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Computational
Challenges of
Systems Biology

B ioinformatics is the computing response to the molecular rev-
olution in biology. This revolution has reshaped the life sci-
ences and given us a deep understanding of DNA sequences,
RNA synthesis, and the generation of proteins. In the process
of achieving this revolution in understanding, we have accu-

mulated vast amounts of data. 
The scale of this data, its structure, and the nature of the analytic task

have merited serious attention from computer scientists and prompted work
in intelligent systems, data mining, visualization, and more. It has also
demanded serious efforts in large-scale data curation and developing a world-
wide infrastructure to support this. Bioinformatics, the handmaiden of mol-
ecular biology, poses novel computational challenges, stretches the state of
the art, and opens unanticipated uses of computing concepts. In tackling
these, computer scientists have the additional satisfaction of contributing to
a scientific Grand Challenge.

Bioinformatics is, however, only the first step in reshaping the life sciences.
For further progress, we must return to the study of whole biological systems:
the heart, cardiovascular system, brain, and liver—systems biology. To build
an integrated physiology of whole systems, we must combine data from the
many rich areas of biological information. Alongside the genome, which
constitutes our knowledge about genes, we place the proteome, metabolome,
and physiome, which embody knowledge about proteins, metabolic
processes, and physiology.

Systems biology is at least as demanding as, and perhaps more demanding
than, the genomic challenge that has fired international science and gained
public attention. Progressing in this discipline will involve computer scientists
working in close partnership with life scientists and mathematicians. In con-
trast to the molecular biology revolution, computer science will proactively
engage in shaping the endeavor rather than just clearing up afterwards!

The prize to be attained is immense. From in silico drug design and test-
ing to individualized medicine that will take into account physiology and
genetic profiles, systems biology has the potential to profoundly affect health-
care and medical science generally.

THE ROLE OF MODELING
Suppose we had a catalog of all the gene sequences, how they translate to

make proteins, and which proteins interact with each other. Further, assume
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we know the way in which the protein backbones
fold—whether into sheets, helices, or other shapes
with differing properties. For several reasons, we
would not be able to put them into a functionally
meaningful framework simply from the data.

First, all proteins undergo post-translational
modification that adds side chains like sugars to
make, for example, glycoproteins—important con-
stituents of cell membranes. These additions influ-
ence the shape and properties of proteins and hence
their function and behavior. Further, just because
two proteins can interact in principle does not mean
that they do so in real cells. Also, metabolic
processes synthesize many small, functionally
important molecules. For example, many neuro-
transmitters are made by cells, not translated from
RNAs. Biological systems are so enormously com-
plicated that, however much we learn about them,
it will be impossible to create a full simulation
based on complete understanding.

Thus, a bottom-up, data-driven strategy will not
work. We cannot build an understanding of bio-
logical systems from an understanding of the com-
ponents alone. We must seek other approaches.

Modeling lies at the heart of systems biology. We
can use experimental information to build models
at different biological scales, integrating them to
create an orchestrated assemblage ranging from
gross models of physiological function through
detailed models that build directly on molecular
data. As Figure 1 shows, in principle these models
should span from DNA and gene expression to
intracellular networks, to cell-to-cell and trans-
membrane signals, and through to the organ level.
Tenuously, we might eventually construct such
models at the organism level.

We thus introduce two key concepts for systems
biology, methodologies forced upon us by the pecu-
liar complexity of biological systems. First, we
acknowledge the importance of simplification
because biological complexity requires us to model,
not simulate. Second, we acknowledge the impor-
tance of both modularity and the integration of

modules. Biological complexity requires us to break
our systems into manageable components, but it
also requires us to reassemble them because behav-
iors can emerge that we cannot understand from
the components alone.

