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ABSTRACT 

 The contemporary hygiene hypothesis suggests that certain microorganisms that 

were present throughout human evolution modulate the host immune system to reduce 

allergy associated T helper 2 (Th2) responses and inflammatory diseases by augmenting 

regulatory T cells. The prototypic environmental mycobacterium, M. vaccae has been 

used in mouse models of asthma to support this hypothesis, but data from human 

models and possible mechanisms are very limited. In view of the role of dendritic cells 

(DCs) in shaping adaptive T cell responses, the effect of innate immune interactions 

between human DCs and M. vaccae on allogeneic and antigen specific DC-dependent 

polarisation of T cells was tested. M. vaccae can stimulate cellular activation via 

Toll-like receptor 2 (TLR2) and therefore was compared to a specific TLR2 ligand 

(Pam3CSK4) and alternative stimulation with a TLR4 ligand (LPS). M. vaccae alone 

induced DC-dependent inhibition of Th2 responses, in contrast to Pam3CSK4, which 

had the opposite effect and LPS, which had no polarising effect. Comparison of DC 

maturation, genome-wide transcriptional response, and cytokine production in response 

to each stimulus did not correlate with the specific functional effects. In particular, 

directly comparable DC transcriptional responses to M. vaccae and Pam3CSK4 

suggested that TLR2-mediated transcriptional regulation was not sufficient for 

inhibition of Th2 responses. Exclusive transcriptional responses to M. vaccae 

implicated a role for CREB1-dependent gene expression and analysis of signalling 

events confirmed selective early activation of the CREB pathway by M. vaccae. 

Collectively, this work has established that M. vaccae interaction with DCs does inhibit 

human Th2 responses and that further study of the CREB pathway in this model may 

provide novel insight into the molecular mechanisms of DC-dependent T cell 

polarisation. The final chapter of results presents development and validation of a novel 

approach for using short interspersed elements (SINEs) as a tool for normalisation of 

RT-qPCR data. 
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7-AAD 7-Amino-Actinomycin D 
ACTB Beta-actin  
ADA Adenosine deaminase 
AF Alexa-Flour 
AGPAT 1-acylglycerol-3-phosphate O-acyltransferase 
AMP/cAMP Adenosine 5'-monophosphate/ cyclic AMP 
AP-1 Activator protein 1  
APC Allophycocyanin 
APOBEC Apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like 
Ara-LAM Arabinofuranosyl-terminated lipoarabinomannan 
AREG Amphiregulin  
ARID3A AT rich interactive domain 3A (BRIGHT-like)  
ASC Apoptosis-associated speck-like protein containing a CARD  
ATF Activating transcription factor 
ATP1A1 ATPase, Na+/K+ transporting, alpha 1 polypeptide  
ATP5B ATP synthase subunit  
AXUD1 Cysteine-serine-rich nuclear protein 1 
B2M Beta-2 microglobulin  
BAL Bronchoalveolar lavage  
BBS Borate-buffered saline 
BCG Bacille Calmette-Guérin  
BCL2L14 B-cell CLL/lymphoma 2-like 14 (apoptosis facilitator) 
BHLHE40 Basic helix-loop-helix family, member e40  
BSA Bovine serum albumin  
BTG1 B-cell translocation gene 1, anti-proliferative  
BZRAP1 Benzodiazapine receptor (peripheral) associated protein 1  
C18orf1 chromosome 18 open reading frame 1  
C9orf3 chromosome 9 open reading frame 3 (aminopeptidase O) 
CACNA1E Calcium channel, voltage-dependent, R type, alpha 1E subunit  
CaMK Ca2+/calmodulin-dependent protein kinase 
CANX Calnexin 
CARD Caspase-recruitment domain 
CBP CREB binding protein  
CCL Chemokine (C-C motif) ligand 
CCR CC-chemokine receptor 
CD163 Hemoglobin scavenger receptor 
cDC Conventional DC 
CDKN1A Cyclin-dependent kinase inhibitor 1A (p21, Cip1)  
CDP Common DC precursor 
CFB Complement factor B  
CFU Colony forming units  
ChIP Chromatin immunoprecipitation  
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CLDN1 Claudin 1  
CLEC10A C-type lectin domain family 10, member A  
CLR C-type lectin receptor 
CNS Central nervous system  
COX-2 Cyclooxygenase-2 
CpG Cytosine guanine dinucleotide 
cpm Counts per minute 
CREB1 cAMP responsive element binding protein 1 
CREM cAMP responsive element modulator  
CRTC CREB-regulated transcription coactivator  
CSF Colony stimulating factor 
CT Threshold cycle  
CTLA-4 Cytotoxic T lymphocyte-associated antigen-4 
CV Coefficient of variation 
CX3CR1 CX3C chemokine receptor-1 
CXCL Chemokine (C-X-C motif) ligand 
CYC1 Cytochrome c-1  
CYP51A1 Cytochrome P450, family 51, subfamily A, polypeptide 1  
CYTIP Cytohesin 1 interacting protein 
DAMP Danger associated molecular pattern 
DAPI 4,6-diamidino-2-phenylindole  
DC Dendritic cell 
DC-SIGN DC-specific intercellular adhesion molecule 3-grabbing nonintegrin 
DDX58 DEAD (Asp-Glu-Ala-Asp) box polypeptide 58 
DMEM Dulbecco’s modified eagle’s medium 
DMSO Dimethylsulfoxide 
DNA/cDNA Deoxyribonucleic acid/complementary DNA 
DNAJA4 DNAJ (Hsp40) homolog, subfamily A, member 4  
DUSP Dual specificity phosphatase 
EAE Experimental autoimmune encephalomyelitis  
EAR Expressed ALU repeat  
EBI3 Epstein-Barr virus induced 3  
EDTA Ethylenediaminetetraacetic acid 
EFNA1 Ephrin-A1  
EGR3 Early growth response 3  
EHD1 EH-domain containing 1  
EIF4A2 Eukaryotic translation initiation factor 4A2  
ELF5 E74-like factor 5 (ets domain transcription factor)  
ELISA Enzyme linked immunoadsorbant assay  
ELK1 Member of ETS oncogene family  
ELK4 ETS-domain protein (Serum response factor accessory protein 1)  
EREG Epiregulin  
ERK1/2 Extracellular signal-regulated kinases 1 and 2  
ERRFI1 ERBB (epidermal growth factor) receptor feedback inhibitor 1  
FACS Fluorescence activated cell sorting 
FBS Foetal bovine serum  
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FCER1A Fc fragment of IgE, high affinity I, receptor for; alpha polypeptide 
FITC Fluoresceine isothiocyanate 
FLT1 Vascular endothelial growth factor receptor 1 
FOS FBJ murine osteosarcoma viral oncogene homolog (c-FOS, part of 

transcription factor complex AP-1) 
FOSB FBJ murine osteosarcoma viral oncogene homolog B 
FOSL2 FOS-like antigen 2 
FOXD1 Forkhead box D1 
FoxP3 Forkhead box P3  
GADD45B Growth arrest and DNA-damage-inducible, beta  
GAPDH Glyceraldehyde-3-phosphate dehydrogenase  
GBP4 Guanylate binding protein 4  
G-CSF Granulocyte colony stimulating factor  
GEM Guanosine-5'-triphosphate binding protein overexpressed in skeletal 

muscle  
GM-CSF Granulocyte macrophage colony-stimulating factor 
GO Gene ontology  
GPR G protein-coupled receptor 
GRASP General receptor for phosphoinositides 1-associated scaffold protein  
GSK3 Glycogen synthase kinase 3 
H89 N-[2-(p-bromocinnamylamino)ethyl]-5-isoquinoline sulfonamide  
Hand-Tcfe2a Heterodimer: heart and neural crest derivatives expressed / transcription 

factor 3 (E2A immunoglobulin enhancer binding factors E12/E47) 
HAV Hepatitis A virus  
HBEGF Heparin-binding epidermal growth factor-like growth factor  
HBSS Hank’s buffered salt solution  
HEK Human embryonic kidney 
HIV Human immunodeficiency virus  
HKLM Heat-killed Listeria monocytogenes 
HLA Human leukocyte antigen 
HLF Hepatic leukemia factor (bZIP transcription factor) 
HMGB1 High mobility group box 1 protein  
HO-1 Hemoxygenase-1  
HRP Horseradish peroxidise 
HSP Heat-shock protein 
ICAM-1 Inter-cellular adhesion molecule-1  
IDO Idoleamine 2,3-dioxygenase  
IER2 Immediate early response 2  
IFI IFN alpha-inducible protein 
IFI44L IFI 44-like 
IFIT IFI with tetratricopeptide repeats 
IFITM1 IFI transmembrane protein 1 (9-27)  
IFN Interferon 
Ig Immunoglobulin 
IKK IκB kinase  
IL Interleukin 
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INHBA Inhibin, beta A  
iNOS Inducible nitric oxide synthase  
IP10 IFN inducible protein 10 (CXCL10) 
IQCG IQ motif containing G  
IQR Interquartile range  
IRF IFN regulatory factor 
IRX3 Iroquois homeobox 3  
ISG20 IFN stimulated exonuclease gene 20kDa  
ITIM Immunoreceptor tyrosine-based inhibitor motif 
iTreg Inducible Treg  
IκB Inhibitory NF-κB  
JAK Janus kinase  
JNK c-Jun N-terminal kinase 
LAD1 Ladinin 1 
LAG-3 Lymphocyte activation gene-3  
LB Lysogeny broth  
LC Langerhans cell 
LPS Lipopolysaccharide 
LRRC25 Leucine rich repeat containing 25  
LTA Lipoteichoic acid  
M value Average expression stability value 
Man-LAM Mannose-capped lipoarabinomannan 
MAP2K3 Mitogen-activated protein kinase kinase 3  
MAPK Mitogen-activated protein kinase 
MARCO Macrophage receptor with collagenous structure 
MCP Monocyte chemotactic protein 
MDA Melanoma differentiation associated protein 
MDM Monocyte-derived macrophage 
MDP Macrophage/DC precursor 
MEK1 Mitogen-activated protein kinase kinase 1 
MHC Major histocompatibility complex  
MIG Monokine induced by IFN-γ  
MIP Macrophage inflammatory protein  
MKP MAPK phosphatase 
MLB Mannose-binding lectin 
MLN Mesenteric lymph nodes  
MMP Matrix metallopeptidase 
MR Mannose receptor  
MRS Macrophage scavenger receptor  
MS Multiple sclerosis  
MS4A7 Membrane-spanning 4-domains, subfamily A, member 7  
MSK1/2 Mitogen- and stress-activated protein kinases 1 and 2 
MT1M Metallothionein 1M  
MTF1 Metal-regulatory transcription factor 1  
MV M. vaccae  
MV10 10 µg/ml of MV 
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MyD Myeloid differentiation primary response 
NALP NACHT, leucine rich repeat and pyrin domain containing 
NEK6 NIMA (never in mitosis gene a)-related kinase 6  
NEMO NF-κB essential modulator  
NES Nuclear export signal 
NF Normalisation factor  
NFATC1 Nuclear factor of activated T-cells, cytoplasmic, calcineurin-dependent 

1  
NFE2 Nuclear factor (erythroid-derived 2), 45kDa  
NFKB1 NF-κB p105 subunit 
NFKBIZ NF-κB inhibitor, zeta  
NF-κB  Nuclear factor-κB 
NK cell Natural killer cell 
NKT cell Natural killer T cell 
NLR Nod-like receptor 
NLRC4 NLR family, CARD domain containing 4 
NLS Nuclear localisation signal 
NO Nitric oxide  
NOD Nonobese diabetic  
Nod Nucleotide-binding and oligomerization domain, leucine-rich repeat 
NR4A Nuclear receptor subfamily 4, group A 
NTC No template control 
nTreg Natural Treg  
OASL 2'-5'-oligoadenylate synthetase-like  
OD Optical density  
OSM Oncostatin M  
OVA Ovalbumin 
p90RSK p90 ribosomal S6 kinase 
PAMP Pathogen associated molecular pattern 
PBMC Peripheral blood mononuclear cell 
PBS Phosphate-buffered saline  
PC Principal component  
PCA PC analysis 
PCERA-1 Synthetic phosphor-ceramide analogue-1 
PCR/qPCR Polymerase chain reaction/quantitative real time PCR 
pDC Plasmacytoid DC  
PE Phycoerythrine 
PER1 Period homolog 1 (Drosophila)  
PFA Paraformaldhyde 
PGE2 Prostaglandin E2  
pH Potentia Hydgrogenii 
PI Propidium iodide  
PI3K Phosphatidylinositol 3-kinase 
PILAM Phosphatidyl-myo-inositol capped lipoarabinomannan 
PIM Phosphatidylinositol mannoside 
PKA Protein kinase A  
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PKI Protein kinase inhibitor 
PLAT Plasminogen activator, tissue  
PMA Phorbol myristate acetate 
PP Peyer’s patches  
PPBP Pro-platelet basic protein (CXCL7) 
PPD Purified protein derivative  
PRR Pattern recognition receptor 
PS Lyso-phosphatidylserine 
PTX3 Pentraxin 3, long 
ra Receptor antagonist  
REL V-rel reticuloendotheliosis viral oncogene homolog (c-REL) 
RELA V-rel reticuloendotheliosis viral oncogene homolog A (p65) 
RELT RELT tumor necrosis factor receptor  
RGS Regulator of G-protein signaling  
RIG-I Retinoic acid-inducible gene-I 
RIN RNA integrity number  
RLR RIG-I like receptor 
RM Repeated measures  
RNA/mRNA Ribonucleic acid/messenger RNA 
RNASE6 RNase A family, k6  
RPL13A Ribosomal protein L13a  
RPMI Roswell Park Memorial Institute  
RPS4Y Ribosomal protein S4, Y-linked 
RSAD2 Radical S-adenosyl methionine domain containing 2 
RSV Respiratory syncytial virus 
RT Reverse transcription 
RV Human rhinovirus  
RXRA-VDR Heterodimer: retinoid X receptor, alpha /vitamin D (1,25- 

dihydroxyvitamin D3) receptor 
s.c. Subcutaneous 
S100A8 S100 calcium binding protein A8  
SCHIP1 Schwannomin interacting protein 1  
SD Standard deviation  
SDC4 Syndecan 4  
SDHA Succinate dehydrogenase complex, subunit A  
SDS Sodiumdodecylsulphate 
SDS-PAGE SDS-polyacrylamide-gel electrophoresis  
SEA Soluble egg antigen 
SERINC5 Serine incorporator 5 
SERPINB2 Serpin peptidase inhibitor, clade B (ovalbumin), member 2  
SGK1 Serum/glucocorticoid regulated kinase 1  
SINE Short interspersed repetitive element 
siRNA Small interfering RNA  
SPIB Spi-B transcription factor (Spi-1/PU.1 related)  
SPP1 Secreted phosphoprotein 1  
SQSTM1 Sequestosome 1 
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STAT Signal transducer and activator of transcription 
SYNPO2 Synaptopodin 2  
TAE Tris-acetate-EDTA 
TANK TRAF family member-associated NF-κB activator 
TB Tuberculosis 
TBK1 TANK-binding kinase 1  
TBS Tris-buffered saline  
TCR T cell receptor 
TES Toxocara canis excretory-secretory  
TFBS Transcription factor binding site  
TGF Transforming growth factor 
Th cell T helper cell 
TIGIT T cell immunoreceptor with Ig and ITIM domains 
TIM-1 T cell Ig and mucin-1  
Tip-DC TNF-α and iNOS-producing DC 
TIR Toll/IL-1 receptor  
TLR Toll-like receptor 
TM7SF4 Transmembrane 7 superfamily member 4 
TMB Tetramethylbenzidine 
TMEM88 Transmembrane protein 88  
TNF Tumor necrosis factor  
TNFAIP3 TNF alpha-induced protein 3  
TNFR1 TNF-alpha receptor 1  
TORC2 Transducer of regulated CREB activity  
TP53 Tumor protein p53  
Tr1 cell T regulatory 1 cell 
TRADD TNFR1-associated death domain  
TRAF1 TNF receptor-associated factor 1  
TRAM TRIF-related adaptor molecule 
Treg cell Regulatory T cells 
TRIF TIR-domain-containing adapter-inducing interferon-beta 
TT Tetanus toxoid  
UBC Ubiquitin C 
UBD Ubiquitin D  
UV Ultraviolet 
v/v Volume to volume ratio (%) 
v/w Volume to weight ratio (%) 
VEGFA Vascular endothelial growth factor A  
VMO1 Vitelline membrane outer layer 1 homolog (chicken)  
X-gal 5-bromo-4-chloro-3-indolyl-ß-D-galactoside  
XIST X (inactive)-specific transcript (non-protein coding)  
XLAAD X-linked autoimmunity allergic dysregulation syndrome  
YWHAZ Phospholipase A2   
ZBTB10 Zinc finger and BTB domain containing 10  
ZC3H12A Zinc finger CCCH-type containing 12A  
ZFAT Zinc finger and AT hook domain containing  



1. INTRODUCTION 

23 

1 INTRODUCTION 

1.1 Origins of the hygiene hypothesis 

 Since the mid 20th century, there has been a dramatic increase in the number of 

people suffering from allergic disorders such as atopic dermatitis (Williams, 1992), hay 

fever (Upton et al., 2000) and asthma (Woolcock and Peat, 1997). Epidemiological 

studies demonstrated that this significant rise of allergic diseases over the last decades is 

especially prevalent in countries with so-called “Westernised” life styles, such as 

Australia, Europe and North America (Redd, 2002; Sears, 1997; Smyth, 2002), with 

substantially lower frequency in developing countries (ISAAC_Steering_Committee, 

1998).  

 It is well established that genetic factors play an important role in the prevalence 

of atopic diseases and many gene loci associated with prevalence or protection of 

developing allergic diseases have been identified (Daniels et al., 1996). Single gene 

mutation may only have mild phenotypes, but major phenotypic effects become evident 

when various genetic hits occur together. The numerous susceptibility genes can 

generally be separated into the following groups: innate immune response, T helper 2 

(Th2) cell differentiation and effector function, genes expressed in epithelial cells and 

smooth muscle (Vercelli, 2008). 

 However, genetic factors alone cannot explain the recent steep increase in atopy 

and asthma. For example, a study in Greenland reported a 90 % increase in the 

prevalence of atopy over 11 years, between 1987 and 1998, amounting to an increase of 

8 % per year (Krause et al., 2002). This must have been caused by environmental 

changes, and indeed, Greenland’s population has undergone a major lifestyle 

transformation within a short period of time. Until recently, a rural society living from 
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traditional hunting and fishing, most people now have modern city lives with 

employment in service, administration and trade (Krause et al., 2002). Epidemiological 

observations in populations that have migrated between countries with different 

prevalence rates of atopy also support of the view that environmental factors must 

contribute significantly to the increase in allergic diseases. For example, the risk of 

developing asthmatic symptoms for people that migrated from low prevalence areas to 

Australia was associated with the length of time since arrival (Gibson et al., 2003). 

Other data suggest a more complex relationship; a recent study in the United States 

showed that the incidence for current asthma was lower in Mexican Americans born in 

Mexico (1.4 %) compared to those born in the United States (7.0 %) (McHugh et al., 

2009), suggesting that environmental factors present early in life may be responsible for 

protection or susceptibility. Studies comparing populations in former East and West 

Germany are also interesting. These populations clearly have a common genetic 

ancestry, having been separated for only 40 years. Yet, adults in West Germany were 

significantly more likely to suffer from bronchial hyperresponsiveness and atopy 

(Nowak et al., 1996). Since reunification an increase of asthma, hay fever and atopic 

eczema has occurred in children from Eastern Germany. In particular, children born 

after 1990 have an increased prevalence of strong allergic sensitisation and atopic 

eczema (Heinrich et al., 2002). 

 These German studies contradict speculation that air pollution in the 

industrialised world is responsible for the increase of atopy and asthma. Between 1990 

and 1991 most industrial plants were closed and gas heating replaced former lignite 

(brown coal) stoves (Ebelt et al., 2001). As a consequence pollution with sulphur 

dioxide and particulate matter decreased (Ebelt et al., 2001). In addition, air quality has 

generally improved during the epidemic of asthma in the developed world, further 

suggesting pollution is not the key determinant for these changes. Nonetheless, 
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pollution is likely to contribute to pathogenesis or symptoms, since visits as short as one 

week to environments with better air quality are advantageous for children suffering 

from asthmatic symptoms (Renzetti et al., 2009). 

 An environmental factor that the epidemiologist Strachan observed was an 

association between large families and a reduced risk of developing hay fever (Strachan, 

1989). The birth order had a strong effect with first born children being more 

susceptible than later born siblings. To explain his findings, Strachan developed the 

“Hygiene Hypothesis”, which gained widespread publicity. He proposed that the 

increased risk of allergic rhinitis in firstborn or only children was due to a lack of 

infections during early childhood, usually transmitted by unhygienic contact with older 

siblings (Strachan, 1989). Later studies confirmed his findings, showing that the 

numbers of siblings as well as the birth order were linked with the prevalence of 

developing asthma and atopy (Ball et al., 2000; Matricardi et al., 1998). Moreover, 

attending day-care for children from small families was also shown to be protective 

against the development of allergies and asthma later in childhood (Ball et al., 2000; 

Kramer et al., 1999), further supporting Strachan’s hypothesis that frequent contact with 

other children and consequent cross-infections during early childhood may have a 

protective effect. 

 Epidemiological studies looking for a direct relationship between childhood 

infections and allergy gave contradictory results (Illi et al., 2001; Matricardi et al., 2000; 

Nja et al., 2003). The observations that older siblings or day-care attendance provided 

protection against allergy, led to the assumption that classical childhood virus infections 

would be important. However, a large study including more than 13,000 children, 

showed that infectious diseases occurring within the first 6 month of age were not 

protective, but that the risk of atopic dermatitis amplified with every infectious disease 

(Benn et al., 2004). Another study came to similar conclusions, showing that infections 
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with measles, mumps, rubella, chickenpox, cytomegalovirus, and herpes simplex virus 

type 1 did not reduce the risk of developing atopic diseases (Matricardi et al., 2000). 

Moreover, infection with respiratory viruses, including respiratory syncytial virus 

(RSV) and human rhinovirus (RV), were even able to initiate or worsen the 

development of childhood asthma (Kotaniemi-Syrjanen et al., 2003; Wenzel et al., 

2002). Protective effects of infections with regards to the development of allergic 

diseases have been found with orofecal and foodborne infections, namely Toxoplasma 

gondii, Helicobacter pylori, Salmonella and hepatitis A virus (HAV) (Linneberg et al., 

2003; Matricardi et al., 2002; Matricardi et al., 2000; Pelosi et al., 2005; Reibman et al., 

2008). 

 Fewer studies focused on the role of bacterial infections during childhood and 

the development of allergies. In a Norwegian population, children with atopic parents 

had a reduced risk of allergic sensitisation when they had a history of otitis media (Nja 

et al., 2003). The relative role of bacteria or viruses was not assessed in these infections 

and the findings were inconsistent with an earlier study with German children (Illi et al., 

2001). A Danish study showed that exposure to two or three intestinal bacterial 

pathogens, namely Clostridium difficile, Campylobacter jejuni, or Yersinia 

enterocolitica, was associated with a higher prevalence of atopy (Linneberg et al., 

2003). Infection with Mycobacterium tuberculosis and vaccination with M. bovis 

Bacille Calmette-Guérin (BCG) received particular attention with respect to the hygiene 

hypothesis. A primary study of Japanese schoolchildren, all vaccinated with BCG, 

found a strong association between positive responders to tuberculin skin tests and 

reduced asthma and allergies (Shirakawa et al., 1997). This was supported by a large 

international study, which found that high tuberculosis notification rates were inversely 

associated with the frequency of asthma (von Mutius et al., 2000). A more recent study 

in South Africa also affirmed these observations, showing that children with a positive 
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tuberculin skin test were less likely to develop atopic rhinitis (Obihara et al., 2005). Not 

all studies support these findings however, and the confounding variables that may have 

affected the outcomes require further consideration (Matricardi and Yazdanbakhsh, 

2003). Also the question of the protective effect of vaccination with BCG, usually 

associated with a scar, remains unanswered, with contradictory results from different 

studies (Aaby et al., 2000; Alm et al., 1997; da Cunha et al., 2004; Gruber et al., 2002; 

Marks et al., 2003; Strannegard et al., 1998; Townley et al., 2004). Where BCG 

vaccination has been associated with a protective effect, it has been in individuals with a 

family history of atopic diseases (da Cunha et al., 2004; Marks et al., 2003). In contrast 

to the human data, BCG is consistently associated with protection in mouse models of 

allergy (Choi et al., 2005; Erb et al., 1998; Herz et al., 1998; Hopfenspirger and 

Agrawal, 2002). 

 The increased prevalence of atopic diseases in Westernised populations was also 

mirrored by increased prevalence of autoimmune or idiopathic inflammatory diseases, 

such as type-1 diabetes (EURODIAB_ACE_Study_Group, 2000; Gale, 2002), multiple 

sclerosis (MS) (Poser et al., 1989; Rosati et al., 1988), and inflammatory bowel disease 

(Barton et al., 1989; Farrokhyar et al., 2001). These were largely ignored in the original 

hygiene hypothesis, although similar evidence existed for the contribution of 

environmental factors as those that were used to support the hygiene hypothesis. This 

included increased risk of type-1 diabetes (Bodansky et al., 1992; Staines et al., 1997) 

and MS (Hammond et al., 2000; Leibowitz et al., 1973) with migration from low to high 

prevalence areas. In addition, as with atopy and allergy, attending day-care centres was 

also associated with reduced risk of type-1 diabetes (McKinney et al., 2000). The 

differences in the immunopathogenesis of atopy and allergy to those of autoimmune or 

inflammatory diseases have become focussed on the role of different T lymphocytes. 
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1.1.1 T cell subsets in immunopathogenesis of inflammatory and allergic disease 

 T cell progenitors develop in the bone marrow and migrate to the thymus where 

they mature. Here the rearrangement of antigen-receptor genes takes place allowing the 

development of T cells with distinct specificity for numerous heterogeneous antigens. 

Cells expressing T cell receptors (TCRs) compatible with self-major histocompatibility 

complex (self-MHC) molecules survive, while those that strongly interact with self-

antigen are removed from the repertoire, ensuring their ability of self tolerance. At an 

early stage of T cell development, the progenitors give rise to two different lines of 

T cells differentiated by TCR heterodimer subtypes. The major lineage express α:β 

TCRs and a minority population express γ:δ TCRs. The γ:δ T cells do not upregulate 

CD4 and CD8 expression, but divide into two subsets. One resides in epithelial tissue 

and displays TCRs of very limited diversity. These cells are thought to play a role in 

wound healing (Jameson et al., 2002; Sharp et al., 2005) and their natural targets are 

poorly defined self-antigens expressed during times of tissue injury (Havran et al., 

1991). The second subset of γ:δ T cells show more diverse TCR specificity and 

circulate. Although their role is not fully understood, it has been shown that they do not 

require antigen-processing and presentation to recognise their target antigens (Schild et 

al., 1994; Sciammas et al., 1994; Weintraub et al., 1994), which do not have to be 

proteins and can be of host and foreign origin (Constant et al., 1994; Schoel et al., 1994; 

Tanaka et al., 1995; Tanaka et al., 1994). 

 The major α:β T cell linage gives rise to two functionally distinctive T cell 

subsets, CD4 and CD8 T cells, and also to Natural killer T (NKT) cells that are derived 

from CD4+/CD8+ double-positive cells with TCRs of very limited diversity, which 

recognise CD1d molecules instead of MHC molecules (Bendelac et al., 2007; Godfrey 

et al., 2010). 
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 Mature CD4+ and CD8+ T cells that leave the thymus and circulate between the 

blood stream and peripheral lymphoid organs are called naive T cells as long as they 

have not encountered their specific antigen. In contrast to immunoglobulin expressed by 

B cells, the TCR does not bind to antigens directly, but recognises pathogen-derived 

peptide fragments bound to MHC molecules on antigen-presenting cells and their 

circulation allows them to make contact with numerous antigen-presenting cells 

throughout the body. The TCR functions as antigen recognition molecule but to 

establish an efficient connection the molecules CD8 and CD4 are also required to bind 

to MHC class I or MHC class II molecules respectively. Fully activated naive T cells 

undergo clonal expansion, thus proliferate and give rise to many T cells with identical 

antigen specificity that can act to clear infections. During this phase the T cells 

differentiate into effector T cells, and while CD8+ T cells become cytotoxic, the fate of 

CD4+ T cells is more flexible. CD4+ T cells can differentiate into a number of different 

effector T cells with a variety of functions. Some of these usually short-lived CD4+ and 

CD8+ effector T cells differentiate further into long-lived T cells, so-called memory 

T cells, carrying the specific TCR and providing an enhanced response if they encounter 

the same antigen again, and so offering long-term protection (Harrington et al., 2008). 

Memory T cells can respond to re-infection more efficiently, since they occur in larger 

numbers than naive T cells recognising the same antigen, and because their activation 

arises more rapidly (Berard and Tough, 2002; Swain et al., 2006). When CD8+ T cells 

recognise peptides presented by MHC class I molecules, typically viral antigens, they 

will kill any cell that they specifically recognise. The main role of effector CD4+ T cells 

however is to help or to activate other cells of the immune system, and they are 

therefore referred to as T helper (Th) cells. Th cells have a central role in the regulation 

of adaptive immunity, as they augment activation of B cells and consequent 

immunoglobulin production, and can also augment antigen-specific CD8+ T cell 
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effector mechanisms or non-antigen-specific effector mechanisms in mononuclear 

phagocytic cells. Functionally heterogeneous populations of CD4+ T cells have been 

established that can be distinguished by the cytokines which they produce (Figure 1-1). 

These subsets were originally described in mice but data are also accumulating to 

support their existence in man.  

 

Figure 1-1: Differentiation of CD4+ T cell subtypes and their characteristic cytokines (adapted from 
(Deenick and Tangye, 2007)).  

In the presence of specific cytokines or cytokine combinations, naive CD4+ T cells differentiate into 
functionally distinctive effector subtypes that can be distinguished by the cytokines which they produce. 

 

1.1.1.1 Th1 cells 

 A well described CD4+ T cell subset are Th1 cells, which are characterised by 

their ability to produce interferon-γ (IFN-γ) and interleukin-2 (IL-2) in response to 

cellular activation and are thought to develop under the influence of the transcription 

factor T-bet (Lighvani et al., 2001). A main role of Th1 effector cells and their 

cytokines is to control intracellular bacterial and viral infections. During activation, the 

cytokine microenvironment of the naive CD4+ T cells may help to determine their 

differentiation profile, and IL-12 produced by innate immune cells polarises the 
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differentiation into Th1 cells (Hsieh et al., 1993). IFN-γ exerts several major biological 

functions through binding to its specific receptor and activation of the transcription 

factor signal transducer and activator of transcription 1 (STAT1) (Aaronson and 

Horvath, 2002). IFN-γ primes mononuclear phagocytic cells, such as monocytes, 

macrophages and dendritic cells (DCs) to be activated by low levels of pathogen 

associated molecular patterns (PAMPs) in innate immune responses (Nathan et al., 

1984; Totemeyer et al., 2006). It has been demonstrated that IFN-γ can upregulate the 

expression of pattern recognition receptors (PRRs) on macrophages, and thereby 

preparing these cells to recognise and be activated by pathogens (Bosisio et al., 2002). 

Th1 cells activate macrophages by cell contact and secretion of IFN-γ, and so enhance 

their capacity of phagocytosis and killing of intracellular microbes and their expression 

of IL-12 and IFN-γ. In addition, Th1 cells play a role in helping CD8+ T cells. IFN-γ 

producing CD4+ T cells can enhance the expression IL-12 by antigen-presenting cells, 

which enhances the cytotoxic function of CD8+ T cells (Agarwal et al., 2009b; Schmidt 

and Mescher, 2002; Xiao et al., 2009), and establishes a paracrine feedback loop by 

stimulating increased expression of IFN-γ (Hsieh et al., 1993; Manetti et al., 1993). 

Although potent primary CD8+ T cell responses can be induced in the absence of CD4+ 

T cells, CD4+-deficient mice were unable to generate a robust secondary CD8+ T cell 

response to a pathogen (Belz et al., 2002; Janssen et al., 2003; Khanolkar et al., 2004; 

Shedlock and Shen, 2003; Sun and Bevan, 2003), probably due to the lack of IL-2 

provided by CD4+ T cells (Williams et al., 2006). 

 By promoting activation of macrophages and CD8+ T cells, Th1 responses are 

said to support cell-mediated host defence against intracellular pathogens and their 

physiological importance is cogently illustrated by increased risk of mycobacterial 

infections in individuals with IFN-γ receptor (Dorman et al., 2004) or IL-12 deficiency 

(Altare et al., 1998). 
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 Besides promoting cell-mediated host defence, CD4+ T cells play a role in 

driving B cell differentiation and the humoral immune response. The clearance of viral 

infections such as influenza is mediated by cytotoxic CD8+ T cells (Bender et al., 1992) 

and B cells (Mozdzanowska et al., 1997). However, both cell types alone are only 

sufficient in clearing infections with the help from CD4+ T cells (Mozdzanowska et al., 

1997; Mozdzanowska et al., 2000; Topham and Doherty, 1998). IFN-γ secreted by Th1 

cells leads to STAT1 signalling that induces T-bet expression in naive B cells, which 

activates the Iγ2a germline transcription (Xu and Zhang, 2005). Thus IFN-γ enhances 

the induction of class-switching to immunoglobulin (Ig)G2a (Finkelman et al., 1988; 

Snapper et al., 1988) that neutralise infective viral particles (Coutelier et al., 1987; 

Markine-Goriaynoff and Coutelier, 2002; Schlageter and Kozel, 1990). Severe influenza 

virus infection is associated with IgG2 deficiency (Gordon et al., 2010) and may be due 

to decreased expression of IFN-γ (Inoue et al., 1995; Kondo et al., 1997). 

 

 A pathogenetic role for Th1 responses has also been proposed in organ-specific 

autoimmunity (Charlton and Lafferty, 1995), including diseases that occur more 

frequently in developed countries. One example is type-1 diabetes, where the Th1 

cytokines IFN-γ and IL-2 are considered to play an important role in destruction of 

insulin-producing beta cells in the pancreas probably by activating autoreactive CD8+ 

T cells (Karlsson et al., 2000; Karlsson and Ludvigsson, 1998; Rapoport et al., 1998; 

Yoon et al., 1998). Contribution of Th1 cells in mediating diabetes has been supported 

by T-bet deficient nonobese diabetic (NOD) mouse models that were protected 

(Esensten et al., 2009), and genetic studies in Japanese type-1 diabetes patients also 

found associations with T-bet polymorphisms that resulted in augmented transcriptional 

activity from the IFN-γ promoter, suggesting a role for Th1 cells (Sasaki et al., 2004). 
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 Evidence for contribution of Th1 cells in MS and its animal model of 

experimental autoimmune encephalomyelitis (EAE) has also been shown. So have 

T cell clones derived from cerebrospinal fluid of MS patients a Th1 profile with 

increased levels of tumour necrosis factor (TNF)-α, IFN-γ and IL-2 (Benvenuto et al., 

1991), and augmented levels of IL-12 have been found in specimens of MS plaques 

from the central nervous system (CNS) (Windhagen et al., 1995). A widely prescribed 

treatment for MS is IFN-β, which probably functions by blocking IL-12 production by 

antigen-presenting cells, and thereby reducing the induction of Th1 cells (Bartholome et 

al., 1999; Byrnes et al., 2002; Heystek et al., 2003; McRae et al., 1998; Nagai et al., 

2007). 

 Th1 cells have been implicated as the main mediators of Crohn’s disease, a 

prototypic inflammatory bowel disease. This is based on increased production of IL-12 

by isolated macrophages (Liu et al., 1999; Monteleone et al., 1997; Parronchi et al., 

1997) and high levels of activated T-bet found in T cells from inflamed Crohn’s disease 

lesions (Neurath et al., 2002). Moreover, T cells isolated from areas with active disease 

have further characteristics of Th1 cells, as they express increased levels of the IL-12 

receptor β2 chain and (Parrello et al., 2000) augmented amounts of IFN-γ (Fuss et al., 

1996; Neurath et al., 2002; Parronchi et al., 1997). A key role for IFN-γ has also been 

shown in a murine transfer model of colitis in which transfer of T cells from IFN-γ 

knockout mice failed to induce disease (Ito and Fathman, 1997). 

 

1.1.1.2 Th2 cells  

 An alternative CD4+ T cell subset, the Th2 cells that are indispensable for host 

immunity to extracellular parasites, such as pathogenic worms (Bancroft et al., 1998; 

McKenzie et al., 1999; Urban et al., 2000b), was originally described in mouse models. 
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Specific cytokine secretion patterns and distinct modes of B cell help found in mouse 

CD4+ T cell clones led to the separation of CD4+ T cells into Th1 and Th2 subclasses 

(Mosmann et al., 1986). In contrast to Th1 cells that are characterised by their 

expression of IFN-γ, Th2 cells produce different cytokines, including IL-4, IL-5 and 

IL-13. The existence of distinct CD4+ T cell subsets in humans with similar cytokine 

profiles as found in mice was for the first time clearly demonstrated with antigen-

specific T cell clones for purified protein derivative (PPD) of M. tuberculosis or 

Toxocara canis excretory-secretory (TES). While the PPD-specific T cell clones were 

stable producers of IFN-γ and IL-2 but not IL-4 and IL-5, the TES-specific clones 

produced IL-4 and IL-5 but no IFN-γ or IL-2 (Del Prete et al., 1991).  

 Naive CD4+ T cells differentiate into Th2 cells in the presence of paracrine IL-4 

and IL-2 (Le Gros et al., 1990; Swain et al., 1990). Binding of IL-4 to its receptor 

activates Janus kinase 1 (JAK1) together with JAK3 and leads to phosphorylation of 

STAT6 (Kelly-Welch et al., 2003), which upregulates expression of the principal Th2 

master transcriptional regulator GATA-3 (Ho et al., 2009). However, a recent murine 

in vivo study has demonstrated that Th2 development can occur independently of 

IL-4/STAT6 signalling, but GATA-3 remains essential (van Panhuys et al., 2008). 

Similar to IFN-γ and Th1 cells, IL-4 secretion provides a positive feedback loop for Th2 

cell development.  

 The differentiation into Th1 or Th2 cells has been long considered to be 

irreversible and many studies showed that those differentiated effector cells have a 

stable phenotype (Grogan et al., 2001). However, recently it was demonstrated that Th2 

cells can be reprogrammed and turn on T-bet expression by maintaining GATA-3, thus 

become GATA-3+/T-bet+ cells that produce IL-4 and IFN-γ (Hegazy et al., 2010), 

showing that those cells can remain some plasticity. 
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 In contrast to Th1 cells, whose main role is to support cell-mediated host 

defence against intracellular infections, Th2 cells play an important role in encouraging 

antibody production by B cells, especially IgE to clear extracellular parasites. IL-4 is 

responsible for activation of STAT6 that induces antibody heavy chain class-switching 

in antigen-specific B cells to promote IgE production (Shimoda et al., 1996). IgE 

antibodies bind their high affinity receptor FcεRI on mast cells and basophils leading to 

their degranulation. Consequently inflammatory mediators such as histamine are 

released by those innate immune cells together with several cytokines including IL-4, 

IL-13, and TNF-α (Kawakami and Galli, 2002).  

 Next to promoting humoral immune responses, Th2 cells can also activate 

mononuclear phagocytes. Macrophages that get activated in the presence of Th2 

cytokines are so-called alternatively-activated macrophages, since they have distinct 

characteristics to those activated by Th1 cells and IFN-γ. It has been shown in mice that 

while IFN-γ supports microbial destruction though inducible nitric oxide synthase 

(iNOS) and consequently nitrogen intermediates like nitric oxide (NO), IL-4 and IL-13 

induce arginase that converts L-arginine to L-ornithine (Munder et al., 1998). 

Alternatively-activated macrophages are thought to play a role in wound healing, since 

L-ornithine can be metabolised to proline and polyamines that are important for 

collagen production and cell proliferation (Hesse et al., 2001; Wynn, 2004). 

 Other innate immune cells that play a role in Th2-mediated immune responses 

are eosinophils whose differentiation in the bone marrow is critically dependent on IL-5 

(Coffman et al., 1989; Collins et al., 1995; Foster et al., 1996; Hogan et al., 1997). 

Eosinophils can exhibit anti-helminthic activity by releasing lipid mediators and 

granule-stored cationic proteins that are directly toxic to the parasites (Gleich and 

Adolphson, 1986). Recent evidence suggests eosinophils may also be involved in the 

initiation, regulation and maintenance of Th2 immunity, since human eosinophils 
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produce and secrete large quantities of T cell-polarising cytokines including IL-4 

(Spencer et al., 2009).  

 

 Th-2 responses are also thought to have a pathogenic role in asthma and allergy 

(Larche et al., 2003). Allergic reactions to normally harmless antigens, such as house 

dust mite, pollen or food allergens, are associated with allergen-specific B cells 

producing IgE (Gould and Sutton, 2008). As with immune responses to helminths, IgE 

antibodies trigger mast cell and basophil degranulation in allergic responses. Moreover, 

eosinophil infiltration to the sensitised organs occurs and their role in allergic airway 

remodelling events has been confirmed with the development of eosinophil-deficient 

mice (Humbles et al., 2004; Lee et al., 2004). 

 The role of Th2 cells in allergic responses has been clearly demonstrated in 

mouse models of induced allergies (Hogan et al., 1998) and many studies suggest a 

similar role in humans. Augmented levels of Th2 cytokine production in atopic disease 

compared to controls has been demonstrated repetitively (Lagier et al., 1995; Leonard et 

al., 1997; Tang et al., 1995; Till et al., 1997) and for example in vitro stimulation of 

peripheral blood mononuclear cells (PBMCs) with grass pollen allergen expands T cells 

showing a Th2 profile in atopic donors, but allergen-specific T cells in non-atopic 

donors are Th1-like (Imada et al., 1995). Moreover, Th2-like cells accumulate in the 

target organs of allergic patients. Patients with atopic asthma have higher levels of Th2 

cytokines in bronchoalveolar lavage (BAL) samples compared to healthy controls, and 

higher expression levels of IL-4 and IL-5 associated with T lymphocytes (Robinson et 

al., 1992), further increased following allergen challenge (Thunberg et al., 2010). 

Although it is suggested that asthma in humans is a heterogeneous disease (Anderson, 

2008), increased numbers of GATA-3-expressing cells are present in bronchial biopsies 

of all asthmatic patients (Nakamura et al., 1999). A large group of asthmatic patients 
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show elevated Th2 cytokine expression in bronchial biopsies and augmented airway 

hyperresponsiveness, serum IgE, blood and airway eosinophilia, subepithelial fibrosis, 

and airway mucin gene expression (Woodruff et al., 2009). Finally corticosteroids, that 

provide effective treatment for allergic disorders, have been shown to suppress Th2 

cytokines in the airways of allergic rhinitis patients (Erin et al., 2005; Malmhall et al., 

2007). Recent data suggested that corticosteroids achieve their effects by inhibiting the 

nuclear translocation of GATA-3, the key regulator of Th2 cytokine expression 

(Maneechotesuwan et al., 2009). 

 

1.1.1.3 Th17 cells 

 A more recently described CD4+ T cell lineage are the Th17 cells that 

characteristically secrete IL-17, and whose development is suppressed by IL-4 and 

IFN-γ (Harrington et al., 2005; Park et al., 2005). These cells are mainly found at barrier 

surfaces, especially at the mucosa of the gut and function in the resistance to 

extracellular bacteria and fungi that invade though the epithelium (Khader et al., 2009). 

It was initially shown in mice that naive Th cells can be induced to differentiate into this 

cell type by the presence of transforming growth factor-β (TGF-β) in combination with 

the proinflammatory cytokine IL-6 (Bettelli et al., 2006; Mangan et al., 2006; Veldhoen 

et al., 2006). First studies in man suggested that instead of TGF-β, IL-1β was important 

for Th17 development in human (Acosta-Rodriguez et al., 2007a; Wilson et al., 2007). 

However, it has now become clear that low doses of TFG-β are required, while high 

doses suppress their differentiation (Manel et al., 2008; Volpe et al., 2008; Yang et al., 

2008). Yet, a very recent study in mice showed that a different cytokine combination of 

IL-1β, IL-6 and IL-23 can induce differentiation of an alternative Th17 cell type 

(Ghoreschi et al., 2010). In addition to the retinoid orphan nuclear receptor 

RORγT/RORC2 (mice/humans), which is the master transcription factor of Th17 cells 
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(Crome et al., 2009; Ivanov et al., 2006; Manel et al., 2008), these IL-23 induced Th17 

cells express T-bet (Ghoreschi et al., 2010). In mice IL-6 and IL-21 induce STAT3 

phosphorylation which upregulates RORγT (Yang et al., 2007). Differentiated Th17 

cells secrete IL-17A, IL-17F, IL-21 and IL-22 (Dong, 2008). After the initial 

differentiation is induced, IL-21 develops a positive feedback loop that is important for 

the amplification of Th17 cells (Bettelli et al., 2007), whereas IL-23 produced by DCs is 

required to stabilise the Th17 cell subset (Veldhoen et al., 2006). IL-17A induces an 

upregulation of IL-6, IL-8, granulocyte colony stimulating factor (G-CSF), as well as 

prostaglandin E2 (PGE2) expression (Fossiez et al., 1996; Yao et al., 1995).  

 Th17 cells are thought to play an important role in preventing fungal infection, 

as suggested by IL-23 and IL-17 receptor (IL-17R) knockout models of oropharyngeal 

candidiasis (Conti et al., 2009), and the finding that human memory T cells specific for 

Candida albicans are mostly of the Th17 subset (Acosta-Rodriguez et al., 2007b; 

Milner et al., 2008). IL-17R knockout mice showed in addition evidence for a crucial 

role of Th 17 cells in the immune response to extracellular bacterial infections of 

mucosal tissues by Neisseria gonorrhoeae (Feinen et al., 2010), Kleibsiella pneumonia 

(Ye et al., 2001) and Porphyromonas gingivalis (Yu et al., 2007). Th17 cells execute 

their antifungal and antibacterial function by recruitment and activation of neutrophils 

(Conti et al., 2009; Feinen et al., 2010; Kolls and Linden, 2004; Yu et al., 2007).  

 

 Besides the role of Th17 cells in clearing bacterial and fungal infections, those 

cells are also involved in mediating autoimmune and inflammatory diseases (Bettelli et 

al., 2008; Dong, 2008; Reiner, 2009). For many diseases, including Crohn’s disease, 

that had previously been associated with a Th1 cytokine profile, data are now emerging 

that Th17 cells may also be responsible (Brand, 2009). Studies with murine colitis 

models found a role for IL-23 (Hue et al., 2006; Kullberg et al., 2006; Yen et al., 2006), 
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albeit IL-17A showed a protective function in T cell-mediated intestinal inflammation 

(O'Connor et al., 2009). In addition, IL-17 cells may also play a role in EAE mouse 

models (Cua et al., 2003; Murphy et al., 2010), and augmented IL-23 levels have been 

described in monocyte-derived DCs from MS patients compared to healthy donors 

(Vaknin-Dembinsky et al., 2006). Moreover, cerebrospinal fluid from MS patients 

shows higher frequency of Th17 cells compared to controls, especially during relapse or 

acute symptoms (Brucklacher-Waldert et al., 2009). However, the relative contribution 

of Th1 and Th17 cell subsets to autoimmune diseases remains unclear and requires 

further study. 

