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Abstract

In this paper, we suggest that cortical anatomy recapitulates the temporal hierarchy that is inherent in the dynamics of
environmental states. Many aspects of brain function can be understood in terms of a hierarchy of temporal scales at which
representations of the environment evolve. The lowest level of this hierarchy corresponds to fast fluctuations associated
with sensory processing, whereas the highest levels encode slow contextual changes in the environment, under which
faster representations unfold. First, we describe a mathematical model that exploits the temporal structure of fast sensory
input to track the slower trajectories of their underlying causes. This model of sensory encoding or perceptual inference
establishes a proof of concept that slowly changing neuronal states can encode the paths or trajectories of faster sensory
states. We then review empirical evidence that suggests that a temporal hierarchy is recapitulated in the macroscopic
organization of the cortex. This anatomic-temporal hierarchy provides a comprehensive framework for understanding
cortical function: the specific time-scale that engages a cortical area can be inferred by its location along a rostro-caudal
gradient, which reflects the anatomical distance from primary sensory areas. This is most evident in the prefrontal cortex,
where complex functions can be explained as operations on representations of the environment that change slowly. The
framework provides predictions about, and principled constraints on, cortical structure–function relationships, which can be
tested by manipulating the time-scales of sensory input.
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Introduction

Our brains navigate our bodies, including our sensory apparatus,

through a dynamically changing environment. This is a remarkable

achievement, because a specific behaviour might be optimal in the

short-term, but suboptimal over longer time periods. It is even more

remarkable that the brain selects among different behaviours quickly

and online. Causal dynamics and structure in the environment are

critical for selecting behaviour, because the brain can learn this

structure to predict the future, and exploit these predictions to

negotiate the environment adaptively. Ontogenetically, there is good

reason to believe that the brain learns regularities in the environment

from exposure to sensory input and internally generated signals [1,2].

Similarly, over evolutionary time, one can argue that selective

pressure ensures the brain has the capacity to represent environ-

mental structure [3–5]. In the following, we will first review the ‘free-

energy principle’ [6], which suggests that ‘adaptive agents’ like the

brain, in a dynamic environment, minimize their surprise about

sensory input. We will then motivate the hypothesis that the

environment exhibits temporal structure, which is exploited by the

brain to optimise its predictions. This optimisation transcribes

temporal structure in the environment into anatomical structure,

lending the brain a generic form of structure-function mapping.

For an adaptive agent, surprise means sampling unexpected input

given the expectations of the agent. Mathematically, surprise or

improbability is quantified by 2ln p(y(a)|m), where y(a) is sensory

input sampled under action a and m represents the agent.

Minimizing surprise depends on the agent’s expectations about its

sensory input and the behaviour it chooses. If these expectations

(e.g., being warm but not on fire) are consistent with survival, an

agent, which minimizes free-energy, will exhibit behaviour that is

adapted to its environment. If an agent did not minimize surprise, it

would sooner or later encounter surprising interactions with the

environment, which may compromise its structural or physiological

integrity (e.g., walking into a fire). Both action and perception can

be understood as trying to minimize surprise about sensory input.

An agent cannot minimize surprise directly because the agent does

not have full knowledge about its environment [6]. However, an

agent can minimize its so-called free-energy F$2ln p(y(a)|m), which

is an upper bound on surprise: if an agent minimises its free-energy,

it implicitly minimises surprising sensory input.

To predict extero- and interoceptive input online, an agent must

entertain dynamic expectations about its input using an internal

model of environmental causes and their trajectories. These models

reduce high-dimensional input to a few variables or ‘causes’ in the

environment. These environmental causes do not need to be

physical objects but can be any quantity that predicts the agent’s

past and future sensory input (we use prediction here in reference to

the mapping between causes and their sensory consequences; this

mapping subsumes but is more than a forecast of future events).

Critically, from the point of view of an agent, its body is a part of the

environment. Therefore, internal models embed an agent’s

knowledge about how environmental dynamics, including its own

movements, generate sensory input [6]. The concept of ‘internal

models’ which predict future sensory input due to the agent’s own

action is a key element of many related theoretical accounts: for

example, the ‘corollary discharge hypothesis’ [7], predictive coding

[8,9], and motor control theory [10,11].

In general, the sensory consequences of environmental causes

are mediated by dynamical systems. This necessarily induces
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delays in the mapping between causes and their sensory consequenc-

es. How can an agent accommodate this temporal dislocation to

explain causes after they are expressed in the sensorium [12,13]? In

this paper, we suggest that agents model sensory input using

representations or ‘concepts’ that provide temporally stable predic-

tions about future sensory input. In this paper we will use ‘concept’ to

refer to a representation of an environmental cause or state that

endures for about a second or more and ‘percept’ for representations

that more transient. In terms of dynamical systems, concepts could be

regarded as control parameters that shape the attractor or manifold

on which lower-level representations unfold. This attractor provides

constraints on the expected trajectories, which enable fast dynamics

to be predicted by supraordinate representations that change more

slowly (see Results). This rests on the assumption that the world can

be modelled as a hierarchy of autonomous dynamical systems, where

the output of one system controls the motion of another’s states. In

principle, an agent may be able to model the evolution of

environmental states over milliseconds, seconds, or much longer

periods of time using generative or forward models at various time-

scales. For example, speech could be decomposed at various time-

scales (from fast to slow): instantaneous frequency (acoustics); spectral

profiles (phonemes); phoneme sequences (lexical); lexical sequences

(semantics); syntactical structure (pragmatics), and so on [14].

