Study of $B^{ \pm} \rightarrow J / \psi \pi^{ \pm}$and $B^{ \pm} \rightarrow J / \psi K^{ \pm}$Decays: Measurement of the Ratio of Branching Fractions and Search for Direct CP Violation

B. Aubert, ${ }^{1}$ R. Barate, ${ }^{1}$ D. Boutigny, ${ }^{1}$ F. Couderc, ${ }^{1}$ J.-M. Gaillard, ${ }^{1}$ A. Hicheur, ${ }^{1}$ Y. Karyotakis, ${ }^{1}$ J. P. Lees, ${ }^{1}$ V. Tisserand, ${ }^{1}$ A. Zghiche, ${ }^{1}$ A. Palano, ${ }^{2}$ A. Pompili, ${ }^{2}$ J. C. Chen, ${ }^{3}$ N. D. Qi, ${ }^{3}$ G. Rong, ${ }^{3}$ P. Wang, ${ }^{3}$ Y. S. Zhu, ${ }^{3}$ G. Eigen, ${ }^{4}$ I. Ofte, ${ }^{4}$ B. Stugu, ${ }^{4}$ G.S. Abrams, ${ }^{5}$ A.W. Borgland, ${ }^{5}$ A. B. Breon, ${ }^{5}$ D. N. Brown, ${ }^{5}$ J. Button-Shafer, ${ }^{5}$ R. N. Cahn, ${ }^{5}$ E. Charles, ${ }^{5}$ C.T. Day, ${ }^{5}$ M. S. Gill, ${ }^{5}$ A.V. Gritsan, ${ }^{5}$ Y. Groysman, ${ }^{5}$ R. G. Jacobsen, ${ }^{5}$ R.W. Kadel, ${ }^{5}$ J. Kadyk, ${ }^{5}$ L. T. Kerth, ${ }^{5}$ Yu. G. Kolomensky, ${ }^{5}$ G. Kukartsev, ${ }^{5}$ C. LeClerc, ${ }^{5}$ M. E. Levi, ${ }^{5}$ G. Lynch, ${ }^{5}$ L. M. Mir, ${ }^{5}$ P. J. Oddone, ${ }^{5}$ T. J. Orimoto, ${ }^{5}$ M. Pripstein, ${ }^{5}$ N. A. Roe, ${ }^{5}$ M. T. Ronan, ${ }^{5}$ V. G. Shelkov, ${ }^{5}$ A.V. Telnov, ${ }^{5}$ W. A. Wenzel, ${ }^{5}$ K. Ford, ${ }^{6}$ T. J. Harrison, ${ }^{6}$ C. M. Hawkes, ${ }^{6}$ S. E. Morgan, ${ }^{6}$ A. T. Watson, ${ }^{6}$ N. K. Watson, ${ }^{6}$ M. Fritsch, ${ }^{7}$ K. Goetzen, ${ }^{7}$ T. Held, ${ }^{7}$ H. Koch, ${ }^{7}$ B. Lewandowski, ${ }^{7}$ M. Pelizaeus, ${ }^{7}$ M. Steinke, ${ }^{7}$ J.T. Boyd, ${ }^{8}$ N. Chevalier, ${ }^{8}$ W. N. Cottingham, ${ }^{8}$ M. P. Kelly, ${ }^{8}$ T. E. Latham, ${ }^{8}$ F. F. Wilson, ${ }^{8}$ K. Abe, ${ }^{9}$ T. Cuhadar-Donszelmann, ${ }^{9}$ C. Hearty, ${ }^{9}$ T. S. Mattison, ${ }^{9}$ J. A. McKenna, ${ }^{9}$ D. Thiessen, ${ }^{9}$ P. Kyberd, ${ }^{10}$ L. Teodorescu, ${ }^{10}$ V. E. Blinov, ${ }^{11}$ A. D. Bukin, ${ }^{11}$ V. P. Druzhinin, ${ }^{11}$ V. B. Golubev, ${ }^{11}$ V. N. Ivanchenko, ${ }^{11}$ E. A. Kravchenko, ${ }^{11}$ A. P. Onuchin, ${ }^{11}$ S. I. Serednyakov, ${ }^{11}$ Yu. I. Skovpen, ${ }^{11}$ E. P. Solodov, ${ }^{11}$ A. N. Yushkov, ${ }^{11}$ D. Best,,12 M. Bruinsma, ${ }^{12}$ M. Chao, ${ }^{12}$ I. Eschrich, ${ }^{12}$ D. Kirkby, ${ }^{12}$ A. J. Lankford, ${ }^{12}$ M. Mandelkern, ${ }^{12}$ R. K. Mommsen, ${ }^{12}$ W. Roethel, ${ }^{12}$ D. P. Stoker, ${ }^{12}$ C. Buchanan, ${ }^{13}$ B. L. Hartfiel, ${ }^{13}$ J.W. Gary, ${ }^{14}$ B. C. Shen, ${ }^{14}$ K. Wang, ${ }^{14}$ D. del Re,,${ }^{15}$ H. K. Hadavand, ${ }^{15}$ E. J. Hill, ${ }^{15}$ D. B. MacFarlane, ${ }^{15}$ H. P. Paar, ${ }^{15}$ Sh. Rahatlou, ${ }^{15}$ V. Sharma, ${ }^{15}$ J.W. Berryhill,,16 C. Campagnari, ${ }^{16}$ B. Dahmes, ${ }^{16}$ S. L. Levy, ${ }^{16}$ O. Long, ${ }^{16}$ A. Lu, ${ }^{16}$ M. A. Mazur, ${ }^{16}$ J. D. Richman, ${ }^{16}$ W. Verkerke, ${ }^{16}$ T.W. Beck, ${ }^{17}$ A. M. Eisner,,${ }^{17}$ C. A. Heusch, ${ }^{17}$ W. S. Lockman, ${ }^{17}$ T. Schalk,,${ }^{17}$ R. E. Schmitz, ${ }^{17}$ B. A. Schumm, ${ }^{17}$ A. Seiden,,${ }^{17}$ P. Spradlin, ${ }^{17}$ D. C. Williams, ${ }^{17}$ M. G. Wilson, ${ }^{17}$ J. Albert, ${ }^{18}$ E. Chen,,${ }^{18}$ G. P. Dubois-Felsmann,,18 A. Dvoretskii, ${ }^{18}$ D. G. Hitlin, ${ }^{18}$ I. Narsky, ${ }^{18}$ T. Piatenko, ${ }^{18}$ F. C. Porter, ${ }^{18}$ A. Ryd, ${ }^{18}$ A. Samuel, ${ }^{18}$ S. Yang, ${ }^{18}$ S. Jayatilleke, ${ }^{19}$ G. Mancinelli, ${ }^{19}$ B. T. Meadows, ${ }^{19}$ M. D. Sokoloff, ${ }^{19}$ T. Abe, ${ }^{20}$ F. Blanc, ${ }^{20}$ P. Bloom, ${ }^{20}$ S. Chen, ${ }^{20}$ P. J. Clark, ${ }^{20}$ W.T. Ford, ${ }^{20}$ U. Nauenberg, ${ }^{20}$ A. Olivas, ${ }^{20}$ P. Rankin, ${ }^{20}$ J. G. Smith, ${ }^{20}$ W. C. van Hoek, ${ }^{20}$ L. Zhang, ${ }^{20}$ J. L. Harton, ${ }^{21}$ T. Hu, ${ }^{21}$ A. Soffer,,${ }^{21}$ W. H. Toki, ${ }^{21}$ R. J. Wilson, ${ }^{21}$ D. Altenburg, ${ }^{22}$ T. Brandt, ${ }^{22}$ J. Brose, ${ }^{22}$ T. Colberg, ${ }^{22}$ M. Dickopp, ${ }^{22}$ E. Feltresi, ${ }^{22}$ A. Hauke, ${ }^{22}$ H. M. Lacker, ${ }^{22}$ E. Maly, ${ }^{22}$ R. Müller-Pfefferkorn, ${ }^{22}$ R. Nogowski, ${ }^{22}$ S. Otto, ${ }^{22}$ J. Schubert,,${ }^{22}$ K. R. Schubert, ${ }^{22}$ R. Schwierz, ${ }^{22}$ B. Spaan, ${ }^{22}$ D. Bernard, ${ }^{23}$ G. R. Bonneaud,,${ }^{23}$ F. Brochard, ${ }^{23}$ P. Grenier, ${ }^{23}$ Ch. Thiebaux, ${ }^{23}$ G. Vasileiadis, ${ }^{23}$ M. Verderi, ${ }^{23}$ D. J. Bard, ${ }^{24}$ A. Khan, ${ }^{24}$ D. Lavin,,${ }^{24}$ F. Muheim, ${ }^{24}$ S. Playfer, ${ }^{24}$ M. Andreotti, ${ }^{25}$ V. Azzolini, ${ }^{25}$ D. Bettoni, ${ }^{25}$ C. Bozzi, ${ }^{25}$ R. Calabrese, ${ }^{25}$ G. Cibinetto, ${ }^{25}$ E. Luppi, ${ }^{25}$ M. Negrini, ${ }^{25}$ A. Sarti, ${ }^{25}$ E. Treadwell, ${ }^{26}$ R. Baldini-Ferroli, ${ }^{27}$ A. Calcaterra, ${ }^{27}$ R. de Sangro, ${ }^{27}$ G. Finocchiaro, ${ }^{27}$ P. Patteri,,${ }^{27}$ M. Piccolo, ${ }^{27}$ A. Zallo, ${ }^{27}$ A. Buzzo, ${ }^{28}$ R. Capra, ${ }^{28}$ R. Contri, ${ }^{28}$ G. Crosetti, ${ }^{28}$ M. Lo Vetere, ${ }^{28}$ M. Macri, ${ }^{28}$ M. R. Monge, ${ }^{28}$ S. Passaggio, ${ }^{28}$ C. Patrignani, ${ }^{28}$ E. Robutti, ${ }^{28}$ A. Santroni, ${ }^{28}$ S. Tosi, ${ }^{38}$ S. Bailey, ${ }^{29}$ G. Brandenburg, ${ }^{29}$ M. Morii, ${ }^{29}$ E. Won, ${ }^{29}$ R. S. Dubitzky, ${ }^{30}$ U. Langenegger, ${ }^{30}$ W. Bhimji, ${ }^{31}$ D. A. Bowerman, ${ }^{31}$ P. D. Dauncey, ${ }^{31}$ U. Egede, ${ }^{31}$ J. R. Gaillard, ${ }^{31}$ G.W. Morton, ${ }^{31}$ J. A. Nash, ${ }^{31}$ G. P. Taylor, ${ }^{31}$ G. J. Grenier, ${ }^{32}$ S.