Evidence for the Rare Decay $B^{+} \rightarrow D_{s}^{+} \boldsymbol{\pi}^{0}$

B. Aubert, ${ }^{1}$ M. Bona, ${ }^{1}$ D. Boutigny, ${ }^{1}$ Y. Karyotakis, ${ }^{1}$ J. P. Lees,,${ }^{1}$ V. Poireau, ${ }^{1}$ X. Prudent, ${ }^{1}$ V. Tisserand, ${ }^{1}$ A. Zghiche, ${ }^{1}$ E. Grauges, ${ }^{2}$ A. Palano, ${ }^{3}$ J. C. Chen, ${ }^{4}$ N. D. Qi, ${ }^{4}$ G. Rong, ${ }^{4}$ P. Wang, ${ }^{4}$ Y. S. Zhu, ${ }^{4}$ G. Eigen, ${ }^{5}$ I. Ofte, ${ }^{5}$ B. Stugu, ${ }^{5}$ G. S. Abrams, ${ }^{6}$ M. Battaglia, ${ }^{6}$ D. N. Brown, ${ }^{6}$ J. Button-Shafer, ${ }^{6}$ R. N. Cahn, ${ }^{6}$ Y. Groysman, ${ }^{6}$ R. G. Jacobsen, ${ }^{6}$ J. A. Kadyk, ${ }^{6}$ L. T. Kerth, ${ }^{6}$ Yu. G. Kolomensky, ${ }^{6}$ G. Kukartsev, ${ }^{6}$ D. Lopes Pegna, ${ }^{6}$ G. Lynch, ${ }^{6}$ L. M. Mir, ${ }^{6}$ T. J. Orimoto, ${ }^{6}$ M. Pripstein, ${ }^{6}$ N. A. Roe,,${ }^{6}$ M. T. Ronan,,${ }^{6 *}$ K. Tackmann, ${ }^{6}$ W. A. Wenzel, ${ }^{6}$ P. del Amo Sanchez, ${ }^{7}$ M. Barrett, ${ }^{7}$ T. J. Harrison, ${ }^{7}$ A. J. Hart, ${ }^{7}$ C. M. Hawkes, ${ }^{7}$ A. T. Watson, ${ }^{7}$ T. Held, ${ }^{8}$ H. Koch, ${ }^{8}$ B. Lewandowski, ${ }^{8}$ M. Pelizaeus,,${ }^{8}$ K. Peters, ${ }^{8}$ T. Schroeder, ${ }^{8}$ M. Steinke, ${ }^{8}$ J. T. Boyd, ${ }^{9}$ J. P. Burke, ${ }^{9}$ W. N. Cottingham, ${ }^{9}$ D. Walker, ${ }^{9}$ D. J. Asgeirsson,,${ }^{10}$ T. Cuhadar-Donszelmann, ${ }^{10}$ B. G. Fulsom, ${ }^{10}$ C. Hearty, ${ }^{10}$ N. S. Knecht, ${ }^{10}$ T. S. Mattison, ${ }^{10}$ J. A. McKenna, ${ }^{10}$ A. Khan, ${ }^{11}$ P. Kyberd, ${ }^{11}$ M. Saleem, ${ }^{11}$ D. J. Sherwood, ${ }^{11}$ L. Teodorescu, ${ }^{11}$ V. E. Blinov, ${ }^{12}$ A. D. Bukin, ${ }^{12}$ V. P. Druzhinin, ${ }^{12}$ V. B. Golubev, ${ }^{12}$ A. P. Onuchin, ${ }^{12}$ S. I. Serednyakov, ${ }^{12}$ Yu. I. Skovpen, ${ }^{12}$ E. P. Solodov, ${ }^{12}$ K. Yu Todyshev, ${ }^{12}$ M. Bondioli, ${ }^{13}$ M. Bruinsma, ${ }^{13}$ M. Chao, ${ }^{13}$ S. Curry, ${ }^{13}$ I. Eschrich, ${ }^{13}$ D. Kirkby, ${ }^{13}$ A. J. Lankford, ${ }^{13}$ P. Lund, ${ }^{13}$ M. Mandelkern, ${ }^{13}$ E. C. Martin, ${ }^{13}$ W. Roethel, ${ }^{13}$ D. P. Stoker, ${ }^{13}$ S. Abachi, ${ }^{14}$ C. Buchanan, ${ }^{14}$ S. D. Foulkes, ${ }^{15}$ J. W. Gary, ${ }^{15}$ O. Long, ${ }^{15}$ B. C. Shen, ${ }^{15}$ L. Zhang, ${ }^{15}$ E. J. Hill, ${ }^{16}$ H. P. Paar, ${ }^{16}$ S. Rahatlou, ${ }^{16}$ V. Sharma, ${ }^{16}$ J. W. Berryhill, ${ }^{17}$ C. Campagnari, ${ }^{17}$ A. Cunha, ${ }^{17}$ B. Dahmes, ${ }^{17}$ T. M. Hong, ${ }^{17}$ D. Kovalskyi, ${ }^{17}$ J. D. Richman, ${ }^{17}$ T. W. Beck, ${ }^{18}$ A. M. Eisner, ${ }^{18}$ C. J. Flacco, ${ }^{18}$ C. A. Heusch, ${ }^{18}$ J. Kroseberg, ${ }^{18}$ W. S. Lockman, ${ }^{18}$ G. Nesom, ${ }^{18}$ T. Schalk, ${ }^{18}$ B. A. Schumm, ${ }^{18}$ A. Seiden, ${ }^{18}$ D. C. Williams, ${ }^{18}$ M. G. Wilson, ${ }^{18}$ L. O. Winstrom, ${ }^{18}$ J. Albert, ${ }^{19}$ E. Chen, ${ }^{19}$ C. H. Cheng, ${ }^{19}$ A. Dvoretskii, ${ }^{19}$ F. Fang, ${ }^{19}$ D. G. Hitlin, ${ }^{19}$ I. Narsky, ${ }^{19}$ T. Piatenko, ${ }^{19}$ F. C. Porter, ${ }^{19}$ G. Mancinelli, ${ }^{20}$ B. T. Meadows, ${ }^{20}$ K. Mishra, ${ }^{20}$ M. D. Sokoloff,,${ }^{20}$ F. Blanc, ${ }^{21}$ P. C. Bloom, ${ }^{21}$ S. Chen, ${ }^{21}$ W. T. Ford, ${ }^{21}$ J. F. Hirschauer, ${ }^{21}$ A. Kreisel, ${ }^{21}$ M. Nagel, ${ }^{21}$ U. Nauenberg, ${ }^{21}$ A. Olivas, ${ }^{21}$ J. G. Smith, ${ }^{21}$ K. A. Ulmer, ${ }^{21}$ S. R. Wagner, ${ }^{21}$ J. Zhang, ${ }^{21}$ A. Chen, ${ }^{22}$ E. A. Eckhart, ${ }^{22}$ A. Soffer, ${ }^{22}$ W. H. Toki, ${ }^{22}$ R. J. Wilson, ${ }^{22}$ F. Winklmeier, ${ }^{22}$ Q. Zeng, ${ }^{22}$ D. D. Altenburg, ${ }^{23}$ E. Feltresi, ${ }^{23}$ A. Hauke, ${ }^{23}$ H. Jasper, ${ }^{23}$ J. Merkel, ${ }^{23}$ A. Petzold, ${ }^{23}$ B. Spaan, ${ }^{23}$ T. Brandt, ${ }^{24}$ S. Kaiser,,24 V. Klose, ${ }^{24}$ H. M. Lacker, ${ }^{24}$ W. F. Mader, ${ }^{24}$ R. Nogowski, ${ }^{24}$ J. Schubert, ${ }^{24}$ K. R. Schubert, ${ }^{24}$ R. Schwierz, ${ }^{24}$ J. E. Sundermann, ${ }^{24}$ A. Volk, ${ }^{24}$ D. Bernard, ${ }^{25}$ G. R. Bonneaud, ${ }^{25}$ E. Latour, ${ }^{25}$ Ch. Thiebaux, ${ }^{25}$ M. Verderi, ${ }^{25}$ P. J. Clark, ${ }^{26}$ W. Gradl, ${ }^{26}$ F. Muheim, ${ }^{26}$ S. Playfer, ${ }^{26}$ A. I. Robertson, ${ }^{26}$ Y. Xie, ${ }^{26}$ M. Andreotti, ${ }^{27}$ D. Bettoni, ${ }^{27}$ C. Bozzi, ${ }^{27}$ R. Calabrese, ${ }^{27}$ G. Cibinetto, ${ }^{27}$ E. Luppi, ${ }^{27}$ M. Negrini, ${ }^{27}$ A. Petrella, ${ }^{27}$
