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Measurements of B Decays to Two Kaons
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K. Kinoshita,4 S. Korpar,17,12 P. Križan,16,12 P. Krokovny,1 C. C. Kuo,21 A. Kuzmin,1 Y.-J. Kwon,49 S. E. Lee,35 T. Lesiak,24

J. Li,34 S.-W. Lin,23 D. Liventsev,11 G. Majumder,39 F. Mandl,10 T. Matsumoto,45 A. Matyja,24 W. Mitaroff,10 H. Miyake,29

H. Miyata,26 Y. Miyazaki,19 R. Mizuk,11 D. Mohapatra,48 G. R. Moloney,18 Y. Nagasaka,8 E. Nakano,28 M. Nakao,7

Z. Natkaniec,24 S. Nishida,7 O. Nitoh,46 S. Noguchi,20 T. Nozaki,7 S. Ogawa,40 T. Ohshima,19 T. Okabe,19 S. Okuno,13

S. L. Olsen,6 Y. Onuki,26 W. Ostrowicz,24 H. Ozaki,7 P. Pakhlov,11 H. Palka,24 C. W. Park,37 N. Parslow,38 L. S. Peak,38

R. Pestotnik,12 L. E. Piilonen,48 M. Rozanska,24 Y. Sakai,7 N. Sato,19 N. Satoyama,36 K. Sayeed,4 T. Schietinger,15

O. Schneider,15 A. J. Schwartz,4 M. E. Sevior,18 H. Shibuya,40 V. Sidorov,1 A. Somov,4 N. Soni,30 S. Stanič,27 M. Starič,12
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We report measurements of B meson decays to two kaons using 253 fb�1 of data collected with the
Belle detector at the KEKB energy-asymmetric e�e� collider. We find evidence for signals in B� !
�K0K� and B0 ! K0 �K0 with significances of 3:0� and 3:5�, respectively. (Charge-conjugate modes are

included.) The corresponding branching fractions are measured to be B�B� ! �K0K�� � �1:0� 0:4�
0:1� � 10�6 and B�B0 ! K0 �K0� � �0:8� 0:3� 0:1� � 10�6. These decay modes are examples of
hadronic b! d transitions. No signal is observed in the decay B0 ! K�K�, and we set an upper limit
of 3:7� 10�7 at 90% confidence level.

DOI: 10.1103/PhysRevLett.95.231802 PACS numbers: 13.25.Hw, 11.30.Er, 12.15.Hh, 14.40.Nd
All B! K�, �� decay branching fractions have now
been measured [1–4], and direct CP violation in B0 !
K��� decay has been established [5,6]. These measure-
ments constrain the hadronic b! s and b! u amplitudes
and have provided essential information for our under-
standing of B decay mechanisms. They also probe possible
contributions from new physics. What is still missing are
the B! �KK modes, which are hadronic b! d transitions.
In this Letter, we report results on B0 ! �K0K0 and B� !
�K0K� decays, which are dominated by the loop-induced
b! d �ss process (so-called b! d penguin diagrams).
These modes are expected to be suppressed by a factor of
roughly 20 with respect to the b! s penguin dominated
B! K� decays and, hence, are expected at the 10�6 level
[7,8]. We also report a search for B0 ! K�K�, which can
arise only from annihilation diagrams, unless there are
final-state interactions (FSI) [9].

Establishing B! �KK modes is of interest not just for
completing the list of B! K�;�� and K �K decays.
Unlike b! s penguin dominated modes such as B� !
K0��, direct CP violation is expected to be sizable in
B0 ! �K0K0 and B� ! �K0K� decays [7], while mixing-
dependent CP violation can be measured in B0 ! �K0K0

(and K�K�) [8]. Since b! d penguin diagrams contrib-
ute to the B! �� amplitudes, measurements of b! d
penguin dominated B! �KK rates and CP violation will
23180
shed light on CP violation in B0 ! ���� decay [10,11],
where currently some disagreement exists. It could also
shed light on the strength of B0 ! �0�0 [3,4], which is not
yet understood.