The resulting models can provide coarse-grained
prediction, be used as a scaffold for our emerging
understanding of the data, identify gaps in our bio-
logical knowledge, and, if the models are good, pre-
dict new behaviors that we can explore experi-
mentally. Iteration between model and experiment
provides the key to ensuring that models are real-
istic. Given that researchers may need a different
technique to study each component, it is difficult
if not impossible to undertake physiological stud-
ies of whole systems in which the individual com-
ponents are monitored simultaneously.

This agenda poses some serious challenges to the
construction, integration, and management of the
models—challenges that computer scientists are
well placed to meet.

MODELING STATE OF THE ART
Denis Noble and colleagues1 developed the heart

model that provides the paradigmatic example of
systems biology. Their work provides a computa-
tional model of the heart’s electrical and mechani-
cal activity when healthy and when diseased. The
model has been linked to sophisticated visualiza-
tions, particularly solid geometry models. It has
also proven invaluable in developing an under-
standing of cardiac arrhythmia, with consequences
for drug design and testing.2

The model itself has evolved from its relatively
simple beginnings as an adaptation of the classic
Hodgkin-Huxley squid axon model3 to its current
form, which involves hundreds of equations and
adjunct models. Despite this sophistication and the
large amount of effort it has consumed, the model
only covers a small part of the heart’s mechanical,
electrophysiological, and chemical phenomena. 

In addition to revealing what researchers can
achieve, the heart model also suggests the scale of
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the challenge that systems biology presents.
It has been the seed for the Physiome project,4

which collects and catalogs biological mod-
els and supports access to these models. The
Physiome project also provides Web-accessi-
ble databases of biological data that
researchers can potentially link to models.

Other researchers have produced a
plethora of stand-alone models to simulate
various biological phenomena. Although
most are relatively simple, some models

demonstrate more sophistication. One example,
the bacterial model that Dennis Bray and colleagues
created,5 simulates chemosensitivity and the motion
of flagella, the thin projections from cells.

Many models are provisional, in that they embed
contested hypotheses about biological function or
structure or are otherwise only partially validated.
Stand-alone biological modeling has attracted some
attention from computer scientists. In particular, cer-
tain biological phenomena such as biochemical net-
works appear to lend themselves to representation in
formal schemes such as process calculi, opening the
possibility for formal analysis and reasoning—an
avenue some researchers have already pursued.6

Only a small proportion of stand-alone models are
accessible to those outside their development groups
or have been documented in a form other than the
scientific papers in which they originally appeared.

MODEL INTEGRATION 
Although vital to systems biology, model inte-

gration has only recently received the attention it
deserves. In general, ad hoc, handcrafted, tightly
coupled integration of stand-alone models is the
state of the art. The Systems Biology Workbench
project seeks to advance the practice of model inte-
gration. This project consists of two distinct com-
ponents.

The Systems Biology Markup Language7 is an
XML language for representing biochemical net-
work models. SBML has largely been driven by a
pragmatic concern to facilitate the exchange of
models across a range of popular modeling tools,
and it has achieved some success in this regard. The
Systems Biology Workbench8 provides a software
framework for interoperation among the hetero-
geneous tools and resources used in biological mod-
eling. 

The SBW standard is not tailored to biological
modeling, but instead provides a generic middle-
ware solution. Although neither SBML nor SBW
focuses on model integration directly, SBML pro-
vides a common framework for documenting a

small range of models, which is an important first
step toward model integration.

Another approach, developed in parallel with the
Physiome Project, has resulted in CellML.9 This
XML-based language seeks principally to store,
exchange, and ultimately reuse biological models.
CellML provides a high-level block-diagram repre-
sentation scheme in which researchers can assem-
ble and hierarchically compose networks of models.
It uses the XML namespace mechanism to embed
other languages such as Math ML. Some attention
has been directed to descriptive metadata, but this
remains a less-developed aspect of the project.

Unlike SBML, CellML explicitly attacks the
model integration problem. Like SBML, however,
CellML can only encompass a limited range of
models that exclude, for example, discrete-event
systems. CellML is less widely used than the more
pragmatically driven SBML.

