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Abstract

The use of THz radiation as a potential tool for medical imaging is of
increasing interest. In this paper three methods of analysis of THz spectroscopic
information for diagnosis of tissue pathologies at THz frequencies are
presented. The frequency-dependent absorption coefficients, refractive indices
and Debye relaxation times of pure water and pure lipids were measured
and used as prior knowledge in the different theoretical methods for the
determination of concentration. Three concentration analysis methods were
investigated: (a) linear spectral decomposition, (b) spectrally averaged
dielectric coefficient method and (c) the Debye relaxation coefficient method.
These methods were validated on water and lipid emulsions by determining
the concentrations of phantom chromophores and comparing to the known
composition. The accuracy and resolution of each method were determined
to assess the potential of each method as a tool for medical diagnosis at THz
frequencies.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The terahertz (THz = 10'> Hz) range lies between the microwave and infrared regions of
the electromagnetic spectrum, with a wavelength and frequency range, typically, defined as
0.3-3 mm and 0.1-10 THz, respectively (Siegel 2004). THz radiation is non-ionizing and
has the capability to penetrate a wide variety of non-conducting materials such as clothing,
paper, cardboard, wood, plastics and ceramics, but is strongly absorbed by polar molecules,
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such as water, and reflected by metals (Wallace et al 2008). THz imaging and spectroscopy
is currently being developed for use in medical imaging (Pickwell-MacPherson and Wallace
2009, Pickwell and Wallace 2006). The first demonstration of biomedical THz imaging (Hu
and Nuss 1995) concluded that a distinction could be made between porcine muscle and fat
with the hypothesis that the difference in water content of the two materials was responsible
for the contrast. Water is one of the main constituents of biological tissue: penetration depths
range from typically a few hundred microns in high water content tissues to approximately
a centimetre in tissues with a high fat content (Arnone et al 1999, Fitzgerald et al 2005).
Since this first demonstration, the number of reported biomedical studies using THz imaging
has increased greatly to include teeth and artificial skin models (Arnone et al 1999), healthy
skin and basal cell carcinoma both in vitro and in vivo (Woodward et al 2002, Wallace et al
2004), excised breast tumours (Fitzgerald et al 2006), cortical bone (Stringer et al 2005) and
burns (Taylor et al 2008). Spectroscopic studies in the THz frequency range of excised tissues
have shown statistically significant differences between tumours, normal and adipose tissues
(Wallace et al 2006, Ashworth ef al 2009).

However, these studies, while demonstrating the capabilities of THz imaging in identifying
contrast between biomedical tissues, do not provide conclusive answers with regard to the
usefulness of THz radiation as a biomedical imaging tool. There is an apparent need to
answer the questions: Does THz spectroscopy allow the measurement of tissue composition
and is it sufficiently accurate and sensitive to make a diagnosis of tissue pathologies? Here
we investigate the potential of three different analytical methods to detect and specify tissue
pathologies at THz wavelengths, as described below.

(i) Linear spectral decomposition method (LSDM). This employs a linear forward model,
commonly known as the Beer—Lambert law, based on those used for conventional optical
transmittance spectroscopy of media containing different chromophores (Cope 1991),
commonly known as the Beer—Lambert law. The concentration of each chromophore
present in a material can be estimated from the wavelength-dependent total attenuation of
the material using linear matrix inversion. The technique relies on prior knowledge of the
absorption coefficient spectra of each of the chromophores in the THz wavelength region.

(i1) Spectrally averaged dielectric coefficient method (SADCM). This is an empirical method
based on recent work by Jepsen et al (2007) where the real and imaginary dielectric
coefficients are averaged over a specific frequency range. By repeating this process for
a number of measurements made on samples with different concentrations, empirical
equations can be obtained that relate the averaged dielectric coefficients to chromophore
concentration.

(iii) Debye relaxation coefficient method (DRCM). Debye theory relates relaxation processes
within a material to an alternating external electric field where the material is considered
a noninteracting population of dipoles. The method used in this work is empirical
and is based on determining the concentration dependence of Debye coefficients from
measurements made in phantoms of different compositions. By determining the Debye
relaxation coefficients for a number of measurements made on samples with different
concentrations, empirical equations can be obtained that relate the Debye relaxation
coefficients to the chromophore concentration.

