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Multistability and Clustering in a Population of Synthetic Genetic Oscillators
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We show that phase-repulsive coupling eliminates oscillations in a population of synthetic genetic
clocks. For this, we propose an experimentally feasible synthetic genetic network that contains phase
repulsively coupled repressilators with broken temporal symmetry. As the coupling strength increases,
silencing of oscillations is found to occur via the appearance of an inhomogeneous limit cycle, followed
by oscillation death. Two types of oscillation death are observed: For lower couplings, the cells cluster in
one of two stationary states of protein expression; for larger couplings, all cells end up in a single
(stationary) cellular state. Several multistable regimes are observed along this route to oscillation death.
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Synthetic gene-regulation networks have the potential to
enhance our knowledge of cellular processes. Besides
applications in the design of specific functions, these sys-
tems can encourage the study of the design principles of
natural systems, by offering a well-controlled test bed in
which the functions of natural gene networks can be iso-
lated and studied in detail, independently of the rest of the
cellular machinery [1,2]. A pioneering example of a syn-
thetic genetic circuit is the repressilator, a DNA construct
of three transcription factors that repress expression of
each other in a circular way. When such a construct is
introduced into E. coli, clear-cut oscillations in the expres-
sion of all three genes are observed [3].

The repressilator is one of the simplest genetic modules
to produce near harmonic oscillations in protein levels. It
can be constructed experimentally, and recent evidence
indicates that its circuit architecture may be present in
natural genetic networks [4]. Given that cells are fre-
quently subject to chemical signals from neighboring cells,
it is worth studying the effect of such chemical coupling on
the dynamics of populations of genetic oscillators.
Modeling studies, for instance, have shown that coupled
repressilators can work as a macroscopic genetic clock [5].
But coupling can be devised in different ways in this
synthetic system. In contrast to Ref. [5], in what follows,
the cell-to-cell communication module is designed to have
a repressive and phase-repulsive influence [6—8] on the
repressilator oscillations. In biology, phase-repulsive cou-
pling is used, e.g., to explain morphogenesis in Hydra
regeneration and animal coat pattern formation [9], neural
activity in the brain of songbirds [10], the jamming avoid-
ance response in electrical fish [11], and regulation in the
respiratory system [12]. Our results show that this type of
coupling leads to many different dynamical regimes, in-
cluding multistability, cluster formation, and oscillation
death. To that end, we have modified the repressilator so
that it has a weak relaxatorlike dynamics [13], introducing
a temporal asymmetry in the dynamics that reduces the
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harmonic character of the oscillations. Incidentally, the
required modifications take the repressilator closer to
more realistic in vivo conditions, since the lifetimes of
some of the proteins involved can be longer than in the
original repressilator, where degradation tags had to be
used to shorten their lifespan [3].

In the original repressilator design [3], the gene lacl
(from E. coli) expresses the protein Lacl, which inhibits
transcription of the gene fetR (from the tetracycline-
resistant transposon Tn 10). The product of the latter,
TetR, inhibits transcription of the gene c/ (from the A
bacteriophage). Finally, the protein product CI of the
gene c/ inhibits expression of lacl and completes the cycle
(Fig. 1). Cell-to-cell communication is realized by an addi-
tional feedback loop involving two other proteins
[5,14,15]: LuxI, which produces a small autoinducer (AI)
molecule that can diffuse through the cell membrane, and
LuxR, which responds to the autoinducer by activating
transcription of a second copy of the repressilator gene
lacl. Placing the luxI gene under inhibitory control of TetR
leads to a positive feedback loop, mediated by intercell
coupling, of TetR on itself (Fig. 1). This loop competes
with the overall negative feedback loop along the repres-
silator ring and leads, in contrast to Ref. [5], to a phase-
repulsive coupling.
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FIG. 1 (color online). Scheme of the modified repressilator
with repressive cell-to-cell communication.
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The mRNA dynamics is described by the following Hill-
type kinetics, with Hill coefficient n:
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where the subindex i denotes the cell, and the variables «;,
b;, and c; represent the mRNA concentrations of fetR, cl,
and lacl, respectively. « is the dimensionless transcription
rate of the repressilator-gene promoters in the absence of a
repressor (assumed equal), and « is the maximum tran-
scription rate of the LuxR promoter. The protein dynamics
is given by

Ai = Bula; — A) 4

and is given similar for B; (with b;) and C; with ¢;. A;, B;,
and C; denote the concentration of the proteins TetR, CI,
and Lacl, respectively, and B, . are the ratios between
mRNA and protein lifetimes (inverse degradation rates).
The model is made dimensionless by measuring time in
units of the mRINA lifetime (assumed equal for all genes)
and the mRNA and protein levels in units of their
Michaelis constant. The mRNA concentrations are addi-
tionally rescaled by the ratio of their protein degradation
and translation rates [5].