-J. Lee,,${ }^{32}$ U. Mallik,,${ }^{32}$ J. Cochran, ${ }^{33}$ H. B. Crawley, ${ }^{33}$ J. Lamsa, ${ }^{33}$ W.T. Meyer, ${ }^{33}$ S. Prell,,${ }^{33}$ E. I. Rosenberg, ${ }^{33}$ J. Yi, ${ }^{33}$ M. Davier, ${ }^{34}$ G. Grosdidier, ${ }^{34}$ A. Höcker, ${ }^{34}$ S. Laplace, ${ }^{34}$ F. Le Diberder, ${ }^{34}$ V. Lepeltier, ${ }^{34}$ A. M. Lutz, ${ }^{34}$ T. C. Petersen, ${ }^{34}$ S. Plaszczynski, ${ }^{34}$ M. H. Schune, ${ }^{34}$ L. Tantot, ${ }^{34}$ G. Wormser, ${ }^{34}$ C. H. Cheng, ${ }^{35}$ D. J. Lange,,${ }^{35}$ M. C. Simani, ${ }^{35}$ D. M. Wright, ${ }^{35}$ A. J. Bevan, ${ }^{36}$ J. P. Coleman,,${ }^{36}$ J. R. Fry, ${ }^{36}$ E. Gabathuler, ${ }^{36}$ R. Gamet,,${ }^{36}$ M. Kay, ${ }^{36}$ R. J. Parry, ${ }^{36}$ D. J. Payne, ${ }^{36}$ R. J. Sloane, ${ }^{36}$ C. Touramanis, ${ }^{36}$ J. J. Back, ${ }^{37}$ P. F. Harrison, ${ }^{37}$ G. B. Mohanty, ${ }^{37}$ C. L. Brown, ${ }^{38}$ G. Cowan, ${ }^{38}$ R. L. Flack,,38 H. U. Flaecher, ${ }^{38}$ S. George, ${ }^{38}$ M. G. Green,${ }^{38}$ A. Kurup, ${ }^{38}$ C. E. Marker, ${ }^{38}$ T. R. McMahon, ${ }^{38}$ S. Ricciardi, ${ }^{38}$ F. Salvatore, ${ }^{38}$ G. Vaitsas, ${ }^{38}$ M. A. Winter, ${ }^{38}$ D. Brown, ${ }^{39}$ C. L. Davis, ${ }^{39}$ J. Allison, ${ }^{40}$ N. R. Barlow, ${ }^{40}$ R. J. Barlow, ${ }^{40}$ P. A. Hart, ${ }^{40}$ M. C. Hodgkinson, ${ }^{40}$ G. D. Lafferty, ${ }^{40}$ A. J. Lyon, ${ }^{40}$ J.C. Williams, ${ }^{40}$ A. Farbin, ${ }^{41}$ W. D. Hulsbergen, ${ }^{41}$ A. Jawahery, ${ }^{41}$ D. Kovalskyi, ${ }^{41}$ C. K. Lae, ${ }^{41}$ V. Lillard, ${ }^{41}$ D. A. Roberts, ${ }^{41}$ G. Blaylock, ${ }^{42}$ C. Dallapiccola, ${ }^{42}$ K.T. Flood, ${ }^{42}$ S. S. Hertzbach, ${ }^{42}$ R. Kofler, ${ }^{42}$ V. B. Koptchev, ${ }^{42}$ T. B. Moore, ${ }^{42}$ S. Saremi, ${ }^{42}$ H. Staengle, ${ }^{42}$ S. Willocq, ${ }^{42}$ R. Cowan, ${ }^{43}$ G. Sciolla, ${ }^{43}$ F. Taylor, ${ }^{43}$ R. K. Yamamoto, ${ }^{43}$ D. J. J. Mangeol, ${ }^{44}$ P. M. Patel, ${ }^{44}$ S. H. Robertson, ${ }^{44}$ A. Lazzaro, ${ }^{45}$ F. Palombo, ${ }^{45}$ J. M. Bauer, ${ }^{46}$ L. Cremaldi, ${ }^{46}$ V. Eschenburg, ${ }^{46}$ R. Godang, ${ }^{46}$ R. Kroeger, ${ }^{46}$ J. Reidy, ${ }^{46}$ D. A. Sanders, ${ }^{46}$ D. J. Summers, ${ }^{46}$ H. W. Zhao, ${ }^{46}$ S. Brunet, ${ }^{47}$ D. Côté, ${ }^{47}$ P. Taras, ${ }^{47}$ H. Nicholson, ${ }^{48}$ C. Cartaro, ${ }^{49}$ N. Cavallo, ${ }^{49}$ F. Fabozzi, ${ }^{49, *}$ C. Gatto, ${ }^{49}$ L. Lista, ${ }^{49}$ D. Monorchio, ${ }^{49}$ P. Paolucci, ${ }^{49}$ D. Piccolo, ${ }^{49}$ C. Sciacca, ${ }^{49}$ M. Baak, ${ }^{50}$ G. Raven, ${ }^{50}$ L. Wilden, ${ }^{50}$ C. P. Jessop, ${ }^{51}$ J. M. LoSecco, ${ }^{51}$ T. A. Gabriel,,${ }^{52}$ T. Allmendinger, ${ }^{53}$ B. Brau, ${ }^{53}$ K. K. Gan, ${ }^{53}$ K. Honscheid, ${ }^{53}$ D. Hufnagel, ${ }^{53}$ H. Kagan, ${ }^{53}$ R. Kass, ${ }^{53}$ T. Pulliam, ${ }^{53}$ R. Ter-Antonyan, ${ }^{53}$ Q. K. Wong, ${ }^{53}$ J. Brau, ${ }^{54}$ R. Frey, ${ }^{54}$ O. Igonkina, ${ }^{54}$ C.T. Potter, ${ }^{54}$ N. B. Sinev, ${ }^{54}$ D. Strom, ${ }^{54}$
E. Torrence, ${ }^{54}$ F. Colecchia, ${ }^{55}$ A. Dorigo, ${ }^{55}$ F. Galeazzi, ${ }^{55} \mathrm{M}$. Margoni, ${ }^{55} \mathrm{M}$. Morandin, ${ }^{55}$ M. Posocco, ${ }^{55}$ M. Rotondo, ${ }^{55}$ F. Simonetto, ${ }^{55}$ R. Stroili, ${ }^{55}$ G. Tiozzo, ${ }^{55}$ C. Voci, ${ }^{55}$ M. Benayoun, ${ }^{56}$ H. Briand, ${ }^{56}$ J. Chauveau, ${ }^{56}$ P. David, ${ }^{56}$ Ch. de la Vaissière, ${ }^{56}$ L. Del Buono, ${ }^{56}$ O. Hamon, ${ }^{56}$ M. J. J. John, ${ }^{56}$ Ph. Leruste, ${ }^{56}$ J. Ocariz, ${ }^{56}$ M. Pivk, ${ }^{56}$ L. Roos, ${ }^{56}$ S. T'Jampens, ${ }^{56}$ G. Therin, ${ }^{56}$ P. F. Manfredi, ${ }^{57}$ V. Re, ${ }^{57}$ P. K. Behera, ${ }^{58}$ L. Gladney, ${ }^{58}$ Q. H. Guo, ${ }^{58}$ J. Panetta, ${ }^{58}$ F. Anulli, ${ }^{27,59}$ M. Biasini, ${ }^{59}$ I. M. Peruzzi, ${ }^{27,59}$ M. Pioppi, ${ }^{59}$ C. Angelini, ${ }^{60}$ G. Batignani, ${ }^{60}$ S. Bettarini, ${ }^{60}$ M. Bondioli, ${ }^{60}$ F. Bucci, ${ }^{60}$ G. Calderini, ${ }^{60}$ M. Carpinelli, ${ }^{60}$ V. Del Gamba, ${ }^{60}$ F. Forti, ${ }^{60}$ M. A. Giorgi, ${ }^{60}$ A. Lusiani, ${ }^{60}$ G. Marchiori, ${ }^{60}$ F. Martinez-Vidal, ${ }^{60, \dagger}$ M. Morganti, ${ }^{60}$ N. Neri, ${ }^{60}$ E. Paoloni, ${ }^{60}$ M. Rama, ${ }^{60}$ G. Rizzo, ${ }^{60}$ F. Sandrelli, ${ }^{60}$ J. Walsh, ${ }^{60}$ M. Haire, ${ }^{61}$ D. Judd, ${ }^{61}$ K. Paick, ${ }^{61}$ D. E. Wagoner, ${ }^{61}$ N. Danielson, ${ }^{62}$ P. Elmer, ${ }^{62}$ C. Lu, ${ }^{62}$ V. Miftakov, ${ }^{62}$ J. Olsen, ${ }^{62}$ A. J. S. Smith, ${ }^{62}$ E.W. Varnes, ${ }^{62}$ F. Bellini, ${ }^{63}$ G. Cavoto, ${ }^{62,63}$ R. Faccini, ${ }^{63}$ F. Ferrarotto, ${ }^{63}$ F. Ferroni, ${ }^{63}$ M. Gaspero, ${ }^{63}$ L. Li Gioi, ${ }^{63}$ M. A. Mazzoni, ${ }^{63}$ S. Morganti, ${ }^{63}$ M. Pierini, ${ }^{63}$ G. Piredda, ${ }^{63}$ F. Safai Tehrani, ${ }^{63}$ C. Voena, ${ }^{63}$ S. Christ, ${ }^{64}$ G. Wagner, ${ }^{64}$ R. Waldi, ${ }^{64}$ T. Adye, ${ }^{65}$ N. De Groot, ${ }^{65}$ B. Franek, ${ }^{65}$ N. I. Geddes, ${ }^{65}$ G. P. Gopal, ${ }^{65}$ E. O. Olaiya, ${ }^{65}$ S. M. Xella, ${ }^{65}$ R. Aleksan, ${ }^{66}$ S. Emery, ${ }^{66}$ A. Gaidot, ${ }^{66}$ S. F. Ganzhur, ${ }^{66}$ P.