR is one order of

magnitude smaller than that of SR. This is because the set of leaders is much smaller

than the whole set of users, so the cost of clustering them is much smaller than computing

all users’ similarities. For example, in CiteULike LM30 there are only 432 leaders, as

opposed to 2484 users overall. The cost to cluster leaders is the cost of 30K computations

(with k = 14 clusters and i = 5 iterations to converge), while the cost to compute all

users’ similarities is 3M computations. Moreover, each cluster contains around 450 tags,

as opposed to the 3137 tags overall. Even if a separate tags’ similarity matrix must be

computed for each cluster, the cost of computing tags’ similarities for all of them (1.4M

computations) is smaller than the cost of computing the complete tags’ similarity matrix

maintained by SR (5M computations). This results in an overall offline cost for CSR

(30K for the clustering phase + 1.4M for tags’ similarity matrices for all clusters = 1.4

106

Chapter 5 5.6 Complexity Analysis

M) smaller than that of SR (3M for computing the users’ similarity matrix + 5M for the

tags’ similarity matrix = 8M). Furthermore, the online cost of CSR is half that of SR. SR

performs each query with an expanded tag set of roughly 10 tags, each associated with

200 items (10M computations for all 4575 queries). CSR instead performs each query

associating it with 4 clusters on average and using an expanded tag set of 5 tags, each

associated with 40 items (4M computations for all 4575 queries).

The neat reduction in the offline cost of CSR also means that the data structures can be

re-computed more often, thus again increasing accuracy without compromising scalability.

Note that frequent updates are of utter importance in rapidly growing settings and espe-

cially for new users, where one update can make the difference between knowing a little

about her preferences (her first few bookmarks) and knowing nothing at all. We can thus

conclude that, when dealing with rapidly growing scenarios both in terms of users and

items, CSR represents the most effective and efficient approach. In fact CSR can compute

accurate recommendations for both old and new users and include both mainstream and

non-mainstream items with only a small computational overhead.

107

Chapter 6

Adaptive Update

In the previous chapter we have presented Clustered Social Ranking (CSR), a scalable rec-

ommendation technique addressing the user and item cold start problems. Our evaluation,

conducted on three different datasets (namely CiteULike, Bibsonomy and MovieLens)

demonstrated that CSR achieves high efficacy with low computational cost. The eval-

uation we performed is standard across the literature. However, it assumes 1) that all

recommended items are included in the training set, 2) that all tests are run at once over

this training set and 3) that all used data structures are up-to-date. In practice, real

datasets grow continuously over time and data structures must be regularly updated. Fre-

quent updates result in better performance but also higher cost while unfrequent updates

result into low costs but also lower performance. As such, the previous evaluation cannot

be considered realistic. Recommendation algorithms must therefore cope with stale data

in the period between two updates. Deciding whether a system update would be worth

its cost is the main issue system administrators must face. In this chapter we describe a

temporal analysis of the performance of CSR and show what effects stale data can have

on the recommendation process (Section 6.1). We then define an empirical technique to

dynamically decide when to perform the next data update (Section 6.2). Finally, we eval-

uate the performance of CSR when our proposed updating technique is applied (Sections

6.3 and 6.4).

6.1 Analysis of the Problem Space

As discussed in [Gunawardana and Shani, 2010], the research community has usually

evaluated recommender systems according to the following methodology. The available

dataset is first divided into two subsets: a training set and a test set. The training set is

used to build the data structures representing the system while the test set is used to test

the performance of the solution. This means that the training set and its corresponding

108

Chapter 6 6.1 Analysis of the Problem Space

data structures remain unchanged for the whole duration of the tests. In other words

the resulting evaluation is based on a system that never changes. Unfortunately, this

assumption is not realistic. In fact, real-world systems need to cope with growing sets of

both users and items and must thus perform periodic updates of their data structures.

Companies are usually reluctant to divulge the details of their updating strategies as

they are core to their business. Regularly updating the data structures used during the

recommendation process is of utter importance for recommendation efficacy. For example,

new items inserted after an update could not be recommended while new bookmarks

could not be taken into account when calculating recommendations. However, it also is

an expensive process that takes both time and computational resources. To limit the

costs, data updates are therefore performed only at fixed time intervals. In [Mull, 2006]

the authors state for example that their system is updated once a week. However, while

immediately after an update recommendations are based on all available data, at the end

of the interval recommendations will be based on stale data. In particular, the more

information has been inserted during the interval, the more severe its impact will be on

performance. This is even more true if new users or new items are inserted, that cannot

receive recommendation or be recommended at all, respectively, until the next update.

To evaluate the effect of data growth on the performance of recommender systems, we

perform an experiment by focusing on the Bibsonomy dataset. We consider a set of

bookmarks inserted between February 1995 and June 2009 and we preprocess them so to

consider only users, items and tags occuring in at least p posts/bookmarks, with p = 2

(Section 3.2). We then analyse the growth of the dataset over time and plot for each

month the number of users, items and tags belonging to the system (Figure 6.1). The

analysis points out that there exists an initial period (February 1995-February 2005) after

the system creation in which users, items and tags grow slowly over time following similar

patterns. This slow growth is typical of a system in its early stages, e.g., when its first

prototype version has just been released and only a few users know and use it. However,

as the system gains popularity, users, items and tags grow faster and with very different

patterns. As expected, bookmarks have the fastest growth followed by items, tags and

users. New bookmarks in fact most probably contain an existing user tagging a new item

with existing tags. For this reason, there are time periods when items grow faster than

both users and tags. There are however also time periods when tags grow faster, especially

at the initial stages of the system when the vocabulary of tags is still being constructed

with new terms. We hypothesize that the different speeds of growth of items and tags

have different impact on the recommendation efficacy.