L. Piemontese, ${ }^{27}$ E. Prencipe, ${ }^{27}$ F. Anulli, ${ }^{28}$ R. Baldini-Ferroli, ${ }^{28}$ A. Calcaterra, ${ }^{28}$ R. de Sangro, ${ }^{28}$ G. Finocchiaro, ${ }^{28}$ S. Pacetti, ${ }^{28}$ P. Patteri, ${ }^{28}$ I. M. Peruzzi, ${ }^{28, \dagger}$ M. Piccolo, ${ }^{28}$ M. Rama, ${ }^{28}$ A. Zallo, ${ }^{28}$ A. Buzzo, ${ }^{29}$ R. Contri, ${ }^{29}$ M. Lo Vetere, ${ }^{29}$
M. M. Macri, ${ }^{29}$ M. R. Monge, ${ }^{29}$ S. Passaggio, ${ }^{29}$ C. Patrignani, ${ }^{29}$ E. Robutti, ${ }^{29}$ A. Santroni, ${ }^{29}$ S. Tosi, ${ }^{29}$ K. S. Chaisanguanthum, ${ }^{30}$ M. Morii, ${ }^{30}$ J. Wu, ${ }^{30}$ R. S. Dubitzky, ${ }^{31}$ J. Marks, ${ }^{31}$ S. Schenk, ${ }^{31}$ U. Uwer, ${ }^{31}$ D. J. Bard, ${ }^{32}$ P. D. Dauncey, ${ }^{32}$ R. L. Flack, ${ }^{32}$ J. A. Nash, ${ }^{32}$ M. B. Nikolich, ${ }^{32}$ W. Panduro Vazquez, ${ }^{32}$ P. K. Behera, ${ }^{33}$ X. Chai, ${ }^{33}$ M. J. Charles, ${ }^{33}$ U. Mallik, ${ }^{33}$ N. T. Meyer, ${ }^{33}$ V. Ziegler, ${ }^{33}$ J. Cochran, ${ }^{34}$ H. B. Crawley, ${ }^{34}$ L. Dong, ${ }^{34}$ V. Eyges, ${ }^{34}$ W. T. Meyer, ${ }^{34}$ S. Prell, ${ }^{34}$ E. I. Rosenberg, ${ }^{34}$ A. E. Rubin, ${ }^{34}$ A. V. Gritsan, ${ }^{35}$ A. G. Denig, ${ }^{36}$ M. Fritsch, ${ }^{36}$ G. Schott, ${ }^{36}$ N. Arnaud, ${ }^{37}$ M. Davier, ${ }^{37}$ G. Grosdidier, ${ }^{37}$ A. Höcker, ${ }^{37}$ V. Lepeltier, ${ }^{37}$ F. Le Diberder, ${ }^{37}$ A. M. Lutz, ${ }^{37}$ S. Pruvot, ${ }^{37}$ S. Rodier,,37 P. Roudeau, ${ }^{37}$ M. H. Schune, ${ }^{37}$ J. Serrano, ${ }^{37}$ A. Stocchi, ${ }^{37}$ W. F. Wang, ${ }^{37}$ G. Wormser, ${ }^{37}$ D. J. Lange, ${ }^{38}$ D. M. Wright, ${ }^{38}$ C. A. Chavez,,${ }^{39}$ I. J. Forster, ${ }^{39}$ J. R. Fry, ${ }^{39}$ E. Gabathuler, ${ }^{39}$ R. Gamet, ${ }^{39}$ K. A. George, ${ }^{39}$ D. E. Hutchcroft, ${ }^{39}$ D. J. Payne,,39 K. C. Schofield, ${ }^{39}$ C. Touramanis, ${ }^{39}$ A. J. Bevan, ${ }^{40}$ F. Di Lodovico, ${ }^{40}$ W. Menges, ${ }^{40}$ R. Sacco, ${ }^{40}$ G. Cowan, ${ }^{41}$ H. U. Flaecher, ${ }^{41}$ D. A. Hopkins, ${ }^{41}$ P. S. Jackson, ${ }^{41}$ T. R. McMahon, ${ }^{41}$ F. Salvatore, ${ }^{41}$ A. C. Wren, ${ }^{41}$ D. N. Brown, ${ }^{42}$ C. L. Davis, ${ }^{42}$ J. Allison, ${ }^{43}$ N. R. Barlow, ${ }^{43}$ R. J. Barlow, ${ }^{43}$ Y. M. Chia, ${ }^{43}$ C. L. Edgar, ${ }^{43}$ G. D. Lafferty, ${ }^{43}$ T. J. West, ${ }^{43}$ J. C. Williams, ${ }^{43}$ J. I. Yi, ${ }^{43}$ C. Chen, ${ }^{44}$ W. D. Hulsbergen, ${ }^{44}$ A. Jawahery, ${ }^{44}$ C. K. Lae, ${ }^{44}$ D. A. Roberts, ${ }^{44}$ G. Simi, ${ }^{44}$ G. Blaylock, ${ }^{45}$ C. Dallapiccola, ${ }^{45}$ S.S. Hertzbach, ${ }^{45}$ X. Li, ${ }^{45}$ T. B. Moore, ${ }^{45}$ E. Salvati, ${ }^{45}$ S. Saremi, ${ }^{45}$ R. Cowan, ${ }^{46}$ G. Sciolla, ${ }^{46}$ S. J. Sekula, ${ }^{46}$ M. Spitznagel, ${ }^{46}$ F. Taylor, ${ }^{46}$ R. K. Yamamoto, ${ }^{46}$ H. Kim, ${ }^{47}$ S. E. Mclachlin, ${ }^{47}$ P. M. Patel, ${ }^{47}$ S. H. Robertson, ${ }^{47}$ A. Lazzaro, ${ }^{48}$ V. Lombardo, ${ }^{48}$ F. Palombo, ${ }^{48}$ J. M. Bauer, ${ }^{49}$ L. Cremaldi, ${ }^{49}$ V. Eschenburg, ${ }^{49}$ R. Godang, ${ }^{49}$ R. Kroeger, ${ }^{49}$ D. A. Sanders, ${ }^{49}$ D. J. Summers, ${ }^{49}$ H. W. Zhao, ${ }^{49}$ S. Brunet, ${ }^{50}$ D. Côté, ${ }^{50}$ M. Simard, ${ }^{50}$
P. Taras, ${ }^{50}$ F. B. Viaud, ${ }^{50}$ H. Nicholson,,${ }^{51}$ N. Cavallo, ${ }^{52, \ddagger}$ G. De Nardo, ${ }^{52}$ F. Fabozzi, ${ }^{52, \ddagger}$ C. Gatto, ${ }^{52}$ L. Lista, ${ }^{52}$ D. Monorchio, ${ }^{52}$ P. Paolucci, ${ }^{52}$ D. Piccolo, ${ }^{52}$ C. Sciacca, ${ }^{52}$ M. A. Baak, ${ }^{53}$ G. Raven,,${ }^{53}$ H. L. Snoek, ${ }^{53}$ C. P. Jessop, ${ }^{54}$ J. M. LoSecco, ${ }^{54}$ G. Benelli, ${ }^{55}$ L. A. Corwin, ${ }^{55}$ K. K. Gan, ${ }^{55}$ K. Honscheid, ${ }^{55}$ D. Hufnagel, ${ }^{55}$ P. D. Jackson, ${ }^{55}$ H. Kagan, ${ }^{55}$ R. Kass, ${ }^{55}$ J. P. Morris, ${ }^{55}$ A. M. Rahimi, ${ }^{55}$ J. J. Regensburger, ${ }^{55}$ R. Ter-Antonyan, ${ }^{55}$ Q. K. Wong, ${ }^{55}$ N. L. Blount, ${ }^{56}$ J. Brau, ${ }^{56}$ R. Frey, ${ }^{56}$ O. Igonkina, ${ }^{56}$ J. A. Kolb, ${ }^{56}$ M. Lu, ${ }^{56}$ C. T. Potter, ${ }^{56}$ R. Rahmat, ${ }^{56}$ N. B. Sinev, ${ }^{56}$ D. Strom, ${ }^{56}$ J. Strube, ${ }^{56}$ E. Torrence, ${ }^{56}$ A. Gaz, ${ }^{57}$ M. Margoni, ${ }^{57}$ M. Morandin, ${ }^{57}$ A. Pompili, ${ }^{57}$ M. Posocco, ${ }^{57}$ M. Rotondo, ${ }^{57}$ F. Simonetto, ${ }^{57}$
