Limits on the Decay-Rate Difference of Neutral B Mesons and on $C P, T$, and $C P T$ Violation in $B^{0} \bar{B}^{0}$ Oscillations

B. Aubert, ${ }^{1}$ R. Barate, ${ }^{1}$ D. Boutigny, ${ }^{1}$ J.-M. Gaillard, ${ }^{1}$ A. Hicheur, ${ }^{1}$ Y. Karyotakis, ${ }^{1}$ J. P. Lees, ${ }^{1}$ P. Robbe, ${ }^{1}$ V. Tisserand, ${ }^{1}$ A. Zghiche, ${ }^{1}$ A. Palano, ${ }^{2}$ A. Pompili, ${ }^{2}$ J. C. Chen, ${ }^{3}$ N. D. Qi, ${ }^{3}$ G. Rong, ${ }^{3}$ P. Wang, ${ }^{3}$ Y. S. Zhu, ${ }^{3}$ G. Eigen, ${ }^{4}$ I. Ofte, ${ }^{4}$ B. Stugu, ${ }^{4}$ G.S. Abrams, ${ }^{5}$ A.W. Borgland, ${ }^{5}$ A. B. Breon, ${ }^{5}$ D. N. Brown, ${ }^{5}$ J. Button-Shafer, ${ }^{5}$ R. N. Cahn, ${ }^{5}$ E. Charles, ${ }^{5}$ C.T. Day, ${ }^{5}$ M. S. Gill, ${ }^{5}$ A.V. Gritsan, ${ }^{5}$ Y. Groysman, ${ }^{5}$ R. G. Jacobsen, ${ }^{5}$ R.W. Kadel, ${ }^{5}$ J. Kadyk, ${ }^{5}$ L. T. Kerth, ${ }^{5}$ Yu. G. Kolomensky, ${ }^{5}$ J. F. Kral, ${ }^{5}$ G. Kukartsev, ${ }^{5}$ C. LeClerc, ${ }^{5}$ M. E. Levi, ${ }^{5}$ G. Lynch, ${ }^{5}$ L. M. Mir, ${ }^{5}$ P. J. Oddone, ${ }^{5}$ T. J. Orimoto, ${ }^{5}$ M. Pripstein, ${ }^{5}$ N. A. Roe, ${ }^{5}$ A. Romosan, ${ }^{5}$ M. T. Ronan, ${ }^{5}$ V. G. Shelkov, ${ }^{5}$ A.V. Telnov, ${ }^{5}$ W. A. Wenzel, ${ }^{5}$ K. Ford, ${ }^{6}$ T. J. Harrison, ${ }^{6}$ C. M. Hawkes, ${ }^{6}$ D. J. Knowles, ${ }^{6}$ S. E. Morgan, ${ }^{6}$ R. C. Penny, ${ }^{6}$ A. T. Watson, ${ }^{6}$ N. K. Watson, ${ }^{6}$
T. Deppermann, ${ }^{7}$ K. Goetzen, ${ }^{7}$ T. Held, ${ }^{7}$ H. Koch, ${ }^{7}$ B. Lewandowski, ${ }^{7}$ M. Pelizaeus, ${ }^{7}$ K. Peters, ${ }^{7}$ H. Schmuecker, ${ }^{7}$ M. Steinke, ${ }^{7}$ N. R. Barlow,,${ }^{8}$ J.T. Boyd,,${ }^{8}$ N. Chevalier, ${ }^{8}$ W. N. Cottingham, ${ }^{8}$ M. P. Kelly, ${ }^{8}$ T. E. Latham, ${ }^{8}$ C. Mackay, ${ }^{8}$ F. F. Wilson, ${ }^{8}$ K. Abe, ${ }^{9}$ T. Cuhadar-Donszelmann, ${ }^{9}$ C. Hearty, ${ }^{9}$ T. S. Mattison, ${ }^{9}$ J. A. McKenna, ${ }^{9}$ D. Thiessen, ${ }^{9}$ P. Kyberd, ${ }^{10}$ A. K. McKemey, ${ }^{10}$ V. E. Blinov, ${ }^{11}$ A. D. Bukin, ${ }^{11}$ V. B. Golubev, ${ }^{11}$ V. N. Ivanchenko, ${ }^{11}$ E. A. Kravchenko, ${ }^{11}$ A. P. Onuchin, ${ }^{11}$ S. I. Serednyakov, ${ }^{11}$ Yu. I. Skovpen, ${ }^{11}$ E. P. Solodov, ${ }^{11}$ A. N. Yushkov, ${ }^{11}$ D. Best, ${ }^{12}$ M. Bruinsma, ${ }^{12}$ M. Chao, ${ }^{12}$ D. Kirkby, ${ }^{12}$ A. J. Lankford, ${ }^{12}$ M. Mandelkern, ${ }^{12}$ R. K. Mommsen, ${ }^{12}$ W. Roethel, ${ }^{12}$ D. P. Stoker, ${ }^{12}$ C. Buchanan, ${ }^{13}$ B. L. Hartfiel, ${ }^{13}$ B. C. Shen, ${ }^{14}$ D. del Re, ${ }^{15}$ H. K. Hadavand, ${ }^{15}$ E. J. Hill, ${ }^{15}$ D. B. MacFarlane, ${ }^{15}$ H. P. Paar, ${ }^{15}$ Sh. Rahatlou, ${ }^{15}$ V. Sharma, ${ }^{15}$ J.W. Berryhill, ${ }^{16}$ C. Campagnari, ${ }^{16}$ B. Dahmes,,${ }^{16}$ S. L. Levy, ${ }^{16}$ O. Long, ${ }^{16}$ A. Lu, ${ }^{16}$ M. A. Mazur, ${ }^{16}$ J. D. Richman, ${ }^{16}$ W. Verkerke, ${ }^{16}$ T.W. Beck, ${ }^{17}$ J. Beringer,,${ }^{17}$ A. M. Eisner, ${ }^{17}$ C. A. Heusch, ${ }^{17}$ W. S. Lockman, ${ }^{17}$ T. Schalk, ${ }^{17}$ R. E. Schmitz, ${ }^{17}$ B. A. Schumm, ${ }^{17}$ A. Seiden, ${ }^{17}$ M. Turri, ${ }^{17}$ W. Walkowiak, ${ }^{17}$ D. C. Williams, ${ }^{17}$ M. G. Wilson,,${ }^{17}$ J. Albert, ${ }^{18}$ E. Chen, ${ }^{18}$ G. P. Dubois-Felsmann, ${ }^{18}$ A. Dvoretskii, ${ }^{18}$ D. G. Hitlin, ${ }^{18}$ I. Narsky, ${ }^{18}$ F. C. Porter ${ }^{18}$ A. Ryd, ${ }^{18}$ A. Samuel,${ }^{18}$ S. Yang, ${ }^{18}$ S. Jayatilleke, ${ }^{19}$ G. Mancinelli, ${ }^{19}$ B. T. Meadows, ${ }^{19}$ M. D. Sokoloff, ${ }^{19}$ T. Abe, ${ }^{20}$ F. Blanc,,${ }^{20}$ P. Bloom, ${ }^{20}$ S. Chen, ${ }^{20}$ P. J. Clark, ${ }^{20}$ W. T. Ford, ${ }^{20}$ U. Nauenberg, ${ }^{20}$ A. Olivas, ${ }^{20}$ P. Rankin, ${ }^{20}$ J. Roy, ${ }^{20}$ J. G. Smith, ${ }^{20}$ W. C. van Hoek, ${ }^{20}$ L. Zhang, ${ }^{20}$ J. L. Harton, ${ }^{21}$ T. Hu, ${ }^{21}$ A. Soffer, ${ }^{21}$ W. H. Toki, ${ }^{21}$ R. J. Wilson, ${ }^{21}$ J. Zhang, ${ }^{21}$ D. Altenburg, ${ }^{22}$ T. Brandt, ${ }^{22}$ J. Brose, ${ }^{22}$ T. Colberg, ${ }^{22}$ M. Dickopp, ${ }^{22}$ R. S. Dubitzky, ${ }^{22}$