Predictions about sensory input at fast time-scales become

imprecise when projected too far into the future. One way to deal

with this uncertainty is to use concepts to guide representations at

shorter time-scales. If predictions of sensory input remain veridical at

a fast time-scale and action ensures these predictions are fulfilled, the

agent will avoid surprising input. The ensuing behaviour would be

consistent with the agent’s concepts. Note that an agent following this

principle can still handle novel, unexpected input, although the agent

might experience a large prediction error and adapt its internal model

accordingly (see simulations). If the high-level representations or

concepts prove correct in predicting sensory input, they confirm the

validity of those concepts. Therefore, concepts can be seen as self-

fulfilling prophecies, which, given a compliant environment, would

appear to mediate goals, plans and long-term strategies for exchange

with the world [15]. Conflict among competing explanations (i.e.,

concepts) for sensory data has to be resolved to avoid surprise. This

conflict can be between similar time-scales; e.g. between the visual

and auditory stream when experiencing the McGurk effect [16].

Conflict could also exist between different time-scales; e.g., between

eating a chocolate cake or maintaining a strict diet. In robotics and

motor control theory, conflict resolution among different time-scales

has been addressed using hierarchical control structures [17–22].

These hierarchies are ordered according to the temporal scales of

representations, where the slowest time-scale is at the top (c.f., ‘slow

feature analysis’ [23,24]). A hierarchical model enables a selection of

predictions that is accountable to all time-scales, such that concepts

and percepts are nested and internally consistent.

The novel contribution of this paper is to consider hierarchical

models, in which high-level states change more slowly than low-

level states, and to relate these models to structure-function

relationships in the brain. The basic idea is that temporal

hierarchies in the environment are transcribed into anatomical

hierarchies in the brain; high-level cortical areas encode slowly

changing contextual states of the world, while low-level areas

encode fast trajectories. We will present two arguments in support

of this hypothesis. First, using simulations, we will demonstrate

that hierarchical dependencies among dynamics in the environ-

ment can be exploited to recognise the causes of sensory input.

The ensuing recognition models have a hierarchical structure that

is reminiscent of cortical hierarchies in the brain. Second, we will

consider neuroscientific evidence that suggests the cortical

organisation recapitulates hierarchical dependencies among envi-

ronmental dynamics.

Note that this paper is not about hierarchies of neuronal

dynamics; see e.g. [25–27]. Rather, we consider neuronal

dynamics under hierarchical models of the environment, which,

according to the principles outline above, should be represented in

the brain to predict sensory input.

Methods

In this section, we present a modelling approach to show, as a

proof-of-principle, that perception can be understood in terms of

inverting hierarchical models and that these models entail a

separation of temporal scales.

A Model of Perceptual Inference
Here, we model the neuronal states of an internal model in an

abstract fashion, to describe their evolution under continuous

sensory input. This allows us to focus on how the brain could

exploit dependencies between dynamics at different time-scales,

using internal models.

We pursue the notion that synthetic agents can extract

information about another agent, at various time-scales, by

modelling the sensory input, originating from the other agent, with

an internal, generative model. We will describe how an agent

produces a song and how another agent decodes the auditory input.

We will deal with environmental dynamics at two different time-

scales (fast and slow). In our model, we let the dynamics at the slow-

scale enter as ‘control’ parameters of dynamics at the fast scale.

Our example uses birdsong: There is a large body of theoretical

and experimental evidence that birdsongs are generated by

dynamic, nonlinear and hierarchical systems [28–31]. Birdsong

contains information that other birds use for decoding information

about the singing (usually male) bird. It is unclear which features

birds use to extract this information; however, whatever these

features are, they are embedded in the song, at different time-scales.

For example, at a long time-scale, another bird might simply

measure how long a bird has been singing, which might belie the

bird’s fitness. At short time-scales, the amplitude and frequency

spectrum of the song might reflect the bird’s strength and size.

It may be that the recognition of human song or speech is

implemented using hierarchical structures too; although the

experimental evidence for this seems much scarcer. In particular,

speech has been construed as the output of a multi-level hierarchical

system, which must be decoded at different time-scales [32,33]. For

example, while a spoken sentence might only last for seconds, it also

conveys information about the speaker’s intent (an important

environmental cause) at much longer time-scales. Here we use the

Author Summary

Currently, there is no theory that explains how the large-
scale organization of the human brain can be related to
our environment. This is astonishing because neuroscien-
tists generally assume that the brain represents events in
our environment by decoding sensory input. Here, we
propose that the brain models the entire environment as a
collection of hierarchical, dynamical systems, where slower
environmental changes provide the context for faster
changes. We suggest that there is a simple mapping
between this temporal hierarchy and the anatomical
hierarchy of the brain. Our theory provides a framework
for explaining a wide range of neuroscientific findings by a
single principle.

