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Abstract— Nystagmus, an involuntary oscillatory eye move-
ment, is an important diagnostic marker for various neuro-
logical and vestibular disorders. However, current clinical eye
tracking systems are expensive, require specialized equipment
and training, thus limiting their usability at scale. This study
proposes a smartphone-based eye tracking pipeline for nys-
tagmus analysis, utilizing a deep learning-based segmentation
model and a circle-fitting algorithm to estimate pupil position.
Two variations of U-Net segmentation models — a 3-class
(sclera, iris, background) and a 4-class (sclera, iris, pupil,
background) U-Net — were trained on publicly available
MOBIUS dataset. Then applied and evaluated on 12 optokinetic
nystagmus (OKN) videos with varying gaze positions. On the
test set the 3-class model performed best across cross entropy
loss, intersection over union loss, and DICE score metrics
(0.051, 0.081, and 0.956 respectively), compared to the 4-class
model’s 0.068, 0.162, and 0.903 respectively. On the tracking
task, when evaluated against ground truth tracking measured
using the ICS Impulse, both methods were able to capture
the nystagmus movements reasonably well (avg R? of 0.755
and 0.768 for 3 and 4-class methods across 12 OKN tests).
No statistical difference in the performance of the 3-class
model compared to the 4-class model on R? (p-value 0.80).
These findings highlight the potential of smartphone-based eye
tracking as a cost-effective tool for objective nystagmus as-
sessment, with further refinements needed to improve tracking
performance. This approach could enhance diagnostic accuracy
and accessibility in clinical settings.

I. INTRODUCTION

Eye movements have been the subject of much research,
from gaming to medicine they can carry significant informa-
tion [1]. This is particularly true in medical contexts where
eye movements have been used to evaluate conditions such
as social disabilities in toddlers [2], poor sleep quality [3],
and schizophrenia [4]. A particularly medically relevant eye
movement is nystagmus — a small involuntary oscillatory
movement of the eye typically consisting of two saccades,
a slow pathological drift followed by a fast corrective jerk
towards the desired direction of gaze, giving a sawtooth-
like trace [S], [6]. Nystagmus is associated with a large
range of underlying conditions, from benign paroxysmal
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positional vertigo [7] to life-threatening strokes [8] leading
to significant prevalence in the general population (24 per
10,000 [9]).

Although not sufficient when considered alone, a detailed
analysis of the variations between the types of nystagmus is
instrumental in the correct diagnosis of the underlying cause
[10]. This is particularly important in EDs where 3-5% of
incoming patients require eye movement interpretation for
correct diagnosis [11]. Accurate analysis and efficient triag-
ing at this stage would allow patients to receive appropriate
care immediately without delay. However, while nystagmus
is an effective diagnostic differentiator in the hands of
specialists, studies have shown that non-specialist physicians’
low confidence and inadequate training frequently lead to in-
correct interpretation of nystagmus and other eye movements
[12]. This could be largely avoided by providing clinicians
with adequate eye tracking tools for quantified and objective
analysis of nystagmus [6].

The aim of this study is to put forth a novel eye tracking
pipeline which uses only a smartphone camera to accurately
track the small rapid eye movements associated with nys-
tagmus. Two variations of this pipeline are considered: a
3-class segmentation U-Net classifying the periocular area
(i.e. background), the sclera, and the iris including the pupil;
this is then fed into a circle fitting which uses the iris/sclera
boundary as input. The second variation uses a 4-class
U-Net where the iris and pupil are classified separately;
here, the pupil/iris boundary is used as input to the circle
fitting algorithm. The center of the fitted circle is taken to
be the center of the pupil hence allowing tracking of eye
movements.

We aim to evaluate the performance of this technique on
both neutral (eye looking forward) and eccentric (eyes look-
ing left/right) positions using OKN stimulus with varying
stimulus speeds, participant positions, and lighting condi-
tions. As this is an exploratory study, the scope is limited to
tracking horizontal saw-tooth jerk nystagmus in one individ-
ual. Further work, such as application to different nystagmus
types or analysis of the output waveform, is outside the scope
of this study but is relevant to the larger work concerning the
development of an end-to-end nystagmus analysis application
to support clinicians’ diagnoses.