To verify what is the influence of different data growths on recommendation efficacy and

how performance can be improved by data updates we performed the experiment depicted

in Figure 6.2. We consider all new bookmarks inserted in the dataset during a periods of

one month T . We build two different training sets: a first training set TS1 that contains

all bookmarks added in the system before T and a second training set TS2 that contains

109

Chapter 6 6.1 Analysis of the Problem Space

0 

10000 

20000 

30000 

40000 

50000 

60000 

70000 

1  6  11  16  21  26  31  36  41  46  51 

G
ro
w
th
 

Time(months) 

Bookmarks 

Items 

Tags 

Users 

Tags grow faster 

Items grow faster 

Figure 6.1: Growth of users, items and tags in the Bibsonomy dataset

Time period User growth Tag growth Item growth
T1: October 2006-November 2006 6% 17% 2%
T2: January 2008-February 2008 6% 1% 11%
T3: June 2007-July 2007 6% 2% 3%

Table 6.1: Feature of data snapshots

all bookmarks added in the system until the end of T . Note that with this construction

TS1 ⊆ TS2. We then train two different instances of CSR, namely CSR1 and CSR2 using

TS1 and TS2, respectively. We expect a loss in performance when the system is trained

only with TS1 that depends on both the intensity of the users’ tagging activity during T

and on the number of queries related to items and tags inserted during T .

Note that in this experiments we only focus on the impact of data growth over the recom-

mendation accuracy provided by CSR for Bibsonomy dataset for time-related issue. This

choice has been done considering that CSR has been developed with the goal of address-

ing the scalability problem that affects the vast majority of recommendation algorithms

including SR. By grouping users into clusters, CSR alleviates the scalability problem but

it requires the data in the clusters to be kept up to date to ensure high recommendation

efficacy. Evaluating the impact of data growth over time over SR and over other datasets

has been left for future work. To understand how the users’ tagging activity affects the

110

Chapter 6 6.1 Analysis of the Problem Space

performance, consider a set L of leaders and a set F of followers at the beginning of time

period T . If during T some of the users in F become leaders, CSR1 will end up in recom-

mending items based on a set of data that does not reflect the actual state of the dataset.

Furthermore, the performance of CSR1 is also affected by the tagging activity of the users

already in L. All of their bookmarks, even the newest, should in fact be taken into con-

sideration when calculating recommendations. To minimise the information loss, CSR1

considers all the new items inserted by users in L even if it is not fully re-trained (i.e.,

clusters are not recomputed). This is the case also in real-world rating-based recommender

systems, where users’ profiles are constantly updated as new information is inserted. In

our case we only consider new bookmarks by users in L because our solution only rely on

leaders’ recommendations. This low cost method ensures that new items inserted by users

in L after the last update can still be recommended by CSR1. However, since the tags’

similarity matrices are not recomputed, every time a user performs a query specifying tags

added after the beginning of T , CSR1 will not be able to expand them. We consider the

above setup for three different periods, as shown in Figure 6.3. The three periods were

chosen so that during T1 tags grew faster than items, during T2 items grew faster than

tags and during T3 items and tags grew similarly and slow. Table 6.1 reports the three

subsets of bookmarks and their corresponding growth rates. (T1, T2 and T3)

Let us call the set of queries related to items and tags inserted during a time period Ti
as Qnewi and the set of queries related to items and tags inserted before Ti as Qoldi . To

evaluate how the loss in performance depends on Qnewi we build for each time period Ti
three different test sets of 1500 queries. In particular the first test set, shortly called

25%-75%, contains 25% of queries from Qnewi and 75% of queries from Qoldi . The second

test set, shortly called 50%-50%, contains 50% of queries from Qnewi and 50% of queries

from Qoldi . Finally, the third test set, shortly called 75%-25%, contains 75% of queries

from Qnewi and 25% of queries from Qoldi . For each Ti we then run both CSRi1 and CSRi2
on all three available test sets. We then evaluate the difference in performance (i.e., the

difference in precision/recall) between the two CSRi1 and CSRi2.

Bibsonomy

T

TS1

TS2

TIME 3 X 1500 random queries for TS1 and TS2

Figure 6.2: Experiment setup

Table 6.2 reports for each time period and test set the loss in precision and recall that we

111

Chapter 6 6.1 Analysis of the Problem Space

Bibsonomy

T1 T2 T3

TS11

TS12

TS21

TS22
TS31

TS32

TIME
3 X 1500 random queries for TS11 and TS12

3 X 1500 random queries for TS21 and TS22

3 X 1500 random queries for TS31 and TS32

Figure 6.3: Experiment setup

Time period 25%-75% 50%-50% 75%-25%
T1 24% 32% 45%
T2 12% 20% 23%
T3 3% 10% 14%

Table 6.2: Precision/recall loss after 1 month

experience when using CSRi1 rather then CSRi2. For simplicity the table contains only

one percentage value for each setting. The loss in precision and recall are in fact almost

identical. This is due to the fact that in these experiments only one item at a time is

considered relevant for the user when performing the tests (see Section 3.2). The results

confirm our previous considerations. First, the performance loss is affected by the amount

of query from Qnewi . The larger is the number of queries related to new items and tags,

the higher is the precision/recall loss. Second, the performance loss is also affected by the

intensity of the users’ tagging activity. In fact, we observe a higher precision/recall loss

for time periods T1 and T2, during which tags and items grow faster. It is also interesting

to note that the performance loss for time period T1 (during which tags grow faster) is

twice as high as the one for T2 (during which items grow faster). As previously discussed,

the profiles of all users in L contain all the new items introduced by leaders during Ti,

so that these items can still be recommended even by CSRi1. Only items introduced by

users in F are completely discarded and this cause a performance loss between 12% and

23%. However all new tags introduced by both users in L and F are not included in

the tags’ similarity matrices since CSRi1 is not fully re-trained. This causes an higher

performance loss ranging from 24% to 45% that can be explained as a consequence of the

query expansion that is at the base of (C)SR. In fact, the expansion cannot be performed

112

Chapter 6 6.2 A New Update Methodology

properly if tags similar to the query ones (that are new) cannot be found.

6.2 A New Update Methodology

The experimental results reported in Section 6.1 show the importance of data updates

to guarantee effective recommendations. However, because of its high cost, it is also

prohibitive to perform updates every hour or every day. It is therefore necessary to balance

the tradeoff between desired recommendation efficacy and number of updates. Existing

recommender systems perform updates periodically (every week or fortnight). However,

the results reported in Table 6.2 show that items and tags do not grow linearly over time

and that performance is affected by data growth (Table 6.2). During specific periods of

time the dataset’s growth might be irrelevant and an update would not be worth its cost.

During other periods of time instead, the dataset’s growth might be such that even an

earlier update (i.e., performed before the current period’s end) would be highly beneficial.