R. Stroili, ${ }^{57}$ C. Voci, ${ }^{57}$ E. Ben-Haim, ${ }^{58}$ H. Briand, ${ }^{58}$ J. Chauveau, ${ }^{58}$ P. David, ${ }^{58}$ L. Del Buono, ${ }^{58}$ Ch. de la Vaissière, ${ }^{58}$ O. Hamon, ${ }^{58}$ B. L. Hartfiel, ${ }^{58}$ Ph. Leruste, ${ }^{58}$ J. Malclès, ${ }^{58}$ J. Ocariz, ${ }^{58}$ L. Gladney, ${ }^{59}$ M. Biasini, ${ }^{60}$ R. Covarelli, ${ }^{60}$ C. Angelini, ${ }^{61}$ G. Batignani, ${ }^{61}$ S. Bettarini, ${ }^{61}$ G. Calderini, ${ }^{61}$ M. Carpinelli, ${ }^{61}$ R. Cenci, ${ }^{61}$ F. Forti, ${ }^{61}$ M. A. Giorgi, ${ }^{61}$ A. Lusiani, ${ }^{61}$ G. Marchiori, ${ }^{61}$ M. A. Mazur, ${ }^{61}$ M. Morganti, ${ }^{61}$ N. Neri, ${ }^{61}$ E. Paoloni, ${ }^{61}$ G. Rizzo, ${ }^{61}$ J. J. Walsh, ${ }^{61}$ M. Haire, ${ }^{62}$ D. Judd, ${ }^{62}$ D. E. Wagoner, ${ }^{62}$ J. Biesiada, ${ }^{63}$ P. Elmer, ${ }^{63}$ Y.P. Lau, ${ }^{63}$ C. Lu, ${ }^{63}$ J. Olsen,,${ }^{63}$ A. J.S. Smith,,${ }^{63}$ A. V. Telnov, ${ }^{63}$ F. Bellini, ${ }^{64}$ G. Cavoto, ${ }^{64}$ A. D'Orazio, ${ }^{64}$ D. del Re, ${ }^{64}$ E. Di Marco, ${ }^{64}$ R. Faccini, ${ }^{64}$ F. Ferrarotto, ${ }^{64}$ F. Ferroni, ${ }^{64}$ M. Gaspero, ${ }^{64}$ L. Li Gioi, ${ }^{64}$ M. A. Mazzoni, ${ }^{64}$ S. Morganti, ${ }^{64}$ G. Piredda, ${ }^{64}$ F. Polci, ${ }^{64}$ F. Safai Tehrani, ${ }^{64}$ C. Voena, ${ }^{64}$ M. Ebert, ${ }^{65}$ H. Schröder, ${ }^{65}$ R. Waldi, ${ }^{65}$ T. Adye, ${ }^{66}$ B. Franek, ${ }^{66}$ E. O. Olaiya, ${ }^{66}$ S. Ricciardi, ${ }^{66}$ F. F. Wilson, ${ }^{66}$ R. Aleksan, ${ }^{67}$ S. Emery, ${ }^{67}$ A. Gaidot ${ }^{67}$ S. F. Ganzhur, ${ }^{67}$ G. Hamel de Monchenault,,${ }^{67}$ W. Kozanecki, ${ }^{67}$ M. Legendre, ${ }^{67}$ G. Vasseur, ${ }^{67}$ Ch. Yèche, ${ }^{67}$ M. Zito, ${ }^{67}$ X. R. Chen, ${ }^{68}$ H. Liu, ${ }^{68}$ W. Park, ${ }^{68}$ M. V. Purohit, ${ }^{68}$ J. R. Wilson, ${ }^{68}$ M. T. Allen, ${ }^{69}$ D. Aston, ${ }^{69}$ R. Bartoldus, ${ }^{69}$ P. Bechtle, ${ }^{69}$ N. Berger, ${ }^{69}$ R. Claus, ${ }^{69}$ J.P. Coleman, ${ }^{69}$ M. R. Convery, ${ }^{69}$ J. C. Dingfelder, ${ }^{69}$ J. Dorfan, ${ }^{69}$ G. P. Dubois-Felsmann, ${ }^{69}$ D. Dujmic, ${ }^{69}$ W. Dunwoodie, ${ }^{69}$ R.C. Field, ${ }^{69}$ T. Glanzman, ${ }^{69}$ S. J. Gowdy, ${ }^{69}$ M. T. Graham, ${ }^{69}$ P. Grenier, ${ }^{69}$ V. Halyo, ${ }^{69}$ C. Hast, ${ }^{69}$ T. Hryn'ova, ${ }^{69}$ W. R. Innes, ${ }^{69}$ M. H. Kelsey, ${ }^{69}$ P. Kim, ${ }^{69}$ D. W. G. S. Leith, ${ }^{69}$ S. Li, ${ }^{69}$ S. Luitz, ${ }^{69}$ V. Luth,,${ }^{69}$ H.L. Lynch, ${ }^{69}$ D. B. MacFarlane, ${ }^{69}$ H. Marsiske, ${ }^{69}$ R. Messner, ${ }^{69}$ D. R. Muller, ${ }^{69}$ C. P. O'Grady, ${ }^{69}$ V.E. Ozcan, ${ }^{69}$ A. Perazzo, ${ }^{69}$ M. Perl, ${ }^{69}$ T. Pulliam, ${ }^{69}$ B. N. Ratcliff, ${ }^{69}$ A. Roodman, ${ }^{69}$ A. A. Salnikov, ${ }^{69}$ R. H. Schindler, ${ }^{69}$ J. Schwiening, ${ }^{69}$ A. Snyder, ${ }^{69}$ J. Stelzer, ${ }^{69}$ D. Su, ${ }^{69}$ M. K. Sullivan, ${ }^{69}$ K. Suzuki, ${ }^{69}$ S. K. Swain, ${ }^{69}$ J. M. Thompson, ${ }^{69}$ J. Va'vra, ${ }^{69}$ N. van Bakel, ${ }^{69}$ A.P. Wagner, ${ }^{69}$ M. Weaver, ${ }^{69}$ W. J. Wisniewski, ${ }^{69}$ M. Wittgen, ${ }^{69}$ D. H. Wright, ${ }^{69}$ H. W. Wulsin, ${ }^{69}$ A. K. Yarritu, ${ }^{69}$ K. Yi, ${ }^{69}$ C.C. Young, ${ }^{69}$ P.R. Burchat, ${ }^{70}$ A. J. Edwards, ${ }^{70}$ S. A. Majewski, ${ }^{70}$ B. A. Petersen, ${ }^{70}$ L. Wilden, ${ }^{70}$ S. Ahmed, ${ }^{71}$ M.S. Alam, ${ }^{71}$ R. Bula, ${ }^{71}$ J. A. Ernst, ${ }^{71}$ V. Jain, ${ }^{71}$ B. Pan, ${ }^{71}$ M. A. Saeed, ${ }^{71}$ F. R. Wappler, ${ }^{71}$ S. B. Zain, ${ }^{71}$ W. Bugg, ${ }^{72}$ M. Krishnamurthy, ${ }^{72}$ S. M. Spanier, ${ }^{72}$ R. Eckmann, ${ }^{73}$ J. L. Ritchie, ${ }^{73}$ C. J. Schilling, ${ }^{73}$ R.F. Schwitters, ${ }^{73}$ J. M. Izen, ${ }^{74}$ X. C. Lou, ${ }^{74}$ S. Ye, ${ }^{74}$ F. Bianchi, ${ }^{75}$ F. Gallo, ${ }^{75}$ D. Gamba, ${ }^{75}$ M. Pelliccioni, ${ }^{75}$ M. Bomben, ${ }^{76}$ L. Bosisio, ${ }^{76}$ C. Cartaro, ${ }^{76}$ F. Cossutti ${ }^{76}$ G. Della Ricca, ${ }^{76}$ L. Lanceri,,${ }^{76}$ L. Vitale,,${ }^{76}$ V. Azzolini, ${ }^{77}$ N. Lopez-March, ${ }^{77}$ F. Martinez-Vidal, ${ }^{77}$ A. Oyanguren,,${ }^{77}$ Sw. Banerjee, ${ }^{78}$ B. Bhuyan, ${ }^{78}$ K. Hamano, ${ }^{78}$ R. Kowalewski, ${ }^{78}$ I. M. Nugent, ${ }^{78}$ J. M. Roney, ${ }^{78}$ R. J. Sobie, ${ }^{78}$ J. J. Back, ${ }^{79}$ P.F. Harrison, ${ }^{79}$ T. E. Latham, ${ }^{79}$ G. B. Mohanty, ${ }^{79}$ M. Pappagallo, ${ }^{79,8}$ H. R. Band, ${ }^{80}$ X. Chen, ${ }^{80}$ S. Dasu, ${ }^{80}$ K. T. Flood ${ }^{80}$ J. J. Hollar, ${ }^{80}$ P. E. Kutter, ${ }^{80}$ B. Mellado, ${ }^{80}$ Y. Pan,${ }^{80}$ M. Pierini, ${ }^{80}$ R. Prepost, ${ }^{80}$ S.L. Wu, ${ }^{80}$ Z. Yu, ${ }^{80}$ and H. Neal ${ }^{81}$