The three analysis approaches are independent of each other: the equations used are
given in section 2.3. The same raw reflection data are used in the calculations. Additionally,
some prior knowledge is required: for the LSDM, the absorption spectra of pure lipids and
water are required, and the SADCM and DRCM both require the spectra of the complex
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dielectric coefficient of each emulsion. Transmission spectroscopy measurements were taken
to determine these.

In assessing the capability of THz imaging and spectroscopy for medical applications, it
is the measurements made in reflection mode which are of greatest relevance. Therefore, the
accuracy of the concentration analysis methods was determined on reflection mode emulsion
measurements, where the required prior knowledge was determined from transmission mode
measurements of pure lipids, water and emulsions.

2. Materials and methods

2.1. Experimental setup and data acquisition

Two stand-alone portable THz systems were used in this study: transmission spectroscopy
was performed using the TPI Spectral000 system and reflection spectroscopy using the TPI
Imagal000 (both produced by TeraView Ltd, Cambridge). All measurements were made at
the premises of TeraView Ltd, Cambridge, UK.

2.1.1. Transmission. The spectroscopy unit consists of a sample chamber through which THz
pulses are propagated and measured. The chamber is sealed to enable measurements to be made
in an atmosphere purged by nitrogen to remove the effects of water vapour from the measured
data. Samples for transmission measurements were held in a liquid sample transmission cell
which consists of two quartz windows separated by a Teflon spacer. As the cell is designed to
be used vertically, rubber rings are placed between the quartz windows and a retaining plate
which is tightened to create a water-tight seal. Spacer thicknesses used in this work were
200 pm for water-rich samples and 500 pm for oil-rich samples. Sample measurements were
made by measuring the intensity of a THz pulse after it had propagated through the sample
chamber and transmission cell containing the sample. A reference measurement was made by
measuring the intensity of a THz pulse after it had propagated through the sample chamber
and the transmission cell containing no sample or spacer (effectively two pieces of quartz plate
held tightly together).

The complex refractive index of the sample is calculated by dividing the measured
reference pulse by the measured sample pulse. The amplitude and phase of this calculation
are used to calculate the complex dielectric index, from which the absorption coefficient and
index of refraction of the sample can be determined. In order to determine the absorption
coefficient, it is necessary to approximate the Fresnel coefficients, by assuming that the
absorption coefficient is small compared to the refractive index (Jepsen et al 2005).

2.1.2. Reflection. Measurements in reflection mode were made in the flatbed geometry set-up
of the imaging system, where samples are placed on top of a 2 mm thick z-cut quartz window
where the THz beam is focused. The THz pulses are focused onto the samples where the
angle of reflection is 30° to the normal. The imaging system was used to collect single-point
measurements from the centre of the quartz window, where a THz waveform, approximately
35 ps in length, was acquired for each measured sample. Although an ‘imaging’ system
was used for the reflection measurements, it is the spectroscopic properties of the samples
calculated from the reflection pulses which are used, and so subsequently we refer to these
reflection data as spectroscopic data. An ‘air reference’, a measurement of the quartz/air
interface at the empty surface of the quartz window, was used in the reflection measurements.
All measurements were made at room temperature.
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There is also a reflection from the bottom surface of the 2 mm thick quartz window, R1,
although the main peak of this reflection is not seen in the measured waveform as it does
not occur in the measurement time window (0-35 ps). Residual ‘ringing’ from R/ does,
however, extend into the measurement time window affecting the top sample reflection, R2,
which should be removed. To eliminate the residual from R/ a second 2 mm z-cut quartz
window is placed on top of the first, creating an ‘effective’ 4 mm thick quartz window. This
has the effect of delaying the arrival of R2 such that it falls outside the time window (>35 ps)
and does not appear in the measured waveform. The measured waveform, therefore, contains
only the residual ringing from R/ and is referred to as ‘the background’. The measured data
are corrected for by subtracting the background waveform from the reference and sample
waveforms. An alternative method for baseline correction has been proposed by Huang et al
(2009).