The results are based on a sample of 275� 106 B �B pairs
collected with the Belle detector at the KEKB e�e�

asymmetric-energy (3.5 on 8 GeV) collider [12] operating
at the ��4S� resonance. The Belle detector is a large-solid-
angle magnetic spectrometer that consists of a silicon
vertex detector (SVD), a 50-layer central drift chamber
(CDC), an array of aerogel threshold Cherenkov counters
(ACC), a barrel-like arrangement of time-of-flight scintil-
lation counters, and an electromagnetic calorimeter (ECL)
comprised of CsI(Tl) crystals located inside a supercon-
ducting solenoid coil that provides a 1.5 T magnetic field.
An iron flux-return located outside the coil is instrumented
to detect K0

L mesons and to identify muons (KLM). The
detector is described in detail elsewhere [13]. Two different
inner detector configurations were used. For the first sam-
ple of 152� 106 B �B pairs (set I), a 2.0 cm radius beampipe
and a 3-layer silicon vertex detector were used; for the
latter 123� 106 B �B pairs (set II), a 1.5 cm radius beam-
pipe, a 4-layer silicon detector, and a small-cell inner drift
chamber were used [14].

Charged kaons are required to have a distance of closest
approach to the interaction point (IP) in the beam direction
2-2
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(z) of less than 4 cm and less than 0.1 cm in the transverse
plane. Charged kaons and pions are identified using
dE=dx, energy lost by ionizing the gas molecules along
their path in CDC and Cherenkov light yields in the ACC.
The CDC dE=dx and ACC information are combined to
form a K-� likelihood ratio, R�K=�� � LK=�LK �L��,
where LK �L�� is the likelihood that the track is a kaon
(pion). Charged tracks with R�K=��> 0:6 are regarded as
kaons. Furthermore, charged tracks that are positively
identified as electrons or muons are rejected. The electron
identification is based on the ratio of ECL energy deposi-
tion to CDC momentum (E=p), dE=dx, shower shape, �2

of the matching between the ECL cluster and the track
candidate, and ACC light yields, while information from
the KLM, dE=dx, and ACC are combined to identify
muons. The kaon identification efficiency and misidentifi-
cation rate are determined from a sample of kinematically
identified D�� ! D0��, D0 ! K��� decays, where the
kaons from the D decay are selected in the same kinematic
region as in B! K �K decays. The kaon efficiency is mea-
sured to be �84:24� 0:70�% for set I and �82:84� 0:60�%
for set II, while the pion-fake-kaon rates are �5:40�
0:49�% and �6:86� 0:61�%, respectively, including
systematics.

Candidate K0 mesons are reconstructed through the
K0
S ! ���� decay. We pair oppositely charged tracks

assuming the pion hypothesis and require the invariant
mass of the pair to be within 18 MeV=c2 of the nominal
K0
S mass. Furthermore, the intersection point of the ����

pair must be displaced from the IP.
Two variables are used to identify B candidates: the

beam-constrained mass Mbc 	
�������������������������
E�2beam � p

�2
B

q
and the en-

ergy difference �E 	 E�B � E
�
beam, where E�beam is the run

dependent beam energy and E�B and p�B are the recon-
structed energy and momentum of the B candidates in
the center-of-mass frame, respectively. Events with Mbc >
5:20 GeV=c2 and j�Ej< 0:3 GeV are selected for
analysis.

The dominant background is from e�e� ! q �q�q �
u; d; s; c� continuum events. Event topology and B flavor
tagging information are used to distinguish between the
spherically distributed B �B events and the jetlike continuum
backgrounds. We combine a set of modified Fox-Wolfram
moments [15] into a Fisher discriminant. A signal/back-
ground likelihood is formed, based on a GEANT-based [16]
Monte Carlo (MC) simulation and sideband data, from the
product of the probability density function (PDF) for the
Fisher discriminant and that for the cosine of the angle
between the B flight direction and the positron beam. The
continuum suppression is achieved by applying a require-
ment on a likelihood ratio R � Ls=�Ls �Lq �q�, where
Ls�q �q� is the signal (q �q) likelihood. Additional background
discrimination is provided by B flavor tagging. For each
event, the standard Belle flavor tagging algorithm [17]
provides a discrete variable, indicating the probable flavor
23180
of the tagging B meson, and a quality r, a continuous
variable ranging from zero for no flavor tagging informa-
tion to unity for unambiguous flavor assignment. An event
with a high value of r (typically containing a high-
momentum lepton) is more likely to be a B �B event, and a
looser R requirement can be applied. We divide the data
into r > 0:5 and r 
 0:5 regions. A selection requirement
on R for events in each r region of set I and set II is ap-
plied according to a figure of merit defined as Nexp

s =�������������������������
Nexp
s � Nexp

q �q

q
, where Nexp

s denotes the expected signal

yields based on MC simulation and the assumed branching
fractions, 1:0� 10�6, and Nexp

q �q denotes the expected q �q
yields from sideband data (Mbc < 5:26 GeV=c2).