A. Nystagmus Tracking

The fundamental technology needed for nystagmus anal-
ysis is well-established. Specialist eye trackers (e.g. ICS
Impulse [13], EyeSeeCam [14] ) using infra-red cameras are
considered to be the clinical gold standard. However, their



widespread use is severely hampered by expensive costs —
up to US $40,000 — and the need for a trained expert [11].
Cheaper versions of these devices have been developed [15],
[16], but still require custom hardware or are not portable,
making them inaccessible at scale. Commercial eye tracking
hardware made for non-medical purposes — such as gaming
(e.g. Tobii [17]) — can be cheaper (around US $350) but
typically are designed for desktop computers with limited
tracking range, lack the necessary accuracy, and/or require
custom software which does not support medical tests.

In recent years, various types of machine learning mod-
els using smartphone imaging have emerged as potential
competitors to the established technology [11]. Challenges
have already been encountered, particularly regarding the
low frame rates of 30-60 Hz of typical smartphone videos,
which are significantly lower than the 200 Hz minimum
recommended frame rate for accurate detection of peak
saccade velocities and subtle movements [6]. The other key
challenge is the significant reduction in eye tracking accuracy
when the eye is in eccentric positions, when the amount of
the iris and pupil visible to the camera is reduced [18]. This
is particularly relevant to nystagmus, as eye oscillations are
expected to change behavior depending on the gaze direc-
tion [8]. Other salient challenges include different lighting
conditions, performance discrepancies between individuals,
camera resolutions, and variations in phone software [18].
Examining the current literature reveals that approaches can
generally be split between infrared and visible light tracking.

B. Infrared Tracking

Most commercial eye trackers use infrared (IR) or near-
IR light as the strong retinal reflection under IR light gives
a clear pupil outline [19], [20]. When combined with the
corneal reflections, this method enables highly accurate gaze
estimation [21], [20]. Although not standard, some high-
end phones (e.g. iPhones) have integrated IR emitters and
sensors, prompting research which leverages these tools
[11], [22], [23], [24]. The larger contingent of IR-based
smartphone tracking rely on Apple’s integrated ARKit [25]
which directly provides eye and head position output from
the IR sensor [23]. Greinacher et al. [23] assessed ARKit’s
accuracy in a smooth pursuit task, reporting a gaze bias
of 3.18° — an order of magnitude larger than dedicated
trackers, but still usable for phone-based tracking.

Bastani et al. [11] and Parker et al. evaluated its perfor-
mance on the head impulse tests (HIT) — a clinical test that
involves a small abrupt rotation of the head while tracking the
relative motion of the head and eyes to assess the vestibulo-
ocular reflex [26]. Both studies detected pathological sac-
cades in HIT, claiming similar accuracy to dedicated medical
oculography goggles. A followup study by Parker et al. [10]
evaluated their system for optokinetic nystagmus (OKN) —
normal physiological movement induced by visual stimulus.
Their algorithm performed well in the horizontal nystagmus
but struggled tracking the vertical eye movements.

Despite its convenience, ARKit suffers from black box
processing and OS limitations [23]; preventing custom track-

ing algorithms. For instance, Brousseau et al. [22] use a
Huawei phone to access raw IR sensor data,used as input to a
machine-learning feature extractor and 3D model to achieve
a superior gaze bias of 0.72°. By far surpassing ARKit-
based algorithms, but implementable only on a handful of
devices. Even overlooking the other significant challenge
specific to IR-based tracking (e.g. sunlight affecting the
sensor due to the IR light it contains [20]) the sparsity of IR
emitters and sensors in smartphones fundamentally prevents
these algorithms from running on a large scale [22] and
incentivises the switch to visible light [1], [23].

C. Visible Light Tracking

While more accessible, visible light tracking faces more
immediate challenges such as the pupil being hard to differ-
entiate from the iris in dim lighting conditions or interference
from specular reflections [27]. Nevertheless, studies have
shown very promising results.