 

1.1.1.4 Th9 cells 

 Lately a new CD4+ T cell type has been described in mice and man, the Th9 cell, 

induced by a combination of IL-4 and TGF-β to secrete IL-9 (Dardalhon et al., 2008; 

Veldhoen et al., 2008; Wong et al., 2010). In mice these cells do not express any 

transcription factor of the other CD4+ T cell subtypes like T-bet, GATA-3, RORγT or 

forkhead box P3 (FoxP3) (Veldhoen et al., 2008), suggesting that they indeed represent 

a different subset but so far no specific transcription factor that is uniquely expressed by 

Th9 cells has been discovered. In man however, IL-4 and TGF-β generated IL-9 

expressing cells express GATA-3, but reduced levels of Th2 cytokines IL-4, IL-5 and 

IL-13 (Wong et al., 2010). The physiological role of Th9 cells is not clearly understood, 

however IL-9 has long been described as a Th2 cytokine as it was found together with 

Th2 cytokines IL-4, IL-5 and IL-13 in mesenteric lymph nodes (MLN) during immune 

responses against murine parasitic infections and serves as a mast cell growth factor 

(Faulkner et al., 1998). Mice with defective TGF-β signalling, which is likely to be 

required for Th9 cell differentiation in vivo, were unable to expel Trichuris muris 

infection. Those mice had reduced levels of IL-9 and showed defective recruitment 
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and/or survival of mast cells, supporting a potential role for Th9 cells in the immune 

response against parasites (Veldhoen et al., 2008). Additionally IL-9 induces mucin 

production in epithelial cells during allergic reactions, thus playing an important role in 

airway remodelling in the pathogenesis of asthma in mouse and man (Longphre et al., 

1999; Reader et al., 2003; Vermeer et al., 2003). Interestingly, a potential pathogenic 

role for Th9 cells has been recently described in mouse models of autoimmune diseases. 

Adoptive transfer of in vitro generated myelin-specific Th1, Th2, Th17 and Th9 cells 

demonstrated that all CD4+ T cell subsets apart from Th2 cells could induce EAE (Jager 

et al., 2009). Moreover, Th9 cells have been implicated in promoting inflammation in 

colitis mouse models (Dardalhon et al., 2008). 

 

1.1.1.5 Regulatory T cells  

 CD4+ T cells that display anti-inflammatory properties have become known as 

regulatory T (Treg) cells. For the last four decades there has been interest in T cell 

populations with immunosuppressive properties, involved in limiting inflammation and 

preventing autoimmunity (Gershon and Kondo, 1971). In 1995 a population of CD4+ 

T cells constitutively expressing the IL-2 receptor-α (IL-2Rα) chain (CD25) was found 

to suppress autoimmune diseases (Sakaguchi et al., 1995). However, only with the 

discovery of the transcription factor FoxP3 (Bennett et al., 2001; Brunkow et al., 2001) 

and the subsequent demonstration of its essential role in both the development and 

function of Treg cells (Fontenot and Rudensky, 2005), was it possible to study this 

population in more detail. There are two types of Treg cells, natural Treg (nTreg) cells 

and inducible Treg (iTreg) cells. No phenotypical differences between nTreg and iTreg 

cells have been found that could serve as markers to distinguish their functions and 

proportions in lymphoid tissue. They both are CD4+/CD25+ T cells expressing FoxP3 

and TGF-β and have suppressive activity (Huter et al., 2008). In the presence of IL-2 
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and TGF-β, nTreg cells develop in the thymus from CD4+ T cell precursors, 

characterised by stable expression of the transcription factor FoxP3 (Fontenot et al., 

2005). TGF-β-deficient mice develop normal numbers of nTreg cells in the thymus, but 

TGF-β is required for maintaining expression of Foxp3 and suppressor activity (Marie 

et al., 2005). The second type, iTreg cells, develops in the periphery from naive 

CD4+/CD25- T cells (Kretschmer et al., 2005; Siewert et al., 2008). Like Th-17 cell 

differentiation, their development is promoted by TGF-β, but in the absence of the 

proinflammatory cytokines like IL-6 (Bettelli et al., 2006). Natural Treg cells exhibit 

substantial plasticity of phenotype. Thus in the presence of IL-6 and absence of 

exogenous TGF-β they can downregulate FoxP3 and be subverted into the Th17 

differentiation programme resulting in expression of IL-17 (Xu et al., 2007). However 

iTreg cells are resistant to stimulation with IL-6 and maintain FoxP3 expression and 

suppressor activity (Zheng et al., 2008). In addition to TGF-β, IL-2 is required for the 

generation of mouse iTreg cells in vitro, and their differentiation is supported by 

retinoic acid (Mucida et al., 2007). The conversion of human naive CD4+ T cells into 

iTreg cells is also dependent on TGF-β. Contrary to what is seen in mice, priming with 

exogenous TGF-β is not required, but it has been suggested that endogenous TGF-β 

plays a role (Amarnath et al., 2007). Development of Treg cells is mediated by 

signalling through STAT5A/B (Burchill et al., 2007; Yao et al., 2007), which directly 

induces the upregulation of the transcription factor FoxP3 (Burchill et al., 2007; Yao et 

al., 2007; Zorn et al., 2006) and expression of CD25 (Nakajima et al., 1997). 

 The mechanism of how Treg cells mediate their immunosuppressive activity is 

not fully understood. Expression of the immunoregulatory cytokines IL-10 and TGF-β 

have been linked to the suppressive role of Treg cells (Asseman et al., 1999; Green et 

al., 2003), on the other hand blocking experiments have revealed that those cytokines 

are not necessarily required (Thornton and Shevach, 1998). In mice nTreg cells can also 
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express the cytokine IL-35 that is important for their maximal suppressive activity 

(Collison et al., 2009; Collison et al., 2007). IL-35 is not expressed at detectable 

amounts by human nTreg cells (Bardel et al., 2008), but naive T cells can be induced by 

DCs primed with human rhinovirus to secrete IL-35 (Seyerl et al., 2010). Several 

studies demonstrated the importance of cytotoxic T lymphocyte-associated antigen-4 

(CTLA-4) expressed on Treg cells that can interact with B7 molecules (CD80 and 

CD86) expressed on activated T cells and DCs (Kolar et al., 2009; Schmidt et al., 2009; 

Sojka et al., 2009). One study demonstrated that Treg cells lose their ability to suppress 

B7-deficient effector T cells (Paust et al., 2004). Reverse signalling through CTLA-4 

may be important for suppression, since CD28 (also a receptor for B7)-deficient Treg 

cells can still mediate suppression (Takahashi et al., 2000). More recently it was shown 

that CTLA-4 on Treg cells can downregulate CD80 and CD86 on DCs, so that they 

cannot activate effector T cells, which consequently prevented fatal T cell-mediated 

autoimmune disease and hyperproduction of IgE in mice (Wing et al., 2008). Moreover, 

Treg cells can modulate the function of DCs via the surface molecule T cell 

immunoreceptor with immunoglobulin (Ig) and immunoreceptor tyrosine-based 

inhibitor motif (ITIM) domains (TIGIT), which is highly expressed on Treg cells and 

induces the expression of IL-10 and TGF-β by DCs (Yu et al., 2009), or the 

transmembrane molecule lymphocyte activation gene-3 (LAG-3) that interacts with 

MHC II and inhibits DC activation (Liang et al., 2008). 

 In addition to the classical CD4+/CD25+/FoxP3+ Treg cells other CD4+ T cells 

with regulatory properties are known, including Th3 and T regulatory 1 (Tr1) cells. Th3 

cells are antigen-specific cells that produce large amounts of TGF-β but little IL-10 and 

IL-4 and no IFN-γ or IL-2 (Chen et al., 1994). In the absence of inflammation the 

secreted TGF-β can induce FoxP3 expression in activated T cells, which will 

differentiate into iTreg cells (Carrier et al., 2007). Th3 cells also express FoxP3 but 
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remain CD25 negative. Tr1 cells have been described as antigen-specific CD4+ T cells 

with regulatory properties that arise in the presence of IL-10, secrete high levels IL-10 

and are CD25-/low and FoxP3- (Groux et al., 1997; Roncarolo et al., 2006). The 

expression of IL-10 by Treg cells is also independent of FoxP3 (Gavin et al., 2007), and 

not always required for their suppressive activity (Thornton and Shevach, 1998). 

However it is not clear if Tr1 cells can be classified as a separate CD4+ T cell lineage, 

since also Th1, Th2 and Th17 cells have been shown to express IL-10 under certain 

conditions (Anderson et al., 2007; Jankovic et al., 2007; McGeachy et al., 2007). 

 

1.2 The immunology of the hygiene hypothesis 

 Allergies and asthma are hypersensitivity reactions characterised by Th2 cell 

activity and IgE antibody production against usually harmless environmental allergens, 

such as those derived from house dust mite and pollen. In contrast, the presence of 

inflammatory danger signals, such as bacterial or viral infections, triggers IFN-γ 

producing Th1 cells. Since it had been shown that IFN-γ can reduce Th2-associated IgE 

production (Paul, 1989), Strachan’s observations of the inverse association of siblings 

or attending day-care early in life with the prevalence of allergic diseases, lead to the 

hypothesis that cross-infection may provide protection against allergic disease. 

Strachan’s hypothesis, which originated from epidemiological studies only, was given a 

biological explanation. The immunological concept was that a lack in Th1 stimulation 

due to diminished childhood infections, would lead to increased Th2 activity, and result 

in an increased prevalence of Th2-driven diseases like atopy and asthma (Cookson and 

Moffatt, 1997; Holt et al., 1997). 

 However, despite some exceptions like infection with HAV (Linneberg et al., 

2003; Matricardi et al., 2002; Matricardi et al., 2000), Salmonella (Pelosi et al., 2005) 
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and H. pylori (Reibman et al., 2008), epidemiological data could not prove consistently 

that there is a direct link between viral or bacterial childhood infections and reduced risk 

of atopy. Moreover, children attending day-care centres that effectively prevented 

common respiratory tract and enteric infections during their early infancy by 

implementing a broad infection prevention programme reaching from intensified hand-

washing to encouragement to take sick leave (Uhari and Mottonen, 1999) did not show 

increased allergic morbidity rates later in life (Dunder et al., 2007). That HAV infection 

was repeatedly shown to be negatively associated with atopic diseases (Linneberg et al., 

2003; Matricardi et al., 2002; Matricardi et al., 2000) may have had a different 

underlying cause than the induction if a missing Th1 stimulus. HAV uses the cellular 

receptor T cell Ig and mucin-1 (TIM-1), to infect human cells (Feigelstock et al., 1998). 

This is a protein that is expressed on activated naive CD4+ T cells during their 

development into Th2 cells (Umetsu et al., 2005), and which has also been linked with 

regulation of Th17 and Treg cells (Degauque et al., 2008). It has been demonstrated that 

TIM-1 is associated with protection against atopy (McIntire et al., 2003), and it is likely 

that HAV interrupts the interaction of TIM-1 with its ligand TIM-4, which is expressed 

on DCs, and thus limits the development of Th2 responses (Meyers et al., 2005; Umetsu 

et al., 2005) and augments Treg cells (Degauque et al., 2008). Nevertheless, this is 

specific for infections with HAV and there is no evidence that early infections with 

other viruses protect against allergic diseases (Benn et al., 2004; Dunder et al., 2007; 

Matricardi et al., 2000). The augmentation of Treg cells might be also of importance in 

the mechanism of H. pylori infections prevent allergic disorders (Beswick et al., 2007; 

Lundgren et al., 2005; Oderda et al., 2007; Raitala et al., 2006). 

 The original hygiene hypothesis implicated a predominance of Th2 responses 

over Th1 responses in early infancy and that the cytokine response to early infections 

reprogrammed the immune system towards more Th1-dominated responses. In the 
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developed world however, it was hypothesised, that with improved hygiene, vaccination 

and the use of antibiotics, predisposition of allergy results from insufficient Th1 

stimulation that cannot compensate the Th2 dominance. This was supported only by a 

few murine (Adkins and Hamilton, 1992; Chen et al., 1995a) and human (Vigano et al., 

1999) studies that showed more Th2 biased responses in newborns compared to older 

children and adults. However, a larger and more recent study demonstrated that a 

general Th2 bias is most likely not evident at birth (Halonen et al., 2009). IL-4 and 

IFN-γ production were both ~10-fold lower than in adults, but IL-13 was only reduced 

by 50 %, leading to an IFN-γ:IL-13 ratio that supports an early childhood Th2 bias, but 

one that is restricted to IL-13 only (Halonen et al., 2009). 

 Another observation questioned the immunological concept, that providing a 

Th1 stimulus could prevent allergic diseases. Murine studies showed that passive 

transfer of antigen-specific Th1 cells into a mouse model of allergy was not protective 

and resulted in increased inflammation (Hansen et al., 1999; Randolph et al., 1999).  

 Yet, the examples described above showed already some weaknesses of the 

original hygiene hypothesis that was based on a linkage between infections and reduced 

allergy. This simple Th1 versus Th2 model was fatally challenged by two contradicting 

findings:  

 First, as mentioned above, the epidemiological evidence that the increase of 

Th2-mediated immune diseases like atopy and asthma was also accompanied by a rise 

of Th1- or Th17-mediated autoimmune diseases in the more aseptic developed world 

(Bach, 2002; Black, 2001; Stene and Nafstad, 2001). Epidemiological data showed for 

example that the incidences of allergic disorders (Th2) and of type-1 diabetes (Th1) 

correlate closely within and outside Europe (Stene and Nafstad, 2001). Moreover, Th1 

and Th2 type diseases can coexist within one individual and there are even some studies 

showing, that people suffering from allergies have an increased risk to develop 
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autoimmune diseases (Hemminki et al., 2010; Kero et al., 2001; Sheikh et al., 2003; 

Simpson et al., 2002), albeit other studies found the opposite (Cardwell et al., 2003; 

Rabin and Levinson, 2008; Tirosh et al., 2006). Therefore, even in a single individual 

the occurrence of those chronic immune diseases cannot be explained by a Th1 or Th2 

bias and those diseases must have similar underlying reasons. 

 Second, the assumption that allergies result from a Th1/Th2 imbalance, is 

inconsistent with the inverse epidemiological association between allergies and 

Th2-inducing helminth infections (Araujo et al., 2000; Cooper et al., 2003; Hagel et al., 

1993; Huang et al., 2002; Lynch et al., 1983; Medeiros et al., 2003; Nyan et al., 2001; 

Scrivener et al., 2001; van den Biggelaar et al., 2000). Although helminth-infected 

individuals showed Th2-biased immune responses compared to uninfected controls 

(Yazdanbakhsh et al., 1993), allergies are less frequent in endemic areas of infection 

(ISAAC_Steering_Committee, 1998). The role of helminths in reducing allergic 

diseases was directly shown in anti-helminth treatment studies. Children that received 

long-term treatment were afterwards more likely to show positive mite skin pick test 

reactivity (Lynch et al., 1993; van den Biggelaar et al., 2004), whereas shorter 

medication had no effect (Cooper et al., 2006). Since helminths are inducers of strong 

Th2 responses, one would expect infected people to be more likely to suffer from 

Th2-driven allergic diseases, if the balance of Th1 and Th2 cells was crucial. However, 

the overall immune response to helminth infections is not only characterised by 

polarised Th2 cells, but is generally downregulated during chronic infection, manifested 

by reduced antigen-specific proliferation and IFN-γ and IL-5 production (Grogan et al., 

1998). The suppression of the immune response during helminth infection is obviously 

beneficial for the parasites to allow their long-term survival. However, when chronic 

infection is established, a suppressed immune response is also advantageous for the host 

to limit pathology (Bahia-Oliveira et al., 1992; Colley et al., 1986; Tweardy et al., 
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1987). Interestingly, a mouse model showed that the immune response to helminth 

infections varies with the time of infection. Egg production during the infection is 

accompanied by a strong Th2 response, but later during chronic infection the Th2 

cytokine production declines (Grzych et al., 1991). Recently it was demonstrated that 

chronic infection, but not acute infection, reduces the development of antigen-specific 

allergic airway inflammation in mice (Smits et al., 2007), which supports the view that 

only chronic and intense infection protects humans against allergic diseases. 

 The first study showing a mechanism on how helminths may suppress allergies 

was published in 2000. The authors demonstrated that parasite-induced cytokine IL-10 

reduced the risk of skin test reactivity to mite allergens (van den Biggelaar et al., 2000). 

IL-10 and TGF-β, both regularly present in helminth-infected individuals (Grogan et al., 

1998; van den Biggelaar et al., 2000), are anti-inflammatory cytokines capable of 

inhibiting effector T cell proliferation. Those cytokines can either play a direct role in 

dampening the immune response or maybe they are more relevant as inducers of Treg 

cells. It was shown that the transfer of helminth-induced Treg cells from IL-10 

knockout mice, suppressed allergic airway inflammation in allergen challenged 

sensitised recipient mice (Wilson et al., 2005). FoxP3 expressing Treg cells have the 

ability to suppress the proliferation of all effector Th cell types, including Th1 and Th2 

cells. Supporting the role of Treg cells in prevention of atopic diseases was a study that 

showed a reduced ability of CD4+/CD25+ T cells expressing FoxP3 from atopic donors 

to suppress proliferation and Th2 cytokine production by autologous allergen-stimulated 

CD4+/CD25- T cells compared to non-atopic donors (Ling et al., 2004). It is proposed 

that the suppressive network induced by chronic helminth infection is not stringently 

antigen-specific, and consequently also protects against hypersensitivity reactions 

towards allergens (Smits and Yazdanbakhsh, 2007). This ability of helminth-induced 

Treg cells to provide bystander suppression is supported by a recent study showing that 
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CD4+/CD25high/FoxP3+ T cells from helminth-infected children suppress also the 

immune response to antigens of mycobacteria and plasmodia (Wammes et al., 2010). In 

addition to providing bystander suppression, helminth infection can also have a Treg 

cell adjuvant effect, thus support the development of Treg cells with specificity for a 

different antigen (Correale and Farez, 2007). 

 

 Due to the findings that Th1-driven autoimmune diseases accompanied the rise 

of allergic diseases in the developed world and that Th2-inducing helminth infections 

are negatively associated with the risk of atopic diseases, the original hygiene 

hypothesis, which was based on a simple Th1 versus Th2 model, had to be revised. The 

prevailing view is that modern living conditions lead to a defective maturation of 

regulatory networks. Instead of Th1 versus Th2 being the critical balance, more 

evidence suggests that the crucial factor is the balance between effector and regulatory 

immune responses (Rook and Stanford, 1998; Wills-Karp et al., 2001; Yazdanbakhsh et 

al., 2002; Yazdanbakhsh et al., 2001). This model provides an explanation for the rise of 

Th1- and Th2-mediated chronic immunological disorders, and the fact that individuals 

suffering from allergy (Akdis et al., 2004; Karlsson et al., 2004; Perez-Machado et al., 

2003), autoimmune diseases (Kriegel et al., 2004; Viglietta et al., 2004) and 

inflammatory bowel diseases (Duchmann et al., 1995; Kraus et al., 2004) show defects 

of immunoregulation supports the view that insufficient stimulation of the anti-

inflammatory network is causing augmentation of those diseases in the industrialised 

world. The importance of immunoregulation with regards to atopy and autoimmunity 

becomes apparent in people with genetic defects of the transcription factor FoxP3, 

which is important for function and development of Treg cells (Di Nunzio et al., 2009). 

They suffer from X-linked autoimmunity allergic dysregulation syndrome (XLAAD), 
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with symptoms of allergy, autoimmunity and enteropathy (Bennett and Ochs, 2001).

  

 The recent lifestyle changes in the developed world led not only to reduction of 

infection with helminths, but also to diminished exposure to many harmless 

microorganisms. Epidemiological studies described differences in the frequency of 

asthma, hay fever and allergic sensitisation within one country between urban and rural 

areas. This is true in the developed and developing world. A study in Ethiopia showed 

that asthma was more common in metropolitan areas then in remote rural areas 

(Yemaneberhan et al., 1997). Also children from Northern America, Northern Europe 

and New Zealand that grew up in farming environments were less likely to suffer from 

asthma and atopy compared to children less exposed to farming activities (Elliott et al., 

2004; Ernst and Cormier, 2000; Klintberg et al., 2001; Leynaert et al., 2001; Portengen 

et al., 2002; Rennie et al., 2002; Riedler et al., 2001; Von Ehrenstein et al., 2000). 

Factors like contact with hay, animal sheds and consumption of unpasteurised cow’s 

milk have been shown to be protective (Riedler et al., 2001), and there is evidence that 

farm children are more heavily exposed to bacterial endotoxin and muramic acid 

(Braun-Fahrlander et al., 2002; van Strien et al., 2004). The non-pathogenic bacterium 

Acinetobacter lwoffii F78 isolated from cowshed dust showed protective properties in 

an adult allergy mouse model (Debarry et al., 2007) and maternal exposure could 

protect offspring from the development of asthma (Conrad et al., 2009). The view that 

non-invasive organisms might play a role is supported by data that found an inverse 

correlation between pet ownership and the prevalence of allergic diseases (Hesselmar et 

al., 1999). Despite the fact that reviewing studies from the last nine years gave 

contradictory results (Chen et al., 2010), exposure to dogs at early infancy consistently 

showed a protective effect from developing sensitisation against diverse aeroallergens, 

especially outdoor allergens (Chen et al., 2010).  
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 In addition to helminth infections, the hygiene hypothesis has now expanded to 

include non-invasive microorganisms that were constantly present in the environment 

during mammalian evolution and appear to have developed an essential 

immunoregulatory role (Rook, 2007). It has been postulated that beside helminths, 

organisms in mud and untreated water like saprophytic environmental mycobacteria, 

lactobacilli present in fermenting vegetables and drinks, and also bowel flora must be 

tolerated by humans and therefore drive regulatory pathways (Mazmanian et al., 2008; 

Rook, 2007). In addition to specific suppression, that generates tolerance to these 

organisms, bystander or non-specific suppression may protect the host from atopy and 

autoimmunity. Therefore, their depletion as a result of modern urbanisation may be at 

least partly responsible for the increasing incidences of chronic inflammatory disorders 

(Rook, 2007). Importantly, infection or treatment with Th1-inducing mycobacteria 

(Mutis et al., 1993), or with Th2-inducing helminths has been shown to be protective for 

both, Th1-driven autoimmune diseases (Harada et al., 1990; Zaccone et al., 2003) and 

Th2-driven atopy (Li and Shen, 2009; Wilson et al., 2005; Zuany-Amorim et al., 

2002b). A common feature of organisms that correlate negatively with the development 

of allergies and autoimmunity is their ability to induce regulatory responses in animal 

models (Smits et al., 2005; Wilson et al., 2005; Zuany-Amorim et al., 2002b), and not a 

universal set of effector Th cells.  

 

 The organisms mentioned above can also be effective in some human clinical 

trials. Allergic children, when compared to healthy controls, are reported to be less 

colonised with lactobacilli (Bjorksten et al., 1999), but clinical trials administering 

different organisms and strains as probiotics have various outcomes (Betsi et al., 2008). 

The same observation is true of the use of probiotics shown to induce Treg cells in 

animal models (Smits et al., 2005). Children that received supplementation with 
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Lactobacillus rhamnosus HN001 early in life showed reduced prevalence of eczema, 

whereas a Bifidobacterium strain was not effective (Wickens et al., 2008). Also patients 

suffering from allergic rhinitis that received Lactobacillus casei Shirota showed reduced 

levels of allergen-induced cytokines and IgE (Ivory et al., 2008). Several small human 

studies on inflammatory bowel disease showed also some positive effects of prebiotics 

that support the growth of indigenous lactobacilli and bifidobacteria (Looijer-van 

Langen and Dieleman, 2009). Clinical trials with helminth therapy have also given 

contradictory results. A study in Argentina found that natural helminth infection treated 

MS and induced myelin-specific regulatory cells (Correale and Farez, 2007). In 

addition, Trichuris suis is reported to have a therapeutic effect on inflammatory bowel 

disease (Summers et al., 2005), but not on allergic rhinitis (Bager et al., 2010). Some 

human trials with environmental mycobacteria that had been demonstrated to protect 

against airway inflammation by inducing Treg cells in allergic mouse models (Zuany-

Amorim et al., 2002b) were also successful (Arkwright and David, 2001; Camporota et 

al., 2003), but other studies showed contrasting outcomes (Arkwright and David, 2003; 

Berth-Jones et al., 2006; Brothers et al., 2009; Shirtcliffe et al., 2003). 

 Taken together, organisms have been identified that are relevant for the hygiene 

hypothesis and animal models show clearly that they can induce regulatory pathways 

that can suppress allergic and autoimmune diseases. However, a better understanding of 

the mechanism by which they influence immune responses might improve design and 

success of their clinical applications. 

 

1.3 Immunomodulation by M. vaccae 

 The genus mycobacterium consists of over 80 different species, from which only 

a few are infectious and cause serious diseases like tuberculosis and leprosy in man. The 
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vast majority are harmless saprophytes, which are associated with water and soil. They 

are rod-shaped aerobic bacteria characterised by their unusual thick and hydrophobic 

cell wall. The mycobacterial cell wall has a unique structure, which is particularly rich 

in lipids that compose 30 – 60 % of their dry weight, and consists of three parts: the 

plasma membrane, the cell wall, and the capsule (Daffe and Draper, 1998). Until 

recently it was thought that mycobacteria lack an outer cell membrane. Hence, they are 

classified as Gram-positive albeit difficult to stain. Recently new techniques of 

tomography and microscopy revealed a bilayer structure of an outer membrane 

(Hoffmann et al., 2008; Zuber et al., 2008). 

 In the developing world, saprophytic mycobacteria are often present in a 

quantity of 1 mg or more per litre in untreated water supplies (Rook et al., 2007). Since 

the introduction of clean supermarket food and the regular purification and chlorination 

of drinking water in industrialised countries, the contact between humans and 

saprophytic mycobacteria has become less frequent. Although harmless mycobacteria 

do not replicate in humans, their inevitable and continuous presence in water and food 

during mammalian evolution could have led to a role comparable to that of symbiotic 

bacteria in the gut flora, that are required for directing normal immune system 

development (Macpherson and Harris, 2004).  

 

1.3.1 M. vaccae’s effects in animal models and human clinical trials 

 The subject of this thesis is the environmental mycobacterium that has received 

most attention: M. vaccae. In 1998, it was reported for the first time that injection of 

heat-killed M. vaccae into ovalbumin (OVA)-pre-immunised mice suppressed serum 

IgE levels and the expression of IL-5 by splenocytes following OVA re-stimulation 

in vitro (Wang and Rook, 1998). Since then, M. vaccae’s activity in murine asthma 
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models was confirmed in a number of studies, in which M. vaccae has repeatedly been 

shown to be effective in therapeutic and prevention applications (Hopfenspirger et al., 

2001; Ozdemir et al., 2003; Smit et al., 2003; Zuany-Amorim et al., 2002a; Zuany-

Amorim et al., 2002b). Heat-killed preparations of M. vaccae injected into mice either 

during OVA-sensitisation or later during challenge, when allergy had already been 

established, reduced airway hyperresponsiveness, airway eosinophilia and IL-5 

production following OVA-challenge (Smit et al., 2003). 

 A number of clinical trials in man suffering from asthma or atopic dermatitis 

showed positive effects of M. vaccae (Arkwright and David, 2001; Camporota et al., 

2003). In the first trial with children suffering from moderate to severe atopic 

dermatitis, interdermal injections of heat-killed M. vaccae reduced the affected surface 

area as well as the dermatitis severity score significantly compared to placebo controls 

(Arkwright and David, 2001). Later, M. vaccae also showed promising effects in small 

double-blind randomised trial with adults suffering from atopic asthma. Here, treatment 

with a single dose of M. vaccae led to a decreased late phase response and a reduced 

expression of serum IgE and in vitro secretion of IL-5 (Camporota et al., 2003). 

However, others could not replicate these findings (Arkwright and David, 2003; Berth-

Jones et al., 2006; Brothers et al., 2009; Shirtcliffe et al., 2003). 

  More recently, M. vaccae was effective in a clinical trial to cure mild to 

moderate atopic dermatitis in dogs (Ricklin-Gutzwiller et al., 2007). After a single 

intradermal injection the dogs were observed for three months. After that time clinical 

symptoms of atopic dermatitis were significantly reduced (Ricklin-Gutzwiller et al., 

2007), for which it is now being developed by Novartis Animal Health. Additionally, 

M. vaccae might have a possible therapeutic efficacy in tuberculosis (TB) (Dlugovitzky 

et al., 2006; Hernandez-Pando et al., 2000; Xu et al., 2009), and recently showed 
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efficacy in a large (2,013 patients) phase III clinical trial for prevention of TB in human 

immunodeficiency virus (HIV)-positive subjects in Tanzania (von Reyn et al., 2010).  

 

 The mechanisms, by which M. vaccae exerts the reported effects in animal 

models of allergic disease or indeed a possible therapeutic effect in TB, are not clearly 

understood. The prevailing view is that M. vaccae changes the polarisation of antigen-

specific Th cell responses by downregulating Th2 (Rook et al., 2004).  

 

1.3.2 M. vaccae modulates T cell responses in mice 

 In various asthma and allergy models the treatment effect of M. vaccae has been 

associated with reduced Th2 responses, increased Treg responses, possibly increased 

Th1 responses as well as the induction of cytotoxic CD8+ T cells (see Table 1-1). 

 The role of Treg cells has been particularly highlighted by the findings in mice 

where M. vaccae caused the induction of an allergen-specific population of 

CD4+/CD45RBlow Treg cells (Zuany-Amorim et al., 2002b). A single dose of M. vaccae 

given subcutaneously either before Th2-inducing immunisation with OVA, or after the 

first two of four such immunisations, was able to reduce symptoms of airway 

inflammation elicited by a subsequent allergen challenge (Zuany-Amorim et al., 2002b), 

an effect that lasted for twelve weeks after its administration (Zuany-Amorim et al., 

2002a). Intravenous transfer of splenocytes or purified CD4+/CD45RBlow T cells from 

those treated mice to OVA-immunised recipients that had not been given M. vaccae 

reduced the Th2-mediated airway eosinophilia and bronchial hyperresponsiveness 

following airway challenge (Zuany-Amorim et al., 2002b). The regulatory cells were 

specific for antigens present during their induction, but once triggered by their specific 

antigen, they could exert bystander suppression of Th2 responses to unrelated antigens 



1. INTRODUCTION 

55 

(Zuany-Amorim et al., 2002b). The suppression of allergic responses in the recipients 

depended upon release of TGF-β and IL-10 (Zuany-Amorim et al., 2002b) but not 

IFN-γ (Zuany-Amorim et al., 2002a), which supports further the view that Treg cells 

were involved. 

Table 1-1: Selected references describing M. vaccae effects in animal models 

M. vaccae effects in animal models 
M. vaccae induced CD8+ T cells, which killed macrophages infected with 
M. tuberculosis (Skinner et al., 1997) 
Recombinant M. vaccae is a Th1 adjuvant for antigens expressed within it (Abou-Zeid 
et al., 1997; Hetzel et al., 1998) 
M. vaccae injection into antigen-preimmunised mice suppressed serum IgE and 
antigen induced IL-5 production by spleen cells (Wang and Rook, 1998) 
New-born mice treated with M. vaccae showed reduced allergic responses to allergen 
(Ozdemir et al., 2003; Tukenmez et al., 1999) 
M. vaccae immunisation s.c. of OVA-sensitised pregnant mice reduced IL-5 and 
enhanced IFN-γ secretion from placenta and splenocytes of offspring on the 2nd and 
28th day of life (Akkoc et al., 2008) 
Recombinant M. vaccae expressing an epitope from potent allergen induced a shift 
from Th2 to Th1 (IFN-γ) in immunised mice (Janssen et al., 2001) 
M. vaccae administered with antigen induced antigen-specific CD8+ T cells (Skinner 
et al., 2001) 
Reduced bronchoconstriction, airway hyperresponsiveness and eosinophilia when 
M. vaccae was given both before and after sensitising injections of antigen 
(Hopfenspirger et al., 2001) 
Single injection of M. vaccae prior or after immunisation limited allergic responses by 
induction of antigen-specific CD25+CD45RBlow Treg in a IL-10 and TGF-β dependent 
way (Zuany-Amorim et al., 2002a; Zuany-Amorim et al., 2002b) 
Intranasal M. vaccae into antigen-preimmunised mice suppressed airway 
hypersensitivity and eosinophilia (Hopfenspirger and Agrawal, 2002) 
M. vaccae treatment of antigen-preimmunised mice during antigen challenge 
suppressed airway hypersensitivity, airway eosinophilia and IL-5 production (Smit et 
al., 2003) 
M. vaccae induced pulmonary CD11c+ cells with increased levels of IL-10, TGF-β and 
IFN-α mRNA (Adams et al., 2004) 
M. vaccae administered orally increased production of IL-10 and IFN-γ by MLN and 
splenocytes (Hunt et al., 2005) 
Intradermal injection of M. vaccae was effective in treating mild to moderate cases of 
atopic dermatitis in dogs (Ricklin-Gutzwiller et al., 2007) 

 

  Interestingly, administration of M. vaccae by the gastrointestinal route in naive 

mice, to simulate natural water-borne exposure to this organism, was also shown to 

increase the release of IL-10 by MLN and IL-10 and IFN-γ by splenocytes (Hunt et al., 

2005). Treatments of OVA-sensitised mice with oral and subcutaneous M. vaccae were 
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equally effective at reducing the total cellular infiltrate into the lungs following allergen 

challenge (Hunt et al., 2005). In addition to a reduction of eosinophils, no increase in 

inflammatory cells like macrophages and neutrophils was observed (Hunt et al., 2005). 

The view that oral M. vaccae executes its effects by inducing regulatory rather than Th1 

responses was supported by the observation that M. vaccae treated mice had elevated 

IL-10 levels in the BAL fluid and supernatant of splenocytes, whereas IFN-γ levels did 

not differ (Hunt et al., 2005). Additionally, in a murine TB model, oral M. vaccae 

modulated the expression of hemoxygenase-1 (HO-1), idoleamine 2,3-dioxygenase 

(IDO), FoxP3 and TGF-β, all known to be important for immunoregulation (Hernandez-

Pando et al., 2008). 

 The only hint as to how M. vaccae might induce Treg cells was published in 

2004. The study confirmed previous observations that M. vaccae, when injected in an 

OVA-induced allergy model of BALB/c mice, caused reduced IL-4 messenger 

ribonucleic acid (mRNA) levels in the lungs and BAL fluid, while Th1 cytokine 

expression of IFN-γ and IL-12 mRNA did not increase (Adams et al., 2004). Moreover, 

increased protein levels of IL-10 were detected in the BAL fluid of animals that had 

received M. vaccae (Adams et al., 2004), again suggesting that the reduced Th2 

response was not the result of a switch to a Th1 response, but rather due to the induction 

of a regulatory cytokine environment. Furthermore, the study demonstrated that 

following treatment with M. vaccae a population of CD11c+ cells in the lungs showed 

increased expression of the regulatory cytokines IL-10, TGF-β and IFN-α mRNA 

(Adams et al., 2004), possibly implicating a key role for DCs.  

 Nothing is known about the mechanism by which M. vaccae may modulate 

human immune responses and no studies of M. vaccae interactions with DCs have been 

reported.  
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1.4 Role of dendritic cells in immunoregulation 

 DCs are mononuclear phagocytes, specialised in antigen-presentation. They 

capture and process antigens in the periphery, migrate to lymphoid organs, the spleen 

and the lymph nodes, and secrete cytokines essential to the initiation of innate and 

adaptive immune responses. DCs are characterised by their ability to support naive and 

memory CD4+ T cell activation and proliferation as well as to stimulate cytotoxic 

T cells, both in a MHC-dependent manner, thus they control the mediators of adaptive 

immunity. In addition to their role in T cell activation, DCs may also contribute to so-

called peripheral T cell tolerance to self-antigens (Cools et al., 2007). In their resting 

state, DCs are described as immature because they express relatively low levels of both, 

costimulatory molecules and MHC class II that are required for CD4+ T cell activation, 

but exhibit good phagocytic capacity. 

 

1.4.1 Dendritic cell subtypes 

 Conventional DCs (cDCs) are highly migratory cells that can move from tissues 

to lymphoid organs and are also present in the peripheral blood. They are characterised 

by their CD11c expression and originate from pre-cDCs found in bone marrow, blood, 

spleen and lymph nodes (Liu et al., 2009). They migrate through the blood to lymphoid 

tissues by entering the lymph nodes through high endothelial venules from where they 

distribute themselves and become differentiated cDCs (Liu et al., 2009).  

 The plasmacytoid DC (pDC) population is characterised phenotypically in 

humans as CD11c-/CD123high (Liu, 2001; MacDonald et al., 2002). They circulate in 

blood and are present in the bone marrow, spleen, thymus, lymph nodes, and the liver. 

They are thought to have a key role in viral infections because they have receptors to 

sense viral nucleic acids and produce large amounts of type I IFN (Fonteneau et al., 
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2003). Moreover, pDCs can also act as antigen-presenting cells and initiate T cell 

responses (Colonna et al., 2004). 

 These two DC subtypes are short-lived and have to be continuously regenerated 

from hematopoietic stem cells in the bone marrow. Contrary to initial predictions, 

lymphoid and myeloid committed progenitor cells retain the ability to give rise to both 

pDCs and cDCs (Chicha et al., 2004; Shigematsu et al., 2004). The macrophage/DC 

precursors (MDPs) differentiate into monocytes and common DC precursors (CDPs) 

that are proliferating cells in the bone marrow. CDPs then give rise to pre-cDCs and 

pDCs that leave the bone marrow and enter the blood stream (Liu et al., 2009; Naik et 

al., 2007; Onai et al., 2007). It is not clear if lymphoid progenitor cells also contribute 

substantially to the rise of pDCs and cDCs (Geissmann et al., 2010). 

 Two distinct DC populations characterised by the expression of CD103+ and 

CX3-chemokine receptor-1+ (CX3CR1+) respectively are resident in the non-lymphoid 

tissues such as lung, dermis and intestinal lamina propria. In the lamina propria it has 

been shown that CD103+ DCs also originate from pre-cDCs whereas CX3CR1+ DCs 

derive from monocytes (Bogunovic et al., 2009; Varol et al., 2009). It was demonstrated 

that the balance of the two DC subsets is critical for gut homeostasis (Varol et al., 2009) 

but only pre-cDC derived CD103+ DCs migrate to the lymph nodes for T cell activation 

(Schulz et al., 2009). 

 Langerhans cells (LCs) are another DC subtype that is found in the epidermis. 

Contrary to most DC subsets, LCs and also microglia cells of the CNS are independent 

of bone marrow-derived progenitors for their regeneration (Ajami et al., 2007; Merad 

and Manz, 2009). Recently it was shown that LCs renew from the slow proliferation of 

differentiated LCs resident in the epidermis, which can be enhanced massively in 

response to inflammation (Chorro et al., 2009). 
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 Another DC subset is called TNF-α and iNOS-producing (Tip)-DCs, which 

probably derives from monocytes and is characterised by the production of 

inflammatory mediators such as TNF-α, nitric oxide and reactive oxygen species. These 

Tip-DCs have been shown to play an important role during clearance of Listeria 

monocytogenes infection, but also contribute to the development of trypanosome 

infection-associated tissue injury in mice models (Guilliams et al., 2009; Narni-

Mancinelli et al., 2007; Serbina et al., 2003). 

  

1.4.2 Experimental model: monocyte-derived dendritic cells 

 Circulating DCs are rare and comprise approximately 1 % of circulating 

PBMCs. Since it is difficult to isolate sufficient numbers for experimental studies, most 

work is done with DCs that are generated in vitro. Human monocytes isolated from 

peripheral blood are cultured in the presence of IL-4 and granulocyte macrophage 

colony-stimulating factor (GM-CSF) and differentiate into DCs (Sallusto and 

Lanzavecchia, 1994). These monocyte-derived DCs are potent antigen-presenting cells 

and have many features of primary DCs (Pickl et al., 1996; Sallusto and Lanzavecchia, 

1994). During their differentiation these cells lose the expression of typical monocyte 

markers such as CD14 and FcγRI, and acquire DC morphology. Similar to immature 

DCs they express CD1 molecules, FcγRII, CD11c and DC-specific intercellular 

adhesion molecule 3-grabbing nonintegrin (DC-SIGN) and moderate levels of MHC 

class I and II and costimulatory molecules CD80, CD86 and CD40, and inter-cellular 

adhesion molecule-1 (ICAM-1) (Geijtenbeek et al., 2000; Sallusto and Lanzavecchia, 

1994). Following stimulation the monocyte-derived DCs mature, which leads to a loss 

of FcγRII expression and reduced antigen-capturing capacity, but highly upregulated 

expression of MHC and costimulatory molecules, ICAM-1 and of the so-called 

maturation DC marker CD83 (Sallusto and Lanzavecchia, 1994; Zhou and Tedder, 
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1996). In addition to their ability to process and present antigens, they are potent 

inducers of autologous and allogeneic T cell proliferation and have the DC-specific 

capacity to stimulate naive T cells (Sallusto and Lanzavecchia, 1994). 

 

1.4.3 Activation of DCs 

 Innate immunity describes immunological responses dependent on host-

pathogen interactions between germline encoded PRRs and PAMPs. A number of cell 

associated PRRs subsets exist. These include Toll-like receptors (TLRs), C-type lectin 

receptors (CLRs), nucleotide-binding and oligomerisation domain, leucine-rich repeat 

(Nod)-like receptors (NLRs) and retinoic acid-inducible gene-I (RIG-I)-like receptors 

(RLRs) (see Table 1-2). Their activation sequentially induces recruitment of adapter 

proteins, kinase signalling cascades and activation of transcription factors that cause 

wide ranging gene expression changes (Jenner and Young, 2005; Medzhitov, 2001). 

 TLRs are the best characterised group of PRRs. They are transmembrane 

molecules whose intracellular C-terminal domain, known as the Toll/IL-1 receptor 

(TIR) domain, homologous with that of the IL-1 receptor, associates with adaptor 

molecules to activate downstream signalling pathways. Stimulation of all TLRs, with 

the exception of TLR3, recruits myeloid differentiation primary response (MyD) 88. 

Activation of TLR3 recruits the adaptor molecule TIR-domain-containing adapter-

inducing interferon-beta (TRIF), which can also associate with the TIR domain of TLR4 

through the TRIF-related adaptor molecule (TRAM). Thus only TLR4 stimulation can 

induce both the MyD88-dependent and TRIF-dependent signalling pathways. The 

adaptor-dependent signalling cascades lead to the activation of transcription factors like 

nuclear factor-κB (NF-κB) and IFN regulatory factors (IRFs) (see 1.4.5), and also to 

activation of mitogen-activated protein kinases (MAPKs) such as p38, c-Jun N-terminal 
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kinase (JNK) and extracellular signal-regulated kinases 1 and 2 (ERK1/2), which 

activate the activator protein 1 (AP-1) transcription factor. 

Table 1-2: Better known pattern recognition receptors expressed in human cells 

Group PRR Localisation Ligand 
TLRs TLR2 plasma membrane lipoglycans, lipoteichoic 

acids, peptidoglycans 
TLR1/2 plasma membrane triacylated lipoproteins 
TLR2/6 plasma membrane diacylated lipoproteins 
TLR3 endosomal membrane double-stranded RNA 
TLR4 plasma membrane lipopolysaccharide 
TLR5 plasma membrane flagellin 
TLR7 endosomal membrane single-stranded RNA 
TLR8 endosomal membrane single-stranded RNA 
TLR9 endosomal membrane CpG DNA 
TLR10 plasma membrane ? 

CLRs Dectin-1 plasma membrane β-glucans 
DC-SIGN plasma membrane viruses, mycobacteria, 

Candida, Leishmania 
MBL plasma membrane mannose,  

N-acetylglucosamine 
RLRs RIG-I cytoplasm double-stranded RNA 

MDA-5 cytoplasm double-stranded RNA 
NLRs  
(>20 members) 

Nod1 cytoplasm peptidoglycan (iE-DAP) 
Nod2 cytoplasm peptidoglycan (MDP) 
NALP1 cytoplasm MDP and anthrax toxin 
NALP3 cytoplasm whole bacteria, bacterial 

RNA, purine-like 
compounds, uric acid 
crystals, extracellular ATP, 
pore-forming toxins 

NLRC4 cytoplasm flagellin 
NAIP5 cytoplasm flagellin 

 

 CLRs can interact with a variety of pathogens, including viruses, bacteria, 

mycobacteria, helminths and fungi, as they recognise largely mannose, fucose and 

glucan carbohydrate structures. Interestingly the activation of some CLRs like 

DC-SIGN has been shown to induce signalling cascades that modulate TLR-induced 

gene expression, but may not induce gene expression alone (Gringhuis et al., 2007). 

However, triggering of other CLRs such as dectin-1 and dectin-2 can induce gene 
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transcription independently of other PRRs (Gross et al., 2006; Rogers et al., 2005; Sato 

et al., 2006). 

 The RLRs RIG-I and melanoma differentiation associated protein 5 (MDA-5) 

recognise double-stranded RNA, like TLR3, and also trigger the expression of type-I 

IFNs (Yoneyama and Fujita, 2007). However RIG-I and MDA-5 seem to play a major 

role in virus recognition in cDCs and macrophages, while TLR3 might be more 

important in pDCs (Kato et al., 2005). 

 Nod1 and Nod2 recognise specific motifs of peptidoglycan from bacterial cell 

walls (McDonald et al., 2005) and have been shown to trigger the activation of NF-κB 

and MAPKs (Inohara et al., 2000; Kobayashi et al., 2005). The NLR members NLR 

family containing a caspase-recruitment domain (CARD) containing 4 (NLRC4), 

NACHT leucine rich repeat and pyrin domain containing 1 (NALP1) and NALP3 form 

protein complexes with the adaptor apoptosis-associated speck-like protein-CARD 

(ASC) and caspase-1, known as inflammasomes, which convert proIL-1β and proIL-18 

into active cytokines (Mariathasan and Monack, 2007). 

 In addition to the recognition of PAMPs, TLRs (Park et al., 2004; Tian et al., 

2007; Vabulas et al., 2002; Warger et al., 2006) and NLRs (Hornung et al., 2008) also 

play a role in the recognition of danger associated molecular patterns (DAMPs), which 

can also activate immune cells and trigger signalling-mediated transcriptional changes. 

DAMPs are patterns of host intracellular molecules that have emerged in the 

extracellular milieu from dying host cells, alerting the immune system about necrotic 

cell death. The first host molecules that have been shown to activate DCs and augment 

immune responses were heat-shock proteins (HSPs) (Basu et al., 2000; Binder et al., 

2000; Feng et al., 2003), although it cannot be excluded that microbial contamination 

was responsible for the effects (Bausinger et al., 2002). Another DAMP is the high 

mobility group box 1 protein (HMGB1), which binds deoxyribonucleic acid (DNA) and 
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stabilises the nucleus and can boost immune response to antigens possibly by triggering 

activation of DCs (Rovere-Querini et al., 2004). Moreover, crystals formed by 

monosodium urate activate NALP3 (Hornung et al., 2008). How immune cells 

distinguish between PAMPs and DAMPs that are recognised by the same receptors, is 

not fully understood. One model suggests that binding of DAMPs initiates CD24 

binding to Siglec G/10, resulting in reduced cytokine responses (Chen et al., 2009). 

 

 Although various cell types can express PRRs, they are mainly present on DCs, 

macrophages and endothelial cells. Innate immune stimulation of DCs induces their so-

called maturation, characterised by increased expression of MHC class II molecules, 

T cell costimulatory molecules CD80 and CD86, adhesion molecules ICAM1 and 

CD58, and the lymph node homing CC-chemokine receptor 7 (CCR7), all of which 

serve to augment DC-T cell interactions (Banchereau and Steinman, 1998; Forster et al., 

1999). 