The acquired reflection mode waveform represents the impulse function of the sample
convolved with the reference waveform, which includes instrumental and environmental
aspects such as oscillations in the waveform shape due to atmospheric water. These can
be removed by deconvolving the raw waveform with the reference waveform to extract the
impulse function. The Fourier transform of this time domain signal gives a frequency domain
spectrum (Jepsen et al 2007). The refractive index and absorption coefficient were extracted
from the raw reflection data following the equations given in reference (Huang et al 2009).

2.2. Sample preparation

The water and lipid emulsions used in this study were a commercially available emulsion,
Intralipid (Fresenius Kabi, Sweden). Intralipid is a nutritional supplement which is an oil-
in-water emulsion of soyabean oil stabilized with 1.2% egg phospholipid with a range of
particle sizes between 1 um and 40 nm (van Staveren et al 1991). A series of dilutions of
Intralipid with distilled water were produced between 4% and 20% volume lipid concentration.
Measurements were also made of pure lipids. The lipids measured were olive oil, safflower
oil, beef tallow and lard. The lipids were at least 99% pure with exception of the lard which
had been purified manually following a previously described method (vanVeen et al 2004).
The final purity of the lard could not be determined.

2.3. Theoretical background

2.3.1. LSDM. The LSDM for concentration determination is based on a linear forward
model, the Beer—Lambert law, which is typically used for conventional optical transmittance
spectroscopy of non-scattering media containing different chromophores (Cope 1991). In this
technique, the total absorption of the interrogated medium is considered to be the sum of the
absorption contributions of each solute, which are linearly dependent upon their concentration
as follows:

Ma(total) = Ma(l) - €1+ Ha@) * €2+ -+ a(n) * Cn; (D

where (1,4, 1s the absorption coefficient of a compound and ¢, is the concentration of a
compound. Inthe THz frequency region, the influence of scattering is assumed to be very small
in comparison to that of absorption, meaning that the THz signal amplitude can be taken to be a
linear function of u, (Smye et al 2001, Zhang 2002). The concentration of each solute can be
estimated directly using multilinear regression. Calculating concentrations using equation (1)
relies on prior information of the frequency dependence of the individual absorption
coefficients of the absorbing chromophores, in this case water and lipid. Measurements must
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be made at multiple wavelengths using a minimum of n wavelengths for a sample containing
n absorbing chromophores.

2.3.2. SADCM. Recent work has suggested that empirical equations can be generated to
relate the true concentration of a single solute to the value of the real, ¢, and imaginary,
&”, parts of the dielectric coefficients averaged across a frequency range (Jepsen et al 2007).
These equations are then used as the basis for concentration analysis on future measurements of
solutions containing the same solutes. Although this technique does not provide a theoretical
model of the physical processes responsible for the concentration dependence of the measured
THz signals, it nevertheless incorporates empirical knowledge of the concentration dependence
of the absorption coefficient and the refractive index through the use of the complex dielectric
coefficient. The complex dielectric coefficient of a material, g, is described by

Ew) = &'(w) +ig" (w), (2
where

g'(w) = n*(w) — pn2(w) 3)
and

& (w) = 2n(w) e (@). 4)

The implementation of this method for a particular solution relies on establishing the variation
with solute concentration of ¢’ and &” over a frequency range. In this work ¢ and &” are
determined from the measured absorption coefficient and refractive index spectra and averaged,
at each emulsion concentration, over the frequency range 0.1-1 THz. This frequency range
is in keeping with the previously reported study (Jepsen et al 2007). The averaged values of
¢’ and ¢” are then plotted against the lipid concentration from which empirical equations are
formed to describe the trend of both ¢’ and ¢” with lipid concentration. These take the form
of linear regressions, such as

y(real) = Ax + B
. (&)

y(imag) = Cx + D,
where A, B, C and D are the fitting parameters, y is the averaged value of either ¢’ or ¢” and
x is the concentration of a single solute lipid in the emulsion. Only the concentration of a
single solute, in this instance lipid, can be directly determined from the measured data. As
the concentrations are calculated as percentages, subtracting the determined concentration of
lipid from 100 yields the concentration of water.