IDENTIFYING CHALLENGES
To map out the systems biology space more sys-

tematically, and to identify the computational chal-
lenges more precisely, we use the high-level
information model shown in Figure 2. The meta-
model is presented using a stripped-down entity-
relationship modeling convention.

Model characteristics
Our information model has three overlapping

regions, each representing a key concern in systems
biology and consisting of several components:

• construction—the model, compound model,
scheme, constraints, and view components;

• analysis—the model, context, engine, inter-
pretation, and ground components; and

• validation—the model, aspect, observation,
assumptions, and interpretation components.

Models represent aspects, a term that denotes a
coherent set of properties or phenomena of bio-
logical interest. The aspect anchors the model in
the real world. We establish a correspondence
through an ontology, an explicit formal specifica-
tion of how to represent the objects, concepts, and
other entities assumed to exist in the biological
domain being studied and the relationships that
hold among them. The model and appropriate ele-
ments must then be linked to elements in the ontol-
ogy.

Assumptions condition or determine the rela-
tionship between models and the aspects they rep-
resent. Assumptions underpin model construction,
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model and
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constitute the rationale for the model, and must be
precisely documented and connected to the model
for it to have meaning beyond the immediate use
to which it has been put.

Experimental biologists make observations about
phenomena of biological interest. Classically, these
observations are used to validate interpretations
derived from models. Commonly, however, models
yield interpretations that prompt further observa-
tions or, when compared with observations, ques-
tion the validity of the assumptions. Researchers
document the observations in the scientific litera-
ture and in data resources associated with the exper-
iments. 

One of systems biology’s central challenges
involves the tie between descriptions of experi-
ments, observations, experimental data, interpre-
tations derived from models, and assumptions. In
short, systems biology cannot be viewed indepen-
dently of an information management framework
that embraces a significant part of the experimen-
tal life sciences.

Acquiring scientific knowledge is an inductive
process in which observations that agree with a
model add to our confidence that it provides a good
reflection of the system it describes. Thus, valida-
tion is a more troubled concept because it involves
a matter of degree rather than certainty.

In principle, refutation is much simpler, but
researchers must take care when deciding how best
to modify the model to account for a disagreement
between a previous version and observation. Many
believe that in these circumstances modeling
becomes most useful for developing scientific
understanding. If we put our best scientific under-
standing into a model, and it does not fit the data,

it suggests that our understanding is incomplete.
This can be a powerful guide to new theories and
experiments.

Models, once instantiated, yield interpretations
through analysis. This can be a dynamic simula-
tion process or a static mathematical reasoning
process. The engine that both encompasses and
executes a model determines the analytic process.
Researchers can analyze the same model in many
different ways using different procedures. The
engine thus conditions an interpretation. We must
precisely specify the engine to anchor the interpre-
tation. In short, defining the model is insufficient—
we must define how we use the model. Analysis can
require significant computational resources.

Context is the data required to produce a model
instance—it is the input to the model. Researchers
could derive a context from observation, as in the
straightforward case where experimental results
provide a ground for data supplied to a model. In
an alternative and somewhat more complex case,
one model yields interpretations that constitute the
context for another model. From an informational
standpoint, we need to track the contexts supplied
to the model and associate them with the interpre-
tations to which they correspond. To maintain val-
idation integrity, we must also track the context
elements through their grounds.

Models are constructed in different languages,
or representation schemes, each appropriate to the
expression of and reasoning about different sets of
properties. No universal language for systems biol-
ogy can capture the many different phenomena we
seek to explore.

We present these schemes through views defined
as projections on the underlying scheme.
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Modeling schemes relate to each other
through constraints that define what it
means for models in these schemes to be con-
sistent with each other. Most schemes for
modeling in the large provide a composi-
tional mechanism that researchers can use to
compose models and construct larger-scale
compound models.