A. Hauke, ${ }^{22}$ H. M. Lacker, ${ }^{22}$ E. Maly, ${ }^{22}$ R. Müller-Pfefferkorn, ${ }^{22}$ R. Nogowski, ${ }^{22}$ S. Otto, ${ }^{22}$ J. Schubert, ${ }^{22}$ K. R. Schubert, ${ }^{22}$ R. Schwierz, ${ }^{22}$ B. Spaan, ${ }^{22}$ L. Wilden, ${ }^{22}$ D. Bernard, ${ }^{23}$ G. R. Bonneaud, ${ }^{23}$ F. Brochard, ${ }^{23}$ J. Cohen-Tanugi, ${ }^{23}$ P. Grenier, ${ }^{23}$ Ch. Thiebaux,,${ }^{23}$ G. Vasileiadis, ${ }^{23}$ M. Verderi, ${ }^{23}$ A. Khan, ${ }^{24}$ D. Lavin, ${ }^{24}$ F. Muheim,,${ }^{24}$ S. Playfer, ${ }^{24}$ J. E. Swain, ${ }^{24}$ J. Tinslay, ${ }^{24}$ M. Andreotti, ${ }^{25}$ V. Azzolini, ${ }^{25}$ D. Bettoni, ${ }^{25}$ C. Bozzi, ${ }^{25}$ R. Calabrese, ${ }^{25}$ G. Cibinetto, ${ }^{25}$ E. Luppi, ${ }^{25}$ M. Negrini, ${ }^{25}$ L. Piemontese, ${ }^{25}$ A. Sarti, ${ }^{25}$ E. Treadwell, ${ }^{26}$ F. Anulli, ${ }^{27, *}$ R. Baldini-Ferroli, ${ }^{27}$ M. Biasini, ${ }^{27, *}$ A. Calcaterra, ${ }^{27}$ R. de Sangro, ${ }^{27}$ D. Falciai, ${ }^{27}$ G. Finocchiaro, ${ }^{27}$ P. Patteri, ${ }^{27}$ I. M. Peruzzi, ${ }^{27, *}$ M. Piccolo, ${ }^{27}$ M. Pioppi, ${ }^{27, *}$ A. Zallo, ${ }^{27}$ A. Buzzo, ${ }^{28}$ R. Capra, ${ }^{28}$ R. Contri, ${ }^{28}$ G. Crosetti, ${ }^{28}$ M. Lo Vetere, ${ }^{28}$ M. Macri, ${ }^{28}$ M. R. Monge, ${ }^{28}$ S. Passaggio, ${ }^{28}$ C. Patrignani, ${ }^{28}$ E. Robutti, ${ }^{28}$ A. Santroni, ${ }^{28}$ S. Tosi, ${ }^{28}$ S. Bailey, ${ }^{29}$ M. Morii, ${ }^{29}$ E. Won, ${ }^{29}$ W. Bhimji, ${ }^{30}$ D. A. Bowerman, ${ }^{30}$ P. D. Dauncey, ${ }^{30}$ U. Egede, ${ }^{30}$ I. Eschrich, ${ }^{30}$ J. R. Gaillard, ${ }^{30}$ G.W. Morton, ${ }^{30}$ J. A. Nash, ${ }^{30}$ P. Sanders, ${ }^{30}$ G. P. Taylor, ${ }^{30}$ G. J. Grenier, ${ }^{31}$ S.-J. Lee,,${ }^{31}$ U. Mallik, ${ }^{31}$ J. Cochran, ${ }^{32}$ H. B. Crawley, ${ }^{32}$ J. Lamsa, ${ }^{32}$ W.T. Meyer, ${ }^{32}$ S. Prell, ${ }^{32}$ E. I. Rosenberg,,${ }^{32}$ J. Yi, ${ }^{32}$ M. Davier, ${ }^{33}$ G. Grosdidier, ${ }^{33}$ A. Höcker, ${ }^{33}$ S. Laplace, ${ }^{33}$ F. Le Diberder, ${ }^{33}$ V. Lepeltier, ${ }^{33}$ A. M. Lutz, ${ }^{33}$ T. C. Petersen, ${ }^{33}$ S. Plaszczynski, ${ }^{33}$ M. H. Schune, ${ }^{33}$ L. Tantot, ${ }^{33}$ G. Wormser, ${ }^{33}$ V. Brigljević, ${ }^{34}$ C. H. Cheng, ${ }^{34}$ D. J. Lange, ${ }^{34}$ D. M. Wright, ${ }^{34}$ A. J. Bevan, ${ }^{35}$ J. P. Coleman, ${ }^{35}$ J. R. Fry, ${ }^{35}$ E. Gabathuler, ${ }^{35}$ R. Gamet, ${ }^{35}$ M. Kay, ${ }^{35}$ R. J. Parry, ${ }^{35}$ D. J. Payne, ${ }^{35}$ R. J. Sloane, ${ }^{35}$ C. Touramanis, ${ }^{35}$ J. J. Back,,${ }^{36}$ P. F. Harrison, ${ }^{36}$ H.W. Shorthouse, ${ }^{36}$ P. Strother, ${ }^{36}$ P. B. Vidal, ${ }^{36}$ C. L. Brown, ${ }^{37}$ G. Cowan, ${ }^{37}$ R. L. Flack, ${ }^{37}$ H. U. Flaecher, ${ }^{37}$ S. George, ${ }^{37}$ M. G. Green,,${ }^{37}$ A. Kurup, ${ }^{37}$ C. E. Marker, ${ }^{37}$ T. R. McMahon,,${ }^{37}$ S. Ricciardi, ${ }^{37}$ F. Salvatore, ${ }^{37}$ G. Vaitsas, ${ }^{37}$ M. A. Winter, ${ }^{37}$ D. Brown, ${ }^{38}$ C. L. Davis, ${ }^{38}$ J. Allison, ${ }^{39}$ R. J. Barlow, ${ }^{39}$ A. C. Forti, ${ }^{39}$ P. A. Hart, ${ }^{39}$ F. Jackson, ${ }^{39}$ G. D. Lafferty, ${ }^{39}$ A. J. Lyon, ${ }^{39}$ J. H. Weatherall, ${ }^{39}$ J. C. Williams, ${ }^{39}$ A. Farbin, ${ }^{40}$ A. Jawahery, ${ }^{40}$ D. Kovalskyi, ${ }^{40}$ C. K. Lae, ${ }^{40}$ V. Lillard, ${ }^{40}$ D. A. Roberts, ${ }^{40}$ G. Blaylock, ${ }^{41}$ C. Dallapiccola, ${ }^{41}$ K. T. Flood, ${ }^{41}$ S. S. Hertzbach, ${ }^{41}$ R. Kofler, ${ }^{41}$ V. B. Koptchev, ${ }^{41}$ T. B. Moore, ${ }^{41}$ S. Saremi, ${ }^{41}$ H. Staengle, ${ }^{41}$ S. Willocq, ${ }^{41}$ R. Cowan, ${ }^{42}$ G. Sciolla, ${ }^{42}$ F. Taylor, ${ }^{42}$ R. K. Yamamoto, ${ }^{42}$ D. J. J. Mangeol, ${ }^{43}$ M. Milek, ${ }^{43}$ P. M. Patel, ${ }^{43}$ A. Lazzaro, ${ }^{44}$ F. Palombo, ${ }^{44}$ J. M. Bauer, ${ }^{45}$ L. Cremaldi, ${ }^{45}$ V. Eschenburg, ${ }^{45}$ R. Godang, ${ }^{45}$ R. Kroeger, ${ }^{45}$ J. Reidy, ${ }^{45}$ D. A. Sanders, ${ }^{45}$ D. J. Summers, ${ }^{45}$ H.W. Zhao, ${ }^{45}$ S. Brunet, ${ }^{46}$ D. Cote-Ahern, ${ }^{46}$ C. Hast, ${ }^{46}$ P. Taras, ${ }^{46}$ H. Nicholson, ${ }^{47}$ C. Cartaro, ${ }^{48}$ N. Cavallo, ${ }^{48}$ G. De Nardo, ${ }^{48}$ F. Fabozzi,,$^{48, \dagger}$ C. Gatto, ${ }^{48}$ L. Lista, ${ }^{48}$ P. Paolucci, ${ }^{48}$ D. Piccolo, ${ }^{48}$ C. Sciacca, ${ }^{48}$ M. A. Baak, ${ }^{49}$ G. Raven, ${ }^{49}$ J. M. LoSecco, ${ }^{50}$ T. A. Gabriel, ${ }^{51}$ B. Brau, ${ }^{52}$ K. K. Gan, ${ }^{52}$ K. Honscheid, ${ }^{52}$ D. Hufnagel, ${ }^{52}$ H. Kagan,,${ }^{52}$ R. Kass, ${ }^{52}$