 

1.4.4 Dendritic cells can activate and polarise naive T cells 

 There is substantial interest in the role of DCs in influencing the functional 

polarisation of Th cell subsets (Kapsenberg, 2003) and in particular the mechanisms by 

which innate immune stimulation of DCs may modulate adaptive immune responses 

(van Riet et al., 2009). Following stimulation of PRRs expressed by DCs, they mature 

while migrating towards the lymph nodes where they can interact with naive Th cells. 

Only fully activated DCs express all the signals required for their interaction with 

pathogen-specific naive Th cells to drive the initiation of effector T cells (Kapsenberg, 

2003). The ligation of the TCR with antigenic peptide presented by MHC class II 

molecules on the surface of DCs is the first signal that is essential for Th cell activation 
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(Davis and Bjorkman, 1988). However, TCR binding alone fails to induce complete Th 

cell activation, which requires a second or “costimulatory” signal (Jenkins et al., 1988). 

This costimulatory signal is provided by the binding of B7 molecules CD80 and CD86 

that are expressed and upregulated on mature DCs, to their ligand, CD28, which is 

found on the surface of resting and activated T cells. Moreover, it is thought that a third 

signal is critical to determine the class of the Th cell immune response. In addition to 

the process of DC maturation, processing and presentation of antigenic peptides and the 

upregulation of costimulatory molecules, innate immune responses by DCs include the 

production of a number of cytokines that are associated with early polarisation of Th 

cell responses (Kapsenberg, 2003). For example IL-12 secretion is important for Th1 

polarisation (de Jong et al., 2002) and IL-10 is associated with Treg responses (Hart et 

al., 2004). Similarly, IL-1 and IL-23 that promote induction of Th17 cells can also be 

produced by DCs (Khamri et al., 2010; van Beelen et al., 2007). It is less clear which 

cytokines drive Th2 responses, since IL-4 (major Th2-inducing cytokine)-deficient DCs 

can still induce the development of Th2 immune responses (MacDonald and Pearce, 

2002) and several studies suggest that an important factor might be the reduced levels of 

IL-12 expressed by DCs that induce Th2 (de Jong et al., 2002; Lamhamedi-Cherradi et 

al., 2008). Therefore, the establishment of a defined cytokine environment by DCs is 

likely to be crucial for the initiation of the appropriate type of immune response. While 

DCs have been shown to secrete large quantities of cytokines, other adjoining innate 

immune cells, such as natural killer (NK) cells, NKT cells, γ:δ T cells, mast cells, 

eosinophils and basophils might also influence the cytokine microenvironment of the 

DC-T cell interaction, and thus direct the fate of the T cell response. 

 In addition it is increasingly evident that alternative innate immune stimuli 

induce different DC responses. Depending on the type of microorganism that is 

recognised by PRRs, the DC phenotype develops to drive Th1, Th2, Th17 or Treg 
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polarisation (Ahrens et al., 2009; Cervi et al., 2004; de Jong et al., 2002; Khamri et al., 

2010; Smits et al., 2005). In particular whole genome microarrays to study gene 

expression changes make it possible to identify the regulation of common and distinct 

sets of genes activated by different TLR ligands (Jenner and Young, 2005). For 

example, the transcriptional response to TLR4 ligands is generally greater than the 

response to TLR2 stimulation and includes the upregulation of IFN-stimulated genes 

(Jenner and Young, 2005). Therefore stimulation of different PRRs may be expected to 

modulate Th cell polarisation. However, experimental data suggest much more 

complicated regulation of Th polarisation. For example, Escherichia coli, which 

stimulates TLR4, but also heat-killed Listeria monocytogenes (HKLM), which activates 

TLR2 have both been shown to induce Th1 responses, whereas TLR2 stimulation with 

helminth-derived PAMPs promote Th2 responses (van Riet et al., 2009). However more 

recent studies suggest that the induction of Th2 responses by Schistosoma mansoni is 

independent of TLR stimulation. It was shown that human monocyte-derived DCs 

primed with the glycoprotein omega-1 isolated from soluble egg antigen (SEA) from 

S. mansoni drive Th2-polarised responses from naive human CD4+ T cells (Everts et al., 

2009). Although the receptor of omega-1 is not known, this protein’s functions are 

independent of MyD88 and TRIF signalling (Steinfelder et al., 2009) and it activates 

DCs most likely by binding to C-type lectin receptors (Meevissen et al., 2010). The 

molecular mechanisms responsible for differential Th polarisation are still not fully 

understood (MacDonald and Maizels, 2008; van Riet et al., 2009). 

 

1.4.5 Activation of transcription factors 

 The activation of TLRs and other PRRs leads to signalling events that result in 

the expression of immunomodulatory factors such as cytokines and chemokines. This 

response is orchestrated by the activation of transcription factors, whose differential 
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activation might play a role in directing the fate of the immune response. A group of 

transcription factors, such as the NF-κB, IRFs or cyclic adenosine 5'-monophosphate 

(cAMP)-responsive element binding protein 1 (CREB1), that are constitutively 

expressed by many cell types including DCs play an important role in the initiation of 

an immune response. In many cases, these transcription factors are present in the 

cytoplasm in resting cells but are translocated into the nucleus following receptor-

mediated activation. 

 The most studied and important transcription factors responsible for the 

expression of proinflammatory cytokines in response to TLR signalling are the 

NF-κB/Rel family of proteins. These consist of NF-κB1 (p50 and its precursor p105), 

NF-κB2 (p52 and its precursor p100), RelA (p65), RelB and c-Rel proteins which can 

form homo- and/or heterodimers. The NF-κB1/RelA (p50/p65) heterodimer is the most 

abundant in mammalian cells and is often referred to as simply NF-κB. In unstimulated 

cells, NF-κB is bound to inhibitory NF-κB (IκB) proteins that mask its nuclear 

localisation signals (NLSs) and inhibit its translocation into the nucleus (Huxford et al., 

1998; Jacobs and Harrison, 1998). Moreover, IκB-α proteins contain a nuclear export 

signal (NES) that is also responsible for the mainly cytosolic pool of NF-κB–IκBα 

complexes in resting cells (Tam et al., 2000). Although various signals can cause 

nuclear translocation of NF-κB, generally all pathways converge on the IκB kinase 

(IKK) complex that is a key molecular switch in the activation of NF-κB. Members of 

the IKK family, such as IKKα, IKKβ, TRAF family member-associated NF-κB 

activator (TANK)-binding kinase 1 (TBK1) and inducible IκB kinase (IKKε), are serine 

threonine kinases responsible for the phosphorylation of key molecules that control the 

entry of a variety of transcription factors into the nucleus. The IKK protein complex, 

consisting of the essential regulatory subunit IKKγ, also called NF-κB essential 

modulator (NEMO), and the two protein kinases IKKα and IKKβ, is responsible for the 
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activation of NF-κB (DiDonato et al., 1997; Mercurio et al., 1997; Rothwarf et al., 

1998; Zandi et al., 1997). Following stimulation with TNF-α that engages with TNF-α 

receptor 1 (TNFR1) and recruits the adaptor molecule TNFR1-associated death domain 

(TRADD) or stimulation with IL-1 or TLR ligands in conventional DCs that activate the 

MyD88 or TRIF pathways, IκB gets phosphorylated by the IKK family member IKKβ. 

The phosphorylation of IκB leads to its polyubiquitination and proteasomal degradation 

(Chen et al., 1995b; DiDonato et al., 1996; Lin et al., 1995; Scherer et al., 1995). 

Consequently, NF-κB is no longer bound in the cytoplasm and can shuttle into the 

nucleus where the Rel subunit, which contains a transactivation domain, can drive the 

transcription of over 400 target genes (www.nf-kb.org). Despite its strong homology to 

IKKβ, IKKα is not essential for the rapid NF-κB activation by proinflammatory signals 

that occurs within minutes (Hu et al., 1999). IKKα activates a different form of NF-κB 

dimers (NF-κB2/RelB) by controlling the processing of p100, which requires several 

hours and plays an important role in the formation of secondary lymphoid organs 

(Senftleben et al., 2001). 

 Additionally, stimulation of TLR3 and TLR4 in conventional DCs recruits the 

TRIF adaptor protein and can also lead to the activation of the IKK-related proteins 

TBK1 and IKKε. TBK1 and IKKε form heterodimers and phosphorylate IRF-3 

(Fitzgerald et al., 2003; Hemmi et al., 2004; Sharma et al., 2003), which dimerises and 

translocates into the nucleus where it induces IFN-β expression (Yoneyama et al., 

1998). It is interesting to note that RIG-I like receptor stimulation also activates TBK1 

and IKKε, which then phosphorylate IRF-3 and also IRF-7, thereby inducing the 

expression of IFN-α and IFN-β (Kato et al., 2005). 

 In pDCs that only express TLR7 and TLR9, the stimulation of these receptors 

and the recruitment of MyD88 can lead to the activation of IKKα or IKKβ. Similar to 

the events in cDCs, IKKβ activation results in IκB degradation and NF-κB 



1. INTRODUCTION 

68 

translocation, while IKKα plays a critical role in the induction of IFN-α via 

phosphorylation of IRF-7 (Hoshino et al., 2006). Thus type I IFN expression in pDCs is 

primarily TLR and IKKα-mediated, while in conventional DCs RIG-I followed by 

TBK1 and IKKε activation is important (Kato et al., 2005). 

 Another transcription factor that is constitutively and ubiquitously expressed and 

has important roles in the immune response is CREB1. In contrast to NF-κB and IRFs 

that are mainly cytosolic in unstimulated cells, inactive CREB1 is also located in the 

nucleus. CREB1 has been studied mainly in the field of neurology, as it seems to play a 

critical role in the development of long-term memory (Silva et al., 1998) and in the 

therapeutic effect of antidepressants (Blendy, 2006), but lately CREB1 has attracted 

attention as an important transcription factor in the early innate immune response (Wen 

et al., 2010). Though CREB1 has also been associated with proinflammatory responses, 

like the induction of IL-6 (Spooren et al., 2010) or the upregulation of NALP1 (Sanz et 

al., 2004) that plays an important role in inflammasome mediated processing and 

activation of IL-1β (Faustin et al., 2007; Martinon et al., 2002), most of the literature 

suggests that it is rather involved in limiting proinflammatory signals (Alvarez et al., 

2009; Ananieva et al., 2008; Hu et al., 2006; Martin et al., 2005; Park et al., 2008) and 

its activation can prevent endotoxic shock in mice (Ananieva et al., 2008; Martin et al., 

2005). 

 Following stimulation, CREB1 becomes phosphorylated at serine 133 

(p-CREB1), which triggers the recruitment of the coactivators CREB-binding protein 

(CBP) and its paralogue p300 (Arias et al., 1994; Chrivia et al., 1993), which strongly 

enhances CREB1-dependent transcription (Hagiwara et al., 1993). Originally it was 

shown that liberation of the catalytic subunits of cAMP-dependent protein kinase A 

(PKA) can provoke the phosphorylation of CREB1 in the nucleus (Gonzalez and 

Montminy, 1989). Additionally, various other protein kinase pathways have been 
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described that can induce phosphorylation of CREB1 Ser133: Ca2+ influx can trigger 

Ca2+/calmodulin-dependent protein kinases II and IV (CaMKII/IV) (Matthews et al., 

1994; Sun et al., 1994); ERK1/2 activation can phosphorylate p90 ribosomal S6 kinase 

(p90RSK) (Ginty et al., 1994; Xing et al., 1996); phosphorylated p38 MAPK can 

activate mitogen- and stress-activated protein kinases 1 and 2 (MSK1/2) (Wiggin et al., 

2002); and phosphatidylinositol 3-kinase (PI3K) can trigger Akt/PKB, which can either 

directly phosphorylate CREB1 (Du and Montminy, 1998; Kato et al., 2007) or inhibit 

glycogen synthase kinase 3 (GSK3) that is an inhibitor of CREB1 (Martin et al., 2005). 

In response to Ca2+ influx, additional phosphorylation at Ser142 and Ser143 can also be 

selectively activated in neurons (Kornhauser et al., 2002). This triple phosphorylation 

disrupts the engagement of CREB1 with its cofactor CBP and so may activate a specific 

gene expression profile independent of CBP (Kornhauser et al., 2002).  

 It is likely that stimulation of different PRRs activates diverse signalling 

pathways that can result in activation of CREB1. In primary macrophages from mice it 

was shown that triggering of TLR2, 4 or 9 by Pam3CSK4 (a synthetic bacterial 

lipopeptide), lipoteichoic acid (LTA), LPS or cytosine guanine dinucleotide (CpG) 

DNA respectively, led to phosphorylation of CREB1, which was reduced by a 

combination of inhibitors of p38 and ERK1/2 (Ananieva et al., 2008). Knockout 

experiments demonstrated that the kinases MSK1 and MKS2 that are activated 

downstream of p38 MAPK and ERK1/2 were responsible for the induced 

phosphorylation of CREB1 (Ananieva et al., 2008). Moreover, macrophages of MSK1/2 

double knockouts produced increased amounts of proinflammatory cytokines TNF, IL-6 

and IL-12, but reduced expression of IL-10 (Ananieva et al., 2008). Chromatin 

immunoprecipitation (ChIP) experiments found p-CREB1 and/or phosphorylated 

activating transcription factor 1 (p-ATF-1; which is related to CREB1 and cannot be 

distinguished by antibodies) bound to the promoter of il-10, and substitution of 
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serine 133 in CREB1 resulted in reduced expression of the CREB1 target gene nur77 

and also in impaired IL-10 expression in response to LPS (Ananieva et al., 2008). Thus 

MSK1- and MSK2-mediated activation of CREB1 in response to TLR signalling might 

acts as a negative feedback loop to control TLR-driven inflammation.  

 A different study with human monocyte-derived macrophages (MDMs) 

demonstrated that IFN-γ can inhibit TLR2 mediated IL-10 production and increase 

levels of TNF-α (Hu et al., 2006). Here, IFN-γ inhibited phosphorylation of p38 and 

ERK1/2 and so reduced activation of CREB1 (Hu et al., 2006). Moreover IFN-γ also 

suppressed the phosphorylation of Akt and increased activity of GSK3, which is a 

negative regulator of CREB1 (Hu et al., 2006). The importance of the PI3K-Akt 

pathway in inhibiting GSK3 and thus activation of CREB1-mediated IL-10 expression 

had also been highlighted in response to TLR2, TLR4, TLR5, and TLR9 stimulation 

(Martin et al., 2005). Moreover it was demonstrated that inhibition of GSK3 reduced the 

production of proinflammatory cytokines IL-1β, IFN-γ, IL-12p40 and IL-6. Small 

interfering RNA (siRNA) experiments targeting CREB1 confirmed that the instruction 

of pro- or anti-inflammatory cytokine production was dependent on GSK3-regulated 

activity of CREB1. Inhibition of GSK3 increased DNA-binding properties of p-CREB1 

and enhanced its association with the coactivator CBP, while reducing interactions 

between NF-κB p65 and CBP. Despite the fact that the coactivator proteins CBP and 

p300 associate with numerous transcription factors (Vo and Goodman, 2001), evidence 

suggests that there is only a limited amount of them present in each cell (Hottiger et al., 

1998; Petrij et al., 1995). Since these proteins participate in the effects of both CREB1 

and NF-κB it is likely that they have to compete for them in the nucleus. 

 The role of GSK3 in regulating pro- or anti-inflammatory cytokine responses via 

differential activation of CREB and NF-κB was also seen in a study with Francisella 

tularensis LVS infection of murine peritoneal macrophages (Zhang et al., 2009). 
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 A recent study using human monocyte-derived DCs demonstrated that the 

expression of the immunoregulatory cytokine IL-10 in response to zymosan stimulation 

was also regulated by CREB1 (Alvarez et al., 2009). Binding of p-CREB1 to the il-10 

promoter in response to zymosan stimulation, was dependent on PKA activity (Alvarez 

et al., 2009). Moreover treatment with the cAMP inducer PGE2 or directly 

8-bromo-cAMP, which activates PKA, enhanced the expression of IL-10 (Alvarez et al., 

2009). Interestingly blockage of NF-κB increased the production of IL-10 (Alvarez et 

al., 2009), supporting the view that the balance between NF-κB and CREB1 activity 

might play an important role in shaping the cytokine response of DCs.  

 

1.4.6 Role of dendritic cell-mediated immunomodulation in the context of the 

hygiene hypothesis 

 With regards to the hygiene hypothesis, many studies have focused on the 

immune responses of DCs following interaction with probiotics, helminths and 

mycobacteria, which are associated with induction of regulatory immune responses. A 

common result of these studies is that different species seem to have different effects. 

 Amongst studies with probiotics, one showed that Bifidobacterium strains but 

not lactobacilli augmented IL-10 expression in CD11c+ and CD11c- DCs enriched from 

human blood or intestinal lamina propria (Hart et al., 2004). Moreover, only DCs 

primed with individual strains, B. longum and B. infantis, reduced IFN-γ expression in 

cocultured T cells (Hart et al., 2004). Other studies showed that monocyte-derived DCs 

primed with specific lactobacilli species can drive the development of Treg cells that 

produced increased levels of IL-10 and inhibited the proliferation of bystander T cells in 

an IL-10-dependent fashion (Smits et al., 2005). These active strains were found to bind 

the C-type lectin receptor DC-SIGN, and generation of Treg cells was DC-SIGN 
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dependent (Smits et al., 2005). A recent study with mice selected probiotic strains 

according to their ability to induce high IL-10/IL-12 production ratios and enhanced 

FoxP3 expression in freshly isolated MLN cells (Kwon et al., 2010). A mixture of the 

most effective strains was fed to mice, which upregulated FoxP3 expression in CD25- 

T cells and enhanced suppressor activity of nTreg cells. The FoxP3 expression was 

shown to depend on augmented TGF-β, cyclooxygenase-2 (COX-2) and IDO secretion 

by CD11c+ DCs (Kwon et al., 2010). 

 Infections with helminths are usually associated with a Th2 response, and 

several studies have shown that stimulation of murine or human DCs in vitro with 

antigen mixtures or single molecules from helminths yields populations of DCs that 

have the potential to drive naive T cells towards a Th2 type (van Riet et al., 2007). 

However, chronic infection with parasitic worms can lead to an anti-inflammatory 

response with enhanced production of IL-10 and suppressed T cell proliferation. 

Fractions of schistosomes capable of exerting such effects have been identified. 

Whereas a water-soluble extract of SEA modulated DCs towards a Th2-driving type, 

the lipid lyso-phosphatidylserine (PS) extracted from schistosome eggs and adult worms 

led to the development of DCs that promote IL-10 expressing Treg cells (van der Kleij 

et al., 2002). As in the case of some Lactobacillus strains (Foligne et al., 2007), 

stimulation of TLR2 on DCs by PS was crucial for this effect (van Riet et al., 2007). 

 

1.5 Mycobacterial interactions with dendritic cells 

 Activation of the innate immune system by mycobacteria can involve a range of 

PAMP-PRR interactions shown in Table 1-3. In mammalian cells several mycobacterial 

products and whole live mycobacteria predominantly induce innate immune cellular 



1. INTRODUCTION 

73 

activation via TLR2 (Heldwein and Fenton, 2002; Krutzik et al., 2003), although some 

species specificity has been reported (Lien et al., 1999).  

Table 1-3: PPR recognition of mycobacterial components 

PPR Mycobacterial 
Components 

Species and References 

TLR1/2 LpqH lipoprotein M. tuberculosis, M. bovis (Brightbill et al., 
1999; Drage et al., 2009; Noss et al., 2001) 

TLR1/2 PhoS1 lipoprotein M. tuberculosis (Drage et al., 2009; Jung et al., 
2006) 

TLR1/2 LprG lipoprotein M. tuberculosis, M. bovis (Drage et al., 2009; 
Gehring et al., 2004) 

TLR2/2 LprA lipoprotein M. tuberculosis, M. bovis (Drage et al., 2009; 
Pecora et al., 2006) 

TLR2 27 kDa lipoprotein M. tuberculosis (Hovav et al., 2004) 
TLR2 33 kDa lipoprotein M. leprae (Krutzik et al., 2003) 
TLR2 Ara-LAM M. smegmatis (Wieland et al., 2004) 
TLR2 Glycopeptidolipid M. avium (Sweet and Schorey, 2006) 
TLR2 Lipomannan M. tuberculosis, M. bovis (Quesniaux et al., 

2004) 
TLR2 PE_PGRS33 M. tuberculosis (Basu et al., 2007) 
TLR2 PIM2, PIM6 M. tuberculosis, M. bovis, M. smegmatis 

(Gilleron et al., 2003) 
TLR2 PILAM M. smegmatis (Heldwein and Fenton, 2002) 
TLR2 Soluble tuberculosis 

factor 
M. tuberculosis (Means et al., 1999) 

TLR4 PhoS1 lipoprotein M. tuberculosis (Jung et al., 2006) 
TLR2/TLR4 HSP70 M. tuberculosis (Bulut et al., 2005) 
TLR4 HSP65 M. tuberculosis (Bulut et al., 2005) 
TLR9 DNA M. bovis, M. tuberculosis, M. paratuberculosis 

(Kiemer, 2009; Pott et al., 2009) 
Mannose 
receptor 

Man-LAM M. bovis, M. tuberculosis (Nigou et al., 2001; 
Quesniaux et al., 2004) 

Mannose 
receptor 

PIMs M. tuberculosis (Torrelles et al., 2006) 

DC-SIGN Man-LAM M. bovis, M. tuberculosis, but not M. smegmatis 
(Maeda et al., 2003) 

DC-SIGN alpha-glucan M. tuberculosis (Geurtsen et al., 2009) 
DC-SIGN PIMs M. tuberculosis (Torrelles et al., 2006) 
Dectin-1  M. avium, M. tuberculosis, M. abscessus 

(Rothfuchs et al., 2007; Shin et al., 2008; Yadav 
and Schorey, 2006) 

Nod1 meso-
diaminopimelic acid 

M. paratuberculosis (Pott et al., 2009) 

Nod2 Peptidoglycan-
derived muramyl 
dipeptide 

M. tuberculosis (Coulombe et al., 2009) 

Nod2  M. paratuberculosis (Ferwerda et al., 2007) 
CCR5 HSP70 M. tuberculosis (Floto et al., 2006; Whittall et 

al., 2006) 
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 Most work on mycobacterium-DC interactions has been performed with 

M. tuberculosis or M. bovis BCG, which showed inconsistent findings suggesting 

induction of Th1-like, Th2-like, Th17-like and also Treg-like immune responses. 

 Monocyte-derived DCs that were matured with LPS with or without live BCG 

showed different phenotypes upon additional stimulation with CD40 ligand. BCG 

lowered the levels of IL-12p70 and increased cytokine secretion of IL-10 in a dose-

dependent manner (Madura Larsen et al., 2007). Interestingly with regards to T cell 

polarisation, BCG-treated DCs were cocultured with naive T cells and decreased the 

expression of both, Th1 (IFN-γ) and Th2 (IL-4) cytokines but showed increased levels 

of IL-10, which is associated with a regulatory phenotype (Madura Larsen et al., 2007). 

Another study suggesting the induction of immunoregulatory properties was performed 

with macrophages that, when infected with M. tuberculosis or BCG, showed 

IL-10-dependent reduction in expression of MHC class II  molecules (Sendide et al., 

2005).  

 Many other studies showed that DCs derived from monocytes and treated with 

M. tuberculosis (Mariotti et al., 2002), BCG (Gagliardi et al., 2005; Gagliardi et al., 

2004) or mycobacterial compounds like mannose-capped lipoarabinomannan 

(Man-LAM) (Johansson et al., 2001) had reduced expression levels of IL-12 and 

increased levels of IL-10. Another report suggested differences between macrophages 

and DCs: DCs infected with M. tuberculosis secreted IL-12 and supported Th1 type 

T cells, whilst IL-10 production by infected macrophages inhibited the production of 

IL-12 (Giacomini et al., 2001).  

 A recent study compared the effect of various BCG strains on bone marrow-

derived mouse DCs stimulated with OVA and showed an increased production of IL-10 

and IL-12 (Ahrens et al., 2009). Subsequent coculture experiments with allergen-

specific T cells led to reduced IL-5, IL-13 and IFN-γ expression but more IL-10 and 
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FoxP3+ T cells (Ahrens et al., 2009). However, when allergic mice were treated with 

BCG in vivo, they showed enhanced Th1-associated neutrophilic airway inflammation 

in association with reduced Th2 and enhanced Treg responses (Ahrens et al., 2009). 

 DCs inducing a Th2-like response were generated with human monocytes, 

which were infected with BCG prior to their differentiation into DCs with IL-4 and 

GM-CSF (Martino et al., 2004). The DCs had a matured phenotype, secreted 

proinflammatory cytokines and IL-10, but not IL-12, and stimulated allogeneic T cells. 

Upon coculture with cord blood mononuclear cells they produced the Th2 associated 

cytokine IL-4, but no IFN-γ (Martino et al., 2004). 

 More recently it was shown that M. tuberculosis treated monocyte-derived DCs 

induced the secretion of IFN-γ and IL-17 by CD4+ Th cells (Zenaro et al., 2009). The 

authors demonstrated that the generation of Th17-polarising DCs was dependent on 

binding of the dectin-1 receptor, whereas engagement with DC-SIGN or the mannose 

receptor inhibited Th17 and augmented Th1 generation (Zenaro et al., 2009). 

 In addition, comparisons with other mycobacterial species, such as M. leprae, 

highlight differences in their effects on DCs. Whereas M. tuberculosis and BCG 

induced upregulation of costimulatory markers in immature monocyte-derived DCs in a 

dose-dependent fashion, M. leprae failed to induce maturation and the resulting 

cytokine profile was similar to that of immature DCs (Murray et al., 2007).  

 No data are available on DCs interactions with M. vaccae. However it was 

suggested that M. vaccae modulates T cell responses via DCs to suppress unwanted 

effector T cell responses responsible for allergies and autoimmune diseases (Figure 

1-2). 
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Figure 1-2: The prevailing view of M. vaccae’s mode of action (adapted from (Rook, 2007)). 

M. vaccae is detected by PRRs on DCs that mature and drive regulatory T cell responses to the antigens 
of M. vaccae A: The regular presence of M. vaccae in untreated food or drinking water leads to 
permanent background release of regulatory cytokines from these Treg cells, generating bystander 
suppression of other immune responses. B: The increased number of Treg-polarising DCs can also 
process allergens, self-antigens and gut content antigens. Consequently, there are increased numbers of 
Treg cells specifically triggered by these antigens, which downregulate allergies, autoimmunity or 
inflammatory bowel diseases.  

 

1.6 Real time quantitative PCR normalisation using SINEs 

 Transcriptional responses are a major component of innate immune responses by 

DCs. These are commonly quantified by reverse transcription real time quantitative 

polymerase chain reaction (RT-qPCR). In this methodology, expression levels of genes 

of interest are typically normalised to so-called housekeeping genes, which should have 

constant levels of gene expression. Previous reports have suggested that mycobacteria 

may induce changes in expression levels of several conventional reference genes that 

confound assessment of target genes (Dheda et al., 2004). The present gold standard for 

normalising gene expression data is to use multiple reference genes (Vandesompele et 

al., 2002b), which is resource- and labour-intensive. In the context of studying DC 

responses to M. vaccae, the opportunity to assess a novel normalisation method for 
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qPCR was considered. In place of conventional reference genes, short interspersed 

repetitive element (SINE) sequences are amplified with this approach. SINEs derived 

from retrotransposons and have integrated frequently into mammalian genomes (Lander 

et al., 2001; Waterston et al., 2002). Many of them occur also in untranslated regions of 

mRNA and get therefore transcribed together with numerous genes (Hasler et al., 2007). 

The number of expressed SINEs is due to their abundance expected to be constant, 

which makes them excellent candidates for stable reference sequences. 

 

1.7 Aims 

 In vivo mouse studies and clinical studies in man find that M. vaccae 

downregulates Th2 immune responses, increases regulatory T cells and may increase 

Th1 type responses. As a result there has been extensive interest in its therapeutic 

application for allergic or inflammatory diseases and augmentation of cell mediated 

immunity, but the mechanisms for these effects are not known. In view of the pivotal 

role of DCs in induction and regulation of T cell responses, the principle aims of my 

thesis are to: 

1. Characterise innate immune responses by DCs to stimulation with M. vaccae, at 

the level of innate immune receptors, intracellular signalling, transcriptional and 

protein responses. 

2. Test the hypothesis that M. vaccae-primed DCs support Treg responses and 

reduce Th2-polarised responses.  

3. Investigate the mechanism of M. vaccae effects on DC-mediated modulation of 

T cell responses. 

4. Test the use of SINEs for normalisation of RT-qPCR analyses. 
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2 MATERIAL AND METHODS 

2.1 Buffers and solutions 

Table 2-1: Summary of buffers and solutions 

Abbreviated Name Composition 
BBS 3.63 mg/ml sodium tetraborate, 5.25 mg/ml boric acid, 6.19 

mg/ml sodium chloride, 0.0005 % v/v polysorbate 80, pH 8.0 
FACS buffer PBS pH 7.4, 1 % FBS, 0.02 % sodium-azide 
Fixation buffer PBS pH 7.4, 3.7 % paraformaldhyde 
Freezing mix FBS, 10 % DMSO 
PBS (10x) 80g NaCl, 2.0g KCl, 14.4g Na2HPO4, 2.4g KH2PO4, adjust to pH 

7.4 and to 1 l with dH2O   
PBS/Tween PBS pH 7.4, 0.05% v/v Tween-20 
Running buffer 250 mM Glycine, 25 mM Tris-base, 0.1 % (w/v) SDS 
Sample buffer (4x) 2.4 ml 1 M Tris-HCL pH 6.8, 0.8g SDS, 4 ml 100 % Glycerol, 

0.01 % bromphenol blue, 1 ml % β-mercaptoethanol, 2.8 ml 
dH2O 

Stripping buffer 20 ml 10 % SDS, 12.5 ml 0.5 M Tris-HCl pH 6.8, 67.5 ml dH2O, 
0.8 ml β-mercaptoethanol 

TAE buffer (50x) 242 g Tris-base, 100 ml of 0.5 M EDTA pH 8.0, adjust to 1 l 
with dH2O 

TBS (10x) 24.23 g Tris, 80.06 g NaCl, adjust to 1 l with dH2O and to 
pH 7.6 with HCl 

TBS/Tween TBS pH 7.6, 0.05% v/v Tween-20 
Transfer buffer 800 ml Running buffer, 200 ml methanol 
 

2.2 Mycobacterium vaccae and TLR ligands 

 M. vaccae strain NCTC 11659 was manufactured by Eden Biodesign 

(Liverpool, UK), as a preparation containing 319 mg/ml of heat-killed M. vaccae. 1 mg 

of M. vaccae equals 109 colony forming units (CFU). M. vaccae was grown for 14 days 

in a fermenter in liquid Sauton Synthetic Medium, autoclaved and suspended in borate-

buffered saline (BBS). The material (MV06 and MV07) was manufactured under good 

manufacturing practice guidelines. To test TLR9 activation, a sample of M. vaccae was 

sonicated for 2 minutes on ice using a sterilised probe sonicator (Jencons Scientific, 

Leighton Buzzard, UK) at 10 mA amplitude and 40 Hz. 
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 Lipopolysaccharide (LPS) from Salmonella enterica serotype typhimurium 

(L6143/045K4056) was obtained from Sigma Aldrich (Dorset, UK). Pam3CSK4 

(synthetic tripalmitoylated lipopeptide), heat-killed Listeria monocytogenes, FSL-1, 

Poly(I:C), Flagellin, Gardiquimod, CL075 and OND2006 were purchased from 

InvivoGen (Toulouse, France). 

 

2.3 Media 

2.3.1 Medium for human primary cells 

 Roswell Park Memorial Institute (RPMI)‐1640 was purchased from GIBCO 

(Invitrogen, Paisley, UK). Complete RPMI-1640 was made by supplementing with 

10 % foetal bovine serum (FBS) (Biosera, East Sussex, UK), 100 U/ml penicillin and 

100 U/ml streptomycin (both Invitrogen).  

2.3.2 Medium for cell lines 

 To obtain complete Dulbecco’s modified eagle’s medium (DMEM, Invitrogen), 

it was supplemented like RPMI-1640 with 10 % FBS, 100 U/ml penicillin, 100 U/ml 

streptomycin, and in addition with 100 µg/ml normocin (InvivoGen). 

2.3.3 Medium for bacteria 

 Lysogeny broth (LB) medium contained 10 g tryptone, 5 g yeast-extract and 5 g 

NaCl per 1 l medium (all Sigma Aldrich). Ampicillin (Sigma Aldrich) was added at a 

concentration of 100 μg/ml. Solid medium plates were generated by adding 15 g/l agar-

agar (Sigma Aldrich) to the liquid medium. 
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2.4 Cells 

 All tissue culture work was performed in class II safety cabinets, using sterile 

technique. Long and short term cell culture incubations were carried out at 37 °C with 

5 % CO2. All tissue culture plates, flasks and petri dishes were purchased from TPP 

(Trasadingen, Switzerland). 

2.4.1 TLR reporter cell lines 

 Engineered human embryonic kidney (HEK) 293 cells stably transfected with 

the CD14 gene alone or together with the TLR2 or TLR4 gene, respectively, were a gift 

from Professor M. Yazdanbakhsh (Department of Parasitology, Leiden University 

Medical Centre). Plasmid containing cells were selected by adding 5 µg/ml puromycin 

(InvivoGen) to the complete DMEM culture medium. HEK 296 cells expressing 

TLR1/2, TLR2/6, TLR3, TLR5, TLR7, TLR8, or TLR9 (InvivoGen) were selected by 

supplementing complete DMEM with 10 µg/ml of blasticidin (InvivoGen). 

2.4.1.1 Passaging of cell lines 

 HEK 293 transfected cell lines were grown in 75 cm2 flasks and passaged just 

before reaching confluency, usually two times per week. The medium was aspirated and 

the cell layer washed once with phosphate-buffered saline (PBS) (Invitrogen). Then, 

0.5 ml Trypsin-EDTA (Sigma Aldrich) was added and the flasks were returned to the 

incubator for 2-3 minutes. Cells were split 1:5 into the appropriate medium. 

2.4.1.2 Freezing and thawing of cell lines 

 HEK 293 transfected cells for freezing were harvested by trypsinisation, spun 

down and re-suspended at a density of 3-5 x 106 cells/ml in growth medium 

supplemented with 10 % dimethylsulfoxide (DMSO) (Sigma Aldrich) and transferred to 

cryovials (Nunc, Roskilde, Denmark). Vials were stored for 24-48 hours at -80 °C in a 
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freezing container (Nunc) and then transferred into liquid nitrogen for long time storage. 

Cells to be thawed were incubated at 37 °C in a water bath and then transferred to a 

50 ml tube containing 15 ml of pre-warmed growth medium. Cells were centrifuged, re-

suspended and plated in the appropriate medium in 25 cm2 flasks. 

2.4.2 Generation of human monocyte-derived dendritic cells 

 A volume of 120 ml peripheral blood was drawn into heparinised tubes from 

healthy adult volunteers who had given informed consent. PBMCs were isolated on a 

density gradient with Lymphoprep (Axis-Shield, Oslo, Norway) by centrifugation at 

400 x g for 20 minutes. After repeated washing with Hank’s buffered salt solution 

(HBSS) (Invitrogen), monocytes were isolated by magnetic separation using CD14 

MACS MicroBeads (Miltenyi Biotec, Bergisch Gladbach, Germany) according to 

manufacturer’s instructions. The CD14+ cells were cultured in complete RPMI-1640 

supplemented with 100 ng/ml human recombinant GM-CSF and 50 ng/ml IL-4 (both 

gifts from Schering-Plough Research Institute, Kenilworth, NJ, USA). After 4-day 

incubation these cells were harvested and immediately used as immature DCs. The 

CD14- population of PBMCs was cryopreserved in FBS containing 10 % DMSO 

(Sigma Aldrich) and stored in liquid nitrogen at a concentration of 107 cells/ml. 

2.4.3 Isolation of naive CD4+ T cells  

 The cryopreserved CD14- population of PBMCs was rapidly thawed in a water 

bath of 37 °C and washed in complete RPMI-1640. Naive CD4+ T cells were isolated 

using the Naive CD4+ T Cell Isolation Kit II (Miltenyi Biotec) according to 

manufacturer’s instructions. This method depleted CD8+, γ:δ, memory and activated 

T cells, B cells, monocytes, NK cells and macrophages, using the following cocktail of 

antibodies: CD45RO, CD8, CD14, CD15, CD16, CD19, CD25, CD34, CD36, CD56, 
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CD123, anti-TCRγ/δ, anti-HLA-DR, and CD235a (glycophorin A). The negatively 

selected naive T cells were used immediately in coculture experiments with DCs. 

2.4.4 Isolation of total CD4+ T cells 

 Cryopreserved CD14- PBMCs were rapidly thawed in a water bath of 37 °C and 

washed in complete RPMI-1640. Total CD4+ T cells were isolated by negative selection 

with the CD4+ T Cell Isolation Kit II (Miltenyi Biotec) according to manufacturer’s 

instructions. Isolated CD4+ T cells were used immediately in coculture experiments 

with DCs. 

 

2.5 Analysis of TLR activation 

 TLR-transfected HEK 293 reporter cells were seeded at 35000 cells/well into 

96-well microtiter plates. After a resting period of 24 hours, the cells were stimulated 

overnight with optimised concentrations of positive control TLR ligands (InvivoGen) 

(see Table 2-2), a dilution series of M. vaccae (MV) or 125 ng/ml of TNF-α. For 

stimulation of HEK 293-CD14/TLR4 cells, 12.5 % supernatant of MD-2 transfected 

cells (a kind gift from Professor M. Yazdanbakhsh) was added. The activation of the 

cells was assessed by measuring IL-8 secretion in the supernatants via ELISA (R&D 

Systems, Minneapolis, MN, USA) (see 2.12.1). 

Table 2-2: Optimised concentrations of dilution series for positive control ligands for TLR stimulation 

Expressed 
gene(s) 

Positive ligand Optimised concentration of dilution series for positive 
ligands 

TLR1/2 Pam3CSK4 62.5 ng/ml 125 ng/ml 250 ng/ml 500 ng/ml 
TLR2/CD14 Heat-killed Listeria 

monocytogenes 
1.25*10^7 
bac/ml 

2.5*10^7 
bac/ml 

5*10^7 
bac/ml 

1*10^8 
bac/ml 

TLR2/6 FSL-1 25 ng/ml 50 ng/ml 100 ng/ml 200 ng/ml 
TLR3 Poly(I:C) 25 μg/ml 50 μg/ml 100 μg/ml 200 μg/ml 
TLR4/CD14 LPS 0.1 ng/ml 1 ng/ml 10 ng/ml 100 ng/ml 
TLR5 Flagellin 0.5 μg/ml 1 μg/ml 2 μg/ml 4 μg/ml 
TLR7 Gardiquimod 0.625 μg/ml 1.25 μg/ml 2.5 μg/ml 5 μg/ml 
TLR8 CL075 5 μg/ml 10 μg/ml 20 μg/ml 40 μg/ml 
TLR9 OND2006 0.3125 μM 0.625 μM 1.25 μM 2.5 μM 
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2.6 Stimulation of immature dendritic cells 

 Day 4 purified DCs were harvested and washed in complete RPMI-1640 and 

seeded at 106 cells/well in 6-well plates. DCs were stimulated by adding LPS 

(100 ng/ml), Pam3CSK4 (1 µg/ml) or M. vaccae (10 µg/ml (MV10), 100 µg/ml 

(MV100), or 1000 µg/ml (MV1000)) for 0.5-48 hours. As a negative control, DCs were 

treated with media only (unstimulated DCs). For antigen-specific coculture experiments 

with autologous CD4+ T cells, 10 µg/ml of tetanus toxoid (National Institute for 

Biological Standards and Control, UK) was added in addition to the innate immune 

stimuli. For signalling pathway inhibitor experiments, DCs were treated 2 hours prior to 

innate immune stimulation with the different inhibitors indicated in Table 2-3. 

Table 2-3: Signal transduction pathway inhibitors 

Inhibitor Target Concentration Manufacturer 
H89 PKA 1.5 – 50 μM Sigma Aldrich 
PKI-(6-22)-amide PKA 1 – 10 μM Biomol 
LY294002 PI3K 25 μM Calbiochem 
SB203580 p38 25 μM Calbiochem 
SQ22536 adenylate cyclase 100 μM Calbiochem 
PD98059 MEK1 25 μM Calbiochem 
  

2.7 Coculture of dendritic cells and allogeneic naive CD4+ T cells 

 DCs that were primed in 6-well plates for 24 hours with different stimuli (see 

2.6) were harvested, washed and seeded into round-bottomed 96-well microtiter plates 

at 0, 10, 100, and 1000 cells/well. 105 allogeneic naive CD4+ T cells were added to the 

DCs. Unstimulated control DCs were analysed after 24 hours for maturation by flow 

cytometry to verify that handling of the cells did not induce maturation. After 3 day 

coculture the cells were assed for proliferation (2.14), intracellular cytokine production 

(2.11.3.2) and IL-10 secretion (2.12.2), and after 6 day coculture for IL-10 secretion 

(2.12.2) and CD25 and FoxP3 expression (2.11.3.1). The experimental paradigm is 

summarised in Figure 2-1. 
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2.8 Coculture of dendritic cells and autologous CD4+ T cells  

 DCs, which were stimulated for 24 hours with different innate immune stimuli 

together with tetanus toxoid (TT) (see 2.6) were harvested, washed and seeded into 

round-bottomed 96-well microtiter plates at 0, 10, 100, 1000 and 10000 cells/well. 

105 autologous total CD4+ T cells were added to the DCs. Control DCs primed only 

with TT were analysed after 24 hours for maturation by flow cytometry to verify that 

handling of the cells did not induce maturation. 

 

Figure 2-1: Outline of the study protocol of dendritic cell / T cell coculture experiments 

PBMCs sorted for CD14+ monocytes where cultured with IL-4 and GM-CSF to generate DCs. On day 4, 
DCs were stimulated and analysed for maturation after 24 hours. On day 5, T cells were added. On day 7, 
[3H]-thymidine was added to measure T cell proliferation 18 hours later. On day 8, T cells were re-
stimulated with PMA/Ionomycin or tetanus toxoid (TT) together with brefeldin A. After 4 hours, the T 
cells were analysed for cytokine production by intracellular immunofluoresence staining. On day 11, the 
supernatants were analysed for IL-10 secretion by ELISA and the T cells were stained for CD25 and 
FoxP3 expression.  

 

2.9 Culture of naive CD4+ T cells with conditioned media 

 A volume of 50 μl mouse anti-human CD3 antibody (clone SK7, eBioscience) at 

a 1:1000 dilution in HBSS was added to flat-bottom 96-well tissue culture plates. After 

24 hours of incubation at 4 °C, the plates were washed once with HBSS. 105 naive 

CD4+ T cells were added to each well in 100 μl complete RPMI-1640. Stimulated DC 

cultures (see 2.6) were spun down and 100 μl of the supernatants together with 1:1000 

diluted mouse anti-human CD28 antibody (clone CD28.6, eBioscience) was added to 
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the allogeneic naive CD4+ T cells. Cells were analysed after 3 days for IL-4 and IFN-γ 

production by intracellular flow cytometry (see 2.11.3.2).  

 

2.10 Coculture of fixed dendritic cells with allogeneic naive CD4+ T cells 

 DCs those were primed in 6-well plates for 24 hours with different stimuli (see 

2.6) were harvested and washed in HBSS. Half of the cells were re-suspended in 500 μl 

HBSS and incubated for 30 seconds with 0.05 % glutaraldehyde (final concentration, 

Sigma Aldrich). The fixation was stopped by adding 2 ml of complete RPMI-1640. To 

remove excess glutaraldehyde, fixed DCs were washed twice and seeded into round-

bottomed 96-well microtiter plates at 0, 10, 100, and 1000 cells/well. 105 allogeneic 

naive CD4+ T cells were added to the DCs. Cells were analysed after 3 days for IL-4 

and IFN-γ production by intracellular flow cytometry (see 2.11.3.2). 

 

2.11 Flow cytometry 

2.11.1 Antibodies for flow cytometry 

Table 2-4: Antibodies for cell staining and detection by flow cytometry 

Antibody (host/isotype) Fluorophor  Clone Dilution Manufacturer 
TLR2 (mouse IgG2b) none 383936 ≤ 20μg/ml R&D systems 
TLR2 (mouse IgG2a, κ) none TL2.1 ≤ 20μg/ml eBioscience 
mouse IgG2b isotype none  ≤ 20μg/ml R&D systems 
mouse IgG2a, κ isotype none eBM2a ≤ 20μg/ml eBioscience 
anti-mouse IgG (rabbit) FITC polyclonal 1:50 DakoCytomation 
CD83 (mouse IgG1, κ) FITC HB15e 1:10 BD Biosciences 
CD86 (mouse IgG1, κ) PE 2331 (FUN-1) 1:50 BD Biosciences 
CD209 (mouse IgG2b, κ) APC DCN46 1:50 BD Biosciences 
CD4 (mouse IgG1, κ) PE L200 1:20 BD Biosciences 
CD25 (mouse IgG1, κ) PE-CY7 M-A251 1:20 BD Biosciences 
FoxP3 (mouse IgG1) AF-674 259D/C7 1:15 BD Biosciences 
IL-4 (mouse IgG1, κ) PE 8D4-8 1:50 BD Biosciences 
IFN-γ (mouse IgG1, κ) APC B27 1:50 BD Biosciences 
IL-10 (rat IgG2a) APC JES3-19F1 1:5 BD Biosciences 
IL-17A (mouse IgG1, κ) PE SCPL1362 1:5 BD Biosciences 
annexin-V (mouse IgG2a, κ) APC unknown 1:20 eBioscience 
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 All antibodies were used at pre-tested titrated quantities or diluted as 

recommended by the manufacturer. FITC: fluoresceine isothiocyanate; PE: 

phycoerythrine; APC: allophycocyanin; AF: Alexa-Flour. 

2.11.2 Cell surface immunofluorescence staining 

 Cells were harvested, washed once in PBS and re-suspended in fluorescence 

activated cell sorting (FACS) buffer. If not indicated differently, cells were spun down 

for 5 minutes at 4 °C and 400 x g. Cells were blocked for 30 minutes using 10 % goat 

serum (Sigma Aldrich) at 4 °C. Cells were stained with the antibodies listed in Table 

2-4 diluted in FACS buffer. Briefly, directly conjugated antibodies were added at the 

appropriate concentrations and incubated for 30 minutes at 4 °C in the dark and washed 

twice. When the primary antibody was unconjugated, the procedure was the same, but 

there was an additional incubation with the secondary antibody for 30 minutes at 4 °C in 

the dark. After two washes the cells were fixed in 3.7 % paraformaldehyde (PFA) and 

examined by flow cytometry within 24 hours using a FACScan flow cytometer or a 

FACSArray Bioanalyzer System (both BD Biosciences, San Jose, USA). Data were 

analysed with FlowJo software (Tree Star, Inc, Ashland, USA). 

2.11.3 Intracellular immunofluorescence staining 

2.11.3.1 FoxP3 staining 

 Intracellular FoxP3 staining was conducted following surface staining for CD25 

and CD4 (see 2.11.2). Cells were spun down for 10 minutes at room temperature and 

250 x g. Cells were fixed, permeabilised and stained using the Human FoxP3 Buffer Set 

(BD Pharmingen) according to manufacturer’s instructions. Briefly, following surface 

staining, cells were washed once in FACS buffer and incubated in Buffer A (fixative) 

for 10 minutes at room temperature in the dark. Cells were washed once, spun down for 

5 minutes at room temperature and 500 x g and permeabilised with Buffer C for 
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30 minutes at room temperature in the dark. After two washes and spinning as before, 

cells were stained with anti-FoxP3 (see Table 2-4) for 30 minutes at room temperature 

in the dark. After two washes, cells were re-suspended in PBS containing 1 % PFA and 

examined by flow cytometry within 24 hours. 

