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Search for the Lepton-Flavor-Violating Decay �� ! ��� at Belle
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We have searched for the lepton flavor violating decay �� ! ��� using a data sample of 84:3 fb�1

accumulated with the Belle detector at KEK. The � meson was detected through the decay modes:
�! �� and �����0. No signal candidates are found, and we obtain an upper limit for the branching
fraction B��� ! ����< 3:4 � 10�7 at the 90% confidence level.

DOI: 10.1103/PhysRevLett.93.081803 PACS numbers: 13.35.Dx, 11.30.Hv, 12.60.–i, 14.60.Fg
Among the possible lepton flavor violating (LFV) de-
cays of the � lepton, �� ! ��� is the process that
provides the most stringent bound on Higgs-mediated
LFV. Sher [1] has pointed out that a flavor nondiagonal
lepton-lepton-Higgs Yukawa coupling could be induced if
slepton mixing is large. The �-�-Higgs vertex is particu-
larly promising since mixing between left-handed
smuons and staus is large in many supersymmetric mod-
els [2]. This mechanism initially led various authors [3] to
study the enhancement of the LFV decay �! 3� in the
minimal supersymmetric standard model (MSSM).
However, Sher’s results indicate that �� ! ��� is en-
hanced by a factor of 8.4 compared to �! 3�, due
mainly to a color factor and the mass-squared dependent
Higgs coupling at the Higgs-s- 	s vertex. In some models
with reasonable assumptions about MSSM parameters
[1,3] the �� ! ��� branching fraction is given by

B ��� ! ���� � 0:84 � 10�6 �

�
tan�
60

�
6
�
100 GeV

mA

�
4
;

(1)

where mA is the pseudoscalar Higgs mass and tan� is the
ratio of the vacuum expectation values �hHui=hHdi�. In
such models, �� ! ��� and �! 3� are particularly
sensitive to LFV at large tan�.

Previous experimental studies of �� ! ��� by
ARGUS [4] and CLEO [5] set 90% confidence level upper
limits on the branching fraction of 7:3 � 10�5 from
0:387 fb�1 of data, and 9:6 � 10�6 from 4:68 fb�1 of
data, respectively. We present here a new search based
on a data sample of 84:3 fb�1, equivalent to 76.9M ����

pairs, collected at the ��4S� resonance with the Belle
detector at the KEKB asymmetric e�e� collider [6]. A
description of the detector can be found in Ref. [7].

For Monte Carlo (MC) studies, the following programs
have been used to generate background (BG) events:
KORALB/TAUOLA [8] for ���� processes, QQ [9] for B 	B
and continuum, BHLUMI [10] for Bhabha, KKMC [11] for
����, and AAFH [12] for two-photon processes. The
�� ! ��� decay is initially assumed to have a uniform
angular distribution in the �’s rest frame. The Belle
detector response is simulated by a GEANT3 [13] based
program. Kinematical variables are evaluated in the labo-
ratory frame, unless denoted by the superscript ‘‘cm’’ in
which case they are evaluated in the center-of-mass
frame. Two � decay modes are considered in this analy-
sis: �! �� (B � 39:43 
 0:26%) and �! �����0

(B � 22:6 
 0:4%) [14].
For �! ��, we search for events containing exactly

two oppositely charged tracks and two or more photons,
two of which form an �. The events should be consistent
with a ���� event, in which one � decays to �� and the
other � decays to a charged particle other than a muon
with any number of �’s and neutrinos.

To select candidate events we require the momentum of
each track, p, and the energy of each photon, E�, to satisfy
p > 0:1 GeV=c and E� > 0:1 GeV. The tracks and pho-
tons are required to be detected in the barrel or end cap of
Belle: �0:866< cos� < 0:956. To exclude Bhabha,
����, and two-photon events, we require the total en-
ergy to be between 5 and 10 GeV in the cm frame, as
shown in Fig. 1(a).

In the cm frame the events are subdivided into two
hemispheres by a plane perpendicular to the thrust axis.
The signal side should contain a muon and two photons.
Muons are identified using a likelihood ratio P� �

L�=�L� �LK �L��, where the L are likelihoods for
the various track identification hypotheses [15]; we re-
quire P� > 0:9, accepting 87:5 
 0:3% of muons but only
1:4 
 0:1% of pions in the sample under study. (A similar
ratio P e [16] is used to identify electrons.) An � meson
produced in a two-body � decay has on average a higher
momentum than � mesons from other sources. Therefore,
the photons used in � candidates are required to have a
rather high energy E� > 0:22 GeV. To reduce back-
ground, events are rejected when two �’s, one from the
081803-2
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signal side and the other from the tagging side ��0�, have a
resolution-normalized �0 mass in the range �5< S�

0

��0 <

5, where S�
0

��0 � �m��0 � 0:135 GeV=c2�=��
0

��0 and ��
0

��0 is
in the range 5–8 MeV=c2. This �0 veto rejects 86% of BG
events while retaining 75% of the signal. To further
reduce BG, the cosine of the opening angle between the
� and �� on the signal side is required to satisfy 0:5<
cos����� < 0:95, as shown in Fig. 1(b).