-F. Giraud, ${ }^{66}$ G. Hamel de Monchenault, ${ }^{66}$ W. Kozanecki, ${ }^{66}$ M. Langer, ${ }^{66}$ M. Legendre, ${ }^{66}$ G. W. London, ${ }^{66}$ B. Mayer, ${ }^{66}$ G. Schott, ${ }^{66}$ G. Vasseur, ${ }^{66}$ Ch. Yèche, ${ }^{66}$ M. Zito, ${ }^{66}$ M.V. Purohit, ${ }^{67}$ A.W. Weidemann, ${ }^{67}$ F. X. Yumiceva, ${ }^{67}$ D. Aston, ${ }^{68}$ R. Bartoldus, ${ }^{68}$ N. Berger, ${ }^{68}$ A. M. Boyarski, ${ }^{68}$ O. L. Buchmueller, ${ }^{68}$ M. R. Convery, ${ }^{68}$ M. Cristinziani, ${ }^{68}$ G. De Nardo, ${ }^{68}$ D. Dong, ${ }^{68}$ J. Dorfan, ${ }^{68}$ D. Dujmic, ${ }^{68}$ W. Dunwoodie, ${ }^{68}$ E. E. Elsen, ${ }^{68}$ R. C. Field, ${ }^{68}$ T. Glanzman, ${ }^{68}$ S. J. Gowdy, ${ }^{68}$ T. Hadig, ${ }^{68}$ V. Halyo, ${ }^{68}$ T. Hryn'ova, ${ }^{68}$ W. R. Innes, ${ }^{68}$ M. H. Kelsey, ${ }^{68}$ P. Kim, ${ }^{68}$ M. L. Kocian, ${ }^{68}$ D. W. G. S. Leith, ${ }^{68}$ J. Libby, ${ }^{68}$ S. Luitz, ${ }^{68}$ V. Luth, ${ }^{68}$ H. L. Lynch, ${ }^{68}$ H. Marsiske, ${ }^{68}$ R. Messner, ${ }^{68}$ D. R. Muller, ${ }^{68}$ C. P. O’Grady, ${ }^{68}$ V. E. Ozcan, ${ }^{68}$ A. Perazzo, ${ }^{68}$ M. Perl,,68 S. Petrak, ${ }^{68}$ B. N. Ratcliff, ${ }^{68}$ A. Roodman, ${ }^{68}$ A. A. Salnikov, ${ }^{68}$ R. H. Schindler, ${ }^{68}$ J. Schwiening, ${ }^{68}$ G. Simi, ${ }^{68}$ A. Snyder, ${ }^{68}$ A. Soha, ${ }^{68}$ J. Stelzer, ${ }^{68}$ D. Su, ${ }^{68}$ M. K. Sullivan, ${ }^{68}$ J. Va'vra, ${ }^{68}$ S. R. Wagner, ${ }^{68}$ M. Weaver, ${ }^{68}$ A. J. R. Weinstein, ${ }^{68}$ W. J. Wisniewski, ${ }^{68}$ M. Wittgen, ${ }^{68}$ D. H. Wright, ${ }^{68}$ C. C. Young, ${ }^{68}$ P. R. Burchat, ${ }^{69}$ A. J. Edwards, ${ }^{69}$ T. I. Meyer, ${ }^{69}$ B. A. Petersen, ${ }^{69}$ C. Roat, ${ }^{69}$ S. Ahmed, ${ }^{70}$ M. S. Alam, ${ }^{70}$ J. A. Ernst, ${ }^{70}$ M. A. Saeed, ${ }^{70}$ M. Saleem, ${ }^{70}$ F. R. Wappler, ${ }^{70}$ W. Bugg, ${ }^{71}$ M. Krishnamurthy, ${ }^{71}$ S. M. Spanier, ${ }^{71}$ R. Eckmann, ${ }^{72}$ H. Kim, ${ }^{72}$ J. L. Ritchie, ${ }^{72}$ A. Satpathy, ${ }^{72}$ R. F. Schwitters, ${ }^{72}$ J. M. Izen, ${ }^{73}$ I. Kitayama, ${ }^{73}$ X. C. Lou, ${ }^{73}$ S. Ye, ${ }^{73}$ F. Bianchi, ${ }^{74}$ M. Bona, ${ }^{74}$ F. Gallo, ${ }^{74}$ D. Gamba, ${ }^{74}$ C. Borean, ${ }^{75}$ L. Bosisio, ${ }^{75}$ F. Cossutti, ${ }^{75}$ G. Della Ricca, ${ }^{75}$ S. Dittongo, ${ }^{75}$ S. Grancagnolo, ${ }^{75}$ L. Lanceri, ${ }^{75}$ P. Poropat, ${ }^{75, *}$ L. Vitale, ${ }^{75}$ G. Vuagnin, ${ }^{75}$ R. S. Panvini, ${ }^{76}$ Sw. Banerjee, ${ }^{77}$ C. M. Brown, ${ }^{77}$ D. Fortin, ${ }^{77}$ P. D. Jackson, ${ }^{77}$ R. Kowalewski, ${ }^{77}$ J. M. Roney, ${ }^{77}$ H. R. Band, ${ }^{78}$ S. Dasu, ${ }^{78}$ M. Datta, ${ }^{78}$ A. M. Eichenbaum, ${ }^{78}$ J. J. Hollar, ${ }^{78}$ J. R. Johnson, ${ }^{78}$ P. E. Kutter, ${ }^{78}$ H. Li, ${ }^{78}$ R. Liu, ${ }^{78}$ F. Di Lodovico, ${ }^{78}$ A. Mihalyi, ${ }^{78}$ A. K. Mohapatra, ${ }^{78}$ Y. Pan, ${ }^{78}$ R. Prepost, ${ }^{78}$ S. J. Sekula, ${ }^{78}$ P. Tan, ${ }^{78}$ J. H. von Wimmersperg-Toeller, ${ }^{78}$ J. Wu, ${ }^{78}$ S. L. Wu, ${ }^{78} \mathrm{Z}$. Yu, ${ }^{78}$ and H. Neal ${ }^{79}$
(BABAR Collaboration)
${ }^{1}$ Laboratoire de Physique des Particules, F-74941 Annecy-le-Vieux, France
${ }^{2}$ Dipartimento di Fisica, Università di Bari and INFN, I-70126 Bari, Italy
${ }^{3}$ Institute of High Energy Physics, Beijing 100039, China
${ }^{4}$ Institute of Physics, University of Bergen, N-5007 Bergen, Norway
${ }^{5}$ Lawrence Berkeley National Laboratory and University of California, Berkeley, California 94720, USA
${ }^{6}$ University of Birmingham, Birmingham B15 2TT, United Kingdom
${ }^{7}$ Institut für Experimentalphysik 1, Ruhr Universität Bochum, D-44780 Bochum, Germany
${ }^{8}$ University of Bristol, Bristol BS8 1TL, United Kingdom
${ }^{9}$ University of British Columbia, Vancouver, British Columbia, Canada V6T $1 Z 1$
${ }^{10}$ Brunel University, Uxbridge, Middlesex UB8 3PH, United Kingdom
${ }^{11}$ Budker Institute of Nuclear Physics, Novosibirsk 630090, Russia
${ }^{12}$ University of California at Irvine, Irvine, California 92697, USA
${ }^{13}$ University of California at Los Angeles, Los Angeles, California 90024, USA
${ }^{14}$ University of California at Riverside, Riverside, California 92521, USA
${ }^{15}$ University of California at San Diego, La Jolla, California 92093, USA
${ }^{16}$ University of California at Santa Barbara, Santa Barbara, California 93106, USA
${ }^{17}$ Institute for Particle Physics, University of California at Santa Cruz, Santa Cruz, California 95064, USA
${ }^{18}$ California Institute of Technology, Pasadena, California 91125, USA
${ }^{19}$ University of Cincinnati, Cincinnati, Ohio 45221, USA
${ }^{20}$ University of Colorado, Boulder, Colorado 80309, USA
${ }^{21}$ Colorado State University, Fort Collins, Colorado 80523, USA
${ }^{22}$ Institut für Kern- und Teilchenphysik, Technische Universität Dresden, D-01062 Dresden, Germany
${ }^{23}$ Ecole Polytechnique, LLR, F-91128 Palaiseau, France