2.11.3.2 Cytokine staining 

 Intracellular cytokine staining in T cells was conducted after addition of 

7.5 µg/ml ionomycin, 125 ng/ml phorbol myristate acetate (PMA) and 25 µg/ml 

Brefeldin A (all Sigma Aldrich) (or 10 μg/ml TT and 25 µg/ml Brefeldin A in antigen-

specific experiments) for the last 4 hours of culture. Supernatants were removed after 

centrifugation and cells were incubated for 15 minutes at 4 °C with 1:20 diluted human 

FcR Blocking Reagent (Miltenyi Biotec). Cells were then fixed in FACS buffer 

containing 3.7 % PFA at 4 °C for 15 minutes. After two washes, cells were either 

stained immediately or stored in FACS buffer for up to 24 hours at 4 °C. 

 FACS buffer was removed and cells were permeabilised with BD Perm/Wash 

buffer (BD Biosciences) for 15 minutes at 4 °C. The fixed and permeabilised cells were 

incubated with anti-human cytokine antibodies (see Table 2-4) diluted in BD 

Perm/Wash buffer at 4 °C for 30 minutes. Cells were washed twice with BD 

Perm/Wash buffer and re-suspended in FACS buffer prior to flow cytometric analysis. 

2.11.4 Cell staining for apoptosis and cell death 

 For measuring potential toxicity of M. vaccae on DCs, cells were stained after 

48 hours of stimulation with the nucleic acid dye 7-Amino-Actinomycin D (7-AAD) 

(BD Biosciences) and analysed 10 minutes later by flow cytometry. 

 Apoptosis and cell death of inhibitor-treated DCs were detected by annexin-V 

and propidium iodide (PI) staining, using the Annexin-V Apoptosis Detection Kit APC 

(eBioscience). Briefly, cells were harvested, washed once in PBS and re-suspended in 
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Binding Buffer to obtain 1-5 x 106 cells/ml. A volume of 100 μl was incubated at room 

temperature for 1-15 minutes with annexin-V antibody (see Table 2-4). Then, cells were 

washed and re-suspended in 200 μl Binding Buffer substituted with 5 μl PI staining 

solution and measured immediately by flow cytometry.  

 

2.12 Enzyme-linked immunosorbent assay 

 Supernatants from cell cultures used for analysis of secreted protein levels by 

enzyme-linked immunosorbent assay (ELISA) were stored at -80 °C. ELISA plates 

(Nunc) were coated overnight at 4 °C with 50 μl/well capture antibody diluted in PBS. 

Plates were washed three times with washing buffer (PBS/Tween). To block any free 

residues, wells were incubated with 100 μl/well of 2 % (w/v) bovine serum albumin 

(BSA) (Sigma Aldrich) in PBS for 1 hour at room temperature. Standards were diluted 

in the same medium as the cell culture supernatants and two-fold serial dilution were 

performed to produce a standard curve. After washing for tree times in washing buffer, 

the plates were incubated with duplicates of standards and samples (50 μl/well) for 

2 hours at room temperature. The plates were washed three times and incubated with the 

biotinylated detection antibody diluted in washing buffer (50 μl/well) for 1 hour at room 

temperature. After tree more washes in washing buffer the wells were incubated with 

50 μl of 1:250 diluted Streptavidin-horseradish peroxidise (Streptavidin-HRP) 

(eBioscince) for 30 minutes at room temperature. After five more washing steps HRP 

presence was detected by adding 100 μl/well tetramethylbenzidine (TMB) 

(eBioscience) substrate for about 10 minutes in the dark. To stop the reaction, 50 μl 

2N HCl were added.  Colorimetric reactions were quantified immediately on the MRX 

Revelation plate reader at 450 nm, using Revelation v4.21 software (Dynex 

Technology, West Sussex, UK) for analysis. 
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2.12.1 IL-8 ELISA 

 To test for TLR-dependent cellular activation, supernatants from stimulated 

TLR-transfected HEK 293 cells (see 2.5) were analysed for IL-8 secretion with an 

ELISA kit from R&D Systems. The capture antibody was used at 4 μg/ml, the highest 

standard concentration was 2000 pg/ml, and the secondary antibody was used at 

20 ng/ml. Sample dilutions reached from 1:2 to 1:10. 

2.12.2 IL-10 ELSIA 

 Supernatants from 3 or 6 day cocultures of stimulated DCs and allogeneic naive 

CD4+ T cells were used to measure the amount of secreted IL-10 (see 2.7). Samples 

were diluted 1:2. The capture antibody (clone JES3-9D7, eBioscience) was used at 

2 μg/ml and secondary antibody (clone JES3-12G8, eBioscience) at 1 μg/ml. The 

highest standard concentration of recombinant human IL-10 (eBioscience) was 

5000 pg/ml.  

 

2.13 Multiplex analysis of cytokines 

 Stored supernatants (-80 °C) of stimulated DC cultures (see 2.6) were used at 

1:2 dilutions to quantify the production of 31 different human cytokines, chemokines 

and growth factors using human Biosource multiplex bead immunoassay kits according 

to manufacturer’s instructions (Invitrogen). The 30-plex assay allows the simultaneous 

measurement of the following proteins: epidermal growth factor (EGF), Eotaxin, 

fibroblast growth factor (FGF)-basic, G-CSF, GM-CSF, hematopoietic growth factor 

(HGF), IFN-α, IFN-γ, IL-1Ra, IL-1β, IL-2, IL-2R, IL-4, IL-5, IL-6, IL-7, IL-8, IL-10, 

IL-12p40/p70, IL-13, IL-15, IL-17, IP-10, monocyte chemotactic protein-1 (MCP-1 or 

CCL2), monokine induced by IFN-γ (MIG or CXCL9), macrophage inflammatory 

protein (MIP)-1α (or CCL3), MIP-1β (or CCL4), RANTES (or CCL5), TNF-α and 
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vascular endothelial growth factor (VEGF). IL-1α was measured using a separate 

Biosource multiplex kit. The multiplex analysis was performed using Luminex 2001S 

platform (Luminex, Austin, TX, USA). Concentrations were determined using 

LuminexIS software 2.3 (Luminex). 

 

2.14 T cell proliferation assay 

 For quantification of T cell proliferation, 1 µCi of [3H]-thymidine (MP 

Biomedicals, Irvine, CA, USA) was added on day 2 of DC/T cell coculture (see 2.7 and 

2.8) to each well. T cell proliferation was measured after further 18 hours of incubation 

by harvesting the cells and measuring the incorporation of radioactivity into DNA using 

a cell harvester (Tomtec, Hamden, CT, USA) and a Microbeta TriLux Scintillation 

Counter (Perkin Elmer, Waltham, MA, USA). Results were expressed as counts per 

minute (cpm). 

 

2.15 Quantitative confocal immunofluorescence analysis of NF-κB nuclear 

translocation 

 Immature DCs were cultured on 13 mm (No 1.5) glass coverslips (VWR, 

Batavia, IL, USA) using 2 × 105 cells/cover slip, which had been coated overnight with 

fibronectin (Sigma Aldrich). After 3 hours at 37 °C, adhered DCs were stimulated for 

30 minutes or 2 hours (see 2.6), fixed with 3.7 % PFA (15 minutes, room temperature) 

and washed with Tris-buffered saline (TBS). Cells on coverslips were first 

permeabilised with 0.2 % Triton-X100 (Sigma Aldrich) in TBS for 10 minutes, non-

specific antibody binding was blocked with 10 % goat serum in TBS, and cells were 

incubated with primary rabbit polyclonal anti-NF-κB p65 RelA (sc-372) (Santa Cruz 

Biotechnology, Santa Cruz, CA, USA) antibody overnight at 4 °C. Cells were washed 
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and stained with secondary antibody Alexa-Fluor (AF)633-conjugated goat anti-rabbit 

IgG (Invitrogen) together with mouse anti-CD13 PE-conjugated antibody (clone 

WM15; BD Biosciences) for 1 hour at room temperature. After staining the nuclei for 

5 minutes at room temperature with 4,6-diamidino-2-phenylindole (DAPI) (Sigma 

Aldrich), the coverslips were mounted onto glass slides (VWR) using Vectashield 

hardset mounting medium (Vector Laboratories, Peterborough, UK). 

 All fluorescence images were captured on a Leica SP2 confocal microscope 

(Leica Microsystems, Wetzlar, Germany) with a pin hole of 1 Airy (114.5 µm), scan 

speed of 400 Hz, and four-frame averaging. Image analysis was performed with 

Metamorph software v7.17 (Molecular Devices, Sunnyvale, CA, USA) to quantify 

nuclear:cytoplasmic ratios of NF-κB RelA staining. 

 

2.16 Transcriptional profiling by microarray 

 106 DCs were stimulated in 6-well plates with different stimuli as described 

above (see 2.6). After 4 hours and 24 hours, the supernatant was collected and the cells 

were lysed in RLT-buffer (Qiagen, Crawley, UK) and stored at -80 °C. RNA was 

isolated using the RNeasy kit from Qiagen, according to manufacturer’s instructions. 

DNase treatment was performed in 50 µl reactions with Ambion’s (Austin, TX, USA) 

TURBO DNase kit. 

 RNA quantity and integrity were measured electrophoretically (Agilent RNA 

6000 Nano assay/Agilent 2100 Bioanalyzer, Santa Clara, CA, USA). The Agilent Quick 

Amp Labeling Kit was used to generate firstly cDNA and subsequently Cy3-labeled 

cRNA in an amplification step. Purification, labelling-intensity and RNA concentration 

were verified using a NanoDrop ND-1000 UV-VIS Spectrophotometer (Thermo Fisher 
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Scientific, Waltham, MA, USA). cRNA was then hybridised onto Agilent 4 x 44K 

whole human genome cDNA microarrays, according to manufacturer’s instructions. 

 Array images were acquired with Agilent’s dual-laser microarray scanner 

G2565BA (5-µm resolution), and signal data were collected with dedicated Agilent 

Feature Extraction software (v9.5.1). Log2 transformed data were then subjected to 

LOESS normalisation (Chain et al., 2010) and compared by paired T-tests (p<0.05) 

using MultiExperiment Viewer v4.4.1. Genes with significant (p<0.05) >2 fold changes, 

for which refseq accession numbers were available, were selected for further analysis. 

The DAVID bioinformatics database was used to perform functional annotation cluster 

analysis (Dennis et al., 2003).  Principle component analysis was performed using the 

R-project (http://www.r-project.org/) to obtain a global overview of gene expression 

data. The open-access bioinformatics tool oPOSSUM was used to identify 

overrepresented transcription factor binding sites in selected gene lists (Ho Sui et al., 

2005). 

 

2.17 SDS-polyacrylamide-gel electrophoresis (SDS-PAGE) 

 Cells were harvested and lysed by adding 50 μl or 100 μl of denaturating and 

reducing sample buffer. To shear the genomic DNA, the samples were sonicated at 

40 Hz using an ultrasonic processor (Jencons Scientific) for 20-30 seconds on ice and 

then heated for 5 minutes at 98 °C. A volume of 18 μl of the samples and 3 μl of 

PageRuler protein marker (Fermentas, York, UK), used as a protein size reference, were 

loaded into the pockets of a precast 4-12 % bis-tris gradient gel (Invitrogen). Gels were 

run in Running buffer at 100 V in the XCell SureLock Mini-Cell electrophoresis system 

(Invitrogen). 
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2.18 Western blotting 

2.18.1 Antibodies for Western blotting 

Table 2-5: Antibodies used for Western blot analysis 

Antibody (host) Conjugate  Clone Dilution Manufacturer 
IκB-α (rabbit) none 44D4 1:1000 Cell Signaling 
p-p38 (rabbit) none 3D7 1:1000 Cell Signaling 
p-Erk1/2 (rabbit) none 197G2  1:1000 Cell Signaling 
p-CREB (rabbit) none 87G3 1:1000 Cell Signaling 
β-actin (mouse) none AC-15 1:10000 Abcam 
anti-rabbit-HRP (swine) HRP polyclonal 1:2000 DakoCytomation 
anti-mouse-HRP (goat) HRP polyclonal 1:2000 DakoCytomation 
 

2.18.2 Western blotting 

 SDS-PAGE gels were equilibrated in Transfer buffer for 15-30 minutes. Protein 

transfer onto Amersham Hybond ECL nitrocellulose membranes (GE Healthcare, Little 

Chalfont, UK) was performed in Transfer buffer using the XCell SureLock Mini-Cell 

electrophoresis system with the blot module (Invitrogen) for 1 hour at 100 V. 

Membranes were incubated for 1 hour in TBS/Tween containing 1-5 % (w/v) skimmed 

milk powder (Marvel, Premier Foods, St Albans, UK) to saturate non-specific binding 

sites and afterwards washed briefly in TBS/Tween. The primary antibody was diluted in 

TBS/Tween containing 1 % (w/v) skimmed milk powder (Marvel) to a given 

concentration (Table 2-5) and the membranes were incubated overnight at 4 °C. After 

being washed three times for 10 minutes with TBS/Tween, the membranes were 

incubated with secondary antibody conjugated with HRP (Table 2-5) in TBS/Tween 

containing 1 % (w/v) skimmed milk powder (Marvel) for 1 hour at room temperature. 

Subsequently the membranes were washed three times as described above, followed by 

two washes in TBS without Tween. Membrane-bound secondary antibody was detected 

by chemiluminescence using ECL plus Western blotting detection reagent (GE 

Healthcare). Chemiluminescence was measured by autoradiography using ECL 
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Hyperfilm (GE Healthcare). Membranes were incubated for 45 minutes at 60 °C in 

Stripping buffer for removal of primary and secondary antibodies and then washed 

intensively in PBS and TBS/Tween before the blocking step and re-probing for a 

different target. 

 Western blots were quantified by densitometry analysis using ImageJ version 

1.42q (http://rsbweb.nih.gov/ij/). 

 

2.19 Animals for RNA sample preparation 

 Five to six week old female BALB/c mice were treated by oral gavage with four 

different formulations of M. vaccae and with sterile water as a control (detailed in Table 

2-6 below). The first and second group of mice were sacrificed on day 4 and day 30 

after treatment, respectively. The remaining mice received a second treatment on day 30 

and were sacrificed on day 50. Each time point and treatment was tested in triplicates 

(N=3), thus the study included a total of 45 mice. Study design and implementation 

were performed by Professor Oya Alpar’s group at the University of London’s School 

of Pharmacy and samples were kindly provided as a gift for validation of the SINE 

normalisation approach. To protect the RNA from degradation, one half of each spleen 

and the Peyer’s patches were stored for 24 hours at 4 °C in 1 ml of RNAlater (Ambion). 

Next, after the RNA stabilisation solution had permeated the tissue, it was removed and 

the samples were kept at -80 °C until the extraction of RNA. 

Table 2-6: Different formulations of M. vaccae used for oral treatment 

Treatment 
100 µl sterile water 
100 µg M. vaccae / 100 µl sterile water 
Sonicated sample (100 µg M. vaccae / 100 µl) with 0.05 % m/v Tween 20 
(10 amplitude, 2 min in phosphate buffer 7.4) 
Sonicated sample (100 µg M. vaccae / 100 µl) with 0.05 % m/v Tween 20 + chitosan 
(10 amplitude, 2 min in phosphate buffer 7.4) 
Freeze-dried preparation of 100 µg M. vaccae / 100 µl sterile water 
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2.20 RNA extraction 

 RNA was isolated from mice spleens and Peyer’s patches using the RNeasy 

Mini kit (Qiagen). 600 µl RLT buffer were added to the tissues that were disrupted and 

homogenised using a rotor-stator homogeniser (Omni International, Kennesaw, GA, 

USA) for approximately 30 seconds. As the spleen is a very condense tissue containing 

many cells, each sample was then divided into three aliquots and refilled with RLT 

buffer to a total volume of 600 µl. Two aliquots were stored at -80 °C. RNA extraction 

was carried out following the manufacturer’s instructions without conducting the 

optional on-column DNase digestion. RNA of spleens and Peyer’s patches was eluted in 

80 µl and 50 µl water, respectively. The nucleic acid concentration was measured using 

the NanoDrop spectrophotometer (Thermo Scientific) and the RNA was stored at 

-80°C. 

 

2.21 DNase treatment and RNA cleanup 

2.21.1 Method one: using microcon-100 column purification 

 4 μg RNA from spleens were DNase treated using one unite of RQ1 RNase-free 

DNase enzyme per 1 µg RNA (Promega) for 30 minutes at 37 °C in 40 μl reactions 

flowing the manufacturer’s instruction. The reaction was split in two for comparison 

with method two (see 2.21.2 below).  

 Then the DNase was inactivated by incubation at 65 °C for 10 minutes. 180 μl 

RNase-free water (Invitrogen) was added to the 20 μl reaction mixture and transferred 

onto Microcon/Ultracell YM-100 membrane columns (Millipore, Billerica, MA, USA). 

The columns were centrifuged for 8 minutes at 2500 x g at room temperature. The 

samples were washed by adding 200 μl RNase-free water onto the columns and 

spinning as before. Then, 14 μl of RNase-free water was added onto the columns and let 
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stand for 5 minutes. To collect the purified RNA samples from the columns, the sample 

reservoir was inverted and spun for 3 minutes at 1000 x g at room temperature. RNA 

quality and was compared to purification using method two (see 2.21.2 below) via 

agarose gel electrophoresis (see 2.25). 

2.21.2 Method two: using guanidinium thiocyanate phenol chloroform purification 

 15 µg RNA from spleens and 20 µg RNA from Peyer’s patches were DNase 

treated using one unite of RQ1 RNase-free DNase enzyme per 1 µg RNA (Promega) for 

30 minutes at 37 °C in 60 µl and 80 µl reactions, respectively. The reactions contained 

5 µl of RnaseOUT Recombinant Ribonuclease Inhibitor (Invitrogen) to prevent 

degradation. RNase-free water (Invitrogen) was added to a total volume of 80 µl and 

mixed with 1 ml of TRI Reagent (Sigma Aldrich). After 5 minutes incubation at room 

temperature, 200 µl of chloroform (Sigma Aldrich) was added and well mixed by hand 

for 15 seconds and again incubated at room temperature for 3 minutes. Following 

centrifugation at 4° C at 12,000 x g for 15 minutes, the upper aqueous phase was 

transferred into a fresh tube. For RNA precipitation, 500 µl isopropyl alcohol (Fulka) 

was added and incubated for 10 minutes at room temperature. The RNA was pelletised 

by centrifugation at 4 °C at 12,000 x g for 15 minutes and washed with 1 ml of 75 % 

ethanol. After centrifugation for 5 minutes at 4 °C and 12,000 x g, the supernatant was 

removed and the pellet air-dried. The RNA was dissolved in 34 µl RNase-free water 

(Invitrogen). Two aliquots of 2 µl were used for RNA quality and quantity assessment 

with the NanoDrop (Thermo Scientific) and BioAnalyzer (Agilent), and all remaining 

RNA with a RNA integrity number (RIN) > 8 was stored at -80°C until reverse 

transcription into cDNA. 
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2.22 Reverse transcription 

 1 µg RNA was used for all reverse transcription (RT) reactions, which were 

performed following the manufacturer’s instructions using SuperScript III reverse 

transcriptase and oligo(dT)12-18 primer (both Invitrogen). The resulting cDNA was 1:10 

diluted by adding 180 µl RNase-free water to the 20 µl reaction. Aliquots of 6 µl were 

stored at -80 °C until real-time PCR reaction. 

 

2.23 Primer design and qPCR assay optimisation for human and mice 

SINEs 

 The consensus sequences of repetitive elements were found on the electronic 

database Repbase Update (http://www.girinst.org) (Jurka, 2000). Primers were designed 

for B1- and B2-element consensus sequences, and for the ALU-J family (Table 2-7). 

Table 2-7: Primers designed for SINE amplification by qPCR 

SINE Forward primer Reverse Primer 
ALU-J 5’CAACATAGTGAAACCCCGTCTCT 5’GCCTCAGCCTCCCGAGTAG 
B1F1/B1R1 5’TGGCGCACGCCTTTAATC 5’GCTGGCCTCGAACTCAGAAAT 
B1F2/B1R2 5’GTGGCGCACGCCTTTAAT 5’GCTGGCCTCGAACTCAGAAA 
B2F1/B2R1 5’CAATTCCCAGCAACCACATG 5’ACACCAGAAGAGGGCATCAGA 
B2F2/B2R2 5’CAATTCCCAGCAACCACATG 5’ACACACCAGAAGAGGGCATCA 

 

 For the genes of interest in mice, whose expression was normalised with the B-

elements, probe-based assays were designed (Table 2-8), using the primer 3 web site 

(http://frodo.wi.mit.edu/). Primer and probes were controlled for their melting 

temperature and secondary structure with NetPrimer 

(http://www.premierbiosoft.com/netprimer/). In order to ensure probe binding prior to 

primer extension, which would block the probe binding site, the annealing temperature 

of the probe was always higher than the one of the primer (Holland et al., 1991). All 

primer and probes were synthesised by Sigma Aldrich. 



2. MATERIAL AND METHODS 

98 

Table 2-8: Primers and probes designed for gene of interest expression analysis in mice tissue by 
RT-qPCR 

Gene Forward primer Reverse primer Probe 
FoxP3 5’CAATAGTTCCTTCCCAGAGT  5’ATAAGGGTGGCATAGGTG [6FAM]TCCACAACATGGACTA

CTTCAAGT[3BQ1] 

HO-1 5’CAGGTGATGCTGACAGAGGA 5’GCCAACAGGAAGCTGAGAGT [6FAM]CCTCTGACGAAGTGAC
GCCATCT[3BQ1] 

IFN-γ 5’GCGTCATTGAATCACACCTG 5’CTGGACCTGTGGGTTGTTG [6FAM]CTTCTTCAGCAACAGC
AAGGCGAA[3BQ1] 

IL-5 5’AATGCTATTCCAAAACCTGT 5’ACTCATCACACCAAGGAACT [6FAM]CTCCTCGCCACACTTC
TCTTTT[3BQ1] 

IL-10 5’CCAAGCCTTATCGGAAATG 5’ACTCTTCACCTGCTCCACTG [6FAM]AGGCGCTGTCATCGAT
TTCTCC[3BQ1] 

TGF-β 5’CAGAGAAGAACTGCTGTGTG 5’GGGTTGTGTTGGTTGTAGA [6FAM]AACCCAGGTCCTTCCT
AAAGTC[3BQ1] 

TLR2 5’GGTGTCTGGAGTCTGCTGTG 5’GCTTTCTTGGGCTTCCTCTT [6FAM]CCCTTCTCCTGTTGAT
CTTGCTCGTAG[3BQ1] 

  

2.24 Plasmid preparation for standard curves 

 Human and mouse cDNA was used as template in qPCR reactions to amplify the 

different target sequences. The amplicons of interest were cloned into pCR4-TOPO 

vectors using the TOPO TA Cloning Kit for Sequencing (Invitrogen) following the 

manufacturer’s instructions. After ligation of the PCR product into the plasmid vector it 

was transformed via heat-shock (30 seconds at 42 °C) into TOP10 E. coli cells 

(Invitrogen) following manufacture’s instruction. Colonies were grown over night at 

37 °C on LB-agar plates with 100 µg/ml ampicillin (Sigma Aldrich). Single clones were 

grown over night (37 °C, 200 rpm) in 5 ml LB-medium supplemented with 100 µg/ml 

ampicillin and plasmids were isolated according to manufacturer’s instruction with a 

miniprep kit (Qiagen). Plasmids were linearised with PST-I (Promega) for 3 hours at 

37 °C prior to re-purification using the PCR cleanup kit (Qiagen) and linearisation was 

verified by agarose gel electrophoresis. Plasmids were sequenced (Wolfson Institute for 

Biomedical Research, UCL), and quantified with a NanoDrop spectrophotometer 

(Thermo Scientific). Stocks of 108 copies/µl were stored at -20 °C and later used for 

assay optimisation and as standards for gene expression quantification. 



2. MATERIAL AND METHODS 

99 

2.25 Agarose gel electrophoresis 

 Gel concentrations varied between 1.5-3 % agarose (Sigma Aldrich) depending 

on the nucleic acid fragment size to be visualised. Gels, containing 50 μg/ml ethidium 

bromide (Sigma Aldrich), were poured and run in 1x Tris-acetate-EDTA (TAE) buffer. 

Samples were diluted in 6x loading buffer (Thermo Fisher Scientific). Size standards 

(Thermo Fisher Scientific) were run with every gel to estimate nucleic acid size. Gels 

were run at varying field strengths for a duration of 45 minutes to 1 hour. Samples were 

visualised and photographed using an ultraviolet (UV) transilluminator (Ultra-Violet 

Products, Cambridge, UK). 

 

2.26 Sequencing of clones containing qPCR products 

 PCR products were ligated into the pGEM-T easy vectors (Promega) in a 5 µl 

reaction for 1 hour at room temperature following manufacturer’s instructions. As 

described above, TOP10 competent E. coli cells (Invitrogen) were transfected with 5 µl 

of the ligation reaction and later transferred onto LB-plates containing 100 µg/ml 

ampicillin and 50 μg/ml 5-bromo-4-chloro-3-indolyl-ß-D-galactoside (X-gal) (both 

Sigma Aldrich). Positive colonies were individually selected to inoculate 3 ml liquid LB 

cultures and grown overnight at 37 °C and 180 rpm. Using T7-specific primers, 

sequencing was performed at EMBL (Heidelberg, Germany). 

 

2.27 qPCR assay optimisation 

 For qPCR assay optimisation, 10-fold dilution series from 5 x 107 to 

5 copies/reaction were generated from the plasmids containing the amplicon of interest. 

SINE assays were designed with qPCR kits containing SYBR green dye, as variations 
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in the target sequences were expected; QuantiTech SYBR (Qiagen) was used for ALU-J 

and SYBR Green JumpStart Taq ReadyMix (Sigma Aldrich) for B1 and B2 reactions. 

JumpStart Taq ReadyMix (Sigma Aldrich) was used for all reactions amplifying genes 

of interest. All PCR reaction efficiencies were optimised to close to 100 % by varying 

primer, probe and MgCl2 concentrations, as well as annealing temperature and time 

(Table 2-9). All assays were conducted in 12.5 μl volumes of which 5 μl were DNA 

template using a Rotorgene 6000 thermocycler (Corbett Research). PCR product sizes 

were checked on a 3 % agarose gel. To test for the presence of contaminating DNA, 

RNAse/DNase-free H2O in the place of cDNA and reverse transcriptase (RT-) negative 

samples were analysed. 

Table 2-9: Optimised qPCR assay parameters 

Assay F-
primer 

R-
primer 

Probe MgCl2 Annealing 
Temp. 

95°C Anneal 72°C 

ALU-J 600nM 600nM - 2.5mM 58°C 10 sec 20 sec 30 sec 
B1F1/B1R1 600nM 600nM - 3.5mM 58°C 10 sec 30 sec 30 sec 
B1F2/B1R2 600nM 600nM  3.5mM 58°C 10 sec 30 sec 30 sec 
B2F1/B2R1 600nM 600nM - 3.5mM 58°C 10 sec 30 sec 30 sec 
B2F2/B2R2 600nM 600nM  3.5mM 58°C 10 sec 30 sec 30 sec 
FoxP3 200nM 400nM 100nM 6.0mM 50°C 10 sec 20 sec 30 sec 
HO-1 200nM 600nM 100nM 6.0mM 58°C 10 sec 20 sec 30 sec 
IFN-γ 200nM 400nM 100nM 6.0mM 58°C 10 sec 20 sec 30 sec 
IL-5 400nM 600nM 100nM 5.0mM 50°C 10 sec 20 sec 30 sec 
IL-10 400nM 600nM 100nM 6.0mM 58°C 10 sec 20 sec 30 sec 
TGF-β 600nM 200nM 100nM 6.0mM 50°C 10 sec 20 sec 30 sec 
TLR2 200nM 600nM 100nM 6.0mM 58°C 10 sec 20 sec 30 sec 

 

2.28 Exposure experiment 

 A volume of 1 ml DNase/RNase-free distilled water (Invitrogen) was added to 

63 1.5 ml non-stick microtubes (Alpha Laboratories, Eastleigh, UK). The tubes were 

placed at three different locations: a UV-sterilized/hepa-filtered PCR hood; a bench in 

the pre-PCR laboratory; and on a desk at the entrance to an open-plan office shared by 

14 people. Three tubes were left open for each time-point: 0 minutes, 5 minutes, 

15 minutes, 30 minutes, 60 minutes, 360 minutes (6 hours), and 1440 minutes 

(24 hours). At the end of each time point, aliquots of the samples were made for all 
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subsequent reactions and stored at -20 °C for no more than two weeks. Aliquots of 5 μl 

of the exposed water were added to the respective real-time PCR reactions. 

 

2.29 GeNorm analyses to identify optimal reference genes 

 The geNorm Housekeeping Gene Selection Kit (PrimerDesign) was used 

following the manufacturer’s instructions to evaluate twelve commonly used 

housekeeping genes shown in Table 2-10. In order the use the geNorm software 

(http://medgen.ugent.be/~jvdesomp/genorm/), threshold cycle (CT) values were 

transformed into relative quantities. CT data were imported into Excel and transformed 

into ΔCT by subtracting the CT of the most expressed sample (smallest CT) from all 

samples. The most expressed sample will have a value of zero. Then the ΔCT values 

were transformed into relative copy numbers: 2(-Δ CT). The software automatically 

calculates the gene-stability measure M, which is an average pairwise variation of a 

particular gene with all other control genes (Vandesompele et al., 2002b). I used the 

three genes that showed the most stable expression and calculated the normalisation 

factor based on the geometric mean (Vandesompele et al., 2002b). 

Table 2-10: Mice housekeeping genes used for geNorm analysis 

Gene 
beta-actin (ACTB) 
glyceraldehyde-3-phosphate dehydrogenase (GAPDH) 
ubiquitin C (UBC) 
beta-2 microglobulin (B2M) 
phospholipase A2  (YWHAZ) 
ribosomal protein L13a (RPL13A) 
calnexin (CANX) 
cytochrome c-1 (CYC1) 
succinate dehydrogenase complex, subunit A (SDHA) 
18S rRNA gene 
eukaryotic translation initiation factor 4A2 (EIF4A2) 
ATP synthase subunit (ATP5B) 
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2.30 RT-qPCR data presentation and calculations 

 Copy numbers of genes of interest were obtained using a standard curve. They 

were normalised by: copy number/normalisation factor (NF). NF of three-best reference 

genes was their geometric mean of relative expression levels; NF of B-elements was 

geometric mean of copy number of B1 and B2; NF of β-actin was relative expression 

level of β-actin. For better comparison of the data after normalisation with the different 

normalisation methods, data are shown as proportions of expression level from 

untreated mice on day 4. Therefore all copy numbers were divided by the median copy 

number of the three water-treated animals from day 4, which equals afterwards 1. 
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3 M. VACCAE ATTENUATES TH2 RESPONSES VIA DENDRITIC CELLS 

3.1 Introduction 

 The role of DCs in shaping adaptive immune responses has been subject to 

extensive research with the aim of therapeutic modulation of the immune system 

(Kapsenberg, 2003). Epidemiological evidence that underpins the hygiene hypothesis 

suggests that host microbial interactions may have a strong influence on the nature of 

adaptive immunity and investigation of the mechanisms which underlie this effect may 

provide new opportunities for therapeutic interventions (Rook, 2007). To this end, I 

have studied the interaction between the environmental saprophyte M. vaccae and 

human DCs. In vivo animal studies showed that M. vaccae can reduce allergic responses 

possibly by modulating Th cells by reducing Th2-, increasing Treg- and also 

augmenting Th1-type responses (Rook et al., 2007). As a result there has been 

widespread interest in its therapeutic application for allergic diseases and augmentation 

of Th1 immunity (Dlugovitzky et al., 2006; Ricklin-Gutzwiller et al., 2007), but the 

mechanisms for these effects are not known. As DCs have a key role in induction and 

regulation of T cell responses (Kapsenberg, 2003), the innate immune response of 

monocyte-derived human DCs to stimulation with M. vaccae and downstream 

modulation of allogeneic and autologous T cell responses were explored. In this study, 

the heat-killed M. vaccae used was similar to preparations that have been applied in the 

animal and human trials to date. 

 

3.2 Objectives 

• Test if M. vaccae can induce maturation of DCs. 

• Study which TLRs are activated by M. vaccae. 
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• Compare DC responses to M. vaccae to stimuli for TLRs which are shared or 

distinct from those of M. vaccae. 

• Test if DC priming with M. vaccae augments T cell proliferation in cocultures. 

• Test the hypothesis that M. vaccae-primed DCs reduce Th2-polarised responses 

and investigate if this is due to induced Treg responses. 

• Compare if conditioned media from stimulated DC cultures or fixed DCs can 

replicate the effects of live DCs on T cells. 

 

3.3 Results 

3.3.1 M. vaccae induces dose-dependent maturation of dendritic cells 

 Following challenge with microbial or inflammatory stimuli, DCs mature and 

gain the capacity to stimulate naive Th cells. During the maturation process they 

upregulate molecules such as CD83 and CD86. CD86 functions as costimulatory signal 

to initiate primary T cell responses (Johansson et al., 2007). In this study DCs were 

generated from CD14+ monocytes and differentiated with IL-4 and GM-CSF for four 

days; a protocol that consistently generated ≥ 95 % DC-SIGN positive cells 

(Figure 3-1A) with typical DC morphology (Figure 3-1B). The ability of M. vaccae to 

induce maturation of DCs was assessed. Overnight (24 hours) stimulation of DCs with 

M. vaccae increased expression of the maturation markers CD83 and CD86 in a dose-

dependent manner that became saturated at reagent concentrations ≥ 100 μg/ml 

(Figure 3-2A). In addition, the preparation of M. vaccae was assessed for potential toxic 

effects on DCs. Therefore DCs were stimulated with increasing concentrations of 

M. vaccae for 48 hours and stained with 7-AAD, which can only penetrate cell 

membranes of dying or dead cells to intercalate into double-stranded nucleic acids. This 
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analysis showed that 100 μg/ml M. vaccae, the dose at which maturation of DCs 

became saturated, was not toxic and the percentage of 7-AAD+ cells was comparable to 

unstimulated DCs. However, 10-fold higher concentrations of M. vaccae (1 mg/ml) led 

to augmented 7-AAD+ DCs (Figure 3-2B). 

 

Figure 3-1: Phenotypic analysis of monocyte-derived dendritic cells 

Monocyte-derived DCs were prepared as described in Material and Methods and analysed by flow 
cytometry and light microscopy. A: The forward and side scatter (FSC/SSC) profile of day 4 DCs is 
shown (left panel). Subsequent analysis is always gated on the DC-SIGN positive population (right 
panel). B: Photomicrographs on day 4 show DCs adhered to the plastic of the cell culture plate (left), and 
a group of day 4 DCs floating in the supernatant of the cell culture – note the presence of small dendrites 
(right). 
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Figure 3-2: M. vaccae induces dose-dependent maturation of dendritic cells 

A: Flow cytometric analysis of immunofluorescence staining for cell surface CD83 and CD86 expression 
by DCs showed a dose-dependent response to 24 hours stimulation with M. vaccae. White histograms 
show staining of unstimulated DCs. Flow cytometry histograms show representative data from multiple 
experimental replicates. B: DCs were stimulated with different concentrations of M. vaccae for 48 hours 
and cell viability was analysed by staining with 7-AAD. Data show mean (±SD) of two independent 
experiments. 

 

3.3.2 M. vaccae can stimulate TLR2-dependent cellular activation 

 TLRs have been identified as a family of homo- or heterodimeric 

transmembrane molecules that function as innate immune PRRs (Akira and Hemmi, 

2003; Beutler, 2009). DCs are known to express a number of TLRs (Medzhitov, 2001) 
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and TLR-dependent innate immune cellular activation by mycobacteria has been 

established (Jo et al., 2007). Therefore, the hypothesis that M. vaccae may also 

stimulate TLR-dependent cellular activation was tested. HEK 293 cells expressing 

specific TLR combinations were used as reporter cell lines by measuring IL-8 release 

into the culture supernatants consequent upon TLR-dependent cellular activation in 

response to stimulation with M. vaccae or specific control TLR ligands. In line with the 

existing literature on TLR2 interactions with mycobacteria (Drage et al., 2009; Krutzik 

et al., 2003; Sweet and Schorey, 2006), M. vaccae activated cells expressing either 

TLR2 alone or TLR1/2 and TLR2/6 heterodimers, in a dose-dependent manner 

(Figure 3-3). TLR-dependent cytokine secretion in response to M. vaccae was not 

detected with any of the other cell lines transfected with other TLR genes. It had been 

described that DNA from M. tuberculosis can act as a ligand for intracellular TLR9 in 

human macrophages (Kiemer, 2009). The inability of the preparation of whole 

M. vaccae to induce cellular activation of TLR9 expressing HEK 293 cells was maybe 

due to failure of uptake and breakdown of the whole bacterium by these cells. Therefore 

the preparation of M. vaccae was sonicated and tested for its ability to activate 

TLR9-dependent gene expression. However, stimulation of HEK 293 cells expressing 

TLR9 was also not evident with this preparation of M. vaccae (Figure 3-4). 
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Figure 3-3: M. vaccae activates TLR2-dependent gene expression 

HEK 293 cells stably transfected with plasmids expressing the TLR genes ±CD14 as indicated, were 
treated with medium (white), increasing concentrations of positive control ligands (grey) or M. vaccae 
(black). TLR2/CD14: heat-killed Listeria monocytogenes (107-108 /ml), TLR1/2: Pam3CSK4 
(62.5-500 ng/ml), TLR2/6: FSL-1 (25-200 ng/ml), TLR3: poly(I:C) (25-200 μg/ml), TLR4/CD14: LPS 
(0.1-100 ng/ml), TLR5: Flagellin (0.5-4 μg/ml), TLR7: Gardiquimod (0.625-5 μg/ml), TLR8: CL075 
(5-40 μg/ml), TLR9: OND2006 (0.3-2.5 μM) and M. vaccae (1-1000 μg/ml). TLR-dependent cellular 
activation was measured after 24 hours by ELISA quantifying IL-8 concentrations in the cell culture 
supernatants. Data show mean (±SD) of triplicate cultures. Data are representative of at least two 
independent experiments.  
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Figure 3-4: Sonicated M. vaccae does not activate TLR9-dependent gene expression 

HEK 293 cells transfected with plasmids stably expressing TLR9 were treated with medium (white), 
dilution series of OND2006 (0.3125-2.5 μM) as a control TLR9 ligand (grey), or serial dilutions 
(0.1-1000 μg/ml) of sonicated M. vaccae (black). Cellular activation was measured after 24 hours by 
ELISA quantifying IL-8 concentrations in the cell culture supernatants. Data show mean (±SD) of three 
independent experiments.  

 

3.3.3 Blocking of TLR2-dependent cellular activation failed 

 Although the TLR reporter cells clearly demonstrated that M. vaccae induces 

cellular activation via TLR2, it is likely that it activates also other innate immune 

receptors, including DC-SIGN, CCR5, dectin-1, Nod1, Nod2 or the mannose receptor 

(Ferwerda et al., 2007; Floto et al., 2006; Geurtsen et al., 2009; Nigou et al., 2001; Pott 

et al., 2009; Torrelles et al., 2006; Yadav and Schorey, 2006), for which reporter 

systems were not available to me. However, blocking of TLR2-dependent cellular 

activation with specific monoclonal antibodies would have allowed studying 

TLR2-independent effects of M. vaccae on DCs. 
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Figure 3-5: TLR2 antibody TL2.1 does not block activation of TLR2-transfected HEK 293 cells 

A: HEK 293 cells expressing TLR2 were surface stained with a titration of anti-TLR2 antibody (TL2.1) 
or isotype control. B: Histogram of TLR2 expressing HEK 293 cells surface staining with anti-TLR2 
antibody clone TL2.1 (black) and an isotype control (white). C: HEK 293 cells expressing TLR2 were 
treated with anti-TLR2 antibody clone TL2.1 (black) or isotype control (white) for 30 minutes prior to 
stimulation with Pam3CSK4 (500 ng/ml). Cellular activation was measured after 24 hours of culture by 
quantifying IL-8 concentration in the supernatants by ELISA. 

  

 Staining of TLR2-transfected HEK 293 cells with a titration of anti-TLR2 

antibody clone TL2.1 did not reach saturation even with the highest dose of antibody 

(Figure 3-5A). When TLR2 expressing HEK293 cells were treated with the highest dose 

of this antibody prior to simulation with the TLR2 ligand Pam3CSK4, no reduction in 

TLR2-dependent secretion of IL-8 was found (Figure 3-5C). The titration suggested that 
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TLR2 is very highly expressed in these reporter cells, and therefore the antibody was 

next tested for its ability to block TLR2-dependent activation of DCs.  

 

Figure 3-6: TLR2 antibody TL2.1 does not block TLR2-dependent cellular activation of dendritic cells 

A: DCs were stained with a titration of anti-TLR2 antibody clone TL2.1 and an isotype control. B: 
Histogram of DC surface staining with anti-TLR2 antibody clone TL2.1 (black) and an isotype control 
(white). C: DCs were treated with TL2.1 or isotype control for 30 minutes prior to stimulation with 
Pam3CSK4 (500 ng/ml). Expression of surface maturation markers CD83 and CD86 was measured by 
flow cytometry. D: Ratio of RelA staining in the nucleus (N) and the cytoplasm (C) in DCs treated with 
an isotype control (white) or anti-TLR2 antibody clone TL2.1 (black) for 30 minutes prior to stimulation 
for 1 hour with Pam3CSK4 (1 µg/ml). Box and whisker plots represent median, and range of data from 
approximately 500 single cell measurements. 

  

 Expression of TLR2 on the surface of monocyte-derived DCs, serving as 

experimental models, was confirmed with the same monoclonal TLR2 antibody 

(Figure 3-6B). Here the titration of the antibody clone TL2.1 reached saturation and a 

higher concentration would not have led to increased staining of surface TLR2 
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(Figure 3-6A). However, DCs that were pre-treated with anti-TLR2 before priming with 

Pam3CSK4 showed no reduction of the level of maturation (Figure 3-6C). To determine 

whether the inability to block TLR2-dependent cellular activation was due to potential 

turnover of newly expressed TLR2 during the 24 hours of incubation, DCs were treated 

with the anti-TLR2 antibody clone TL2.1 and then stimulated for only one hour with 

Pam3CSK4 and fixed. These DCs were analysed for nuclear translocation of NF-κB, 

occurring upon innate immune activation of DCs. Here also, there was no reduction of 

nuclear translocation (Figure 3-6D). 

  

Figure 3-7: TLR2 antibody 383936 does not block TLR2-dependent cellular activation of dendritic cells 

A: DCs were stained with a titration of anti-TLR2 antibody clone 383936 and an isotype control. B: 
Histogram of DC surface staining with 383936 (grey) and an isotype control (white). C: Ratio of RelA 
staining in the nucleus (N) and the cytoplasm (C) in DCs treated with an isotype control (white) or 
20 μg/ml of anti-TLR2 antibody clone 383936 (grey) for 30 minutes prior to stimulation for 1 hour with 
Pam3CSK4 (1 µg/ml). Box and whisker plots represent median, and range of data from approximately 
500 single cell measurements. 
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 A second monoclonal anti-TLR2 antibody was therefore tested. Titration of this 

clone on DCs did not reach saturation (Figure 3-7A). The manufacturer showed 50 % 

neutralisation when using this antibody at a concentration of 0.03 μg/ml and 100 % with 

2 μg/ml. However, pre-treatment of DCs with 20 μg/ml prior to stimulation with 

Pam3CSK4 did not neutralise or reduce innate immune activation of DCs tested by 

measuring nuclear translocation of NF-κB (Figure 3-7C). 

 

3.3.4 M. vaccae induces greater maturation of dendritic cells than specific TLR2 

stimulation with Pam3CSK4 

 In order to develop insight into the specific consequences of DC priming by 

M. vaccae, comparisons were made to other innate immune stimuli with cellular 

activation pathways that were common or distinct from those of M. vaccae. The lack of 

TLR4 stimulation confirmed the absence of LPS contamination in this preparation of 

M. vaccae, and allowed comparisons of the effects of M. vaccae on DCs, to those of 

LPS stimulation and specific TLR2 stimulation with Pam3CSK4 (Figure 3-8A). At 

concentrations of M. vaccae, LPS and Pam3CSK4 that induced maximal increase in 

CD83 and CD86 surface expression, LPS and M. vaccae-induced maturation was 

significantly greater than that induced by Pam3CSK4 (Figure 3-8B). Therefore a 10-fold 

lower concentration of M. vaccae (10 μg/ml), which induced comparable maturation to 

Pam3CSK4 was also included in the experimental paradigm. In addition to the 

upregulation of surface maturation markers, stimulated DCs formed characteristic 

clumps in contrast to unstimulated DCs, whereby the number of clumps in each culture 

correlated with the magnitude of CD83 and CD86 expression (Figure 3-8C), though this 

parameter could not be objectively quantified. 
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Figure 3-8: M. vaccae induces stronger maturation of dendritic cells than TLR2-specific stimulation 

A: Flow cytometric analysis of immunofluorescence staining for cell surface CD83 and CD86 expression 
in DCs after 24 hours of stimulation with LPS (100 ng/ml), Pam3CSK4 (1 μg/ml) and M. vaccae (10 and 
100 μg/ml). White histograms show staining of unstimulated DCs. (Flow cytometry histograms show 
representative data from multiple experimental replicates.) Comparison of mean fluorescence intensity 
(MFI) for each of these markers (B) suggested that the maximum upregulation of CD83 and CD86 
expression in response to M. vaccae (100 μg/ml) was comparable to that of LPS (100ng/ml) and 
significantly greater than the response to Pam3CSK4 (1 μg/ml). Stimulation of DCs with a 10-fold lower 
concentration of M. vaccae (10 µg/ml) generated comparable DC maturation to Pam3CSK4. (Bars 
represent mean ±SD of 14 separate experiments.  denotes significant differences to unstimulated cells, 
and ‡ denotes significant differences to stimulation with Pam3CSK4 or M. vaccae (10 μg/ml), p<0.001 by 
paired t-tests). C: Representative photomicrographs of unstimulated and stimulated DC cultures (40x 
magnification). 
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3.3.5 Priming of dendritic cells with M. vaccae enhances T cell proliferation 

 Mixed leukocyte cultures with allogeneic T cells provide a valuable approach 

for study of DC-T cell interactions. This strategy was used to study the effect of innate 

immune priming of DCs with M. vaccae on subsequent T cell proliferation and 

differential polarisation of Th cell subsets. 

 The effect of priming DCs with M. vaccae (10 μg/ml or 100 μg/ml), LPS 

(100 ng/ml) or Pam3CSK4 (1 μg/ml) on T cell proliferation was tested. Immature DCs 

were treated with each of these innate immune stimuli for 24 hours before addition of 

naive allogeneic T cells at increasing DC:T cell ratios. Naive CD45RA+/CD4+ T cells 

were used in this series of experiments to exclude cells which may harbour memory for 

mycobacterial antigens and to minimise confounding variability in pre-existing T cell 

memory from different donors. Since DCs evolve a mature phenotype in prolonged cell 

culture that may mask the effect of innate immune priming, pilot experiments were 

initially conducted to establish the earliest time point at which proliferative T cell 

responses were detectable. This was evident by day 3 of coculture with DCs and was 

measured by incorporation of [3H]-thymidine added during the last 18 hours of culture. 