Hierarchy of Time-Scales
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avian example to provide a proof-of-principle of a commonplace

and generic mechanism: to communicate via audition, both birds

and humans need to embed information, at various time-scales, into

sound-waves at a fast time-scale and the recipient must invert a

dynamic model to recover this information. Our objective is to show

that such communication can be implemented using hierarchical

models with separation of temporal scales. In the following, we

describe a two-level system that can generate sonograms of synthetic

birdsong and model the perception of this song. Similar systems,

using a single generating oscillator, have been proposed to generate

birdsong [34]. What we want to show is how another (synthetic) bird

can use a heard song to extract information about the (synthetic)

singing bird, using at least two separable temporal scales.

A Generative Birdsong Model
Recently, Laje et al. [34] generated synthetic birdsong by

modelling the bird’s vocal organ using a variant of the van der Pol

oscillator. Furthermore, Laje and Mindlin [35] introduced variations

in their bird-song generator by adding a second level, which acts as a

central pattern generator (CPG) driving the van der Pol oscillator.

This hierarchical, two-level model can produce different songs,

depending on the driving input and parameters of the CPG. In our

model, we use this principle of letting a slow CPG drive a faster

system that produces song syllables. However, for simplicity, when

decoding the produced song, we model the sonogram; i.e. the time-

frequency representation of birdsong, instead of the acoustic time-

series. Although this renders our model phenomenological with

respect to dynamics in the vocal organ, it allows us to focus on the

interaction between the first-level (vocal organ) and the second-level

(central pattern generator). It would be straightforward (but

computationally expensive) to make the first level a generative model

and decode the temporally resolved time-series.

To generate birdsong sonograms, we use the Lorenz attractor,

for both levels.
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where, in general, v(i) represent inputs to level i (or outputs from

level i+1), which perturb the possibly autonomous dynamics

among that level’s states x(i). The nonlinear function f encodes the

equations of motion of the Lorenz attractor:
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For both levels, we used a = 10 (the Prandtl number) and c = 8/

3. The parameter T controls the speed at which the Lorenz

attractor evolves; here we used T(1) = 0.25s and T(2) = 2s so that

the dynamics at the second level are an order of magnitude

slower than at the first. At the second-level we used a Rayleigh

number; n(2) = 32. We coupled the fast to the slow system by

making the output of the slow system n 1ð Þ~x
2ð Þ

3 {4 the Rayleigh

number of the fast. The Rayleigh number is effectively a control

parameter that determines whether the autonomous dynamics

supported by the attractor are fixed point, quasi-periodic or

chaotic (the famous butterfly shaped attractor). The signals

generated are denoted by y, which comprises the second and

third state of x(1) (Equation 1).

We will call the vectors x(i) ‘hidden’ states, and the scalar v(1) the

‘causal’ state, where superscripts indicate model level and

subscripts refer to elements. At each level we modelled Gaussian

noise on the causes and states (w(i) and z(i)) with a log-precision

(inverse variance), of eight (except for observation noise z(1), which

was unity). We constructed the sonogram (describing the

amplitude and frequency of the birdsong) by making |y1| the

amplitude and y2 the frequency (scaled to cover a spectrum

between two and five kHz). Acoustic time-series (which can be

played) are constructed by an inverse windowed Fourier

transform. An example of the system’s dynamics and the ensuing

sonogram are shown in Figure 1A and 1B. The software

producing these dynamics, the sonogram and playing the song

can be downloaded as Matlab 7.4 (Mathworks) code (see software

note). The synthetic birdsong passes as birdsong-like. This model

can be regarded as a generative or forward model that maps states

of the singing bird to sensory consequences (i.e., the sonogram).

Inversion of this forward model corresponds to perception or

mapping from the sonogram to the underlying cause in the singing

bird. In this example, recognition involves the online estimation of

the states at both levels. Although two of the states (those

controlling amplitude and frequency of the acoustic input) at the

first-level are accessed easily, the third x
1ð Þ

1 is completely hidden. It

is important to estimate this state correctly because it determines

the dynamics of the others (see Equation 2). Model inversion also

allows the listening bird to recognise the slowly varying states at

the second level, x(2) (c.f., the syntax of the chirps), which cannot be

heard directly but must be inferred from the fast sensory input.

This inversion problem is difficult to solve because the bird can

only infer states at both levels through the nonlinear dynamics of

the Lorenz attractor. In the following, we will sketch a variational

scheme to show how inversion of a stochastic nonlinear

hierarchical model can be implemented. A detailed description

of this inversion is beyond the scope of this paper. However, the

details and conceptual background of the approach can be found

in [36].

