Measurement of Time-Dependent $C P$ Asymmetries and the $C P$-Odd Fraction in the Decay $B^{0} \rightarrow D^{*+} D^{*-}$

B. Aubert, ${ }^{1}$ R. Barate, ${ }^{1}$ D. Boutigny, ${ }^{1}$ J.-M. Gaillard, ${ }^{1}$ A. Hicheur, ${ }^{1}$ Y. Karyotakis, ${ }^{1}$ J. P. Lees, ${ }^{1}$ P. Robbe, ${ }^{1}$ V. Tisserand, ${ }^{1}$ A. Zghiche, ${ }^{1}$ A. Palano, ${ }^{2}$ A. Pompili, ${ }^{2}$ J. C. Chen, ${ }^{3}$ N. D. Qi, ${ }^{3}$ G. Rong, ${ }^{3}$ P. Wang, ${ }^{3}$ Y. S. Zhu, ${ }^{3}$ G. Eigen, ${ }^{4}$ I. Ofte, ${ }^{4}$ B. Stugu, ${ }^{4}$ G. S. Abrams, ${ }^{5}$ A.W. Borgland, ${ }^{5}$ A. B. Breon, ${ }^{5}$ D. N. Brown, ${ }^{5}$ J. Button-Shafer, ${ }^{5}$ R. N. Cahn, ${ }^{5}$ E. Charles, ${ }^{5}$ C. T. Day, ${ }^{5}$ M. S. Gill, ${ }^{5}$ A.V. Gritsan, ${ }^{5}$ Y. Groysman, ${ }^{5}$ R. G. Jacobsen, ${ }^{5}$ R. W. Kadel, ${ }^{5}$ J. Kadyk, ${ }^{5}$ L. T. Kerth, ${ }^{5}$ Yu. G. Kolomensky, ${ }^{5}$ J. F. Kral, ${ }^{5}$ G. Kukartsev, ${ }^{5}$ C. LeClerc, ${ }^{5}$ M. E. Levi, ${ }^{5}$ G. Lynch,,${ }^{5}$ L. M. Mir, ${ }^{5}$ P. J. Oddone, ${ }^{5}$ T. J. Orimoto, ${ }^{5}$ M. Pripstein, ${ }^{5}$ N. A. Roe, ${ }^{5}$ A. Romosan, ${ }^{5}$ M. T. Ronan, ${ }^{5}$ V. G. Shelkov, ${ }^{5}$ A. V. Telnov, ${ }^{5}$ W. A. Wenzel, ${ }^{5}$ K. Ford, ${ }^{6}$ T. J. Harrison, ${ }^{6}$ C. M. Hawkes, ${ }^{6}$ D. J. Knowles, ${ }^{6}$ S. E. Morgan, ${ }^{6}$ R. C. Penny, ${ }^{6}$ A. T. Watson, ${ }^{6}$ N. K. Watson, ${ }^{6}$ T. Deppermann, ${ }^{7}$ K. Goetzen, ${ }^{7}$ H. Koch, ${ }^{7}$ B. Lewandowski, ${ }^{7}$ M. Pelizaeus, ${ }^{7}$ K. Peters, ${ }^{7}$ H. Schmuecker, ${ }^{7}$ M. Steinke, ${ }^{7}$ N. R. Barlow, ${ }^{8}$ J. T. Boyd, ${ }^{8}$ N. Chevalier, ${ }^{8}$ W. N. Cottingham, ${ }^{8}$ M. P. Kelly, ${ }^{8}$ T. E. Latham, ${ }^{8}$ C. Mackay, ${ }^{8}$ F. F. Wilson, ${ }^{8}$ K. Abe, ${ }^{9}$ T. Cuhadar-Donszelmann, ${ }^{9}$ C. Hearty, ${ }^{9}$ T. S. Mattison, ${ }^{9}$ J. A. McKenna, ${ }^{9}$ D. Thiessen, ${ }^{9}$ P. Kyberd, ${ }^{10}$ A. K. McKemey,,10 V. E. Blinov, ${ }^{11}$ A. D. Bukin, ${ }^{11}$ V. B. Golubev, ${ }^{11}$ V. N. Ivanchenko, ${ }^{11}$ E. A. Kravchenko, ${ }^{11}$ A. P. Onuchin, ${ }^{11}$ S. I. Serednyakov, ${ }^{11}$ Yu. I. Skovpen, ${ }^{11}$ E. P. Solodov, ${ }^{11}$ A. N. Yushkov, ${ }^{11}$ D. Best, ${ }^{12}$ M. Chao, ${ }^{12}$ D. Kirkby, ${ }^{12}$ A. J. Lankford, ${ }^{12}$ M. Mandelkern, ${ }^{12}$ S. McMahon, ${ }^{12}$ R. K. Mommsen, ${ }^{12}$ W. Roethel, ${ }^{12}$ D. P. Stoker, ${ }^{12}$ C. Buchanan, ${ }^{13}$ D. del Re, ${ }^{14}$ H. K. Hadavand,,${ }^{14}$ E. J. Hill, ${ }^{14}$ D. B. MacFarlane,,${ }^{14}$ H. P. Paar, ${ }^{14}$ Sh. Rahatlou, ${ }^{14}$ U. Schwanke, ${ }^{14}$ V. Sharma, ${ }^{14}$ J.W. Berryhill, ${ }^{15}$ C. Campagnari, ${ }^{15}$ B. Dahmes, ${ }^{15}$ N. Kuznetsova, ${ }^{15}$ S. L. Levy, ${ }^{15}$ O. Long, ${ }^{15}$ A. Lu, ${ }^{15}$ M. A. Mazur, ${ }^{15}$ J. D. Richman, ${ }^{15}$ W. Verkerke, ${ }^{15}$ T.W. Beck, ${ }^{16}$ J. Beringer, ${ }^{16}$ A. M. Eisner, ${ }^{16}$ C. A. Heusch, ${ }^{16}$ W. S. Lockman, ${ }^{16}$ T. Schalk, ${ }^{16}$ R. E. Schmitz, ${ }^{16}$ B. A. Schumm, ${ }^{16}$ A. Seiden, ${ }^{16}$ M. Turri, ${ }^{16}$ W. Walkowiak, ${ }^{16}$ D. C. Williams, ${ }^{16}$ M. G. Wilson, ${ }^{16}$ J. Albert, ${ }^{17}$ E. Chen, ${ }^{17}$ G. P. Dubois-Felsmann, ${ }^{17}$ A. Dvoretskii, ${ }^{17}$ D. G. Hitlin, ${ }^{17}$ I. Narsky, ${ }^{17}$ F. C. Porter, ${ }^{17}$ A. Ryd, ${ }^{17}$ A. Samuel, ${ }^{17}$ S. Yang, ${ }^{17}$ S. Jayatilleke, ${ }^{18}$ G. Mancinelli, ${ }^{18}$ B. T. Meadows, ${ }^{18}$ M. D. Sokoloff, ${ }^{18}$ T. Abe, ${ }^{19}$ T. Barillari, ${ }^{19}$ F. Blanc, ${ }^{19}$ P. Bloom, ${ }^{19}$ S. Chen, ${ }^{19}$ P. J. Clark, ${ }^{19}$ W. T. Ford, ${ }^{19}$ U. Nauenberg, ${ }^{19}$ A. Olivas, ${ }^{19}$ P. Rankin, ${ }^{19}$ J. Roy, ${ }^{19}$ J. G. Smith, ${ }^{19}$ W. C. van Hoek, ${ }^{19}$ L. Zhang, ${ }^{19}$ J. L. Harton, ${ }^{20}$ T. Hu, ${ }^{20}$ A. Soffer, ${ }^{20}$ W. H. Toki, ${ }^{20}$ R. J. Wilson, ${ }^{20}$ J. Zhang, ${ }^{20}$ D. Altenburg, ${ }^{21}$ T. Brandt, ${ }^{21}$ J. Brose, ${ }^{21}$ T. Colberg, ${ }^{21}$ M. Dickopp, ${ }^{21}$ R. S. Dubitzky, ${ }^{21}$ A. Hauke, ${ }^{21}$ H. M. Lacker, ${ }^{21}$ E. Maly, ${ }^{21}$ R. Müller-Pfefferkorn, ${ }^{21}$ R. Nogowski, ${ }^{21}$ S. Otto, ${ }^{21}$ K. R. Schubert, ${ }^{21}$ R. Schwierz, ${ }^{21}$ B. Spaan, ${ }^{21}$ L. Wilden, ${ }^{21}$
D. Bernard, ${ }^{22}$ G. R. Bonneaud, ${ }^{22}$ F. Brochard, ${ }^{22}$ J. Cohen-Tanugi, ${ }^{22}$ Ch. Thiebaux, ${ }^{22}$ G. Vasileiadis, ${ }^{22}$ M. Verderi, ${ }^{22}$ A. Khan, ${ }^{23}$ D. Lavin, ${ }^{23}$ F. Muheim, ${ }^{23}$ S. Playfer, ${ }^{23}$ J. E. Swain, ${ }^{23}$ J. Tinslay, ${ }^{23}$ M. Andreotti, ${ }^{24}$ V. Azzolini, ${ }^{24}$