${ }^{24}$ University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom
${ }^{25}$ Dipartimento di Fisica, Università di Ferrara and INFN, I-44100 Ferrara, Italy
${ }^{26}$ Florida A\&M University, Tallahassee, Florida 32307, USA
${ }^{27}$ Laboratori Nazionali di Frascati dell'INFN, I-00044 Frascati, Italy
${ }^{28}$ Dipartimento di Fisica, Università di Genova and INFN, I-16146 Genova, Italy
${ }^{29}$ Harvard University, Cambridge, Massachusetts 02138, USA
${ }^{30}$ Physikalisches Institut, Universität Heidelberg, Philosophenweg 12, D-69120 Heidelberg, Germany
${ }^{31}$ Imperial College London, London SW7 2AZ, United Kingdom
${ }^{32}$ University of Iowa, Iowa City, Iowa 52242, USA
${ }^{33}$ Iowa State University, Ames, Iowa 50011-3160, USA
${ }^{34}$ Laboratoire de l'Accélérateur Linéaire, F-91898 Orsay, France
${ }^{35}$ Lawrence Livermore National Laboratory, Livermore, California 94550, USA
${ }^{36}$ University of Liverpool, Liverpool L69 72E, United Kingdom
${ }^{37}$ Queen Mary, University of London, London E1 4NS, United Kingdom
${ }^{38}$ Royal Holloway and Bedford New College, University of London, Egham, Surrey TW20 0EX, United Kingdom
${ }^{39}$ University of Louisville, Louisville, Kentucky 40292, USA
${ }^{40}$ University of Manchester, Manchester M13 9PL, United Kingdom
${ }^{41}$ University of Maryland, College Park, Maryland 20742, USA
${ }^{42}$ University of Massachusetts, Amherst, Massachusetts 01003, USA
${ }^{43}$ Laboratory for Nuclear Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
${ }^{44}$ McGill University, Montréal, Quebec, Canada H3A 278
${ }^{45}$ Dipartimento di Fisica, Università di Milano and INFN, I-20133 Milano, Italy
${ }^{46}$ University of Mississippi, University, Mississippi 38677, USA
${ }^{47}$ Laboratoire René J. A. Lévesque, Université de Montréal, Montréal, Quebec, Canada H3C 3J7
${ }^{48}$ Mount Holyoke College, South Hadley, Massachusetts 01075, USA
${ }^{49}$ Dipartimento di Scienze Fisiche, Università di Napoli Federico II and INFN, I-80126, Napoli, Italy
${ }^{50}$ National Institute for Nuclear Physics and High Energy Physics, NIKHEF, NL-1009 DB Amsterdam, The Netherlands
${ }^{51}$ University of Notre Dame, Notre Dame, Indiana 46556, USA
${ }^{52}$ Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
${ }^{53}$ The Ohio State University, Columbus, Ohio 43210, USA
${ }^{54}$ University of Oregon, Eugene, Oregon 97403, USA
${ }^{55}$ Dipartimento di Fisica, Università di Padova and INFN, I-35131 Padova, Italy
${ }^{56}$ Lab de Physique Nucléaire H. E., Universités Paris VI et VII, F-75252 Paris, France
${ }^{57}$ Dipartimento di Elettronica, Università di Pavia and INFN, I-27100 Pavia, Italy
${ }^{58}$ University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
${ }^{59}$ Dipartimento di Fisica, Università di Perugia and INFN, I-06100 Perugia, Italy
${ }^{60}$ Dipartimento di Fisica, Scuola Normale Superiore, Università di Pisa and INFN, I-56127 Pisa, Italy
${ }^{61}$ Prairie View A\&M University, Prairie View, Texas 77446, USA
${ }^{62}$ Princeton University, Princeton, New Jersey 08544, USA
${ }^{63}$ Dipartimento di Fisica, Università di Roma La Sapienza and INFN, I-00185 Roma, Italy
${ }^{64}$ Universität Rostock, D-18051 Rostock, Germany
${ }^{65}$ Rutherford Appleton Laboratory, Chilton, Didcot, Oxon, OX11 0QX, United Kingdom
${ }^{66}$ DSM/Dapnia, CEA/Saclay, F-91191 Gif-sur-Yvette, France
${ }^{67}$ University of South Carolina, Columbia, South Carolina 29208, USA
${ }^{68}$ Stanford Linear Accelerator Center, Stanford, California 94309, USA
${ }^{69}$ Stanford University, Stanford, California 94305-4060, USA
${ }^{70}$ State University of New York, Albany, New York 12222, USA
${ }^{71}$ University of Tennessee, Knoxville, Tennessee 37996, USA
${ }^{72}$ University of Texas at Austin, Austin, Texas 78712, USA
${ }^{73}$ University of Texas at Dallas, Richardson, Texas 75083, USA
${ }^{74}$ Dipartimento di Fisica Sperimentale, Università di Torino and INFN, I-10125 Torino, Italy
${ }^{75}$ Dipartimento di Fisica, Università di Trieste and INFN, I-34127 Trieste, Italy
${ }^{76}$ Vanderbilt University, Nashville, Tennessee 37235, USA
${ }^{77}$ University of Victoria, Victoria, British Columbia, Canada V8W 3P6
${ }^{78}$ University of Wisconsin, Madison, Wisconsin 53706, USA
${ }^{79}$ Yale University, New Haven, Connecticut 06511, USA
(Received 23 January 2004; published 18 June 2004)

