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Search for CP Violation in the Decay B0 ! D��D�
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We report a search for CP-violating asymmetry in B0 ! D��D� decays. The analysis employs two
methods of B0 reconstruction: full and partial. In the full reconstruction method all daughter particles
of the B0 are required to be detected; the partial reconstruction technique requires a fully reconstructed
D� and only a slow pion from the D�� ! D0��

slow decay. From a fit to the distribution of the time
interval corresponding to the distance between two B meson decay points we calculate the CP-violating
parameters and find the significance of nonzero CP asymmetry to be 2.7 standard deviations.

DOI: 10.1103/PhysRevLett.93.201802 PACS numbers: 13.25.Hw, 11.30.Er, 12.15.Hh
In the standard model (SM), CP violation arises from
the Kobayashi-Maskawa (KM) phase [1] in the weak
interaction quark-mixing matrix. Comparisons between
SM expectations and measurements in various modes are
important to test the KM model. The B0 ! D��D�

modes are of particular interest since large CP violation
effects are expected in these decays [2]. Although the
D��D� final states are not CP eigenstates, they can be
produced in the decays of both B0 and �B0 with compa-
rable amplitudes: the interference between amplitudes of
the direct transition and that via B �B mixing results in CP
violation. These decays are dominated by the tree b !
c �cd transition; thus CP violation measurements are sen-
sitive to the angle 
1. However, the b ! d penguin dia-
gram also contributes to this final state and contains a
different weak phase. Therefore this contribution results
in both direct CP violation and a deviation of the mixing-
induced CP violation parameter from sin2
1. The
Cabibbo suppressed decays B0 ! D��D� were first ob-
served by Belle [3], and have been confirmed by BABAR
[4].

The probability for a B meson to decay to D��D� at
time �t can be expressed in terms of five parameters, A,
S�, and C�:

P�
D�D��t� 	 �1�A�

e�j�tj=�B0

8�B0

f1� q�S� sin��md�t�

� C� cos��md�t�g: (1)

Here the � (�) sign represents the D��D� (D��D�) final
state, and the b-flavor charge q 	 �1 (�1) when the
tagging B meson is a B0 ( �B0). The time-integrated
asymmetry A between the rates to D��D� and D��D�
is defined as

A 	
ND��D� � ND��D�

ND��D� � ND��D�

: (2)

In the case of negligible penguin contributions [2,5], the
parameters S� can be related to the weak phase differ-
ence ( sin2
1 in the SM), the strong phase difference (�),
and the ratio of tree amplitudes to the D��D� and
D��D� final states. If � 	 0 and equal amplitudes are
assumed, one expects that A 	 0, C� 	 C� 	 0, and
S� 	 S� 	 � sin2
1.

The analysis described here is based on 140 fb�1 of
data, corresponding to 152� 106 B �B pairs, collected
with the Belle detector [6] at the KEKB asymmetric
energy storage rings [7]. Two reconstruction techniques,
full and partial, are used to increase the reconstruction
efficiency. The event selection is similar to that in our
previous publication [3]; however, some requirements are
relaxed in order to increase the size of the sample used to
extract the CP violation parameters. The full reconstruc-
tion method allows extraction of the signal decay with
high purity, but, due to the small branching fractions of
charmed meson decays into reconstructable final states,
results in a low efficiency. In the partial reconstruction
method, a D� meson is fully reconstructed while only the
slow pion (��

slow) is required to be detected from the
decay D�� ! D0��

slow.
Neutral D mesons are reconstructed in five decay

modes: K���, K�������, K����0, KS����, and
K�K� [8]. Charged D mesons are reconstructed via
decays into K�����, KS��, and K�K���. The se-
lected combinations are fitted to a common vertex and a
vertex quality requirement is applied to reduce combina-
201802-2
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torial background. A �15 MeV=c2 interval around the
nominal D mass is used to select D meson candidates
for all modes except D0 ! K����0, for which
�24 MeV=c2 is used (�3� in each case). The selected
charmed meson candidates are then subjected to mass-
vertex constrained fits to improve their momentum and
vertex resolution. We refer to a D candidate as having
valid vertex reconstruction if it is formed by at least two
tracks with hits in the silicon vertex detector. To suppress
feed-down from the Cabibbo allowed decay �B0 !