D. Bettoni, ${ }^{24}$ C. Bozzi, ${ }^{24}$ R. Calabrese, ${ }^{24}$ G. Cibinetto, ${ }^{24}$ E. Luppi, ${ }^{24}$ M. Negrini, ${ }^{24}$ L. Piemontese, ${ }^{24}$ A. Sarti, ${ }^{24}$ E. Treadwell, ${ }^{25}$ F. Anulli, ${ }^{26, *}$ R. Baldini-Ferroli, ${ }^{26}$ A. Calcaterra, ${ }^{26}$ R. de Sangro, ${ }^{26}$ D. Falciai, ${ }^{26}$ G. Finocchiaro, ${ }^{26}$ P. Patteri, ${ }^{26}$ I. M. Peruzzi, ${ }^{26, *}$ M. Piccolo, ${ }^{26}$ A. Zallo, ${ }^{26}$ A. Buzzo, ${ }^{27}$ R. Contri, ${ }^{27}$ G. Crosetti, ${ }^{27}$ M. Lo Vetere, ${ }^{27}$ M. Macri, ${ }^{27}$ M. R. Monge, ${ }^{27}$ S. Passaggio, ${ }^{27}$ F. C. Pastore, ${ }^{27}$ C. Patrignani, ${ }^{27}$ E. Robutti, ${ }^{27}$ A. Santroni, ${ }^{27}$ S. Tosi, ${ }^{27}$ S. Bailey, ${ }^{28}$ M. Morii, ${ }^{28}$ W. Bhimji, ${ }^{29}$ D. A. Bowerman, ${ }^{29}$ P. D. Dauncey, ${ }^{29}$ U. Egede, ${ }^{29}$ I. Eschrich, ${ }^{29}$ J. R. Gaillard, ${ }^{29}$ G.W. Morton,,29 J. A. Nash, ${ }^{29}$ P. Sanders, ${ }^{29}$ G. P. Taylor, ${ }^{29}$ G. J. Grenier, ${ }^{30}$ S.-J. Lee, ${ }^{30}$ U. Mallik, ${ }^{30}$ J. Cochran, ${ }^{30}$ H. B. Crawley, ${ }^{31}$ J. Lamsa, ${ }^{31}$ W. T. Meyer, ${ }^{31}$ S. Prell, ${ }^{31}$ E. I. Rosenberg, ${ }^{31}$ J. Yi, ${ }^{31}$ M. Davier, ${ }^{32}$ G. Grosdidier, ${ }^{32}$ A. Höcker, ${ }^{32}$ S. Laplace, ${ }^{32}$ F. Le Diberder, ${ }^{32}$ V. Lepeltier, ${ }^{32}$ A. M. Lutz, ${ }^{32}$ T. C. Petersen, ${ }^{32}$ S. Plaszczynski, ${ }^{32}$ M. H. Schune, ${ }^{32}$ L. Tantot, ${ }^{32}$ G. Wormser, ${ }^{32}$ V. Brigljević, ${ }^{33}$ C. H. Cheng, ${ }^{33}$ D. J. Lange, ${ }^{33}$ D. M. Wright, ${ }^{33}$ A. J. Bevan, ${ }^{34}$ J. P. Coleman, ${ }^{34}$ J. R. Fry, ${ }^{34}$ E. Gabathuler, ${ }^{34}$ R. Gamet, ${ }^{34}$ M. Kay, ${ }^{34}$ R. J. Parry, ${ }^{34}$ D. J. Payne, ${ }^{34}$ R. J. Sloane, ${ }^{34}$ C. Touramanis, ${ }^{34}$ J. J. Back, ${ }^{35}$ P. F. Harrison, ${ }^{35}$ H.W. Shorthouse, ${ }^{35}$ P. Strother, ${ }^{35}$ P. B. Vidal, ${ }^{35}$ C. L. Brown, ${ }^{36}$ G. Cowan, ${ }^{36}$ R. L. Flack, ${ }^{36}$ H. U. Flaecher, ${ }^{36}$ S. George, ${ }^{36}$ M. G. Green, ${ }^{36}$ A. Kurup, ${ }^{36}$ C. E. Marker, ${ }^{36}$ T. R. McMahon, ${ }^{36}$ S. Ricciardi, ${ }^{36}$ F. Salvatore, ${ }^{36}$ G. Vaitsas, ${ }^{36}$ M. A. Winter, ${ }^{36}$ D. Brown, ${ }^{37}$ C. L. Davis, ${ }^{37}$ J. Allison, ${ }^{38}$ R. J. Barlow, ${ }^{38}$ P. A. Hart, ${ }^{38}$ A. C. Forti, ${ }^{38}$ F. Jackson, ${ }^{38}$ G. D. Lafferty, ${ }^{38}$ A. J. Lyon, ${ }^{38}$ J. H. Weatherall, ${ }^{38}$ J. C. Williams, ${ }^{38}$ A. Farbin, ${ }^{39}$ A. Jawahery, ${ }^{39}$ D. Kovalskyi, ${ }^{39}$ C. K. Lae, ${ }^{39}$ V. Lillard, ${ }^{39}$ D. A. Roberts, ${ }^{39}$ G. Blaylock, ${ }^{40}$ C. Dallapiccola, ${ }^{40}$ K. T. Flood, ${ }^{40}$ S. S. Hertzbach, ${ }^{40}$ R. Kofler, ${ }^{40}$ V. B. Koptchev, ${ }^{40}$ T. B. Moore, ${ }^{40}$ S. Saremi, ${ }^{40}$ H. Staengle, ${ }^{40}$ S. Willocq, ${ }^{40}$ R. Cowan, ${ }^{41}$ G. Sciolla, ${ }^{41}$ F. Taylor, ${ }^{41}$ R. K. Yamamoto, ${ }^{41}$ D. J. J. Mangeol, ${ }^{42}$ M. Milek, ${ }^{42}$ P. M. Patel, ${ }^{42}$ A. Lazzaro, ${ }^{43}$ F. Palombo, ${ }^{43}$ J. M. Bauer, ${ }^{44}$ L. Cremaldi, ${ }^{44}$ V. Eschenburg, ${ }^{44}$ R. Godang, ${ }^{44}$ R. Kroeger, ${ }^{44}$ J. Reidy, ${ }^{44}$ D. A. Sanders, ${ }^{44}$ D. J. Summers, ${ }^{44}$ H.W. Zhao, ${ }^{44}$ C. Hast, ${ }^{45}$ P. Taras, ${ }^{45}$ H. Nicholson, ${ }^{46}$ C. Cartaro, ${ }^{47}$ N. Cavallo, ${ }^{47, \dagger}$ G. De Nardo, ${ }^{47}$ F. Fabozzi,,${ }^{47, \dagger}$ C. Gatto, ${ }^{47}$ L. Lista, ${ }^{47}$ P. Paolucci, ${ }^{47}$ D. Piccolo, ${ }^{47}$ C. Sciacca, ${ }^{47}$ M. A. Baak, ${ }^{48}$ G. Raven, ${ }^{48}$ J. M. LoSecco, ${ }^{49}$ T. A. Gabriel, ${ }^{50}$ B. Brau, ${ }^{51}$ T. Pulliam, ${ }^{51}$ Q. K. Wong, ${ }^{51}$ J. Brau, ${ }^{52}$ R. Frey, ${ }^{52}$ C. T. Potter, ${ }^{52}$ N. B. Sinev, ${ }^{52}$ D. Strom, ${ }^{52}$ E. Torrence, ${ }^{52}$ F. Colecchia, ${ }^{53}$ A. Dorigo, ${ }^{53}$ F. Galeazzi, ${ }^{53}$ M. Margoni, ${ }^{53}$ M. Morandin, ${ }^{53}$ M. Posocco, ${ }^{53}$ M. Rotondo, ${ }^{53}$