We study $B^{ \pm} \rightarrow J / \psi \pi^{ \pm}$and $B^{ \pm} \rightarrow J / \psi K^{ \pm}$decays in a sample of about $89 \times 10^{6} B \bar{B}$ pairs collected with the BABAR detector at the PEP-II asymmetric B factory at SLAC. We observe a signal of $244 \pm 20 B^{ \pm} \rightarrow J / \psi \pi^{ \pm}$events and determine the ratio $\mathcal{B}\left(B^{ \pm} \rightarrow J / \psi \pi^{ \pm}\right) / \mathcal{B}\left(B^{ \pm} \rightarrow J / \psi K^{ \pm}\right)$to be
$[5.37 \pm 0.45($ stat $) \pm 0.11($ syst $)] \%$. The charge asymmetries for the $B^{ \pm} \rightarrow J / \psi \pi^{ \pm}$and $B^{ \pm} \rightarrow J / \psi K^{ \pm}$ decays are determined to be $\mathcal{A}_{\pi}=0.123 \pm 0.085$ (stat) ± 0.004 (syst) and $\mathcal{A}_{K}=0.030 \pm 0.015$ (stat) \pm 0.006 (syst), respectively.

DOI: 10.1103/PhysRevLett.92.241802
PACS numbers: $13.25 . \mathrm{Hw}$, 11.30.Er, 12.38.Qk