In multiple allogeneic DC-T cell combinations at this time point, T cell proliferation 

was principally related to the number of DCs (Figure 3-9A). However, considerable 

variability was also evident in different allogeneic cultures. Therefore repeated 

measures (RM) 2-way ANOVA was used to test the effect of innate immune priming 

independently of the number of DCs within matched DC-T cell allogeneic pairs. As 

expected, this showed a significant effect of DC number (Figure 3-9A) but innate 

immune priming of DCs with each of the stimuli under study was also associated with 

significantly enhanced T cell proliferation compared to unstimulated DCs 

(Figure 3-9B-E). In keeping with the data on DC maturation (Figure 3-8B), this effect 

was statistically more powerful when DCs were primed with LPS (Figure 3-9B) or 
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100 μg/ml M. vaccae (Figure 3-9E) than with Pam3CSK4 (Figure 3-9C) or 10 μg/ml 

M. vaccae (Figure 3-9D). 

 

Figure 3-9: Priming of dendritic cells with M. vaccae enhances allogeneic T cell proliferation 

Naive CD4+ T cell proliferation was assessed by thymidine incorporation (CPM) after 3 days stimulation 
with allogeneic DCs. The effects of DC number and DC priming with the stimuli indicated were assessed 
by RM-2-way ANOVA. Increasing DC:T cell ratios were associated with significantly increased T cell 
proliferation (A), and in comparison to unstimulated cells, DCs primed with each of the stimuli also 
significantly increased proliferation (B-E). There were no significant differences between the stimuli. 
Each experiment is represented by paired data points.  



3. M. VACCAE ATTENUATES TH2 RESPONSES VIA DENDRITIC CELLS 

117 

 

3.3.6 Pre-treatment of dendritic cells with M. vaccae attenuates Th2 responses 

 To test the hypothesis that M. vaccae-primed DCs reduce Th2-polarised 

responses, the phenotype of allogeneic T cells was analysed after three days of coculture 

with DCs, which had been pre-treated with each stimulus. Th1/Th2 differential 

responses were analysed in these experiments, using intracellular staining for IFN-γ and 

IL-4 as markers for Th1 and Th2 responses respectively, after re-stimulation of cytokine 

production with PMA and ionomycin. Flow cytometric detection of intracellular 

cytokines was used to distinguish the cytokines produced by T cells rather than DCs. 

Moreover it allows quantitation of percentages of cells with Th1 and Th2 responses and 

measurement of multiple cytokines simultaneously in individual cells.  

 Increasing numbers of DCs were independently associated with increasing 

proportions of IFN-γ positive cells (Figure 3-10A) and decreasing proportions of IL-4 

producing cells (Figure 3-11A). Therefore Th1 and Th2 responses across the range of 

DC:T cell ratios were tested to assess the effect of innate immune priming of DCs. LPS, 

Pam3CSK4 and M. vaccae stimulation of DCs did not significantly affect the 

relationship between DCs and Th1 responses (Figure 3-10B-F), but differential effects 

were clearly evident on Th2 responses (Figure 3-11B-F). While LPS had no effect, 

Pam3CSK4 priming of DCs was associated with sustained Th2 responses, reducing the 

inverse relationship between number of DCs and proportion of IL-4 producing T cells 

(Figure 3-11B). In contrast, DC-priming with M. vaccae augmented this negative 

relationship significantly (Figure 3-11B). Greater inhibition of IL-4 producing T cells 

by 100 μg/ml M. vaccae compared to 10 μg/ml M. vaccae suggested a dose-response 

association for this effect.  
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Figure 3-10: Priming of dendritic cells with M. vaccae does not affect Th1 polarisation 

In 3 day allogeneic cocultures of DCs with naive CD4+ T cells, IFN-γ+ and IL-4+ producing T cells were 
enumerated by intracellular immunofluorescence staining and flow cytometry, after PMA/ionomycin 
stimulation. The effects of DC number and DC priming with the stimuli indicated were assessed by 
RM-2-way ANOVA. Increasing DC:T cell ratios were associated with increased proportions of IFN-γ+ 
cells (p<0.0001) (A). In order to assess the effect of DC priming in this model, the regression relationship 
between DC:T cell ratio and proportions of IFN-γ+ cells was determined for each experiment (dotted line) 
and the gradient of these relationships in unprimed DCs was compared to those of primed DCs (B). DC 
priming had no significant effect on DC-dependent IFN-γ polarisation of T cells. C-F: Percentage of 
IFN-γ+ T cells after culture with DCs primed with the stimuli indicated at increasing DC-T cell ratios 
compared to culture with unstimulated DCs. Each experiment is represented by paired data points. 
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Figure 3-11: Priming of dendritic cells with M. vaccae attenuates Th2 responses 

In 3 day allogeneic cocultures of DCs with naive CD4+ T cells, IFN-γ+ and IL-4+ producing T cells were 
enumerated by intracellular immunofluorescence staining and flow cytometry, after PMA/ionomycin 
stimulation. The effects of DC number and DC priming with the stimuli indicated were assessed by 
RM-2-way ANOVA. Increasing DC:T cell ratios were associated with decreased proportions of IL-4+ 
cells (p<0.0001) (A). In order to assess the effect of DC priming in this model, the regression relationship 
between DC:T cell ratio and proportions of IL-4+ cells was determined for each experiment (dotted line) 
and the gradient of these relationships in unprimed DCs was compared to those of primed DCs (B). DC 
priming did differentially affect IL-4 polarisation of T cells. Priming with M. vaccae significantly 
enhanced DC-dependent reduction of IL-4+ producing T cells in comparison to unstimulated DCs 
(p<0.05, RM-1-way ANOVA). C-F: Percentage of IL-4+ T cells  after culture with DCs primed with the 
stimuli indicated at increasing DC-T cell ratios compared to culture with unstimulated DCs; RM-2-way 
ANOVA was used to analyse the effect of DC priming. Each experiment is represented by paired data 
points. 
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Figure 3-12: Comparison of the effects of dendritic cell priming with M. vaccae or TLR2-specific 
stimulation with Pam3CSK4 on T cell polarisation 

In 3 day cocultures of DCs with allogeneic naive CD4+ T cells, the percentage of IFN-γ+ and IL-4+ T cells 
was measured by intracellular flow cytometry. A: Flow cytometry plots of T cells after culture with 
Pam3CSK4 (left) or M. vaccae (right) primed DCs. The regression relationship between DC:T cell ratio 
and proportions of IFN-γ+ or IL-4+ cells was determined for each experiment (dotted lines) and the 
gradient of these relationships in unprimed DCs was compared to those of primed DCs (B-C). Priming 
with M. vaccae significantly enhanced DC-dependent reduction of IL-4+ producing T cells in comparison 
to priming with Pam3CSK4, which had the opposite effect (paired t-test). Direct comparison, showed 
significant reduction (RM-2-way ANOVA) of IL-4+ T cells with increasing numbers of DCs primed with 
M. vaccae compared to those primed with Pam3CSK4 (E). No differential effects on IFN-γ+ T cells were 
evident (D). Each experiment is represented by paired data points. 
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 Detailed analysis showed the divergent effects of specific TLR2 stimulation and 

M. vaccae-priming of DCs on Th2 responses (Figure 3-12). Significant differences 

between 10 μg/ml M. vaccae- and Pam3CSK4-priming of DCs were also evident despite 

comparable levels of DC maturation (Figure 3-12C). In addition, LPS-priming of DCs 

did not significantly attenuate Th2 responses despite inducing similar levels of DC 

maturation to priming with 100 μg/ml M. vaccae. Taken together, these findings suggest 

that enhanced DC-dependent inhibition of Th2 responses were specific to priming DCs 

with M. vaccae independently of levels of DC maturation. 

 

3.3.7 Dendritic cells primed with M. vaccae induce CD25high/FoxP3high T cells 

 Previous reports from animal models suggested that inhibition of Th2 responses 

may be the result of enhanced Treg responses in mice receiving M. vaccae (Zuany-

Amorim et al., 2002a; Zuany-Amorim et al., 2002b). In order to test this hypothesis in 

the present model, the effects of DC priming on induction of CD25high/FoxP3high T cells 

in an allogeneic response was assessed (Figure 3-13). Like the other phenotypes 

studied, there was a clear relationship between the number of DCs and induction of 

CD25high/FoxP3high cells (Figure 3-13A). In addition, priming of DCs with LPS or 

100 μg/ml M. vaccae significantly enhanced this induction, but this effect was not 

evident with Pam3CSK4 or 10 μg/ml M. vaccae (Figure 3-13B-E). These findings did 

not demonstrate a consistent correlation with effects of DC priming on Th2 responses or 

inhibition of T cell proliferation. In addition, no evidence of IL-10 production by these 

cells using intracellular cytokine staining was found (Figure 3-14A) and ELISA of cell 

culture supernatants showed only augmented IL-10 production in cocultures with LPS-

primed DCs (Figure 3-14C). Therefore the CD25high/FoxP3high phenotype may be a 

feature of T cell activation rather than Treg differentiation (Merlo et al., 2008; Tran et 

al., 2007; Wang et al., 2007). 



3. M. VACCAE ATTENUATES TH2 RESPONSES VIA DENDRITIC CELLS 

122 

 

Figure 3-13: Dendritic cells primed with M. vaccae induce CD25high/FoxP3high T cells 

In 6 day allogeneic cocultures of DCs with naive CD4+ T cells, CD25+/FoxP3+ T cells were enumerated 
by intracellular immunofluorescence staining and flow cytometry. The effects of DC number and DC 
priming with the stimuli indicated were assessed by RM-2-way ANOVA. Increasing DC:T cell ratios 
were associated with increased proportions of CD25+/FoxP3+ T cells (A). In comparison to unstimulated 
cells, DCs primed with LPS or M. vaccae (100 µg/ml) also significantly increased CD25+FoxP3+ T cells 
(B, E). Each experiment is represented by paired data points. F: Representative flow cytometry plots of T 
cells stained for CD25 and FoxP3 after coculture with unstimulated or M. vaccae-primed DCs. 
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Figure 3-14: T cells from cocultures with M. vaccae primed dendritic cells do not produce augmented 
levels of IL-10 

In 3 and 6 day cocultures of DCs and allogeneic naive CD4+ T cells, the production of IL-10 was 
analysed. A: Analysis of IL-10 positive T cells by intracellular flow cytometry did not detect any IL-10 
positive cells. The supernatants of DC-T cell cocultures were analysed for IL-10 production by ELISA 
compared to a standard curve (B). IL-10 above the detection limit was only produced by 6 day cultures 
with a 1:100 DC:T cell ratio (C). Only priming with LPS significantly augmented IL-10 levels compared 
to unstimulated DC (t-test). Data show mean (±SD) from three independent DC-T cell experiments. 
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3.3.8 Dendritic cells primed with M. vaccae enhance T cell proliferation, 

attenuate Th2 responses and induce CD25high/FoxP3high T cells also in 

antigen-specific cultures 

 Next I sought to establish whether the effects of M. vaccae-primed DCs on naive 

T cells observed in allogeneic cultures were also evident in antigen-specific responses 

by the whole population of autologous CD4+ T cells, including memory T cells 

(CD45RO+). Therefore DCs, generated from blood donors who had previously received 

tetanus toxoid, were treated with 10 μg/ml tetanus toxoid in addition to each innate 

immune stimulus used. 

 Tetanus toxoid alone did not cause maturation of unstimulated DCs 

(Figure 3-15A) and assessment of proliferation of autologous CD4+ T cells in cocultures 

confirmed antigen-specific memory (Figure 3-15B). 

 Similar to the data from allogeneic cultures, T cell proliferation measured on day 

three of coculture was again principally related to the number of DCs (Figure 3-16A). 

Priming of DCs with M. vaccae or Pam3CSK4 further augmented T cell proliferation in 

contrast to priming with LPS (Figure 3-16B-E). Clearly the effect of M. vaccae-priming 

may in part have resulted from the presence of T cells that harbour memory for 

mycobacterial antigens. 
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Figure 3-15: Dendritic cells primed with tetanus toxoid do not mature but augment T cell proliferation 
in autologous cocultures 

A: DCs cultured with ± tetanus toxoid (TT) and ± M. vaccae for 24 hours were analysed for CD83 and 
CD86 expression by flow cytometry. TT alone did not upregulate CD83 and CD86 expression on DCs. B: 
T cell proliferation stimulated by 3 day culture with autologous DCs primed for 24 hours ± TT and 
measured by thymidine incorporation (CPM) showed TT-dependent memory responses in cultures from 
three separate donors.  
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Figure 3-16: Dendritic cells primed with M. vaccae enhance T cell proliferation in antigen-specific 
cocultures 

T cell proliferation stimulated by 3 day culture with autologous DCs primed for 24 hours with tetanus 
toxoid (TT) ± innate immune stimuli showed DC-dependent responses in cells from three separate donors 
(A). RM-2-way ANOVA showed a significant increase in proliferative responses associated with the 
priming of DCs with Pam3CSK4 (C) and M. vaccae (D-E). Data points represent individual experiments 
and lines link paired data from the same donor /experiment.  
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 Analysis of Th1 and Th2 cytokine production by total CD4+ T cells in response 

to autologous DCs primed with tetanus toxoid in addition to each innate stimulus 

mirrored the observations from earlier allogeneic cocultures. Intracellular staining for 

IFN-γ and IL-4 was performed on day three of coculture after transient re-stimulation 

for cytokine production with tetanus toxoid. Similarly in this antigen-specific 

experimental model, increasing numbers of DCs were independently associated with 

increasing proportions of IFN-γ producing cells (Figure 3-17A) and decreasing 

proportions of IL-4 positive cells (Figure 3-17B). The effect of innate immune priming 

of DCs on Th1 and Th2 responses was again assessed across a range of DC:T cell 

ratios. Since the T cell proliferation response was smaller in those autologous cocultures 

compared to earlier allogeneic cocultures at similar DC:T cell ratios, a higher DC:T cell 

ratio was included into the experiments. The relationship between DCs and Th1 

responses was not significantly affected by any of the stimuli under study 

(Figure 3-17C), but differential effects were evident on Th2 responses (Figure 3-17D). 

Mirroring the data from allogeneic DC-T cell cocultures, M. vaccae augmented the 

reduction of Th2 responses and greater inhibition of IL-4 producing T cells by 

100 μg/ml M. vaccae compared to 10 μg/ml M. vaccae was again in keeping with a 

dose-response relationship for this effect. Although priming of DCs with Pam3CSK4 

did not reverse the negative relationship of DC number and Th2 cells like in allogeneic 

responses, comparison of the effects of M. vaccae and specific TLR2 stimulation of 

DCs showed that they were significantly different (Figure 3-17D, F). 
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Figure 3-17: Dendritic cells primed with M. vaccae reduce Th2 responses in contrast to Pam3CSK4 in 
antigen-specific cocultures 

In antigen-specific responses to tetanus toxoid, in order to assess the effect of DC priming on 
Th polarisation, the regression relationship between DC:T cell ratio and proportions of IFN-γ+ or IL-4+ 
cells was determined after 3 days and the gradient of these relationships in unprimed DCs compared to 
those of primed DCs (A-B). DC priming had no significant effect on DC-dependent IFN-γ polarisation of 
T cells (C), but did differentially affect IL-4 polarisation of T cells (D). Priming with M. vaccae 
significantly enhanced DC-dependent reduction of IL-4+-producing T cells in comparison to priming with 
Pam3CSK4 (paired t-test). Direct comparison, showed significant reduction (RM-2-way ANOVA) of 
IL-4+ T cells with increasing numbers of DCs primed with M. vaccae compared to those primed with 
Pam3CSK4 (F). No differential effects on IFN-γ+ T cells were evident (E). Each experiment is 
represented by paired data points.  
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Figure 3-18: Dendritic cells primed with M. vaccae induce CD25high/FoxP3high T cells in antigen-specific 
cocultures 

In 6 day antigen-specific cocultures of DCs with autologous CD4+ T cells, CD25+/FoxP3+ T cells were 
enumerated by intracellular immunofluorescence staining and flow cytometry. The effects of DC number 
and DC priming with the stimuli indicated were assessed by RM-2-way ANOVA. Increasing DC:T cell 
ratios were associated with increased proportions of CD25+/FoxP3+ T cells (A). In comparison to 
unstimulated cells, DCs primed with LPS (B) or M. vaccae (D-E) increased CD25+/FoxP3+ T cells in 
contrast to Pam3CSK4 (C). Each experiment is represented by paired data points.  
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 In line with the data from allogeneic cocultures, the percentage of 

CD25high/FoxP3high T cells was also principally associated with the number of DCs in 

the antigen-specific DC-T cell coculture experiments (Figure 3-18A). Additional 

priming of tetanus toxoid treated DCs with LPS and the two doses of M. vaccae 

augmented the percentage of cells with this phenotype in contrast to priming with 

Pam3CSK4 (Figure 3-18B-E). Although this effect was not statistically significant as 

one DC-T cell donor pair behaved differently, diverse effects of M. vaccae-treated and 

Pam3CSK4-treated DCs are clearly evident. 

 

3.3.9 Conditioned medium from cultures of dendritic cells primed with M. vaccae 

is not sufficient to attenuate Th2 responses 

 Upon microbial stimulation DCs take up, process and present antigens. In 

addition to upregulation of MHC and costimulatory molecules, the activated cells 

produce and secrete cytokines and chemokines, which are thought to play an important 

role in the polarisation of T cell responses (Kapsenberg, 2003). Therefore, I tested the 

hypothesis that inhibition of Th2 responses by M. vaccae-primed DCs was mediated by 

such cytokine responses. 

 A 1:2 dilution of conditioned media from DC cultures primed for 24 hours with 

M. vaccae or the other innate immune stimuli were used to supplement T cell cultures 

stimulated with plate bound anti-CD3 and soluble anti-CD28 as a surrogate for antigen-

presenting cells. After three days, the qualitative effect of supernatants from innate 

immune primed DCs on T cell responses was assessed by intracellular staining for 

IFN-γ and IL-4. This demonstrated that cytokines and chemokines present in the 

supernatants of stimulated DCs together with antibody binding to CD3 and CD28, were 
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not sufficient to replicate the effect of M. vaccae-primed DCs in inhibiting Th2 

responses (Figure 3-19A). 

 

3.3.10 Fixed dendritic cells primed with M. vaccae do not replicate the effects of 

live cells 

 Since using conditioned media from DCs primed with M. vaccae did not 

replicate the effect of coculturing T cell with primed antigen-presenting cells, I then 

tested the hypothesis that cell surface interactions between DCs and T cells would be 

sufficient for M. vaccae-mediated inhibition of Th2 responses. DCs were stimulated 

with M. vaccae, LPS or Pam3CSK4 for 24 hours and then fixed with glutaraldehyde. 

Fixed DCs, which retain cell surface antigen presentation and expression of 

costimulatory molecules, were cocultured for three days with allogeneic T cells.  

 As seen before, in allogeneic cultures with live DCs it was clearly evident that 

increasing numbers of DCs, independent of innate immune priming, were associated 

with decreasing proportions of IL-4 producing cells (Figure 3-19B). This association 

was not found in cocultures with fixed DCs. Here the number of DCs did not affect the 

proportion of Th2 cells (Figure 3-19C). Moreover, priming of DCs with any of the 

innate immune stimuli prior to their fixation had also no effect on the quantities of IL-4-

producing cells (Figure 3-19E). 

 Taken together, this demonstrated that live DCs primed with M. vaccae were 

required for their ability to inhibit Th2-polarised responses, and that neither antigen 

presentation nor soluble factors alone were sufficient to replicate the effects. 
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Figure 3-19: Conditioned media from dendritic cells primed with M. vaccae and fixed dendritic cells do 
not attenuate Th2 responses 

After 3 day cultures of naive CD4+ T cells in the presence of anti-CD3 and anti-CD28 in conditioned 
media from allogeneic DCs primed for 24 hours with the different stimuli, the percentage of IFN-γ+ and 
IL-4+ cells was measured by flow cytometry. A: The conditioned media from differentially primed DCs 
did not affect the number of IFN-γ+ and IL-4+ T cells. B: In contrast to live DCs (left) the number of fixed 
DCs (right) did not reduce the percentage of IL-4+ T cells. C: Priming of DCs with M. vaccae that 
reduced the Th2 response compared to Pam3CSK4 when using live DCs (left), had no effect when using 
fixed DCs (right). 
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3.4 Discussion 

3.4.1 M. vaccae induces dose-dependent maturation of dendritic cells 

 Subsequent to stimulation, DCs mature while migrating to the secondary 

lymphoid organs. A hallmark of DC maturation is the upregulation of costimulatory 

molecules including CD83 and CD86 that enable them to activate naive T cells 

(Johansson et al., 2007). Dose-dependent maturation of DCs by M. vaccae was clearly 

demonstrated. The question of whether this effect is in any way mycobacterium species 

specific was not addressed here. Interestingly, some mycobacteria, such as M. leprae 

may not have the capacity to induce maturation of DCs (Murray et al., 2007), but this 

observation may be a dose effect (Hashimoto et al., 2002) and potentially confounded 

by the limitations in in vitro culture of M. leprae. 

3.4.2 M. vaccae induces cellular activation via TLR2 

 DCs, like a number of other cells, recognise microorganisms with PRRs that 

identify PAMPs commonly found on bacteria, fungi or viruses. Consequently, DCs can 

also recognise mycobacteria via innate immune receptors and TLR-dependent activation 

of DCs had been reported (Jo, 2008). The data presented here showed that M. vaccae is 

able to activate TLR2, which is in line to previous reports of TLR2 activation by 

mycobacteria (Drage et al., 2009; Krutzik et al., 2003; Sweet and Schorey, 2006). 

M. vaccae induced innate cellular activation of HEK 293 reporter cell lines that 

expressed combinations with TLR2, TLR1/2 and TLR2/6, but TLR2 alone was also 

sufficient. The possibility that TLR1 or TLR6 expression alone is also sufficient was 

not addressed, but so far neither of these receptors has been reported to function as 

homodimer. It has been reported that DNA from attenuated M. tuberculosis and BCG 

strains might act as a ligand for intracellular TLR9 in human macrophages though the 

authors reported an extremely low expression of TLR9 measured by qPCR (Kiemer, 
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2009), and it is often found that CpGs do not stimulate human macrophages. Even after 

sonication of the whole bacterium preparation of M. vaccae, no stimulation of HEK 293 

cells expressing TLR9 was evident. Although TLR4-dependent cellular responses to 

M. tuberculosis (Bulut et al., 2005; van de Veerdonk et al., 2010) and M. ulcerans (Lee 

et al., 2009) had been reported, M. vaccae did not activate TLR4 expressing HEK 293 

cells, suggesting potential differences among mycobacterial species, and confirmed that 

the preparation under study was free of LPS contamination. This allowed comparisons 

of the effects of M. vaccae to a specific TLR2 ligand (Pam3CSK4) and to alternative 

stimulation with a TLR4 ligand (LPS). In addition to TLRs, other PRRs may also be 

involved in inducing an immune response to M. vaccae. These include receptors such as 

DC-SIGN, CCR5, dectin-1, Nod1, Nod2 or the mannose receptor, which have been 

demonstrated to interact with other mycobacteria (Ferwerda et al., 2007; Floto et al., 

2006; Geurtsen et al., 2009; Nigou et al., 2001; Pott et al., 2009; Torrelles et al., 2006; 

Yadav and Schorey, 2006). It would have been attractive to test if M. vaccae stimulates 

cells also via one of those potential receptors and to include specific ligands into the 

experimental paradigm, but reporter systems were not available to me. 

3.4.3 Inhibition of TLR2-dependent signalling 

 In order to study TLR2-independent effects of M. vaccae on DCs and T cell 

polarisation, it was attempted to block and neutralise TLR2-dependent signalling with 

monoclonal antibodies. First the antibody clone TL2.1 was tested on TLR2 expressing 

HEK 293 cells. Even very high concentrations of this antibody did not saturate staining 

of surface TLR2 on those cells, and pre-treatment could not reduce cellular activation 

induced by stimulation with Pam3CSK4. As this might result from very high and rapid 

expression of TLR2 in this reporter cell line, the antibody was tested to block TLR2-

dependent activation of the DC model used in these studies. Although the antibody 

clone TL2.1 detected TLR2 on the surface of DCs and was used at saturated 
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concentrations, it did not reduce maturation of DCs stimulated with the TLR2 ligand 

Pam3CSK4. This was maybe due to rapid turnover of TLR2 molecules on the cell 

surface during the 24 hours incubation time. On the other hand, neither this anti-TLR2 

antibody nor a second clone tested, blocked nuclear translocation of the transcription 

factor NF-κB, which was measured by confocal microscopy only 1 hour post treatment 

with the TLR2 ligand Pam3CSK4. Other reports using the same concentration of clone 

TL2.1 (20 μg/ml) succeed in blocking NF-κB activation in TLR2 expressing HEK 293 

cells (Ariza et al., 2009), and the manufacturer of clone 383936 (R&D systems) showed 

nearly 100 % neutralisation of TLR2-mediated responses to Pam3CSK4 at a 10-fold 

lower concentration of this antibody. 

3.4.4 Comparison of dendritic cell maturation in response to differential innate 

immune stimulation 

 Quantitative comparison of CD83 and CD86 upregulation by stimulation with 

concentrations of M. vaccae, LPS or Pam3CSK4 that induced maximal maturation 

showed that M. vaccae and LPS provoked similar and higher responses than 

Pam3CSK4. It had been suggested that the strength of TCR stimulation, including the 

dose of antigens and the maturation status of DCs, may influence T cell polarisation 

(Boonstra et al., 2003; Brandt et al., 2002; Constant et al., 1995; Hosken et al., 1995; 

Langenkamp et al., 2000; Steinfelder et al., 2009). In vitro stimulation with low doses of 

priming antigen was repeatedly associated with the induction of IL-4 production in 

cultures with naive CD4+ T cells, while large doses of antigen favoured the 

development of Th1 cells (Boonstra et al., 2003; Brandt et al., 2002; Constant et al., 

1995; Langenkamp et al., 2000). Consequently it is possible that different expression 

levels of MHC class II and/or costimulatory molecules, thus different levels of DC 

maturation, change the effective dose of antigen presented by the DCs to the T cells. To 

control for potential effects resulting from different levels of DC maturation, a lower 
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dose of M. vaccae leading to similar upregulation of CD83 and CD86 on DCs than 

stimulation with Pam3CSK4 was included in the experimental paradigm. Potential 

differences in the upregulation of other markers of DC maturation in response to 

priming with M. vaccae or the other innate immune stimuli were not addressed. 

Certainly it would be of interest to study the effect of M. vaccae treatment on the 

expression of CD40 and CD80. Bifidobacterium strains, which induced regulatory DCs 

expressing increased amounts of IL-10, showed decreased levels of CD40 and CD80 

expression, but upregulated CD83 and had no effect on CD86 when compared to 

untreated DCs (Hart et al., 2004). If downregulation of CD80 and CD40 is a general 

phenotype of Treg-inducing DCs, one could have expected the same phenotype might 

be seen in DCs stimulated by M. vaccae. 

3.4.5 Effects of M. vaccae-primed dendritic cells on T cell responses 

3.4.5.1 M. vaccae augments T cell proliferation 

 To test the hypothesis that M. vaccae-primed DCs support Treg cells and reduce 

Th2-polarised responses, mixed leukocyte cultures with allogeneic naive T cells were 

used to study DC-T cell interactions. Increasing numbers of DCs augmented T cell 

proliferation proportionally. This was expected in an allogeneic response and had been 

previously reported (Banchereau and Steinman, 1998; Felix and Allen, 2007; Pollara et 

al., 2003). In line with the contemporary hypothesis that innate immunity augments 

adaptive immune responses, innate immune priming of DCs with LPS, Pam3CSK4 and 

M. vaccae all augmented subsequent proliferation of naive T cells significantly, 

compared with unstimulated DCs. Although consistent, this effect seemed quantitatively 

modest in the experimental model used here. Potent alloreactivity that was observed 

even with immature DCs may in part mask the effect of innate immune maturation of 

DCs and is in line with other reports that also described significant but only modest 
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differences between immature and mature DCs in their capacity to support allogeneic 

T cell proliferation (Alderman et al., 2002). 

3.4.5.2 M. vaccae reduces Th2 responses 

 In human allogeneic cultures of mature monocyte-derived DCs with naive 

CD4+ T cells it had been reported that the stimulator / responder ratio can play a role in 

the fate of T cell polarisation; a ratio of 1:300 favoured Th2 responses, while very high 

ratios of 1:4 drove the development of mixed Th1/Th2 effectors (Tanaka et al., 2000). 

Various DC:T cell ratios were included in studying the effect of DC-priming on the 

differentiation of naive T cells. The data show that increasing DC:T cell ratios favour 

Th1 and reduce Th2 cell differentiation independently of innate immune stimulation of 

DCs. 

 Although T cell proliferation correlated with the magnitude of DC maturation, 

the different DC stimuli induced divergent effects on the phenotype of these T cells. 

The finding that M. vaccae-primed DCs compared with unprimed DCs decreased IL-4 

producing T cells with no significant effect on IFN-γ producing T cells is consistent 

with earlier reports in other models that M. vaccae reduced Th2-polarised responses but 

does not switch to Th1-dominated responses (Zuany-Amorim et al., 2002b), and also 

consistent with Th1-dominant adaptive immune responses to mycobacteria generally 

(Bhatt and Salgame, 2007; Flynn and Chan, 2001). The different doses of M. vaccae as 

well as the different DC-T cell ratios did not result in divergent T cell differentiation, 

but increasing numbers of DCs or higher concentration of M. vaccae augmented the Th2 

reducing effect. 

 Interestingly, specific TLR2 stimulation of DCs with Pam3CSK4 had an effect 

opposite to that of both concentrations of M. vaccae. Pam3CSK4 treatment of DCs 

reduced the DC-dependent attenuation of IL-4 responses and suggested that the effects 
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of M. vaccae are not mediated through activation of TLR2. In line with these data others 

have also shown that TLR2-dependent priming of human monocyte-derived DCs 

induces Th2 polarisation of naive T cells (Agrawal et al., 2003). This is further 

supported by murine studies showing that Pam3CSK4 administration together with 

OVA augmented IL-4, IL-5 and IL-13 cytokine production by antigen-specific OT-1 

and OT-2 T cells (Dillon et al., 2004). In contrast, Pam3CSK4 in mouse allergy models 

has been associated with an increase of IFN-γ producing Th1 cells (Patel et al., 2005; 

Zhou et al., 2008), and with the induction of a Th1/Treg profile (Lombardi et al., 2008). 

Another mouse study suggested that treatment with Pam3CSK4 reduced both Th1 and 

Th2 cells by inducing CD4+ T cell apoptosis (Fukushima et al., 2006). In human blood 

mononuclear cells from mite-sensitised individuals, Pam3CSK4 reduced Th2 responses 

(Taylor et al., 2006), and in whole blood cultures from nematode-infected children 

Pam3CSK4 was shown to have IL-10 inducing capacity (Retra et al., 2008). The context 

specific effects of TLR2 stimulation with Pam3CSK4 on T cell responses therefore 

require further study. 

 Moreover, the magnitude of DC maturation did not correlate with Th1/Th2-

polarising effects. Comparable upregulation of CD83 and CD86 in DCs primed with 

LPS or M. vaccae (100 μg/ml) and in DCs primed with Pam3CSK4 or M. vaccae 

(10 μg/ml) did not translate into comparable effects on Th2-polarised responses. 

Therefore differences in DC maturation as judged by these markers are not sufficient to 

account for DC-mediated inhibition of Th2 responses. 

3.4.5.3 M. vaccae augments CD25+FoxP3+ T cell populations 

 Previous reports from animal models suggested that inhibition of Th2 responses 

may be the result of enhanced Treg responses in mice treated with M. vaccae (Zuany-

Amorim et al., 2002a; Zuany-Amorim et al., 2002b). T cells cocultured with DCs that 

were pre-stimulated with M. vaccae or LPS significantly increased DC-dependent 
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upregulation of CD25high/FoxP3high T cells. This finding was consistent with previous 

studies using autologous reactions where naive T cells upregulated their expression of 

CD25 and FoxP3 upon coculture with LPS-matured DCs (Verhasselt et al., 2004). 

Although FoxP3 has been described as the master regulator in the development and 

function of Treg cells, using its expression as a marker for human induced Treg cells 

has recently become controversial (Merlo et al., 2008; Tran et al., 2007; Wang et al., 

2007). A study demonstrated that after one week of stimulation with anti-CD3 and anti-

CD28, most human CD4+/CD25- T cells upregulated FoxP3 and CD25 expression, but 

did not obtain suppressive ability (Wang et al., 2007). Moreover, upregulation of CD25 

and FoxP3 was described following coculture of naive T cells with flagellin-primed 

allogeneic DCs, but in functional assays these cells lacked regulatory properties (Merlo 

et al., 2008). This may be confounded by the definition of positive FoxP3 staining that 

may range from intermediate to high levels. In the results presented here, only 

CD25high/FoxP3high populations were analysed, however even high expression levels of 

FoxP3 may not correlate with inhibitory abilities and is insufficient to define human 

Treg cells (Tran et al., 2007). LPS and the high dose of M. vaccae, the two stimuli that 

induced significantly upregulated CD25high/FoxP3high T cells, also induced significantly 

enhanced T cell proliferation that was statistically more powerful than with Pam3CSK4 

or 10 μg/ml M. vaccae, suggesting that those cells had no suppressive function. 

Moreover, only M. vaccae but not LPS reduced Th2 responses, suggesting that the 

CD25high/FoxP3high T cells alone were not responsible for this effect. Analysis of IL-10 

production that is a feature of some Treg cells was not detectible by intracellular flow 

cytometry analysis, and IL-10 levels in the supernatants of cocultures showed no 

correlation with numbers of CD25high/FoxP3high T cells. Taken together it is uncertain 

that the CD25high/FoxP3high T cells induced by M. vaccae-primed DCs were responsible 

for the reduction of Th2 responses and it is also possible that the upregulation of those 
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molecules was a feature of T cell activation rather than Treg differentiation. To 

determine whether these cells have immunoregulatory properties, it would have been 

possible to sort them and compare their ability to attenuate immune responses with 

CD25-/FoxP3- T cells and natural occurring Treg cells. 

3.4.5.4 M. vaccae’s effect are also evident in antigen-specific 

T cell responses 

 Although the observed variations in the phenotype of T cells cocultured with 

differentially primed DCs were only small, the findings were very consistent and similar 

to the magnitude of enhanced proliferative responses seen as a result of innate immune 

priming discussed earlier. To gain confidence in the data and to test the possibility if 

greater differences in T cell phenotypes could be generated, similar experiments were 

conducted using autologous DC-T cell cocultures. Here an antigen-specific response to 

tetanus toxoid was induced and the phenotype of the resulting T cells was compared. 

These experiments confirmed the findings from allogeneic cocultures, thus M. vaccae 

reduced Th2 responses via DCs in contrast to the specific TLR2 ligand Pam3CSK4 and 

none of the stimuli affected associations between DC number and Th1 responses. In 

these antigen-specific responses, LPS and both concentrations of M. vaccae induced 

CD25high/FoxP3high T cells contrarily to Pam3CSK4, which again did not correlate with a 

reduction of T cell proliferation. 

 It was not possible to replicate the effects of M. vaccae-primed DCs when using 

fixed DCs, or by using conditioned media from M. vaccae-DC cultures and plate bound 

anti-CD3 and soluble anti-CD28 as substitute for antigen-presenting cells in cultures 

with allogeneic naive T cell. This is in line with previous reports that emphasised the 

importance of TCR activation, costimulation and secretion of soluble factors by DCs on 

naive T cell differentiation (Kapsenberg, 2003). 
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3.5 Conclusions 

• M. vaccae induces maturation of DCs in a dose-depended manner. 

• M. vaccae induces cellular activation via TLR2, either alone or in combination 

with TLR1 or TLR6. 

• M. vaccae and LPS induce significantly greater maturation of DCs than 

Pam3CSK4. 

• DC priming with M. vaccae augments T cell proliferation in cocultures. 

• In contrast to specific TLR2 stimulation, M. vaccae-primed DCs reduce Th2-

polarised responses and augment the percentage of CD25high/FoxP3high T cells in 

allogeneic and antigen-specific cocultures. 

• Live DCs are required for the effects of M. vaccae on the T cell phenotype, as 

they could not be replicated, neither by using conditioned media from stimulated 

DC cultures and anti-CD3/anti-CD28 as a substitute for antigen-presenting cells, 

nor by using fixed DCs. 
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4 TRANSCRIPTIONAL RESPONSES OF DENDRITIC CELLS TO M. VACCAE 

4.1 Introduction 

 In the first results chapter it was established that M. vaccae can modulate Th cell 

responses via DCs. Priming of DCs with M. vaccae led to reduced numbers of IL-4-

producing Th2 cells in mixed leukocyte cultures, while it augmented the number of 

T cells showing a CD25high/FoxP3high phenotype. 

 Previous studies have also reported that T cell responses to microbial antigens 

can be partly mediated by innate immune microbial interactions with DCs (Colonna et 

al., 2006). For example DCs primed with Bordetella pertussis promoted mixed 

Th1/Th17 polarisation (Fedele et al., 2010), DCs primed with omega-1 protein from 

schistosome eggs induced Th2 cells (Everts et al., 2009; Steinfelder et al., 2009), and 

priming of DCs with probiotics increased Treg responses (Kwon et al., 2010). Yet, the 

mechanisms by which DCs adopt a phenotype that promotes different T cell responses 

are not well established (MacDonald and Maizels, 2008; van Riet et al., 2009) and 

completely untested in M. vaccae-stimulated cells.  

 A major component of innate immune cellular activation of DCs is to trigger 

signalling cascades that activate various transcription factors. These transcription factors 

control immune response gene expression, including the upregulation of cell surface 

molecules and the induction of immunomodulatory factors such as cytokines and 

chemokines, which contribute to DC-T cell interactions (Kapsenberg, 2003). In one 

recent study the expression profile of selected genes was analysed and demonstrated 

that monocyte-derived DCs primed with Th1 inducing microbes Escherichia coli and 

heat-killed L. monocytogenes expressed augmented levels of IL-12 p40, IL-12 p35 and 

IL-23 p19, whereas the expression of those genes was reduced in DCs primed with 
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phosphatidylserine containing preparations of Th2 inducing S. mansoni and Ascaris 

lumbricoides (van Riet et al., 2009). Genome-wide transcriptional profiling of DCs 

suggests that innate immune stimulation induces changes to ≥ 1000 genes (Huang et al., 

2001). These studies identified core responses that were common to different innate 

immune stimuli and stimulus specific responses (Huang et al., 2001; Jenner and Young, 

2005). Therefore, this strategy was adopted to identify differences between 

transcriptional responses of DCs to LPS, Pam3CSK4 and M. vaccae, and then 

bioinformatics approaches could be used to discover potential determinants of 

M. vaccae-specific responses both upstream and downstream of gene expression 

changes. These may provide candidate molecular mechanisms that mediate 

downregulation of Th2 responses and upregulation of CD25high/FoxP3high T cells by 

M. vaccae-stimulated DCs. 

 

4.2 Objectives 

• Compare transcriptional responses of DCs to M. vaccae with responses to 

specific TLR2 stimulation with Pam3CSK4. 

• Analyse the DC cytokine response to innate immune stimulation with LPS, 

Pam3CSK4 and M. vaccae and make comparisons with the transcriptional data. 

• Identify specific transcriptional and/or cytokine responses of DCs to stimulation 

with M. vaccae. 

 



4. TRANSCRIPTIONAL RESPONSES OF DENDRITIC CELLS TO M. VACCAE 

144 

4.3 Results 

4.3.1 Dendritic cells and macrophages have distinctive transcriptional profiles 

 Baseline gene expression profiles derived from whole genome expression 

microarrays of the DC model used in this study showed characteristic features 

associated with DCs (Figure 4-1). In comparison to existing data from our group (Tsang 

et al., 2009) derived from expression profiles in monocyte-derived macrophages 

(MDMs), DCs showed higher expression levels of CCR7, CD1A, DC-SIGN (CD209) 

and the MHC class II molecules. By contrast, CD14, CD68, macrophage receptor with 

collagenous structure (MARCO) and the macrophage scavenger receptor (MRS1) 

showed higher expression in MDMs. Of interest, the expression levels of candidate 

PRRs for the innate immune stimuli under study were also assessed. Expression of 

TLR1, TLR2, TLR4 and TLR6 were all detectable in DCs. Expression of TLR9, 

reported to detect M. tuberculosis DNA in human macrophages (Kiemer, 2009), was not 

detectable above background. Of the other putative PRRs for mycobacteria, CCR5, 

dectin-1, DC-SIGN, Nod1, Nod2 and the mannose receptor (MR) were all expressed by 

DCs (Ferwerda et al., 2007; Floto et al., 2006; Geurtsen et al., 2009; Nigou et al., 2001; 

Pott et al., 2009; Torrelles et al., 2006; Yadav and Schorey, 2006). 
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Figure 4-1: Baseline expression of selected genes in dendritic cells 

Analysis of baseline gene expression profiles (three separate donors) of selected genes associated with the 
phenotype of DCs and MDMs and PRRs involved in recognition of mycobacteria compared to a reference 
(R) of ten different human cell lines.  
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4.3.2 Stimulated dendritic cells upregulate expression of maturation markers 

 When DCs were stimulated with LPS, Pam3CSK4 or M. vaccae, the expression 

level of the surface molecules CD40, CD80, CD83, CD86, CD54 (ICAM-1), CD58 and 

CCR7 was augmented after 4 hours and 24 hours (Figure 4-2). The upregulation of 

these classical DC maturation markers validated the flow cytometry data from the 

previous chapter of results (Figure 3-8) and confirmed that the DCs used for the 

microarray analysis responded as expected. 

 

Figure 4-2: Expression of selected genes in dendritic cells that are upregulated when the cells mature 

Analysis of gene expression profiles (three separate donors) of selected genes associated with the 
maturation of DCs following 4 h and 24 h of stimulation with LPS (100ng/ml), Pam3CSK4 (Pam3 
1 μg/ml) or M. vaccae (MV 100 μg/ml) and unstimulated control DCs (U). 

 

4.3.3 Functional annotation of genes upregulated by M. vaccae 

 In view of the principal interest under study, to characterise the effect of 

M. vaccae on DCs, functional annotation clustering analysis was performed on 

M. vaccae induced gene expression changes to identify the gene ontology (GO) 

associations. The analysis of the early upregulated genes (4 hours) showed that the most 

enriched functionally related gene clusters were involved in extracellular factors with 

cytokine and chemokine activity (Table 4-1), while genes upregulated at the 24 hours 
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time point were mainly associated with signal transduction pathways and lymphocyte 

activation (Table 4-2). 

Table 4-1: Gene ontology (GO) terms from top five enriched groups of genes identified by functional 
annotation clustering analysis of genes that show >2-fold upregulation in DCs stimulated with 
M. vaccae for 4 hours 

Gene ontology term P 
value 

No of 
genes 

% of gene 
list 

Fold 
enrichment 

GO:0005125~cytokine activity 3.25-20 35 8.71 7.54 
GO:0009611~response to wounding 4.85-19 56 13.93 4.06 
GO:0006954~inflammatory response 2.98-14 38 9.45 4.49 
GO:0043066~negative regulation of 
apoptosis 

8.67-14 39 9.70 4.23 

GO:0005615~extracellular space 1.19-12 49 12.19 3.19 
GO:0044421~extracellular region part 6.35-12 58 14.43 2.69 
GO:0008009~chemokine activity 4.85-10 13 3.23 11.87 
GO:0006935~chemotaxis 9.85-10 22 5.47 5.28 
GO:0042379~chemokine receptor binding 1.08-09 13 3.23 11.15 
GO:0043065~positive regulation of 
apoptosis 

2.51-08 34 8.46 3.04 

 

Table 4-2: GO terms from top five enriched groups of genes identified by functional annotation 
clustering analysis of genes that show >2-fold upregulation in DCs stimulated with M. vaccae for 
24 hours 

Gene ontology term P 
value 

No of 
genes 

% of gene 
list 

Fold 
enrichment 

GO:0001775~cell activation 1.95-09 35 5.41 3.29 
GO:0046649~lymphocyte activation 5.09-09 28 4.33 3.79 
GO:0043066~negative regulation of apoptosis 3.82-08 37 5.72 2.82 
GO:0043122~regulation of NF-κB cascade 3.76-07 18 2.78 4.53 
GO:0043065~positive regulation of apoptosis 1.62-06 38 5.87 2.38 
GO:0009611~response to wounding 6.41-06 42 6.49 2.14 
GO:0016477~cell migration 3.50-05 26 4.02 2.54 
GO:0042110~T cell activation 6.42-05 16 2.47 3.42 
GO:0006954~inflammatory response 7.76-05 28 4.33 2.32 
GO:0009967~positive regulation of signal 
transduction 

6.46-04 24 3.71 2.19 

 

4.3.4 Comparison of functional annotation of genes downregulated by the 

different stimuli 

 Many genes were also downregulated in DCs following treatment with the 

different stimuli (Figure 4-3). Functional annotation clustering analysis of the early 

downregulated genes in DCs stimulated with M. vaccae, LPS or Pam3CSK4 showed 

that they encode for proteins that are mainly involved in cellular housekeeping 

processes, negative regulation of transcription and bind to the DNA (Table 4-3). 
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Table 4-3: GO terms from top three enriched groups of genes identified by functional annotation 
clustering analysis of genes that show >2-fold downregulation in DCs stimulated with LPS, Pam3CSK4 
or M. vaccae for 4 hours 

Stimulus Gene ontology term P value No of 
genes 

% of 
gene list 

Fold 
enrichment 

LPS 

GO:0031974~membrane-enclosed lumen 1.86-17 183 16.74 1.83 
GO:0005739~mitochondrion 1.80-10 109 9.97 1.86 
GO:0006364~rRNA processing 4.00-06 19 1.74 3.59 
GO:0008033~tRNA processing 3.54-04 14 1.28 3.20 

Pam3-
CSK4 

GO:0042802~identical protein binding 0.01 11 7.80 2.43 
GO:0042579~microbody 0.04 4 2.83 5.22 

MV100 

GO:0005739~mitochondrion 7.47-05 26 12.15 2.35 
GO:0003677~DNA binding 4.78-04 42 19.63 1.68 
GO:0010629~negative regulation of gene 
expression 0.02 12 5.61 2.15 

  

 Comparison of the GO associations of genes downregulated at the 24 hours time 

point showed that in DCs stimulated with all stimuli under study at least parts of the 

inflammatory response are already switched off. However, this seems more significant 

in M. vaccae-stimulated DCs, where only GO associations of genes involved in immune 

response and cytokine production were downregulated at this later time point (Table 

4-4). 