F. Simonetto, ${ }^{53}$ R. Stroili, ${ }^{53}$ G. Tiozzo,,${ }^{53}$ C. Voci, ${ }^{53}$ M. Benayoun, ${ }^{54}$ H. Briand, ${ }^{54}$ J. Chauveau, ${ }^{54}$ P. David, ${ }^{54}$ Ch. de la Vaissière, ${ }^{54}$ L. Del Buono,,${ }^{54}$ O. Hamon, ${ }^{54}$ M. J. J. John, ${ }^{54}$ Ph. Leruste,,${ }^{54}$ J. Ocariz, ${ }^{54}$ M. Pivk, ${ }^{54}$ L. Roos, ${ }^{54}$ J. Stark, ${ }^{54}$ S. T'Jampens, ${ }^{54}$ G. Therin,,${ }^{54}$ P. F. Manfredi, ${ }^{55}$ V. Re, ${ }^{55}$ L. Gladney ${ }^{56}$ Q. H. Guo, ${ }^{56}$ J. Panetta, ${ }^{56}$ C. Angelini, ${ }^{57}$ G. Batignani, ${ }^{57}$ S. Bettarini, ${ }^{57}$ M. Bondioli, ${ }^{57}$ F. Bucci, ${ }^{57}$ G. Calderini, ${ }^{57}$ M. Carpinelli, ${ }^{57}$ F. Forti, ${ }^{57}$ M. A. Giorgi, ${ }^{57}$ A. Lusiani, ${ }^{57}$ G. Marchiori, ${ }^{57}$ F. Martinez-Vidal, ${ }^{57, \ddagger}$ M. Morganti, ${ }^{57}$ N. Neri, ${ }^{57}$ E. Paoloni, ${ }^{57}$ M. Rama, ${ }^{57}$ G. Rizzo, ${ }^{57}$ F. Sandrelli, ${ }^{57}$ J. Walsh, ${ }^{57}$ M. Haire, ${ }^{58}$ D. Judd, ${ }^{58}$ K. Paick, ${ }^{58}$ D. E. Wagoner, ${ }^{58}$ N. Danielson,,${ }^{59}$ P. Elmer,,${ }^{59}$ C. Lu, ${ }^{59}$ V. Miftakov, ${ }^{59}$ J. Olsen, ${ }^{59}$ A. J. S. Smith, ${ }^{59}$ H. A. Tanaka, ${ }^{59}$ E.W. Varnes, ${ }^{59}$ F. Bellini, ${ }^{60}$ G. Cavoto, ${ }^{59,60}$ R. Faccini, ${ }^{14,60}$ F. Ferrarotto, ${ }^{60}$ F. Ferroni, ${ }^{60}$ M. Gaspero, ${ }^{60}$ M. A. Mazzoni, ${ }^{60}$ S. Morganti, ${ }^{60}$ M. Pierini, ${ }^{60}$ G. Piredda, ${ }^{60}$
F. Safai Tehrani, ${ }^{60}$ C. Voena, ${ }^{60}$ S. Christ, ${ }^{61}$ G. Wagner, ${ }^{61}$ R. Waldi, ${ }^{61}$ T. Adye, ${ }^{62}$ N. De Groot, ${ }^{62}$ B. Franek,,${ }^{62}$ N. I. Geddes, ${ }^{62}$ G. P. Gopal, ${ }^{62}$ E. O. Olaiya, ${ }^{62}$ S. M. Xella, ${ }^{62}$ R. Aleksan, ${ }^{63}$ S. Emery, ${ }^{63}$ A. Gaidot, ${ }^{63}$ S. F. Ganzhur, ${ }^{63}$ P.-F. Giraud,,${ }^{63}$ G. Hamel de Monchenault, ${ }^{63}$ W. Kozanecki, ${ }^{63}$ M. Langer, ${ }^{63}$ G.W. London, ${ }^{63}$ B. Mayer, ${ }^{63}$ G. Schott,,${ }^{63}$ G. Vasseur, ${ }^{63}$ Ch. Yeche, ${ }^{63}$ M. Zito, ${ }^{63}$ M.V. Purohit, ${ }^{64}$ A.W. Weidemann, ${ }^{64}$ F. X. Yumiceva, ${ }^{64}$ D. Aston, ${ }^{65}$ R. Bartoldus, ${ }^{65}$ N. Berger, ${ }^{65}$ A. M. Boyarski, ${ }^{65}$ O. L. Buchmueller, ${ }^{65}$ M. R. Convery, ${ }^{65}$ D. P. Coupal, ${ }^{65}$ D. Dong, ${ }^{65}$ J. Dorfan, ${ }^{65}$ D. Dujmic, ${ }^{65}$ W. Dunwoodie, ${ }^{65}$ R. C. Field, ${ }^{65}$ T. Glanzman, ${ }^{65}$ S. J. Gowdy, ${ }^{65}$ E. Grauges-Pous, ${ }^{65}$ T. Hadig, ${ }^{65}$ V. Halyo, ${ }^{65}$ T. Hryn'ova, ${ }^{65}$ W. R. Innes, ${ }^{65}$ C. P. Jessop, ${ }^{65}$ M. H. Kelsey, ${ }^{65}$ P. Kim,,${ }^{65}$ M. L. Kocian, ${ }^{65}$ U. Langenegger,,${ }^{65}$ D.W. G. S. Leith, ${ }^{65}$ S. Luitz, ${ }^{65}$ V. Luth, ${ }^{65}$ H. L. Lynch,${ }^{65}$ H. Marsiske, ${ }^{65}$ S. Menke, ${ }^{65}$ R. Messner, ${ }^{65}$ D. R. Muller, ${ }^{65}$ C. P. O'Grady ${ }^{65}$ V. E. Ozcan, ${ }^{65}$ A. Perazzo, ${ }^{65}$ M. Perl, ${ }^{65}$ S. Petrak, ${ }^{65}$ B. N. Ratcliff, ${ }^{65}$ S. H. Robertson, ${ }^{65}$ A. Roodman, ${ }^{65}$ A. A. Salnikov, ${ }^{65}$ R. H. Schindler, ${ }^{65}$ J. Schwiening, ${ }^{65}$ G. Simi, ${ }^{65}$ A. Snyder, ${ }^{65}$ A. Soha, ${ }^{65}$ J. Stelzer, ${ }^{65}$ D. Su, ${ }^{65}$ M. K. Sullivan, ${ }^{65}$ J. Va'vra, ${ }^{65}$ S. R. Wagner,,65 M. Weaver, ${ }^{65}$ A. J. R. Weinstein, ${ }^{65}$ W. J. Wisniewski, ${ }^{65}$ D. H. Wright, ${ }^{65}$ C. C. Young, ${ }^{65}$ P. R. Burchat, ${ }^{66}$ A. J. Edwards, ${ }^{66}$ T. I. Meyer, ${ }^{66}$ C. Roat, ${ }^{66}$ S. Ahmed, ${ }^{67}$ M. S. Alam, ${ }^{67}$ J. A. Ernst,,${ }^{67}$ M. Saleem, ${ }^{67}$ F. R. Wappler, ${ }^{67}$ W. Bugg, ${ }^{68}$ M. Krishnamurthy, ${ }^{68}$ S. M. Spanier, ${ }^{68}$ R. Eckmann, ${ }^{69}$ H. Kim, ${ }^{69}$ J. L. Ritchie, ${ }^{69}$ R. F. Schwitters, ${ }^{69}$ J. M. Izen, ${ }^{70}$ I. Kitayama, ${ }^{70}$ X. C. Lou, ${ }^{70}$ S. Ye, ${ }^{70}$ F. Bianchi, ${ }^{71}$ M. Bona, ${ }^{71}$ F. Gallo, ${ }^{71}$ D. Gamba, ${ }^{71}$ C. Borean, ${ }^{72}$ L. Bosisio, ${ }^{72}$ G. Della Ricca, ${ }^{72}$ S. Dittongo, ${ }^{72}$ S. Grancagnolo, ${ }^{72}$ L. Lanceri, ${ }^{72}$ P. Poropat, ${ }^{72,8}$ L. Vitale, ${ }^{72}$ G. Vuagnin, ${ }^{72}$ R. S. Panvini, ${ }^{73}$ Sw. Banerjee, ${ }^{74}$ C. M. Brown, ${ }^{74}$ D. Fortin, ${ }^{74}$ P. D. Jackson, ${ }^{74}$ R. Kowalewski, ${ }^{74}$ J. M. Roney, ${ }^{74}$ H. R. Band, ${ }^{75}$ S. Dasu, ${ }^{75}$ M. Datta, ${ }^{75}$ A. M. Eichenbaum, ${ }^{75}$ H. Hu, ${ }^{75}$ J. R. Johnson, ${ }^{75}$ P. E. Kutter, ${ }^{75}$ H. Li, ${ }^{75}$ R. Liu, ${ }^{75}$ F. Di Lodovico, ${ }^{75}$ A. Mihalyi, ${ }^{75}$ A. K. Mohapatra, ${ }^{75}$ Y. Pan, ${ }^{75}$ R. Prepost, ${ }^{75}$ S. J. Sekula, ${ }^{75}$ J. H. von Wimmersperg-Toeller, ${ }^{75}$ J. Wu, ${ }^{75}$ S. L. Wu, ${ }^{75}$ Z. Yu, ${ }^{75}$ and H. Neal ${ }^{76}$