A moderate increase of the Hill coefficient to n = 2.6, a
value in agreement with recent experimental measures
[16], together with different lifetime ratios B, = 0.85,
B, = 0.1, and B, = 0.1, evoke a stronger nonlinear dy-
namics of the repressilator, leading to the appearance of
two time scales in the time series. As an example, Fig. 2
compares the dynamics of CI concentration (B) in the
standard repressilator (dashed line) with that resulting
from the parameters described above (solid line), in the
absence of intercell coupling (« = 0). The latter exhibits
slow or fast dynamics, with a fast concentration increase
and a relative slow decay, whereas the original repressilator
exhibits a quasiharmonic dynamics with only one time
scale. The parameter values used, given in the caption of
Fig. 2, are experimentally reasonable, corresponding to
mRNA lifetimes of 5 min, a TetR protein lifetime of
5.9 min, a CI and Lacl protein lifetime of 50 min, an Al
lifetime of 5 min, Michaelis constants of 20 nM, translation
rates of 0.1 proteins/s, and an unrepressed transcription
rate of 0.4 transcripts/s for fefR and 0.047 transcripts/s for
cl and lacl.

The third term on the right-hand side of Eq. (3) repre-
sents activated production of lacl by the autoinducer mole-
cule, whose concentration inside cell i is denoted by S;.
The dynamics of CI and LuxI can be considered identical,
assuming equal lifetimes of the two proteins and given that
their production is controlled by the same protein (TetR).
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FIG. 2 (color online). The modified uncoupled (x = 0) repres-
silator (solid blue line) with the parameters n = 2.6, a = 216,
B, = 0.85,and B, . = 0.1 compared to the original repressilator
(dashed black line) with the parameters n = 2.0, o = 216, and
IBu,b,E = 1.0.

Hence, the synthesis of the autoinducer S; can be consid-
ered to be controlled by the concentration B; of the protein
CI. Taking also into account the intracellular degradation
of the Al and its diffusion toward or from the intercellular
space, the dynamics of S; is given by:

Si = _kA'()Si + kslBi - T](Sl - Se); (5)

where the diffusion coefficient 1 depends on the perme-
ability of the membrane to the autoinducer. The Al con-
centration S; is scaled by its Michaelis constant [see
Eq. (3)]. Because of the fast diffusion of the extracellular
Al (S,) compared to the repressilator period, we can apply
the quasi-steady-state approximation to the dynamics of
the external Al, which leads to

_ 1 Y
Se QS—QN;S,- (6)

The parameter Q is defined as Q = (ON/Vey)/(kye +
8N/Vy) [5], with N the cell number, V,,, the total ex-
tracellular volume, k,, the extracellular Al degradation
rate, and & the product of the membrane permeability
and the surface area. We assume k,, ~ 0.6 h™!, which is
reasonable for a medium with pH ~ 7 [15]. The membrane
permeability coefficient for the AI corresponds to
107% m/s, which is on the order of magnitude of similarly
sized biomolecules, such as tryptophan and glucose [17].
The bifurcation parameter Q depends on N in a nonlinear
way but can be varied in a controlled way in a chemostat
experiment by changing the total chemostat volume. The
numerical results that follow do not depend qualitatively
on the cell number, and thus we assume below a fixed value
of N.

The suggested rewiring of the repressilator with the
quorum sensing feedback loop leads to competition be-
tween the repressilators. The mechanism of this effect
includes two repressions: on the one hand, the intracellular
repression due to the cyclic inhibition characteristic of the
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repressilator, and, on the other hand, the intercellular re-
pression evoked by the cell-to-cell communication be-
tween different repressilators.

We are interested in stable dynamical regimes with a
significant basin of attraction, because only those are bio-
logically relevant, given the immanent noise existing in
cells [16,18]. Dynamical regimes are defined by qualita-
tively distinct temporal behavior of the mRNAs and pro-
teins in stationary conditions (i.e., after transients have
died out). Using Q as bifurcation parameter, we simulate
numerically 1000 realizations (for N = 100 cells) with
random initial conditions for each Q value considered
and look for the resulting stable dynamical regime.
Figure 3 plots the resulting frequency of stable regimes
for increasing Q. If the system has only one stable regime
at a given parameter set, all 1000 initial conditions result in
the same regime, but coexistence of more than one stable
regime leads to a split of the 1000 initial conditions on
several regimes.

The results shown in Fig. 3 reveal a transition from self-
oscillations to a single stable fixed point as the coupling O
increases. This transition is gradual and exhibits a multi-
plicity of regimes. For Q =< 0.13, only self-oscillations are
found. The time series depicted in Fig. 4(a) illustrates this
regime, which is characterized by large oscillations with
the same amplitude and period for all repressilators. The
repressive character of the coupling destabilizes the in-
phase dynamics and leads to a spreading of the phases
among all oscillators. After a certain transient time, oscil-
latory clusters appear [19-21]. The population self-
organizes into three clusters of cells that oscillate with a
phase difference of 27r/3. The separation into three clus-
ters could provide the population of cells with high relia-
bility and stress resistance, because at any given time the
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FIG. 3 (color online). Distribution of stable regimes for in-
creasing coupling strength Q. Typical time series of each dy-
namical regime are shown in Fig. 4. The parameters are
N =100, n =26, a =216, B, =0.85, B, =0.1, B, =0.1,
k =125, kg = 1.0, k;; = 0.01, and n = 2.0.

cells in the different clusters are in different states of the
limit cycle, and hence each cluster will be affected differ-
ently by sudden environmental stresses such as chemicals
or lack of nutrients.