(BABAR Collaboration)

${ }^{1}$ Laboratoire de Physique des Particules, IN2P3/CNRS et Université de Savoie, F-74941 Annecy-Le-Vieux, France
${ }^{2}$ Facultat de Fisica, Departament ECM, Universitat de Barcelona, E-08028 Barcelona, Spain
${ }^{3}$ Dipartimento di Fisica and INFN, Università di Bari, I-70126 Bari, Italy
${ }^{4}$ Institute of High Energy Physics, Beijing 100039, China
${ }^{5}$ Institute of Physics, University of Bergen, N-5007 Bergen, Norway
${ }^{6}$ Lawrence Berkeley National Laboratory and University of California, Berkeley, California 94720, USA
${ }^{7}$ University of Birmingham, Birmingham, B15 2TT, United Kingdom
${ }^{8}$ Institut für Experimentalphysik 1, Ruhr Universität Bochum, D-44780 Bochum, Germany
${ }^{9}$ University of Bristol, Bristol BS8 1TL, United Kingdom
${ }^{10}$ University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z1
${ }^{11}$ Brunel University, Uxbridge, Middlesex UB8 3PH, United Kingdom
${ }^{12}$ Budker Institute of Nuclear Physics, Novosibirsk 630090, Russia
${ }^{13}$ University of California at Irvine, Irvine, California 92697, USA
${ }^{14}$ University of California at Los Angeles, Los Angeles, California 90024, USA
${ }^{15}$ University of California at Riverside, Riverside, California 92521, USA
${ }^{16}$ University of California at San Diego, La Jolla, California 92093, USA
${ }^{17}$ University of California at Santa Barbara, Santa Barbara, California 93106, USA
${ }^{18}$ Institute for Particle Physics, University of California at Santa Cruz, Santa Cruz, California 95064, USA
${ }^{19}$ California Institute of Technology, Pasadena, California 91125, USA
${ }^{20}$ University of Cincinnati, Cincinnati, Ohio 45221, USA
${ }^{21}$ University of Colorado, Boulder, Colorado 80309, USA
${ }^{22}$ Colorado State University, Fort Collins, Colorado 80523, USA
${ }^{23}$ Institut für Physik, Universität Dortmund, D-44221 Dortmund, Germany
${ }^{24}$ Institut für Kern- und Teilchenphysik, Technische Universität Dresden, D-01062 Dresden, Germany
${ }^{25}$ Laboratoire Leprince-Ringuet, CNRS/IN2P3, Ecole Polytechnique, F-91128 Palaiseau, France
${ }^{26}$ University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom

${ }^{27}$ Dipartimento di Fisica and INFN, Università di Ferrara, I-44100 Ferrara, Italy
${ }^{28}$ Laboratori Nazionali di Frascati dell'INFN, I-00044 Frascati, Italy
${ }^{29}$ Dipartimento di Fisica and INFN, Università di Genova, I-16146 Genova, Italy
${ }^{30}$ Harvard University, Cambridge, Massachusetts 02138, USA
${ }^{31}$ Physikalisches Institut, Universität Heidelberg, Philosophenweg 12, D-69120 Heidelberg, Germany
${ }^{32}$ Imperial College London, London, SW7 2AZ, United Kingdom
${ }^{33}$ University of Iowa, Iowa City, Iowa 52242, USA
${ }^{34}$ Iowa State University, Ames, Iowa 50011-3160, USA
${ }^{35}$ Johns Hopkins University, Baltimore, Maryland 21218, USA
${ }^{36}$ Institut für Experimentelle Kernphysik, Universität Karlsruhe, D-76021 Karlsruhe, Germany
${ }^{37}$ Laboratoire de l'Accélérateur Linéaire, IN2P3/CNRS et Université Paris-Sud 11, Centre Scientifique d'Orsay, B. P. 34, F-91898 ORSAY Cedex, France
${ }^{38}$ Lawrence Livermore National Laboratory, Livermore, California 94550, USA
${ }^{39}$ University of Liverpool, Liverpool L69 7ZE, United Kingdom
${ }^{40}$ Queen Mary, University of London, E1 4NS, United Kingdom
${ }^{41}$ University of London, Royal Holloway, and Bedford New College, Egham, Surrey TW20 0EX, United Kingdom
${ }^{42}$ University of Louisville, Louisville, Kentucky 40292, USA
${ }^{43}$ University of Manchester, Manchester M13 9PL, United Kingdom
${ }^{44}$ University of Maryland, College Park, Maryland 20742, USA
${ }^{45}$ University of Massachusetts, Amherst, Massachusetts 01003, USA
${ }^{46}$ Laboratory for Nuclear Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
${ }^{47}$ McGill University, Montréal, Québec, Canada H3A $2 T 8$
${ }^{48}$ Dipartimento di Fisica and INFN, Università di Milano, I-20133 Milano, Italy
${ }^{49}$ University of Mississippi, University, Mississippi 38677, USA
${ }^{50}$ Physique des Particules, Université de Montréal, Montréal, Québec, Canada H3C $3 J 7$
${ }^{51}$ Mount Holyoke College, South Hadley, Massachusetts 01075, USA
${ }^{52}$ Dipartimento di Scienze Fisiche and INFN, Università di Napoli Federico II, I-80126, Napoli, Italy
${ }^{53}$ NIKHEF, National Institute for Nuclear Physics and High Energy Physics, NL-1009 DB Amsterdam, The Netherlands
${ }^{54}$ University of Notre Dame, Notre Dame, Indiana 46556, USA
${ }^{55}$ Ohio State University, Columbus, Ohio 43210, USA
${ }^{56}$ University of Oregon, Eugene, Oregon 97403, USA
${ }^{57}$ Dipartimento di Fisica and INFN, Università di Padova, I-35131 Padova, Italy
${ }^{58}$ Laboratoire de Physique Nucléaire et de Hautes Energies, IN2P3/CNRS, Université Pierre et Marie Curie-Paris6,
Université Denis Diderot-Paris7, F-75252 Paris, France
${ }^{59}$ University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
${ }^{60}$ Dipartimento di Fisica and INFN, Università di Perugia, I-06100 Perugia, Italy
${ }^{61}$ Dipartimento di Fisica, Scuola Normale Superiore and INFN, Università di Pisa, I-56127 Pisa, Italy
${ }^{62}$ Prairie View A\&M University, Prairie View, Texas 77446, USA
${ }^{63}$ Princeton University, Princeton, New Jersey 08544, USA
${ }^{64}$ Dipartimento di Fisica and INFN, Università di Roma La Sapienza, I-00185 Roma, Italy
${ }^{65}$ Universität Rostock, D-18051 Rostock, Germany
${ }^{66}$ Rutherford Appleton Laboratory, Chilton, Didcot, Oxon, OX1 1 0QX, United Kingdom
${ }^{67}$ DSM/Dapnia, CEA/Saclay, F-91191 Gif-sur-Yvette, France
${ }^{68}$ University of South Carolina, Columbia, South Carolina 29208, USA
${ }^{69}$ Stanford Linear Accelerator Center, Stanford, California 94309, USA
${ }^{70}$ Stanford University, Stanford, California 94305-4060, USA
${ }^{71}$ State University of New York, Albany, New York 12222, USA
${ }^{72}$ University of Tennessee, Knoxville, Tennessee 37996, USA
${ }^{73}$ University of Texas at Austin, Austin, Texas 78712, USA
${ }^{74}$ University of Texas at Dallas, Richardson, Texas 75083, USA
${ }^{75}$ Dipartimento di Fisica Sperimentale and INFN, Università di Torino, I-10125 Torino, Italy
${ }^{76}$ Dipartimento di Fisica and INFN, Università di Trieste, I-34127 Trieste, Italy
${ }^{77}$ IFIC, Universitat de Valencia-CSIC, E-46071 Valencia, Spain
${ }^{78}$ University of Victoria, Victoria, British Columbia, Canada V8W 3P6
${ }^{79}$ Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom
${ }^{80}$ University of Wisconsin, Madison, Wisconsin 53706, USA
${ }^{81}$ Yale University, New Haven, Connecticut 06511, USA