(BABAR Collaboration)

${ }^{1}$ Laboratoire de Physique des Particules, F-74941 Annecy-le-Vieux, France
${ }^{2}$ Università di Bari, Dipartimento di Fisica and INFN, I-70126 Bari, Italy
${ }^{3}$ Institute of High Energy Physics, Beijing 100039, China
${ }^{4}$ University of Bergen, Institute of Physics, N-5007 Bergen, Norway
${ }^{5}$ Lawrence Berkeley National Laboratory and University of California, Berkeley, California 94720, USA
${ }^{6}$ University of Birmingham, Birmingham B15 2TT, United Kingdom
${ }^{7}$ Ruhr Universität Bochum, Institut für Experimentalphysik 1, D-44780 Bochum, Germany
${ }^{8}$ University of Bristol, Bristol BS8 ITL, United Kingdom
${ }^{9}$ University of British Columbia, Vancouver, BC, Canada V6T IZ1
${ }^{10}$ Brunel University, Uxbridge, Middlesex UB8 3PH, United Kingdom
${ }^{11}$ Budker Institute of Nuclear Physics, Novosibirsk 630090, Russia
${ }^{12}$ University of California at Irvine, Irvine, California 92697, USA
${ }^{13}$ University of California at Los Angeles, Los Angeles, California 90024, USA
${ }^{14}$ University of California at San Diego, La Jolla, California 92093, USA
${ }^{15}$ University of California at Santa Barbara, Santa Barbara, California 93106, USA
${ }^{16}$ University of California at Santa Cruz, Institute for Particle Physics, Santa Cruz, California 95064, USA
${ }^{17}$ California Institute of Technology, Pasadena, California 91125, USA
${ }^{18}$ University of Cincinnati, Cincinnati, Ohio 45221, USA
${ }^{19}$ University of Colorado, Boulder, Colorado 80309, USA
${ }^{20}$ Colorado State University, Fort Collins, Colorado 80523, USA
${ }^{21}$ Technische Universitüt Dresden, Institut für Kern- und Teilchenphysik, D-01062 Dresden, Germany
${ }^{22}$ Ecole Polytechnique, LLR, F-91128 Palaiseau, France
${ }^{23}$ University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom
${ }^{24}$ Università di Ferrara, Dipartimento di Fisica and INFN, I-44100 Ferrara, Italy
${ }^{25}$ Florida A\&M University, Tallahassee, Florida 32307, USA
${ }^{26}$ Laboratori Nazionali di Frascati dell'INFN, I-00044 Frascati, Italy