T. Pulliam, ${ }^{52}$ Q. K. Wong, ${ }^{52}$ J. Brau, ${ }^{53}$ R. Frey, ${ }^{53}$ C. T. Potter, ${ }^{53}$ N. B. Sinev, ${ }^{53}$ D. Strom, ${ }^{53}$ E. Torrence, ${ }^{53}$ F. Colecchia, ${ }^{54}$ A. Dorigo, ${ }^{54}$ F. Galeazzi, ${ }^{54}$ M. Margoni, ${ }^{54}$ M. Morandin, ${ }^{54}$ M. Posocco, ${ }^{54}$ M. Rotondo, ${ }^{54}$ F. Simonetto, ${ }^{54}$ R. Stroili, ${ }^{54}$ G. Tiozzo, ${ }^{54}$ C. Voci, ${ }^{54}$ M. Benayoun, ${ }^{55}$ H. Briand, ${ }^{55}$ J. Chauveau, ${ }^{55}$ P. David, ${ }^{55} \mathrm{Ch}$. de la Vaissière, ${ }^{55}$ L. Del Buono, ${ }^{55}$ O. Hamon, ${ }^{55}$ M. J. J. John, ${ }^{55}$ Ph. Leruste, ${ }^{55}$ J. Ocariz, ${ }^{55}$ M. Pivk, ${ }^{55}$ L. Roos, ${ }^{58}$ J. Stark, ${ }^{58}$ S. T'Jampens, ${ }^{58}$ G. Therin, ${ }^{58}$ P. F. Manfredi, ${ }^{56}$ V. Re, ${ }^{56}$ P. K. Behera, ${ }^{57}$ L. Gladney, ${ }^{57}$ Q. H. Guo, ${ }^{57}$ J. Panetta, ${ }^{57}$ C. Angelini, ${ }^{58}$ G. Batignani, ${ }^{58}$ S. Bettarini, ${ }^{58}$ M. Bondioli, ${ }^{58}$ F. Bucci, ${ }^{58}$ G. Calderini, ${ }^{58}$ M. Carpinelli, ${ }^{58}$ F. Forti, ${ }^{58}$ M. A. Giorgi, ${ }^{58}$ A. Lusiani, ${ }^{58}$ G. Marchiori, ${ }^{58}$ F. Martinez-Vidal, ${ }^{58,}{ }^{\ddagger}$ M. Morganti, ${ }^{58}$ N. Neri, ${ }^{58}$ E. Paoloni, ${ }^{58}$ M. Rama, ${ }^{58}$ G. Rizzo, ${ }^{58}$ F. Sandrelli, ${ }^{58}$ J. Walsh, ${ }^{58}$ M. Haire, ${ }^{59}$ D. Judd, ${ }^{59}$ K. Paick, ${ }^{59}$ D. E. Wagoner, ${ }^{59}$ N. Danielson, ${ }^{60}$ P. Elmer, ${ }^{60}$ C. Lu, ${ }^{60}$ V. Miftakov, ${ }^{60}$ J. Olsen, ${ }^{60}$ A. J. S. Smith, ${ }^{60}$ H. A. Tanaka, ${ }^{60}$ E.W. Varnes, ${ }^{60}$ F. Bellini, ${ }^{61}$ G. Cavoto, ${ }^{60,61}$ R. Faccini, ${ }^{15,61}$ F. Ferrarotto, ${ }^{61}$ F. Ferroni, ${ }^{61}$ M. Gaspero, ${ }^{61}$ M. A. Mazzoni, ${ }^{61}$ S. Morganti, ${ }^{61}$ M. Pierini, ${ }^{61}$ G. Piredda, ${ }^{61}$ F. Safai Tehrani, ${ }^{61}$ C. Voena, ${ }^{61}$ S. Christ, ${ }^{62}$ G. Wagner, ${ }^{62}$ R. Waldi, ${ }^{62}$ T. Adye, ${ }^{63}$ N. De Groot, ${ }^{63}$ B. Franek, ${ }^{63}$ N. I. Geddes, ${ }^{63}$ G. P. Gopal, ${ }^{63}$ E. O. Olaiya, ${ }^{63}$ S. M. Xella, ${ }^{63}$ R. Aleksan, ${ }^{64}$ S. Emery, ${ }^{64}$ A. Gaidot, ${ }^{64}$ S. F. Ganzhur, ${ }^{64}$ P.-F. Giraud, ${ }^{64}$ G. Hamel de Monchenault, ${ }^{64}$ W. Kozanecki,,64 M. Langer, ${ }^{64}$ M. Legendre, ${ }^{64}$ G. W. London, ${ }^{64}$ B. Mayer, ${ }^{64}$ G. Schott, ${ }^{64}$ G. Vasseur, ${ }^{64}$ Ch. Yeche, ${ }^{64}$ M. Zito, ${ }^{64}$ M.V. Purohit, ${ }^{65}$ A.W. Weidemann, ${ }^{65}$ F. X. Yumiceva, ${ }^{65}$ D. Aston, ${ }^{66}$ R. Bartoldus, ${ }^{66}$ N. Berger, ${ }^{66}$
A. M. Boyarski, ${ }^{66}$ O. L. Buchmueller, ${ }^{66}$ M. R. Convery, ${ }^{66}$ D. P. Coupal, ${ }^{66}$ D. Dong, ${ }^{66}$ J. Dorfan, ${ }^{66}$ D. Dujmic, ${ }^{66}$ W. Dunwoodie, ${ }^{66}$ R. C. Field, ${ }^{66}$ T. Glanzman, ${ }^{66}$ S. J. Gowdy, ${ }^{66}$ E. Granges-Pous, ${ }^{66}$ T. Hadig, ${ }^{66}$ V. Halyo, ${ }^{66}$ T. Hryn'ova, ${ }^{66}$ W. R. Innes, ${ }^{66}$ C. P. Jessop, ${ }^{66}$ M. H. Kelsey, ${ }^{66}$ P. Kim, ${ }^{66}$ M. L. Kocian, ${ }^{66}$ U. Langenegger, ${ }^{66}$ D. W. G. S. Leith, ${ }^{66}$ S. Luitz, ${ }^{66}$ V. Luth, ${ }^{66}$ H. L. Lynch, ${ }^{66}$ H. Marsiske, ${ }^{66}$ R. Messner, ${ }^{66}$ D. R. Muller, ${ }^{66}$ C. P. O’Grady, ${ }^{66}$ V. E. Ozcan, ${ }^{66}$ A. Perazzo, ${ }^{66}$ M. Perl, ${ }^{66}$ S. Petrak, ${ }^{66}$ B. N. Ratcliff, ${ }^{66}$ S. H. Robertson, ${ }^{66}$ A. Roodman, ${ }^{66}$ A. A. Salnikov, ${ }^{66}$ R. H. Schindler, ${ }^{66}$ J. Schwiening, ${ }^{66}$ G. Simi, ${ }^{66}$ A. Snyder, ${ }^{66}$ A. Soha, ${ }^{66}$ J. Stelzer, ${ }^{66}$ D. Su, ${ }^{66}$ M. K. Sullivan, ${ }^{66}$ J. Va'vra, ${ }^{66}$ S. R. Wagner, ${ }^{66}$ M. Weaver, ${ }^{66}$ A. J. R. Weinstein, ${ }^{66}$ W. J. Wisniewski, ${ }^{66}$ D. H. Wright, ${ }^{66}$ C. C. Young, ${ }^{66}$ P. R. Burchat, ${ }^{67}$ A. J. Edwards, ${ }^{67}$ T. I. Meyer, ${ }^{67}$ B. A. Petersen, ${ }^{67}$ C. Roat, ${ }^{67}$ M. Ahmed, ${ }^{68}$ S. Ahmed, ${ }^{68}$ M. S. Alam, ${ }^{68}$ J. A. Ernst, ${ }^{68}$ M. Saleem, ${ }^{68}$ F. R. Wappler, ${ }^{68}$ W. Bugg, ${ }^{69}$ M. Krishnamurthy, ${ }^{69}$ S. M. Spanier, ${ }^{69}$ R. Eckmann, ${ }^{70}$ H. Kim, ${ }^{70}$ J. L. Ritchie, ${ }^{70}$ R. F. Schwitters, ${ }^{70}$ J. M. Izen, ${ }^{71}$ I. Kitayama, ${ }^{71}$ X. C. Lou, ${ }^{71}$ S. Ye, ${ }^{71}$ F. Bianchi, ${ }^{72}$ M. Bona, ${ }^{72}$ F. Gallo, ${ }^{72}$ D. Gamba, ${ }^{72}$ C. Borean, ${ }^{73}$ L. Bosisio, ${ }^{73}$ G. Della Ricca, ${ }^{73}$ S. Dittongo, ${ }^{73}$ S. Grancagnolo, ${ }^{73}$ L. Lanceri, ${ }^{73}$ P. Poropat, ${ }^{73,8}$ L. Vitale, ${ }^{73}$ G. Vuagnin, ${ }^{73}$ R. S. Panvini, ${ }^{74}$ Sw. Banerjee, ${ }^{75}$ C. M. Brown, ${ }^{75}$ D. Fortin, ${ }^{75}$ P. D. Jackson, ${ }^{75}$ R. Kowalewski, ${ }^{75}$ J. M. Roney, ${ }^{75}$ H. R. Band, ${ }^{76}$ S. Dasu, ${ }^{76}$ M. Datta, ${ }^{76}$ A. M. Eichenbaum, ${ }^{76}$ J. R. Johnson, ${ }^{76}$ P. E. Kutter, ${ }^{76}$ H. Li, ${ }^{76}$ R. Liu, ${ }^{76}$ F. Di Lodovico, ${ }^{76}$ A. Mihalyi, ${ }^{76}$ A. K. Mohapatra, ${ }^{76}$ Y. Pan, ${ }^{76}$ R. Prepost, ${ }^{76}$ S. J. Sekula, ${ }^{76}$ J. H. von Wimmersperg-Toeller, ${ }^{76}$ J. Wu, ${ }^{76}$ S. L. Wu, ${ }^{76} \mathrm{Z} . \mathrm{Yu},{ }^{76}$ and H. Neal ${ }^{77}$