(Received 16 November 2006; revised manuscript received 19 January 2007; published 25 April 2007)
We have searched for the rare decay $B^{+} \rightarrow D_{s}^{+} \pi^{0}$. The analysis is based on a sample of 232×10^{6} $\Upsilon(4 S) \rightarrow B \bar{B}$ decays collected with the $B A B A R$ detector at the SLAC PEP-II $e^{+} e^{-}$storage ring. We find
19.6 signal events, corresponding to a significance of 4.7σ. The extracted signal yield including statistical and systematic uncertainties is $20.1_{-6.0-1.5}^{+6.8+0.4}$, and we measure $\mathcal{B}\left(B^{+} \rightarrow D_{s}^{+} \pi^{0}\right)=\left(1.5_{-0.4}^{+0.5} \pm 0.1 \pm 0.2\right) \times$ 10^{-5}, where the first uncertainty is statistical, the second is systematic, and the last is due to the uncertainty on the D_{s}^{+}decay and its daughter decay branching fractions.

DOI: 10.1103/PhysRevLett.98.171801
PACS numbers: $13.25 . \mathrm{Hw}, 11.30 . \mathrm{Er}, 12.15 . \mathrm{Hh}$

Significant $C P$ violation in the standard model (SM) of particle physics is induced by the 3×3 unitary Cabibbo-Kobayashi-Maskawa (CKM) quark flavor mixing matrix V [1] but is considered too small to produce the observed matter-antimatter asymmetry in the Universe. Hence, New Physics contributions are searched for by testing unitarity conditions for V in a variety of processes. In these tests the parameter $\gamma=\arctan (\bar{\eta} / \bar{\rho})$, where $\bar{\rho}+i \cdot \bar{\eta} \equiv$ $-V_{u d} V_{u b}^{*} / V_{c d} V_{c b}^{*}$, plays a crucial role as it is extracted from processes dominated by SM tree amplitudes and can be compared with γ obtained from constraints dominated by loop amplitudes which are mutually sensitive to New Physics. Constraints on $\sin (2 \beta+\gamma)(\beta=\arctan [\bar{\eta} /(1-$ $\bar{\rho})]$) can be obtained from the measurement of timedependent decay rates in $B^{0}, \bar{B}^{0} \rightarrow D^{-} \pi^{+}$, or $D^{*-} \pi^{+}$ [2], where CKM-favored $\left(\propto V_{c b}^{*} V_{u d}\right)$ and CKM-suppressed $\left(\propto V_{u b}^{*} V_{c d}\right)$ processes interfere [3]. First measurements have been recently published [4].

The ratio $r=\left|A\left(B^{0} \rightarrow D^{+} \pi^{-}\right) / A\left(B^{0} \rightarrow D^{-} \pi^{+}\right)\right|$of decay amplitudes is required in order to constrain $\sin (2 \beta+$ $\gamma)$ from $B^{0} \rightarrow D^{\mp} \pi^{ \pm}$. The amplitude $A\left(B^{0} \rightarrow D^{-} \pi^{+}\right)$is well known from the precisely measured branching fraction $\mathcal{B}\left(B^{0} \rightarrow D^{-} \pi^{+}\right)$[5]. With the currently available data samples the measurement of the CKM-suppressed decay $B^{0} \rightarrow D^{+} \pi^{-}$is not feasible due to the presence of a very large background from the CKM-favored decay $\bar{B}^{0} \rightarrow$ $D^{+} \pi^{-}$. This problem could be avoided with the measurement of the isospin related decay $B^{+} \rightarrow D^{+} \pi^{0}$ which is currently out of reach due to its small branching fraction $\left(<10^{-6}\right)$. However, r can be related to $\mathcal{B}\left(B^{0} \rightarrow D_{s}^{+} \pi^{-}\right)$[3] as well as to $\mathcal{B}\left(B^{+} \rightarrow D_{s}^{+} \pi^{0}\right)$ with the use of $\mathrm{SU}(3)$ flavor symmetry. Tree and W-exchange amplitudes contribute to $B^{0} \rightarrow D^{+} \pi^{-}$, whereas only a tree amplitude contributes to $B^{0(+)} \rightarrow D_{s}^{+} \pi^{-(0)}$. The exchange amplitude is expected to be small and has been estimated at $10 \%-15 \%$ of the total decay amplitude [6]. This estimate uses $\mathcal{B}\left(B^{0} \rightarrow D_{s}^{-} K^{+}\right)$ [7] and neglects final-state rescattering interactions. Nonfactorizable $\mathrm{SU}(3)$-breaking effects are hard to quantify and often assumed to not exceed the 30% level [4] consistent with the spread of theoretical estimates of r [8].

The branching fraction $\mathcal{B}\left(B^{0} \rightarrow D_{s}^{+} \pi^{-}\right)$has been measured by the Belle and BABAR Collaborations [7]. The decay $B^{+} \rightarrow D_{s}^{+} \pi^{0}$ provides an independent estimate of r, though not as precise as the one from $B^{0} \rightarrow D_{s}^{+} \pi^{-}$due to the smaller branching fraction and reconstruction efficiency. It also represents a significant background source for analyses of other decays related to the extraction of $\sin (2 \beta+\gamma)$, such as $B^{+} \rightarrow D^{+} \pi^{0}, D_{s}^{*+} \pi^{0}$, or $B^{0} \rightarrow$
$D_{s}^{+} \rho^{-}$. For $\mathcal{B}\left(B^{+} \rightarrow D_{s}^{+} \pi^{0}\right)$ only an upper limit of $2 \times$ 10^{-4} at 90% confidence level [9] has been established so far. Here, we present evidence for the decay $B^{+} \rightarrow D_{s}^{+} \pi^{0}$ and a measurement of its branching fraction.