${ }^{27}$ Università di Genova, Dipartimento di Fisica and INFN, I-16146 Genova, Italy
${ }^{28}$ Harvard University, Cambridge, Massachusetts 02138, USA
${ }^{29}$ Imperial College London, London SW7 2BW, United Kingdom
${ }^{30}$ University of Iowa, Iowa City, Iowa 52242, USA
${ }^{31}$ Iowa State University, Ames, Iowa 50011-3160, USA
${ }^{32}$ Laboratoire de l'Accélérateur Linéaire, F-91898 Orsay, France
${ }^{33}$ Lawrence Livermore National Laboratory, Livermore, California 94550, USA
${ }^{34}$ University of Liverpool, Liverpool L69 3BX, United Kingdom
${ }^{35}$ Queen Mary, University of London, E1 4NS, United Kingdom
${ }^{36}$ University of London, Royal Holloway and Bedford New College, Egham, Surrey TW20 0EX, United Kingdom
${ }^{37}$ University of Louisville, Louisville, Kentucky 40292, USA
${ }^{38}$ University of Manchester, Manchester M13 9PL, United Kingdom
${ }^{39}$ University of Maryland, College Park, Maryland 20742, USA
${ }^{40}$ University of Massachusetts, Amherst, Massachusetts 01003, USA
${ }^{41}$ Massachusetts Institute of Technology, Laboratory for Nuclear Science, Cambridge, Massachusetts 02139, USA
${ }^{42}$ McGill University, Montréal, QC, Canada H3A $2 T 8$
${ }^{43}$ Università di Milano, Dipartimento di Fisica and INFN, I-20133 Milano, Italy
${ }^{44}$ University of Mississippi, University, Mississippi 38677, USA
${ }^{45}$ Université de Montréal, Laboratoire René J. A. Lévesque, Montréal, QC, Canada H3C 3J7
${ }^{46}$ Mount Holyoke College, South Hadley, Massachusetts 01075, USA
${ }^{47}$ Università di Napoli Federico II, Dipartimento di Scienze Fisiche and INFN, I-80126, Napoli, Italy
${ }^{48}$ NIKHEF, National Institute for Nuclear Physics and High Energy Physics, NL-1009 DB Amsterdam, The Netherlands
${ }^{49}$ University of Notre Dame, Notre Dame, Indiana 46556, USA
${ }^{50}$ Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
${ }^{51}$ The Ohio State University, Columbus, Ohio 43210, USA
${ }^{52}$ University of Oregon, Eugene, Oregon 97403, USA
${ }^{53}$ Università di Padova, Dipartimento di Fisica and INFN, I-35131 Padova, Italy
${ }^{54}$ Universités Paris VI et VII, Lab de Physique Nucléaire H. E., F-75252 Paris, France
${ }^{55}$ Università di Pavia, Dipartimento di Elettronica and INFN, I-27100 Pavia, Italy
${ }^{56}$ University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
${ }^{57}$ Università di Pisa, Dipartimento di Fisica, Scuola Normale Superiore and INFN, I-56127 Pisa, Italy
${ }^{58}$ Prairie View A\&M University, Prairie View, Texas 77446, USA
${ }^{59}$ Princeton University, Princeton, New Jersey 08544, USA
${ }^{60}$ Università di Roma La Sapienza, Dipartimento di Fisica and INFN, I-00185 Roma, Italy
${ }^{61}$ Universität Rostock, D-18051 Rostock, Germany
${ }^{62}$ Rutherford Appleton Laboratory, Chilton, Didcot, Oxon, OX11 0QX, United Kingdom
${ }^{63}$ DSM/Dapnia, CEA/Saclay, F-91191 Gif-sur-Yvette, France
${ }^{64}$ University of South Carolina, Columbia, South Carolina 29208, USA
${ }^{65}$ Stanford Linear Accelerator Center, Stanford, California 94309, USA
${ }^{66}$ Stanford University, Stanford, California 94305-4060, USA
${ }^{67}$ State University of New York, Albany, New York 12222, USA
${ }^{68}$ University of Tennessee, Knoxville, Tennessee 37996, USA
${ }^{69}$ University of Texas at Austin, Austin, Texas 78712, USA
${ }^{70}$ University of Texas at Dallas, Richardson, Texas 75083, USA
${ }^{71}$ Università di Torino, Dipartimento di Fisica Sperimentale and INFN, I-10125 Torino, Italy
${ }^{72}$ Università di Trieste, Dipartimento di Fisica and INFN, I-34127 Trieste, Italy
${ }^{73}$ Vanderbilt University, Nashville, Tennessee 37235, USA
${ }^{74}$ University of Victoria, Victoria, BC, Canada V8W 3P6
${ }^{75}$ University of Wisconsin, Madison, Wisconsin 53706, USA
${ }^{76}$ Yale University, New Haven, Connecticut 06511, USA
(Received 21 June 2003; published 26 September 2003)

We present a measurement of time-dependent $C P$ asymmetries and an updated determination of the $C P$-odd fraction in the decay $B^{0} \rightarrow D^{*+} D^{*-}$ using a data sample of $88 \times 10^{6} B \bar{B}$ pairs collected by the $B A B A R$ detector at the PEP-II B Factory at SLAC. We determine the $C P$-odd fraction to be $0.063 \pm$ 0.055 (stat) ± 0.009 (syst). The time-dependent $C P$ asymmetry parameters $\operatorname{Im}\left(\lambda_{+}\right)$and $\left|\lambda_{+}\right|$are determined to be 0.05 ± 0.29 (stat) ± 0.10 (syst) and 0.75 ± 0.19 (stat) ± 0.02 (syst), respectively. The standard model predicts these parameters to be $-\sin 2 \beta$ and 1 , respectively, in the absence of penguin diagram contributions.

The symmetry for combined charge conjugation (C) and parity (P) transformations is violated in B decays. Measurements of $C P$ asymmetries by the $B A B A R$ [1] and BELLE [2] Collaborations established this effect and are compatible with the standard model expectation based on the current knowledge of the Cabibbo-KobayashiMaskawa [3] quark-mixing matrix. As a result of the interference between direct B decay and decay after flavor change, a $C P$-violating asymmetry is expected in the time evolution of the decays $B^{0} \rightarrow D^{*+} D^{*-}$ [4] within the framework of the standard model [5]. This $C P$ asymmetry is related to $\sin 2 \beta$ when corrections due to theoretically uncertain penguin diagram contributions are neglected [6,7]. Penguin-induced corrections are predicted to be small in models based on the factorization approximation and heavy-quark symmetry; an effect of about 2% is predicted by Ref. [8]. A comparison of measurements of $\sin 2 \beta$ from $b \rightarrow c \bar{c} s$ modes such as $B^{0} \rightarrow J / \psi K_{S}^{0}$ [9] with that obtained in $B^{0} \rightarrow D^{*+} D^{*-}$ is an important test of these models and the standard model.

The $B^{0} \rightarrow D^{*+} D^{*-}$ mode is a pseudoscalar decay to a vector-vector final state, with contributions from three partial waves with different $C P$ parities: even for the S and D waves, odd for the P wave. The $C P$-odd contribution is predicted to be about 6% in Refs. [10,11]. We present an updated [12] determination of the $C P$-odd fraction, R_{\perp}, based on a one-dimensional time-integrated angular analysis. We also present a measurement of the time-dependent $C P$ asymmetry, obtained from a combined analysis of the time dependence of flavor-tagged decays and the one-dimensional angular distribution of the decay products. The data used in this analysis were collected with the $B A B A R$ detector at the PEP-II storage ring. The $B A B A R$ detector is described in detail elsewhere [13]. The data sample corresponds to about $88 \times 10^{6} e^{+} e^{-} \rightarrow Y(4 S) \rightarrow B \bar{B}$ events.
B^{0} mesons are exclusively reconstructed by combining two charged D^{*} candidates reconstructed in the modes $D^{*+} \rightarrow D^{0} \pi^{+}$and $D^{*+} \rightarrow D^{+} \pi^{0}$. We include the $D^{*+} D^{*-}$ combinations $\left(D^{0} \pi^{+}, \bar{D}^{0} \pi^{-}\right)$and ($D^{0} \pi^{+}, D^{-} \pi^{0}$), but not ($D^{+} \pi^{0}, D^{-} \pi^{0}$) due to the smaller branching fraction and larger backgrounds. Prior to forming a B^{0}, the D^{*} candidates are subjected to a massconstrained fit and vertex fit that includes the position of the beam spot.

The reconstructed D^{0} and D^{+}modes are $D^{0} \rightarrow K^{-} \pi^{+}$, $K^{-} \pi^{+} \pi^{0}, K^{-} \pi^{+} \pi^{+} \pi^{-}, K_{S}^{0} \pi^{+} \pi^{-}$, and $D^{+} \rightarrow K^{-} \pi^{+} \pi^{+}$, $K_{S}^{0} \pi^{+}, K^{-} K^{+} \pi^{+}$. The reconstructed mass of the $D^{0}\left(D^{+}\right)$ candidates is required to be within $20 \mathrm{MeV} / c^{2}$ of the nominal $D^{0}\left(D^{+}\right)$mass [14], except for $D^{0} \rightarrow K^{-} \pi^{+} \pi^{0}$, which has a looser requirement of $35 \mathrm{MeV} / c^{2}$. The D candidates are subjected to a mass-constrained fit prior to forming D^{*} candidates.