Our goal is to define a new adaptive technique that constantly monitors the dataset’s

growth and re-trains the system every time the gain in recommendation efficacy would

outweight the update’s cost. Since cost and gain depend on the specific system, we let

its administrator decide by choosing a threshold ut such that the system is retrained

every time its growth since the last update is above ut, which would cause a predictable

performance loss. In other words, we estimate the loss in performance by looking at how

much the dataset has grown and we let the system administrator decide when to perform

an update on the base of the parameter ut only.

Since the performance of the recommendation algorithm is particularly affected by the

growth of items and tags, our technique keeps track of the sum Grow% of the growth

percentages of new items and tags inserted since the last update. Whenever Grow% ex-

ceeds a specific threshold ut, the technique autonomously decides to perform a system

update of all the data structures. In this situation, performing a data update is consid-

ered necessary to guarantee effective recommendations. The value of ut can be tuned by

the system administrator depending both on the level of recommendation efficacy that

must be provided and on the computational overhead that the system can afford. Small

values of ut guarantee better efficacy but higher costs, while high values of ut ensure a

cheaper but less effective computation. Note that we decided to use a single threshold

ut instead of two separate thresholds for the percentage growth of new items and tags to

limit the parameter tuning required by the system administrator.

113

Chapter 6 6.3 Experiment Setup

6.3 Experiment Setup

We now evaluate the performance of the proposed adaptive update methodology. In

particular, we compare the performance of CSR when three different update strategies

are applied: Monthly, that performs periodic updates at the beginning of each month,

Adaptive, that performs updates depending on Grow%, Weekly, that performs periodic

update at the beginning of each week. Our goal is to demonstrate that the Adaptive

strategy has a computational overhead which is comparable with the Monthly strategy (the

cheapest approach but also the least effective) and a recommendation efficacy comparable

with the Weekly strategy (the most expensive approach but also the most effective). Note

that this setting is suitable for the specific dataset we consider. If the dataset grew faster

we could compare the Adaptive strategy with a Daily and a Weekly strategy. We designed

an experiment to find the cumulative error of CSR when using each of the three strategies.

We first perform a preparation step where we evaluate the effect of Grow% on the recom-

mendation process when the data structures are not updated. We do this to estimate a

reference value indicating what is the performance loss following a specific dataset growth.

Figure 6.4 depicts the prediction error, computed as the percentage loss in precision/recall

when the value of Grow% ranges between 1% and 10%, assuming that an update would

be performed in any case with values of Grow% greater than 10% (even with the Monthly

update strategy the dataset never grows over 10% before an update). The depicted values

where obtained with the following experiment whose setup is similar to that presented in

Section 6.1. We choose ten different time periods (of different length) Ti with 1 < i < 10.

Each period is included between two different updates upi1 and upi2 and is such that the

data growth Grow%i during each period Ti is equal to i%. We then evaluate the error in

prediction of CSR as the loss in precision/recall when the training is performed with the

data updated at the beginning of Ti with respect to when the training is performed at the

end of Ti. To evaluate the error, we create three different test sets for each Ti (so to obtain

30 test sets in total): 25%-75%, 50%-50%,75%-25%. Each test subset contains a random

set of 1500 queries related to items and tags inserted after the end of Ti, as described in

Section 6.1.

Figure 6.4 reports, for each of the three test sets, the error in prediction that CSR ex-

periences for values of Grow% ranging from 1% to 10%. The growth is represented on

the X axis of the diagram, while the error is represented on the Y axis. The graph

shows that the error in prediction grows almost linearly with Grow%. Moreover, the error

increases depending on the percentage of query related to new items and tags inserted

during T , confirming our previous observations. This error table can be used by the sys-

tem administrator to decide which threshold value can better guarantee a certain level of

recommendation efficacy.

After this preparation step, we consider an 81-week long period between October 2006

114

Chapter 6 6.4 Results

and March 2008 (so to include T1, T2 and T3 previously considered) and we measure

after each week the value of Grow% for the Adaptive (A), Weekly (W) and Monthly (M)

strategies. Remember that Grow% measures the growth of the system with respect to the

last update. Therefore, since each strategy performs updates at different times, we can

calculate a different Grow% for each strategy. Each week will therefore be associated with

three different values of Grow%, one for each update strategy that can be used, and thus

also with a prediction error (found during the preparation step and depicted in Figure 6.4).

We then calculate for each strategy the cumulative prediction error of CSR as the sum of

all errors in prediction up to the considered week. The results are reported in Figure 6.5,

6.6 and 6.7. We also evaluate the number of updates that each strategy perform during the

whole considered period as an indication of the computational overhead of each strategy.

The results of the experiment are discussed in the following section.

6.4 Results

0% 

2% 

4% 

6% 

8% 

10% 

12% 

14% 

16% 

1%  2%  3%  4%  5%  6%  7%  8%  9%  10% 

Pr
ec
is
io
n/
re
ca
ll 
lo
ss
 

Growth rate 

75%‐25% 

50%‐50% 

25%‐75% 

Figure 6.4: Error in prediction on Bibsonomy for different data growth

Figures 6.5, 6.6 and 6.7 show for each of the three types of test sets considered (25%-75%,

50%-50%, 75%-25%) the cumulative prediction error made by CSR if updated according

to the Adaptive, Weekly and Monthly strategies. In particular, we consider two different

threshold for the Adaptive technique, so that a data update is performed every time the

value of Grow% exceeds 2% (Adaptive 2%) and 5% (Adaptive 5%). Table 6.3 reports

115

Chapter 6 6.4 Results

instead the number of updates computed by each updating strategies over the considered

time period (81 weeks overall).

Note that the values for the thresholds are not unique and need to be tuned by system

administrators according to the features of the considered dataset, as described in Sec-

tion 6.2. We decided to evaluate system performance when these thresholds were set to

2% and 5% since these values enable us to show that the recommendation efficacy for both

Adaptive 2% and Adaptive 5% with 25%-75% queries is comparable to the Weekly strategy,

and it greatly outperforms the Monthly strategy, as reported in Figure 6.5. Furthermore,

the difference in performance grows for 50%-50% and 75%-25% queries, as shown by Fig-

ures 6.6 and 6.7, respectively. Note that Figure 6.7 shows that both Adaptive 2% and

Adaptive 5% have much worse performance than the Weekly strategy when most of the

queries refer to new items. This suggests that our strategy could be improved by letting

the ut parameter vary according to the predicted incoming queries. The variation of ut

could be decided on the basis of the most recently received queries. If it were possible to

predict that most of the queries that will be issued in the future would refer to new items

(i.e., the set of future queries would be of type 75%-25%), then ut could be decreased.