Modeling challenges
We are faced with three challenges:

• defining and managing the views, languages,
and constraints;

• providing the means for checking the con-
straints and devising modeling schemes with
sound compositional mechanisms; and

• managing models that may not be consistent
with each other, either across schemes or
across scales.

There is ample scope to extend the range of mod-
eling schemes used in systems biology. Computer
scientists have developed an extensive arsenal of
formal modeling techniques that can be usefully
employed here.

This complex picture excludes two key dimen-
sions, however. Models may be produced in dif-
ferent versions over time and by different teams.
Disagreements can arise and observations can be
contested. Different researchers may generate mod-
els in different versions and configurations. 

These unpredictable factors mean that systems
biology is unlikely to produce a set of canonical
models. Rather, a complex ecology of models
embedded within a framework that enables debate
and collaboration among contributors will arise.
Ultimately, our objective might include individual-
ized models that account for variations in physiol-
ogy, rather than generic models of biological
phenomena.

MODELING THE LIVER
As a first step in crafting a meaningful research

agenda, we need further convincing exemplars of
systems biology of the general type of the heart
model. Such examples will necessarily be restricted
in scope and scale. Ideally, however, they will be
more explicitly engineered, with some systematic
modularity and separation of concerns among com-
ponent models. These models can then act as test
beds for the broader conception of systems biology
and for the information management frameworks
that must accompany it.

The UK Department of Trade & Industry is sup-
porting high-adventure science Beacon projects that
offer the possibility of advances with significant
industrial potential. One such project at University
College London focuses on producing a physio-
logical model of the human liver that is integrated
across scales.10 The project brings together physi-
ologists and experimental life scientists, engineers
with expertise in systems modeling, applied math-
ematicians with an interest in integrating models
across differing temporal and spatial scales, and
computer scientists who can build and deploy the
information management and computational infra-
structure.

The liver has been selected as an exemplar of sys-
tems biology because it is medically important and
has a relatively homogeneous structure. Primarily
a chemical system, the liver offers a more chal-
lenging subject than electromechanical organs such
as the heart. Electromechanical systems have a long
history of quantitative description and modeling,
and research in this area is comparatively advanced.
Several ongoing efforts also seek to build in vitro
livers, artificial organs that patients recovering from
liver damage can use. Researchers could use mod-
els to understand and overcome some of the prob-
lems experienced by those who build such livers. 

The human liver has three principal functions:

• storing materials for release into the blood
stream when needed;

• synthesizing proteins and peptides from amino
acids; and

• detoxifying the system by breaking down
harmful materials such as alcohol, which are
then excreted.

Examining an example of the first function—glu-
cose release from the hepatocytes, liver cells, in
response to circulating adrenaline or glucagon—
helps illustrate current work on systems biology. 

Adrenaline triggers the classic fight-or-flight
response to stress. Glucagon contributes to the
homeostatic control of blood glucose. Both these sys-
tems are compromised in diabetes when the cellular
uptake of glucose, driven by insulin, is defective. 

Both adrenaline and glucagon activate the same
intracellular mechanisms: These hormones, circu-
lating in the bloodstream, bind to specific receptors
on the hepatocyte’s membrane. As a result, ion
channels—specialized protein molecules that let
specific ions enter or leave cells—open in the mem-
brane. Calcium enters the cell through these chan-
nels, raising the concentration of calcium in the

Computer scientists
have developed

techniques that can
extend the schemes

used in systems 
biology.

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 26, 2008 at 10:44 from IEEE Xplore.  Restrictions apply.



cytoplasm—that is, the cellular material located
within the cell membrane but outside the nucleus. 

The binding of adrenaline or glucagon to recep-
tors simultaneously activates linked G-proteins and
initiates a chain reaction within the cell, releasing
calcium and causing an increase in cytoplasmic cal-
cium. At different concentrations, calcium both
stimulates and inhibits calcium release from stores,
causing cytoplasmic calcium levels to oscillate. The
increase in calcium also mobilizes glucose release
from glycogen, the stored form of glucose, which
leaves the cell on glucose transporters.