Background contributions from ��4S� ! B �B events are
investigated using a large MC sample, which includes
events from b! c transitions and charmless decays.
After all the selection requirements, no B �B background is
found for the B0 ! K0 �K0 mode. Owing to K-� misidenti-
fication, large B0 ! K��� and B� ! K0�� feed-across
backgrounds appear in the B0 ! K�K� and B� ! �K0K�

modes, respectively. A small charmless three-body contri-
bution is found at low �E values for these two modes.

The signal yields are extracted by performing unbinned
two-dimensional maximum likelihood fits to the (Mbc, �E)
distributions. The likelihood for each mode is defined as

L � exp
�
�
X
s;k;j

Ns;k;j

�Y
i

�X
s;k;j

Ns;k;jP s;k;j;i

�
;

P s;k;j;i � Ps;k;j�Mbci;�Ei�;

where s indicates set I or set II, k distinguishes between
events in the r < 0:5 and r > 0:5 regions, i is the identifier
of the ith event, P�Mbc;�E� is the two-dimensional PDF of
Mbc and �E, and Nj is the number of events for the
category j, which corresponds to either signal, q �q contin-
uum, a feed-across due to K-� misidentification, or back-
ground from other charmless three-body B decays.

All the signal PDFs [Ps;k;j�signal�Mbc;�E�] are parame-
trized by a product of a single Gaussian for Mbc and a
double Gaussian for �E using MC simulations based on
the set I and set II detector configurations. The same signal
PDFs are used for events in the two different r regions.
Since the Mbc signal distribution is dominated by the beam
energy spread, we use the signal peak positions and reso-
lutions obtained from B� ! �D0�� data ( �D0 ! K0

S�
���

subdecay is used for the K0 �K0 mode, while �D0 ! K���

is used for the other two modes) with small mode depen-
dent correlations obtained from MC. The MC-predicted
�E resolutions are corrected using the ratio of widths
(data/MC) of invariant mass distributions of high-
momentum D mesons. The decay mode �D0 ! K��� is
used for B0 ! K�K�,D� ! K0

S�
� for B� ! K0��, and

�D0 ! K0
S�
��� for B0 ! K0 �K0. The parameters that de-

scribe the shapes of the PDFs are fixed in all of the fits.
2-3



TABLE I. Fitted signal yields, reconstruction efficiencies, product of efficiencies and subdecay branching fractions �Bs�, branching
fractions with upper limits at 90% confidence level, and significances for individual modes.

Mode Sig. yield Bkg. yield Eff. (%) Eff:�Bs �%� B�10�6� Sig.

K�K� 2:5�5:1
�4:1 1508:1� 39:9 15:5 15:5 0:06� 0:1�<0:37� 0.5

�K0K� 13:3� 5:6 893:5� 30:7 14:5 5:0 1:0� 0:4�<1:5� 3.0
K0 �K0 15:6� 5:8 1136:6� 34:8 28:7 6:8 0:8� 0:3�<2:1� 3.5
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FIG. 1 (color online). Mbc (left) and �E (right) distributions
for B0 ! K�K� (top), B� ! �K0K� (middle), and B0 ! K0 �K0

candidates. The points with error bars show the data, while the
curves represent the various components from the fit: signal
(open solid line), continuum (dotted line), three-body B decays
(hatched line), background from misidentification (dashed-
dotted line), and sum of all components (solid line). In the
K�K� mode, there is a large contribution from misidentified
K��� but no significant signal excess. In the �K0K� mode, the
signal and misidentified K0�� contributions are comparable in
size. In the K0 �K0 mode, there is a signal excess but no mis-
identification background.
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The continuum background in �E is described by a
linear function, while the Mbc distribution is parametrized
by an ARGUS function f�x� � x