Conversely, ut could be increased if most of the queries that will be issued in the future

would refer to old items. We leave further research on this idea for future work.

However, it is important to consider that Adaptive 2% performs only 29 updates with

respect to the 80 performed by the Weekly strategy. This means that it would be possible

to further reduce the threshold value ut to improve the recommendation efficacy while still

keeping a low cost.

Technique Number of updates
Weekly 80

Adaptive 2% 29
Adaptive 5% 13

Monthly 18

Table 6.3: Number of system updates performed by each strategy

116

Chapter 6 6.4 Results

0 

0.5 

1 

1.5 

2 

2.5 

3 

3.5 

4 

1  6  11  16  21  26  31  36  41  46  51  56  61  66  71  76  81 

Pr
ec
is
io
n/
re
ca
ll 
lo
ss
 

Week 

Monthly 

Adap7ve 5% 

Adap7ve 2% 

Weekly 

Figure 6.5: Cumulative error on Bibsonomy computed for 25%-75% test set

0 

2 

4 

6 

8 

10 

12 

1  6  11  16  21  26  31  36  41  46  51  56  61  66  71  76  81 

Pr
ec
is
io
n/
re
ca
ll 
lo
ss
 

Week 

Monthly 

Adap6ve 5% 

Adap6ve 2% 

Weekly 

Figure 6.6: Cumulative error on Bibsonomy computed for 50%-50% test set

117

Chapter 6 6.4 Results

0 

2 

4 

6 

8 

10 

12 

14 

16 

1  6  11  16  21  26  31  36  41  46  51  56  61  66  71  76  81 

Pr
ec
is
io
n/
re
ca
ll 
lo
ss
 

Week 

Monthly 

Adap6ve 5% 

Adap6ve 2% 

Weekly 

Figure 6.7: Cumulative error on Bibsonomy computed for 75%-25% test set

118

Chapter 7

Conclusions and Future Work

The main goal of the work presented in this thesis has been the development of a new

effective and scalable recommendation algorithm addressing both the user and item cold

start problems. More specifically, we first studied the tri-dimensional relationship between

users, items and tags typical of social tagging and we derived a definition of similarity

between users and between tags. We then showed how the computed similarities can be

used to improve recommendation efficacy and reported the results of the extensive evalu-

ation of our proposed Social Ranking (SR) recommendation technique on three different

datasets. We analysed how users create new items and showed how preferences of only

a small portion of active users (leaders), responsible for the vast majority of the tagged

items, can be used to improve the system scalability. This further investigation resulted in

Clustered Social Ranking (CSR), a scalable recommendation technique capable of effec-

tively suggesting relevant items to users while improving the system scalability. Finally,

while traditional evaluation methods are based on static data, we proposed a temporal

analysis of the performance of CSR. We first investigated the growth of the number of

users, items and tags in the system over time and how it influenced CSR performance.

We then demonstrated how this information can be used to define an adaptable updating

technique to decide whether the benefits of an update of the data structures modelling

the system outweigh the corresponding costs.

In this last chapter, we revise the main contributions of this thesis, provide a critical

evaluation of the obtained results and discuss some new challenges that will be the target

of future developments.

7.1 Contributions

The following is an overview of the main contributions of this thesis.

119

Chapter 7 7.1 Contributions

7.1.1 Cold Start Users and Items

We have provided a solution to the problem of suggesting even unpopular items to both

known and new users in the system. By studying the tri-dimensional relationship between

users, items and tags typical of social tagging, we derived a definition of similarity between

users and between tags which is leveraged when producing recommendations. The rela-

tionship between users is based on the set of commonly used tags and can be exploited to

find suitable recommenders for the querying user. The relationship between tags is based

on the common items they have been associated with and can be exploited to find the

best items to recommend.

Our solution addresses the cold start problems. First, it exploits tag expansion to find both

unpopular and new items. A new item tagged with few tags has an higher probability to

be recommended if one of the expanded query tags has been used to tag it. Second, it

uses the similarity between the expanded query tags and all tags used by users to rank

the recommended items. Finally, it improves the accuracy of the returned results using

users’ similarities. Note that even if similar users cannot be found for cold start querying

users, an accurate recommendation list can still be found through tags’ similarities. This

solution has been implemented into the Social Ranking recommendation algorithm and

evaluated on three different social tagging websites, namely CiteULike, Bibsonomy and

MovieLens, to prove its efficacy in different scenarios.

7.1.2 Scalability

Based on the observation that the vast majority of items is created by a rather small

portion of users (leaders), we have designed a scalable technique capable of producing

effective recommendations while relying only on a small set of meaningful information.

The proposed solution first identifies who the leaders are and clusters them in domains of

interest based on their past tagging activity. The opinions of only this small set of selected

leaders are then exploited to provide recommendations for both known and new users.

This model has been implemented into the Clustered Social Ranking recommendation

algorithm and evaluated on three different social tagging websites, namely CiteULike,

Bibsonomy and MovieLens, to prove both its efficacy and scalability in different scenarios.

7.1.3 Adaptive Update

We have devised a technique to decide when the data structures used by the recommen-

dation algorithms must be updated, depending on the growth of the number of users,

items and tags over time. Most recommender systems (including SR and CSR) rely on

120

Chapter 7 7.2 Caveat

pre-computed data structures that must be kept up-to-date to provide accurate recom-

mendations. We thus provided an analysis of the growth of a tag-based dataset showing

the rate at which new users, tags and items appear in the system. We then evaluated the

loss of efficacy that follows data growth if the system is not updated. Results showed that

systems do not grow uniformly and that data growth is not the same for users, tags and

items. We defined a new adaptive technique capable of deciding when the data structures

must be updated depending on data growth. This allowed us to perform system updates

only when expected benefits outweigh costs.

We have implemented the technique and evaluated it over the Bibsonomy dataset.

7.2 Caveat

Despite the contributions of our work, we must also turn our attention on the possible

weaknesses of our proposals so that future efforts can be properly directed. Our evaluation

is based on a limited number of datasets and we cannot claim that our conclusions would

apply for all existing social tagging websites. However, the algorithms (SR/CSR) we

have proposed in this thesis are general and do not depend on the type of items to be

recommended. In fact our experiments proved the efficacy of our implementation for three

different datasets describing the tagging activity of users on papers, URLs and movies.