The empirical equations form what can be considered to be a ‘look-up table’ for the
determination of emulsion concentrations. ¢” and &” of an emulsion of unknown concentration
are averaged over the frequency range and substituted into the empirical equations, which are
then solved for x using the pre-determined fitting parameters. This generates two estimates of
the lipid concentration. These are averaged to produce a lipid concentration estimate.

2.3.3. DRCM. Debye theory (Debye 1929) describes the reorientation of molecules which
could involve translational and rotational diffusion, hydrogen bond arrangement and structural
rearrangement. The Debye relaxation time, the time constant 7, describes the time necessary
for % of the dipoles to relax to equilibrium after a pulse of EM radiation. For a pure material,
multiple Debye-type relaxation processes are possible, and in this work double Debye theory
is used:
Agq Agey
+ - + : )
1+ (owr)) 1+ (on)

T (w) = €0

(6)
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which describes two distinct relaxation processes, where Aey, Aeg,, T1, 7o and €, are the Debye
relaxation coefficients. € is the real part of the dielectric constant at the high frequency limit.
Ag = g —¢&j,1, Where g; are intermediate values, occurring at different times, of the dielectric
constant, and describe the relative contributions to € from the relaxation modes, t j. Agp and
Ag; are equal to g, — &) and €| — &;, respectively, where ¢, the static dielectric constant, is
the real part of the dielectric constant at the low frequency limit. Debye relaxation coefficients
were determined from ¢ calculated for each emulsion using equation (2). A nonlinear least-
squares fitting routine was employed to fit the Debye coefficients to over the frequency range
0.1-1 THz. This frequency range is in keeping with the previously published studies (Pickwell
et al 2004). &, a frequency invariant material specific parameter, is typically held constant
during fitting procedures to improve the stability of the fitting procedure (Pickwell et al 2004,
Koeberg et al 2007). ¢, for the lipid and water emulsions were extrapolated between the &
values of pure water and pure lipid, in keeping with other studies, which are typically 78.8
and 2.5, respectively (Pickwell et al 2004, Thompson 2005).

As with the SADCM (section 2.3.2) the implementation of this method for concentration
analysis relies on establishing the variation of each of the Debye relaxation coefficients as a
function of lipid concentration. The Debye relaxation coefficients were determined from the
measured absorption coefficient and refractive index spectra of each emulsion and then plotted
against the lipid concentration, x. These plots were specific to the trend of the individual
Debye relaxation coefficients, and generally took the form of polynomial regressions, such as

Agy = Ax® + Bx>+ Cx + D, (7)

where A, B, C and D are fitting parameters, Ag, is the emulsion-specific Debye relaxation
coefficient and x is the concentration of lipid in the emulsion. Again, only the concentration
of a single solute, lipid, can be directly determined from the measured data. As with
the SADCM, the determined percentage concentration of lipid was subtracted from 100 to
calculate the concentration of water. Again, the empirical equations form a ‘look-up-table’
for the determination of emulsion concentration. The empirical equations are substituted into
equation (6) for each individual Debye relaxation coefficient, which is then solved for the lipid
concentration, x, using the € of an emulsion of unknown concentration.

2.3.4. Accuracy and resolution. For the concentration analysis methods used here, the
accuracy at each discrete concentration was determined by finding the mean difference between
the calculated and the true concentration values.

Resolution reflects the smallest detectable change in the determined parameters given the
error in the measurement, where a good resolution would correspond to a small value. The
resolution in the determined parameters was calculated using

resolution = \/var(P) = \/(XX/)_IO'Z, )

where P is an array of the variable input parameters, X is the design matrix of the model (X' is
its conjugate transpose), which contains the derivative of the models with respect to the input
parameters, and o is the error in the measurement, in this case the standard deviation of the
measurement, obtained from repeated measurements.