(BABAR Collaboration)

${ }^{1}$ Laboratoire de Physique des Particules, F-74941 Annecy-le-Vieux, France
${ }^{2}$ Università di Bari, Dipartimento di Fisica and INFN, I-70126 Bari, Italy ${ }^{3}$ Institute of High Energy Physics, Beijing 100039, China ${ }^{4}$ University of Bergen, Institute of Physics, N-5007 Bergen, Norway
${ }^{5}$ Lawrence Berkeley National Laboratory and University of California, Berkeley, California 94720, USA
${ }^{6}$ University of Birmingham, Birmingham, B15 2TT, United Kingdom
${ }^{7}$ Ruhr Universität Bochum, Institut für Experimentalphysik 1, D-44780 Bochum, Germany
${ }^{8}$ University of Bristol, Bristol BS8 1TL, United Kingdom
${ }^{9}$ University of British Columbia, Vancouver, British Columbia, Canada V6T $1 Z 1$
${ }^{10}$ Brunel University, Uxbridge, Middlesex UB8 3PH, United Kingdom
${ }^{11}$ Budker Institute of Nuclear Physics, Novosibirsk 630090, Russia
${ }^{12}$ University of California at Irvine, Irvine, California 92697, USA
${ }^{13}$ University of California at Los Angeles, Los Angeles, California 90024, USA
${ }^{14}$ University of California at Riverside, Riverside, California 92521, USA
${ }^{15}$ University of California at San Diego, La Jolla, California 92093, USA
${ }^{16}$ University of California at Santa Barbara, Santa Barbara, California 93106, USA
${ }^{17}$ University of California at Santa Cruz, Institute for Particle Physics, Santa Cruz, California 95064, USA
${ }^{18}$ California Institute of Technology, Pasadena, California 91125, USA
${ }^{19}$ University of Cincinnati, Cincinnati, Ohio 45221, USA
${ }^{20}$ University of Colorado, Boulder, Colorado 80309, USA
${ }^{21}$ Colorado State University, Fort Collins, Colorado 80523, USA
${ }^{22}$ Technische Universität Dresden, Institut für Kern- und Teilchenphysik, D-01062 Dresden, Germany
${ }^{23}$ Ecole Polytechnique, LLR, F-91128 Palaiseau, France