Variational Inversion
Given some sensory data y, the general inference problem is to

compute the marginal likelihood of the data, given a model m of

the environment:

p y mjð Þ~
ð

p y,u mjð Þdu ð3Þ

where the generative model p(y,u|m) = p(y|u,m)p(u|m) is defined in

terms of a likelihood p(y|u,m) and prior p(u|m) on the model’s

states. In Equation 3, the states u = {x,v} subsume the hidden and

causal states at all levels. The model evidence can be estimated by

converting this difficult integration problem (Equation 3) into an

easier optimization problem by optimising a free-energy bound on

the log-evidence [37]. This bound is constructed using Jensen’s

Hierarchy of Time-Scales
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inequality and is a function of an arbitrary ensemble density, q(u):

F q,yð Þ~{ln p y mjð ÞzD~U{S

D~

ð
q uð Þln q uð Þ

p u y,mjð Þ du
ð4Þ

The free-energy comprises an energy term U = 2Æln p(y|u)+ln

p(u)æq and an entropy term S = 2Æln q(u)æq. It is defined uniquely,

given the generative model m and is an upper bound on the

surprise or negative log-evidence because the Kullback–Leibler

cross-entropy or divergence D, between the ensemble and exact

conditional density, is always positive. Minimising the free-energy

minimises the divergence, rendering the ensemble density

q(u)<p(u|y,m) an approximate posterior or conditional density.

When using this approach for model inversion, one usually

employs fixed-form approximations of the conditional, which takes

a simpler parameterized form q(u|l) [36]. Variational learning

optimizes the free-energy with respect to the variational param-

eters l; i.e., the sufficient statistics of the approximate conditional:

_ll~{
L
Ll

F l,yð Þ ð5Þ

Generally, the variables l correspond to the conditional

moments (e.g., expectation and variance) of the states. A

recognition system that minimizes its free-energy efficiently will

therefore come to represent the environmental dynamics in terms

of moments of the conditional density, e.g., the conditional

expectations and variances of q(u|l) = N(m,S): l = {m,S}. We

assume that the conditional moments are encoded by neuronal

activity, i.e., Equation 5 prescribes neuronal dynamics. These

dynamics implement Bayesian inversion of the generative model,

under the variational approximations entailed by the form of the

ensemble density. In practice, Equation 5 is implemented using a

message passing scheme, which, in the context of hierarchical

models, involves passing prediction errors from one level up to the

next and passing predictions down, from one level to the next. The

prediction errors are simply the difference between the causal

states at any level and their prediction from the level above,

evaluated at the conditional expectations [6,8]. This means that

we have two sets of neuronal populations, one encoding the

conditional expectations of states of the world and another

encoding prediction error. The dynamics of the first are given by

Equation 5, which can be formulated as a simple function of

prediction error; e(i) = v(i)2g(x(i+1),v(i+1),T(i+1)), which is the activity of

the second population. See [6,8] and [36] for details.

Here, Equations 1 and 2 specify the generative model in terms

of the likelihood function p(y|u,m), which follows from Gaussian

assumptions about the random terms. The hierarchical form of the

model induces empirical ‘structural’ priors, which provides top-

down constraints on the evolution of states generating sensory

Figure 1. Data and states, over two seconds, generated by a two-level birdsong model. (A) At the first level, there are two outputs (i.e.,
data) (left: blue and green solid line) and three hidden states of a Lorenz attractor (right: blue, green, and red solid line). The second level is also a
Lorenz attractor that evolves at a time-scale that is one magnitude slower than the first. At the second level, the causal state (left: blue solid line)
serves as control parameter (Rayleigh number) of the first-level attractor, and is governed by the hidden states at the second level (right: blue, green,
and red solid line). The red dotted lines (top left) indicate the observation error on the output. (B) Sonogram (time-frequency representation)
constructed from model output. High intensities represent time-frequency locations with greater power.
doi:10.1371/journal.pcbi.1000209.g001

Hierarchy of Time-Scales
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data. In addition to these structural priors, there are also empirical

priors on the temporal evolution of the states that derive from

modelling states in generalised coordinates of motion:

Generalised Coordinates of Motion
Under the free-energy principle, the agent must implement

models that represent, at each moment in time, the dynamics of

causes in the environment, as in Equations 1 and 2. Because these

equations also prescribe how the motions of various states couple

to each other, our generative model covers not just the states but

their motion, acceleration, and higher order velocities. These are

referred to collectively as ‘generalised coordinates of motion’, in

the sense that the trajectory (or motion) of any dynamical system

can be described within this frame of reference. We use the

following notation for a vector of generalized coordinates:

ũ = {u,u9,u0,u-…}, whose entries are the current state u

(Equation 3), its motion and higher order temporal derivatives.

This frame of reference can be thought of encoding the trajectory

at any instant, in terms of the coefficients of the polynomial

expansion in time:

u tzDtð Þ~u tð Þzu’ tð ÞDtz1=2u’’ tð ÞDt2z1=6u’’’ tð ÞDt3z . . . , ð6Þ

where Dt is an arbitrary time interval. Equation 6 is the Taylor

series of the trajectory as a function of time. Therefore, specifying

the generalized coordinates of motion at any time point encodes

the present, past and future states of the system [38]. This

representation is related to the notion of ‘spatiotemporal receptive

fields’ that describe the response of neurons to certain spatiotem-

poral dynamics in the environment [39], see also [40]. The

sufficient statistics l (Equation 5) of the conditional generalized

motion q(ũ|l) encodes trajectories in a probabilistic fashion.