3. Results and discussions

3.1. Transmission mode ‘prior knowledge’ of 1, and n

In this section we present the experimental measurements from samples of pure water and
lipids made in transmission mode.
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Figure 1. The THz absorption coefficient and index of refraction of pure lipids and water, where
(a) and (b) show the absorption coefficients and indices of refraction of pure water and safflower
oil to highlight their differing spectral shapes and (c) and (d) show the absorption coefficients and
indices of refraction of all the pure lipids. (a) n, Safflower oil and pure water, (b) n safflower oil
and pure water, (c) u, lipids only and (d) » lipids only.

The frequency dependence of the absorption coefficient and refractive index of pure lipids
and water are shown in figure 1. The absorption coefficient and refractive index of lipids are
smaller than those of water. The lower absorption leads to higher signals and, therefore, greater
range of frequencies to be investigated allowing measurements to be made up to a frequency
of 3 THz. The absorption coefficient for all lipids increases with a frequency upto around
2 THz. The frequency-dependent absorption coefficient of safflower oil was used as prior
knowledge in the LSDM. The absorption coefficients and refractive indices of lipid and water
emulsions measured in transmission are illustrated in figure 2 where an increase in both the
absorption coefficient and the refractive index with increasing water content of the emulsions
is observed.

Values of &’ and ¢” determined from water and lipid emulsions are shown in figure 3 over
the frequency range 0.1-1 THz, where there is an increase in both ¢’ and &” with increasing
water concentration.

The agreement between the empirical functions and the measured data is illustrated
in figure 4(a). The empirical functions describing the variation in &’ and &” with lipid
concentration are given as

¢ =5.81—0.05x

9
¢” =3.16 — 0.05x, ©
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Figure 2. The THz absorption coefficient and index of refraction for different concentrations of
lipid in water. The water and lipid emulsions used in this study were a commercially available
emulsion, Intralipid (Fresenius Kabi, Sweden), an oil-in-water emulsion of soyabean oil stabilized
with 1.2% egg phospholipid: (a) absorption coefficient and (b) refractive index.
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Figure 3. The real and imaginary dielectric coefficients for different concentrations of lipid in
water in the THz frequency range. The water and lipid emulsions used in this study were a
commercially available emulsion, Intralipid (Fresenius Kabi, Sweden), an oil-in-water emulsion
of soyabean oil stabilized with 1.2% egg phospholipid: (a) real and (b) imaginary.

where x = lipid concentration. The variation in the determined Debye relaxation coefficients
with respect to lipid concentration are illustrated in figure 4(b). The empirical functions
describing the variation in Debye relaxation coefficients with lipid concentration are given as

Ag; = —0.7363x + 73.982

Ag; = 0.0003x? — 0.0213x + 1.3237
71 = 0.0234x + 8.5018

7, = 0.001x +0.1243

ging = —0.013x +3.5324

where, again, x = lipid concentration.

(10)
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Figure 4. Plot showing (a) the average value of ¢’ and ¢” in water and lipid emulsions as a function
of lipid concentration. The symbols are the averaged dielectric coefficients determined from the
data and the dotted lines represent the best fit of the empirical functions. (b) The Debye coefficients
measured in transmission in water and lipid emulsions, plotted as a function of lipid concentration.
The symbols are the Debye relaxation coefficients determined from the experimental data and the
dotted lines represent the best fit of empirical functions: (a) SADCM and (b) DRCM.

Table 1. Standard deviation of 15 measurements of distilled water averaged over the frequency
range 0.1-1 THz for reflection measurements.

’ 4

Ha (em™)  n e e

8.6 0.1 04 02

Table 2. Accuracy and resolution of concentrations determined using LSDM, SADCM and DRCM.

Water Lipid Water Lipid
Method Accuracy Accuracy Resolution Resolution
LSDM —8.6% +9.9% +2.1% +52.8%
SADCM  —0.4% +0.3% +31.5% +31.5%
DRCM +3.2% —3.5% +10.8% +10.8%

3.2. Reflection mode concentration analysis

In this section we present the concentrations of water and lipid emulsions as determined
using the three concentration analysis methods. The concentrations were determined from
the experimental measurements of the emulsions, made in reflection mode. The standard
deviations used in the determination of the concentration resolutions are given in table 1 and
were derived from 15 measurements of distilled water made over a number of days. The
resolution determined in this way gives a more accurate representation of the limitations
of spectroscopy and imaging in the THz region. The accuracy and the resolution of these
techniques are given in table 2.