Valliappan et al [1] used a front-facing video and eye
corner positions as input to a deep learning model to track
gaze on a smartphone screen, to achieve a 0.6-1° error with
100 frames of calibration - matching the performance of
dedicated IR eye trackers. Reinhardt et al. [28] and Friedrich
et al. [29], also used a deep learning approach to track the
pupil in a nystagmus task. Reinhardt et al. reported matching
an ENT clinician’s performance in simple detection, with
Friedrich et al. surpassing this by also extracting the speed
of the slow phase of the detected nystagmus waveforms.
Non-deep learning methods have also been developed. Yang
et al. [4] used a circle search algorithm to find the iris
boundary and center of the pupil, and successfully tracked
reading patterns of schizophrenic patients. van Bonn et al.
[30] opted to use gradient vector analysis to find the center
of the eye; they were able to detect nystagmus and general
characteristics such as direction and shape. “ScreenGlint”,
by Huang et al. [27], used the reflections off the cornea (i.e.
glint) - typically considered interference - as the fundamental
eye tracking feature. Essentially mimicking the use of corneal
reflection typical of IR based tracking, and achieved an
accuracy of 2.44° when tracking the eye gaze on the phone
screen.

The limitation common to all tracking studies presented
above is the restricted gaze direction, generally to a smart-
phone screen or neutral gaze position nystagmus. The one
study which explicitly compared eccentric performance of
smartphone imaging for gaze tracking [18] noted an impor-
tant drop in performance in eccentric positions. This raises
a serious question on the practicality of these algorithms
and their applicability to the nystagmus task given how
fundamental eccentric tracking is to an accurate nystagmus
characterization.

II. METHODS AND MATERIALS

This paper presents a two-step eye tracking method with
two variations, iris and pupil based, using segmentation and
circle fitting. The pipelines were evaluated on optokinetic
nystagmus (OKN) videos of the left eye in the neutral,



left eccentric, and right eccentric positions in a healthy
individual; corresponding tracking of the right eye was
measured using the ICS Impulse device [13] as a ground
truth comparable.

A. U-Net model

The U-Net model architecture used for the segmentation
is the unmodified model presented by Ronneberger et al.
[31], who developed the architecture to specifically leverage
data augmentation on a smaller training dataset. U-Nets have
been shown to largely outperform conventional convolutional
neural networks in image segmentation tasks due to improved
localization ability [32].

For both the 3 and 4-class variations of the U-Net, the
model is trained, validated, and tested on the MOBIUS
dataset [33], [34], [35]. This dataset contains 16,717 eye
images from 100 subjects. For each subject, 168 images were
collected: for each eye, 2 sets of pictures were taken on
3 phones in 3 lighting conditions (natural sunlight, indoor
lights, poor lighting) and in 4 gaze directions (neutral, left
eccentric, right eccentric, upwards), with one additional ’bad’
photo per gaze direction with randomized lighting. Of the
total dataset, only 3,559 — belonging to 35 subjects — have
matching annotations for the sclera, iris, pupil, and periocular
region/background (see Fig 1a). Only these annotated images
are used to train the models; they are randomly split into
75% (2,671) training, 15% (533) validation, and 10% (355)
testing sets.

To fully leverage the U-Net horizontal and vertical flip,
as well as rotations up to +45° are applied to augment
data. Afterwards the data is reshaped to 256x256 and color
values standardized; for the 3-class model, the iris and
pupil segments in the ground truth masks are combined to
match the desired output (see Fig 1b). The models’ ~23.4M
parameters are trained on a single GPU (24GiB memory) for
100 epochs using Python PyTorch libraries, with a learning
rate of 0.01, 5 sample training batch size, Adam optimizer,
and the epoch checkpoints with the lowest intersection over
union (IoU) loss on the validation set are saved.

3-class: iris
(green), sclera (red)

(a) 4-class: pupil (blue) , iris (b)

+ pupil
(green), sclera (red)
Fig. 1: 4 and 3-class ground truth masks for image
1_1i_Lr_2 from MOBIUS [33], [34], [35], periocular
region (i.e. background) not shaded

B. Circle estimation

Circle estimation is not a trivial problem; classical least
squares algorithms have no closed form solution and require
computationally expensive and unreliable iterative schemes
[36]. Bullock [37] proposes an alternative minimization

scheme which allows for a closed form solution which is
comparatively computationally cheap and stable.