${ }^{24}$ University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom
${ }^{25}$ Università di Ferrara, Dipartimento di Fisica and INFN, I-44100 Ferrara, Italy
${ }^{26}$ Florida A\&M University, Tallahassee, Florida 32307, USA
${ }^{27}$ Laboratori Nazionali di Frascati dell'INFN, I-00044 Frascati, Italy
${ }^{28}$ Università di Genova, Dipartimento di Fisica and INFN, I-16146 Genova, Italy
${ }^{29}$ Harvard University, Cambridge, Massachusetts 02138, USA
${ }^{30}$ Imperial College London, London, SW7 2BW, United Kingdom
${ }^{31}$ University of Iowa, Iowa City, Iowa 52242, USA
${ }^{32}$ Iowa State University, Ames, Iowa 50011-3160, USA
${ }^{33}$ Laboratoire de l'Accélérateur Linéaire, F-91898 Orsay, France
${ }^{34}$ Lawrence Livermore National Laboratory, Livermore, California 94550, USA
${ }^{35}$ University of Liverpool, Liverpool L69 3BX, United Kingdom
${ }^{36}$ Queen Mary, University of London, E1 4NS, United Kingdom
${ }^{37}$ University of London, Royal Holloway and Bedford New College, Egham, Surrey TW20 0EX, United Kingdom
${ }^{38}$ University of Louisville, Louisville, Kentucky 40292, USA
${ }^{39}$ University of Manchester, Manchester M13 9PL, United Kingdom
${ }^{40}$ University of Maryland, College Park, Maryland 20742, USA
${ }^{41}$ University of Massachusetts, Amherst, Massachusetts 01003, USA
${ }^{42}$ Massachusetts Institute of Technology, Laboratory for Nuclear Science, Cambridge, Massachusetts 02139, USA
${ }^{43}$ McGill University, Montréal, QC, Canada H3A $2 T 8$
${ }^{44}$ Università di Milano, Dipartimento di Fisica and INFN, I-20133 Milano, Italy
${ }^{45}$ University of Mississippi, University, Mississippi 38677, USA
${ }^{46}$ Université de Montréal, Laboratoire René J. A. Lévesque, Montréal, QC, Canada H3C 3J7
${ }^{47}$ Mount Holyoke College, South Hadley, Massachusetts 01075, USA
${ }^{48}$ Università di Napoli Federico II, Dipartimento di Scienze Fisiche and INFN, I-80126, Napoli, Italy
${ }^{49}$ NIKHEF, National Institute for Nuclear Physics and High Energy Physics, NL-1009 DB Amsterdam, The Netherlands
${ }^{50}$ University of Notre Dame, Notre Dame, Indiana 46556, USA
${ }^{51}$ Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
${ }^{52}$ The Ohio State University, Columbus, Ohio 43210, USA
${ }^{53}$ University of Oregon, Eugene, Oregon 97403, USA
${ }^{54}$ Università di Padova, Dipartimento di Fisica and INFN, I-35131 Padova, Italy
${ }^{55}$ Universités Paris VI et VII, Laboratoire de Physique Nucléaire H. E., F-75252 Paris, France
${ }^{56}$ Università di Pavia, Dipartimento di Elettronica and INFN, I-27100 Pavia, Italy
${ }^{57}$ University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
${ }^{58}$ Università di Pisa, Dipartimento di Fisica, Scuola Normale Superiore and INFN, I-56127 Pisa, Italy
${ }^{59}$ Prairie View A\&M University, Prairie View, Texas 77446, USA
${ }^{60}$ Princeton University, Princeton, New Jersey 08544, USA
${ }^{61}$ Università di Roma La Sapienza, Dipartimento di Fisica and INFN, I-00185 Roma, Italy
${ }^{62}$ Universität Rostock, D-18051 Rostock, Germany
${ }^{63}$ Rutherford Appleton Laboratory, Chilton, Didcot, Oxon, OX11 0QX, United Kingdom
${ }^{64}$ DSM/Dapnia, CEA/Saclay, F-91191 Gif-sur-Yvette, France
${ }^{65}$ University of South Carolina, Columbia, South Carolina 29208, USA
${ }^{66}$ Stanford Linear Accelerator Center, Stanford, California 94309, USA
${ }^{67}$ Stanford University, Stanford, California 94305-4060, USA
${ }^{68}$ State University of New York, Albany, New York 12222, USA
${ }^{69}$ University of Tennessee, Knoxville, Tennessee 37996, USA
${ }^{70}$ University of Texas at Austin, Austin, Texas 78712, USA
${ }^{71}$ University of Texas at Dallas, Richardson, Texas 75083, USA
${ }^{72}$ Università di Torino, Dipartimento di Fisica Sperimentale and INFN, I-10125 Torino, Italy
${ }^{73}$ Università di Trieste, Dipartimento di Fisica and INFN, I-34127 Trieste, Italy
${ }^{74}$ Vanderbilt University, Nashville, Tennessee 37235, USA
${ }^{75}$ University of Victoria, Victoria, British Columbia, Canada V8W 3P6
${ }^{76}$ University of Wisconsin, Madison, Wisconsin 53706, USA
${ }^{77}$ Yale University, New Haven, Connecticut 06511, USA
(Received 16 November 2003; published 6 May 2004)

Using events in which one of two neutral B mesons from the decay of an $\mathrm{Y}(4 S)$ meson is fully reconstructed, we determine parameters governing decay $\left(\Delta \Gamma_{d} / \Gamma_{d}\right), C P$, and T violation $(|q / p|)$, and $C P$ and $C P T$ violation ($\operatorname{Rez} \mathrm{z}, \operatorname{Im} \mathrm{z}$). The results, obtained from an analysis of $88 \times 10^{6} \mathrm{Y}(4 S)$ decays recorded by $B A B A R$, are $\operatorname{sgn}\left(\operatorname{Re} \lambda_{C P}\right) \Delta \Gamma_{d} / \Gamma_{d}=-0.008 \pm 0.037($ stat $) \pm 0.018($ syst $)[-0.084,0.068],|q / p|=$ $1.029 \pm 0.013($ stat $) \pm 0.011($ syst $)[1.001,1.057],\left(\operatorname{Re} \lambda_{C P} /\left|\lambda_{C P}\right|\right) \operatorname{Rez}=0.014 \pm 0.035($ stat $) \pm 0.034$ (syst) $) \times$ $[-0.072,0.101], \operatorname{Imz}=0.038 \pm 0.029($ stat $) \pm 0.025($ syst $)[-0.028,0.104]$. The values inside the square
brackets indicate the 90% confidence-level intervals. These results are consistent with standard model expectations.

DOI: 10.1103/PhysRevLett.92.181801
PACS numbers: $13.25 . \mathrm{Hw}, 11.30 . \mathrm{Er}, 12.15 . \mathrm{Ff}$

In this Letter, we provide a direct limit on the total decay-rate difference $\Delta \Gamma_{d}$ between the B_{d} mass eigenstates and set limits on $C P, T$, and $C P T$ violation inherent in the mixing of neutral B mesons. In the standard model $C P T$ violation is forbidden, and the other effects are expected to be nonzero but small, but new physics could provide enhancements [1-4]. We test these predictions by analyzing the time dependence of decays of the $Y(4 S)$ resonance in which one neutral B meson $\left(B_{\mathrm{rec}}\right)$ is fully reconstructed and the flavor of the other $B\left(B_{\mathrm{tag}}\right)$ is identified as being either B^{0} or \bar{B}^{0}. The $B_{\text {rec }}$ sample is composed of flavor- and $C P$-eigenstate subsamples, $B_{\text {flav }}$ and $B_{C P}$. We reconstruct the flavor eigenstates [5] $B_{\text {flav }}=$ $D^{(*)-} \pi^{+}\left(\rho^{+}, a_{1}^{+}\right)$and $J / \psi K^{* 0}\left(\rightarrow K^{+} \pi^{-}\right)$and the $C P$ eigenstates $B_{C P}=J / \psi K_{S}^{0}, \psi(2 S) K_{S}^{0}, \chi_{c 1} K_{S}^{0}$, and $J / \psi K_{L}^{0}$. The flavor of the B that is not completely reconstructed
is "tagged" on the basis of the charges of leptons and kaons, as well as other indicators [6]. The data come from $88 \times 10^{6} \Upsilon(4 S) \rightarrow B \bar{B}$ decays collected with the BABAR detector [7] at the PEP-II asymmetric-energy B Factory at SLAC.

The light and heavy B_{d} mass eigenstates $B_{L, H}$ are superpositions of B^{0} and \bar{B}^{0}. This mixing is a consequence of transitions between B^{0} and \bar{B}^{0} through intermediate states. Flavor oscillations between B^{0} and \bar{B}^{0} occur with a frequency $\Delta m_{d} \equiv m_{H}-m_{L}$. A state that is initially $B^{0}\left(\bar{B}^{0}\right)$ will develop a $\bar{B}^{0}\left(B^{0}\right)$ component over time, whose amplitude is proportional to a complex factor denoted $q / p(p / q)$ [8]. Since $|q / p| \simeq 1$ in the standard model, this factor is usually assumed to be a pure phase.

The most general time dependence allowed for the decays of the two neutral B mesons coming from an $Y(4 S)$ is [6]

$$
\begin{align*}
\frac{d N}{d \Delta t} \propto e^{-\Gamma_{d}|\Delta t|}[& \frac{\left|a_{+}\right|^{2}+\left|a_{-}\right|^{2}}{2} \cosh \left(\frac{\Delta \Gamma_{d} \Delta t}{2}\right)+\frac{\left|a_{+}\right|^{2}-\left|a_{-}\right|^{2}}{2} \cos \left(\Delta m_{d} \Delta t\right) \\
& \left.-\operatorname{Re}\left(a_{+}^{*} a_{-}\right) \sinh \left(\frac{\Delta \Gamma_{d} \Delta t}{2}\right)+\operatorname{Im}\left(a_{+}^{*} a_{-}\right) \sin \left(\Delta m_{d} \Delta t\right)\right] \tag{1}
\end{align*}
$$

where $\Delta t \equiv t_{\mathrm{rec}}-t_{\mathrm{tag}}$ is the signed difference in proper decay times, Γ_{d} is the mean decay rate of the two neutral mass eigenstates, and $\Delta \Gamma_{d} \equiv \Gamma_{H}-\Gamma_{L}$ is their decay-rate difference. The values of the complex parameters $a_{ \pm}$ differ for the various combinations of flavor and $C P$ eigenstates into which the B mesons decay [6].