We can therefore conclude that (C)SR works on all datasets with similar characteristics

of tags’ distribution and growth as described in Sections 2.2 and 6.1.

7.3 Future Work

Future work will focus on two different threads of research: model improvement and new

challenges in tag based environment.

7.3.1 Model Improvement

Performance improvements might be obtained by modifying the model in some of its

aspects:

• Users and tags similarity measures: our choice of using cosine-similarity to

compare items and users was motivated by the analysis described in [Lathia et al.,

2008] and [Sarwar et al., 2001], where the authors state that it gives the best results

for recommender systems. However, we could use other measures [Manning et al.,

2008] such as the Pearson correlation, the Jaccard similarity and the Euclidean and

121

Chapter 7 7.3 Future Work

Manhattan distances. Using different measures could result in different performance.

Extensive experiments will be necessary to understand which solution works best.

• Clustering techniques: rather than using the fuzzy C-Means algorithm to cluster

users in groups according to their interests, we could use other techniques specifically

developed to deal with high-dimensional data. Moreover, while we clustered users

according to the items they tagged, the clustering could also be based on the tags

they used. Again, extensive experiments will be necessary to understand which

technique could give the best improvements.

• Selection of leaders: our current implementation selects leaders according to the

amount of items they tagged. Other approaches may be considered, for example all

users belonging to the neighborhood of more then a certain number of other users

could be considered leaders. Some websites (e.g., Rotten Tomatoes) explicitly decide

who the leaders are on the base of their professional activity. Again, the effectiveness

of these changes will have to be tested with extensive experiments.

7.3.2 New Challenges in Tag-based Environments

Many new challenges and requirements have been recently raised for tag-based environ-

ments that could be interesting to explore:

• Ontology mapping: techniques have been proposed to automatically map the tags

users associate with items into an ontology of concepts [Passant, 2007] to remove

ambiguities between synonyms and polysemys. The ontology could also be useful

to find relationships between tags and items and thus to improve the efficacy of the

recommendation algorithm. Performance of (C)SR could benefit from an ontology

both when expanding queries and when calculating the similarity between tags. For

example, the similarity of two tags ti and tj could be increased if they both belonged

to the same branch in the ontology tree or if they shared a common ancestor. In

other words, we can consider the similarity between the semantics of two tags to

increase their similarity score.

• Usage of metadata: most of the items shared on the Web carry a bag of descriptive

metadata. As for ontologies, this metadata can be used to find useful relationships

between tags and items and thus to improve the efficacy of the recommendation

algorithm. Rather than just using users’ and tags’ similarities, (C)SR could also

calculate items’ similarity based on similar metadata. This calculation obviously

depends on the type of metadata associated with items. For example a free text

description of an item could not be used by any solution, while a structured set of

information (e.g., expressed as an XML structured document) could be interpreted

by an automatic process.

122

Chapter 7 7.3 Future Work

• Scalability improvement: scalability can be improved either parallelizing or dis-

tributing the recommendation process (http://mahout.apache.org/). Further opti-

mizations or improvements can be implemented on top of our clustered version of

Social Ranking with no interference. A further speed-up in the calculation of rec-

ommendations could be of utter importance for very large datasets as can often be

found online.

123

Bibliography

[Agresti, 1984] Agresti, A. (1984). Analysis of Ordinal Categorical Data. John Wiley and

Sons.

[Aha et al., 1991] Aha, D., Kibler, D., and Albert, M. (1991). Instance-based learning

algorithms. Machine Learning, 6(1):37–66.

[Amatrian et al., 2009] Amatrian, X., Lathia, N., M.Pujol, J., Kwak, H., and Oliver, N.

(2009). The wisdom of the few. Proceedings of SIGIR 2009, Boston, Massachusetts.

[Anand et al., 2007] Anand, S., Kearney, P., and Shapcott, M. (2007). Generating seman-

tically enriched user profiles for web personalization. ACM Trans. Internet Technol.,

7(4):22+.

[Anand and Mobasher, 2007] Anand, S. and Mobasher, B. (2007). Contextual recommen-

dation. In Berendt, B., Hotho, A., Mladenic, D., and Semeraro, G., editors, From Web

to Social Web: Discovering and Deploying User and Content Profiles, volume 4737 of

Lecture Notes in Computer Science, chapter 8, pages 142–160. Springer Berlin Heidel-

berg, Berlin, Heidelberg.

[Anderson, 2006] Anderson, C. (2006). The Long Tail: Why the Future of Business Is

Selling Less of More. Hyperion.

[Andriy et al., 2008] Andriy, S., Jonathan, G., Bamshad, M., and Robin, B. (2008). Per-

sonalized recommendation in social tagging systems using hierarchical clustering. In

RecSys ’08: Proceedings of the 2008 ACM conference on Recommender systems, pages

259–266, New York, NY, USA. ACM.

[Baker, 2008] Baker, L. (2008). Delicious.com relaunches: Enhanced speed, search and

design with no dots. http://www.searchenginejournal.com/deliciouscom-relaunches-

enhanced-speed-search-design-with-no-dots/7403/.

[Bezdek, 1981] Bezdek, J. (1981). Pattern recognition with fuzzy objective function algo-

rithms (advanced applications in pattern recognition). Springer.

124

BIBLIOGRAPHY

[Bogers and van den Bosh, 2009] Bogers, T. and van den Bosh, A. (2009). Collaborative

and content-based filtering for item recommendation on social bookmarking websites.

In RecSys ’09: Proceedings of the 2009 ACM conference on Recommender systems, New

York, NY, USA. ACM.

[Breese et al., 1998] Breese, J. S., Heckerman, D., and Kadie, C. (1998). Empirical anal-

ysis of predictive algorithms for collaborative filtering. In Proceedings of the Fourteenth

Conference on Uncertainty in Artificial Intelligence (UAI-98), pages 43–52, San Fran-

cisco. Morgan Kaufmann.

[Broder, 1990] Broder, A. (1990). Strategies for efficient incremental nearest neighbor

search. Pattern Recognition, 23:171–178.