In Bullock’s method, N input points are first shifted to a
zero mean such that u; = x; —  and v; = y; — ¥y, and the
target circle has center (uc,v.) with radius R = /a. The
resulting minimization criterion S,

D (i —ue)* + (v —ve)* —a) (1)

%
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can be differentiated to impose optimal solution gradient
boundary conditions (0S/0a = §S/éu., = 6S/dv. = 0).
Letting Syy = Y.; u?, Suw = »,; u;v;, etc. the following
closed form solution is produced
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Bullock’s method is applied for circle estimations using the
iris/sclera and pupil/iris boundaries as input points for the 3

and 4-class segmentation methods respectively. The center of
the fitted circle is taken as the estimated pupil center position.
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C. Optokinetic nystagmus (OKN) video testing

In order to evaluate the performance of the eye tracking,
horizontal OKN was induced in a healthy volunteer (no
prior history of dizziness; no visual impairments; congruent
eye movements) in the neutral, eccentric left, and eccentric
right positions. The OKN stimulus consisted of vertical black
bars moving rightward on a white background; generated
using the Cyclops BalanceEye VOG software [38]. The
eye movements of the right eye were recorded by the ICS
Impulse device mounted on the head of the participant (see
Fig 2). The movements of the left eye were recorded at 30
frames per second (fps) using a Samsung S22 positioned face
on to the patients at 1m with a 3x optical zoom, such that
the full face was in view of the camera (See Fig. 2). Each
gaze position (left eccentric, neutral, and right eccentric) was
repeated with OKN stimulus at 20, 40, and 60° per second,
to test the range of typical nystagmus slow phase speeds
in patients [39]. Additionally, the neutral gaze OKN was
repeated under dim lighting conditions, for a total of 12 tests.
For the eccentric gaze tests the participant was rotated by 25°
using the Difra Minitorque Rotary chair [40].

The stimulus was run for no longer than 25 seconds to
avoid patient discomfort. From this a 5-second clip with no
blinking artifacts was extracted for pipeline evaluations. The
subject’s head was not restrained, but they were instructed
to keep still. This study received ethical approval from the
London-Central Research Ethics Committee (IRAS 321000).

III. RESULTS

A. Segmentation

The DICE score, IoU, and cross-entropy loss of the seg-
mentation model when applied to the MOBIUS test set can
be found in Table I. Across all tracked metrics, the 3-class



Fig. 2: From left, experimental set up for left eccentric,
neutral, and right eccentric OKN stimulation. Larger screen
(in green) displayed stimulus, the phone (in purple) recorded
left eye (boxed) from a distance of 1m with 3x optical zoom,
ICS Impulse [13] headset (in black) record the right eye using
infrared tracking.

TABLE I: Cross-Entropy loss, intersection over union (IoU)
and DICE score of 3-class and 4-class segmentation models
on test set (epoch with lowest validation loss saved).

Model Cross-Entropy Loss | IoU Loss | DICE Score
3-class (97th epoch) 0.051 0.081 0.956
4-class (82nd epoch) 0.068 0.162 0.903

model outperforms the 4-class model, with a particularly
large margin in the segmentation-specific IoU loss metric.

This trend is also seen in the evolution of IoU loss and
DICE score during the training (see Fig. 3) where the 3-class
model systematically outperforms the 4-class segmentation
model. A class-wise break down of the IoU loss during
training is shown in Fig. 4. These plots show that the drop in
performance can be primarily attributed to the segmentation
of the pupil, as it has the largest IoU class specific loss in
the 4-class pipeline (see Fig.4b). This makes sense given the
pupil is known to be significantly more complex to segment,
particularly in eccentric positions and poor lighting images
found in MOBIUS. This has a knock-on effect on the iris
segmentation performance, causing its IoU loss to double
from ~0.1 to ~0.2, while sclera and periocular segmentation
performance remain constant.