We present an analysis of $B^{ \pm} \rightarrow J / \psi \pi^{ \pm}$and $B^{ \pm} \rightarrow$ $J / \psi K^{ \pm}$decays that measures the ratio of branching fractions and searches for direct $C P$ violation. The Cabibbosuppressed decay $B^{ \pm} \rightarrow J / \psi \pi^{ \pm}$proceeds via a $b \rightarrow c \bar{c} d$ transition. It is expected to have a rate about 5% of that of the Cabibbo-allowed mode $B^{ \pm} \rightarrow J / \psi K^{ \pm}$. The standard model predicts that for $b \rightarrow c \bar{c} s$ decays the tree and penguin contributions have a small relative weak phase and thus a small direct $C P$ violation is expected in $B^{ \pm} \rightarrow$ $J / \psi K^{ \pm}$decays. However, for $b \rightarrow c \bar{c} d$, the tree and penguin contributions have different phases and charge asymmetries as large as a few percent may occur [1,2]. In the absence of isospin violation, the $C P$ asymmetry in $B^{ \pm} \rightarrow J / \psi K^{ \pm}$provides [3] a measurement of the ratio $|\bar{A} / A|$, where $A(\bar{A})$ is the decay amplitude for the neutral mode $B^{0}\left(\bar{B}^{0}\right) \rightarrow J / \psi K_{S}^{0}$.

Previous studies of the $B^{ \pm} \rightarrow J / \psi \pi^{ \pm}$mode have been performed by the CLEO [4], the CDF [5], the BABAR [6], and the Belle [7] collaborations. The Particle Data Group (PDG) 2002 average [8] of the ratio of $B^{ \pm} \rightarrow J / \psi \pi^{ \pm}$and $B^{ \pm} \rightarrow J / \psi K^{ \pm}$branching fractions is $(4.2 \pm 0.7) \%$. A recent Belle result gives $\mathcal{B}\left(B^{ \pm} \rightarrow J / \psi \pi^{ \pm}\right)=(3.8 \pm 0.6 \pm$ $0.3) \times 10^{-5}$. The PDG 2002 averages of the charge asymmetries are $\mathcal{A}_{\pi}=-0.01 \pm 0.13$ and $\mathcal{A}_{K}=-0.007 \pm$ 0.019 [see Eq. (3) for the definition of the sign of the asymmetry].

The analysis reported in this paper is an update of the $B A B A R$ analysis in Ref. [6] and is based on a larger data set with improvements in data reconstruction. The data were recorded at the $\mathrm{Y}(4 S)$ resonance with the $B A B A R$ detector [9] at the PEP-II storage ring at the Stanford Linear Accelerator Center. The integrated luminosity is $81.9 \mathrm{fb}^{-1}$, corresponding to $89 \times 10^{6} B \bar{B}$ pairs.

At the $B A B A R$ detector, a five-layer silicon vertex tracker (SVT) and a 40-layer drift chamber (DCH), in a 1.5-T solenoidal magnetic field, provide detection of charged particles and the measurement of their momenta. Electrons are detected in a CsI electromagnetic calorimeter, while muons are identified in the magnetic flux return system (IFR), which is instrumented with multiple layers of resistive plate chambers. A ring-imaging Cherenkov detector (DIRC) with quartz radiators provides chargedparticle identification.

We fully reconstruct $B^{ \pm} \rightarrow J / \psi h^{ \pm}$decays, where $h^{ \pm}=\pi^{ \pm}$or $K^{ \pm}$, from the combination of a J / ψ candidate and a charged track $h^{ \pm}$. The J / ψ candidate is reconstructed via a $J / \psi \rightarrow e^{+} e^{-}$or $J / \psi \rightarrow \mu^{+} \mu^{-}$decay and is constrained to the nominal J / ψ mass [8]. The
electron candidates are combined with reconstructed photons in the calorimeter to recover some of the energy lost through bremsstrahlung. Details of the J / ψ reconstruction are given in Ref. [10]. Depending on the final state of the charmonium meson, the $B^{ \pm}$candidates are divided into two categories, $B_{e e}$ or $B_{\mu \mu}$. The distribution in the angle θ_{ℓ} in the J / ψ rest frame between one of the daughter leptons ℓ of the J / ψ and the line of flight of the recoiling $h^{ \pm}$is different for signal and background. The background peaks for $\left|\cos \theta_{\ell}\right|$ near one while the signal follows a $\sin ^{2} \theta_{\ell}$ distribution. We require $\left|\cos \theta_{e}\right|<0.8$ for $B_{e e}$ candidates and $\left|\cos \theta_{\mu}\right|<0.9$ for $B_{\mu \mu}$ candidates.

Signal yields and charge asymmetries are determined by an unbinned maximum likelihood fit to the data. A vertex constraint is applied to the reconstructed tracks before computing the kinematic quantities of the $B^{ \pm}$ candidate. The beam energy-substituted mass m_{ES} is defined as

$$
\begin{equation*}
m_{\mathrm{ES}}=\sqrt{\left(s / 2+\mathbf{p} \cdot \mathbf{p}_{B}\right)^{2} / E^{2}-\left|\mathbf{p}_{B}\right|^{2}} \tag{1}
\end{equation*}
$$

where \sqrt{s} is the total energy of the $e^{+} e^{-}$system in the $Y(4 S)$ rest frame, and (E, \mathbf{p}) and $\left(E_{B}, \mathbf{p}_{B}\right)$ are the fourmomenta of the $e^{+} e^{-}$system and the reconstructed B candidate, both in the laboratory frame. The kinematic variable $\Delta E_{\pi}\left(\Delta E_{K}\right)$ is defined as the difference between the reconstructed energy of the $B^{ \pm}$candidate and the beam energy in the $\Upsilon(4 S)$ rest frame assuming $h^{ \pm}=$ $\pi^{ \pm}\left(K^{ \pm}\right)$. Signal candidates for $B^{ \pm} \rightarrow J / \psi \pi^{ \pm} \quad\left(B^{ \pm} \rightarrow\right.$ $J / \psi K^{ \pm}$) peak in m_{ES} at the $B^{ \pm}$meson mass and peak in $\Delta E_{\pi}\left(\Delta E_{K}\right)$ at 0 . Candidates are required to satisfy loose requirements on these variables: $\left|\Delta E_{\pi}\right|<120 \mathrm{MeV}$, $\left|\Delta E_{K}\right|<120 \mathrm{MeV}$, and $m_{\mathrm{ES}}>5.2 \mathrm{GeV} / c^{2}$. The kinematic separation is sufficiently good (see Fig. 3) so that no explicit particle identification is required on the charged hadron $h^{ \pm}$, thereby simplifying the analysis.