D��D����
s due to K=� misidentification, we apply a D�

s
veto for the D� ! K����� and KS�� channels: if a
pion candidate can also be identified as a kaon, and if,
after reassignment of the kaon mass, the invariant mass
of the combination is within �15 MeV=c2 of the nominal
D�

s mass, the combination is rejected. This requirement
suppresses the �B0 ! D��D����

s background by a factor
of 10 with signal efficiency of 98%. The D�� candidates
are formed from D0��

slow combinations with invariant
masses within �2 MeV=c2 of the nominal D�� mass.

In the full reconstruction method we define B0 candi-
dates as combinations of oppositely charged D�� and D�

candidates, where at least one of the D� or the D0 from
the D�� decay has valid vertex reconstruction. The signal
is identified using the c.m. system energy difference
�E 	 E�

B � Ebeam and the beam-energy constrained

mass Mbc 	
�������������������������
E2
beam � P�2

B

q
, where E�

B (P�
B) is the energy

(momentum) of the B candidate in the c.m. and Ebeam is
the c.m. beam energy. B0 candidates are preselected by
requiring j�Ej < 100 MeV and Mbc > 5:21 GeV=c2. In
the case of multiple B0 candidates in this region a single
candidate per event is selected based on the minimum
sum of �2=DOF of the fits to intermediate charmed
mesons. The scatter plot of �E vs Mbc and the �E and
Mbc projections are shown in Fig. 1. In the Mbc projection
B0 candidates are selected from the j�Ej < 20 MeV re-
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FIG. 1. Kinematic distributions of B0 ! D��D� candidates:
(a) scatter plot of �E vs Mbc; (b),(c) �E and Mbc projections;
(d) cos� determined from Mbc fits in the data (points with error
bars) and in the signal MC (histogram). The curves represent
the fit described in the text.
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gion; the �E distribution is plotted for the region Mbc >
5:27 GeV=c2. A fit to the Mbc distribution with a Gaussian
representing the signal contribution and an ARGUS func-
tion [9] parameterizing the background finds a signal
yield of 161� 16 events. A fit to the �E distribution is
performed using a double Gaussian to parametrize the
signal, while the background is described by a linear
function. This fit yields 149� 18 signal events. The
cos� distribution, where � is a decay angle in the D��

rest frame relative to the boost direction, for the candi-
dates from the j�Ej < 20 MeV and Mbc > 5:27 GeV=c2

regions determined from Mbc fits is shown in Fig. 1(d) and
is in good agreement with the Monte Carlo (MC)
expectation.

In the partial reconstruction analysis we define B can-
didates as combinations of D� with valid vertex recon-
struction and ��

slow. As in our previous publication [3], the
angle � between the D� and ��

slow c.m. momenta, and the
D�� helicity angle �, calculated using kinematic con-
straints, is used to identify the studied decay. We use the
D� ! K����� decay mode only. In addition, the D�

c.m. momentum is required to lie in the interval 1:63 <
P�

D� < 1:97 GeV=c, and the c.m. momentum of ��
slow is

required to be smaller than 0:2 GeV=c. Both momentum
intervals correspond to the kinematic limits for the
studied decay. In order to make the fully and partially
reconstructed samples statistically independent, ��

slow is
rejected if, after being combined with any D0 in the
event, it forms a D�� candidate. The presence of a lepton
(‘tag) in the event is required to provide flavor tagging,
suppress the continuum background to a negligible level,
and also reduce the combinatorial B �B background.
Charged tracks with c.m. momenta in the range 1:1 <

P�
‘tag

< 2:3 GeV=c, which are identified as muons or elec-

trons, are considered as leptons. A large fraction of the
selected D�‘tag combinations originate from the decay of
the same B meson: B ! D�‘�X. This background is
removed by a kinematic requirement that D� and ‘tag
do not originate from the same B:

�Ebeam � E�
D‘tag

�2 � P�2
B � P�2

D‘tag

2P�
BP�

D‘tag

< �1:1; (3)

where E�
D‘tag

(P�
D‘tag

) is the c.m. energy (momentum) of the

D�‘tag combination. The efficiency of this requirement
for the signal is estimated from MC simulation to be 87%,
while the background is suppressed by a factor greater
than 2. This requirement also removes leptons produced
from the unreconstructed D0 in the signal decay, an
additional source of mistagging. We select partially re-
constructed B0 candidates by requiring cos� < 0 and
j cos�j < 1:05. In the case of multiple candidates, the
D���

slow combination with the best probability of the
D� vertex fit or the largest j cos�j is selected. The ex-
201802-3
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pected number of signal events in the partial reconstruc-
tion sample is calculated from the full reconstruction
signal yield relying on the MC ratio of full and partial re-
construction efficiencies. We estimate Npartial 	 133� 13
and use this number to fix the signal fraction in later fits.