B. Tracking on video of OKN stimulus

After implementing the two models into a pipeline with the
circle fitting to get a tracking of the pupil (see sample outputs
in Fig 5), the pipelines were tested on twelve 5-second videos
(150 frames per video) of OKN movements. The trace of
the x-coordinate of the pupil and the ICS tracking data for
eccentric right at 40°/sec (i.e. ER40) are shown in Fig. 6.
Since the chosen OKN stimulus generated horizontal eye
movements, vertical motions are not relevant and hence its
tracking was not evaluated.

To better evaluate the accuracy of the segmentation track-
ing, each timeseries was passed through a linear regression
(see Fig 7 for models on ER40 data). The results are time
series which match well, all models having a p-value<0.001.
However, there are significant variations in the R2 values of
the models ranging from 0.441 (3-class ER60) to 0.936 (3-
class ER40), see Table II for all values. Applying the models

Validation loU loss
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0.4 —— 3-class
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(a) Intersection over union (IoU) loss
Validation DICE Score

1.0

Dice Score
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(b) DICE score

Fig. 3: Performance metrics on the validation set for the 3
and 4-class segmentations model during training.
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(a) 3-class segmentation
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(b) 4-class segmentation

Fig. 4: Class-wise IoU loss on the validation set for the 3
and 4-class segmentation models during training.

(b) 4-class, pupil circled

(a) 3-class, iris circled

Fig. 5: Segmentation and pupil position estimation for pupil
and iris based tracking (frame 20 from OKN test ER40)
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(b) 3 and 4 class segmentation pipeline

Fig. 6: Tracking data from ICS Impulse (in degrees) and
both pipeline variations (pupil x-corrdinate) from optokinetic
nystagmus test: right eccentric gaze 40°/sec stimulus.

to pixel data transforms the 2D coordinates into an estimated
horizontal angle of rotation - see Fig 8 for the transformed
timeseries plots for ER40 OKN test
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Fig. 7: Linear regressions from pupil x-coordinate to rotation
angle for both pipeline variations from optokinetic nystagmus
test: right eccentric gaze 40°/sec stimulus (ER40).

Across over all tests, the 4-class and 3-class perform very
similarly. With the former having a slightly better averaged
R2 value (0.77) compared to 3-class (0.75), with no statistical
difference found (p-value 0.80). There is some important
variability in the accuracy of the tracking between tests, but
again no statistical difference was found between the results
of matched groups tested - neutral gaze vs eccentric (p-
value 0.44), good vs dim lighting conditions (p-value 0.50),
leftward gaze vs rightward gaze (p-value 0.99).

IV. DISCUSSION

The pipelines presented in this work show promising
results when tasked with tracking nystagmus movements —
with both pipelines performing remarkably well in certain
tests. Despite the variability, no statistically significant dif-
ference was found between any subset of tracking results.

TABLE II: R? for all linear regressions between smartphone
tracking and ground truth (by method and OKN tests), all
models have p<0.001. Test acronyms: EL - eccentric left,
ER - eccentric right, NG - neutral gaze, dim - low light
conditions; 20/40/60 - velocity of the OKN stimulus in °/sec

[ Test [ R2 (3-class)  R2 (4-class) |
PG20 0.738 0.782
PG40 0.628 0.678
PG60 0.787 0.680

PG20 (dim) 0.604 0.500
PG40 (dim) 0.888 0.889
PG60 (dim) 0.881 0.842
EL20 0.850 0.783
EL40 0.720 0.742
EL60 0.759 0.831
ER20 0.824 0.802
ER40 0.936 0.916
ER60 0.441 0.770
[ Mean | 075 078 |
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(b) 4 class

Fig. 8: Overlay of ground truth ICS Impulse tracking data
and transformed smartphone tracking data for both pipeline
variations from optokinetic nystagmus test: right eccentric
gaze 40°/sec stimulus.

This goes against the literature, which states that the accuracy
of the tracking tends to diminish as eccentricity of the eye
position increases.