��������������
1� x2
p

exp����1�
x2��, where x is Mbc divided by half of the total center-
of-mass energy [18]. Therefore, the continuum PDF is the
product of this ARGUS function and the linear function,
where the overall normalization, �, and the slope of the
linear function are free parameters for each r region in the
fit. These free parameters are r-dependent and allowed to
be different in set I and set II. The background PDFs for
charmless three-body B decays for the K�K� and �K0K�

modes are each modeled by a smoothed two-dimensional
histogram, obtained from a large MC sample. The feed-
across backgrounds for these two modes from the K���

and K0�� events have Mbc � �E shapes similar to the
signals with the �E peak positions shifted by ’ 45 MeV.
The methods to model the K�K� and �K0K� signal PDFs
are also applied to describe the feed-across background.

When likelihood fits are performed, the yield for each
background component (Ns;k;j where j � q �q, feed-across,
charmless) is allowed to float independently for each s
(set I or set II) and k bin (low or high r region). For the
signal component, the same branching fraction is required
by constraining the number of signal events in each �s; k�
bin using the measured efficiency in the corresponding
�s; k� bin. Table I summarizes the fit results for each
mode. The statistical significance for K�K�, K0K�, and
K0 �K0 modes are 0:5�, 3:1�, and 3:6�, respectively.
Including systematic uncertainty, we observe 13:3� 5:6�
0:6 K0K� and 15:6� 5:8�1:1

�0:6 K0 �K0 signal events with
significances of 3:0� and 3:5�, respectively. The second
errors in the yields are the systematic errors from fitting,
estimated from the deviations after varying each parameter
of the signal PDFs by 1 standard deviation, and from
modeling the three-body background, studied by excluding
the low �E region (<�0:15 GeV) and repeating the fit.
At each step, the yield deviation is added in quadrature to
provide the fitting systematic errors, and the statistical
significance is computed by taking the square root of the
difference between the value of �2 lnL for the best fit
value and zero signal yield. The smallest value obtained
when varying all the parameters simultaneously by 1 stan-
dard deviation is chosen to estimate the significance in-
cluding the systematic uncertainty.

Figure 1 shows the Mbc and �E projections of the fits
after requiring events to have j�Ej< 0:06 GeV and
23180
5:271 GeV=c2 <Mbc < 5:289 GeV=c2, respectively. The
feed-across yields are 47:1� 8:7 in the K�K� mode and
16:4� 6:1 in the K0K� mode. The amounts of the feed-
across background are consistent with the expectations of
49.1 K��� and 18.8 K0�� events, based on MC simula-
tion and measured branching fractions [19]. The MC mod-
eling of the requirement on the likelihood ratio R is
investigated using the B� ! �D0�� ( �D0 ! K0

S�
��� for

K0K0 and �D0 ! K��� for the others) samples. The ob-
tained systematic errors are �2:9% for B0 ! K0 �K0 and
�6:8% for the other two modes. The systematic error on
the charged track reconstruction efficiency is estimated to
be around 1% per track using partially reconstructed D�
2-4
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events. The resulting K0
S reconstruction is verified by com-

paring the ratio of D� ! K0
S�
� and D� ! K�����

yields with the MC expectation. The resulting K0
S detection

systematic error is �4:5%. The final systematic errors are
then obtained by quadratically summing the errors due to
the reconstruction efficiency and the fitting systematics.

With 275� 106 B �B pairs, we find evidence of B� !
�K0K� and B0 ! �K0K0 with branching fractions B�B� !
�K0K�� � �1:0� 0:4� 0:1� � 10�6 and B�B0!K0 �K0��
�0:8�0:3�0:1��10�6. These are examples of b! d
penguin dominated hadronic transitions. Our measure-
ments are consistent with preliminary results reported by
the BABAR Collaboration [20]. They are also in general
agreement with theoretical expectations [7–9,21–24]. It
has been suggested that the branching fraction and CP
asymmetry of the mode B0 ! K0 �K0 may be sensitive to
physics beyond the standard model [23]. Measurements
with larger statistics are needed for this purpose. No signal
is observed in B0 ! K�K�, and we set the upper limit of
3:7� 10�7 at the 90% confidence level, using the
Feldman-Cousins approach [25], taking into account both
the statistical and systematic errors [26]. The result is
consistent with a preliminary result reported by the
BABAR Collaboration [27], and constrains the FSI rescat-
tering picture [9].
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