Charged kaon candidates are required to be inconsistent with the pion hypothesis, as inferred from the Cherenkov angle measured by the Cherenkov detector and the specific ionization measured by the charged-
particle tracking system. No particle identification requirements are made for the kaon from the decay $D^{0} \rightarrow$ $K^{-} \pi^{+}$. The reconstructed mass of $K_{S}^{0} \rightarrow \pi^{+} \pi^{-}$candidates is required to be within $25 \mathrm{MeV} / c^{2}$ of the nominal K_{S}^{0} mass. The angle between the flight direction and the momentum vector of the K_{S}^{0} is required to be less than 200 mrad , and the transverse flight distance from the primary event vertex must be greater than 2 mm . A mass-constrained fit is applied to each K_{S}^{0} candidate. Neutral pion candidates are formed from two photons detected in the electromagnetic calorimeter, each with energy above 30 MeV ; the mass of the pair must be within $20 \mathrm{MeV} / c^{2}$ of the nominal π^{0} mass, and their summed energy must be greater than 200 MeV . A massconstrained fit is applied to these π^{0} candidates. The mass of the π^{0} from $D^{*+} \rightarrow D^{+} \pi^{0}$, however, is required to be within $35 \mathrm{MeV} / c^{2}$ of the nominal π^{0} mass, and the momentum in the $\mathrm{Y}(4 S)$ frame in the interval $70<$ $\left|p^{*}\right|<450 \mathrm{MeV} / c$, with no requirement on the photon energy sum.

We construct a mass likelihood $\mathcal{L}_{\text {Mass }}$ that includes the mass and mass uncertainty of the D and D^{*} candidates. The D mass resolution is modeled by a Gaussian whose variance is determined on a candidate-by-candidate basis. The $D^{*}-D$ mass difference resolution is modeled by a double-Gaussian distribution whose parameters are determined from simulated events. The value of $\mathcal{L}_{\text {Mass }}$ is used to select B^{0} candidates, with a different requirement used for each D decay mode combination. In an event where more than one B^{0} candidate is reconstructed, the candidate with the largest $\mathcal{L}_{\text {Mass }}$ value is chosen.

The primary variables used to distinguish signal from background are the energy-substituted mass, $m_{\mathrm{ES}} \equiv$ $\sqrt{E_{\text {Beam }}^{2}-p_{B}^{2}}$, and the difference of the B candidate energy from the beam energy, $\Delta E \equiv E_{B}-E_{\text {Beam }}$, where all variables are evaluated in the $\mathrm{Y}(4 S)$ center-of-mass frame. The B^{0} candidates are required to have $-39<$ $\Delta E<31 \mathrm{MeV}$ and $m_{\mathrm{ES}}>5.2 \mathrm{GeV} / c^{2}$.

To reject backgrounds from the $e^{+} e^{-} \rightarrow c \bar{c}$ continuum process, events are required to have a ratio of second to zeroth Fox-Wolfram moments [15] of less than 0.6. We also require that the cosine of the angle between the thrust axis of the reconstructed B and the thrust axis of the rest of the event be less than 0.9.

After all selection criteria have been applied, a fit to the $m_{\text {ES }}$ distribution using a Gaussian and an ARGUS function [16] for the signal and background, respectively, results in a signal yield of 156 ± 14 (stat) events. In the region $m_{\mathrm{ES}}>5.27 \mathrm{GeV} / c^{2}$, the signal purity is 73%.

We perform a one-dimensional angular analysis to determine the fraction, R_{\perp}, of the P wave, $C P$-odd component of the $B^{0} \rightarrow D^{*+} D^{*-}$ decay. In the transversity basis [5], the following three angles are defined: the angle θ_{1} between the momentum of the slow pion from the D^{*-} in the D^{*-} rest frame and the direction of flight of the D^{*-} in the B rest frame; the polar angle $\theta_{\text {tr }}$ between the
normal to the D^{*-} decay plane and the direction of flight of the slow pion from the D^{*+} in the D^{*+} rest frame; and the corresponding azimuthal angle $\phi_{\text {tr }}$. The time-dependent angular distribution of the decay products is given in Ref. [17].

The dependence of the detector efficiency on the decay angles can introduce a bias in the measured value of R_{\perp}. Including the efficiency explicitly in the decay rate and then integrating over time and the angles θ_{1} and ϕ_{tr} results in the one-dimensional differential decay rate:

$$
\begin{equation*}
\frac{1}{\Gamma} \frac{d \Gamma}{d \cos \theta_{\mathrm{tr}}}=\frac{9}{32 \pi}\left[\left(1-R_{\perp}\right) \sin ^{2} \theta_{\mathrm{tr}}\left\{\frac{1+\alpha}{2} I_{0}\left(\cos \theta_{\mathrm{tr}}\right)+\frac{1-\alpha}{2} I_{\| \|}\left(\cos \theta_{\mathrm{tr}}\right)\right\}+2 R_{\perp} \cos ^{2} \theta_{\mathrm{tr}} \times I_{\perp}\left(\cos \theta_{\mathrm{tr}}\right)\right], \tag{1}
\end{equation*}
$$

where $\quad R_{\perp}=M_{\perp}^{2} /\left(M_{0}^{2}+M_{\|}^{2}+M_{\perp}^{2}\right), \quad \alpha=\left(M_{0}^{2}-M_{\|}^{2}\right) /$ $\left(M_{0}^{2}+M_{\|}^{2}\right)$, and $\left(M_{0}, M_{\|}, M_{\perp}\right)$ are the magnitudes of the amplitudes in the transversity basis. The three efficiency moments, $I_{k}(k=0, \|, \perp)$, are defined as

$$
\begin{equation*}
I_{k}\left(\cos \theta_{\mathrm{tr}}\right)=\int d \cos \theta_{1} d \phi_{\mathrm{tr}} g_{k}\left(\theta_{1}, \phi_{\mathrm{tr}}\right) \epsilon\left(\theta_{1}, \theta_{\mathrm{tr}}, \phi_{\mathrm{tr}}\right) \tag{2}
\end{equation*}
$$

where $g_{0}=4 \cos ^{2} \theta_{1} \cos ^{2} \phi_{\mathrm{tr}}, g_{\|}=2 \sin ^{2} \theta_{1} \sin ^{2} \phi_{\mathrm{tr}}, g_{\perp}=$ $\sin ^{2} \theta_{1}$, and ϵ is the detector efficiency. The efficiency moments are determined using simulated events. The efficiency moments are fit to second-order even polynomials in $\cos \theta_{\text {tr }}$, the parameters of which are fixed in the subsequent likelihood fit to the $\cos \theta_{\text {tr }}$ distribution.

The measurement of R_{\perp} is based on a combined unbinned maximum likelihood fit of the $\cos \theta_{\text {tr }}$ and m_{ES} distributions. The probability density function (pdf) for the m_{ES} distribution is given by the sum of ARGUS and Gaussian functions. The background shape is modeled by an even second-order polynomial in $\cos \theta_{\mathrm{tr}}$. The pdf used for signal events is given by Eq. (1). The experimental resolution of θ_{tr} is not negligible and is accounted for by convolving the signal pdf with a double Gaussian. Also, the resolution of $\theta_{\text {tr }}$ has significant tails caused by misreconstructed events. The effect of these tails is accounted for by an additional term in the signal pdf. The parametrization of the $\theta_{\text {tr }}$ resolution is determined from simulations.