The selected sample contains $3801 B_{\mu \mu}$ and $4053 B_{e e}$ candidates. Figure 1 (a) shows the m_{ES} distribution in data fitted to the sum of a Gaussian and an empirical phasespace function (Argus function [11]) describing the signal and background components, respectively. Figure 1(b) shows the ΔE_{K} distribution for data candidates with $m_{\mathrm{ES}}>5.27 \mathrm{GeV} / c^{2}$ fitted to the sum of a double Gaussian and a polynomial function, describing the dominant $B^{ \pm} \rightarrow J / \psi K^{ \pm}$signal and the background contribution, respectively.

The background (bkg) from continuum and generic $B \bar{B}$ decays is characterized using events that are outside the

FIG. 1. (a) The m_{ES} distribution for the $B^{ \pm}$candidates in data. A fit to the sum of a Gaussian and an empirical threshold function (dashed curve) is superimposed. The fitted resolution is approximately $2.5 \mathrm{MeV} / c^{2}$. (b) The ΔE_{K} distribution for the $B^{ \pm}$candidates in data with $m_{\mathrm{ES}}>5.27 \mathrm{GeV} / c^{2}$. A fit to the sum of a double Gaussian and a 3rd order polynomial function (dashed curve) is superimposed. The fitted resolution is approximately 10.5 MeV .
signal regions (sidebands of the data sample). Candidates in the m_{ES} sideband are defined by the requirement $5.20<$ $m_{\mathrm{ES}}<5.27 \mathrm{GeV} / c^{2}$, where the upper limit is approximately 4 times the experimental resolution below the B mass. Candidates in the ΔE_{K} and ΔE_{π} sidebands are defined by the requirement $42<\left|\Delta E_{K}\right|<120 \mathrm{MeV}$ and $42<\left|\Delta E_{\pi}\right|<120 \mathrm{MeV}$, where the lower limit is approximately 4 times the ΔE resolution obtained from the fit shown in Fig. 1(b).

We maximize the following extended likelihood function:

$$
L=e^{-\sum_{i} N_{i}} \prod_{j=1}^{M} \sum_{i} P_{i}\left(\Delta E_{\pi}^{j}, p_{h}^{j}, m_{\mathrm{ES}}^{j}\right) c_{i}\left(q^{j}\right) N_{i}
$$

where j is the index of the event, i is the index of the hypothesis $(i=\pi, K, \mathrm{bkg}), N_{i}$ is the yield for each hypothesis, and M is the total number of events in the sample. The arguments of the probability density functions (PDFs) P_{i} are the kinematic observables $\left(\Delta E_{\pi}, p_{h}, m_{\mathrm{ES}}\right)$, where p_{h} is the $h^{ \pm}$momentum in the laboratory frame. We use different PDFs for $B_{e e}$ and $B_{\mu \mu}$ candidates, while we assume the same PDFs for B^{+}and B^{-}candidates.

The factor $c_{i}(q)$ is the fraction of candidates with charge q in hypothesis i :

$$
c_{i}(q)= \begin{cases}1 / 2\left(1-\mathcal{A}_{i}\right), & \text { if } q=+1, \tag{2}\\ 1 / 2\left(1+\mathcal{A}_{i}\right), & \text { if } q=-1\end{cases}
$$

where \mathcal{A}_{i} is the charge asymmetry:

$$
\begin{equation*}
\mathcal{A}_{i}=\frac{N_{i}^{-}-N_{i}^{+}}{N_{i}^{-}+N_{i}^{+}} \tag{3}
\end{equation*}
$$

The yields N_{i} and the asymmetries A_{i} are free parameters in the likelihood fit.

Since the measured variables ΔE_{π} and p_{h} are correlated, we define a new set of variables:

$$
\begin{aligned}
& D=\Delta E_{K}-\Delta E_{\pi}=\gamma\left(\sqrt{p_{h}^{2}+m_{K}^{2}}-\sqrt{p_{h}^{2}+m_{\pi}^{2}}\right) \\
& \Sigma=\left(\Delta E_{K}+\Delta E_{\pi}\right) /(D-a) \\
& \Pi=D(D / 2-a)
\end{aligned}
$$

where γ is the Lorentz boost from the laboratory frame to the $\mathrm{Y}(4 S)$ rest frame and $a=240 \mathrm{MeV}$ is twice the maximum $\left|\Delta E_{\pi}\right|$ or $\left|\Delta E_{K}\right|$ value for the data sample. These variables have the property that $\left(\Delta E_{\pi}, D\right)$ in the pion hypothesis, $\left(\Delta E_{K}, D\right)$ in the kaon hypothesis, and (Σ, Π) in the background hypothesis are correlated at less than the few percent level. Therefore each P_{i} can be written as a product of one-dimensional PDFs:

$$
\begin{gathered}
P_{\pi}\left(\Delta E_{\pi}, p_{h}, m_{\mathrm{ES}}\right)=f_{\pi}\left(\Delta E_{\pi}\right) g_{\pi}(D) h_{\pi}\left(m_{\mathrm{ES}}\right) \\
P_{K}\left(\Delta E_{\pi}, p_{h}, m_{\mathrm{ES}}\right)=f_{K}\left(\Delta E_{K}\right) g_{K}(D) h_{K}\left(m_{\mathrm{ES}}\right) \\
P_{\mathrm{bkg}}\left(\Delta E_{\pi}, p_{h}, m_{\mathrm{ES}}\right)=f_{\mathrm{bkg}}(\Sigma) g_{\mathrm{bkg}}(\Pi) h_{\mathrm{bkg}}\left(m_{\mathrm{ES}}\right)
\end{gathered}
$$

The f_{π} and f_{K} components are represented by double Gaussians, while h_{π} and h_{K} are described by single Gaussians. The parameters of f_{π} and h_{π} are constrained to be equal to the parameters of f_{K} and h_{K}, respectively. They are free parameters in the likelihood fit and are extracted together with the yields. This strategy reduces the systematic error due to possible inaccuracies of the Monte Carlo (MC) simulation in describing the ΔE and $m_{\text {ES }}$ distributions.

The g_{π} and g_{K} components are each represented by a phenomenological function with seven fixed parameters estimated from the MC simulation. They follow an exponential shape with Gaussian edges.

The $f_{\text {bkg }}$ component is represented by a linear phenomenological function with fixed parameters estimated from the distribution of Σ for events in the m_{ES} sideband [Fig. 2(a)].

The $g_{\text {bkg }}$ component is represented by a phenomenological function with 12 fixed parameters, all estimated from the distribution of Π for events in the m_{ES} sideband [Fig. 2(b)].

The h_{bkg} component is represented by the sum of an Argus function and a Gaussian function, with fixed parameters. The shape parameters are estimated from the distribution of m_{ES} for events in both the ΔE_{K} and ΔE_{π} sidebands. The small number of background events peaking in the m_{ES} signal region is due to candidates reconstructed from other $B \rightarrow J / \psi X$ decays. From detailed MC simulations of inclusive charmonium decays we

FIG. 2. The distribution of (a) Σ and (b) Π for events in the $m_{\text {ES }}$ sideband in data. The curve corresponds to the projection of the best fit.
determine 40 ± 7 peaking background events in our sample.