[Capocci and Caldarelli, 2008] Capocci, A. and Caldarelli, G. (2008). Folksonomies and

clustering in the collaborative system citeulike. Journal of Physics A: Mathematical

and Theoretical, 41(22):224016–224023.

[Cattuto et al., 2008] Cattuto, C., Benz, D., Hotho, A., and Stumme, G. (2008). Semantic

grounding of tag relatedness in social bookmarking systems. In Sheth, A. P., Staab,

S., Dean, M., Paolucci, M., Maynard, D., Finin, T. W., and Thirunarayan, K., editors,

The Semantic Web – ISWC 2008, volume 5318 of Lecture Notes in Computer Science,

pages 615–631, Berlin/Heidelberg. Springer.

[Cattuto et al., 2007] Cattuto, C., Loreto, V., and Pietronero, L. (2007). Collaborative

tagging and semiotic dynamics. PNAS, 104(5):1461–1464.

[Collins-Thompson, 2009] Collins-Thompson, K. (2009). Reducing the risk of query ex-

pansion via robust constrained optimization. In CIKM ’09: Proceeding of the 18th ACM

conference on Information and knowledge management, pages 837–846, New York, NY,

USA. ACM.

[Connor and Herlocker, 2001] Connor, M. and Herlocker, J. (2001). Clustering items for

collaborative filtering.

[Dean and Ghemawat, 2004] Dean, J. and Ghemawat, S. (2004). Mapreduce: simplified

data processing on large clusters. In In OSDI’04: Proceedings of the 6th conference on

Symposium on Opearting Systems Design & Implementation.

[Du et al., 2007] Du, N., Wu, B., Pei, X., Wang, B., and Xu, L. (2007). Community

detection in large-scale social networks. In WebKDD/SNA-KDD ’07: Proceedings of

the 9th WebKDD and 1st SNA-KDD 2007 workshop on Web mining and social network

analysis, pages 16–25, New York, NY, USA. ACM.

[Emamy and Cameron, 2007] Emamy, K. and Cameron, R. (2007). Citeulike: A re-

searcher’s social bookmarking service.

125

BIBLIOGRAPHY

[Faragó et al., 1993] Faragó, A., Linder, T., and Lugosi, G. (1993). Fast nearest neighbor

search in dissimilarity spaces. volume 15, pages 957–962. IEEE computer Society.

[Friedman et al., 1975] Friedman, J., Baskett, F., and Shustek, L. (1975). An algorithm

for finding nearest neighbors. IEEE Transactions on Computers, 24:1000–1006.

[Gemmell et al., 2009] Gemmell, J., Schimoler, T., Ramezani, M., and Mobasher, B.

(2009). Adapting k-nearest neighbor for tag recommendation in folksonomies. In Anand,

S. S., Mobasher, B., Kobsa, A., and Jannach, D., editors, ITWP, volume 528 of CEUR

Workshop Proceedings. CEUR-WS.org.

[Goldberg et al., 1992] Goldberg, D., Nichols, D., Oki, B. M., and Terry, D. (1992). Using

collaborative filtering to weave an information tapestry. Communications of the ACM,

35(12):61–70.

[Goldberg et al., 2000] Goldberg, K., Roeder, T., Gupta, D., and Perkins, C. (2000).

Eigentaste: A constant time collaborative filtering algorithm.

[Golder and Huberman, 2006] Golder, S. A. and Huberman, B. A. (2006). Usage patterns

of collaborative tagging systems. Journal of Information Science, 32(2):198–208.

[Gunawardana and Shani, 2010] Gunawardana, A. and Shani, G. (2010). Evaluating rec-

ommendation systems. In In RecSys’10: Proceedings of the 4th conference on Recom-

mender Systems.

[Haase et al., 2004] Haase, P., Ehrig, M., Hotho, A., and Schnizler, B. (2004). Personalized

information access in a bibliographic peer-to-peer system. In In Proceedings of the AAAI

Workshop on Semantic Web Personalization, pages 1–12.

[Halpin et al., 2007] Halpin, H., Robu, V., and Shepherd, H. (2007). The complex dy-

namics of collaborative tagging. In Proceedings of the 16th International Conference on

World Wide Web, pages 211–220, New York, NY, USA. ACM Press.

[Hassan-Montero and Herrero-Solana, 2006] Hassan-Montero, Y. and Herrero-Solana, V.

(2006). Improving tag-clouds as visual information retrieval interfaces. In InScit2006:

International Conference on Multidisciplinary Information Sciences and Technologies.

[Herlocker et al., 1999] Herlocker, J., Konstan, J., Borchers, A., and Riedl, J. (1999). An

algorithmic framework for performing collaborative filtering. In SIGIR ’99: Proceedings

of the 22nd annual international ACM SIGIR conference on Research and development

in information retrieval, pages 230–237, New York, NY, USA. ACM.

[Heymann and Garcia-Molina, 2006] Heymann, P. and Garcia-Molina, H. (2006). Collab-

orative creation of communal hierarchical taxonomies in social tagging systems. Tech-

nical Report 2006-10, Stanford University.

126

BIBLIOGRAPHY

[Heymann et al., 2008] Heymann, P., Koutrika, G., and Garcia-Molina, H. (2008). Can

social bookmarking improve web search? In WSDM ’08: Proceedings of the interna-

tional conference on Web search and web data mining, pages 195–206, New York, NY,

USA. ACM.

[Hill et al., 1995] Hill, W., Stead, L., Rosenstein, M., and Furnas, G. (1995). Recommend-

ing and evaluating choices in a virtual community of use. In CHI ’95: Proceedings of

the SIGCHI conference on Human factors in computing systems, pages 194–201, New

York, NY, USA. ACM Press/Addison-Wesley Publishing Co.

[Hotho et al., 2006] Hotho, A., Jschke, R., Schmitz, C., and Stumme, G. (2006). Infor-

mation retrieval in folksonomies: Search and ranking. In Sure, Y. and Domingue, J.,

editors, The Semantic Web: Research and Applications, volume 4011 of LNAI, pages

411–426, Heidelberg. Springer.

[Jain et al., 1999] Jain, A. K., Murty, M. N., and Flynn, P. J. (1999). Data clustering: a

review. ACM Computing Surveys, 31(3):264–323.

[Ji et al., 2007] Ji, A.-T., Yeon, C., Kim, H.-N., and Jo, G.-S. (2007). Collaborative

tagging in recommender systems. In AI 2007: Advances in Artificial Intelligence, pages

377–386, New York, NY, USA. ACM.