At Q = 0.13, the self-oscillatory regime disappears
abruptly, and a new dynamical regime arises in which
some of the cells become trapped in a quasisteady state
with a negligible amplitude, while the rest undergo small
amplitude oscillations in protein concentration. This dy-
namical regime corresponds to an inhomogeneous limit
cycle (IHLC) and can be observed in detail in Fig. 4(b).
Up to now, IHLCs were found only in a model of two
coupled Brusselators [22,23]. Here we have found stable
IHLCs in a biologically reasonable model of many inter-
acting cells. The system exhibits many possible distribu-
tions of cells between the high-concentration, quasi-
steady-state regime and the low-concentration protein os-
cillations, but the majority of the repressilators populate
the quasiconstant protein level. In the particular case of
Fig. 4(b), 95 cells (out of 100) reside in the high-level
quasisteady state, while the other 5 are in the low-level
oscillating state. In this dynamical regime, cells do not
switch from one regime to the other; i.e., there is no mixing
of the two populations.

The IHLC shown in Fig. 4(b) is not the only attractor of
the system in the range of Q values where it exists. As
shown in Fig. 3, a small percentage of the numerical
realizations end up in a different attractor, represented by
a light gray area on top. In this attractor, all cells exhibit the
same stable state of protein concentration, as shown in
Fig. 4(d). This single fixed point attractor becomes more
likely for larger coupling strengths Q.

At Q = 0.2, a second abrupt transition takes place,
through which the inhomogeneous limit cycle disappears,
and a regime of fully developed oscillation death arises.
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FIG. 4 (color online). The corresponding time series to Fig. 3
with the four different dynamical regimes. (a) Q = 0.11, oscil-
latory; (b) Q = 0.16, inhomogeneous limit cycle; (c) O = 0.23,
clustering; (d) Q = 0.4, single fixed point. The insets in (a) and
(b) show zoomed parts of the same realization. The other
parameters are as in Fig. 3.
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Such behavior has already been reported numerically in a
system of coupled genetic relaxator oscillators by
Kuznetsov and co-workers [24]. In this regime, shown in
Fig. 4(c), all cells stop oscillating, but they do so differ-
entiating into two different clusters. Similarly to the IHLC
described above, some cells get stuck in a steady state of
high protein expression [94 cells in the case depicted in
Fig. 4(c)], while the others exhibit much smaller protein
concentrations of the CI protein (6 cells in the case men-
tioned). Because of the intracellular repression character-
istic of the repressilator, a small CI protein production
implies a high TetR protein level and vice versa. Since
each cluster is specialized in the production of a different
protein, this regime could be interpreted as a mechanism of
artificial differentiation in an isogenic population of cells.
As in the case of the IHLC, cells may distribute into the
two clusters at high and low CI levels in many different
ratios which differ slightly in the constant protein levels.
Hence, in fact many different attractors exist, and a fine-
tuning of protein production can be achieved.

Again, the clustering regime described in the previous
paragraph coexists with the single fixed point attractor
[Fig. 4(d)], which becomes increasingly more likely for
increasing Q, until it turns into the dominant attractor of
the system for Q = 0.4.

We note that the four regimes described above are
reached by changing only the coupling strength Q and
can be found in a broad parameter range. Furthermore,
the system frequently exhibits a strong multistability,
which is an ongoing issue in the discussion of addressable
memory in genetic networks and other information pro-
cessing systems. The determined dynamical regimes and
the multistability are stable and persist in a noisy environ-
ment. For instance, protein fluctuations larger than 25% of
their mean level do not alter the clustering attractor in the
multistable parameter range.

We have proposed the integration of two paradigms in
synthetic biology, namely, the repressilator circuit [3] and a
cell-to-cell communication module based on quorum sens-
ing [15], combined in such a way that phase-repulsive
coupling arises among the genetic oscillators. The theo-
retical predictions reported here are amenable to observa-
tion at the single-cell level via time-lapse fluorescence
microscopy [16]. This technique is very useful to experi-
mentally test theoretical predictions in genetic networks
[25]. Beside its biological consequences, the model sheds
light on new phenomena from a general nonlinear dynam-
ics viewpoint. First, the oscillation death (OD) evidenced
in the present work is stable far from any Hopf bifurcation
in a wide range of the phase diagram. This contrasts with
previous observations [21,24,26], where OD occurred only
in a small range close to a Hopf bifurcation. Second, we
could demonstrate a combination of OD and IHLC in a
large globally coupled system, which leads to a nontrivial
clustering. Third, the phase-repulsive coupling leads to
multistability between the regimes of OD, IHLC, and the
single fixed point. The many possible dynamical regimes

available to the cellular population improve its adaptability
and robustness. Such an improved efficiency induced by
coupling can probably exist in natural genetic networks
and can definitely be exploited in synthetic devices. We
expect that our theoretical findings will stimulate further
investigations, e.g., on the influence of diversity in this
regime. The results may also be relevant for other systems
with repressive coupling, which leads to strong competi-
tion between the members of large ensembles.
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