Uncertainty on each generalised coordinate controls how far into

the future the trajectory can be specified with confidence (for

example, to represent a smooth trajectory that extends far into the

future, one needs high precision on high-order derivatives). In

other words, from the agent’s perspective, the precision of both its

memory and its prediction of sensory input will fall with distance

from the current time as a function of the conditional precision of

its state in generalized coordinates. The empirical priors that

obtain from modelling in generalised coordinates ensure smooth

continuous estimates of trajectories and enable online inversion.

For more details please see [36].

In our simulations, we used six high-order temporal derivatives

for the hidden states x(1) and x(2), and two for the causal state v(1). It

should be noted that although generalised coordinates finesse the

recognition dynamics prescribed by Equation 5, the focus of this

work is on the empirical priors that are conferred by the

hierarchical structure of the model. It is these that enable the

separation of temporal scales and prediction over long time-scales.

The routines (incl. Matlab source code) implementing this

dynamic inversion and the birdsong example are available as

academic freeware (Statistical Parametric Mapping package

(SPM8) from http://www.fil.ion.ucl.ac.uk/spm/; Dynamic Ex-

pectation Maximization (DEM) Toolbox).

Results

Simulations of Birdsong Perception
In this section, we generate synthetic birdsong using the coupled

Lorenz oscillators described above and model a ‘listening’ bird

during song recognition by inverting the model using Equation 5,

where we consider the conditional moments, l of q(ũ|l) to be

encoded by neuronal activity (under the Laplace approximation

we need only encode the conditional expectation because the

conditional covariance is an analytic function of the expectation

[38]). The conditional expectation of the hidden states at the first

level encodes fast auditory input, whereas the conditional

expectation at the second level encodes slowly varying states that

engender changes in the first-level’s attractor manifold, through

the causal state that links levels.

In Figure 1A we plot the hidden states, cause and sensory

products for the synthetic bird-song generation. One can see

immediately that the two levels have different time-scales due to

their different rate constants (Equations 1 and 2). The resulting

sonogram is shown in Figure 1B. The results of the online

inversion (i.e., song perception) are shown in Figure 2A. At the first

level, the uncertainty about the states was small, as indicated by

narrow 90% confidence intervals, shown in grey. At the second-

level, the system tracks the hidden and causal states veridically.

However, as these variables are inferred through the sensory data,

the uncertainty about the hidden state reaches, intermittently, high

values. The uncertainty about the hidden states at the second-level

is very high, because these variables can only be inferred via the

causal state v(1). What would these dynamics look like if one

recorded electrophysiological data from the corresponding neuro-

nal populations? In Figure 2B, we plot simulated local field

potentials (LFP) for both levels.

To simulate the LFPs we multiplied the prediction errors by

their precision to simulate the activity of neurons encoding

prediction error: We assume here that LFPs are an expression of

prediction error, see [8] and text following Equation 5. The

prediction error of all states is relatively low, showing transient

variations that are used to adjust the conditional estimates of the

model’s states (Figure 2B). In summary, these results show that the

model can not only generate birdsong dynamics but, using the

free-energy principle, it can be used to decode incoming sensory

input with relatively high precision. Critically, at the second level,

the decoding (listening) bird infers hidden states that evolve slowly

over time. This is an important result because the values of the

states at the second level specify the attractor manifold, and

therefore the trajectory of states at the first. In other words, one

location in state space at the higher level specifies a sequence of

states at the lower. Because we have inferred or decoded the

motion of states at the second level the synthetic bird has

effectively recognised a sequence of sequences. In principle, by

adding a further level the bird could represent sequences of

sequences of sequences and so on to elaborate high-level concepts

about what is happening in the environment.

We deliberately chose to generate both levels of the birdsong

with the same (Lorenz) attractor to show it is possible to invert

generative models with temporal hierarchies comprising more

than two levels: because we were able to reconstruct the dynamics

at the second level given the first, we can argue, by induction, that

this process is repeatable to any hierarchical order, with increasing

temporal scales. This is because the dynamics at the second level

are exactly the same as the first (but evolve more slowly). Having

established that the online perception returns sensible results, we

can ask two interesting questions. First, what happens when the

sensory input violates hierarchical predictions? Second, how would

the second level express itself empirically, using LFPs and lesion

studies?

Surprising Songs
First, we simulated a surprising song, in which the last chirps

were omitted. We stopped the bird’s singing after 1.4 seconds,

which effectively removes the last two chirps (Figure 3A and 3B).

The recognition system, at the first level, correctly predicts zero

Hierarchy of Time-Scales
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amplitude auditory input, after the interruption. However, this

does not happen immediately but after a short period of about

100 ms. At the second level, the uncertainty about the cause

increases massively and maintains its trajectory, following the

expected sequence of chirps. At both levels, for a brief period after

the interruption, there is a large prediction error (Figure 3C). In

summary, the system’s response shows that both levels work

together to explain the unexpected cessation of sensory input.

While first-level dynamics suppress prediction error by fitting

sensory data, the second-level representations increase their

uncertainty.

This example was chosen to show how hierarchical models

might disclose themselves empirically. Consider the simulated LFP

responses based on prediction error in Figure 3C. The marked

responses at the premature termination of the song (red arrow) can

only be explained by a violation of predictions (surprise) over time.