The analysis uses a sample of $232 \times 10^{6} \mathrm{Y}(4 S)$ decays into $B \bar{B}$ pairs collected with the $B A B A R$ detector at the PEP-II asymmetric-energy B factory. The $B A B A R$ detector is described in detail elsewhere [10]. We use the GEANT4 [11] Monte Carlo (MC) software to simulate interactions of particles traversing the $B A B A R$ detector.

We select events with a minimum of three reconstructed tracks. To reject $e^{+} e^{-} \rightarrow q \bar{q}(q=u, d, s, c)$ continuum events, the ratio of the second and zeroth order FoxWolfram moments [12], determined from all clusters in the electromagnetic calorimeter with an energy above 30 MeV and all tracks, must be less than 0.5 .

We reconstruct D_{s}^{+}-meson candidates in the decay modes $D_{s}^{+} \rightarrow \phi \pi^{+}, K_{S}^{0} K^{+}$, and $\bar{K}^{* 0} K^{+}$, with $\phi \rightarrow$ $K^{+} K^{-}, K_{S}^{0} \rightarrow \pi^{+} \pi^{-}$, and $\bar{K}^{* 0} \rightarrow K^{-} \pi^{+}$. Charged kaon (pion) candidates are required to fulfill kaon (pion) selection criteria with high efficiency ($80 \%-95 \%$) and small misidentification probability ($1 \%-10 \%$) depending on the selector used $[10,13] . K_{S}^{0}$ candidates, reconstructed from two oppositely charged tracks, are required to have a measured flight distance from the primary interaction point that is at least 3 times the measurement error and an invariant $\pi^{+} \pi^{-}$mass of $\pm 15 \mathrm{MeV} / c^{2}$ around the Particle Data Group (PDG) mass [5]. $\phi\left(\bar{K}^{* 0}\right)$ candidates are required to have an invariant $K^{+} K^{-}\left(K^{-} \pi^{+}\right)$mass of $\pm 30(\pm 75) \mathrm{MeV} / c^{2}$ around the PDG mass [5]. D_{s}^{+}candidates are required to have invariant masses $m_{D_{s}^{+}}$within $60 \mathrm{MeV} / c^{2}$ around $m_{D_{s}^{+}}^{\mathrm{PDG}}=1968.3 \mathrm{MeV} / c^{2}$ [5]. We further define a signal region by requiring $\left|m_{D_{s}^{+}}-m_{D_{s}^{+}}^{\mathrm{PDG}}\right| \lesssim$ 2σ, where σ has been determined from the MC simulation and found to be $4.7(5.0) \mathrm{MeV} / c^{2}$ for $D_{s}^{+} \rightarrow \phi \pi^{+}$ ($\bar{K}^{* 0} K^{+}$) and $6.0 \mathrm{MeV} / c^{2}$ for $K_{S}^{0} K^{+}$. For background studies, sidebands are defined by $\left|m_{D_{s}^{+}}-m_{D_{s}^{+}}^{\mathrm{PDG}}\right| \gtrsim 3 \sigma$. To suppress background from $B^{+} \rightarrow D_{s}^{*} \pi^{0}$ events we restrict the D_{s}^{+}momentum in the $\Upsilon(4 S)$ system to lie within $[2.073,2.550] \mathrm{GeV} / c$. Decay daughters from $\bar{K}^{* 0}, K_{S}^{0}, D_{s}^{+}$, and B^{+}candidates are constrained to a geometric vertex.

Neutral pions are reconstructed in $\pi^{0} \rightarrow \gamma \gamma$ requiring a π^{0} laboratory energy above 200 MeV and an invariant mass $m_{\gamma \gamma} \in[115,150] \mathrm{MeV} / c^{2}$. To improve the momentum resolution a kinematic fit is applied to the daughter photons constraining $m_{\gamma \gamma}$ to the PDG π^{0} mass [5].

Charged B-meson candidates are obtained by combining D_{s}^{+}and π^{0} candidates and are identified by two kinematic
variables. The first is the beam-energy-substituted mass $m_{\mathrm{ES}}=\sqrt{\left(\frac{s / 2+\mathbf{p}_{0} \cdot \mathbf{p}_{B}}{E_{0}}\right)^{2}-\overline{\mathbf{p}}_{B}^{2}}$, where E_{0} and \mathbf{p}_{0} are the energy, respectively, the momentum of the $e^{+} e^{-}$system, \mathbf{p}_{B} the B^{+}candidates momentum, and \sqrt{s} the $e^{+} e^{-}$center-ofmomentum (c.m.) energy. The second variable is $\Delta E=$ $E_{B}^{*}-\sqrt{s} / 2$, where E_{B}^{*} is the B^{+}candidate's c.m. energy. For signal events the m_{ES} distribution is centered at the B-meson mass with a resolution of about $2.5 \mathrm{MeV} / c^{2}$, and the ΔE distribution has a maximum close to zero with a resolution of about 50 MeV . The m_{ES} and ΔE signal distributions are both asymmetric with a tail towards smaller values due to energy leakage in the electromagnetic calorimeter when reconstructing $\pi^{0} \rightarrow \gamma \gamma$. The signal region is defined by $m_{\mathrm{ES}} \in[5.2,5.3] \mathrm{GeV} / c^{2}$ and $|\Delta E|<0.2 \mathrm{GeV}$. In a small fraction of events $(<5 \%)$ multiple signal candidates are found. In this case, the candidate with the smallest deviation of $m_{\gamma \gamma}$ from the PDG π^{0} mass [5] is retained. If multiple candidates still remain, the final candidate is selected randomly.

A neural network (NN) [14] built from event topology and invariant mass variables is used to suppress continuum background, mainly coming from $e^{+} e^{-} \rightarrow c \bar{c}$. The NN variables are: (1) thrust [15] and (2) sphericity [16], both calculated from all tracks and neutral candidates in the event; (3) the cosine of the angle between the thrust axis of the B^{+}candidate and the thrust axis calculated from all tracks and neutral candidates not belonging to the B^{+} candidate; (4) the energy flow moments L_{0} and L_{2} [17]; (5) the cosine of the angle between the thrust axis of the B^{+} candidate in the $\Upsilon(4 S)$ system and the beam axis; (6) the cosine of the angle between the B^{+}momentum vector in the $\Upsilon(4 S)$ system and the beam axis; (7) the invariant mass of the corresponding ϕ, K_{S}^{0}, and $\bar{K}^{* 0}$ candidate; (8) the cosine of the helicity angle between the $\phi\left(\bar{K}^{* 0}\right)$ momentum in the D_{s}^{+}rest frame and the momentum vector of the $\phi\left(\bar{K}^{* 0}\right)$ decay daughter in the $\phi\left(\bar{K}^{* 0}\right)$ rest system. The NN has been trained on simulated $B^{+} \rightarrow D_{s}^{+} \pi^{0}$ and simulated continuum events. With an optimized NN cut, signal events are retained with an efficiency of order 60%, while about 96% (70%) of continuum events (nonsignal B decays) are rejected.

We extract the signal yield with a two-dimensional extended unbinned maximum likelihood fit in the variables m_{ES} and ΔE where we combine the three D_{s}^{+}modes. The extended log-likelihood function used is given by

$$
\ln \mathcal{L}=-\sum_{j=1}^{3} n_{j}+\sum_{i=1}^{N} \ln \sum_{j=1}^{3} n_{j} P_{j}\left(\mathbf{x}_{i}\right)
$$

where the sum is over $i=1, \ldots, N=154$ selected events inside the signal region and the n_{j} represent the three yields after the aforementioned selection: (1) signal (SIG), (2) combinatorial background (CBG) that comes from random combinations of tracks and π^{0} candidates, mainly from continuum events, and (3) B background peaking at
$m_{\text {ES }}$ values close to the nominal B-meson mass and at
 $P_{j}\left(\mathbf{x}_{i}\right)$ is the product of probability density functions (PDF's) of candidate i in the variables $\mathbf{x}_{i}=\left(m_{\mathrm{ES}}, \Delta E\right)_{i}$: $P_{j}\left(\mathbf{x}_{i}\right)=P_{j, 1}\left(m_{\mathrm{ES} i}\right) P_{j, 2}\left(\Delta E_{i}\right)$. To take into account correlations observed in the simulation we allow in some cases for a functional dependence of the PDF parameters of $P_{j, 1}\left(m_{\mathrm{ES}}\right)$ on ΔE, or of $P_{j, 2}(\Delta E)$ on m_{ES}.