Similarly, no statistically significant difference was found
between the 3-class and 4-class methods. This is counter
to the initial hypothesis which claimed that the iris-based
tracking would out-perform the pupil-based tracking as the
lower accuracy of the pupil segmentation would directly
translate to poorer tracking. However, the circle estimation
algorithm limits these errors; as seen in Fig 9b, where a
specular reflection causes poor segmentation of the pupil, but
the circle estimation largely compensates for it. Similarly, the
specular reflections complicate the segmentation of the iris
in Fig 9a, but the circle estimation mitigates its impact. It is



important to emphasize that the study is limited to a single
participant, and hence a trend may emerge with a larger
dataset. Furthermore, this study only focuses on sections of
the OKN test without blinking artifacts, but there is evidence
that the iris-based tracking may be better suited to handle
blinking interference (see Fig. 10).

D& e

(a) 3-class, iris circled

(b) 4-class, pupil circled

Fig. 9: Interference due to specular reflections on the iris for
both methods.

(a) 3-class, iris circled (b) 4-class, pupil circled

Fig. 10: Interference due to blinking, 3-class better able to
handle the partial occulsion of the eye.

While segmentation inaccuracies account for some of the
errors between both the smartphone and ICS Impulse track-
ing, there are several other potential sources of error. Firstly,
while the participant was asked to limit head movement, their
head was not restrained and inevitably some movement was
seen. Given the smartphone is static and the ICS impulse
device is attached to the head, these movements will only
be visible to the smartphone camera, hence preventing the
signals from being perfectly aligned. Furthermore, the linear
interpolations necessary to down-sample the ground truth
data to 30fps can also inject errors into the ground truth
signal. Adding to this, since the smartphone and ICS Impulse
are completely independent devices, the frames may not be in
phase, even if down sampled to the same frame rate - hence
introducing further error. Lastly, the relationship between the
2D linear motion of the pupil on a video and the 3D rotation
in space is non-linear. Hence, there are approximation errors
when attempting to use the linear regression model to map
the pixel position data to the rotation data from the ICS
Impulse. However, given in this experiment the gaze is in
a limited range for any given test and at small angles the
rotations can be approximated linearly, the error can be
assumed to be minimal.

As this is exploratory work, the opportunity for future
work is extensive. To address some of the limitations stated
above, improvements can include tracking the movement
of the head to isolate purely eye movement data, as well
as increasing to 60fps smartphone video. Also developing
a more robust conversion from 2D positional data to 3D
rotational data, which captures the non-linear relationship be-
tween the two. Alternatively expanding the circle estimation
to compensate for the distortion of the circle shape of the iris

in eccentric positions, or even including hybrid 3D model-
based tracking as implemented by Brousseau et al [22].
Furthermore, increasing the size of the dataset to include
more participants with increased diversity (ethnicity/age/eye
color/medical conditions) is key to the validation of these
methods. Augmenting the training dataset to contain data
with prominent specular reflections is also fundamental to
the long-term success of these methods.

V. CONCLUSIONS

The pipelines presented in this exploratory study are
largely able to capture the nystagmus movements, though
notable improvements need to be made. The iris-based track-
ing method benefits from a simple segmentation problem
with clear high contrast boundaries compared to the 4-
class segmentation. Furthermore, the circle estimation step
provides a robustness which compensates for many segmen-
tation errors. Despite the current shortcomings of the work,
the preliminary results suggest that the two-step method
addresses some challenges facing visible eye light tracking
(e.g. limitation of specific devices, sensitivity to light condi-
tions and gaze direction). Efficient application of this method
would provide affordable eye tracking software to virtually
anybody with a smartphone, eliminating the need for spe-
cialized hardware. Embedding it into a clinical diagnostic
system for nystagmus would aid non-specialist doctors when
triaging and diagnosing patients, lowering the interpretative
burden placed on them. By providing clinicians with the
appropriate tool, there is potential to greatly reduce the
number of nystagmus-related misdiagnoses. Looking beyond
nystagmus, at other clinically relevant eye movements, low-
cost and widely accessible eye tracking technology has the
possibility of providing doctors with more information for
improved diagnoses.
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