In the simplest picture, where $\Delta \Gamma_{d}=0$, and $C P, T$, and $C P T$ violation in mixing are neglected, if the fully reconstructed state is a flavor eigenstate the time distributions $d N / d \Delta t$ with perfect tagging are proportional to $e^{-\Gamma_{d}|\Delta t|}\left[1 \pm \cos \left(\Delta m_{d} \Delta t\right)\right]$. In practice, the tagging is imperfect and its performance is measured directly from the data. Imperfect tagging reduces the coefficient of $\cos \left(\Delta m_{d} \Delta t\right)$ by a factor of $1-2 w$ called the dilution, where w is the probability of tagging incorrectly.
B decays to a $C P$ eigenstate $f_{C P}$ are conveniently parametrized by $\lambda_{C P} \equiv(q / p)\left(\overline{\mathcal{A}}_{C P} / \mathcal{A}_{C P}\right)$, where $\mathcal{A}_{C P}\left(\overline{\mathcal{A}}_{C P}\right)$ is the amplitude for $B^{0} \rightarrow f_{C P}\left(\bar{B}^{0} \rightarrow f_{C P}\right)$. $C P$ violation is characterized by $\lambda_{C P} \neq \eta_{C P}$ where $\eta_{C P}= \pm 1$ is the final state's $C P$ eigenvalue. The $C P$ violation observed in decays like $B \rightarrow J / \psi K_{S}^{0}[9,10]$ involves interference between decays with and without net oscillation, and leads to $\operatorname{Im} \lambda_{C P} \neq 0$. Other possible sources of $C P$ violation are $|q / p| \neq 1$ and $\left|\overline{\mathcal{A}}_{C P} / \mathcal{A}_{C P}\right| \neq 1$. We include a test of the former possibility here.

The time distributions $d N / d \Delta t$ for the $B_{C P}$ samples, in the simplest picture (defined above) and with perfect tagging, are proportional to

$$
\begin{align*}
e^{-\Gamma_{d}|\Delta t|}\left[1+\left|\lambda_{C P}\right|^{2}\right. & \pm\left(1-\left|\lambda_{C P}\right|^{2}\right) \cos \left(\Delta m_{d} \Delta t\right) \\
& \left.\mp 2 \operatorname{Im} \lambda_{C P} \sin \left(\Delta m_{d} \Delta t\right)\right] \tag{2}
\end{align*}
$$

In the standard model we have $\lambda_{C P}=-e^{-2 i \beta}$ for $J / \psi K_{S}^{0}$ with the approximation $\Delta \Gamma_{d}=0$, where $\beta \equiv$ $\arg \left[-V_{\mathrm{cd}} V_{\mathrm{cb}}^{*} / V_{\mathrm{td}} V_{\mathrm{tb}}^{*}\right]$ is one of the angles of the triangle [11] that represents the unitarity of the quark mixing matrix V_{ij}. Since $\left|\lambda_{C P}\right|=1$, the $\cos \left(\Delta m_{d} \Delta t\right)$ term is absent. Again, wrongly tagged events reduce the amplitude of the oscillatory terms.

To measure $\Delta \Gamma_{d}$, or $C P, T$, or $C P T$ violation in mixing alone we need to find small deviations from these simple patterns. Other effects that can mimic the behavior we seek must be included in the analysis. Among these are asymmetries in the response of the detector to B^{0} and \bar{B}^{0} decays [6] and interference between dominant and suppressed decay amplitudes to flavor eigenstates, both those that are fully reconstructed and those that contribute to tagging $[6,12]$.

The time dependence of the $B_{C P}$ sample includes a $\sinh \left(\Delta \Gamma_{d} \Delta t / 2\right)$ term that is effectively linear in $\Delta \Gamma_{d}$, while the flavor sample has an effective second-order sensitivity to $\Delta \Gamma_{d}$ through a $\cosh \left(\Delta \Gamma_{d} \Delta t / 2\right)$ term. Untagged data are included in this analysis and improve our sensitivity to $\Delta \Gamma_{d}$ since the contributions of $\Delta \Gamma_{d}$-dependent terms do not depend on whether $B_{\text {tag }}$ is a B^{0} or \bar{B}^{0}. With our sample sizes and small measured value
of $\Delta \Gamma_{d}$, the $B_{C P}$ sample dominates our determination of $\Delta \Gamma_{d} / \Gamma_{d}$. While Δm_{d} has been well measured previously [13-15], there is only a weak limit, $\left|\Delta \Gamma_{d}\right| / \Gamma_{d}<0.18$ at 95\% C.L. [16], on $\Delta \Gamma_{d}$. A recent theoretical calculation gives $\Delta \Gamma_{d} / \Gamma_{d}=-0.003$ [1].

Violation of $C P$ and T in mixing leads to a difference between the $B^{0} \rightarrow \bar{B}^{0}$ and $\bar{B}^{0} \rightarrow B^{0}$ transition rates proportional to $|q / p|^{4}-1$. Our sensitivity to $|q / p|$ comes mostly from the large flavor-eigenstate sample. Previous measurements, obtained assuming $\Delta \Gamma_{d}=0$, give $|q / p|-1=(-0.7 \pm 6.4) \times 10^{-3}[17]$. The standard model expectation is $|q / p|-1=(2.5-6.5) \times 10^{-4}[2]$.
$C P T$ violation in mixing enters the time dependence through the complex quantity

$$
\begin{equation*}
\mathrm{z} \equiv \frac{\delta m_{d}-\frac{i}{2} \delta \Gamma_{d}}{\Delta m_{d}-\frac{i}{2} \Delta \Gamma_{d}}, \tag{3}
\end{equation*}
$$

where $\delta m_{d}\left(\delta \Gamma_{d}\right)$ is the $B^{0}-\bar{B}^{0}$ difference of effective mass (decay-rate) expectation values for the B^{0} and \bar{B}^{0} flavor eigenstates. A nonzero value of either δm_{d} or $\delta \Gamma_{d}$ is possible only if both $C P$ and $C P T$ are violated. The dominant contribution of $\operatorname{Im} z$ to the time dependence is through the coefficient of $\sin \left(\Delta m_{d} \Delta t\right)$ for flavor eigenstates, while Re z contributes primarily to the coefficients of $\cosh \left(\Delta \Gamma_{d} \Delta t / 2\right) \approx 1$ and $\cos \left(\Delta m_{d} \Delta t\right)$ for $C P$ eigenstates. The measurement of z presented here is more general than previous analyses based on B decays, which obtained $\operatorname{Im} z=0.040 \pm 0.032 \pm 0.012$ [18], and $\operatorname{Re} z=$ $0.00 \pm 0.12 \pm 0.02, \quad \operatorname{Im} z=-0.03 \pm 0.01 \pm 0.03 \quad$ [14], and complements earlier limits on the $K^{0}-\bar{K}^{0}$ mass difference $\delta m_{K} / m_{K}<10^{-18}$ [8].

Interference effects between the amplitudes for dominant decays of flavor eigenstates (e.g., $B^{0} \rightarrow D^{-} \pi^{+}$) and for doubly Cabibbo-Kobayashi-Maskawa-suppressed (DCS) decays (e.g., $\bar{B}^{0} \rightarrow D^{-} \pi^{+}$) are analogous to the interference familiar in decays to $C P$ eigenstates [12]. They thus affect, in particular, the $\sin \left(\Delta m_{d} \Delta t\right)$ terms and have the potential to obscure a similar contribution from $\operatorname{Im} z$. The size of the DCS interference relative to the dominant B^{0} decay is governed by $\lambda_{B f}$ and $\lambda_{B t}$, for $B_{\text {flav }}$ and $B_{\text {tag }}$ states, respectively. These parameters are defined analogously to $\lambda_{C P}$, and we expect $\left|\lambda_{B f, B t}\right| \approx|q / p| \times$ $\left|V_{\mathrm{ub}} V_{\mathrm{cd}}^{*} / V_{\mathrm{cb}}^{*} V_{\mathrm{ud}}\right| \simeq 0.02|q / p|$ [6]. There are similar interference contributions from DCS amplitudes for \bar{B}^{0} decays, governed by $\lambda_{\bar{B} f}$ and $\lambda_{\bar{B} t}$. We write $\bar{\lambda}_{\bar{B} f, \bar{B} t}=1 / \lambda_{\bar{B} f, \bar{B} t}$ so $\left|\bar{\lambda}_{\bar{B} f, \bar{B} t}\right| \approx 0.02|p / q|$. The $B_{\text {flav }}$ and $B_{\text {tag }}$ samples are ensembles of final states that each contribute to the expected decay-rate distributions with different amplitudes. We find that, working to first order in the small quantities $\left|\lambda_{B f, B t}\right|,\left|\bar{\lambda}_{\bar{B} f, \bar{B} t}\right|,|z|$, and $|q / p|-1$, the cumulative effect of each ensemble does not modify the expected decayrate distributions, once $\lambda_{B f, B t}$ and $\bar{\lambda}_{\bar{B} f, \bar{B} t}$ are reinterpreted as effective parameters.