We cross-check this result by estimating the signal
fraction from the data. The distributions of cos� for
two regions of cos� are shown in Fig. 2, after imposing
a tight requirement of �8 MeV=c2 (�2�) on the D�

mass. The first region 0:50 < j cos�j < 1:05 [Fig. 2(a)] is
signal enriched due to the D�� polarization; the second
region j cos�j < 0:50 [Fig. 2(b)] is dominated by back-
ground. In a simultaneous fit to the two cos� distributions
the signal shapes are fixed from the MC. The combinato-
rial background is parametrized by a second order poly-
nomial function. The contributions from �B0 ! D��D����

s

and B0 ! D��D�� are fixed from the MC simulation. The
fit yields 137� 39 signal events, in good agreement with
the yield expected from the full reconstruction analysis.

In the full reconstruction method, charged tracks that
are not associated with the reconstructed B0 ! D��D�

are used to identify the flavor of the signal B0 [10]. Events
are divided into six subsamples of the parameter r, which
is an event-by-event, MC-determined flavor-tagging
quality factor that ranges from r 	 0 for no flavor dis-
crimination to r 	 1 for unambiguous flavor assignment.
The wrong-tag fraction and difference between B0 and �B0

decays in each interval (wi and �wi, i 	 1; 6) are fixed
using a data sample of self-tagged B0 decay modes. In the
partial reconstruction case, flavor tagging is provided by
the high momentum lepton required in the event; the
wrong-tag fraction is determined from data as discussed
below.

The proper-time difference between the reconstructed
and tagged B decay is calculated as �t 	 �zD�D � ztag�=
%&c, where zD�D and ztag are the z coordinates of the two
B decay vertices and %& 	 0:425 is the Lorentz boost
factor at KEKB. In the full reconstruction method we
determine the B0 signal vertex by fitting the momentum
vectors of D� and/or D0 candidates with well-
reconstructed vertices with the constraint of the interac-
tion region profile. The tagging B vertex is found using
well-reconstructed charged tracks not assigned to the
0
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FIG. 2. Distributions of cos� for (a) 0:50 < j cos�j < 1:05
and (b) j cos�j < 0:50. The fit functions are shown with solid
lines; the combinatorial backgrounds are presented by dashed
lines.
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signal B0 and excluding tracks that form a KS candidate.
The signal resolution function parameters are obtained
from the �t fit to the B0 lifetime for the events from the
signal region. The tagging B0 vertex resolution function
is fixed from [10]. In the partial reconstruction method,
the signal and tagging B0 vertices are reconstructed using
the D� candidate and ‘tag, respectively. In this case, both
the resolution function parameters and the wrong-tag
fraction are extracted from the data using a sample of
B0 ! D�‘�'X decays tagged with a high momentum
lepton. The D�‘� combinations are required to originate
from the same B decay based on the recoil mass against
the D�‘� system and its c.m. momentum. The selected
D�‘� combinations are almost pure B0 ! D�‘�' signal
events with a small admixture of B0 ! D���D��0�‘�';
the latter process is also considered as signal. A small
contribution from combinatorial background under the
D� peak is estimated using D� mass sidebands. The
D�, ‘�, and ‘tag vertices (zD� , z‘� , and z‘tag) are recon-
structed using identical procedures to those used in the
partial reconstruction method. The resolution function is
extracted from an unbinned maximum likelihood fit to
the �t‘ � �zD� � z‘�=%&c distribution. The wrong-tag
fraction is found from a fit to �ttag � �zD� � ztag�=%&c
to be w 	 �6:1� 0:9�%. As a cross-check, the B0 lifetime
and mixing parameter �md are also measured from the
fit to the �ttag distribution to be 1:48� 0:04 ps and
0:52� 0:02 ps�1, respectively, consistent with [11].

In the full reconstruction method, the signal region is
defined as j�Ej < 50 MeV and Mbc > 5:27 GeV=c2 and
contains 360 events with 46% signal purity. In the partial
reconstruction method, the signal region is chosen as
jMK����� � MD�j < 15 MeV=c2, cos� < �0:9, and
j cos�j < 1:05. The total number of selected events is
2174 with 6% signal purity.