The signal PDF has been determined from the MC simulation. The $m_{\mathrm{ES}} \mathrm{PDF}$ is described by an asymmetric Gaussian $G\left(m_{\mathrm{ES}}, \mu, \sigma\right)$ with $\sigma=\sigma_{L}\left(\sigma_{R}\right)$ for $x-\mu<$ $0(\geq 0)$. The parameters μ, σ_{L}, and σ_{R} are given by second order polynomials in ΔE in order to take into account a nonlinear correlation between ΔE and m_{ES} observed in the MC simulation. The ΔE signal PDF is described by a Crystal Ball function [18].

The CBG PDF in m_{ES} is parametrized by $f\left(m_{\mathrm{ES}}\right)=$ $m_{\mathrm{ES}} \sqrt{1-\left(\frac{m_{\mathrm{ES}}}{m_{\mathrm{ES}}^{\max }}\right)^{2}} \exp \left(\xi\left[1-\left(\frac{m_{\mathrm{ES}}}{m_{\mathrm{ES}}^{\max }}\right)^{2}\right]\right)$ [19], where $m_{\mathrm{ES}}^{\max }$ is the kinematic limit $\sqrt{s} / 2$ fixed at $5.2895 \mathrm{GeV} / c^{2}$. The CBG PDF in ΔE is described by a second order polynomial $\operatorname{Pol}(\Delta E)=1+p_{1} \Delta E+p_{2}\left(m_{\mathrm{ES}}\right) \Delta E^{2}$. To take into account a possible correlation between ΔE and m_{ES} of order 5%, the parameter p_{2} depends linearly on m_{ES}. The parameters ξ, p_{1}, and p_{2} are determined from the likelihood fit on data.

The PBG component is modeled by simulated $B^{+} \rightarrow$ $D_{s}^{*} \pi^{0}$ MC events. The ΔE PDF is described by a Gaussian. As in the case for the signal, the m_{ES} PDF is described by an asymmetric Gaussian, and its parameters μ, σ_{L}, and σ_{R} are given by second order polynomials in ΔE. Additional backgrounds that peak at negative ΔE values are due to B-meson decays such as $B^{0} \rightarrow D^{(*)-} \rho^{+}$with a similar decay topology and kinematics as the signal decay. This kind of background is found to be well described by the $B^{+} \rightarrow D_{s}^{*} \pi^{0}$ PDF. Another sizeable background source from the decay $B^{0} \rightarrow D_{s}^{+} \rho^{-}$is not well described by the $B^{+} \rightarrow D_{s}^{*} \pi^{0} \mathrm{PDF}$. However, the expected number of $B^{0} \rightarrow$ $D_{s}^{+} \rho^{-}$events estimated from Ref. [20] is small compared to the other peaking background sources. As a consequence, we do not introduce an additional PDF and estimate the fit bias introduced in this way from a dedicated MC simulation study.

The fit has been validated on samples using signal and peaking background events from the full MC simulation. From the likelihood fit we find the yield estimators $\hat{n}_{\text {SIG }}=$ $19.6_{-6.0}^{+6.8}, \hat{n}_{\mathrm{CBG}}=116.7 \pm 12.5$, and $\hat{n}_{\mathrm{PBG}}=17.7 \pm 6.9$, the latter being consistent with the expectation from the MC simulation. The signal significance is determined from a MC simulation containing no signal events, where we use the background yields and the CBG parameters as measured by the fit on data. We include the statistical uncertainties on the CBG PDF parameters and the uncertainties on the background yields and find a probability to observe at least $\hat{n}_{\text {SIG }}$ events of 1.5×10^{-6} corresponding to a 4.7σ significance. Fit projections for ΔE and m_{ES} are shown in

Fig. 1 where background contributions are suppressed by a cut on the signal-to-background likelihood ratio where the cut values are determined from MC calculations by maximizing the ratio $\hat{n}_{\mathrm{SIG}} / \sqrt{\hat{n}_{\mathrm{SIG}}}+\hat{n}_{\mathrm{CBG}}+\hat{n}_{\mathrm{PBG}}$.

We assume $\mathcal{B}\left(\Upsilon(4 S) \rightarrow B^{+} B^{-}\right)=\mathcal{B}\left(\Upsilon(4 S) \rightarrow B^{0} \bar{B}^{0}\right)$ and calculate the branching fraction from $\mathcal{B}\left(B^{+} \rightarrow\right.$ $\left.D_{s}^{+} \pi^{0}\right)=\hat{n}_{\text {SIG }} /\left(N_{B \bar{B}} \sum_{k} \varepsilon_{k} \mathcal{B}_{k}\right)$, where $N_{B \bar{B}}$ is the number of charged and neutral B-meson pairs, ε_{k} is the signal efficiency, and \mathcal{B}_{k} is the branching fraction of D_{s}^{+}decay mode $k\left(k=\phi \pi^{+}, K_{S}^{0} K^{+}, \bar{K}^{* 0} K^{+}\right)$including their daughter decay modes taken from Ref. [5] and scaled to the recent result [21] for $D_{s}^{+} \rightarrow \phi \pi^{+} \quad\left(\mathcal{B}_{\phi \pi^{+}}=2.3 \%\right.$, $\mathcal{B}_{K_{S}^{0} K^{+}}=1.7 \%, \quad \mathcal{B}_{\bar{K}^{* 0} K^{+}}=2.9 \%$). Signal efficiencies $\left(\varepsilon_{\phi \pi^{+}}=9.7 \%, \varepsilon_{K_{S}^{0} K^{+}}=9.1 \%, \varepsilon_{\bar{K}^{* 0} K^{+}}=7.1 \%\right)$ are estimated from the MC simulation and are corrected for differences between data and simulation using high statistics control samples of high purity. The result is

$$
\mathcal{B}\left(B^{+} \rightarrow D_{s}^{+} \pi^{0}\right)=\left(1.5_{-0.4}^{+0.5} \pm 0.1 \pm 0.2\right) \times 10^{-5}
$$

where the first uncertainty is statistical, the second system-

FIG. 1. Likelihood projections on m_{ES} and ΔE after a cut on the signal-to-background likelihood ratio. Points with error bars: data; black solid line: result of the full fit; gray dashed curve: signal; gray dash-dotted curve: peaking background; gray solid curve: combinatorial background.
atic (Table I), and the third due to the branching fraction uncertainties of the D_{s}^{+}[21] and its daughter decays (Table I and Ref. [5]). We also quote the product $\mathcal{B}\left(B^{+} \rightarrow\right.$ $\left.D_{s}^{+} \pi^{0}\right) \mathcal{B}\left(D_{s}^{+} \rightarrow \phi \pi^{+}\right)=\left(7.0_{-2.1-0.7}^{+2.4+0.5} \pm 0.4\right) \times 10^{-7}$.

Several systematic uncertainties on the signal yield have been considered. Background from B decays into charmless final states (CPBG, e.g., $B^{+} \rightarrow \phi \rho^{+}$) peaking in the same region in m_{ES} and ΔE as $B^{+} \rightarrow D_{s}^{+} \pi^{0}$ has been estimated from a fit in the D_{s}^{+}mass sidebands. Scaled to the D_{s}^{+}mass signal region we find $\hat{n}_{\text {CPBG }}^{\text {scaled }}=-1.4 \pm 1.4$ and assign the statistical error as a one-sided systematic error. The background peaking at negative ΔE values found in this fit is consistent with the MC expectation. MC studies with many samples of the same size as the data sample indicate a small negative fit bias. We correct for this bias (+0.5 events) and assign the statistical uncertainty as a systematic error (± 0.3 events). The PDF parameters for signal and peaking background have been varied within their errors as found in the fit on MC data resulting in a variation of ± 0.20 events in the signal yield. The change in the signal yield when $m_{\mathrm{ES}}^{\max }$ is free to vary is +0.16 events and is assigned as a systematic error. The possible bias in $\hat{n}_{\text {SIG }}$ due to the presence of $B^{0} \rightarrow D_{s}^{+} \rho^{-}$events is estimated to be -0.18 events where the upper limit at 90% confidence level [20], $\mathcal{B}\left(B^{0} \rightarrow D_{s}^{+} \rho^{-}\right)<1.9 \times 10^{-5}$, has been assumed, and is assigned as a systematic uncertainty. We obtain a total systematic uncertainty on the signal yield of ${ }_{-1.5}^{+0.4}$ events.