3.2.1. LSDM. Figure 5 shows the concentrations determined using the LSDM applied to
reflection mode measurements, where a poor correlation between the known concentrations
and determined concentrations is observed. The resolution of the water component of the
emulsions is good in comparison to the resolution of the lipid component. This is due to the
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Figure 5. Concentrations of lipid and water determined from measurements of the absorption
coefficients of lipid and water emulsions captured in reflection mode using the LSDM. The
determined concentrations are plotted against the known concentrations of lipid and water. The
line represents the line of unity while the symbols represent the determined concentrations.

large difference in the absorption coefficient which is approximately 20 times greater in water
than in lipid at 1 THz. This suggests that it is primarily the water content of the emulsion that
THz spectroscopy is sensitive to.

3.2.2. SADCM. The concentrations determined using the SADCM applied to reflection
mode measurements are shown in figure 6. From figure 4(a), it can be noted that the gradient
of the change of ¢ and &” with respect to concentration is shallow, resulting in the poor
resolution of the method.

3.2.3. DRCM. The concentrations determined using the DRCM applied to reflection mode
measurements are shown in figure 7. For the DRCM, the resolutions were determined in a two-
step process. First, the resolution in each of the determined Debye coefficients was calculated.
These resolutions were then used as the standard deviation in equation (8) in the second step
of the process to calculate the overall resolution of the DRCM. The average resolution of this
method is still poor in comparison to the concentrations of the emulsions under investigation.
For example, the maximum concentration of lipids is 20% which compares to a resolution of
10.8%, 50% of the concentration value.

4. Discussion

4.1. Accuracy of THz reflection spectroscopy

The order of the accuracies provided by the three methods is given below, from best to worst:
(i) SADCM

(ii) DRCM

(iii) LSDM.
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Figure 6. Plot showing the concentrations of water and lipid determined from measurements of
¢’ and ¢” in water and lipid emulsions using the SADCM. These calculated concentrations are
plotted against the known concentrations of water and lipid. The line represents the line of unity
while the symbols represent the calculated concentrations.
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Figure 7. The concentrations of water and lipid calculated using the DRCM analysing the complex
dielectric coefficient measured in reflection on water and lipid emulsions. The line represents the
line of unity while the symbols represent the calculated concentrations.

LSDM is reliant on only the absorption coefficient in its assessment of concentration and
utilizes the absorption coefficients of pure components measured in transmission mode in the
analysis of the reflection signals. Small deviations between absorption coefficients measured
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in transmission and reflection modes can cause systematic differences. Measurements of the
absorption coefficient made in reflection mode have inherently greater systematic error than
those made in transmission. In transmission mode, the absorption coefficient is calculated
from the amplitude of the waveforms whereas in reflection mode they are derived from the
phase components of the measured data and are only accurate if it can be assumed that the
incident radiation, at each frequency, can be approximated by a normal incidence plane wave.
For the reflection mode imaging system used in this study, beams are incident at an angle of
30°. An EM wave incident at an angle less than 90° suffers diffractive spreading which may
result in an error in the absolute value of the measured absorption coefficients and, hence,
in the determined concentrations (Bowen ef al 2004). SADCM and DRCM, incorporate the
measured refractive indices of the emulsions as well as the measured absorption coefficients
in the concentration calculations, rendering them less sensitive to systematic error than LSDM
which uses absorption alone.

4.2. Resolution of THz reflection spectroscopy

The order of the resolutions provided by the three methods is given below, from best to worst:

(i) LSDM
(ii) DRCM
(iii) SADCM.

Resolution is determined by the sensitivity of the method to the measured change in
concentration and the standard deviation of the measurement. Since the same standard
deviation was used for all calculations of the resolution, the resolution is effectively dependent
upon the sensitivity of the method.