We determine the CP violation parameters from an
unbinned maximum likelihood fit to the �t distribution.
The signal probability density function is given by Eq. (1)
with effects due to mistagging taken into account. The
resolution function RD�D is formed by convolving four
components: the detector resolutions for zD�D and ztag, the
shift in the ztag vertex position due to secondary tracks
originating from charmed particle decays, and the smear-
ing due to the kinematic approximation used to convert
�z to �t [10]. For each event we define the following
likelihood value:

Pi 	
Z �

fD�D

fD�D � fbg
PD�D��t0�RD�D��ti ��t0�

�
fbg

fD�D � fbg
P bg��t0�Rbg��ti ��t0�

�
d�t0; (4)

where signal (fD�D) and background (fbg) fractions are
calculated as functions of the following variables: �E
and Mbc (full reconstruction); MD� and cos� (partial
201802-4



TABLE I. Fit results.

Full rec. Partial rec. Combined

A �0:03� 0:09 �0:16� 0:18 �0:07� 0:08
S� �1:17� 0:48 �0:65� 0:79 �0:96� 0:43
C� �0:33� 0:29 �0:11� 0:45 �0:23� 0:25
S� �0:25� 0:52 �0:92� 0:58 �0:55� 0:39
C� �0:34� 0:27 �0:39� 0:38 �0:37� 0:22
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FIG. 3 (color online). Background subtracted �t distributions
in the (a) full and (b) partial reconstruction methods. The
curves show the result of the fits.
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reconstruction); cos� (both cases). The signal distribu-
tions of the variables used for fD�D parametrization are
determined from the MC simulation. The background
parameters are obtained from the data.

In the full reconstruction, the background �t shape is
fixed using the large Mbc-�E region excluding the signal
region. For the partial reconstruction the background
contains a combinatorial component, for which the shape
is obtained from D� mass sidebands (30 MeV=c2 <
jMK����� � MD�j < 60 MeV=c2), and a component con-
taining a real D�, which may come from B decay. The
shape of the latter includes a mixing term and is obtained
from a sideband (�0:8 < cos� < 0:0).

Finally, the results for the CP violation parameters A,
S�, and C� obtained from the individual fits to the
statistically independent full reconstruction and partial
reconstruction samples, as well as the result of the com-
bined fit, are summarized in Table I. We calculate the
combined statistical significance of CP violation to be
2:7�. The significance is defined as

���������������������������������
�2 ln�L0=Lmax�

p
,

where Lmax is the likelihood returned by the combined
fit and L0 is determined from a fit with the parameters A,
S�, and C� constrained to the values corresponding to no
CP violation: A 	 0, S� 	 �S�, and C� 	 �C�.

The �t distributions for the subsamples having the best
signal and tagging quality (fD�D > 0:1 and r > 0:5) after
background subtraction are shown in Figs. 3(a) and 3(b)
for the full and partial reconstruction methods,
respectively.

The systematic error is dominated by the uncertainties
in the signal fraction (�0:07 for S� and �0:03 for C�),
wrong-tag fraction (�0:05 for S� and �0:03 for C�),
resolution function parametrization (�0:05 for S� and
�0:02 for C�), and vertexing (�0:05 for S� and �0:01
for C�). Other contributions come from the correlated
backgrounds and signal box definition. The result is con-
sistent with [4]. We perform a number of cross-checks for
our measurement. Using an ensemble of MC pseudoex-
periments, we check both the linearity of the fitting
procedure and the reliability of the statistical errors re-
turned by the CP fit. A similar CP violation study is
performed with self-tagged �B0 ! D��D�

s decay using
both full and partial reconstruction techniques. The com-
bined fit yields A 	 0:00� 0:03, S� 	 �0:08� 0:12,
C� 	 �1:11� 0:07, S� 	 �0:00� 0:12, and C� 	
201802-5
�1:12� 0:07, consistent with the expected values A 	
0, S� 	 0, and C� 	 �C� 	 1.

In summary, we have performed a search for the
CP-violating asymmetry in the decay B0 ! D��D� us-
ing two methods of B0 reconstruction. From the com-
bined fit to the data we have measured A	�0:07�
0:08�0:04, S� 	 �0:96� 0:43� 0:12, C� 	 �0:23�
0:25� 0:06, S� 	 �0:55� 0:39� 0:12, and C� 	
�0:37� 0:22� 0:06. These are the most precise mea-
surements of these parameters to date. The significance of
nonzero CP violation in B0 ! D��D� is 2:7�.
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