Table 4-4: GO terms from top three enriched groups of genes identified by functional annotation 
clustering analysis of genes that show >2-fold downregulation in DCs stimulated with LPS, Pam3CSK4 
or M. vaccae for 24 hours 

Stimulus Gene ontology term P value No of 
genes 

% of 
gene list 

Fold 
enrichment 

LPS 

GO:0005739~mitochondrion 5.87-05 100 9.17 1.48 
GO:0042611~MHC protein complex 3.59-05 14 1.28 3.94 
GO:0005764~lysosome 2.80-04 28 2.75 2.13 
GO:0006954~inflammatory response 6.89-04 36 3.30 1.82 

Pam3-
CSK4 

GO:0004969~histamine receptor activity 6.08-04 3 3.26 77.28 
GO:0006954~inflammatory response 0.01 7 7.61 4.10 

MV100 
GO:0006954~inflammatory response 5.29-07 23 6.59 3.56 
GO:0001819~positive regulation of cytokine 
production 

2.04-03 8 2.29 4.47 
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4.3.5 The predominant transcriptional responses of dendritic cells to M. vaccae 

and specific TLR2 stimulation are comparable 

 In order to investigate the differential effects of M. vaccae and Pam3CSK4 on 

DC-mediated inhibition of Th2 responses, transcriptional responses in DCs primed with 

100 ng/ml LPS, 1 μg/ml Pam3CSK4 and 100 µg/ml M. vaccae were compared. RNA 

samples were collected 4 hours and 24 hours after stimulation. Marked changes to gene 

expression were detectable in comparison to unstimulated DCs (Figure 4-3). The 

frequency distribution of significantly (>2-fold) upregulated and downregulated genes 

suggested that LPS had the greatest effect on gene expression, followed by M. vaccae 

and then Pam3CSK4 at both time points. 

 

Figure 4-3: Quantitative comparison of gene expression changes in dendritic cells in response to 
innate immune stimulation 

Quantitative comparison of >2-fold up- and downregulated gene expression changes in DCs after 4 h (A) 
and 24 h (B) of stimulation with LPS (100 ng/ml), Pam3CSK4 (1 µg/ml) or M. vaccae (100 µg/ml). 
White: 2-4 fold change, grey: 4-8 fold change, black: > 8 fold change compared to baseline gene 
expression of unstimulated DCs. Data are derived from the mean of three separate experiments using 
cDNA microarray gene expression profiling.  



4. TRANSCRIPTIONAL RESPONSES OF DENDRITIC CELLS TO M. VACCAE 

150 

 In addition, qualitative comparison of >2-fold gene expression changes 

suggested core and stimulus-specific transcriptional responses at the 4 hours and 

24 hours time points (Figure 4-4). 

 

Figure 4-4: Qualitative comparison of upregulated gene expression in dendritic cells in response to 
innate immune stimulation 

Qualitative Venn diagram comparison of >2-fold upregulated genes in DCs after 4 h (A) and 24 h (B) of 
stimulation with LPS (100 ng/ml), Pam3CSK4 (1 µg/ml) or M. vaccae (100 µg/ml). Data are derived from 
the mean of three separate experiments using cDNA microarray gene expression profiling.  

 

 Subsequently, principal component analysis (PCA) of transcriptional profiles 

was used to compare components of the data that are responsible for the greatest gene 

expression differences, to compare groups of genes that changed the most. The principle 

component (PC) scores for the four PCs which exhibit the most variance in gene 

expression data are presented in Figure 4.5, and the relative expression levels for the top 

20 genes responsible for the variance in each component are presented in Figure 4.6. In 

this analysis, stimulation of DCs with LPS induced the greatest gene expression changes 

in PC1 and PC2. Comparison of expression profiles from 4 hours and 24 hours 

stimulated DCs shows a pattern of gene expression changes in PC2 at 4 hours which 

returns to baseline levels at 24 hours. This is in contrast to PC1, which shows gene 

expression changes at 4 hours that are further augmented at 24 hours. In these 
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components of the data, gene expression profiles in DCs primed with Pam3CSK4 or 

M. vaccae, show the same pattern of transcriptional responses, albeit quantitatively less 

than responses to LPS. PC3 and PC4 show a different pattern of gene expression 

changes in stimulated DCs. In PC3, LPS stimulation causes transcriptional changes at 

4 hours and 24 hours that are divergent to those of DCs stimulated with Pam3CSK4 or 

M. vaccae. PC4 shows comparable transcriptional changes associated with all three 

stimuli at 4 hours, but divergent responses at 24 hours, when LPS stimulated cells 

approximate to unstimulated DCs and cluster away from data points representing DCs 

stimulated with Pam3CSK4 or M. vaccae.  

 Taken together, quantitative, qualitative and time course assessment of genome-

wide transcriptional responses by PCA suggests that the major transcriptional responses 

in Pam3CSK4- and M. vaccae-stimulated DCs are comparable. 
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Figure 4-5: The predominant transcriptional responses to M. vaccae and specific TLR2 stimulation are 
comparable 

Principal component analysis (PCA) of transcriptional profiling differences in DCs stimulated for 4 h or 
24 h with LPS (100 ng/ml), Pam3CSK4 (1 µg/ml) or M. vaccae (100 µg/ml) and control unstimulated 
DCs. Data points show mean (±SEM) PCA scores for three independent experiments. In A and B, lines 
and arrows indicate vector of transcriptional responses to each stimulus with time. PC1 and PC2 show 
common transcriptional changes to all stimuli, which are quantitatively greatest as a result of LPS 
stimulation. PC3 and PC4 show divergent responses in LPS stimulated cells compared to Pam3CSK4 or 
M. vaccae. Transcriptional profiles in M. vaccae and Pam3CSK4 stimulated cells are closely aligned in 
each component.  
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Figure 4-6: Relative expression levels for gene expression differences in differentially stimulated 
dendritic cells 

Heat map representation of relative gene expression levels for the top 20 genes that are responsible for the 
greatest variance in the first four principle components (PC) of gene expression differences in DCs 
stimulated with LPS (100 ng/ml), Pam3CSK4 (1 µg/ml) or M. vaccae (100 µg/ml). Data are derived from 
the mean of three separate experiments using cDNA microarray gene expression profiling. For gene 
names see list of abbreviations (pages 16-22). 
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4.3.6 The predominant cytokine responses of dendritic cells to M. vaccae and 

specific TLR2 stimulation are also comparable 

 Transcriptional responses are not always faithfully translated to protein 

responses. The functional annotation clustering analysis (4.3.3) had shown that early 

gene expression changes induced by M. vaccae were largely implicated in extracellular 

factors with cytokine and chemokine activity. Hence, to validate the expression 

profiling analysis and look for discordance between transcriptional and protein 

responses, multiple cytokine measurements were made in supernatants of differentially 

stimulated DCs (Figure 4-7A).  

 

Figure 4-7: Dendritic cell responses to M. vaccae and specific TLR2 stimulation are comparable at 
protein level 

A: Selected cytokine and chemokine levels in the supernatants of DCs stimulated for 24 h with LPS 
(100 ng/ml), Pam3CSK4 (1 µg/ml) or M. vaccae (10 μg/ml or 100 µg/ml) and control unstimulated DCs 
are presented in a heat map. B: For comparison, mRNA expression of the same cytokines and chemokines 
after 4 h of stimulation. In general, this showed highest levels in LPS-stimulated cells and comparable 
levels in Pam3CSK4- and M. vaccae-stimulated cells. Data represent mean values from three separate 
experiments. 
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 These data closely mirrored the expression profiling analysis (Figure 4-7B), 

accordingly the greatest responses were evident in LPS stimulated DCs and more 

modest responses in Pam3CSK4 or M. vaccae stimulated DCs were directly comparable. 

 

Figure 4-8: IL-1β is secreted by dendritic cells stimulated with M. vaccae 

A: Concentrations of selected cytokines in cell culture supernatants of DCs stimulated for 24 h with LPS 
(100 ng/ml), Pam3CSK4 (1 μg/ml) or M. vaccae (10 μg/ml or 100 μg/ml); B: focusing on IL-1β and 
IL-1 receptor antagonist (ra). Data show mean (±SD) of three independent experiments. 

 

 Interestingly, increased IL-1β secretion was only detected in DCs stimulated 

with 100 µg/ml M. vaccae, suggesting activation of the inflammasome pathway that is 
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required for IL-1β release (Martinon et al., 2002). In view of the role of this pathway in 

augmentation of adaptive immune responses (Martinon et al., 2009), the possibility was 

considered that IL-1β may contribute to DC-dependent costimulation of T cells that is 

responsible for the inhibition of Th2 responses associated with M. vaccae-priming of 

DCs. However, it was also found that the homeostatic regulator of IL-1β activity, 

IL-1-receptor antagonist (ra) was also present in cell culture supernatants at high 

concentrations that were likely to negate any biological activity of relatively small 

increase in IL-1β concentration (Figure 4-8B). These data suggest that induction of 

IL-1β release and by implication, activation of the inflammasome is not responsible for 

the anti-Th2 effect of DCs primed with M. vaccae. This is further supported by the data 

in the previous chapter showing that DC supernatants did not reproduce the effect of 

M. vaccae-primed DCs (Figure 3-19A). 

 

4.4 Discussion 

 In the first chapter of results it was established that M. vaccae can induce innate 

immune cellular activation via TLR2. However, priming of DCs with Pam3CSK4, a 

specific ligand for TLR2, did not have the same effects on T cell polarisation in 

allogeneic and antigen-specific mixed leukocyte cultures as priming of DCs with 

M. vaccae. Given that specific TLR2 stimulation has different effects to M. vaccae, 

comparison of transcriptional responses to each stimulus may give greater insight into 

the molecular mechanisms involved and differences in upstream signalling pathways. 

4.4.1 Baseline transcriptional profile of the dendritic cell model studied 

 First the expression profile of unstimulated DCs was compared to that of a 

reference, an average expression profile of universal human reference RNA composed 

of total RNA from ten human cell lines, and to unstimulated MDMs. This verified that 
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the DC model used in this study expressed genes characteristic for DCs. In comparison 

to the reference and to MDMs, the DCs showed as expected increased transcription of 

the surface molecules CD1A, CD40, CD80, CD83, CD86, CCR7 and DC-SIGN 

(CD209) (Forster et al., 1999; Geijtenbeek et al., 2000; Sallusto and Lanzavecchia, 

1994; Zhou and Tedder, 1996). Moreover, MHC class I molecules that are expressed by 

all nucleated cells were detected in DCs, MDMs and also in the reference cell lines, 

whereas MHC class II molecules were as expected only expressed above background in 

the antigen-presenting DCs and MDMs. In line with the literature (Sallusto and 

Lanzavecchia, 1994; Yanagihara et al., 1998; Zhou and Tedder, 1996) and the flow 

cytometry data presented in the previous chapter, the expression of the surface 

molecules CD40, CD80, CD83, CD86, ICAM-1, CD58 and CCR7 was upregulated 

when DCs were treated with the different innate immune stimuli, confirming the 

accuracy of the microarray data. In comparison to DCs, MDMs showed higher 

expression of the macrophages receptors CD14, MARCO and MSR1, which is 

supported by the literature (Kraal et al., 2000; Sallusto and Lanzavecchia, 1994; 

Tomokiyo et al., 2002). Since the stimuli under study, M. vaccae, Pam3CSK4 and LPS 

are ligands for the TLRs 1/2, 2, 2/6 or  4, and mycobacterial recognition has in addition 

previously been associated with TLR9, DC-SIGN, CCR5, dectin-1, Nod1, Nod2 or the 

mannose receptor (Ferwerda et al., 2007; Floto et al., 2006; Geurtsen et al., 2009; 

Kiemer, 2009; Nigou et al., 2001; Pott et al., 2009; Torrelles et al., 2006; Yadav and 

Schorey, 2006), the expression of these PPRs was analysed in the DC model. All PPRs 

were expressed above background except TLR9, which is consistent with previous 

reports showing that TLR9 expression in humans is restricted to pDCs and B cells 

(Bernasconi et al., 2003; Hornung et al., 2002; Rothenfusser et al., 2002). 
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4.4.2 Transcriptional responses of dendritic cells to differential innate immune 

stimulation 

 Next, the expression profiles of DCs after 4 hours and 24 hours of innate 

immune stimulation with the different stimuli under study were compared. Quantitative 

changes in gene expression showed that LPS caused the greatest response at both time 

points and the level of these changes in expression was similar to that of previous 

reports (Huang et al., 2001). The number of up- and downregulated genes was more 

similar between Pam3CSK4- and M. vaccae-primed DCs. Yet, stimulation with 

M. vaccae provoked slightly more changes than the specific TLR2 ligand, supporting 

the likelihood that M. vaccae is recognised by alternative PRRs in addition to TLR2 

(Ferwerda et al., 2007; Floto et al., 2006; Geurtsen et al., 2009; Nigou et al., 2001; 

Torrelles et al., 2006; Yadav and Schorey, 2006). 

 Qualitative comparison of gene expression changes in response to LPS, 

Pam3CSK4 and M. vaccae showed common and stimulus-specific responses. This is in 

line with previous reports showing that DCs stimulated with different pathogens 

perform a shared core response and pathogen-specific gene expression programmes 

(Huang et al., 2001; Jenner and Young, 2005). Remarkably, PCA of these data showed 

that the major gene expression changes induced by M. vaccae and Pam3CSK4 were 

extremely alike. Moreover, the response to LPS was in PC1 and PC2 qualitatively 

similar, but more pronounced. TLR signalling leads to shared activation of transcription 

factors like NF-κB (Beutler, 2004) and therefore converge on a common set of genes. It 

was previously shown that activation of TLR2 and TLR4 is both inducing 

inflammatory/chemotactic cytokine genes, which is seen as the common host response 

(Huang et al., 2001; Jenner and Young, 2005). In macrophages it was shown that the 

time course of the core response to TLR2 and TLR4 stimulation was similar, but the 
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median gene induction was about 2-fold larger in response to LPS (Jenner and Young, 

2005), therefore it is likely that PC1 and PC2 are representing the core response. 

 The similarity of the major gene expression changes induced by Pam3CSK4 and 

M. vaccae suggests that the main transcriptional responses to M. vaccae are mediated 

via TLR2, and that these are not responsible or at least not sufficient for inhibition of 

Th2 responses. This is interesting, as in addition to M. vaccae, other microorganisms 

associated with the hygiene hypothesis, including helminths (van der Kleij et al., 2002) 

and lactobacilli (Foligne et al., 2007) were also shown to signal via TLR2. However, for 

certain lactobacilli it was also demonstrated that recognition by Nod2 (Foligne et al., 

2007) or DC-SIGN (Smits et al., 2005) plays a critical role in the suppression of Th2 

responses. Both receptors have been shown to recognise other mycobacteria (Ferwerda 

et al., 2007; Geurtsen et al., 2009), and therefore may also play a role in the effects of 

M. vaccae on T cell polarisation. An effect of co-receptor usage is seen with the TLR2 

ligand zymosan, which also engages dectin-1 and drives the development of IL-10 

producing DCs and TGF-β producing macrophages (Dillon et al., 2006). Since BCG, 

M. tuberculosis, M. smegmatis, M. phlei, M. avium, M. abscessus and M. ulcerans are 

inducing cellular activation via dectin-1 (Lee et al., 2009; Shin et al., 2008; Yadav and 

Schorey, 2006), it might be likely that M. vaccae also engages this receptor and co-

signalling with TLR2 could play a role for the effects of M. vaccae. However, 

M. vaccae-stimulation of DCs induced only little production of IL-10 in one donor at 

protein level and a modest 2.4-fold upregulation at mRNA level. As a result this 

hypothesis was not tested specifically. 

4.4.3 Functional annotation clustering analysis 

 Functional annotation clustering analysis of genes upregulated in M. vaccae-

primed DCs showed, as expected in innate immune cells, enrichment for genes involved 

in inflammatory responses, including cytokine and chemokine activity. At the later time 
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point gene clusters involved in T cell activation and the NF-κB signalling pathway were 

also expressed. This is different to stimulation with LPS or Pam3CSK4, which induce 

genes involved in T cell activation and NF-κB signalling already at the 4 hours time 

point. As expected, analysis of the early downregulated genes showed that they are 

mainly involved in housekeeping and negative regulation of transcription. Interestingly, 

components of inflammatory responses are downregulated at the 24 hour time point. 

This is especially evident in M. vaccae stimulated genes. Given that the major genes 

upregulated by M. vaccae and Pam3CSK4 were closely comparable, it is possible to 

speculate that differences in duration of inflammatory responses may contribute to 

DC-T cell interactions and consequently differential Th cell polarisation. This 

hypothesis was not specifically addressed in this thesis.  

4.4.4 M. vaccae induces secretion of IL-1β 

  GO terms associated with genes upregulated in M. vaccae-primed DCs showed 

induction of genes involved in chemokine and cytokine activity. The pattern of 

transcriptional responses assessed by cDNA microarrays was mirrored in measurements 

of selected cytokines and chemokines in cell culture supernatants, except for increased 

secretion of IL-1β in M. vaccae (100 μg/ml)-primed DCs compared to other stimuli. 

IL-1β secretion is tightly regulated by activation of the inflammasome and caspase-1 

(Martinon et al., 2002). In view of the role of this pathway as a bridge between innate 

and adaptive immunity (Martinon et al., 2009), the possibility that IL-1β is involved in 

inhibition of Th2 responses by M. vaccae-primed DCs was considered, but the 

substantial concentrations of IL-1ra in the same samples shed doubt on the biological 

significance of modest increases in IL-1β. In addition, previous reports showed 

impaired Th2 immune responses in absence of the NALP3, ASC and caspase-1 

(Eisenbarth et al., 2008). The authors showed that alum triggers NALP3 and induces 

inflammasome activation and IL-1β production. Alum is used to induce Th2-mediated 
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inflammation in allergy/asthma mouse models, but this required a functional NALP3 

inflammasome, as knockout mice had decreased airway eosinophilia and IL-5 

production. This suggests that inflammasome activity and IL-1β production rather 

contribute to increasing Th2 differentiation than inhibiting it, which is in contrast to the 

effect of M. vaccae. More recently it was demonstrated that enhanced inflammasome 

activity in antigen-presenting cells augmented Th17 cells (Brydges et al., 2009; Meng et 

al., 2009), hence a shift from Th2 towards Th17 responses might explain the reduction 

of IL-4+ T cells in cocultures with M. vaccae-primed DCs. Yet, in my mixed leukocyte 

experiments no IL-17+ cells were detectable by intracellular flow cytometry (data not 

shown). Therefore this hypothesis was not assessed any further here. Instead I focussed 

on gene expression differences that were exclusively induced by M. vaccae and on 

identification of upstream signalling pathways involved. 

 

4.5 Conclusions 

• Quantitative, qualitative and time course assessments of genome-wide 

transcriptional responses showed that the predominant responses in Pam3CSK4 

and M. vaccae stimulated DCs are comparable. 

• Cytokine secretion by DCs in response to stimulation with M. vaccae and 

Pam3CSK4 is similar and comparatively smaller than responses to LPS, which 

closely mirrored the transcriptional data. 
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5 M. VACCAE SELECTIVELY STIMULATES EARLY ACTIVATION OF THE CREB 

PATHWAY 

5.1 Introduction 

 In the first results chapter I demonstrated that M. vaccae is recognised by TLR2. 

Yet, in contrast to stimulation of DCs with a specific TLR2 ligand (Pam3CSK4), 

priming of DCs with M. vaccae reduced the Th2 response in mixed leukocyte cultures 

and augmented the number of CD25high/FoxP3high T cells. Microarray analysis showed 

in line with the literature (Huang et al., 2001; Jenner and Young, 2005) that stimulation 

of DCs with specific TLR2 and TLR4 ligands or with M. vaccae resulted in shared-core 

and stimulus-specific responses. PCA identified that the major transcriptional responses 

in DCs to specific TLR2 stimulation with Pam3CSK4 and stimulation with M. vaccae 

were comparable. Since those two stimuli did not show the same effects on T cell 

polarisation, I attempted to identify differences in the transcriptional responses that 

could give insight into the molecular mechanisms involved and differences in upstream 

signalling pathways.  

 Stimulation of cellular immune receptors induces signal transduction cascades 

leading to the activation of transcription factors and consequently altered gene 

expression. The induction of signalling pathways in response to stimulation of DCs was 

first studied in mice models. The first investigation of signalling pathways activated in 

LPS-stimulated DCs showed that NF-κB translocation was required to induce 

maturation of DCs in terms of upregulation of MHC and costimulatory molecules 

(Rescigno et al., 1998). LPS-dependent activation of ERK1/2 was not essential for DC 

maturation but necessary to prevent apoptosis of activated DCs (Rescigno et al., 1998). 

Later studies on mice DCs stimulated with various TLR ligands showed that the MAPK 
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pathways p38, ERK1/2 and JNK are involved in DC maturation and production of 

cytokines (Dowling et al., 2008).  

 Mycobacteria have been shown to block or activate NF-κB and MAPK 

pathways. A study showing a positive effect of freeze-dried BCG preparations in mouse 

asthma models concluded that this effect was at least partially due to blocked activation 

of NF-κB and p38 MAPK in lung extracts following OVA challenge (Lagranderie et al., 

2010). However, infection of human monocytes with M. tuberculosis or live BCG has 

been shown to activate p38 and ERK1/2 pathways (Gagliardi et al., 2009). 

 The MAPK pathways are activated in murine and human macrophages 

following infection with virulent and avirulent strains of M. avium and they seem to 

play a critical role in the activation of an immune response and the ability of 

mycobacteria to replicate (Blumenthal et al., 2002; Klug et al., 2010; Tse et al., 2002). 

While ERK1/2 phosphorylation is thought to be essential for TNF-α production and 

reduction of mycobacterial replication, anti-inflammatory IL-10 was shown to depend 

on p38 MAPK, whose activation promotes bacterial growth (Bhattacharyya et al., 2002; 

Blumenthal et al., 2002; Klug et al., 2010; Reiling et al., 2001; Tse et al., 2002). This is 

in line with a recent study showing that human monocyte cultures treated with heat-

killed M. tuberculosis rapidly activate the p38 MAPK pathway, which was shown to be 

involved in il-10 gene expression and interfered with DC differentiation (Remoli et al., 

2010). Two recent reports on M. tuberculosis-derived proteins showed that those 

antigens are recognised by TLR2 and can induce maturation of human monocyte-

derived DCs. The authors demonstrated that DC maturation and cytokine secretion in 

response to those M. tuberculosis-derived proteins was reduced by pharmacological 

blocking of ERK1/2, p38 or NF-κB, whereby NF-κB translocation had the biggest 

effect (Bansal et al., 2010a; Bansal et al., 2010b).  
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 No data are available on signalling pathways activated by M. vaccae. To identify 

transcription factors that are activated in M. vaccae-stimulated DCs, which could give 

insight into upstream signalling pathways, the open-access bioinformatics tool 

oPOSSUM was applied (Ho Sui et al., 2005). OPOSSUM allows analysing lists of 

genes for association with overrepresented transcription factor binding sites (TFBSs).  

 

5.2 Objectives 

• Identify transcription factors and signalling pathways that are activated by DCs 

stimulated with M. vaccae. 

• Compare if M. vaccae, LPS and Pam3CSK4 induce activation of classical 

NF-κB signalling and the MAPK pathways p38 and ERK1/2. 

• Block M. vaccae-induced activation of specific signalling pathways in order to 

study their role in DC-mediated effects of M. vaccae on T cell polarisation. 

 

5.3 Results 

5.3.1 Sets of genes activated by M. vaccae have distinct transcription factor 

binding sites 

 In order to investigate the mechanism of differences in gene expression 

responses, putative TFBSs associated with upregulated gene lists for each stimulus were 

identified using oPOSSUM. This analysis identified statistically overrepresented TFBS 

within the gene list of interest compared to the background genome (Table 5-1 and 

Table 5-2) (Ho Sui et al., 2005). 
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Table 5-1: Overrepresented TFBSs in DCs stimulated for 4 hours with M. vaccae, LPS or Pam3CSK4. The 
oPOSSUM programme was used for analysis. For names of transcription factors see abbreviations 
(pages 16-22). 

TFBSs in DCs 
stimulated with 
M. vaccae 
(100 µg/ml) 

Z-Score TFBSs in DCs 
stimulated with 
LPS 
(100 ng/ml) 

Z-Score TFBSs in DCs 
stimulated with 
Pam3CSK4 
(1 µg/ml) 

Z-Score 

RELA 37.78 IRF2 30.50 RELA 29.96 
REL 36.84 RELA 29.44 REL 28.33 
NF-kappaB 30.53 NF-kappaB 23.77 NF-kappaB 26.90 
NFKB1 30.41 STAT1 22.32 NFKB1 24.76 
CREB1 23.56 REL 21.78 TP53 23.58 
SPIB 20.55 NFKB1 19.10 ELK4 10.91 
ELF5 17.39 IRF1 17.20 ELK1 10.29 
ELK1 16.14 ELK1 12.06   
FOS 14.93 FOS 10.15   
HLF 13.81     
Hand1-Tcfe2a 13.24     
SP1 12.10     
STAT1 11.79     
ELK4 10.40     
 

Table 5-2: Overrepresented TFBSs in DCs stimulated for 24 hours with M. vaccae, LPS or Pam3CSK4. 
The oPOSSUM programme was used for analysis. For names of transcription factors see abbreviations 
(pages 16-22). 

TFBSs in DCs 
stimulated with 
M. vaccae 
(100 µg/ml) 

Z-Score TFBSs in DCs 
stimulated with 
LPS 
(100 ng/ml) 

Z-Score TFBSs in DCs 
stimulated with 
Pam3CSK4 
(1 µg/ml) 

Z-Score 

RELA 23.06 IRF2 21.00 IRF1 17.66 
REL 20.35 RELA 16.96 RELA 16.12 
NF-kappaB 17.48 NFKB1 12.02 IRF2 15.92 
IRF2 13.86   Fos 14.64 
NFKB1 13.67   HLF 13.39 
FOXD1 10.44   NFKB1 12.80 
    NF-kappaB 11.87 
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 Venn diagram analysis of the significantly overrepresented TFBSs (Z-score ≥ 10 

and Fischer score ≤ 0.1) identified for each gene list was then used to look for common 

and for stimulus-specific pathways upstream of gene expression (Figure 5-1). 

 

Figure 5-1: Overrepresented TFBSs associated with upregulated genes 

Analyses of overrepresented TFBSs associated with genes that are upregulated in DCs in response to 4 h 
(A) and 24 h (B) stimulation with M. vaccae (100 μg/ml), LPS (100 ng/ml) or Pam3CSK4 (1 μg/ml), 
using the online bioinformatics tool oPOSSUM. The Venn diagram shows overrepresented TFBSs that 
are shared and exclusive in response to the three different stimuli. For transcription factor names see list 
of abbreviations (pages 16-22).  
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 As expected, this showed enrichment for components of the NF-κB transcription 

factor family in the common response for all stimuli. At the 4 hours time point, 

M. vaccae activated expression of genes that are enriched with 14 different TFBSs, 

considerably more than the specific TLR ligands LPS and Pam3CSK4, which were 

enriched for nine and seven transcription factors respectively. Moreover, six TFBSs 

were enriched exclusively in the M. vaccae upregulated gene list, CREB1, SPIB, ELF5, 

HLF, Hand1-Tcfe2a and SP1. At the early time point, only LPS induced 

overrepresented induction of genes associated with IRFs, whereas the list of upregulated 

genes in response to Pam3CSK4 was exclusively enriched for the binding site of TP53. 

Genes upregulated at the 24 hours time point were enriched for less TFBSs than genes 

induced at the early time point. 

 Similar analysis of genes that were exclusively upregulated by stimulation with 

M. vaccae at the 4 hours time point identified CREB1 as the most enriched transcription 

factor (Table 5-3).  

Table 5-3: Overrepresented TFBSs in genes exclusively upregulated in DCs stimulated for 4 hours with 
M. vaccae. The oPOSSUM programme was used for analysis. For names of transcription factors see 
abbreviations (pages 16-22). 

TFBSs in DCs stimulated  
with M. vaccae (100 µg/ml) versus all 

Z-Score 

CREB1 19.98 
SP1 18.93 
HLF 17.30 
REL 16.06 
RELA 14.82 
NF-kappaB 11.35 
RXRA-VDR 10.09 
 

 There are 168 genes upregulated in DCs after 4 hours of stimulation with 

M. vaccae that are associated with a TFBS for CREB1. From this list all genes that are 

more than 5-fold upregulated are shown in Figure 5-2. Moreover, there are 33 genes 

with TFBSs for CREB1 that are exclusively upregulated in DCs that were stimulated for 

4 hours with M. vaccae, but are not induced by LPS or Pam3CSK4 (Figure 5-3). 



5. M. VACCAE SELECTIVELY STIMULATES EARLY ACTIVATION OF THE CREB PATHWAY 

168 

 

Figure 5-2: Genes with TFBSs for CREB1 that are more than 5-fold upregulated in M. vaccae-stimulated 
dendritic cells 

Genes that are more than 5-fold upregulated in response to stimulation with M. vaccae (100μg/ml) and 
that are associated with the transcription factor CREB1. Expressions in LPS- and Pam3CSK4-stimulated 
and unstimulated (U) DCs are aligned for comparison. For gene names see list of abbreviations (pages 16-
22). 



5. M. VACCAE SELECTIVELY STIMULATES EARLY ACTIVATION OF THE CREB PATHWAY 

169 

 

Figure 5-3: Genes with TFBSs for CREB1 that are exclusively upregulated in M. vaccae-stimulated 
dendritic cells 

Genes that are exclusively upregulated by DCs in response to 4 h stimulation with M. vaccae (100 μg/ml) 
and are associated with the transcription factor CREB1. LPS- and Pam3CSK4-stimulated and 
unstimulated (U) DCs are aligned for comparison. For gene names see list of abbreviations (pages 16-22).  
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 Functional annotation clustering analysis identified that the list of exclusively 

upregulated genes by stimulation with M. vaccae that are associated with CREB1 is 

significantly enriched for transcriptional regulation (Table 5-4).  

Table 5-4: GO terms from top three enriched groups of genes identified by functional annotation 
clustering analysis of genes that are exclusively upregulated in DCs following 4 hours of stimulation 
with M. vaccae and that are associated with CREB1. 

Gene ontology term P value No of 
genes 

% of 
gene list 

Fold 
enrichment 

GO:0003700~transcription factor activity 2.44-4 9 27.27 4.79 
GO:0030528~transcription regulator activity 4.39-3 9 27.27 3.09 
GO:0003677~DNA binding 1.87-2 10 30.30 2.23 
GO:0006355~regulation of transcription 5.71-3 10 30.30 2.73 
GO:0051252~regulation of RNA metabolic process 6.62-3 10 30.30 2.66 
GO:0008654~phospholipid biosynthetic process 1.75-2 3 9.09 14.21 
 

 OPOSSUM analysis of genes exclusively upregulated by M. vaccae at 24 hours 

were only enriched for hepatocyte nuclear factor 4 alpha (HNF4A) (Z-score = 13.77) 

and REL (Z-score = 11.65). 

 

5.3.2 M. vaccae selectively stimulates activation of the CREB pathway 

 The oPOSSUM analysis had identified that TFBSs for CREB1 were the most 

overrepresented in the list of early upregulated genes in M. vaccae stimulated DCs. 

Moreover, this analysis suggested upregulated expression of genes with TFBSs for 

members of the NF-κB family as a shared core response induced by all innate immune 

stimuli under study. However, this bioinformatics analysis only theoretically implicated 

a role for CREB1-dependent gene expression in M. vaccae-stimulated DCs and showed 

NF-κB-activity in all stimulated DCs. In order to validate this analysis, specific innate 

immune signalling events were compared in differentially stimulated DCs. 

 CREB1, as described in more detail in the introduction (1.4.5), is constitutively 

and ubiquitously expressed and therefore already present in unstimulated cells and does 

not have to be newly synthesised to induce transcription of genes. Briefly, 
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phosphorylation of the transcription factor CREB1 on Ser-133 is commonly associated 

with its activation (Gonzalez and Montminy, 1989), which triggers the recruitment of 

the coactivators CBP and its paralogue p300 (Arias et al., 1994; Chrivia et al., 1993) 

and strongly enhances CREB1-dependent transcription (Hagiwara et al., 1993).  

 Due to the important roles of NF-κB and MAPK pathways in DC maturation and 

cytokine production, which both might contribute to their ability to polarise T cell 

responses (Boonstra et al., 2003; Kapsenberg, 2003), and the bioinformatics data 

suggesting activation of the CREB pathway in M. vaccae-stimulated DCs, I sought to 

compare activation of those pathways in LPS-, Pam3CSK4- and M. vaccae-primed DCs 

by Western blotting. To study activation of the classical NF-κB signalling pathway cell 

extracts were analysed for IκB-α degradation. Activation of the MAPK pathways p38 

and ERK1/2 was detected by using antibodies specific for their phosphorylated state. 

Activation of CREB1 was detected by using a monoclonal antibody that recognises 

endogenous levels of CREB1 only when phosphorylated at Ser-133. 

 

 Stimulation of DCs with the TLR4 ligand LPS activated all pathways under 

study, thus IκB-α was degraded, and ERK1/2, p38 and CREB1 were phosphorylated at 

the 30 minutes time point (Figure 5-4). The specific TLR2 ligand Pam3CSK4 had the 

same effect as LPS. All signalling pathways were turned on at the early time point, but 

none of them remained activated 120 minutes after stimulation. In stark contrast, 

M. vaccae activated only the CREB pathway at the early time point and in comparison 

to the other stimuli exhibited sustained activation of this pathway at the late time point 

(Figure 5-4). Activation of the NF-κB signalling pathway or the MAPK cascade 

proteins p38 and ERK1/2 in response to stimulation with M. vaccae was not detectable 

by using Western blotting. 
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Figure 5-4: M. vaccae selectively stimulates activation of the CREB pathway 

A: Western blot analysis of candidate innate immune signalling events in DCs shows comparable 
degradation of IκB-α, and phosphorylation of p38, ERK1/2 and CREB in DCs after 30 min and 120 min 
of stimulation with LPS (100 ng/ml) and Pam3CSK4 (1 µg/ml), but selective activation of the CREB 
pathway by M. vaccae (10 μg/ml and 100 μg/ml). B: Quantitative densitometry data from three separate 
experiments are shown. Bars represent mean ±SD.  

 

 



5. M. VACCAE SELECTIVELY STIMULATES EARLY ACTIVATION OF THE CREB PATHWAY 

173 

5.3.3 M. vaccae stimulates late activation of the NF-κB pathway 

 Clearly, the transcriptional profiling data suggest that M. vaccae also activates 

the NF-κB pathway. In resting cells, inhibitory IκB proteins are bound to NF-κB that 

mask its NLS and inhibit its translocation into the nucleus (Huxford et al., 1998; Jacobs 

and Harrison, 1998). Moreover, IκB-α proteins contain a NES that is also responsible 

for the mainly cytosolic pool of NF-κB–IκB-α complexes in resting cells (Tam et al., 

2000). In the canonical NF-κB pathway, innate immune activation of cells induces 

phosphorylation of IκB via the IKK complex, which leads to its polyubiquitination and 

proteasomal degradation (Chen et al., 1995b; DiDonato et al., 1996; Lin et al., 1995; 

Scherer et al., 1995). Consequently, NF-κB is no longer bound in the cytoplasm and can 

shuttle into the nucleus where the Rel subunit, which contains a transactivation domain, 

can drive the transcription.  

 Given that degradation of IκB-α was not detected by Western blotting in 

M. vaccae-stimulated DCs, activation of the classical NF-κB pathway was assessed by 

quantification of NF-κB RelA nuclear translocation by confocal microscopy 

(Noursadeghi et al., 2008). By using specific antibodies for NF-κB RelA (p65), it was 

possible to visualise cytosolic and nuclear localisation of NF-κB, which was then 

quantified using MetaMorph software (Noursadeghi et al., 2008). This method showed 

that nuclear translocation of RelA was evident after two hours of stimulation with 

M. vaccae (Figure 5-5). In comparison to LPS and Pam3CSK4, which induced rapid 

activation of NF-κB that was visibly 30 minutes post-stimulation, activation by 

M. vaccae clearly occurred more slowly. 



5. M. VACCAE SELECTIVELY STIMULATES EARLY ACTIVATION OF THE CREB PATHWAY 

174 

 

Figure 5-5: M. vaccae stimulates late activation of the NF-κB pathway 

Quantitative confocal immunofluorescence staining used to detect NF-κB RelA (p65) nuclear 
translocation in response to innate immune stimulation of DCs (A) showed that activation of the classical 
NF-κB pathway was evident by 30 min in response to LPS or Pam3CSK4, and by 120 min in response to 
M. vaccae (B). Representative data from three separate experiments are shown. Box and whisker plots 
represent median, and range of data from approximately 500 single cell measurements.  

 

 

5.3.4 PKA inhibitor H89 blocks M. vaccae-mediated phosphorylation of CREB1 

in dendritic cells 

 In order to directly test the role of the CREB pathway in the M. vaccae-induced 

DC-dependent inhibition of Th2 responses, I sought to inhibit this pathway 

pharmacologically. CREB1 is activated by phosphorylation at serine 133, which can 

occur via various signal transduction pathways (Figure 5-6). Primarily, PKA has been 

shown to provoke phosphorylation of CREB1 (Gonzalez and Montminy, 1989). 

Likewise, various other protein kinase pathways have been described that can induce 

activation of CREB1, including Ca2+ influx that can trigger CaMKII/IV (Matthews et 

al., 1994; Sun et al., 1994), ERK1/2 activation can phosphorylate p90RSK (Ginty et al., 

1994; Xing et al., 1996) and MSK1/2 (Deak et al., 1998; New et al., 1999; Pierrat et al., 
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1998), phosphorylated p38 (p-p38) can also activate MSK1/2 (Deak et al., 1998; New et 

al., 1999; Pierrat et al., 1998; Wiggin et al., 2002), and PI3K can trigger Akt, which can 

either directly phosphorylate CREB1 (Du and Montminy, 1998; Kato et al., 2007) or 

inhibit GSK3,  an inhibitor of CREB1 (Martin et al., 2005). 

 

Figure 5-6: Signalling pathways leading to phosphorylation of CREB1 at Ser-133 

The transcription factor CREB1 forms homodimers and binds the cAMP response element (CRE) and 
activates transcription. CREB1 is activated upon phosphorylation of serine 133, which can occur via 
PKA, CaMKII, p90RSK, Akt and MSK1/2. DCs were incubated 2 h prior to stimulation with a final 
concentration of 25 μM of the p38 inhibitor SB203580, 25 μM of the PI3K inhibitor LY294002, 25 μM 
of the MEK1 inhibitor PD98059, 100 μM of the cell-permeable adenylate cyclase (AC) inhibitor 
SQ22536 or 50 μM of the PKA inhibitor H89. 
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Figure 5-7: PKA inhibitor H89 blocks M. vaccae-mediated phosphorylation of CREB1 in dendritic cells 

CREB1 phosphorylation in response to M. vaccae stimulation of DCs ± preincubation with the various 
inhibitors, showed attenuated response only in the presence of 50 μM H89 (PKA inhibitor). 
Representative Western blot analysis (A) and densitometry quantitation (B) of three separate experiments 
are shown (mean ±SD). 

 

 Amongst the different inhibitors tested, only the common PKA inhibitor 

N-[2-(p-bromocinnamylamino)ethyl]-5-isoquinoline sulfonamide (H89) blocked 

M. vaccae-mediated phosphorylation of CREB1 in DCs (Figure 5-7). H89 can also 

block MSK1/2 (Davies et al., 2000), whose main target is CREB1 (Arthur and Cohen, 

2000; Wiggin et al., 2002), however blocking of upstream kinases ERK1/2 and p38 
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with PD98059 or SB203580 respectively did not affect CREB1 phosphorylation. 

Moreover, treatment of DCs with LY294002, an inhibitor of the PI3K-Akt pathway, did 

not block M. vaccae-induced CREB1 phosphorylation, and rather augmented its 

phosphorylation in unstimulated DCs. Taken together, pharmacological blocking of 

various signal transduction pathways that can provoke phosphorylation of CREB1 

indicated a role for PKA, independent of adenylate cyclase activity, whose inhibition 

with SQ22536 had no effect. 

 

5.3.5 PKA inhibitor H89 induces apoptosis and death of dendritic cells 

 In order to study the role of CREB1 activity in M. vaccae-stimulated DCs and its 

effects on T cell polarisation in mixed leukocyte cultures, DCs were treated with H89 

two hours prior to stimulation with LPS, Pam3CSK4 or M. vaccae.  Following 24 hours 

of incubation, at the time when T cells would be added, the DCs were analysed for signs 

of apoptosis and cell death, using annexin-V and PI staining. Annexin-V binds with 

high affinity to phosphatidylserine that is usually located inside the cell membrane of 

live cells but is expressed on the cell surface of apoptotic cells. PI can only penetrate the 

membrane of dying or dead cells and then intercalates into double-stranded nucleic 

acids. This analysis by flow cytometry showed clearly that the final concentration of 

50 μM H89 used for inhibition of M. vaccae-mediated phosphorylation of CREB1 

caused cell death in the 24 hours of DC culture prior to coculture with T cells 

(Figure 5-8A+B). The toxicity was caused by H89 and not by DMSO in which H89 was 

initially dissolved, as a similar concentration of DMSO had no such toxic effect 

(Figure 5-8A+B).  

 A serial dilution series of H89 was used to treat DCs for 24 hours in order to 

assess at which concentration the PKA inhibitor was not toxic (Figure 5-8A+B). 
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Figure 5-8: PKA inhibitor H89 induces apoptosis and death of dendritic cells 

Overnight incubation of DCs with H89, required for functional experiments, shows dose-dependent 
cytotoxicity reflected in increased annexin-V (A) and PI (B) staining assessed by flow cytometry. A 
reduced concentration of only 12.5 μM H89, which showed only modest cytotoxicity, did not block 
completely M. vaccae-mediated phosphorylation of CREB1 assessed by Western blot analysis (C) and 
densitometry quantitation (D).  
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 Subsequently it was tested if a final concentration of 12.5 μM H89, which 

showed minor toxicity measured by annexin-V and PI staining, would still be able block 

M. vaccae-mediated phosphorylation of CREB1. Western blot and densitometry 

analysis demonstrated that this four-fold reduced concentration of H89 still inhibited 

M. vaccae-induced phosphorylation of CREB1 by about 50 % (Figure 5-8C+D). 

Phosphorylation of CREB1 in response stimulation with LPS was only slightly inhibited 

and that caused by Pam3CSK4 was not blocked at all by this concentration of H89, 

suggesting that those TLR ligands activate different or additional signal transduction 

pathways than PKA, which lead to CREB1 phosphorylation. 

 Further analysis of DCs after 24 hours of stimulation with the different innate 

immune stimuli under study demonstrated that H89 did not affect the maturation 

response of the cells (Figure 5-9). Annexin-V staining showed that less than 12 % of the 

DCs were apoptotic (Figure 5-10A) compared to above 60 % when 50 μM H89 was 

used (Figure 5-8A) and the proportion of dead cells was below 2 % (Figure 5-10B) 

compared to above 50 % with the high concentration of the PKA inhibitor 

(Figure 5-8B). Nonetheless, DCs treated with H89 were no longer able to induce T cell 

proliferation when cocultured with allogeneic naive CD4+ T cells (Figure 5-10C+D), 

probably resulting from the cytotoxic effect of H89. 

 Overall, it has proved impossible to assess the effect of the PKA inhibitor H89 

on the effect of DC priming by M. vaccae on Th2 responses, due to significant 

cytotoxicity compromising the experimental paradigm. 
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Figure 5-9: Treatment of dendritic cells with 12.5 μM H89 does not influence the maturation 

DCs were treated with 12.5 μM H89 for 2 h before addition of LPS (100 ng/ml), Pam3CSK4 (1 μg/ml) 
and M. vaccae (10 and 100 μg/ml). After 24 h of stimulation, the maturation of DCs was measured by 
flow cytometric analysis of immunofluorescence staining for cell surface CD83 and CD86 expression. 
White histograms show staining of unstimulated DCs.  
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Figure 5-10: Dendritic cells treated with 12.5 μM H89 are no longer able to induce T cell proliferation 

DCs were treated with 12.5 μM H89 for 2 h before addition of LPS (100 ng/ml), Pam3CSK4 (1 μg/ml) 
and M. vaccae (10 and 100 μg/ml). After 24 h of stimulation some DCs were analysed for apoptosis and 
cell death by annexin-V (A) and PI staining (B). Remaining DCs were cocultured with naive CD4+ 
T cells. T cell proliferation was assessed by thymidine incorporation (CPM) after 3 days of stimulation 
with allogeneic DCs. DCs treated with H89 induced reduced T cell proliferation compared untreated DCs 
at DC/T cell ratios of 1:1000 (C) and 1:100 (D). Each experiment is represented by paired data points.  
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5.4 Discussion 

 Experiments with TLR-transfected cell lines had shown clearly that M. vaccae 

induces TLR2-dependent cellular activation. However, comparison of M. vaccae to 

specific TLR2 stimulation with Pam3CSK4 demonstrated different effects on DC 

priming and subsequent T cell polarisation. The transcriptional response of DCs 

stimulated with LPS, Pam3CSK4 or M. vaccae was analysed by whole genome 

microarray to gain insight into possible differences in expression profiles that would 

allow studying potential molecular mechanisms responsible for the distinct effects seen. 

However, the general transcriptional response of DCs to stimulation with Pam3CSK4 or 

M. vaccae was very similar as measured by PCA.  

5.4.1 Genes induced by M. vaccae are associated with CREB1 

 Immune response gene expression is regulated by transcription factors whose 

activation is a key event in innate immune cellular activation of DCs. When analysing 

overrepresented TFBS up- and downstream of genes upregulated by the three stimuli, it 

was seen that many of the genes are possibly activated by the classical immune 

response transcription factor family NF-κB. This is in line with reports stating that 

NF-κB activation mediates part of a common or core immune response to PRR 

stimulation (Jenner and Young, 2005). Interestingly, the lists of upregulated genes 

showed also overrepresented TFBSs specific for each stimulus. LPS induced many 

genes that are probably regulated by IRF1 and IRF2, transcriptional regulators of type I 

IFNs and IFN-inducible genes. This is in line with previous data that showed induction 

of IFN-stimulated genes in responses to TLR4 stimulation but not in response to TLR2 

(Jenner and Young, 2005). In mice it was shown that IRF1 is essential for the 

development of Th1-type immune responses, and its deficiency leads to the induction of 

Th2- or Treg-type immune responses (Gabriele et al., 2006; Lohoff et al., 1997; Taki et 

al., 1997). In addition, IRF2 is also involved in the gene expression of IL-12 (p40) and 



5. M. VACCAE SELECTIVELY STIMULATES EARLY ACTIVATION OF THE CREB PATHWAY 

183 

supports IRF1 in promoting Th1 immune responses (Lohoff et al., 2000). However, 

genes upregulated in response to stimulation with M. vaccae showed only 

overrepresented TFBSs for IRF2 at the later time point, which might be the reason why 

DC priming with M. vaccae did not augment Th1 responses. 