The resolutions determined using LSDM were better for the water component which is
due to the absorption coefficient of water being much larger than lipid, resulting in the greater
sensitivity to water. As the calculation of resolution takes into account the sensitivity for
both the water and lipid in the emulsion, a comparatively high sensitivity results in a good
resolution. In SADCM, the sensitivity is low, as demonstrated by the shallow gradients of
the empirical equations with respect to concentration, which produces a poor resolution. The
resolutions produced by SADCM are larger than the actual concentrations. Since any value
within the resolution limits has equal statistical significance, it means that the determined
concentrations are not uniquely determined. This makes SADCM currently unviable as a
THz technique for determining tissue composition. The resolutions for DRCM are better than
those of SADCM. This is due to the gradients of the empirical equations of DRCM being less
shallow than those of SADCM.

5. Conclusions

LSDM is applicable only to materials in which the frequency dependence of absorption
coefficient can be considered to be a linear combination of the component parts. This method
requires knowledge of the absorption coefficients of the phantom chromophores as prior
knowledge, which are difficult to measure accurately for more complex chromophores such as
macromolecules with hydration layers, e.g, macromolecules. The resolutions determined for
LSDM are good for large u, materials, such as pure water, but resolution is poor for small
materials, such as lipids. SADCM enables accurate determination of concentrations despite
the absence of spectral features in the measured dielectric coefficients. If specific signatures
could be identified in the dielectric spectrum, then linear decomposition approaches such as
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those employed in LSDM may become efficient and enable more complex materials to be
analysed. SADCM can only be applied to a maximum of three solutes. In this work only two
solutes were analysed, though the method has been demonstrated on three (Jepsen et al 2007).
In addition it returns poor resolutions, limiting its potential as a tool for tissue spectroscopy.
In comparison to LSDM and SADCM, both the accuracy and the resolution for DRCM were
reasonable, though the resolution was still poor when compared to the concentration ranges
being resolved. Like SADCM, DRCM was applied to the determination of the concentration
of only two solutes in this work. This method could be extended to resolve the concentrations
of more solutes provided that material-specific variations in the Debye relaxation coefficients
can be determined, which are dependent on intermolecular interactions between the solutes.

While the accuracy of the determined concentrations was found to be strongly dependent
on the method of analysis used, it was nevertheless shown for all analysis methods that
THz spectroscopy is in principle capable of recovering material composition. The greatest
accuracy was achieved using the SADCM and DRCM as these are less susceptible to systematic
differences between measurements. Nonetheless, the concentrations determined by the LSDM
still reflected the general changes in the concentration of the emulsions. This demonstrates
significant sensitivity in the measured THz signal to the composition of the emulsions and
establishes that, in principle, THz spectroscopy has the potential to analyse tissue composition
and specify tissue pathologies.

Although the accuracies for each of the three concentration analysis technique
demonstrated the ability of THz spectroscopy to determine composition, the resolutions
produced by the three concentration analysis methods were varied. The LSDM has
demonstrated a resolution of +2.1% for the water component of the water and lipid emulsions;
however, the resolution of the lipid component was poor. This method is most sensitive to
chromophores with large absorption coefficients in the THz wavelength region, such as polar
molecules like water and methanol. The sensitivity to concentration of all three concentration
analysis methods determined using this method is fixed. In order to improve resolution,
therefore, only the standard deviation of the measurement systems may be improved which
may be achieved by increasing the signal-to-noise ratio (SNR) of the system.

THz images of tumours show good contrast between diseased and normal tissues
(Wallace er al 2004, Fitzgerald et al 2006) and THz spectroscopy studies have also shown
significant differences between tumours and normal tissues (Wallace et al 2006, Ashworth et al
2009). Here, while we have shown that THz spectroscopy is capable of recovering material
composition, our results suggest that it is not yet capable of accurately resolving small enough
changes in concentration to enable confident tissue identification. The resolutions are limited
by the specifications of the systems used in this study, although continued technological
advances in the field which increase the output power and SNR of the systems may enable
smaller resolutions to be resolved in the future.
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