[Jschke et al., 2008] Jschke, R., Marinho, L., Hotho, A., Schmidt-Thieme, L., and

Stumme, G. (2008). Tag recommendations in social bookmarking systems. AI Commu-

nications, 21(4):231–247.

[Kaser and Lemire, 2007] Kaser, O. and Lemire, D. (2007). Tag-cloud drawing: Algo-

rithms for cloud visualization. CoRR, abs/cs/0703109. informal publication.

[Konstan et al., 1997] Konstan, J. A., Miller, B. N., Maltz, D., Herlocker, J. L., Gordon,

L. R., and Riedl, J. (1997). Grouplens: applying collaborative filtering to usenet news.

Communications of the ACM, 40(3):77–87.

[Krulwich, 1997] Krulwich, B. (1997). Lifestyle finder: Intelligent user profiling using

large-scale demographic data. AI Magazine, 18(2):37–45.

[Kuchinskas, 2005] Kuchinskas, S. (2005). Flickr to add print to photo ser-

vice. http://www.internetnews.com/ec-news/article.php/3512866/Flickr-to-Add-Print-

to-Photo-Service.htm.

[Lam et al., 2008] Lam, X. N., Vu, T., Le, T. D., and Duong, A. D. (2008). Addressing

cold-start problem in recommendation systems. In ICUIMC ’08: Proceedings of the 2nd

international conference on Ubiquitous information management and communication,

pages 208–211, New York, NY, USA. ACM.

127

BIBLIOGRAPHY

[Lathia et al., 2008] Lathia, N., Hailes, S., and Capra, L. (2008). The effect of correlation

coefficients on communities of recommenders. In Proceedings of 23rd Annual ACM

Symposium on Applied Computing.

[Leung et al., 2007] Leung, C. W.-k., Chan, S. C.-f., and Chung, F.-l. (2007). Applying

cross-level association rule mining to cold-start recommendations. In WI-IATW ’07:

Proceedings of the 2007 IEEE/WIC/ACM International Conferences on Web Intelli-

gence and Intelligent Agent Technology - Workshops, pages 133–136, Washington, DC,

USA. IEEE Computer Society.

[Linden et al., 2003] Linden, G., Smith, B., and York, J. (2003). Amazon.com recommen-

dations: item-to-item collaborative filtering. Internet Computing, IEEE, 7(1):76–80.

[Manning et al., 2008] Manning, C., Raghavan, P., and Schütze, H. (2008). Introduction

to Information Retrieval. Cambridge University Press.

[Mardia et al., 1979] Mardia, K., Kent, J., and Bibby, J. (1979). Multivariate analysis.

Academic Press.

[Massa and Avesani, 2007] Massa, P. and Avesani, P. (2007). Trust-aware recommender

systems. In RecSys ’07: Proceedings of the 2007 ACM conference on Recommender

systems, pages 17–24, New York, NY, USA. ACM.

[Mobasher et al., 2001] Mobasher, B., Dai, H., Luo, T., and Nakagawa, M. (2001). Ef-

fective personalization based on association rule discovery from web usage data. In

WIDM ’01: Proceedings of the 3rd international workshop on Web information and

data management, pages 9–15, New York, NY, USA. ACM.

[Mull, 2006] Mull, M. (2006). Characteristics of high-volume recommender systems. In

Recommenders Workshop, Bilbao, Spain.

[Nakamoto et al., 2007] Nakamoto, R., Nakajima, S., Miyazaki, J., and Uemura, S. (2007).

Tag-based contextual collaborative filtering. In 18th IEICE Data Engineering Work-

shop.

[Omran et al., 2007] Omran, M. G., Engelbrecht, A. P., and Salman, A. A. (2007). An

overview of clustering methods. Intell. Data Anal., 11(6):583–605.

[Pan et al., 2009] Pan, J., Taylor, S., and Thomas, E. (2009). Reducing ambiguity in

tagging systems with folksonomy search expansion. In 6th Annual European Semantic

Web Conference (ESWC2009), pages 669–683.

[Passant, 2007] Passant, A. (2007). Using ontologies to strengthen folksonomies and enrich

information retrieval in weblogs. In Proceedings of International Conference on Weblogs

and Social Media.

128

BIBLIOGRAPHY

[Peng et al., 2004] Peng, H., Bo, X., Fan, Y., and Ruimin, S. (2004). A scalable p2p

recommender system based on distributed collaborative filtering. Expert systems with

applications.

[Polat and Du, 2003] Polat, H. and Du, W. (2003). Privacy-preserving collaborative fil-

tering using randomized perturbation techniques. In The Third IEEE International

Conference on Data Mining (ICDM’03), Melbourne, FL.

[Rajeev et al., 1999] Rajeev, S. G., Rastogi, R., and Shim, K. (1999). Rock: A robust

clustering algorithm for categorical attributes. In Information Systems, pages 512–521.

[Rendle et al., 2009] Rendle, S., Marinho, L. B., Nanopoulos, A., and Schmidt-Thieme,

L. (2009). Learning optimal ranking with tensor factorization for tag recommendation.

In The 15th ACM SIGKDD international conference on Knowledge discovery and data

mining (KDD ’09), pages 727–736, New York, NY, USA. ACM.

[Resnick et al., 1994] Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., and Riedl, J.

(1994). Grouplens: an open architecture for collaborative filtering of netnews. In CSCW

’94: Proceedings of the 1994 ACM conference on Computer supported cooperative work,

pages 175–186, New York, NY, USA. ACM.

[Ruan and Zhang, 2008] Ruan, J. and Zhang, W. (2008). Identifying network communities

with a high resolution. Physical Review E (Statistical, Nonlinear, and Soft Matter

Physics), 77(1).

[Sarwar et al., 2001] Sarwar, B., Karypis, G., Konstan, J., and Reidl, J. (2001). Item-

based collaborative filtering recommendation algorithms. In WWW ’01: Proceedings of

the 10th international conference on World Wide Web, pages 285–295, New York, NY,

USA. ACM.

[Sarwar et al., 2000] Sarwar, B., Karypis, G., Konstan, J., and Riedl, J. (2000). Ap-

plication of dimensionality reduction in recommender systems–a case study. In ACM

WebKDD Workshop.