Other systematic uncertainties on the branching fraction are due to the uncertainty on $N_{B \bar{B}}$, the statistical uncertainty on the MC samples used, and possible differences in detection and reconstruction efficiencies between data and MC simulation for: NN and $m_{D_{s}^{+}}$selection requirements

TABLE I. Contributions to the relative systematic uncertainty (in \%) on the branching fraction $\mathcal{B}\left(B^{+} \rightarrow D_{s}^{+} \pi^{0}\right)$ coming from the signal efficiency subdivided in the reconstructed D_{s}^{+}modes, the signal yield, and the number of $B \bar{B}$ pairs. Also shown is the total relative systematic uncertainty and the uncertainty due to the individual \mathcal{B}_{k} (both in \%).

Uncertainty in $D_{s}^{+} \rightarrow$	$\phi \pi^{+}$	$K_{S}^{0} K^{+}$	$\bar{K}^{* 0} K^{+}$
NN cut efficiency	$+4.5,-5.2$	$+6.1,-7.0$	$+4.1,-4.7$
$m_{D_{s}}$ cut efficiency	$+1.6,-2.0$	$+2.2,-3.1$	$+4.6,-6.6$
Tracking efficiency	± 3.9	± 1.3	± 3.9
K_{S}^{0} efficiency	-	± 3.1	-
π^{0} efficiency		± 3.2	
PID efficiency	± 2.5	± 1.6	± 2.5
MC statistics	± 1.1	± 1.1	± 1.4
Total efficiency error	$+7.5,-8.0$	$+8.2,-9.2$	$+8.5,-10.0$
Signal Yield		$+2.3,-7.5$	
$N_{B \bar{B}}$		± 1.1	
Total systematic error		$+6.9,-9.6$	
\mathcal{B}_{k}	± 13	± 21	± 17

estimated with a high-purity control sample of $B^{+} \rightarrow$ $D_{s}^{+} \bar{D}^{0}\left(\bar{D}^{0} \rightarrow K^{+} \pi^{-}, K^{+} \pi^{-} \pi^{+} \pi^{-}\right)$events, charged particle tracking, K_{S}^{0} and π^{0} reconstruction, and charged particle identification (PID).

In summary, we measure $\mathcal{B}\left(B^{+} \rightarrow D_{s}^{+} \pi^{0}\right)=\left(1.5_{-0.4}^{+0.5} \pm\right.$ $0.1 \pm 0.2) \times 10^{-5}$ and translate the result into a $\mathcal{B}\left(B^{0} \rightarrow\right.$ $D_{s}^{+} \pi^{-}$) value with the use of isospin symmetry and B-meson lifetime values from Ref. [5]. The result, $\mathcal{B}\left(B^{0} \rightarrow\right.$ $\left.D_{s}^{+} \pi^{-}\right)=\left(2.7_{-0.8-0.3}^{+0.9+0.2} \pm 0.4\right) \times 10^{-5}$, is consistent with the ones given in Ref. [7] but is less precise.

We are grateful for the excellent luminosity and machine conditions provided by our PEP-II colleagues and for the substantial dedicated effort from the computing organizations that support $B A B A R$. The collaborating institutions wish to thank SLAC for its support and kind hospitality. This work is supported by DOE and NSF (USA), NSERC (Canada), IHEP (China), CEA and CNRS-IN2P3 (France), BMBF and DFG (Germany), INFN (Italy), FOM (The Netherlands), NFR (Norway), MIST (Russia), MEC (Spain), and PPARC (United Kingdom). Individuals have received support from the Marie Curie EIF (European Union) and the A. P. Sloan Foundation.
*Deceased.
${ }^{\dagger}$ Also with Dipartimento di Fisica, Università di Perugia, Perugia, Italy.
${ }^{\text {* }}$ Also with Università della Basilicata, Potenza, Italy.
${ }^{\text {§ }}$ Also with IPPP, Physics Department, Durham University, Durham DH1 3LE, United Kingdom.
[1] M. Kobayashi and T. Maskawa, Prog. Theor. Phys. 49, 652 (1973).
[2] Charge conjugated states are implied unless explicitly stated.
[3] I. Dunietz, Phys. Lett. B 427, 179 (1998).
[4] B. Aubert et al. (BABAR Collaboration), Phys. Rev. Lett. 92, 251801 (2004); Phys. Rev. D 71, 112003 (2005); T. Sarangi et al. (Belle Collaboration), Phys. Rev. Lett. 93, 031802 (2004).
[5] S. Eidelman et al. (Particle Data Group), Phys. Lett. B 592, 1 (2004).
[6] C. W. Chiang and J. L. Rosner, Phys. Rev. D 67, 074013 (2003); C. S. Kim, S. Oh, and C. Yu, Phys. Lett. B 621, 259 (2005).
[7] P. Krokovny et al. (Belle Collaboration), Phys. Rev. Lett. 89, 231804 (2002); B. Aubert et al. (BABAR Collaboration), Phys. Rev. Lett. 90, 181803 (2003); Phys. Rev. Lett. 98, 081801 (2007).
[8] D. A. Suprun, C. W. Chiang, and J. L. Rosner, Phys. Rev. D 65, 054025 (2002).
[9] J. Alexander et al. (CLEO Collaboration), Phys. Lett. B 319, 365 (1993).
[10] B. Aubert et al. (BABAR Collaboration), Nucl. Instrum. Methods Phys. Res., Sect. A 479, 1 (2002).
[11] S. Agostinelli et al. (GEANT4 Collaboration), Nucl. Instrum. Methods Phys. Res., Sect. A 506, 250 (2003).
[12] G.C. Fox and S. Wolfram, Phys. Rev. Lett. 41, 1581 (1978).
[13] I. Adam et al. (BABAR-DIRC Collaboration), Nucl. Instrum. Methods Phys. Res., Sect. A 538, 281 (2005).
[14] Artificial Intelligence International Workshop on Software Engineering, in "New Computing Techniques in Physics Research IV: Proceedings of the Fourth International Workshop on Software Engineering, Artificial Intelligence and Expert Systems for High Energy," edited by B. Denby and Denis Perret-Gallix, http://hal.in2p3.fr/ in2p3-00002142/en/, p. 725.
[15] S. Brandt et al., Phys. Lett. 12, 57 (1964); E. Farhi, Phys. Rev. Lett. 39, 1587 (1977).
[16] J.D. Bjorken and S. J. Brodsky, Phys. Rev. D 1, 1416 (1970).
[17] B. Aubert et al. (BABAR Collaboration), Phys. Rev. Lett. 89, 281802 (2002); Phys. Rev. D 70, 032006 (2004).
[18] M. J. Oreglia, Ph.D. thesis, Stanford University [Report No. SLAC-236, 1980], Appendix D; J.E. Gaiser, Ph.D. thesis, Stanford University [Report No. SLAC-255, 1982], Appendix F; T. Skwarnicki, Ph.D. thesis, Institute for Nuclear Physics [Report No. DESY F31-86-02, 1986], Appendix E.
[19] H. Albrecht et al. (ARGUS Collaboration), Z. Phys. C 48, 543 (1990).
[20] B. Aubert et al. (BABAR Collaboration), hep-ex/0408029; BABAR-CONF-04/005; SLAC-PUB-10602.
[21] B. Aubert et al. (BABAR Collaboration), Phys. Rev. D 71, 091104 (2005).