This is because we have simulated an evoked response to the

omission of a stimulus. In the absence of predictions, a stimulus that is

not there cannot elicit any response. The hierarchical nature of

these predictions derives from two aspects of the model. The

dynamical hierarchy, encoded by the generalised motion within

each level, and the structural hierarchy entailed by the two-levels.

In the next simulation, we examine their relative contribution to

omission-related prediction error responses by removing the

second level. We hoped to show that the omission response was

attenuated because the prediction from the slower temporal scale

was no longer available.

A Synthetic Lesion Study
Here we simulated a synthetic bird whose second level had been

removed. In Figure 4A, we show the inversion of the ensuing

single-level model using the same data as above. The prediction

error at the first level in Figure 4C is greater than for the two-level

system (Figure 2B). This is expected because the single-level model

is not informed about the slowly changing parameter from the

second-level attractor. In other words, the two-level system attains

a lower prediction error because it can model slow environmental

dynamics, which results in a better description of sensory input.

Figure 4B shows what happens when the song stops prema-

turely. As predicted, the omission response of the single-level

system is smaller than for the two-level system and reaches zero

more quickly (Figure 4D). This means that the two-level system is

less forgiving of violations in long-term temporal structure, when

predicting sensory input. This is an important result because it

means that, given unexpected input, the two-level model produces

a larger prediction error than the simpler single-level model.

Usually, models that produce smaller prediction errors are better

than models that produce larger prediction errors. In other words,

Figure 2. Dynamic online inversion of the data presented in Figure 1. Observed data (see Figure 1) are now shown as black, dotted lines,
and the model predictions as solid, coloured lines. (A) The 90% confidence interval around the conditional means is shown in grey. The prediction
error (i.e., difference between observation and model prediction) is indicated by red dotted lines. (B) Simulated local field potentials (LFPs) caused by
the prediction error time series of both levels. See text for their simulation. Red: LFPs at first level, dark red: LFP at second level.
doi:10.1371/journal.pcbi.1000209.g002
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if our task were to model interrupted birdsongs, the two-level

model is worse than the single-level model. The critical point is

that although this behaviour can be framed as a disadvantage from

a modelling perspective, it entails several advantages for the agent:

First, the larger and more enduring prediction error of the two-

level system signals that something unexpected and potentially

important has happened (a cat might have put an abrupt end to

the rendition). The second-level prediction error could then be

explained away by supraordinate causes (i.e., a nearby predator)

whose representation may be essential for survival. In short,

hierarchical systems can register and explain away surprising

violations of temporal succession, on extended time-scales.

Second, the two-level system can infer slowly changing causes to

which the single-level system is blind. These second-level dynamics

may carry useful information; for example, that the singing bird is

strong and well-fed. Missing this information may pose a serious

disadvantage when it comes to choosing a mate. Finally, the

second level adds stability to the inversion process and renders

recognition more robust to random fluctuations in the environ-

ment. The coupling of the fast to the slow level improves inference

on degraded sensory input by providing empirical priors. This is

shown in Figure 5A, where we increased the noise level of the

sensory input by an order of magnitude. The two-level model can

cope with this level of noise (although the third syllable is missed;

Figure 5A). In contrast, the single-level system fails to predict the

sensory data completely (Figure 5B). This difference in recognition

is due to veridical prior knowledge from the second level, which

confers a more enduring prediction of sensory sequences.

A key aspect of the recognition model above rests on the

nonlinearity of the internal model. It is this nonlinearity that allows

high-level states to act as control parameters to reconfigure the

motion of faster low-level states. If the equations of motion at each

level were linear in the states, each level would simply convolve its

supraordinate inputs with an impulse response function. This

precludes the induction of faster dynamics because linear

convolutions can only suppress or amplify the input frequencies;

they cannot create new frequencies. However, the environment is

nonlinear, where long-term causes may disclose themselves

through their influence on the autonomous nonlinear dynamics

of other systems. To predict the ensuing environmental trajectories

accurately, top-down effects in the agent’s internal model must be

nonlinear too.

Discussion

The simulations have shown how environmental trajectories at

two different time-scales can be extracted from fast sensory input.

This simple example of how a synthetic bird recognises songs

provides a metaphor for how the human brain might exploit

temporal structure in the environment. Obviously, the brain

affords many more levels than two and operates on much higher-

dimensional input. However, the principle of hierarchical

inference, with separation of time-scales, could be an inherent

part of neuronal computations. If the generative model employed

by the brain embodies autonomous dynamics that are coupled

nonlinearly by control parameters, each level in the hierarchy may

Figure 4. Single-level model dynamic online inversion of the data presented in Figures 1 and 3. (A) The single-level model can explain
the data (no song interruption) well. (B) The single-level model quickly approaches the zero line after an interruption at 1.4 seconds. (C) Simulated
LFPs for model inversion in (A). (D) Simulated LFPs for model inversion in (B).
doi:10.1371/journal.pcbi.1000209.g004
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represent a specific time-scale. In the following, we will discuss two

bodies of neuroscientific evidence for such a mapping: (i)

modulatory backward connections which operate at slower time-

scales than forward connections and (ii) a cortical gradient of

environmental time-scales. We then relate the principle of

hierarchical inference to other theoretical accounts in neurosci-

ence.