In the tagging side hemisphere, the charged track
should not be a muon (P� < 0:6 is imposed), but may
be either an electron, i.e., have an electron likelihood
ratio P e > 0:9 [16] or a hadron (P� < 0:6 and P e <
0:9). If an electron is found, the number of photons and
the electron momentum are constrained by n� � 2 and
pe > 0:7 GeV=c. If a hadron is found, the constraints are
n�  0 and phad > 0:1 GeV=c.

The following two criteria are imposed on the missing
momentum and energy in the event. To ensure that the
missing particles are neutrinos rather than �’s or charged
particles that are outside of the detector acceptance, we
require that the direction of the missing momentum
should satisfy �0:866< cos�miss < 0:956. Since neutri-
FIG. 1 (color online). Some kinematical distributions from
MC and data: (a) total energy, Ecm

total, (b) cosine of the opening
angle between the � and �� on the signal side, (c) m2

miss vs
pmiss for signal MC events, (d) m2

miss vs pmiss for generic decays
of ���� MC. The shaded histograms represent the signal ����

MC, the hatched histograms represent the combined ����

and Bhabha MC, the open histograms represent the combined
B 	B, continuum, and two-photon MC, and the triangles repre-
sent the data. The selected regions in (a) and (b) are indicated
by the arrows. The selected regions in (c) and (d) are the areas
between the two lines: pmiss >�2:615 �m2

miss � 0:191 and
pmiss > 1:238 �m2

miss � 0:869.

081803-3
nos are emitted only on the tagging side, the direction of
the missing momentum should be contained on the tag-
ging side: cos�thrust-miss <�0:55. The correlation be-
tween the missing momentum, pmiss, and the missing
mass squared, m2

miss, shown in Figs. 1(c) and 1(d) for
signal and generic ���� MC, is utilized for additional
BG rejection.

The � candidate is selected based on the signal side ��
invariant mass in terms of the resolution-normalized �
mass, �5< S��� < 3, where S��� � �m�� �
0:547 GeV=c2�=���� and���� is 12 MeV=c2. The resulting
S��� distributions for signal and generic ���� MC and
data are shown in Fig. 2(a).

The application of these selection criteria to the data
set results in a sample of 18 events. The detection effi-
ciency is determined from MC studies to be ��2�� �
9:3%. In MC, small backgrounds from the three following
processes survive: 8:6 
 2:2 events from generic ����,
2:5 
 1:8 events from ����, and 5:8 
 2:2 events from
the continuum.

For the �! �����0 mode, we search for events
containing four charged tracks (net charge � 0) and
two or more photons. Because of the higher multiplicity
compared to the�! ��mode, the detection efficiency is
smaller; however, the extra reconstruction constraint in
the � decay chain improves the background rejection
power. The selection criteria are similar to those in the
�! �� case with the differences listed below.

The minimum photon energy requirement is reduced
from 0.1 to 0.05 GeV, since the photons from this decay
mode have a softer energy distribution compared to those
in �! ��. The signal side hemisphere should have three
tracks and two or more photons. One track must be a
muon (P� > 0:9), but particle identification is not per-
formed on the other two tracks—they are treated as
pions. We also require that one �0 be reconstructed
from the photons in the signal hemisphere, such that
�5< S�

0

�� < 5. Figure 2(b) shows the reconstructed
mass of � candidates.
S
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FIG. 2 (color online). (a) Invariant mass of �� in terms of the
resolution-normalized � mass, S���, in the �! �� case, and
(b) � mass from �! �����0 reconstruction. Signal and
generic ���� MC distributions are indicated by the shaded
and open histograms, and the triangles represent the data. The
selection region is indicated by the arrows.
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FIG. 3. Final event distributions over a 
10� region in the
M��-!E plane for (a) the �! �� and (b) �! �����0

modes. The ellipses are the signal regions with an acceptance
of 90%. The data are indicated by the open circles, and the
signal MC events are plotted as dots.
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After the application of these requirements, 67 events
remain in the data, while the generic ���� MC predicts a
contribution of 38:0 
 4:6 events, and the continuum MC
predicts 15:6 
 3:5 events. The detection efficiency is
��3�� � 5:6%.