We combine all the data for the $C P$ eigenstates, taking into account the $C P$ eigenvalue of the final state. We assume $\left|\overline{\mathcal{A}}_{C P} / \mathcal{A}_{C P}\right|=1$ (but vary this ratio as a system-
atic study) as expected theoretically at the 10^{-3} level [19] and as supported by the average of B Factory measurements of states of charmonium and K_{S}^{0} or K_{L}^{0}, for which it was found $\left|\overline{\mathcal{A}}_{C P} / \mathcal{A}_{C P}\right|=0.949 \pm 0.045[9,10]$, when $\Delta \Gamma_{d}=0$ and $|q / p|=1$ are assumed.

The time interval Δt between the two B decays is calculated from the measured separation Δz between the decay vertices of $B_{\text {rec }}$ and $B_{\text {tag }}$ along the collision axis [9]. We determine the position of the B_{rec} vertex from its charged tracks. The $B_{\text {tag }}$ decay vertex is determined by fitting to a common vertex tracks not belonging to the $B_{\text {rec }}$ candidate, employing constraints from the beam spot location and the $B_{\text {rec }}$ momentum [9]. The r.m.s. Δt resolution for 99.7% of the events used is 1.0 ps , to be compared with $\langle | \Delta t\rangle \simeq 1.5 \mathrm{ps}$.

Resolution effects for signal events are modeled by convolving the idealized decay rate with a sum of three Gaussian distributions, two of whose widths and biases are scaled with each event's estimated Δt uncertainty $\sigma_{\Delta t}$.

We use four mutually exclusive categories to assign tags, based on kinematic, particle type, and charge information [9]. There are separate reconstruction efficiencies and mistag probabilities for B^{0} and \bar{B}^{0} tags, to accommodate differences in detector response to B^{0} and \bar{B}^{0} decays. In addition, we introduce a linear dependence of the mistag probability on $\sigma_{\Delta t}$, except for events tagged with a high-momentum lepton.

Backgrounds are primarily due to misreconstructed $B_{\text {rec }}$ candidates and are studied in data using mass or energy sidebands. Events are assigned signal and background probabilities based on their proximity to the signal peak. We model backgrounds with empirical Δt distributions that can accommodate contributions from decays with a range of lifetimes.

The parameters of primary interest in this analysis are $\operatorname{sgn}\left(\operatorname{Re} \lambda_{C P}\right) \Delta \Gamma_{d} / \Gamma_{d}, \quad|q / p|, \quad\left(\operatorname{Re} \lambda_{C P} /\left|\lambda_{C P}\right|\right) \operatorname{Rez}$, and $\operatorname{Im} z$. We cannot determine $\Delta \Gamma_{d} / \Gamma_{d}$ and Rez directly because both occur multiplied by $\operatorname{Re} \lambda_{C P}$ in their dominant contributions to the decay rate. They are thus subject to a sign ambiguity, which can be resolved by relying on additional information from the unitarity triangle. The average lifetime $\tau_{B^{0}} \equiv 1 / \Gamma_{d}$ is fixed at 1.542 ps [8]. The parameters Δm_{d} and $\operatorname{Im} \lambda_{C P} /\left|\lambda_{C P}\right|$ are determined together with the main parameters as cross checks against earlier measurements [9,13]. The terms proportional to the real parts of the effective DCS parameters $\lambda_{B f, B t}$ and $\bar{\lambda}_{\bar{B} f, \bar{B} t}$ are small and therefore neglected in the nominal fit

TABLE I. Fit results allowing (z free) or not allowing $(\mathrm{z}=0) C P T$ violation in $B^{0} \bar{B}^{0}$ oscillations.

Parameter	z Free	z $=0$
$\operatorname{sgn}\left(\operatorname{Re} \lambda_{C P}\right) \Delta \Gamma_{d} / \Gamma_{d}$	-0.008 ± 0.037	-0.009 ± 0.037
$\|q / p\|$	1.029 ± 0.013	1.029 ± 0.013
$\left(\operatorname{Re} \lambda_{C P} /\left\|\lambda_{C P}\right\|\right) \operatorname{Re} \mathbf{z}$	0.014 ± 0.035	\cdots
$\operatorname{Im} \mathbf{z}$	0.038 ± 0.029	\cdots

model, while the imaginary parts and magnitudes of these effective parameters are treated as independent variables. For all sets of nonleptonic flavor eigenstates analyzed, the magnitude of each $|\lambda|$ is fixed to 0.02 (up to a factor $|q / p|$ or $|p / q|$) but $\operatorname{Im} \lambda /|\lambda|$ is left unconstrained. The decay model uses 26 more parameters to model the effects of experimental Δt resolution (10), B^{0} / \bar{B}^{0} tagging capability (11), and reconstruction and tagging efficiencies (5). An additional 22 parameters model the levels and Δt dependence of backgrounds. A total of 58 free parameters are determined with a simultaneous unbinned maximum-likelihood fit to the Δt distributions of $C P$ and flavor-eigenstate samples [6].

Table I summarizes the results of fits allowing (Z free) or not allowing $(\mathrm{z}=0) C P T$ violation in $B^{0} \bar{B}^{0}$ oscillations. The largest statistical correlations involving the parameters of interest are between $|q / p|$ and parameters modeling $B^{0} \bar{B}^{0}$ asymmetries in reconstruction efficiency and mistag probabilities, and between $\operatorname{Im} z$ and the DCS contributions to $B_{\text {tag }}$ decay amplitudes. The fitted values of Δm_{d} and $\operatorname{Im} \lambda_{C P} /\left|\lambda_{C P}\right|$ are consistent with recent B Factory measurements $[9,10,13,15]$. When z is fixed, the value of $\operatorname{Im} \lambda_{C P} /\left|\lambda_{C P}\right|$ decreases by 0.011 , equal to 15% of the statistical uncertainty on $\operatorname{Im} \lambda_{C P} /\left|\lambda_{C P}\right|$ which is consistent with the correlations observed in the fit with \mathbf{z} free, while the value of and uncertainty in Δm_{d} are unchanged. No statistically significant $B^{0}-\bar{B}^{0}$ differences in reconstruction and tagging efficiencies are observed.

We have used data and Monte Carlo samples to validate our analysis technique. Tests with large, parametrized Monte Carlo samples demonstrate that the observed statistical uncertainties and correlations are consistent with expectations. Analyses of Monte Carlo samples generated with a detailed detector simulation verify that the analysis procedure is unbiased. Fits to data subsamples selected by tagging category, running period, and $B_{\text {rec }}$ decay mode give consistent results. Changes to the algorithms used to estimate Δt and $\sigma_{\Delta t}$ or to their allowed ranges also have no statistically significant effect. Fits to samples of charged B decays, in which no oscillations are present, give the expected results.

We identify four general sources of systematic uncertainty with the contributions shown in Table II for the fit in which Z is free [6]. The first is possible bias in the event selection and fit method: we see no evidence of such bias

TABLE II. Summary of systematic uncertainties (\mathbf{z} free).