We categorize our events in three types: $D^{*+} D^{*-} \rightarrow$ $\left(D^{0} \pi^{+}, \bar{D}^{0} \pi^{-}\right),\left(D^{0} \pi^{+}, D^{-} \pi^{0}\right)$, and $\left(D^{+} \pi^{0}, \bar{D}^{0} \pi^{-}\right)$because events with a neutral slow pion and events with a charged slow pion have different background levels, detection efficiencies, and $\cos \theta_{\text {tr }}$ resolutions. Thus, the parameters determined in the likelihood fit are three signal fractions, the $\cos \theta_{\text {tr }}$ background shape parameter, three $m_{\text {ES }}$ parameters (σ and mean of the Gaussian, and κ from the ARGUS function), and R_{\perp}. The fit to the data set yields a value of

$$
\begin{equation*}
R_{\perp}=0.063 \pm 0.055(\text { stat }) \pm 0.009(\text { syst }) \tag{3}
\end{equation*}
$$

Figure 1 shows the distribution of $\cos \theta_{\mathrm{tr}}$ for events in the range $m_{\mathrm{ES}}>5.27 \mathrm{GeV} / c^{2}$. The value of α is fixed to zero in the fit, incurring a (negligible) systematic uncertainty. The largest systematic uncertainties arise from the parametrization of the angular resolution (0.005) and the determination of the efficiency moments (0.005).

In addition to the time-independent measurement of the $C P$-odd fraction, we perform a combined analysis of
the $\cos \theta_{\text {tr }}$ distribution and the time dependence in order to determine the time-dependent $C P$ asymmetry, using the sample of $B^{0} \rightarrow D^{*+} D^{*-}$ events described previously. We also use information from the other B meson in the event to tag its flavor as either a B^{0} or \bar{B}^{0}.

Although factorization models predict a small penguin contamination in the weak phase difference in $\operatorname{Im}\left(\lambda_{f}\right)=-\sin 2 \beta$ [8], a sizable penguin contribution cannot a priori be excluded. Thus, the value of $\lambda_{f}=$ $\eta_{C P}(q / p)[\bar{A}(f) / A(f)]$ [17] can be different for the three transversity amplitudes $(f=\perp, 0, \|)$ because of possible different penguin-to-tree ratios. This possibility is explicitly included in the parametrization of the decay rates described here.

The decay rate $F_{+}\left(F_{-}\right)$for a neutral B meson tagged as a $B^{0}\left(\bar{B}^{0}\right)$ is given by

$$
\begin{align*}
F_{ \pm}(\Delta t)=\frac{e^{-|\Delta t| / \tau_{B^{0}}}}{4 \tau_{B^{0}}}\{ & G\left(1-\frac{1}{2} \Delta \mathcal{D}\right) \\
\mp \mathcal{D}[& S \sin \left(\Delta m_{d} \Delta t\right) \\
& \left.\left.+C \cos \left(\Delta m_{d} \Delta t\right)\right]\right\} \tag{4}
\end{align*}
$$

where $\Delta t=t_{\text {rec }}-t_{\text {tag }}$ is the difference between the proper decay time of the reconstructed B meson (B_{rec}) and of the tagging B meson $\left(B_{\text {tag }}\right), \tau_{B^{0}}$ is the B^{0} lifetime, and Δm_{d} is the mass difference determined from the $B^{0}-\bar{B}^{0}$ oscillation frequency. The dilution factor, $\mathcal{D}=1-2 \omega$, where

FIG. 1 (color online). Measured distribution of $\cos \theta_{\text {tr }}$ and fit results. The data points are from the region $m_{\mathrm{ES}}>$ $5.27 \mathrm{GeV} / c^{2}$ and the solid line is the projection of the fit result in the same region. The dotted line represents the background component.
ω is the average mistag fraction, describes the effect of incorrect tags, and $\Delta \mathcal{D}$ accounts for possible differences in the mistag probabilities for B^{0} and \bar{B}^{0}. The G, C, and S coefficients are defined as

$$
\begin{gather*}
G=\frac{3}{4}\left[\left(1-R_{\perp}\right) \sin ^{2} \theta_{\mathrm{tr}}+2 R_{\perp} \cos ^{2} \theta_{\mathrm{tr}}\right], \quad C=\frac{3}{4}\left[\left(1-R_{\perp}\right) \frac{1-\left|\lambda_{+}\right|^{2}}{1+\left|\lambda_{+}\right|^{2}} \sin ^{2} \theta_{\mathrm{tr}}+2 R_{\perp} \frac{1-\left|\lambda_{\perp}\right|^{2}}{1+\left|\lambda_{\perp}\right|^{2}} \cos ^{2} \theta_{\mathrm{tr}}\right] \tag{5}\\
S=-\frac{3}{4}\left[\left(1-R_{\perp}\right) \frac{2 \operatorname{Im}\left(\lambda_{+}\right)}{1+\left|\lambda_{+}\right|^{2}} \sin ^{2} \theta_{\mathrm{tr}}-2 R_{\perp} \frac{2 \operatorname{Im}\left(\lambda_{\perp}\right)}{1+\left|\lambda_{\perp}\right|^{2}} \cos ^{2} \theta_{\mathrm{tr}}\right] .
\end{gather*}
$$

Because the two $C P$-even transversity amplitudes produce the same distribution in $\cos \theta_{\mathrm{tr}}$, we are sensitive only to λ_{+}, the appropriate average of $\lambda_{\|}$and λ_{0} :

$$
\begin{gather*}
\frac{\operatorname{Im}\left(\lambda_{+}\right)}{1+\left|\lambda_{+}\right|^{2}}=\frac{\frac{\operatorname{Im}\left(\lambda_{\|}\right)}{1+\left|\lambda_{\|}\right|^{2}} M_{\|}^{2}+\frac{\operatorname{Im}\left(\lambda_{0}\right)}{1+\left|\lambda_{0}\right|^{2}} M_{0}^{2}}{M_{\|}^{2}+M_{0}^{2}}, \\
\frac{1-\left|\lambda_{+}\right|^{2}}{1+\left|\lambda_{+}\right|^{2}}=\frac{\frac{1-\left|\lambda_{\|}\right|^{2}}{1+\left|\lambda_{\|}\right|^{2}} M_{\|}^{2}+\frac{1-\left|\lambda_{0}\right|^{2}}{1+\left|\lambda_{0}\right|^{2}} M_{0}^{2}}{M_{\|}^{2}+M_{0}^{2}} \tag{6}
\end{gather*}
$$

If angular acceptance effects are not taken into account and the $C P$-odd fraction is allowed to float in the fit, then no bias is seen in the resulting value of λ_{+}based on simulations. Hence, a dedicated method to correct for detector efficiency is not required. The value of R_{\perp} obtained is therefore an effective value, which is not identical to the acceptance-corrected value from the time-integrated measurement.

The time interval Δt is calculated from the measured separation Δz between the decay vertex of the reconstructed B meson and the vertex of the flavor-tagging B meson along the collision axis. Events with a Δt uncertainty $<2.5 \mathrm{ps}$ and a measured $|\Delta t|<20 \mathrm{ps}$ are accepted. The mistag fractions and Δt resolution functions are determined from a sample of neutral B decays to flavor eigenstates, $B_{\text {flav }}$, as in the $\sin 2 \beta$ measurement using charmonium decays [9]. Vertex reconstruction, the determination of Δt, and the algorithms used for the determination of the flavor of B_{tag} are described in Refs. [9,18].