The yields determined with the unbinned maximum likelihood fit to the data sample are reported in Table I. The correlation coefficient between N_{π} and N_{K} is -0.02 . The probability to obtain a maximum value of the likelihood smaller than the observed value is 50%, estimated by MC techniques. Figure 3 shows the distributions of ΔE_{π} for the events in the data, compared with the distributions obtained by generating events with a parametric MC simulation based on the PDFs used in the fit.

Possible biases in the likelihood estimates were investigated by performing the fit on simulated samples of known composition and of the same size as the data. The samples were generated with parametric MC simulations based on the PDFs used in the fit. There is no evidence of bias in the fitted asymmetries, while a less than 1% deviation in the fitted yields from the nominal values is present. After correcting the yields for the observed bias, we obtain $N_{\pi}=244 \pm 20, N_{K}=4548 \pm$ 70 , and a ratio of branching fractions of $(5.37 \pm 0.45) \%$ with an absolute systematic error of 0.11%. The dominant source of systematic error is the fixed parameters of the PDFs, primarily the PDFs that describe the background. Other sources of systematic uncertainty, such as differences in the reconstruction efficiencies for $J / \psi \pi^{ \pm}$and $J / \psi K^{ \pm}$events and inaccuracies in the description of the tails of the ΔE resolution function, are found to be negligible.

TABLE I. Uncorrected yields N_{i} and uncorrected charge asymmetries \mathcal{A}_{i} from the fit to the data sample.

i	N_{i}	\mathcal{A}_{i}
π	242 ± 20	0.117 ± 0.084
K	4538 ± 70	0.028 ± 0.015
$b k g$	3074 ± 60	0.019 ± 0.020

The sample that is used to determine the charge asymmetries is defined by imposing as a further requirement that the charged track $h^{ \pm}$has a polar angle in the range [0.41, 2.54] radians, includes at least 12 DCH hits, has a momentum in the transverse plane $p_{t}>100 \mathrm{MeV} / c$, and points back to the nominal interaction point within 1.5 cm in the transverse plane and within 3 cm along the longitudinal direction. For these tracks the difference in tracking efficiency between positively and negatively charged tracks-primarily pions-has been studied in hadronic events by comparing independently the SVT and DCH tracking systems.

The selected sample contains $3902 B^{-} \rightarrow J / \psi h^{-}$and $3696 B^{+} \rightarrow J / \psi h^{+}$candidates. From the likelihood fit we obtain the charge asymmetries reported in Table I. The correlation coefficient between \mathcal{A}_{π} and \mathcal{A}_{K} is -0.003 . Using MC techniques we estimate that the probability to obtain a fitted asymmetry \mathcal{A}_{K} greater or equal to the one observed, in the hypothesis of zero asymmetry, is 6.7%.

We correct the fitted asymmetries for the small observed difference in tracking efficiency between positively and negatively charged tracks, obtaining $\mathcal{A}_{\pi}=$ 0.123 ± 0.085 and $\mathcal{A}_{K}=0.030 \pm 0.015$. The uncertainty on the corrections contributes 0.004 and 0.005 to the systematic error on \mathcal{A}_{π} and \mathcal{A}_{K}, respectively. The asymmetry induced by the different probability of K^{+} and K^{-}interactions in the detector material before the DCH is estimated to be -0.004 . This value is conservatively assumed to be a contribution to the systematic uncertainty. The uncertainty in the fixed parameters of the PDFs, determined by fits to simulated or nonsignal data sets, contributes 0.001 to the systematic errors on both \mathcal{A}_{π} and \mathcal{A}_{K}.

Summing in quadrature statistical and systematic errors, we obtain a 90% C.L. interval of $[-0.017,0.263]$ for \mathcal{A}_{π} and $[0.003,0.057]$ for \mathcal{A}_{K}.

FIG. 3. The ΔE_{π} distribution in data (points) compared with the distribution obtained from a simulated experiment (histogram). The distributions for each simulated component in the sample, normalized to the fitted event yields, are also displayed.

In conclusion we measure the ratio of branching fractions

$$
\frac{\mathcal{B}\left(B^{ \pm} \rightarrow J / \psi \pi^{ \pm}\right)}{\mathcal{B}\left(B^{ \pm} \rightarrow J / \psi K^{ \pm}\right)}=[5.37 \pm 0.45(\text { stat }) \pm 0.11(\text { syst })] \%
$$

which is consistent with theoretical expectations and with previous measurements. We also determine the charge asymmetries

$$
\begin{aligned}
& \mathcal{A}_{\pi}=0.123 \pm 0.085(\mathrm{stat}) \pm 0.004(\mathrm{syst}), \\
& \mathcal{A}_{K}=0.030 \pm 0.015(\mathrm{stat}) \pm 0.006(\mathrm{syst})
\end{aligned}
$$

Our results are consistent with previous measurements but with significant improvement in the precision.

We are grateful for the excellent luminosity and machine conditions provided by our PEP-II colleagues, and for the substantial dedicated effort from the computing organizations that support $B A B A R$. The collaborating institutions wish to thank SLAC for its support and kind hospitality. This work is supported by DOE and NSF (USA), NSERC (Canada), IHEP (China), CEA and CNRS-IN2P3 (France), BMBF and DFG (Germany), INFN (Italy), FOM (The Netherlands), NFR (Norway), MIST (Russia), and PPARC (United Kingdom). Individuals have received support from
the A. P. Sloan Foundation, the Research Corporation, and the Alexander von Humboldt Foundation.
*Also with Università della Basilicata, Potenza, Italy.
${ }^{\dagger}$ Also with IFIC, Instituto de Física Corpuscular, CSICUniversidad de Valencia, Valencia, Spain.
${ }^{\ddagger}$ Deceased.
[1] M. Gronau, Phys. Rev. Lett. 63, 1451 (1989).
[2] I. Dunietz, Phys. Lett. B 316, 561 (1993).
[3] Y. Nir, Nucl. Phys. B, Proc. Suppl. 117, 111 (2003).
[4] CLEO Collaboration, M. Bishai et al., Phys. Lett. B 369, 186 (1996).
[5] CDF Collaboration, F. Abe et al., Phys. Rev. Lett. 77, 5176 (1996).
[6] BABAR Collaboration, B. Aubert et al., Phys. Rev. D 65, 091101 (2002).
[7] BELLE Collaboration, K. Abe et al., Phys. Rev. D 67, 032003 (2003).
[8] Particle Data Group, K. Hagiwara et al., Phys. Rev. D 66, 010001 (2002).
[9] BABAR Collaboration, B. Aubert et al., Nucl. Instrum. Methods Phys. Res., Sect. A 479, 1 (2002).
[10] BABAR Collaboration, B. Aubert et al., Phys. Rev. D 65, 032001 (2002).
[11] ARGUS Collaboration, H. Albrecht et al., Z. Phys. C 48, 543 (1990).