Neuroscience Account
Modulatory backward connections. There is extensive

literature on the hierarchical organisation of the brain, in

particular of the cortex [41–44]. This organisation has been

studied most thoroughly in the visual system, where cortical areas

are regarded as forming a hierarchy; with lower areas being closer

to sensory input. The notion of a hierarchy rests upon the

distinction between forward and backward connections [41,45–

48]. This distinction is based on the specificity of the cortical layers

that are the predominant sources and origins of extrinsic

connections in the brain. Forward connections arise largely in

superficial pyramidal cells, in supra-granular layers and terminate

in spiny stellate cells of layer four or the granular layer of a higher

cortical area [41,49]. Conversely, backward connections arise

largely from deep pyramidal cells in infra-granular layers and

target cells in the infra- and supra-granular layers of lower cortical

areas. Intrinsic connections are both intra- and inter-laminar and

mediate lateral interactions between neurons that are a few

millimetres away. Due to convergence and divergence of extrinsic

forward and backward connections, low visual levels like the

primary visual cortex (V1) have small spatial receptive fields,

whereas higher visual areas have larger receptive fields; e.g.,

lateral-occipital cortex [50].

There is a key functional distinction between forward and

backward connections that renders backward connections more

nonlinear or modulatory in their effects on neuronal responses,

e.g., [48]. This is consistent with the deployment of voltage

sensitive and non-linear NMDA receptors in the supra-granular

layers that are targeted by backward connections. Typically, the

synaptic dynamics of backward connections have slower time

constants [51]. This has led to the notion that forward connections

are driving and elicit an obligatory response in higher levels,

Figure 5. Comparison of single- and two-level model inversion of high-noise birdsong data. We show only the output of each model and
the causal state of the two-level model. (A) The two-level model can explain the data relatively well, although it misses the third syllable. (B) The
single-level model is unable to predict the data at all.
doi:10.1371/journal.pcbi.1000209.g005
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whereas backward connections have modulatory effects and

operate over greater spatial and temporal scales. This is crucial,

because modulatory influence, from a higher level, with slow time

constants, suggests that information from the higher level provides

contextual information to the lower level. These experimental

findings are matched by our theoretical account. In our

simulations, evidence for a slow modulatory influence on a lower

level can be observed in Figure 3A. Here, contextual top-down

influence during online inversion prevents the first-level from

reacting quickly to a surprising (unlikely) change in the sensory

input. It takes a relatively long period (100 ms) before the dynamic

inversion recognizes the unexpected end of the song. This slow

transition to a new input regime is due solely to the slow contextual

influence of the second level; the transition is much faster

(,10 ms) when one removes the contextual influence (Figure 4B).

Note that we did not tune the inversion algorithm to ensure higher

levels provide slow contextual guidance for lower levels. Rather,

the generative model of a temporal hierarchy enforces that

hierarchical separation of temporal scales.

Rostro-caudal gradient of environmental time-

scales. Assuming that the brain employs a temporal hierarchy

and that ‘wiring costs’ [52] among levels are minimised, one might

expect (i) that low levels of the cortical hierarchy are anatomically

close to primary sensory areas and (ii) that the juxtaposition of

time-scales (fast to slow) is conserved, when mapped to

hierarchically disposed cortical areas. Indeed, systems

neuroscience provides experimental evidence that there is a

rostro-caudal gradient in cortex, along which the time-scales of

representations generally increase, from fast (caudal) to slow

(rostral). In Table 1, we list brain areas/systems for which we

review the evidence that these form levels in an anatomic-temporal

hierarchy in supporting material (Text S1). The time-scales of

environmental dynamics in Table 1 are rough estimates based on

this review. In this picture, cortico-cortical long-range connections

allow for coupling among time-scales. Note that although the view

presented in this paper is entirely cortico-centric, we speculate that

a cortical anatomic-temporal hierarchy is also expressed in

subcortical structures.

Links to other theoretical accounts. The concept of

modelling sensory dynamics and their relation to neuronal

representations can be related to several approaches in

theoretical physics [53–59]. The most important is ‘synergetics’

described in Haken [56], where Jirsa and Haken [58] further

elaborated the theory to relate it to electromagnetic observations

of brain activity. Synergetics embodies the principle that fast

dynamics are ‘enslaved’ by slow dynamics, governed by a few

‘order parameters’ naturally incorporating time-scale separation.

Synergetics has been demonstrated in behavioural dynamics like

bimanual coordination, where the dynamics of finger movements

are modelled in terms of fast and slow dynamics. As shown in [59],

this framework can be used to analyze brain dynamics as

measured with magnetoencephalography. In [57], the

synergetics approach was employed to model the recognition of

behavioural patterns like arm movements. The principle of a

temporal hierarchy might also be linked to accounts of

environmental or neuronal multi-scale dynamics, e.g., [53,54].

In another related approach from theoretical physics, it has been

shown that, under certain constraints, coupled nonlinear systems

can transfer information from fast to slow time-scales [55].