 Interestingly, the bioinformatics analysis suggested that stimulation of DCs with 

M. vaccae induced the upregulation of genes that are controlled by a broader range of 

transcription factors than genes upregulated in response to LPS or Pam3CSK4. This 

probably results from the more complex structure of the heat-killed preparation of 

M. vaccae compared to the specific TLR ligands, which is likely to stimulate other 

PRRs in addition to TLRs. Analysis of all genes upregulated in response to stimulation 

with M. vaccae showed that the most overrepresented TFBSs after those for members of 

the NF-κB family was for CREB1. Similar analysis of the list of genes exclusively 

upregulated in response to stimulation with M. vaccae found TFBSs for CREB1 the 

most overrepresented. GO associations identified by annotation clustering analysis 

demonstrated that the upregulated genes with TFBSs for CREB1 are mainly involved in 

regulation of transcription and therefore possibly responsible for the different effects of 

M. vaccae-primed DCs on T cell polarisation. For example, the orphan nuclear receptor 

family NR4A1 (Nur77), NR4A2 (Nurr1) and NR4A3 (NOR-1 or MINOR) has TFBSs 

for CREB1 and is highly upregulated in M. vaccae-treated DCs. This is interesting in 

view of a previous report on mouse DCs, which showed upregulation of only NR4A3 in 

activated mouse DCs, while the expression of NR4A1 and NR4A2 remained 

unchanged. In addition, this study showed a role for NR4A3 in inhibition of IL-12 

production by DCs and reduced expression of NR4A3 in DCs augmented T cell 

proliferation (Wang et al., 2009). In human macrophages overexpression of NR4A1, 

NR4A2 or NR4A3 reduced expression of IL-1β, IL-6, IL-8, MIP-1α (CCL3), MIP-1β 

(CCL4) and MCP-1 (CCL2), whereas knockdown of NR4A1 or NR4A3 enhanced 
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cytokine and chemokine synthesis (Bonta et al., 2006). This was recently confirmed by 

two studies in mice, one showing via overexpression and knockdown studies on NR4A2 

a role for this transcription factor in reduction of inflammatory gene expression, 

including TNF-α, IL-1β and MCP-1, and in reduction of vascular smooth muscle cell 

proliferation and inhibition of vascular lesion formation in restenosis models (Bonta et 

al., 2010). The other showed by overexpression and knockdown that NR4A1 has an 

anti-inflammatory role as it suppresses TNF-α and MCP-1 (Shao et al., 2010). A 

mechanism for the anti-inflammatory effects of NR4A1 was suggested in a study on 

human endothelial cells, where NR4A1 was shown to suppress NF-κB-dependent 

cellular activation of by direct induction of IκB-α expression (You et al., 2009). 

 However, the genes upregulated in response to M. vaccae at the 24 hours time 

point were not enriched for TFBSs of any of the CREB1-associated transcription factors 

upregulated at the 4 hours time point. Therefore I decided to focus on the role of 

CREB1 and not on downstream transcription factors.   

5.4.2 Signalling pathways induced by M. vaccae 

 In order to validate the bioinformatics data, which suggested an activation of the 

CREB pathway in M. vaccae-stimulated DCs, protein immunoblot analysis was 

performed. Activation of NF-κB was measured by IκB-α degradation, of the MAPKs 

pathways by measuring phosphorylation of p38 and ERK1/2, and of CREB1 by 

antibody probing for its phosphorylation at Ser-133.  

5.4.2.1 M. vaccae activates CREB1 

 As expected from the microarray data, the high dose of M. vaccae activated the 

CREB pathway at the 30 minutes and 120 minutes time points, but activation of NF-κB 

and MAPK pathways in M. vaccae-stimulated DCs was not detectable by using Western 

blot analysis. Interestingly, despite marked differences in DC maturation and in 



5. M. VACCAE SELECTIVELY STIMULATES EARLY ACTIVATION OF THE CREB PATHWAY 

185 

transcriptional and cytokine responses in DCs stimulated with LPS and Pam3CSK4, the 

innate immune signalling events assessed here showed a very similar profile. LPS and 

Pam3CSK4 stimulation of DCs activated all pathways under study at the early time 

point including phosphorylation of CREB1, but none of the pathways remained active at 

the late time point. Phosphorylation of CREB1 by stimulation of cells with LPS 

(Ananieva et al., 2008; Ardeshna et al., 2000; Avni et al., 2010a; Caivano and Cohen, 

2000; Chandra et al., 1995; Eliopoulos et al., 2002) and Pam3CSK4 (Ananieva et al., 

2008) or infection with mycobacteria (Agarwal et al., 2009a; Pathak et al., 2004; Roach 

et al., 2005), or treatment with killed mycobacteria (Samten et al., 2008) has been 

described previously. It is established that stimulation with LPS causes rapid 

phosphorylation of CREB1, which peaks about 30-60 minutes post-treatment (Ananieva 

et al., 2008; Ardeshna et al., 2000; Avni et al., 2010a; Caivano and Cohen, 2000; 

Chandra et al., 1995; Eliopoulos et al., 2002). However the literature about the time 

course of this activated state of CREB1 in mycobacterial treated cells is controversial 

and very limited. While some authors find p-CREB1 in macrophages 30 minutes 

(Pathak et al., 2004) or one hour post-infection with mycobacteria but no longer after 

nine hours (Roach et al., 2005), others find it 16 hours after infection (Agarwal et al., 

2009a). The same publication shows that killed mycobacteria do not induce 

phosphorylation of CREB1 at this late time point, while others demonstrate that 

treatment of PBMCs with heat-killed M. tuberculosis induces phosphorylation of 

CREB1 after 24 hours, with increased expression at 48-72 hours (Samten et al., 2008). 

In line with the microarray data, which suggested an early activation of CREB1 in 

M. vaccae-stimulated DCs because already four hours post-treatment genes with TFBSs 

for CREB1 were significantly upregulated, phosphorylation of CREB1 was detected at 

30 minutes and two hours post-treatment. 
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5.4.2.2 M. vaccae does not induce ERK1/2 and p38 MAPKs 

 Interestingly, Western blot analysis did not detect activation of any other signal 

transduction pathway under study in DCs stimulated with M. vaccae. That ERK1/2 and 

p38 MAPKs were not phosphorylated in response to M. vaccae is different to what has 

been described for human cells infected with pathogenic and non-pathogenic 

mycobacteria or treated with BCG (Bhattacharyya et al., 2002; Blumenthal et al., 2002; 

Cheung et al., 2009; Mendez-Samperio et al., 2005; Reiling et al., 2001). However, a 

freeze-dried preparation of BCG, which reduced allergy in mice models, was also 

associated with reduced NF-κB and p38 MAPK activity (Lagranderie et al., 2010). 

Among the genes with TFBSs for CREB1 that were exclusively upregulated in 

M. vaccae-stimulated DCs was the dual specificity phosphatase 8 (DUSP8) (3.0-fold), 

and also other MAPK phosphatases (MKPs) like DUSP1 (5.2-fold), DUSP2 (7.4-fold), 

DUSP4 (6.6-fold) and DUSP5 (4.1-fold) were highly induced by M. vaccae albeit not 

exclusively. Those MKPs have been shown to dephosphorylate MAPKs including 

ERK1/2 and p38 (Camps et al., 2000), and could be responsible for the inactivity of the 

MAPK pathways in M. vaccae-stimulated DCs. Additionally, the discovery that 

ERK1/2 and p38 are not activated by M. vaccae indicates that downstream signalling 

from these MAPK is not responsible for M. vaccae-induced activation of CREB1.  

5.4.2.3 M. vaccae induces late activation of the NF-κB pathway 

 The fact that IκB-α degradation in the classical NF-κB pathway was not 

detectable in M. vaccae-stimulated DCs was surprising, since the oPOSSUM analysis 

clearly indicated NF-κB-mediated gene expression. Therefore the activity of this 

pathway was analysed differently by quantifying nuclear translocation of RelA (p65) 

(Noursadeghi et al., 2008). It became evident that activation of NF-κB occurred more 

slowly in M. vaccae-stimulated DCs compared to its rapid activation in response to 

treatment with LPS or Pam3CSK4. At the 120 minutes time point RelA had clearly 
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translocated into the nucleus where it can drive transcription, nevertheless degradation 

of IκB-α was not detectable at this time, suggesting that the confocal microscopy assay 

may be more sensitive than assessment of changes to IκB-α by Western blot.  

5.4.2.4 LPS and Pam3CSK4 induce phosphorylation of CREB1 

 Western blot analysis of CREB1 phosphorylation demonstrated clearly that in 

addition to M. vaccae, LPS and Pam3CSK4 were activating this signalling pathway too. 

Nevertheless, analysis of overrepresented TFBSs in lists of upregulated genes by 

oPOSSUM did not show evidence that CREB1 induces expression of many genes in 

response to LPS or Pam3CSK4 stimulation in DCs. That phosphorylation of CREB1 in 

LPS- and Pam3CSK4-stimulated cells was only detectable at the early time point might 

explain why CREB1 did not induce significant expression. Interestingly, a recent paper, 

analysing phosphorylation and transcriptional activation of CREB1 in response to LPS 

in RAW264.7 macrophages, demonstrated in line with my data that LPS-induced 

phosphorylation of CREB1 is non-functional for transcriptional modulation (Avni et al., 

2010a). Moreover, the authors showed that isoproterenol-mediated phosphorylation of 

CREB1 leads to CRE-regulated transcriptional activity, and they conclude that the 

functionality of CREB1 for transcription depends on the mechanism that is responsible 

for the phosphorylation of CREB1 at Ser-133. LPS-induced phosphorylation of CREB1, 

which is mediated by the p38-MSK1 signal transduction pathway (Ananieva et al., 

2008; Caivano and Cohen, 2000; Eliopoulos et al., 2002), was not functional, whereas 

isoproterenol activates CREB1 by PKA-mediated phosphorylation and induced CRE-

dependent luciferase activity in reporter assays (Avni et al., 2010a). Given that 

M. vaccae-dependent phosphorylation of CREB1 could be blocked with the PKA-

inhibitor H89, this conclusion is consistent with the data presented here. Additionally, 

the reduced dose of H89 blocked still above 50 % of M. vaccae-mediated 

phosphorylation of CREB1, but had only a little effect on LPS or Pam3CSK4-dependent 
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phosphorylation of CREB1. This suggests in line with the literature (Ananieva et al., 

2008; Caivano and Cohen, 2000; Eliopoulos et al., 2002) that LPS- or 

Pam3CSK4-mediated phosphorylation of CREB1 is occurring via a different signalling 

pathway, which in certain circumstances might not lead to functional active CREB1 

(Avni et al., 2010a). It has been described that phosphorylation of CREB1 at Ser-133 

fails to induce gene transcription if the transcription factor is also phosphorylated at 

Ser-142, which disrupts secondary structure-mediated interactions between CREB1 and 

CBP (Parker et al., 1998). However, that this occurs in LPS-induced CREB1 

phosphorylation seems unlikely, since thus far MSK1/2 has not been described to 

phosphorylate CREB1 at Ser-142. 

5.4.2.5 CREB1 is activated by other mycobacteria 

 Activation of the CREB pathway by mycobacteria has been described 

previously in bone marrow-derived macrophages (Roach et al., 2005). The authors 

demonstrated that CREB1 was activated in macrophages infected with pathogenic 

M. avium and non-pathogenic M. smegmatis. M. smegmatis provoked a significantly 

greater accumulation of phosphorylated CREB1 in the nuclei one hour post-infection, 

which was quantified by confocal microscopy. Moreover it was shown that CREB1 was 

responsible for high level TNF-α expression in M. smegmatis infected macrophages. 

The investigators found that the upstream signalling mechanism leading to 

mycobacterium-mediated CREB1 activation was dependent on PKA and p38, but 

independent of ERK1/2 or CaMKII activity. In contrast, the data presented here show 

that M. vaccae-mediated activation of CREB1 was only dependent on PKA but not on 

p38. P38 was not phosphorylated by M. vaccae, and the p38 inhibitor SB203580 did not 

affect phosphorylation of CREB1 in M. vaccae-stimulated DCs. This is different to the 

report described above of M. avium- and M. smegmatis-infected macrophages (Roach et 

al., 2005), and may result from differences between using heat-killed and live 
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organisms, differences between macrophages and DCs or differences between 

mycobacterial species in their ability to activate CREB1. 

5.4.3 The role of CREB1 in immune responses 

 The role of CREB1 in induction of proinflammatory responses in immunity, 

including the production of TNF-α, remains highly controversial. Although some 

studies demonstrate that CREB1 in cooperation with ATF-2 and c-Jun positively 

regulates IFN-γ production by human T cells in response to M. tuberculosis (Liu et al., 

2010; Samten et al., 2002; Samten et al., 2005; Samten et al., 2008), other studies on 

CREB1 show that its activity is rather associated with anti-inflammatory responses, 

such as generation and development of FoxP3 expressing Treg cells (Kim and Leonard, 

2007; Ruan et al., 2009) and IL-10 production in monocytes, DCs and macrophages 

(Alvarez et al., 2009; Ananieva et al., 2008; Avni et al., 2010b; Hu et al., 2006; Kelly et 

al., 2010; Martin et al., 2005; Pathak et al., 2004), which has CRE-sites at its promoter 

(Platzer et al., 1999).  

 For example a study that showed a role for PKA-signalling and resulting 

CREB1 activity in anti-inflammatory responses was conducted in RAW264.7 

macrophages (Avni et al., 2010b). It was found that the activity of synthetic phosphor-

ceramide analogue-1 (PCERA-1), an anti-inflammatory drug, which suppresses TNF-α 

and upregulates IL-10 (Avni et al., 2009; Goldsmith et al., 2009; Matsui et al., 2002a; 

Matsui et al., 2002b), was accompanied by augmented cAMP production (Goldsmith et 

al., 2009) and required PKA-activity that induced phosphorylation of CREB1 (Avni et 

al., 2010b). 

 Another study on M. avium-infected RAW264.7 macrophages showed that 

transcription of COX-2, an enzyme required in the biosynthesis of PGE2, which exerts 

an immunosuppressive function in the context of mycobacterial infection (Rangel 
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Moreno et al., 2002), partially depended on intact CREB1 binding sites, but also on 

NF-κB-induced transcription (Pathak et al., 2004). Transcription of COX2 was inhibited 

by combined pharmacological blocking of p38 and ERK1/2 or by H89. The MAPKs 

p38 and ERK1/2 are known to phosphorylate MSK1 whose target is CREB1 (Arthur 

and Cohen, 2000; Deak et al., 1998) and whose activity can also be blocked by H89 

(Davies et al., 2000). The authors showed that M. avium induced phosphorylation of 

CREB1 in an MSK1-dependent manner, that p-CREB1 bound to the COX-2 promoter, 

and that COX-2 expression was inhibited in cells transfected with dominant-negative 

CREB1. The possibility that MSK1 plays a similar role in M. vaccae-mediated 

activation of CREB1 is unlikely. The data presented here show clearly that neither p38 

nor ERK1/2 are activated in M. vaccae-stimulated DCs and blocking of those kinases 

did not reduce M. vaccae-mediated phosphorylation of CREB1. 

5.4.4 CREB1 may inhibit NF-κB mediated transcription 

 Recently researchers have shown that IL-10 production by monocyte-derived 

DCs in response to stimulation with the yeast extract zymosan was dependent on 

CREB1 activity (Alvarez et al., 2009; Alvarez et al., 2010). ChIP assays demonstrated 

significant binding of p-CREB1 to the il-10 promoter, which was also associated with 

CBP and transducer of regulated CREB activity (TORC2), a CREB1 coactivator also 

known as CREB-regulated transcription coactivator (CRTC) (Alvarez et al., 2009). 

Interestingly, the presence of the PKA-inhibitor H89 reduced zymosan-induced IL-10 

production, and other studies in human macrophages demonstrated that zymosan-

mediated IL-10 production was dependent on calcium signalling (Kelly et al., 2010). In 

contrast, blockage of NF-κB activity was accompanied by an increase of IL-10 

production. Hence the authors concluded that IL-10 production by DCs in response to 

zymosan is regulated by a fine-tuned balance between CREB1 and NF-κB activity 

(Alvarez et al., 2009).  
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 It is possible that NF-κB and CREB1 compete for restricted amounts of CBP in 

the nucleus, a coactivator that participates in the activities of different transcription 

factors (Vo and Goodman, 2001). It had been shown repeatedly that NF-κB p65 activity 

is enhanced by interaction with CBP or its paralogue p300 (Sheppard et al., 1999; 

Zhong et al., 1998), and that association of CREB1 with CBP might suppress NF-κB-

mediated transcription (Parry and Mackman, 1997). This study on human endothelial 

cells showed that elevation of intracellular cAMP and activation of the PKA signalling 

pathway inhibits NF-κB-mediated transcription, which could be rescued by 

overexpression of CBP. Moreover, overexpression of CREB1 inhibited p65-mediated 

transcription, indicating that CREB1 and p65 compete for limiting amounts of CBP 

(Parry and Mackman, 1997). 

 Another mechanism by which M. vaccae might favour CREB1-mediated gene 

expression in contrast to LPS or Pam3CSK4 is that it may disrupt binding of the 

coactivators CBP or p300 to other transcription factors. It has been shown that 

M. tuberculosis (live bacteria, gamma-irradiated bacteria, and cell wall isolates) could 

disturb essential protein-protein associations of CBP and p300 with Stat1 and 

consequently suppresses IFN-γ transcriptional responses in human macrophages (Ting 

et al., 1999). 

 That CREB1 activity versus NF-κB activity can influence the polarisation of the 

immune response has been shown in a publication on human monocytes and PBMCs 

(Martin et al., 2005). Activation of the PI3K-Akt signalling pathway leads to 

phosphorylation of the constitutively active GSK3-β on Ser-9, which results in its 

inactivation. Inactivation of GSK3-β by inhibitors or siRNA suppressed the production 

of proinflammatory cytokines like IL-12p40, IL-6, IL-1ß, TNF-α, and IFN-γ while 

augmenting IL-10 expression in response to stimulation with ligands for TLR2, TLR4, 

TLR5 or TLR9. The authors demonstrated that inactivation of GSK3-β led to enhanced 
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binding of CBP to p-CREB1 while its binding to NF-κB p65 was reduced. Furthermore, 

by using siRNA targeting CREB1, the authors verified that the activation of CREB1 

was responsible for the switch from inflammatory to anti-inflammatory cytokines. The 

data presented in this thesis show that M. vaccae induces CREB1 activation in DCs and 

DCs primed with M. vaccae reduce Th2 responses. Although here the phosphorylation 

of CREB1 is not influenced by the PI3K inhibitor LY294002, it is possible that the 

early activation of the CREB pathway and the comparatively late nuclear translocation 

of NF-κB p65 are important for the nature of DC-dependent T cell polarisation, 

however this merits further investigation. Or the other way around, although LPS and 

Pam3CSK4 induced phosphorylation of CREB1, this did not lead to significant 

expression of genes with TFBSs for CREB1. It is a possibility that the simultaneous 

early activation of NF-κB may bind the majority of CBP, and therefore reducing the 

transcriptional activity of CREB1 in LPS and Pam3CSK4 stimulated DCs, and 

influencing the character of DC-dependent T cell polarisation, yet again, this requires 

further study. 

5.4.5 Inhibitor studies indicate that M. vaccae induces phosphorylation of 

CREB1 via PKA 

 In order to study if M. vaccae-mediated activation of CREB1 in DCs played a 

role in its ability to decrease Th2 responses and to augment the population of 

CD25+/FoxP3+ T cells in allogeneic and antigen-specific cocultures, I aimed to block 

the phosphorylation of CREB1 pharmacologically. Among the different inhibitors 

tested, only the widely used PKA inhibitor H89 blocked M. vaccae-induced 

phosphorylation of CREB1. Several studies have raised doubts on the specificity of H89 

to inhibit PKA (Murray, 2008). Non-specific effects of H89 that could be important in 

studying signal transduction in the CREB pathway include inhibition of ERK1/2 

phosphorylation (Palacios et al., 2007) or inhibition of MSK1 activity (Davies et al., 
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2000), both important in LPS-mediated phosphorylation of CREB1 (Avni et al., 2010a; 

Caivano and Cohen, 2000; Eliopoulos et al., 2002). However the immunoblot analysis 

showed no evidence for ERK1/2 or p38 activity in M. vaccae-stimulated DCs and 

blocking of EKR1/2 activation with PD98059 and of p38 activity with SB203580 did 

not reduce CREB1 phosphorylation, suggesting that H89 prevented M. vaccae-mediated 

phosphorylation of CREB1 by blocking PKA activity. The finding, that the adenylate 

cyclase inhibitor SQ22536 did not prevent phosphorylation of CREB1 was surprising. 

In the classical activation pathway of PKA, adenylate cyclase is responsible for the 

accumulation of cAMP, which binds to the regulatory subunits of PKA causing the 

release of the active catalytic subunits that can translocate into the nucleus and 

phosphorylate CREB1 at Ser-133. The finding that PKA activity in M. vaccae-

stimulated DCs was independent of adenylate cyclase, suggests that an alternative 

pathway may lead to its activation, although this has not previously been suggested.  

 Another pathway that was described to induce phosphorylation of CREB1 is 

initiated by Ca2+ influx, which can trigger CaMKII/IV (Matthews et al., 1994; Sun et 

al., 1994). This pathway was not blocked in the research series presented here, but the 

CaMKII inhibitor KN-93 should be included in future experiments. The CaM/CaMKII 

pathway has been shown to be involved in HIV-Tat-induced IL-10 production in human 

monocytes (Gee et al., 2007). However, here CaMKII did not directly activate CREB1, 

but induced activation of p38, which was responsible for CREB1-mediated il-10 

expression. The absence of p38 activation by M. vaccae makes it very unlikely that this 

pathway was involved in M. vaccae-mediated activation of CREB1. Another report 

showed that CaMK-II phosphorylates CREB1 also at Ser-142 in addition to Ser-133, 

which leads to dissociation of the CREB1 dimer that can no longer recruit CBP, hence it 

inhibits the transcriptional activity of CREB1 (Wu and McMurray, 2001), which is also 
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unlikely to occur in M. vaccae-stimulated DCs, because the transcriptional data showed 

increased CREB1 controlled transcription.   

5.4.6 Cytotoxicity of the PKA inhibitor H89 

 To study the role of CREB1 phosphorylation in the DC-dependent effects of 

M. vaccae on T cell polarisation, DCs were treated with H89 prior to their innate 

immune stimulation. However, overnight incubation of DCs with this inhibitor at 

concentrations that were necessary to inhibit CREB1 phosphorylation also caused 

significant cytotoxicity compromising the experimental paradigm. The final 

concentration of 50 μM H89 for blocking PKA activity was chosen after studying the 

literature cited in the manufacture’s recommendations (Azarani et al., 1995; Chijiwa et 

al., 1990; Muroi and Suzuki, 1993). In addition, a number of publications working with 

DCs or macrophages used a similar concentration to inhibit PKA activity (Alvarez et 

al., 2009; Avni et al., 2010a; Avni et al., 2010b). However, other researchers working 

with human monocyte-derived DCs or with porcine granulosa cells also encountered 

difficulties due to high toxicity of H89 after 24 and 48 hours of treatment (Gillio-Meina 

et al., 2005; Wilkin et al., 2001). The attempt to block M. vaccae-induced 

phosphorylation of CREB1 with an alternative PKA inhibitor, the synthetic protein 

kinase inhibitor peptide (PKI)-(6-22)-amide (Glass et al., 1989), failed (data not shown). 

The findings that the PKI-(6-22)-amide, which in contrast to H89 is thought to be 

completely specific for PKA (Murray, 2008), did not inhibit M. vaccae-mediated 

phosphorylation of CREB1, and that the adenylate cyclase inhibitor had also no effect, 

are raising doubts on the role of PKA.  
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5.4.7 Future experiments to confirm the role of PKA in M. vaccae-dependent 

activation of CREB1  

 If CREB1 activity does play a critical role in the effects of M. vaccae on DCs 

that are responsible for the reduction of Th2 responses and augmentation of 

CD25+/FoxP3+ T cells in coculture experiments, it would be desirable to study the 

signal transduction pathway leading to CREB1 phosphorylation in more detail. To 

ensure that PKA is indeed responsible for M. vaccae-mediated activation of CREB1, it 

would be useful to test other inhibitors, like (9R,10S,12S)-2,3,9,10,11,12-hexahydro-10-

hydroxy-9-methyl-1-oxo-9,12-epoxy-1H-diindolo[1,2,3-fg:3',2',1'-kl]pyrrolo[3,4-

i][1,6]benzodiazocine-10-carboxylic acid, hexyl ester (KT 5720) or more specific 

inhibitors such as the alternative protein kinase inhibitor PKI-(Myr-14-22)-amide or  Rp-

adenosine-3',5'-cyclic monophosphorothioate (Rp-cAMPS) (Murray, 2008). As another 

strategy to validate if PKA is responsible for M. vaccae-induced phosphorylation of 

CREB1, it would be possible to study PKA activity. Antibodies detecting 

phosphorylation of the catalytic subunits PKA-α and PKA-β are available as well as 

phospho-(Ser/Thr) PKA substrate antibodies, which detect peptides and proteins 

containing a phospho-serine/threonine residue with arginine at the -3 position. 

However, in addition to PKA, PKC also phosphorylates serine/threonine residues with 

arginine at the -3 position. Moreover, cAMP levels that bind and activate PKA could 

also be measured in M. vaccae-stimulated DCs using immunodetection.  

5.4.8 Future experiments to inhibit NF-κB activity in Pam3CSK4 stimulated 

dendritic cells 

 It is also a possibility that specific TLR2 stimulation with Pam3CSK4 showed 

different effects than M. vaccae due to the differential time course in the activation of 

NF-κB. It would be interesting to study the effects of pharmacological inhibition of 

NF-κB in Pam3CSK4-stimulated DCs with inhibitors such as N-tosyl-l-phenylalanine 
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chloromethyl ketone (TPCK) (Rescigno et al., 1998; Valentinis et al., 2005) or (E)-3-(4-

Methylphenylsulfonyl)-2-propenenitrile (Bay 11-7082) (Bansal et al., 2009). If NF-κB- 

and CREB1-induced gene transcription is restricted my limited amounts of CPB (Parry 

and Mackman, 1997), this might lead to enhanced CREB1-mediated gene expression 

and the DCs might have a similar effect on T cell polarisation than M. vaccae-primed 

DCs. 

5.4.9 Future experiments to block CREB1 activity in dendritic cells 

 Since pharmacological blocking of CREB1 activation was cytotoxic, the role of 

CREB1 in the effects of M. vaccae could be studied by reducing its expression level 

with siRNA, as it was done to study its role in regulating pro- versus anti-inflammatory 

cytokine expression in human monocytes (Martin et al., 2005). Although it has been 

shown that mouse bone marrow-derived immature DCs do not mature when transfected 

with siRNA/liposome-complexes (Hill et al., 2003), culture of human immature 

monocyte-derived DCs with siRNA/liposomes induces DC maturation, as emphasised 

by upregulation of CD83 (Sioud, 2005). An alternative method would be to use 

electroporation to transfect DCs with siRNA. Using this method it was shown that 

human monocyte-derived DCs and mouse bone marrow-derived DCs maintain their 

immature phenotype (Jantsch et al., 2008; Prechtel et al., 2006), probably because the 

RNA is directly delivered into the cytoplasm, hence avoiding endosomal localisation 

where it might activate TLR receptors (Sioud, 2005). Lentiviral vectors have been used 

for transduction and expression of genes in DCs and are therefore being developed for 

gene therapy purpose. Yet, some authors showed that lentiviral transduction of human 

and mouse immature DCs induces maturation and production of inflammatory 

cytokines even with empty vector controls (Breckpot et al., 2007; Breckpot et al., 2010; 

Tan et al., 2005). One strategy might be to transduce CD14+ monocytes prior to their 
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differentiation into DCs, which then have been shown to maintain their immature 

phenotype (He et al., 2005; Rossetti et al., 2010). 

 

5.5 Conclusions 

• M. vaccae-stimulation of DCs selectively activates the CREB pathway at an 

early time point, which, in contrast to stimulation with LPS and Pam3CSK4, is 

maintained active at the later time point. 

• LPS and Pam3CSK4 induce early activation of the main NF-κB pathway, 

ERK1/2 and p38 MAPK, and of CREB1. 

• M. vaccae-mediated phosphorylation of CREB1 can be blocked with the PKA 

inhibitor H89. However, overnight incubation of DCs with this inhibitor also 

caused significant cytotoxicity compromising the experimental paradigm. 
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6 SINES FOR NORMALISATION OF RT-QPCR DATA 

6.1 Introduction 

 Real-time PCR expression profiling is an important tool for identifying genes 

involved in regulatory networks that affect a specific phenotype. Compared to 

microarrays, which due to their high cost can generally only be used to quantify the 

expression of the whole genome of a restricted number of samples, RT-qPCR provides 

the simultaneous measurement of gene expression in many different samples, but can 

only be applied to identify the transcription profile from a smaller number of genes. The 

technique allows a highly sensitive and reproducible measurement over a large dynamic 

range of starting target quantities, from one single copy to more than 107 copies (Nolan 

et al., 2006; Palmer et al., 2003). However, the extremely high sensitivity can also be its 

major weakness. RT-qPCR is a multistep process and at every step error can be 

introduced, altering the result. In order to differentiate between real changes in gene 

expression and variations introduced by the operator, it is important to normalise the 

data obtained by RT-qPCR (Huggett et al., 2005; Wong and Medrano, 2005). Several 

variables need to be controlled for, including the initial sample amount, RNA recovery 

and integrity, enzymatic efficiencies as well as the overall transcriptional activity which 

can vary between samples (Andersen et al., 2004).  

 To control for all errors introduced between sampling and obtaining the result, 

an internal control gene, also called reference gene, is typically used as it undergoes the 

same process as the mRNA of interest. The ideal internal control gene should be stably 

expressed in all cells or tissues under investigation (Andersen et al., 2004). And even 

more importantly, the expression of the reference gene should not alter with the 

experimental treatment. So far, a single gene has not been found that fulfils the 

requirements in every experiment, consequently it is necessary to validate the 
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expression of candidate reference genes for all new experimental models (Andersen et 

al., 2004). Despite the fact that there have been many publications showing that 

commonly used reference genes like GAPDH or β-actin (ACTB) can vary dramatically 

in their expression (Bustin, 2000; Schmittgen and Zakrajsek, 2000; Suzuki et al., 2000; 

Thellin et al., 1999), validation of reference genes is still not always performed. 

However, using non-validated reference genes for normalisation of RT-qPCR data can 

potentially lead to false conclusions (Dheda et al., 2005; Tricarico et al., 2002). 

 Currently the most accurate strategy to control for experimental error and 

identify true changes in transcription is to validate and exploit the expression of 

multiple internal reference genes (Vandesompele et al., 2002b). Programmes like 

geNorm, Bestkeeper and NormFinder rank candidate reference genes according to their 

expression stability and identify the most suitable for the experiment from which a 

normalisation factor can be calculated (Andersen et al., 2004; Pfaffl et al., 2004; 

Vandesompele et al., 2002b). This strategy detects, and can compensate for, error-

induced trends. This results in a higher resolution and one can measure smaller changes 

in gene expression than is possible with a single reference gene. However, identification 

and measurement of multiple reference genes is labour-intensive, costly and sometimes 

impossible due to insufficient sample.  

 To overcome those obstacles, this chapter describes a new strategy, which aims 

to use a single qPCR assay for normalisation, potentially having the resolution of 

multiple reference genes. The idea is to use repetitive sequences that have integrated 

into various sites of the genome and therefore also occur frequently in untranslated 

regions of expressed mRNA (Hasler et al., 2007). Assays were developed for human 

and mouse, both targeting SINE sequences. 

 SINEs are a group of non-autonomous retrotransposons with a length of 

80-400 base pairs that are commonly found in mammals. The most prominent and only 
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active SINE family described in humans are ALU-repeats which, with more than 

1 million copies, comprise about 10 % of the human genome (Lander et al., 2001). The 

mouse genome has five frequently described SINE families B1, B2, B4/RSINE, ID, and 

MIR. Here, B1- and B2-elements are the most abundant, with 564K and 348K copies 

respectively (Waterston et al., 2002). Although SINEs are ubiquitously dispersed 

throughout the genome, ALU and B1-elements can be found highly overrepresented in 

GC-rich, gene-rich, regions of the DNA (Lander et al., 2001). Therefore they can get 

transcribed when they are present within regions of mRNAs (Hasler et al., 2007). 

 The hypothesis is that the overall expression level of SINEs, both ALU- and 

B-elements, is very stable. They occur so frequently, that expression changes in some of 

the mRNAs carrying SINEs should not alter the total number of expressed ALU- or 

B-elements present at a point in a cell. With primers targeting the consensus sequences 

of ALU-, B1- and B2-repeats, it is possible to reverse transcribe the expressed repeats 

into cDNA and measure them like a reference gene in RT-qPCR experiments. They 

represent multiple genes and can be measured in a single assay using only one set of 

primers. To validate if expressed SINEs could serve as an alternative reference, mouse 

samples on which various formulations of M. vaccae had been tested were kindly 

provided by the School of Pharmacy, University of London. For comparison, RT-qPCR 

data of various genes of interest were normalised by using the geNorm algorithm that 

allows a correct interpretation of the results by calculating the geometric mean of 

multiple carefully selected stable reference genes, which then functions as the 

normalisation factor (Vandesompele et al., 2002b). Moreover, the same RT-qPCR data 

of genes of interest were normalised against mRNA levels of the commonly used single 

reference gene β-actin (ACTB), which can, similar to GAPDH, dramatically vary in its 

expression (Bustin, 2000; Schmittgen and Zakrajsek, 2000; Suzuki et al., 2000; Thellin 
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et al., 1999). Finally the data were normalised against B1- and B2-element expression, 

and subsequently compared to the other two normalisation techniques. 

 

6.2 Objectives 

• Design and optimisation of RT-qPCR assays that target expressed SINEs: ALU-

repeats for human and B-elements for mice samples. 

• Validate the use of expressed B-elements as a tool for normalisation, by 

comparing target gene expression data normalised with 1) expressed B-

elements, 2) the normalisation factor calculated from multiple validated 

reference genes, and 3) the commonly used reference gene β-actin. 

 

6.3 Results 

6.3.1 Optimisation of SINE qPCR reactions 

 Human ALU-families and mouse B-elements have consensus sequences, but 

they are not identical and many variable sequences are present in the genomes (Umylny 

et al., 2007). In order to detect amplification of as many expressed SINEs as possible 

the assays had to be SYBR green based, thus independent of sequence specific TaqMan 

probes (Holland et al., 1991). B-element primers were designed on the consensus repeat 

sequences from RepBase (http://www.girinst.org/repbase/) to target the most conserved 

regions in order to enable amplification of as many expressed SINEs as possible within 

one assay. Two different primer sets for B1-elements (B1F1/B1R1 and B1F2/B1R2) 

and for B2-elements (B2F1/B2R1 and B2F2/B2R2) were used to amplify cDNA 

generated from isolated mouse spleen RNA. The RT-qPCR products were cloned into 

pCR4-TOPO vectors and sequenced. The sequencing data confirmed that the selected 
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primer pairs amplified a variety of different expressed B-elements with slightly diverse 

sequences (Table 6-1, Table 6-2, Table 6-3 and Table 6-4). For each set of primers, ten 

plasmids containing different sequences were mixed together and used as a standard for 

assay optimisation and efficiency control (plasmids labelled with *).  

Table 6-1: CLUSTAL 2.0.12 multiple sequence alignment of B1-elements amplified with the primer pair 
B1F1/B1R1. (Primer sequences removed; *plasmids selected for standard) 

 NW_P1_B1_H03.2_UP      ----CCAGCACTC-AGGAGGCAGAGGCAGGCGGG----- 29 
 NW_P1_B1_H05.1_UP      ----CCAGCACTC-AGGAGGCAGAGGCAGGCGGG----- 29 
 NW_P1_B1_G06.2_UP      ----CCAGCACTC-AGGAGGCAGAGGCAGGCGGG----- 29 
 NW_P1_B1_G04.1_UP      ----CCAGCACTC-AGGAGGCAGAGGCAGGCGGG----- 29 
 NW_P1_B1_F06.2_UP      ----CCAGCACTC-AGGAGGCAGAGGCAGGCGGG----- 29 
 NW_P1_B1_F06.1_UP      ----CCAGCACTC-AGGAGGCAGAGGCAGGCGGG----- 29 
 NW_P1_B1_F01.1_UP      ----CCAGCACTC-AGGAGGCAGAGGCAGGCGGG----- 29 
 NW_P1_B1_D06.2_UP      ----CCAGCACTC-AGGAGGCAGAGGCAGGCGGG----- 29 
 NW_P1_B1_C02.1_UP      ----CCAGCACTC-AGGAGGCAGAGGCAGGCGGG----- 29 
 NW_P1_B1_B06.1_UP      ----CCAGCACTC-AGGAGGCAGAGGCAGGCGGG----- 29 
 NW_P1_B1_A04.2_UP      ----CCAGCACTC-AGGAGGCAGAGGCAGGCGGG----- 29 
 NW_P1_B1_A02_UP        ----CCAGCACTC-AGGAGGCAGAGGCAGGCGGG----- 29 
 NW_P1_B1_A04.1_UP      ----CCAGCACTC-AGGAGGCAGAGGCAGGTGG------ 28 
 NW_P1_B1_B04.1_UP      ----CCAGCACTC-AGGAGGCAGAGGCAGGTGG------ 28 
 NW_P1_B1_C04.1_UP      ----CCAGCACTC-AGGAGGCAGAGGCTGGCGGG----- 29 
 NW_P1_B1_H06_UP        ----CCAGCACTC--GGAGGCAGAGGCTGGTGG------ 27 
 NW_P1_B1_C03.2_UP      ----CCAGCACTC-AGGAGGCAGAGGCAGGCGG------ 28 
 NW_P1_B1_B06.2_UP      ----CCAGCACTC-NGGAGGCAGAGGCAGGCGG------ 28 
*NW_P1_B1_C05_UP        ----CCAGCACTC-AGGAGGCAGAGGCAGAGGCAGGTGC 34 
*NW_P1_B1_G02_UP        ----CCAGTACTC-ATGAAGCAGAGGCAGACGA------ 28 
 NW_P1_B1_G03.1_UP      ----CCAGCACTC-GGGAGGCAGAGGCAGACGG------ 28 
 NW_P1_B1_E06.2_UP      CCAGCACTC---C-GGGAGGCAGAGGCAGGCGG------ 29 
 NW_P1_B1_G04.2_UP      CCATCACTCACTC-GGGAGGCAGAGGCAGACAG------ 32 
*NW_P1_B1_D01_UP        -----------CC-AGGAGGCAGAGACAGGCGG------ 21 
 NW_P1_B1_E06.1_UP      ----CCAGCACTC-GGGAGGCAGAGACAGGCGG------ 28 
*NW_P1_B1_F02_UP        ----CCAGCACTC-GGGAGGCAGAGGCAGGCGG------ 28 
 NW_P1_B1_F01.2_UP      ----CCAGCACTC-GGGAGGCAGAGGCAGGCGG------ 28 
 NW_P1_B1_C04.2_UP      ----CCAGCACTC-GGGAGGCAGAGGCAGGCGG------ 28 
 NW_P1_B1_E03_UP        ----CCAGCACTC-GGGAGGCAT-GGCAGGCGG------ 27 
 NW_P1_B1_C02.2_UP      ----CCAGCACTC-GGGAGGCAGAGGCAGGCGG------ 28 
 NW_P1_B1_B04.2_UP      ----CCAGCACTC-GGGAGGCAGAGGTAGGCGG------ 28 
 NW_P1_B1_B05.2_UP      ----CCAGCACTG-GGCAGGCAGAGGCAGGCGG------ 28 
 NW_P1_B1_B03_UP        ----CCAGCACTT-GGGAGGCAGAGGCAGGTGG------ 28 
*NW_P1_B1_G05_UP        ----CCAGCACTT-GGGAGGCAGAG-CTGGTGG------ 27 
 NW_P1_B1_D05_UP        ----CCAGCACTT-GGGAGGCAGAGGCAGGTGG------ 28 
 NW_P1_B1_E04_UP        ----CCAGCACTT-GGGAGGCAGAGGCAGGTGG------ 28 
 NW_P1_B1_G03.2_UP      ----CCAGCACTT-GGGAGGCAGAGGCAGGTGG------ 28 
 NW_P1_B1_H05.2_UP      ----CCAGCACTT-GGGAGGCAGAGGCAGGTGG------ 28 
 NW_P1_B1_A03_UP        ----CCAGCACTT-GAGAGACAGAGGCAGTTGG------ 28 
*NW_P1_B1_F04_UP        ----CCAGCACT--GGGTGGCAGAGGCAGGTGG------ 27 
 NW_P1_B1_D02_UP        ----CCAGCACTT-GGGAGGCAG-GGCAGGAGG------ 27 
*NW_P1_B1_E02_UP        ----CCAGCACTT-GGGAGGCAG-GGCAGGAGG------ 27 
 NW_P1_B1_G01_UP        ----CCAGCACTT-GGGAGGCAGAGGCAGGGGG------ 28 
 NW_P1_B1_A05.2_UP      ----CCAGCACTT-GGGAGGCAGAGGCAGGCAG------ 28 
 NW_P1_B1_G06.1_UP      ----CCAGCACTT-GG-AGGCAGAGGCAGGCAG------ 27 
 NW_P1_B1_A05.1_UP      ----CCAGCACTT-GGGAAGCAGAGGCAGGCAA------ 28 
*NW_P1_B1_B01_UP        ----CTAGCACAT-GGGAGGCAGAAGGAGGCG------- 27 
 NW_P1_B1_F05_UP        ----CTAGCACAT-GGGAGGCAGAAGGAGGCG------- 27 
*NW_P1_B1_A06_UP        ----CTAGCACTT-GGGAGGCAGAGCCAGGCAG------ 28 
 NW_P1_B1_D06.1_UP      ----CCAGCACTT-GGGAGGCAGAGGCAGGCGG------ 28 
*NW_P1_B1_F03_UP        ----CCAGCACTT-GGGAGGCAGAGGCAGGCGG------ 28 
 NW_P1_B1_F06.3_UP      ----CCAGCACTT-GGGAGGCAGAGGCAGGCGG------ 28 
 NW_P1_B1_H03.1_UP      ----CCAGCACTT-GGGAGGCAGAGGCAGGCGG------ 28 
 NW_P1_B1_C03.1_UP      ----CCAGTACTT-GGGAGGCAGAGGCAGGCGG------ 28 
 NW_P1_B1_B05.1_UP      ----CCAGCANNTCGGGAGGCAGAGGCAGGCGG------ 29 
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Table 6-2: CLUSTAL 2.0.12 multiple sequence alignment of B1-elements amplified with the primer pair 
B1F2/B1R2. (Primer sequences removed; *plasmids selected for standard) 

 NW_P1_B1_A09_UP        --CCCAGCACTCG-GGAGGCAGAGGCAGAGGCAGAGGCAGTCGGA 42 
*NW_P1_B1_E09_UP        --CCCAGCACTCG-GGAGGCCGAGGCAGAGGCAGAGGCAGGCGAA 42 
*NW_P1_B1_A07_UP        --CCCAGCACTCA-GGAGGCGGAGGCAGAGGTAGAGGCAGGCAGA 42 
 NW_P1_B1_B09.2_UP      --CCCAGCACTCG-GGAGGCAGAGGCAGGGGGA------------ 30 
 NW_P1_B1_B08.2_UP      --CCCAGCACTTG-GGAGGCAGAGGCAG--GCAGA---------- 30 
 NW_P1_B1_B12.1_UP      -TCCCAGCACTTG-GGTGGCAAAGGCAG--GCAGA---------- 31 
 NW_P1_B1_F11.2_UP      --TCCAGCACTTG-GGAAGCAGAAGAAG--GCAGA---------- 30 
 NW_P1_B1_E10.1_UP      --CCCAGCACTCG-GGAGGCAGAGGCAG--GCAGA---------- 30 
 NW_P1_B1_B08.1_UP      --CCCAGCACTCG-G-AGGCAGAGGCAG--GCAGA---------- 29 
 NW_P1_B1_C10.1_UP      --CCCAGCACTCG-GGAGGCAGAGGCAG--GCGGA---------- 30 
 NW_P1_B1_F11.1_UP      --CCCAGCACTCG-GGAGGCAGAGGCAG--GCGGA---------- 30 
 NW_P1_B1_H07.2_UP      --CCCAGCACTCG-GGAGGCAGAGGCAG--GCGGA---------- 30 
 NW_P1_B1_B09.1_UP      --CCCAGCACTCGAGGAGGCAGAGGCAG--GCGGA---------- 31 
 NW_P1_B1_H10.2_UP      --CCCAGCACTCA-GGAGGCAGAGGCAG--GCGGG---------- 30 
 NW_P1_B1_H12.1_UP      --CCCAGCACTCA-GGAGGCAGAGGCAG--GCGGG---------- 30 
 NW_P1_B1_H10.1_UP      --CCCAGCACTCA-GGAGGCAGAGGCAG--GCGGG---------- 30 
 NW_P1_B1_H08.1_UP      --CCCAGCACTCA-GGAGGCAGAGGCAG--GCGGG---------- 30 
 NW_P1_B1_H07.1_UP      --CCCAGCACTCA-GGAGGCAGAGGCAG--GCGGG---------- 30 
 NW_P1_B1_G11.1_UP      --CCCAGCACTCA-GGAGGCAGAGGCAG--GCGGG---------- 30 
 NW_P1_B1_G09.2_UP      --CCCAGCACTCA-GGAGGCAGAGGCAG--GCGGG---------- 30 
 NW_P1_B1_G09.1_UP      --CCCAGCACTCA-GGAGGCAGAGGCAG--GCGGG---------- 30 
 NW_P1_B1_G08.2_UP      --CCCAGCACTCA-GGAGGCAGAGGCAG--GCGGG---------- 30 
 NW_P1_B1_G08.1_UP      --CCCAGCACTCA-GGAGGCAGAGGCAG--GCGGG---------- 30 
 NW_P1_B1_G07.1_UP      --CCCAGCACTCA-GGAGGCAGAGGCAG--GCGGG---------- 30 
 NW_P1_B1_F12.2_UP      --CCCAGCACTCA-GGAGGCAGAGGCAG--GCGGG---------- 30 
 NW_P1_B1_F12.1_UP      --CCCAGCACTCA-GGAGGCAGAGGCAG--GCGGG---------- 30 
 NW_P1_B1_F08.1_UP      --CCCAGCACTCA-GGAGGCAGAGGCAG--GCGGG---------- 30 
 NW_P1_B1_E12.2_UP      --CCCAGCACTCA-GGAGGCAGAGGCAG--GCGGG---------- 30 
 NW_P1_B1_E10.2_UP      --CCCAGCACTCA-GGAGGCAGAGGCAG--GCGGG---------- 30 
 NW_P1_B1_E08.1_UP      --CCCAGCACTCA-GGAGGCAGAGGCAG--GCGGG---------- 30 
 NW_P1_B1_D11.2_UP      --CCCAGCACTCA-GGAGGCAGAGGCAG--GCGGG---------- 30 
 NW_P1_B1_D11.1_UP      --CCCAGCACTCA-GGAGGCAGAGGCAG--GCGGG---------- 30 
 NW_P1_B1_D10.2_UP      --CCCAGCACTCA-GGAGGCAGAGGCAG--GCGGG---------- 30 
 NW_P1_B1_D10.1_UP      --CCCAGCACTCA-GGAGGCAGAGGCAG--GCGGG---------- 30 
 NW_P1_B1_D07.2_UP      --CCCAGCACTCA-GGAGGCAGAGGCAG--GCGGG---------- 30 
 NW_P1_B1_D07.1_UP      --CCCAGCACTCA-GGAGGCAGAGGCAG--GCGGG---------- 30 
*NW_P1_B1_C12_UP        --CCCAGCACTCA-GGAGGCAGAGGCAG--GCGGG---------- 30 
*NW_P1_B1_C11_UP        --CCCAGCACTCA-GGAGGCAGAGGCAG--GCGGG---------- 30 
 NW_P1_B1_C10.2_UP      --CCCAGCACTCA-GGAGGCAGAGGCAG--GCGGG---------- 30 
 NW_P1_B1_C07.2_UP      --CCCAGCACTCA-GGAGGCAGAGGCAG--GCGGG---------- 30 
 NW_P1_B1_B11.2_UP      --CCCAGCACTCA-GGAGGCAGAGGCAG--GCGGG---------- 30 
 NW_P1_B1_B07.2_UP      --CCCAGCACTCA-GGAGGCAGAGGCAG--GCGGG---------- 30 
 NW_P1_B1_B07.1_UP      --CCCAGCACTCA-GGAGGCAGAGGCAG--GCGGG---------- 30 
 NW_P1_B1_A12.2_UP      --CCCAGCACTCA-GGAGGCAGAGGCAG--GCGGG---------- 30 
 NW_P1_B1_A12.1_UP      --CCCAGCACTCA-GGAGGCAGAGGCAG--GCGGG---------- 30 
 NW_P1_B1_C07.1_UP      --CCCAACACTTA-GGAGGCAGAGGCAG--GCGGGT--------- 31 
 NW_P1_B1_F10.1_UP      --CCCAGCACTCA-AGAGGCAGAGGCAG--GCGGN---------- 30 
 NW_P1_B1_F10.2_UP      --CCCAGCACTCA-GGAGGCAGAGGCAG--GCGGA---------- 30 
 NW_P1_B1_E08.2_UP      --CCCAGCACTCA-GGAGGCAGAGGCAG--GCTGA---------- 30 
*NW_P1_B1_A08_UP        --CCCAGCACTCA-GGAGGCAGAGGCAG--GTGGA---------- 30 
 NW_P1_B1_E12.1_UP      --CCTAGCACTAA-GGAGGCAGAGGCAA--GCGGA---------- 30 
*NW_P1_B1_E11_UP        --CCCAGCACTTA-GGAGGCAGAAGCAG--GTGGA---------- 30 
 NW_P1_B1_B11.1_UP      -CCCCAGCACTTGGG-AGGCAGAGACAG--GCGGA---------- 31 
*NW_P1_B1_D09_UP        --CCCAGCACTTGGGGAGGCAGAGACAG--GCGAA---------- 31 
 NW_P1_B1_B12.2_UP      --CACAGCAATTGGG-AGCTAGAGGCAG--ACGGA---------- 30 
*NW_P1_B1_G10_UP        --CACAGCAATTGGG-AGCTAGAGGCAG--GCGGA---------- 30 
 NW_P1_B1_G11.2_UP      --CCCAGCACTTGGG-AGGCAGAGGCAG--GCGGA---------- 30 
*NW_P1_B1_G12_UP        --CCCAGCACTTGGG-AGGCAGAGGCAG--GCGGA---------- 30 
*NW_P1_B1_H09_UP        --CCCAGCACTTGGA-AGGCAGAGGCAG--GCGGA---------- 30 
 NW_P1_B1_H08.2_UP      --CCCAGCACTTGGG-AGGCAGAGGCAG--GTGGA---------- 30 
 NW_P1_B1_H12.2_UP      --CCCAGCTCTTGGG-AAGCAGAGTCCA--GTGGA---------- 30 
 NW_P1_B1_F08.2_UP      ATCCCAGCACTTGGG-AGGCAGAGGCAG--GAGGA---------- 32 
 NW_P1_B1_G07.2_UP      --CCTAGCACTTGGG-AGGCAGAGGCAG--GCGGA---------- 30 
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Table 6-3: CLUSTAL 2.0.12 multiple sequence alignment of B2-elements amplified with the primer pair 
B2F1/B2R1. (Primer sequences removed; *plasmids selected for standard) 