We determine the parameters $\operatorname{Im}\left(\lambda_{+}\right)$and $\left|\lambda_{+}\right|$with a simultaneous unbinned maximum likelihood fit to the Δt distributions of the B_{rec} and B_{flav} tagged samples (Fig. 2). The Δt distribution of the $B_{\text {flav }}$ sample evolves according to the known frequency for flavor oscillations in neutral B mesons. The observed magnitude of the $C P$ asymmetry in the $B_{\text {rec }}$ sample and the flavor oscillation in the $B_{\text {flav }}$ sample are reduced by the same factor \mathcal{D} due to flavor mistags. The Δt distributions for the $B_{\text {rec }}$ and $B_{\text {flav }}$ samples are both convolved with a common Δt resolution function. The θ_{tr} angular resolution is accounted for in the same way as described previously. Events are assigned signal and background probabilities based on their m_{ES} values. Backgrounds are incorporated with an empirical description of their Δt distributions, containing prompt (zero lifetime) and nonprompt components convolved with a separate resolution function [9].

A total of 38 parameters are varied in the fit: the values of $\operatorname{Im}\left(\lambda_{+}\right)$and $\left|\lambda_{+}\right|(2)$, the effective $C P$-odd fraction (1), the average mistag fraction ω and the difference $\Delta \omega$ between B^{0} and \bar{B}^{0} mistags for each tagging category (8), parameters for the signal Δt resolution (9), and parameters for the background time dependence (7), Δt resolution (3), and mistag fractions (8). Because the $C P$-odd fraction is small, we have little sensitivity to the parameters $\left|\lambda_{\perp}\right|$ and $\operatorname{Im}\left(\lambda_{\perp}\right)$. Therefore they are fixed to 1.0 and -0.741 [9], respectively. These are the values expected if direct $C P$ violation and contributions from penguin diagrams are neglected. The changes in the fitted values of $\operatorname{Im}\left(\lambda_{+}\right)$and $\left|\lambda_{+}\right|$for different input values of $\operatorname{Im}\left(\lambda_{\perp}\right)$ (varied between -1.0 and 1.0) and $\left|\lambda_{\perp}\right|$ (varied between 0.7 and 1.3) are taken into account as systematic uncertainties. The results obtained from the fit (Fig. 2) are

FIG. 2. From top to bottom: Number $N_{B^{0}}\left(N_{\bar{B}^{0}}\right)$ of candidate events in the region $m_{\mathrm{ES}}>5.27 \mathrm{GeV} / c^{2}$ with a $B^{0}\left(\bar{B}^{0}\right)$ tag, and the raw asymmetry $\left(N_{B^{0}}-N_{\bar{B}^{0}}\right) /\left(N_{B^{0}}+N_{\bar{B}^{0}}\right)$, as functions of Δt. The solid curves represent the result of the combined fit to the full sample. The shaded regions represent the background contributions.

$$
\begin{gather*}
\operatorname{Im}\left(\lambda_{+}\right)=0.05 \pm 0.29(\text { stat }) \pm 0.10(\text { syst }) \tag{7}\\
\left|\lambda_{+}\right|=0.75 \pm 0.19(\text { stat }) \pm 0.02(\text { syst }) \tag{8}
\end{gather*}
$$

The dominant sources of systematic uncertainty come from the variation of the value of λ_{\perp} [0.056 and 0.008 , respectively, for $\operatorname{Im}\left(\lambda_{+}\right)$and $\left.\left|\lambda_{+}\right|\right]$, and the level, composition, and $C P$ asymmetry of the background (0.078 and 0.005).

If the $B \rightarrow D^{*+} D^{*-}$ transition proceeds only through the $b \rightarrow c \bar{c} d$ tree amplitude, we expect that $\operatorname{Im}\left(\lambda_{+}\right)=$ $-\sin 2 \beta$ and $\left|\lambda_{+}\right|=1$. To test this hypothesis, we fix $\operatorname{Im}\left(\lambda_{+}\right)=-0.741$ [9] and $\left|\lambda_{+}\right|=1$ and repeat the fit. The observed change in the likelihood corresponds to 2.5 standard deviations (statistical uncertainty only).

In summary, we have reported a measurement of the $C P$-odd fraction and measurements of time-dependent $C P$ asymmetries for the decay $B^{0} \rightarrow D^{*+} D^{*-}$. The measurement of R_{\perp} supersedes the previous $B A B A R$ result [12], with a factor of 3 reduction in the statistical uncertainty, and indicates that $B^{0} \rightarrow D^{*+} D^{*-}$ is mostly $C P$ even. The time-dependent asymmetries are found to differ slightly from standard model predictions with penguin amplitudes ignored.

We are grateful for the excellent luminosity and machine conditions provided by our PEP-II colleagues and for the substantial dedicated effort from the computing organizations that support $B A B A R$. The collaborating institutions wish to thank SLAC for its support and kind hospitality. This work is supported by the DOE and NSF (USA), NSERC (Canada), IHEP (China), CEA and CNRS-IN2P3 (France), BMBF and DFG (Germany), INFN (Italy), FOM (The Netherlands), NFR (Norway), MIST (Russia), and PPARC (United Kingdom). Individuals have received support from the A. P. Sloan Foundation, the Research Corporation, and the Alexander von Humboldt Foundation.
*Also with Università di Perugia, Perugia, Italy.
${ }^{\dagger}$ Also with Università della Basilicata, Potenza, Italy.
${ }^{\ddagger}$ Also with IFIC, Instituto de Física Corpuscular, CSICUniversidad de Valencia, Valencia, Spain.
${ }^{\S}$ Deceased.
[1] BABAR Collaboration, B. Aubert et al., Phys. Rev. Lett. 87, 091801 (2001).
[2] BELLE Collaboration, K. Abe et al., Phys. Rev. Lett. 87, 091802 (2001).
[3] N. Cabibbo, Phys. Rev. Lett. 10, 531 (1963); M. Kobayashi and T. Maskawa, Prog. Theor. Phys. 49, 652 (1973).
[4] Throughout this paper, flavor-eigenstate decay modes also imply their charge conjugate.
[5] I. Dunietz et al., Phys. Rev. D 43, 2193 (1991).
[6] M. Gronau, Phys. Rev. Lett. 63, 1451 (1989).
[7] A. I. Sanda and Z. Z. Xing, Phys. Rev. D 56, 341 (1997).
[8] X. Y. Pham and Z. Z. Xing, Phys. Lett. B 458, 375 (1999).
[9] BABAR Collaboration, B. Aubert et al., Phys. Rev. Lett. 89, 201802 (2002).
[10] J. Rosner, Phys. Rev. D 42, 3732 (1990).
[11] Z. Z. Xing, Phys. Rev. D 61, 014010 (2000).
[12] BABAR Collaboration, B. Aubert et al., Phys. Rev. Lett. 89, 061801 (2002).
[13] BABAR Collaboration, A. Palano et al., Nucl. Instrum. Methods Phys. Res., Sect. A 479, 1 (2002).
[14] Particle Data Group, K. Hagiwara et al., Phys. Rev. D 66, 010001 (2002).
[15] G. C. Fox and S. Wolfram, Phys. Rev. Lett. 41, 1581 (1978).
[16] Defined as $A \sim \sqrt{x} \times \exp (\kappa x)$ where $x=1-$ $\left(m_{\mathrm{ES}} s / m_{0}\right)^{2}$ and $m_{\mathrm{ES}}<m_{0}$. The value of m_{0} is fixed to $5.291 \mathrm{GeV} / \mathrm{c}^{2}$. H. Albrecht et al., Z. Phys. C 48, 543 (1990).
[17] "The BABAR Physics Book," edited by P. F. Harrison and H. R. Quinn, SLAC Report No. SLAC-R504, 1998, Chap. 5, and references therein. (Equation 5.44 in this reference has wrong signs in the last two terms.)
[18] BABAR Collaboration, B. Aubert et al., Phys. Rev. D 66, 032003 (2002).