This abbreviated description shows the complex-
ity of the dynamic relationships involved in a rela-
tively straightforward physiological process.
Researchers can construct models of each of these
subprocesses, such as G-protein activation or cyto-
plasmic calcium oscillation, in isolation. Typically,
researchers model these subprocesses as ordinary
differential equations, although certain processes
appear to lend themselves to discrete event modeling. 

The processes have, in this case, been well stud-
ied experimentally. Thus, researchers can relate the
parameters that constitute the context systemati-
cally to values in the literature. Ideally, this should
be done using a mediating ontology. Several sig-
nificant projects are constructing such ontologies
for human physiology, including, for example, the
Digital Anatomist Foundational Model.11 The
richer ontologies developed for genetic and bioin-
formatic work, such as the Gene Ontology,12 can
also be useful for cell physiological work.

We must, however, look carefully at the reliabil-
ity of the experimental data when selecting the
parameters to use with the model. Assuming homo-
geneous models of the subprocesses, we can con-
nect them to build a detailed model of the entire
network. Representational heterogeneity naturally
makes this more difficult. The resulting model can
be investigated numerically by varying its context.

Alongside this model, we can build a simplified
model. To make the system piecewise linear, we
assume that ion channel opening, protein activa-
tion, and so on behave as perfect switches. The sim-
plified system is biologically unrealistic, and many
features, such as the shape or period of oscillations,
are lost. Some features are retained, however, and
we can use algebraic analysis to develop an under-
standing of the system. For example, we can learn
how certain elements of the context control spe-
cific features of the system’s behavior. Even in the
absence of analytical results, a model simple
enough to hold in the human mind provides a use-
ful tool for understanding and as a comparator to

the fuller, more unwieldy model.
Both the detailed and simplified models are

constructed and analyzed using standard
tools for scientific modeling, which must be
wrapped to support model integration. They
also must be connected to standard scientific
visualizations, such as graphs or more sophis-
ticated animated views.

We intend to take modeling of this system
much further. An immediate extension will
incorporate the homeostatic activation of glucose
release through glucagon receptors. We could, for
example, build models of gap junctions, which are
constructed from connexins, membrane-inserted
proteins that bridge the space between cells and
provide direct channels through which the cyto-
plasm of one cell communicates with that of adja-
cent cells. 

We could use this model to link more than one
cell and scale up to multicellular models. Another
approach to the scaling issue would consider the
effects that signaling molecules have on gene
expression by acting as transcription factors—pro-
teins that bind to regulatory regions—thus moving
down to the molecular machinery.

MODELING STRATEGIES
Representing all aspects of a biological system in

the smallest conceivable detail is infeasible, even
when the data is available. We cannot and need not
recreate the world as an isomorphic in silico image
of itself. Therefore, judicious simplification will
drive the art of systems biology. This is particularly
true when trying to link different processes at dif-
ferent spatial or temporal scales, such as gene and
protein networks.

Simplification
Selecting the appropriate simplification will

depend on the topic being researched. For exam-
ple, to represent biochemical networks that involve
many different proteins, we could model the inter-
actions between proteins as simple stimulus-
response functions. Alternatively, we could choose
to focus on a few proteins and model the extremely
complex transformational processes between them
in great detail. 

Model simplification has at least three facets:

• Choosing a modeling scheme. The scheme
must provide sufficient descriptive fidelity, flex-
ibility when linking to other models, contex-
tualization in terms of known or obtainable
data, and reasonable ease of interpretation.
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• Choosing a level of detail. The choice of level
of detail within a given representation deter-
mines how many links in a signaling pathway
to represent explicitly, if and how to model
space, and the dominant timescale.