 NW_P2_B2_C06_UP        GTGGCTCACAACCA----TCCGTAACGAGAC 27 
 NW_P2_B2_F06_UP        GTGGCTCAC---CA----TCTGTAACGAGA- 23 
 NW_P2_B2_G03_UP        GTGGCTCACATCCA----TCTGTAATGATA- 26 
 NW_P2_B2_H02_UP        GTGGCTCACAGCCA----TCTGTAATGAGA- 26 
*NW_P2_B2_B01_UP        GTGGCTCACAACCA----TCTGCAATGAGA- 26 
 NW_P2_B2_G05_UP        GTGGCTCACAACCA----TCTGCAATGGGA- 26 
*NW_P2_B2_B06_UP        GTGACTCACAATCA----TCTGTAATGTGA- 26 
 NW_P2_B2_D02_UP        GTGACTCACAACCA----TCTGTAATGAGA- 26 
*NW_P2_B2_C02_UP        GTGACTCACAACCA----TCTGTAATGGGA- 26 
 NW_P2_B2_H03.2_UP      GTGACTCACAACCA----TCTGTAATGGGA- 26 
 NW_P2_B2_C05_UP        GTGTCTTATAACCA----TCTGTAATGGGG- 26 
 NW_P2_B2_D01_UP        GTGACTCATAACCA----TCTGTAATGGGA- 26 
*NW_P2_B2_A02_UP        GTGGCTCAAAACCA----TCTGTAATGGGA- 26 
*NW_P2_B2_B02_UP        GTGGCTCACAAC----TGTCTTTAATGGGA- 26 
 NW_P2_B2_D03_UP        GTGGCTCACAACCATCTATCTGTAATGGGA- 30 
*NW_P2_B2_B04_UP        GTGGCTCACAAC----CCTCTGTAATGGGA- 26 
 NW_P2_B2_E04_UP        GTGGCTCACAAC----CCTCTGTAATGGGA- 26 
*NW_P2_B2_A01_UP        GTGGCTCACAAC----CATCTGTAATGGGA- 26 
 NW_P2_B2_E01_UP        GTGGCTCACAAC----CATCTGTAATGGGA- 26 
 NW_P2_B2_H06_UP        GTGGCTCACAAC----CATCTGTAATGGGA- 26 
*NW_P2_B2_A06_UP        GTGGCTCACAACCA----TCTGTATTAGAA- 26 
 NW_P2_B2_F03_UP        GTGGCTCACAACCA----TCTGTATTGGAA- 26 
 NW_P2_B2_E02_UP        GTGGCTCACAACCA----TCTGTAGTGGAGA 27 
 NW_P2_B2_G01_UP        GTGGCTCACAACCA----TCTGTAATGGGG- 26 
 NW_P2_B2_E05_UP        GTAGCTCACAACCA----TCTGTAAATGGAA 27 
 NW_P2_B2_F05_UP        GTAGCTCACAACCAACCATCTGTAATGGGA- 30 
 NW_P2_B2_C04_UP        GTGGCTCACAACCA----CCTGTAATGGAA- 26 
*NW_P2_B2_B03_UP        GTGGCTCACAACCA----CCTGTAATGGGA- 26 
 NW_P2_B2_E06_UP        GTGGCTCACAACCA----TCTGTAATAGGA- 26 
 NW_P2_B2_D06_UP        GTGGCTCACAACCA----TCTGTAATGGGA- 26 
 NW_P2_B2_F04_UP        GTGGCTCACAACCA----TCTGTAATGGGA- 26 
 NW_P2_B2_G04_UP        GTGGCTCACAACCA----TCTGTAATGGGA- 26 
 NW_P2_B2_C03_UP        GTGGCTCACAATCA----TCTGTAATGGGA- 26 
 NW_P2_B2_E03_UP        GTGGCTCACAATCA----TCTGTAATGGGA- 26 
 NW_P2_B2_D04_UP        GTGCCTCACAGCCA----TCTGTAATGGGA- 26 
 NW_P2_B2_D05_UP        GTGGCTCACACCCA----TCTGTAATGGGA- 26 
 NW_P2_B2_G02_UP        GTGGCTCACAACCA----TCTGTANTGAGAN 27 
*NW_P2_B2_B05_UP        GTGGCTTACAACCA----TCTGTAATGAGA- 26 
 NW_P2_B2_H03.1_UP      GTGGCTCATAACCA----TCAATAATGAGT- 26 
 NW_P2_B2_H01_UP        GTAGTTCACAACCA----CCCGTAATGAGA- 26 
 NW_P2_B2_H05_UP        GTGGCTTATAACCA----CTCGTAATGAGA- 26 
 NW_P2_B2_F01_UP        GTGGCTCACAACCA----CCCGTAATGAGA- 26 
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Table 6-4: CLUSTAL 2.0.12 multiple sequence alignment of B2-elements amplified with the primer pair 
B2F2/B2R2. (Primer sequences removed; *plasmids selected for standard) 

 NW_P2_B2_E09.2_UP      ATGGTTCATAATGGG--ATC------------------ 18 
 NW_P2_B2_F11.2_UP      ATGGTTCATAATGGG--ATC------------------ 18 
*NW_P2_B2_A09_UP        GTAGCC-ACAACC----ATCTG---TAATGAGATC--- 27 
 NW_P2_B2_D11_UP        GTAGCCCATAACC----ATCTG---GAATGGGATC--- 28 
 NW_P2_B2_E10_UP        ATAGCTCATAACC----ATCTG---TAATGTGATC--- 28 
 NW_P2_B2_H10_UP        GTAGTTCACAACNC---ATCCG---TAATGAGATC--- 29 
 NW_P2_B2_E12_UP        GTGGCTCACAACC----ATCTG---TA-TGGGATC--- 27 
 NW_P2_B2_F07_UP        GTGGCTCACAACC----ATCTG---TAATGGGATC--- 28 
 NW_P2_B2_A08.2_UP      GTGGCTCGCAACC----ATCTG---TAATGGGATC--- 28 
 NW_P2_B2_A07_UP        GTGGCTCACAACC----ATCTG---CAATGGGATC--- 28 
*NW_P2_B2_B09_UP        GTGGCTTACAGTC----ATCTG---TAATATGATC--- 28 
 NW_P2_B2_F11.1_UP      GTGGCTCACAGGC----ATCTG---TAATGGGATC--- 28 
 NW_P2_B2_A08.1_UP      GTGGCTCACAGCC----ATCTG---TAATGGGATC--- 28 
 NW_P2_B2_E09.1_UP      GCGGCTTACAACC----CTCTG---TAATGGGATC--- 28 
 NW_P2_B2_F12_UP        GTGGCTCACAACC----ATCTG---TAATAGGATC--- 28 
*NW_P2_B2_A10_UP        GTGGCTCACAACC----ACCCA---TAACGAGATC--- 28 
 NW_P2_B2_F10_UP        GTGGCTCACAACC----ACCCA---TAACGAGATC--- 28 
 NW_P2_B2_C10_UP        GTGGCTCACAACC----ACCCA---TAATGAGATC--- 28 
 NW_P2_B2_D12_UP        GTGGCTCACAACC----ACCCA---TAATGAGATC--- 28 
*NW_P2_B2_B12_UP        GTGGCTCACAAGC----ACCCA---TAATGAGATC--- 28 
 NW_P2_B2_H11_UP        GTGGCTCACAACC----ACCCG---TAATGAGATC--- 28 
*NW_P2_B2_A11_UP        GTGGCTCAAC-TA----T-CCG---TAATGAGATC--- 26 
 NW_P2_B2_D08_UP        GTGGCTCAACGTA----TTCCG---TAATGAGATC--- 28 
 NW_P2_B2_C11_UP        GTGGCTCACAACC----ATCCA---TAATGGGATC--- 28 
 NW_P2_B2_H08_UP        GTGGCTCTCAACC----ATCCA---TAATGAGATC--- 28 
 NW_P2_B2_G08_UP        GTGGCTCACAATT----ATCTA---TGATGGGTTC--- 28 
 NW_P2_B2_G09_UP        GTGACTCACAACC----ATCTC---TAATGGGATC--- 28 
 NW_P2_B2_F09_UP        GTGGCTCACAACC----ATCAG---TAATGGGATC--- 28 
*NW_P2_B2_B10_UP        GTGGCTCACAACC----ATCCG---TAATGAAATC--- 28 
 NW_P2_B2_E11_UP        GTGGCTCACAACC----ATCCA---TAATGAAATC--- 28 
*NW_P2_B2_A12_UP        GTGGTTCACAACC----ATCTAG--TAATGAAATC--- 29 
*NW_P2_B2_B11_UP        ATGGCTCGCAACC----ATCCG---TAACAAAAAAATC 31 
 NW_P2_B2_H12_UP        GTGGCTCACAACC----ATCCG---CAACAGAGATC-- 29 
 NW_P2_B2_G07_UP        GTGGCTCACAACC----ATCCG---TAACGAAATC--- 28 
*NW_P2_B2_B08_UP        GTGGCTCACAACC----ACCCG---TAACGAAATC--- 28 
 NW_P2_B2_D10_UP        GTGGCTCACAACC----ATCTG---TAACGAAATC--- 28 
 NW_P2_B2_E08_UP        GTGGCTCACAACC----ATCTG---TAACGAAATC--- 28 
 NW_P2_B2_H07_UP        GTGGCTCACAACC----ATCTC---TAATGAAATC--- 28 
 NW_P2_B2_E07_UP        GTGGCTCACAACC----ATCTG---TAATGGAATC--- 28 
 NW_P2_B2_C08_UP        GCGGCTCACGACC----ATCTGT--AATGTGATC---- 28 
 NW_P2_B2_D07_UP        GCAGCTCAC-ACC----ATC------------------ 15 
 NW_P2_B2_F08_UP        GTGGCTCACAACC----ATCTG---TAATGAGATC--- 28 
 NW_P2_B2_G12_UP        GTGGCTCACAACC----ATCTG---TAATGAGATC--- 28 
*NW_P2_B2_B07_UP        GTGACTCACAACC----ATCTG---TAATGAGATC--- 28 
 NW_P2_B2_C09_UP        GTGGCTCACAACC----ATCTG---TAACGGATC---- 27 
 NW_P2_B2_D09_UP        GTGAATCACAACC----ATCTA---TAAAGAGATC--- 28 
 NW_P2_B2_C12_UP        GTGACTCTCAAAC----ATTTA---TAATAGGATC--- 28 
 NW_P2_B2_G10_UP        GTTCTTCACAACTACTTTTCCAGATCCATGTGATC--- 35 
 NW_P2_B2_G11_UP        GTTCTTCACAACTACTTTTCCAGATCCATGTGATC--- 35 
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 The plasmids were used for optimisation of the qPCR reactions, whereby 

various annealing temperatures (58°C, 60°C and 62°C), primer concentrations (200 nM, 

300 nM, 400 nM, 500 nM, 600 nM and 700 nM), and magnesium concentrations 

(2.5 mM, 3.0 mM, 3.5 mM and 4.0 mM) were tested to define optimal assay conditions 

by comparison of CT values. Standard curves with 10-fold dilution series of the plasmid 

controls showed that the optimised assays had an efficiency of ≥ 96 % over a range of 

six orders of magnitude (Figure 6-1A-D). In addition, a qPCR assay targeting human 

ALU-repeats of the ALU-J family was optimised with plasmid standards, which had an 

efficiency of 99 % (Figure 6-1E). 
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Figure 6-1: Optimised B-element and ALU-J qPCR assays 

Optimised qPCR assays preformed with 10-fold dilution series of the standard plasmids. All 
concentrations were measured in duplicates or triplicates. The assays B1F1/B1R1 (A) and  B1F2/B1R2 
(B) had an efficiency of 98%, the B2F1/B2R1 assay (C) an efficiency of 96%, and the B2F2/B2R2 assay 
(D) and the ALU-J assay (E) an efficiency of  99%. Note: the no template controls (NTC) were positive 
in all assays (red dots). 



6. SINES FOR NORMALISATION OF RT-QPCR DATA 

208 

6.3.2 Positive no template controls: a problem of contamination? 

 During the optimisation of qPCR assays for ALU-repeats and B-elements, it was 

noticed that the no template controls (NTC) were always coming up as positives 

(Figure 6-1). Even if all reagents were newly purchased and the equipment was UV-

treated in a specialised PCR hood in which the reactions were set up, gloves were 

changed frequently and the experimenter was wearing clean lab coat and face mask, 

none of these precautions reduced the amplification in the NTCs. 

 DNase/RNase-free distilled water was distributed in 1.5 ml tubes and exposed to 

the air for 5 minutes to 24 hours of three different locations: an UV-sterilized/hepa-

filtered PCR hood, a bench in the pre-PCR laboratory and on a desk at the entrance to 

an open-plan office shared by 14 people. ALU-J and B1-element reactions performed 

with this water produced a product in all time-points, including time 0 (Figure 6-2). 

When all ALU-J data were compared, there was a mean copy number of 

71 copies/reaction, but the data were not distributed normally (Figure 6-2Aa). There 

was no associated increase in the amount of ALU-J DNA detected with time, although 

there were two increased results: one at 6 hours from the laboratory bench and one at 

24 hours from the open-plan office (Figure 6-2B), which were outside of the 

3.09 standard deviation (SD) from the mean (99.8 % contained in interval). If these two 

outliers are omitted, the distribution becomes normal with a mean of 61 copies/reaction 

and a coefficient of variation (CV) of 18.79 % (Figure 6-2Ab). When the same samples 

were analysed using the mouse B1-element primers, all time points yielded a result that 

had a normal distribution with a mean and CV of 95 copies/reaction and 12.29 %, 

respectively (Figure 6-2Ac). Furthermore, as with the ALU-J reactions, there was no 

increase in mouse DNA contamination with time (Figure 6-2C).  
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Figure 6-2: Copy number of ALU-J and B1-elements in no template controls exposed to different 
environments for various periods of time 

A: All ALU-J and B1-element experimental data plotted from all exposure experiments. Total spread of 
ALU-J results (a); spread of ALU-J results minus outliers (b); spread of B1-element results (c). The effect 
of exposure to air from clean hood (o), laboratory (x), and open-plan office (+) on the detection of (B) 
ALU-J and (C) B1-element DNA sequences. 

 

 Sequence analysis confirmed that the molecules being amplified by the 

respective primer sets were ALU-J or B1-element sequences (Figure 6-3). The 

sequences were slightly different than the plasmids used for the standard curves, thus 

cross-contamination can be excluded. 
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Figure 6-3: No template controls amplify ALU-J and B1-element sequences 

Sequences derived from PCR products from 0 minutes and 24 hours exposure reactions with ALU-J (A) and B1F2/B1R2 (B) primers. Locations of the primers are underlined. 
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 The very constant copy numbers of ALU-J and B1-element DNA measured 

suggested that the contamination of the assays was already present in the master mix 

and not introduced during PCR set up. Since the contamination was very little and 

stable, it should not affect the application of expressed SINEs as a tool for RT-qPCR 

data normalisation. 

 

6.3.3 Optimisation of sample preparation to obtain good quality RNA 

 Spleens and Peyer’s patches of 43 mice were dissected and stored at -80 °C in 

RNAlater to prevent RNA degradation. Despite the use of a RNA isolation kit (see 

Material and Methods), the samples were highly contaminated with genomic DNA 

(Figure 6-4A+B, lane 2). Primers for reference genes and genes of interest can often be 

designed in a way that the assay spans a large intron such that remaining genomic DNA 

is not coamplified with cDNA. However this strategy is not recommended as probably 

about 20 % of the human genes are either single exon genes or have one or more 

processed pseudogenes (retropseudogene or intronless copy) in the genome (Dunham et 

al., 1999; Hattori et al., 2000). Therefore it is suggested to treat the RNA sample with 

RNase-free DNase (Vandesompele et al., 2002a). For the utilisation of expressed SINEs 

as references for RT-qPCR data normalisation, the removal of contaminating genomic 

DNA is essential. As there are for example > 1,000,000 copies of ALU-elements 

present within the human genome (Smit, 1996) and nearly 500,000 copies of 

B1-elements in the mouse genome (Umylny et al., 2007), even minor contamination 

could make RT-qPCR data normalisation unfeasible. DNase treatment was first 

performed according to a protocol used by Professor Vandesompele and colleagues 

(http://medgen.ugent.be/CMGG/protocols/). Although the residual DNA was no longer 

visible by electrophoresis using agarose gels (Figure 6-4A, lanes 3+4), this method was 

not suitable for the removal of genomic DNA contamination, because the RNA was also 
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degraded (Figure 6-4A, lanes 3+4). This was not a direct result from the DNase 

treatment, but rather from the subsequent purification method with microcon-100 

columns, since the RNA was also degraded in no-DNase controls (Figure 6-4A, lanes 

5+6).  

 

Figure 6-4: DNase treatment of RNA samples 

RNA isolated from mice spleens using the RNAeasy kit was DNase treated using two different methods. 
A: Microcon-100 tubes were used for purification. 1: 1kb ladder; 2: RNA sample prior to DNase 
treatment; 3+4: DNase treatment and microcolumn clean-up; 5+6: no-DNase treatment and microcolumn 
clean-up. B: Guanidinium thiocyanate phenol chloroform was used for purification. 1: 1kb ladder; 2: 
RNA sample prior to DNase treatment; 3+4: DNase treatment and guanidinium thiocyanate phenol 
chloroform clean-up; 5+6: no-DNase treatment and guanidinium thiocyanate phenol chloroform clean-up. 
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 Therefore a different method using guanidinium thiocyanate-phenol-chloroform 

purification was applied for RNA purification subsequent to DNase treatment 

(Figure 6-4B; for details see Material and Methods). Here the residual genomic DNA 

was no longer visible by agarose gel electrophoresis and the rRNA remained intact 

(Figure 6-4B, lanes 3+4). Already the purification method alone removed large parts of 

genomic DNA, which was invisible in no-DNase controls (Figure 6-4B, lanes 5+6). 

 Furthermore the RNA integrity was measured by using a Bioanalyzer 2100, 

which confirmed that the RNA was not degraded with RNA integrity numbers (RIN) 

between 8.1 and 8.4 for all four samples measured. RT-qPCR performance is affected 

by the RNA integrity, and a RIN higher than five is recommended as good total RNA 

quality and higher than eight as perfect total RNA for downstream applications (Fleige 

and Pfaffl, 2006). Therefore, this method of DNase treatment and RNA purification was 

applied for all 43 mice Peyer’s patches and spleen RNA samples that were treated with 

RNase-free DNase. Subsequent RNA integrity and purity measurements with a 

Bioanalyzer 2100 and Nanodrop respectively confirmed good quality RNA for all 

samples (Table 6-5).  
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Table 6-5: RNA integrity and purity after DNase treatment and guanidinium thiocyanate-phenol-
chloroform purification (Peyer’s patches (PP); optical density (OD)) 

ID Sample RIN OD 260/280 Sample RIN OD 260/280 
1 Spleen, Day 4, M1G1 7.8 1.91 PP, Day 4, M1G1 7.80 1.90 
2 Spleen, Day 4, M2G1 8.2 1.98 PP, Day 4, M2G1 8.00 1.91 
3 Spleen, Day 4, M3G1 7.8 1.95 PP, Day 4, M3G1 7.90 1.94 
4 Spleen, Day 4, M1G2 7.9 1.93 PP, Day 4, M1G2 7.70 1.95 
5 Spleen, Day 4, M2G2 9.4 1.96 PP, Day 4, M2G2 7.80 1.94 
6 Spleen, Day 4, M3G2 7.3 1.95 PP, Day 4, M3G2 7.20 1.94 
7 Spleen, Day 4, M1G3 8.5 1.89 PP, Day 4, M1G3 7.70 1.94 
8 Spleen, Day 4, M2G3 7.2 1.93 PP, Day 4, M2G3 8.30 1.96 
9 Spleen, Day 4, M3G3 7.7 1.95 PP, Day 4, M3G3 8.50 1.91 

10 Spleen, Day 4, M1G4 7.7 1.88 PP, Day 4, M1G4 8.70 1.99 
11 Spleen, Day 4, M2G4 7.5 1.85 PP, Day 4, M2G4 8.10 1.95 
12 Spleen, Day 4, M3G4 7.6 1.93 PP, Day 4, M3G4 8.50 1.99 
13 Spleen, Day 4, M1G5 9.1 1.92 PP, Day 4, M1G5 8.30 1.94 
14 Spleen, Day 4, M2G5 9.2 1.91 PP, Day 4, M2G5 7.90 1.88 
15 Spleen, Day 4, M3G5 8.9 1.91 PP, Day 4, M3G5 8.50 1.96 
16 Spleen, Day 30, M1G1 8.5 1.86 PP, Day 30, M1G1 8.70 1.98 
17 Spleen, Day 30, M2G1 8.6 1.96 PP, Day 30, M2G1 8.60 1.87 
18 Spleen, Day 30, M3G1 8.9 1.95 PP, Day 30, M3G1 8.40 1.91 
19 Spleen, Day 30, M1G2 8.9 1.92 PP, Day 30, M1G2 8.60 1.96 
20 Spleen, Day 30, M2G2 8.5 1.93 PP, Day 30, M2G2 7.50 1.91 
21 Spleen, Day 30, M3G2 8.4 1.95 PP, Day 30, M3G2 8.00 2.07 
22 Spleen, Day 30, M1G3 8.6 1.95 PP, Day 30, M1G3 8.00 1.93 
23 Spleen, Day 30, M2G3 9.0 1.94 PP, Day 30, M2G3 8.50 1.89 
24 Spleen, Day 30, M3G3 8.6 1.95 PP, Day 30, M3G3 8.70 1.99 
25 Spleen, Day 30, M1G4 8.1 1.93 PP, Day 30, M1G4 7.90 1.96 
26 Spleen, Day 30, M2G4 8.1 1.95 PP, Day 30, M2G4 8.30 1.96 
27 Spleen, Day 30, M3G4 9.5 1.97 PP, Day 30, M3G4 8.10 1.93 
28 Spleen, Day 30, M1G5 9.5 1.97 PP, Day 30, M1G5 8.40 1.95 
29 Spleen, Day 30, M2G5 9.4 1.97 PP, Day 30, M2G5 8.60 1.93 
30 Spleen, Day 30, M3G5 8.4 1.97 PP, Day 30, M3G5 8.40 1.94 
31 Spleen, Day 50, M1G1 9.6 1.96 PP, Day 50, M1G1 6.90 1.87 
32 Spleen, Day 50, M2G1 9.0 1.94 PP, Day 50, M2G1 8.20 1.94 
33 Spleen, Day 50, M3G1 9.3 1.96 PP, Day 50, M3G1 7.30 1.84 
34 Spleen, Day 50, M1G2 8.4 1.91 PP, Day 50, M1G2 7.80 1.93 
35 Spleen, Day 50, M2G2 9.0 1.88 PP, Day 50, M2G2 8.20 1.92 
36 Spleen, Day 50, M3G2 8.3 1.93    
37 Spleen, Day 50, M1G3 7.4 1.80 PP, Day 50, M1G3 8.10 1.93 
38 Spleen, Day 50, M2G3 7.9 1.85 PP, Day 50, M2G3 7.80 1.91 
39    PP, Day 50, M3G3 6.90 1.91 
40 Spleen, Day 50, M1G4 8.2 1.97 PP, Day 50, M1G4 8.30 1.92 
41 Spleen, Day 50, M2G4 7.9 1.85 PP, Day 50, M2G4 8.70 1.97 
42 Spleen, Day 50, M3G4 7.9 1.92 PP, Day 50, M3G4 7.70 1.95 
43 Spleen, Day 50, M1G5 8.8 1.95 PP, Day 50, M1G5 8.10 1.94 
44 Spleen, Day 50, M2G5 8.6 1.91 PP, Day 50, M2G5 7.40 1.97 
 

 RT-negative controls for all samples were included into the qPCR assays that 

confirmed successful removal of residual genomic DNA, because the assays became 

positive at a high CT value similar to the NTCs (Figure 6-5B). QPCR assays with RNA 

samples that were not treated with DNase and not reverse transcribed demonstrated the 

importance the DNase treatment. They showed massive contamination with gnomic 
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B-element DNA (Figure 6-5C) and had a similar CT value as cDNA generated from 

RNA samples that were DNase treated (Figure 6-5A). 

 

Figure 6-5: DNase treatment removed residual genomic DNA 

A: RNA samples were treated with DNase, reverse transcribed and analysed for B2-element expression. 
B: RNA samples were treated with DNase and not reverse transcribed (RT-negative controls) and 
analysed for B2-element DNA contamination. C: RNA samples were not treated with DNase (no-DNase 
controls), not reverse transcribed and analysed for B2-elements content in genomic DNA contamination. 
Black: standard curve with plasmid controls; red: mice RNA samples; blue: NTCs. 

 

6.3.4 Expression level variability of B-elements in Peyer’s patches and spleens of 

mice is comparatively low 

 It was aimed to test if SINEs can be used as an alternative to classical control 

genes, and therefore the expression level of B-elements, B1 and B2, was compared to 

various common reference genes in spleens and Peyer’s patches of mice that had been 

treated for different periods with diverse pharmacological formulations of M. vaccae. 
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 In the total of 43 Peyer’s patches and spleens, the B-elements, both B1 and B2, 

were stably expressed (Figure 6-6). In both tissues the two elements were nearly 

identical in their expression level and inter-sample variability. Their interquartile range 

(IQR) was ~1 CT and the maximum range was ~3.8 CTs. 

 Among the classical reference genes, B2M showed the smallest variability in the 

Peyer’s patches with an IQR of 1.3 CTs (Figure 6-6A). In the spleen samples, the 

reference gene SDAH was even less variable than the B-elements with an IQR of 

0.5 CTs (Figure 6-6B). In both tissues, the frequently used reference gene β-actin 

showed a considerably greater variability. It had an IQR of 2.2 CTs in the Peyer’s 

patches and of 2.4 CTs in the spleens, and showed large maximal variability of 6.8 CTs 

(Peyer’s patches) and 9.1 CTs (spleens). 
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Figure 6-6: Expression levels of 12 reference genes and the B1- and B2-elements measured by RT-qPCR 

Cycle threshold (CT) values of reference genes expressed in 43 Peyer’s patches (A) and spleens (B) of 
mice shown as medians (lines), interquartile range (IQR; boxes), and total ranges (whiskers). IQRs of the 
CT values of the different reference genes measured in 43 samples are shown in the table (right). 
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6.3.5 Ranking of reference genes according to their expression stability with the 

geNorm algorithm 

 The gold standard of normalising gene expression data obtained by RT-qPCR, 

against which the SINE approach was compared, is not to use the single reference gene 

which shows the smallest variability, but to generate a normalisation factor based on 

multiple reference genes. However, the expression stability of all the candidate 

reference genes has to be validated and only genes that are stably expressed should be 

included (Vandesompele et al., 2002b). The Microsoft-Excel based tool geNorm 

calculates average expression stability (M), thus ranks the genes according to the 

similarity of their expression profiles (Vandesompele et al., 2002b). Genes with higher 

M values have greater variation in expression, and the threshold proposed for 

eliminating a gene as unstable was M ≥ 0.5. The geNorm algorithm was applied to rank 

twelve reference genes for Peyer’s patches (Figure 6-7A) and eleven reference genes for 

spleens (Figure 6-7B, here EIF4A2 had to be excluded because it did not amplify in one 

sample). The normalisation factor was calculated with the three reference genes, which 

showed the lowest variability in expression profiles. The selected genes for the spleen 

samples were CANX, SDAH and RPL13A and for the Peyer’s patches CANX, 

RPL13A and ATP5TB. 
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Figure 6-7: Expression stability of candidate reference genes calculated with geNorm 

Application of the geNorm algorithm to eleven or twelve genes to identify the three most stable reference 
genes in Peyer's patches (A) and spleens (B). Average expression stability values (M) of remaining 
control genes during stepwise exclusion of the least stable control gene in Peyer’s patches and spleen of 
43 mice.  

 

6.3.6 Validation: B-elements are suitable for normalisation of RT-qPCR data 

 Since the generation of a normalisation factor from multiple reference genes is 

very labour-intensive and problematic if only a small amount of starting material is 

available, I tested if normalisation with expressed SINEs would be an alternative. 
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RT-qPCR assays were designed and optimised for six genes of interest, FoxP3, TGF-β, 

IL-10, IFN-γ, HO-1 and TLR2, which all had an efficiency between 94 % and 100 %. 

Expression data from those six genes were normalised in Peyer’s patches and spleens 

with the B-elements, the gold standard of three best ranked reference genes, and a single 

non-validated reference gene, here β-actin (Figure 6-8A, and data not shown). When the 

data were normalised with the B-elements, the same results were obtained as with the 

multiple reference gene approach. However, if β-actin was used as a single reference 

gene, the expression levels of the genes of interest were changing considerably in mice 

analysed on day 50 after treatment (Figure 6-8A, and data not shown). This was because 

the expression of β-actin has been actually downregulated in the animals at the later 

time point, which could be observed by normalising the β-actin expression levels with 

the multiple reference genes (Figure 6-8B). 

 These results demonstrate that the expressed B-elements are a suitable tool for 

normalisation of RT-qPCR data from mice Peyer’s patches and spleen samples under 

the experimental conditions described. Our collaborators in Belgium (Professor J. 

Vandesompele, Ghent University) and a research group in Italy (Marullo et al., 2010) 

have validated this novel approach of RT-qPCR data normalisation in various human 

tissues using ALU-repeats. Therefore the use of expressed SINEs is available for 

RT-qPCR data normalisation in mice and human samples. 
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Figure 6-8: Gene expression data normalised with B-elements in comparison to standard methods 

A: mRNA levels of FoxP3, TGF-β and IL-10 were normalised to either B-elements (left column), 
geometric mean of three validated reference genes (middle column) or β-actin (right column). Data are 
shown as proportions of expression level from untreated mice on day 4, by dividing all copy numbers by 
the median copy number of the three PBS-treated animals from day 4, which equals afterwards 1. B: 
mRNA quantities of β-actin were normalised with the geometric mean of the three most stable reference 
genes. Like in A, data are shown as proportions of expression level from untreated mice on day 4. 
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6.4 Discussion 

 The optimal reference gene for mRNA expression studies using RT-qPCR 

should be constantly transcribed in all samples under investigation and should not vary 

during the experiment. Since it has often been noted that commonly used reference 

genes can alter their expression profile (Deindl et al., 2002; Glare et al., 2002; Selvey et 

al., 2001; Zhong and Simons, 1999), more reports appeal for the validation of reference 

genes before every experiment (Huggett et al., 2005; Radonic et al., 2004). The current 

gold standard for normalisation of RT-qPCR data is to validate multiple candidate 

reference genes, select at least three that are stably expressed and use them for 

calculation of a normalisation factor (Andersen et al., 2004; Pfaffl et al., 2004; 

Vandesompele et al., 2002b). However, this is very time consuming, especially if one is 

only interested in a few genes of interest. The aim was therefore to test if expressed 

SINEs could function for normalisation of RT-qPCR analyses, and may represent an 

alternative to the resource- and labour-intensive approach of using multiple reference 

genes. 

6.4.1 Possible source of positive no template controls 

 During the process of optimising the qPCR assay conditions to measure ALU-J 

and B-element expression, it became evident that amplification of SINEs was also 

occurring in NTCs. It has been described previously that NTCs appear positive if ALU 

sequences are targeted by qPCR (Nicklas and Buel, 2006). It has been assumed that the 

contamination source is the laboratory environment inhabited by humans performing 

the work (Urban et al., 2000a). To address the influence of the laboratory environment 

on the level of contamination with human ALU-J and mice B1-element DNA 

sequences, tubes were exposure to the air of different environments over a 24 hours 

period. However, there was no associated increase in the amount of B1 or ALU-J DNA 

detected with time in any of the environments. Therefore it can be concluded that the air 
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is not the source of contamination. Additionally, the low copy number and low variation 

observed by the ubiquitous contamination supports further that the contaminating DNA 

must have been present in one or more components of the master mix. The constant 

presence of rodent B1-elements in all samples was most likely a result of the hot-start 

monoclonal mouse antibody used to inactivate the Taq polymerase in this PCR assay. 

This could be further investigated by using a Taq polymerase inhibited with magnesium 

wax beads instead of antibodies or by replacing it with a Pfu DNA polymerase that was 

cloned from Pyrococcus furiosus and has minimal polymerase activity at temperatures 

at or below 50°C and therefore does not require hot-start protection. Identification of the 

source of human DNA contamination would be a complicated and expensive set of 

experiments to perform, since there are a vast number of suppliers of various reagents, 

and any method used to remove contaminating DNA (enzymatic digestion, UV 

treatment, etc.) will have a detrimental effect on some of the constituent components of 

the PCR reagents (e.g., primers, dNTPs). Preliminary experiments using UV radiation 

suggested the molecular grade DNase/RNase-free distilled water was not the source of 

the observed contamination (data not shown).  

 Taken together, the contamination with ALU and B-element DNA was very low 

and constant and should therefore not affect the use of highly expressed SINEs as a tool 

for normalisation of RT-qPCR data. 

6.4.2 SINEs can be suitable tool for normalisation of RT-qPCR data 

 To validate the use of expressed B-elements for normalisation of RT-qPCR data, 

mRNA transcription levels of six different genes of interest were measured in Peyer’s 

patches and spleens of mice that had been treated with different formulations of 

M. vaccae during different periods of time. The data were normalised with a) 

B-elements, b) validated multiple reference genes (geNorm algorithm), and c) the single 

standard reference gene β-actin (ACTB). Data normalised with the B-elements were 
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very similar as when they were normalised to the benchmark of multiple reference 

genes. On the other hand, normalisation with β-actin changed the results. This is 

important because β-actin is often used as a reference gene, but in this case would have 

let to the wrong conclusions. 

 In this study, the expression stability of the B-elements was only tested in two 

different mouse tissues. Yet, to confirm if they could function as general reference 

genes, which could be used without any validation, they would need to be tested in 

more tissues and in association with various treatments or stimuli. This has been done 

with the ALU-repeats in human tissues by our collaborators (Professor Vandesompele’s 

group, Ghent University), where the assay was included within the set of multiple 

reference genes, utilised in high throughput scale for hospital diagnostics. A recent 

publication validated the application of expressed ALU-repeats (EARs) for RT-qPCR 

data normalisation (Marullo et al., 2010). In line with the data presented here, the 

authors showed that normalisation with EARs leads to similar data than normalisation 

with multiple reference genes (geNorm) and that normalisation with a single non-

validated reference gene may lead to erroneous quantification of target genes (Marullo 

et al., 2010). 

6.4.3 Considerations when using SINEs as a tool for normalisation of RT-qPCR 

data 

 Nevertheless, before the B-elements can be used as a reference for quantitative 

gene expression normalisation without any validation, one has to be aware that despite 

their high abundance throughout the mouse genome, there are possibilities that their 

expression might change. B-elements can not only get expressed as part of untranslated 

regions of mRNAs, they also harbour an internal B-box containing an RNA 

polymerase III promoter, which allows them to be expressed independently 

(Dewannieux and Heidmann, 2005). There are conditions were SINE sequences may 
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not be suitable for normalisation, since their expression level can be upregulated by cell 

stress. For example, it was reported that transcripts of B1- and B2-elements in mouse 

fibroblast cells were increased upon infection with minute virus of mice (MVM) 

(Williams et al., 2004), and transcripts of human ALU sequences can be increased with 

the Tat protein of HIV (Jang et al., 1992). Therefore, the expression stability of SINEs 

has to be further evaluated if they would be applied as a tool for RT-qPCR data 

normalisation in a different experimental system. 

 However, in mouse Peyer’s patches and spleens, RT-qPCR data normalisation 

with B-elements can provide a similar accuracy as the multiple reference gene 

approach, but in a more time-efficient way. For the moment, it cannot be concluded that 

using B-elements is a better strategy for normalisation than using multiple reference 

genes, yet the data showed clearly that they can be more accurate than a randomly 

chosen (non-validated) reference gene. 

 A downside of using expressed SINEs as a tool for RT-qPCR data normalisation 

is that this technique requires careful removal of genomic DNA, which is not 

completely eliminated by regular RNA isolation methods. The data showed that RNA 

samples that were not treated with DNase contained similar copy numbers of residual 

genomic B-element DNA as expressed B-element RNA. In comparison, none of the 

other qPCR assays, for standard reference genes and genes of interest, was positive for 

RT-negative controls even if those samples were not additionally treated with DNase. 

 

6.5 Conclusions 

• RT-qPCR assays designed to target expressed B-elements amplify multiple B-

elements with slightly different sequences. 
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• Assessment of the very constant copy numbers of ALU-J and B-element DNA 

measured in NTCs suggests that the contamination of the assays was already 

present in the master mix and not introduced during qPCR set up. Since the 

contamination is very stable and low compared to the copy number of expressed 

SINEs, it does not affect the application of expressed SINEs as a tool for 

RT-qPCR data normalisation. 

• Expressed B-elements can be used as a tool for RT-qPCR data normalisation. 

They deliver similar results as the precise multiple reference approach and can 

be more accurate than using only a single non-validated reference gene like 

β-actin. 
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7 GENERAL DISCUSSION AND FUTURE DIRECTIONS 

7.1 Summary 

 The environmental mycobacterium M. vaccae has been studied in mouse models 

to test the hypothesis that some non-pathogenic microorganisms can reduce allergy 

associated Th2 responses and inflammatory diseases by augmenting regulatory T cells. 

However, data for human models and possible mechanisms are very limited. In this 

thesis I tested the effect of innate immune interactions between human DCs and 

M. vaccae on DC-dependent T cell responses. 

 I established an in vitro system of allogeneic and antigen-specific mixed 

leukocyte reactions using primary human cells. Using this system, I could clearly 

demonstrate that M. vaccae can downregulate Th2 cells in human immune responses in 

a dose-dependent manner. Until now, these effects had only been shown in OVA-

induced asthma mouse models. Albeit this effect was small, it was very consistent in a 

large number of replicate experiments and confirmed by applying the methods to naive 

T cell polarisation as well as to antigen-specific T cell responses. Several clinical trials 

in man have so far shown contradictory effects of M. vaccae (Arkwright and David, 

2001, 2003; Berth-Jones et al., 2006; Brothers et al., 2009; Camporota et al., 2003; 

Shirtcliffe et al., 2003).Yet, the data presented in this thesis demonstrate that M. vaccae 

clearly has the potential to reduce Th2 responses in humans. 

 Animal studies had indicated that an augmentation of Treg cells in response to 

administration of M. vaccae was responsible for the reduced Th2 response (Zuany-

Amorim et al., 2002a; Zuany-Amorim et al., 2002b). Consistently I also found enlarged 

CD25+/FoxP3+ T cell populations in M. vaccae-primed human DC-T cell cocultures. 

However, production of the anti-inflammatory cytokine IL-10 is a typical feature of 
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Treg cells, but was not detected by intracellular cytokine staining, or by ELISA assays 

analysing the supernatants from cocultures. Moreover, LPS also augmented 

CD25+/FoxP3+ T cells, and here although IL-10 was detected in coculture supernatants, 

it had no anti-Th2 effect. 

 The only hint that DCs might play a role in the effects of M. vaccae on T cell 

responses came from a study showing that M. vaccae, when injected in an OVA-

induced allergy model of BALB/c mice, caused increased expression of IL-10, TGF-β 

and IFN-α mRNA in a population of CD11c+ cells in the lungs, which probably 

represent DCs (Adams et al., 2004). The data in this thesis show unequivocally that 

M. vaccae’s anti-Th2 effects can be mediated via primed DCs. 

 Further, this study established that M. vaccae, similar to other mycobacteria and 

other organisms associated with the hygiene hypothesis, can induce cellular activation 

via TLR2. However, specific TLR2 stimulation of DCs had no anti-Th2 effect in mixed 

leukocyte reactions, but rather augmented the population of IL-4+ T cells and did not 

induce CD25+/FoxP3+ T cell populations. Importantly, whole genome microarray 

analysis, performed to understand differences in DC responses to M. vaccae and 

specific TLR2 stimulation with Pam3CSK4, found that the major transcriptional 

response was very similar. As the two stimuli had clearly opposite effects on DC-

dependent T cell responses, it can be expected that TLR2-dependent effects were not 

sufficient to mediate the effects of M. vaccae. Unfortunately, attempts to block TLR2 

signalling that would have allowed studying TLR2-independent effects of M. vaccae 

failed. Therefore I focused on other differences in transcriptional responses, which 

revealed that many of the genes exclusively upregulated by M. vaccae are associated 

with CREB1. Further study of the upstream signalling pathways confirmed M. vaccae-

induced selective early CREB1 activation and revealed marked differences between 

M. vaccae and the other stimuli on classical NF-κB and MAPK signalling. To 
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understand the role of CREB1 in M. vaccae-mediated effects on T cell polarisation, I 

aimed to inhibit CREB1 pharmacologically, which led to cytotoxic effects on DCs 

compromising the experimental paradigm. This thesis has established a basis for future 

work on M. vaccae to study the mechanism of its effects. Beyond that, this study 

pointed out the complexity and diversity of effects of differential innate immune 

stimulation of DCs as summarised in Table 7-1. While LPS and M. vaccae induced 

comparable levels of DC maturation, Pam3CSK4 and M. vaccae provoked a similar 

transcriptional response. Activation of signalling pathways were comparable in LPS- 

and Pam3CSK4-primed DCs, and moreover all three stimuli had diverse effects on DC-

dependent T cell polarisation.  

Table 7-1: Diverse effects of innate immune stimulation of dendritic cells 

 LPS Pam3CSK4 M. vaccae 
Maturation +++ + +++ 
Transcriptional response +++ + + 
Signalling pathways +++ +++ + 
T cell polarisation No effect Th2 up Th2 down 

 

 The last chapter of this report explored the possible application of expressed 

SINEs as a tool for normalisation of target gene expression data generated by 

RT-qPCR. I demonstrated with mouse samples that using SINEs can be as accurate as 

the very resource- and labour-intensive approach of measuring multiple validated 

reference genes. Importantly I showed that it can be more precise than using a single 

non-validated reference gene like β-actin, which can lead to false conclusions. Our 

collaborators in Belgium and others (Marullo et al., 2010) have shown that this method 

is also valid when studying human samples, therefore expressed SINEs may simplify 

accurate RT-qPCR measurements in the future. 
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7.2 Summary of future work  

 Future work should focus on the role of CREB1 activity in M. vaccae-stimulated 

DCs and their effects on T cell responses. Since pharmacological inhibition proved 

difficult, downregulation of CREB1 using siRNA might be an attractive approach. As 

discussed before, this requires careful experimental design as siRNA-induced activation 

of DCs would be undesirable. If CREB1 activation in DCs is found important for the 

effects of M. vaccae on T cells, it would be interesting to investigate up- and 

downstream events of CREB1. This includes analysis of the role of proteins expressed 

under the control of CREB1. They could be silenced by siRNA too or maybe over-

expressed using lentiviral transfection, provided that this could be done without 

affecting DC responses. Moreover, detailed analysis of the signalling pathway leading 

to CREB1 phosphorylation would be important. The data in chapter 5 suggested a role 

for PKA, however, this requires confirmation since adenylate cyclase was found to be 

dispensable. Study of upstream signalling might give insight into alternative cellular 

receptors involved in recognition of M. vaccae. In chapter 3 it was demonstrated that 

M. vaccae can induce cellular activation via TLR2, but other receptors might be more 

important for the capacity of M. vaccae-stimulated DCs to reduce Th2 responses. 

 Protein release in response to stimulation with the specific TLR2 ligand and 

M. vaccae was very similar and closely mirrored the gene expression data. Yet, IL-1β 

was only secreted by M. vaccae-stimulated DCs. As the receptor antagonist was also 

very highly expressed and the literature did not support a role of inflammasome activity 

for M. vaccae’s ability to downregulate Th2 responses, I decided not to pursue this line 

of data. However, in view of a very recent publication showing on one hand that the 

inflammasome induces IFN-γ, IL-17A, IL-10, and IL-5 but on the other hand inhibits 

IL-13 in S. mansoni-infected mice (Ritter et al., 2010), it would be interesting to test this 

experimentally by employing caspase-1 inhibitors, adding recombinant IL-1ra to the 
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cultures or by adding increasing amounts of IL-1β. In addition, Maizels and colleagues 

showed lately that excretory-secretory antigens released by helminths mimic TGF-β and 

induce TGF-βR signalling directly on T cells, leading to induced Treg populations that 

can suppress Th2 responses in OVA-induced asthma models (Grainger et al., 2010). 

With regard to this study it would be interesting to analyse TGF-β secretion by 

M. vaccae-stimulated DCs, especially since M. tuberculosis was shown to be a potent 

inducer of TGF-β in human blood monocytes (Aung et al., 2005). 

 

7.3 Publications 
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