The final evaluation of the number of signal candidates
is performed by defining a signal region in the M��-!E
plane, where the candidate �� system should have an
invariant mass (M��) close to the �-lepton mass and an
energy close to the beam energy in the cm frame, i.e.,
!E � Ecm

�� � E
cm
beam ’ 0. Figures 3(a) and 3(b) show scat-

terplots of the signal MC in the M��-!E plane for the
�! �� and �! �����0 modes, respectively. The
signal exhibits a long low-energy tail due to initial-state
radiation and calorimeter energy leakage for photons.
Parametrizing the M�� and !E signal distributions
with asymmetric Gaussian functions, the M�� and !E

resolutions are found to be �low=high
M��

� 25:8 
 0:7=15:3 


0:4 MeV=c2 and �low=high
!E � 69:7 
 3:0=34:7 
 1:2 MeV

for the �! �� mode, and �low=high
M��

� 13:8 
 0:4=9:0 


0:4 MeV=c2 and �low=high
!E � 44:4 
 2:3=22:6 
 1:3 MeV

for the�! �����0 mode, where the ‘‘low/high’’ super-
script indicates the lower/higher energy side of the peak.
To optimize the sensitivity, we take an elliptically shaped
signal region in the M��-!E plane with a signal accep-
tance, $, of 90% as shown in Fig. 3.

Figure 3 shows the final data distributions for a

10�M��=!E region in the M��-!E plane. In the signal
region, there are no events in either the data or back-
ground MC. Outside the signal region, seven events for
the �! �� mode and two events for the �! �����0

mode are observed in data, while background MC pre-
dicts 3:7 
 2:4 and 0:0�4:0

�0:0 events, respectively. The ob-
served data yields are consistent with MC. The BG yield
in the signal region, estimated from the sidebands, is
found to be 0:5 
 0:2 for �! �� and 0:0�4:0

�0:0 events for
�! �����0.

As no events are observed, an upper limit on the
branching fraction, at 90% C.L., is given by

B ��� ! ����<
2:3

2��$ �B�� � N����
; (2)

where B� is the branching fraction of � decay to either
�� or�����0. The calculated upper limits, at 90% C.L.,
are thus found to be 4:6 � 10�7 for the �! �� mode,
and 13:1 � 10�7 for the �! �����0 mode. Combining
the two decay modes, we obtain �$ �B� � 4:4% and
B��� ! ����< 3:4 � 10�7 at 90% C.L.

The systematic uncertainties on the detection sensitiv-
ity, 2��$ �B�� � N���� , arise from the track recon-
struction efficiency of the tag and the muon (2.0% for
both �! �� and �! �����0 modes), � reconstruc-
tion efficiency (2.0% and 4.2%, the latter value includes
081803-4
the uncertainties in the tracking efficiency for charged
pions and the�0 reconstruction efficiency),�0 veto (5.5%
and none), muon identification efficiency (4.0% and
4.0%), trigger efficiency (1.4% and 1.4%), beam back-
ground (2.3% and 2.1%), luminosity (1.4% and 1.4%), B�

(0.7% and 1.8%), and MC statistics (1.3% and 2.1%).
Adding all of these components in quadrature, the total
uncertainty is evaluated to be 8.1% for �! �� and 7.3%
for �! �����0. For the combination of the two decay
modes the systematic uncertainty is 
7:9%.

This systematic uncertainty is included in the upper
limit following Ref. [17], where the detection sensitivity,
2��$ �B��N��, is modeled by a Gaussian distribution
having a width given by the systematic error quoted
above. There is no appreciable effect on the branching
fraction, B.

The angular distribution of the �� ! ��� decay has a
strong dependence on the LFV interaction structure [18],
081803-4



0

20

40

60

80

100

100 150 200 250

mA  (GeV/c2)

ta
nβ this experiment

90 % C.L.

95 % C.L.

CDF excluded

LEP excluded

FIG. 4 (color online). Experimentally excluded mA � tan�
parameter space. The result of this experiment using [1] is
indicated by the shaded region together with the regions
excluded by LEP [19] and the Tevatron [14,20].
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and spin correlations between the �’s at the signal and
tagged sides must be considered. To evaluate the maxi-
mum possible variation, V � A and V � A interactions
are assumed; no statistically significant difference in the
M��-!E distribution or in the efficiency is found com-
pared to the case of the uniform distribution.

As a result, we obtain an upper limit on the branching
fraction for the LFV �� ! ��� decay of

B ��� ! ����< 3:4 � 10�7; (3)

at 90% C.L. This result improves the previous upper limit,
B��� ! ����< 9:6 � 10�6 [5], by a factor of 30.

Using Eq. (1), which was derived in a seesaw MSSM
with a specific neutrino mass texture, our upper limit
restricts the allowed parameter space for mA and tan�,
as indicated in Fig. 4, where our boundary is indicated in
the cases of 90% and 95% C.L. Figure 4 also shows the
95% C.L. constraints from high energy collider experi-
ments at LEP [19] and CDF [20]. Our result has a sensi-
tivity close to that of the CDF experiment, achieved by
searching for pp! A= bb! bbbb, where  is a
CP-even neutral Higgs state and A is a CP-odd state in
the MSSM.
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