• Determining sensitivity. A useful simplification
scheme must have robust context and inter-
pretation. The model must include the back-
bone elements that give robustness to the real
biological system.

Some of these issues can be clarified by thinking
about the interpretation obtained from the simpli-
fied model of calcium oscillations with square
waves. One value of this model derives from its
position at the extreme end of a continuum of mod-
els with Hill-function response functions, all of
which behave with qualitative similarity. Thus, the
models represent a continuum, only one of which
provides a true representation of the real world. 

That all these models behave qualitatively in the
same way tells us that, in some sense, the detail of
the real-world response may be incidental: There
may be recognizable and potentially real worlds in
which calcium oscillations differ. Thus, some per-
fectly feasible creature may have square calcium
waves.

We can therefore attribute the human wave shape
to some kind of fine tuning. We must determine
how strenuously we should chase this kind of fine-
scale effect, rather than being content with more
robust, qualitative phenomena. Deciding which
behaviors a model must reproduce can be difficult.
This is, in our experience, an area where researchers
from different backgrounds often disagree strongly.

Construction
Function can be an important guide for model

construction and interpretation. That is, we know
roughly what a liver is for. With other study sub-
jects, however, this may not be the case. At the fine
grain in biological systems, we can observe phe-
nomena whose function we do not understand. In
a deep sense, these phenomena may not be “for”
anything—there is no logic to evolution. If we don’t
know which phenomena are central and which inci-
dental, assessing the model’s validity becomes
extremely difficult.

In many cases, we must model both the physio-
logical process and the experimental protocol. For
example, we conducted an experiment that, when
taken at face value, seemed to refute an assump-
tion underpinning a model of protein production
by cells. This, however, turned out to be true only
if we interpreted the model in the most naive way.
It is not always clear just what an experiment does
and does not tell us about a model. More sophisti-
cated interpretations, involving the explicit repre-
sentation of stochastic effects, offer a means for
analyzing the laboratory experiment and its pre-
dicted result while remaining compatible with the
original hypothesis.

Integration
Our framework represents the relationships

between models in different schemes in terms of
constraints that define what it means if those mod-
els are consistent when we place them in conjunc-
tion with each other. Expressing these constraints,
or understanding how the models relate, poses
many difficulties when we are integrating different
kinds of models. Figure 3 shows a simple taxo-
nomic framework that contrasts modeling schemes
based on different principles. 

Problems arise when working with stochastic
models or models formulated so that some act as
discrete-time systems and others as continuous-time
systems. Our strategy assumes that designing coher-
ent collections of models is preferable to struggling
to integrate fundamentally incompatible schemes.
What these should be, and how they should be
structured, remain open questions.

A lthough we can identify some important
staging posts, systems biology has, in con-
trast to projects that map genomes, no clear

end point. Models that provide thin vertical slices
across scales offer one possibility. Our models of
glucose release in the hepatocyte already approach
cross-scale integration from gene expression
through multicellular responses. Another example
we are working on is fluid transport, a key part of
liver physiology. 

In the past five years, life scientists have identified
the genes for aquaporins, the membrane water
channels that control the movement of water into
and out of cells. Moving from the gene through
aquaporin models to bile flow would be a signifi-
cant achievement.

An important staging post could be achieved by
developing drug testing models that would satisfy

Deterministic Stochastic

Compartmental variables Individual or functional

Spatially homogeneous Spatially explicit

Uniform time scale Separated time scales

Single-scale entities Cross-scale entities

Figure 3. Taxonomic
framework for 
modeling schemes.
The framework 
contrasts modeling
schemes based on
different principles,
such as spatial and
temporal
parameters.
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the strict requirements of validity, reliability, trans-
parency, and traceability. Establishing global col-
laboratories in which researchers can exchange,
review, and analyze models would also be signifi-
cant. Finally, when we can use our models to
dependably diagnose health issues and identify
novel treatments, systems biology will have come
of age. �
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