[Sarwar et al., 2002] Sarwar, B., Karypis, G., Konstan, J., and Riedl, J. (2002). Rec-

ommender systems for large-scale e-commerce: Scalable neighborhood formation using

clustering. In Proceedings of the Fifth International Conference on Computer and In-

formation Technology.

[Schaeffer, 2007] Schaeffer, S. E. (2007). Graph clustering. Computer Science Review,

1(1):27 – 64.

[Schein et al., 2002] Schein, A., Popescul, A., Ungar, L., and Pennock, D. (2002). Meth-

ods and metrics for cold-start recommendations. In Proceedings of the 25th Annual

International ACM SIGIR Conference on Research and Development in Information

Retrieval (SIGIR 2002), pages 253–260.

129

BIBLIOGRAPHY

[Seco et al., 2004] Seco, N., Veale, T., and Hayes, J. (2004). An intrinsic information con-

tent metric for semantic similarity in wordnet. In ECAI ’04: 16th European Conference

on Artificial Intelligence.

[Sen et al., 2006] Sen, S., Lam, S. K., Rashid, A. M., Cosley, D., Frankowski, D., Os-

terhouse, J., Harper, M. F., and Riedl, J. (2006). Tagging, communities, vocabulary,

evolution. In Proceedings of the 20th Conference on Computer Supported Cooperative

Work, pages 181–190, New York, NY, USA. ACM Press.

[Shardanand and Maes, 1995] Shardanand, U. and Maes, P. (1995). Social information

filtering: Algorithms for automating “word of mouth”. In Proceedings of ACM CHI’95

Conference on Human Factors in Computing Systems, volume 1, pages 210–217.

[Shen and Wu, 2005] Shen, K. and Wu, L. (2005). Folksonomy as a complex network.

[Sheung-On and Lui, 2006] Sheung-On, C. and Lui, A. K. (2006). Web information re-

trieval in collaborative tagging systems. pages 352–355.

[Su and Khoshgoftaar, 2009] Su, X. and Khoshgoftaar, T. (2009). A survey of collabora-

tive filtering techniques. Advances in Artificial Intelligence, 2009:2.

[Sudipto et al., 1998] Sudipto, G., Rajeev, R., and Kyuseok, S. (1998). Cure: an efficient

clustering algorithm for large databases. In SIGMOD ’98: Proceedings of the 1998

ACM SIGMOD international conference on Management of data, pages 73–84, New

York, NY, USA. ACM.

[Suryavanshi et al., 2005] Suryavanshi, B. S., Shiri, N., and Mudur, S. (2005). A fuzzy

hybrid collaborative filtering technique for web personalization. In ITWP ’05: Proceed-

ings of the 3rd Workshop on Intelligent Techniques for Web Personalization, New York,

NY, USA. ACM.

[Symeonidis et al., 2008] Symeonidis, P., Nanopoulos, A., and Manolopoulos, Y. (2008).

Tag recommendations based on tensor dimensionality reduction. In RecSys ’08: Pro-

ceedings of the 2008 ACM conference on Recommender systems, pages 43–50, New York,

NY, USA. ACM.

[Takacs et al., 2009] Takacs, G., Pilaszy, I., and Nemeth, B. (2009). Scalable collabora-

tive filtering approaches for large recommender systems. Journal of Machine Learning

Research, (10):623–656.

[Tibshirani et al., 2000] Tibshirani, R., Walther, G., and Hastie, T. (2000). Estimating

the number of clusters in a dataset via the gap statistic.

[Tso-Sutter et al., 2008] Tso-Sutter, K. H. L., Marinho, L. B., and Schmidt-Thieme, L.

(2008). Tag-aware recommender systems by fusion of collaborative filtering algorithms.

In Proceedings of 23rd Annual ACM Symposium on Applied Computing, pages 16–20.

ACM Press.

130

BIBLIOGRAPHY

[Ungar and Foster, 1998] Ungar, L. and Foster, D. (1998). Clustering methods for collab-

orative filtering. In Proceedings of the Workshop on Recommendation Systems. AAAI

Press, Menlo Park California.

[Wang et al., 2006] Wang, J., de Vries, A., and Reinders, M. (2006). Unifying user-based

and item-based collaborative filtering approaches by similarity fusion. In SIGIR ’06:

Proceedings of the 29th annual international ACM SIGIR conference on Research and

development in information retrieval, pages 501–508, New York, NY, USA. ACM.

[Wetzker et al., 2009] Wetzker, R., Umbrath, W., and Said, A. (2009). A hybrid approach

to item recommendation in folksonomies. In ESAIR ’09: Proceedings of the WSDM ’09

Workshop on Exploiting Semantic Annotations in Information Retrieval, pages 25–29,

New York, NY, USA. ACM.

[Xue et al., 2005] Xue, G. R., Lin, C., Yang, Q., Xi, W., J.Zeng, H., Yu, Y., and Chen,

Z. (2005). Scalable collaborative filtering using cluster-based smoothing. In SIGIR ’05:

Proceedings of the 28th annual international ACM SIGIR conference on Research and

development in information retrieval, pages 114–121, New York, NY, USA. ACM.

[Yang et al., 2002] Yang, Y., Guan, X., and You, J. (2002). Clope: A fast and effective

clustering algorithm for transactional data. In In: Proc of KDD02, pages 682–687.

[Yeung et al., 2007] Yeung, C. M. A., Gibbins, N., and Shadbolt, N. (2007). Mu-

tual contextualization in tripartite graphs of folksonomies. In Proceedings of the

6th International Semantic Web Conference and 2nd Asian Semantic Web Confer-

ence (ISWC/ASWC2007), Busan, South Korea, volume 4825 of LNCS, pages 960–964,

Berlin, Heidelberg. Springer Verlag.

[Zanardi and Capra, 2008] Zanardi, V. and Capra, L. (2008). Social ranking: uncovering

relevant content using tag-based recommender systems. In RecSys ’08: Proceedings of

the 2008 ACM conference on Recommender systems, pages 51–58, New York, NY, USA.

ACM.

[Zhang and Srihari, 2004] Zhang, B. and Srihari, S. (2004). Fast k-nearest neighbor classi-

fication using cluster-based trees. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 26:525–528.

[Zhang et al., 1996] Zhang, T., Ramakrishnan, R., and Livny, M. (1996). Birch: An

efficient data clustering method for very large databases.

131