Source	$\operatorname{sgn}\left(\operatorname{Re} \lambda_{C P}\right)$ $\times \Delta \Gamma_{d} / \Gamma_{d}$	$\|q / p\|$	$\operatorname{Re} \lambda_{C P} /\left\|\lambda_{C P}\right\|$ $\times \operatorname{Rez}$	$\operatorname{Im} z$
Analysis method	0.006	0.007	0.005	0.016
Δt Resolution	0.013	0.003	0.008	0.016
Signal properties	0.010	0.008	0.033	0.009
BG properties	0.005	0.003	0.007	0.004
Total	0.018	0.011	0.034	0.025

when analyzing Monte Carlo samples and assign the statistical uncertainty of these checks as a systematic uncertainty on the final results. The second is the Δt measurement. The choice of parametrization of the resolution function dominates this uncertainty, but assumptions about the beam spot and detector alignment contribute as well. Assumptions about the properties of signal $\mathrm{Y}(4 S) \rightarrow B_{\mathrm{rec}} B_{\mathrm{tag}}$ decays include the values of the lifetime, $\left|\overline{\mathcal{A}}_{C P} / \mathcal{A}_{C P}\right|$, and DCS parameters, and are the third source of systematic uncertainty. Uncertainties in the size and Δt distributions of background (BG) events incorrectly identified as $Y(4 S) \rightarrow B_{\mathrm{rec}} B_{\mathrm{tag}}$ make small contributions to the systematic uncertainties.

Different sources dominate the systematic uncertainty for each parameter. Most systematic uncertainties are determined with data and will decrease with additional statistics. The largest single source of uncertainty is the contribution of the DCS parameters to ($\left.\operatorname{Re} \lambda_{C P} /\left|\lambda_{C P}\right|\right) \operatorname{Rez}$, and it is estimated by varying the DCS phase parameters over their full allowed range, and $\left|\overline{\mathcal{A}}_{B f} / \mathcal{A}_{B f}\right|$ and $\left|\mathcal{A}_{\bar{B} f} / \overline{\mathcal{A}}_{\bar{B} f}\right|$ over the range $0-0.04$. Systematic uncertainties on $\operatorname{sgn}\left(\operatorname{Re} \lambda_{C P}\right) \Delta \Gamma_{d} / \Gamma_{d}$ and $|q / p|$ for the analysis assuming $\mathbf{z}=0$ were evaluated similarly as ± 0.018 and ± 0.011, respectively.

Using the world-average value of Δm_{d} [8], we derive the value $\operatorname{sgn}\left(\operatorname{Re} \lambda_{C P}\right) \Delta \Gamma_{d} / \Delta m_{d}=-0.011 \pm 0.049($ stat $) \pm$ 0.024 (syst), corresponding to the range $[-0.112,0.091]$ at the 90% confidence level, from the fit results with z free. The limit on $C P$ and T violation in oscillations is independent of and consistent with our previous measurement based on an analysis of inclusive dilepton events [20]. Using Eq. (3) and taking the world-average B_{d} mass [8],

FIG. 1. Favored regions at 68% confidence level in the ($|q / p|-1,|z|$) plane determined by this analysis and by the $B A B A R$ measurement of the dilepton asymmetry [20]. Labels reflect the requirements that both $C P$ and T be violated if $|q / p| \neq 1$ and that both $C P$ and $C P T$ be violated if $|z| \neq 0$. The dilepton measurement constrains $|q / p|$ without assumptions on the value of $|z|$. The standard model expectation of $|q / p|-1=(2.5-6.5) \times 10^{-4}$ is obtained from Ref. [2].
we derive $\left|\delta m_{d}\right| / m_{B_{d}}<1.0 \times 10^{-14}$ and $-0.156<\delta \Gamma_{d} /$ $\Gamma_{d}<0.042$ at the 90% confidence level. Figure 1 shows the results of the fit with z free in the $(|q / p|-1,|\mathrm{z}|)$ plane, compared to the previous $B A B A R$ measurement of $|q / p|$, and to standard model expectations.

Conventional analyses of oscillations and $C P$ violation in the B_{d} system neglect possible contributions from several sources that are expected to be small in the standard model. This analysis includes these effects and finds results consistent with standard model expectations. While the standard model predictions for $\Delta \Gamma_{d},|q / p|$, and z are well below our current sensitivity, higher-precision measurements may still bring surprises.

We are grateful for the excellent luminosity and machine conditions provided by our PEP-II colleagues, and for the substantial dedicated effort from the computing organizations that support $B A B A R$. The collaborating institutions thank SLAC for its support and kind hospitality. This work is supported by DOE and NSF (USA), NSERC (Canada), IHEP (China), CEA and CNRSIN2P3 (France), BMBF and DFG (Germany), INFN (Italy), FOM (The Netherlands), NFR (Norway), MIST (Russia), and PPARC (United Kingdom). Individuals have received support from the A. P. Sloan Foundation, Research Corporation, and Alexander von Humboldt Foundation.
*Also with Università di Perugia, Perugia, Italy.
${ }^{\dagger}$ Also with Università della Basilicata, Potenza, Italy.
*Also with IFIC, Instituto de Física Corpuscular, CSICUniversidad de Valencia, Valencia, Spain.
${ }^{\S}$ Deceased.
[1] A. S. Dighe et al., Nucl. Phys. B624, 377 (2002).
[2] S. Laplace, Z. Ligeti, Y. Nir, and G. Perez, Phys. Rev. D 65, 094040 (2002).
[3] D. Colladay and V. A. Kostelecký, Phys. Lett. B 344, 259 (1995); V. A. Kostelecký and R. Van Kooten, Phys. Rev. D 54, 5585 (1996).
[4] M. C. Bañuls and J. Bernabéu, Phys. Lett. B 464, 117 (1999); Nucl. Phys. B590, 19 (2000).
[5] Charge conjugation is implied throughout this Letter, unless explicitly stated otherwise.
[6] BABAR Collaboration, B. Aubert et al., hep-ex/0403002 (to be published).
[7] BABAR Collaboration, B. Aubert et al., Nucl. Instrum. Methods Phys. Res., Sect. A 479, 1 (2002).
[8] Particle Data Group, K. Hagiwara et al., Phys. Rev. D 66, 010001 (2002).
[9] BABAR Collaboration, B. Aubert et al., Phys. Rev. D 66, 032003 (2002); Phys. Rev. Lett. 89, 201802 (2002).
[10] Belle Collaboration, K. Abe et al., Phys. Rev. Lett. 87, 091802 (2001); Phys. Rev. D 66, 071102 (2002).
[11] A. B. Carter and A. I. Sanda, Phys. Rev. D 23, 1567 (1981); I. I. Bigi and A. I. Sanda, Nucl. Phys. B193, 85 (1981).
[12] O. Long, M. Baak, R. Cahn, and D. Kirkby, Phys. Rev. D 68, 034010 (2003).
[13] BABAR Collaboration, B. Aubert et al., Phys. Rev. D 67, 072002 (2003); Phys. Rev. Lett. 88, 221803 (2002); 88, 221802 (2002).
[14] Belle Collaboration, N. C. Hastings et al., Phys. Rev. D 67, 052004 (2003).
[15] Belle Collaboration, K. Hara et al., Phys. Rev. Lett. 89, 0251803 (2002); T. Tomura et al., Phys. Lett. B 542, 207 (2002).
[16] DELPHI Collaboration, J. Abdallah et al., Eur. Phys. J. C 28, 155 (2003).
[17] The 2003 partial update of Ref. [8] for edition 2004 (http://pdg.lbl.gov).
[18] OPAL Collaboration, R. Ackerstaff et al., Z. Phys. C 76, 401 (1997).
[19] Y. Grossman, A. L. Kagan, and Z. Ligeti, Phys. Lett. B 538, 327 (2002).
[20] BABAR Collaboration, B. Aubert et al., Phys. Rev. Lett. 88, 231801 (2002).