There is extensive literature on the hierarchical structure of

human behaviour, see [60] for a recent example and [61,62]. In

[63], Botvinick proposed a hierarchical model of behavioural

sequences, using recurrent neural networks, where high levels in a

hierarchy encode slow time-scales, while low levels encode fast

input/output. The temporal hierarchy emerged, after learning,

without imposing specific constraints. This is an important result,

that is shared with several accounts in the robotics literature,

where a hierarchy of time-scales in recurrent networks emerges

naturally from optimizing a robot to perform navigation tasks

[21,22,64,65].

There are several theories that relate to the hypothesis that the

operations of specific brain systems pertain to temporal structure

of the environment. An exemplary approach is Fuster’s sensori-

motor hierarchy [12,66,67]. Fuster postulates that prefrontal

cortex integrates behaviour (motor) over time, while interacting

with posterior (sensory) cortical areas. This theory rests on two

interacting hierarchies (see Figures 1 and 2 in [66]). In spirit, this

model is close to what we have formulated. However, one

conceptual difference is that we regard the whole of cortex as a

single hierarchy. In our model, the unifying feature of the

hierarchy is a rostro-caudal gradient of time-scales. Fuster derives

the need for two sub-hierarchies from the division of motor and

perceptual resources. We believe that this division might prove

unnecessary because, according to the free-energy principle, the

brain has the singular task of predicting sensory input. This means

that the generators of motor output simply predict sensory

consequences of anticipated [intended] movements, e.g., [40,68].

Other models, in particular from motor control theory, try to

explain perception and action via forward modelling and

reinforcement learning, e.g., [17,69]. There are several important

differences, between these accounts and the approach used above.

Our approach uses an explicit separation of time-scales. Another

Table 1. Brain areas and systems for which we review evidence (Text S1) that cortical structure–function relationships follow a
rostro-caudal gradient.

Cortical Areas Brief Description
Time-Scale of Environmental
Dynamics

Section in
Text S1

Sensory and association cortex Sensory processing follows a temporal hierarchy Milliseconds to hundreds of milliseconds Section 1

Primary motor and premotor cortex Motor areas serve the hierarchical prediction of the
sensory consequences of movement trajectories

Tens of milliseconds to seconds Section 2

Rostral anterior cingulate cortex Hierarchical, contextual influence on action prediction Tens of seconds to much longer periods Section 3

Lateral prefrontal cortex Hierarchically ordered ‘cognitive control’ system Tens of seconds to much longer periods Section 4

Orbitofrontal cortex Representation of temporally most stable environmental
states

Very long periods Section 5

The location along this gradient determines the time-scale of the environmental dynamics that are represented.
doi:10.1371/journal.pcbi.1000209.t001
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key difference lies in the generality of our inversion algorithm, with

nonlinear evolution and output functions at each level (recurrent

networks often use linear mixing of the input and a sigmoid output

nonlinearity). In addition, our algorithm enables inference on the

state precisions such that dynamic uncertainty is quantified. This is

probably important for an adaptive agent because behaviour

should not only depend on some estimated state of the

environment but also on the agent’s uncertainty about these

estimates. Other differences exist at a more technical level: we use

a variational Bayesian framework in generalised coordinates,

which enhances the stability and simplicity of the online inversion

scheme [36].

There is a large experimental and theoretical literature on

coupled neuronal dynamics, e.g., [25,26,54,70], which is distinct

from the current treatment. The neuronal dynamics considered in

this work are determined by the free-energy principle (Equation 5).

This means that any separation of temporal scales emerges

explicitly from the generative model which is transcribed from the

environment. This separation is not an inherent property of

coupled neuronal systems per se. One important implication is that

neuronal dynamics themselves may not relate directly to dynamics

of sensory input but rather to the inversion scheme used to

optimise the model of that input. However, it is interesting to note

that there are reports of a simple relationship between the

temporal aspects of sensory input and neuronal dynamics,

particularly in the auditory domain [70,71].

Conclusion
We have proposed that the brain employs a hierarchical model,

where nonlinear coupling among hierarchical levels endows each

with a distinct temporal scale. At low levels of this hierarchy; e.g.,

close to primary sensory areas, neuronal states represent the

trajectories of short-lived environmental causes. Conversely, high

levels represent the context in which lower levels unfold. Critically,

at each level, representations depend on, and interact with,

representations at other levels. We presented simulations that

provide a proof of concept that a temporal hierarchy is a natural

model to recover information about dynamic environmental

causes. In addition, we have discussed empirical findings, which

support the conclusion that cortical structure recapitulates a

hierarchy of temporal scales.

The principle of a temporal hierarchy provides a theoretical

framework for experiments in systems neuroscience. The predic-

tions based on this account could be addressed by making time-

scale an experimental factor. For visual areas, Hasson et al. [72]

provide a compelling example of such paradigms.

Supporting Information

Text S1 Review of neuroscientific evidence. In sections 1 to 5,

evidence is reviewed that cortical structure and function reflect an

anatomic-temporal hierarchy, following a rostro-caudal gradient.

Found at: doi:10.1371/journal.pcbi.1000209.s001 (0.13 MB PDF)
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