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Abstract— Rapid advancements in diffusion models
have enabled synthesis of realistic and anonymized im-
agery in radiography. However, due to their complexity,
these models typically require large training volumes, often
exceeding 10,000 images. Pre-training on natural images
can partly mitigate this issue, but often fails to generate
anatomically accurate shapes due to the significant do-
main gap. This prohibits applications in specialized med-
ical conditions with limited data. We propose AnatoDiff,
a diffusion model synthesizing high-quality X-Ray images
with accurate anatomical shapes using only 500 to 1,000
training samples. AnatoDiff incorporates a Shape Prototype
Module and Anatomical Fidelity loss, allowing for smaller
training volumes through targeted supervision. We exten-
sively validate AnatoDiff across three open-source datasets
from distinct anatomical regions: Neonatal Abdomen (1,000
images); Adult Chest (500 images); and Humerus (500 im-
ages). Results demonstrate significant benefits, with an
average improvement of 14.9% in Fréchet Inception Dis-
tance, 9.7% in Improved Precision, and 2.3% in Improved
Recall compared to state-of-the-art (SOTA) few-shot and
data-limited natural image synthesis methods. Unlike other
models, AnatoDiff consistently generates anatomically cor-
rect images with accurate shapes. Additionally, a ResNet-
50 classifier trained on AnatoDiff-generated images shows
a 2.1% to 5.3% increase in F1-score, compared to being
trained on SOTA diffusion images, across 500 to 10,000
samples. A survey with 10 medical professionals reveals
that images generated by AnatoDiff are challenging to
distinguish from real ones, with a Matthews correlation
coefficient of 0.277 and Fleiss’ Kappa of 0.126, highlighting
the effectiveness of AnatoDiff in generating high-quality,
anatomically accurate radiographs. Our code is available at
https://github.com/KawaiYung/AnatoDiff.

Index Terms— Diffusion Models, X-Ray, Generative Mod-
eling, Topological Data Analysis
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DENOISING diffusion models have gained increasing
attention in recent years as an effective approach for

high-quality synthesis. [1]–[3]. This has spurred a variety of
applications, including image generation [4]–[6], video syn-
thesis [7]–[9], and 3D object creation [10]–[12], showcasing
the versatility of these methodologies. In many studies, diffu-
sion models clearly surpass Generative Adversarial Networks
(GANs) in natural image synthesis [2], [4], [13]. Notably,
their adoption within the field of medical imaging synthe-
sis holds significant potential, especially in facilitating the
generation of de-identified imagery for dataset anonymization
[14]–[16]. Diffusion models have been explored in various
medical imaging applications, including radiography [17]–
[22], histopathology [23]–[25] and retinal imaging [26], [27].
Focusing on radiography, the development of diffusion models
is typically carried out with large-size datasets (≥10,000
images), such as CheXpert [28] and MIMIC-CXR [29]. While
outstanding results have been reported [19]–[22], the practi-
cality of obtaining such large-volume, high-quality datasets is
often limited, particularly in rare diseases with low incidence.

In such cases, datasets are often larger than a few-shot
setting (10-100 images), but much smaller than large-scale
datasets (≥10,000 images). This poses challenges in applying
diffusion models when data availability is restricted, and re-
mains to date an underexplored area. When adapting diffusion
models for radiographic image generation, existing approaches
often rely on direct applications of the Latent Diffusion Model
(LDM) [4] as the generative backbone [30]–[34]. However,
LDMs are typically pre-trained on large-scale natural image
datasets and often require substantial quantities of diverse
training data to adapt effectively. When applied to data-limited
medical domains, this can result in poor anatomical consis-
tency and a failure to capture domain-specific structures that
are critical for clinical applicability. These limitations highlight
the need for a tailored approach that operates effectively under
data scarcity while preserving anatomical fidelity.

Fig. 1 illustrates the generation performance of fully fine-
tuned LDMs using varying numbers of CheXpert training
samples. For larger sample sizes, performance remains stable
across all three metrics up to approximately 1,000 samples.
As the number of training samples decreases, both Improved
Precision (IP) and Improved Recall (IR) decline, and Fréchet
Inception Distance (FID) increases—indicating degradation
in both diversity and fidelity. For instance, at 100 training
images, IP drops significantly. At only 10 images, both IP and

This article has been accepted for publication in IEEE Transactions on Medical Imaging. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TMI.2026.3661433

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://github.com/KawaiYung/AnatoDiff


2 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. XX, NO. XX, XXXX 2024

IR approach zero, and FID rises sharply, reflecting severely
impaired generation quality. A knee point emerges around 500
samples, where IP begins to decline while IR and FID remain
relatively stable. This suggests that although global realism
and diversity are preserved, there is a drop in local anatomical
fidelity. In this regime, generated images may appear globally
realistic but often exhibit inaccurate anatomical details, such
as distorted contours or misplaced structures.

To address this, we propose AnatoDiff, a method capable
of generating anatomical realistic radiographs using only 500-
1,000 images. Building on the transformer-based DiT model
[35], AnatoDiff achieves realistic anatomical fidelity by in-
troducing two pivotal innovations: Shape Prototype Module
(SPM) and Anatomical Fidelity (AF) loss.

Specifically, in data-limited scenarios, the model may strug-
gle to infer anatomical priors solely from sparse and under-
sampled examples. By clustering a given set of training
images, we obtain cluster centers, which are initialized as
shape prototypes at the start of training to enhance shape
fidelity. SPM leverages available shapes from the training set,
allowing the model to receives consistent guidance toward
anatomically plausible outputs, reducing the risk of unrealistic
shape generations caused by insufficient structural coverage.

Meanwhile, the commonly used Mean Squared Error (MSE)
loss—though effective in large-scale settings—assigns uniform
importance across all pixels. This uniform weighting can dilute
the training signal in small-data regimes, where semantically
important but spatially small structures may be overlooked.
To address this, we introduce the Anatomical Fidelity (AF)
loss, which leverages Topological Data Analysis (TDA) to
extract and emphasize persistent topological features from
both target and generated images. These features typically
correspond to key anatomical regions—such as organ bound-
aries, lung fields, or bony contours—and are assigned higher
priority during optimization. The AF loss thus functions as
a form of importance-aware supervision, guiding the model
to reconstruct structures that are both topologically stable and
clinically meaningful, even when sparsely represented in the
training data.

Together, the SPM and AF loss address complementary
aspects of the limited-data problem: SPM provides a strong
inductive bias on global anatomical shape through prototype
guidance, while AF loss promotes accurate reconstruction of
local and persistent anatomical details.

We benchmark AnatoDiff against state-of-the-art (SOTA)
image generation models in limited-size datasets. We eval-
uate three X-ray datasets representing different anatomical
structures: A small subset of the CheXpert dataset (500
images), the MURA bone dataset (500 images) [36], and the
GOSH Necrotizing Enterocolitis (NEC) dataset (1,000 images)
[37]. Our findings reveal that existing methods fall short
in medical image synthesis under data scarcity. GAN-based
methods fail to generate realistic images and often collapse
due to insufficient training samples relative to the complex-
ity of X-ray images. While diffusion-based methods (LDM
[4], FSDM [38], DiffFit [39]) generate semantically higher-
quality images, the limited training set hinders their ability
to capture general shape and anatomy accurately, resulting

Fig. 1. Performance of full fine-tuning LDM with varying numbers of
CheXpert training samples

in untruthful appearances. AnatoDiff significantly outperforms
SOTA methods, showing an average improvement of 14.9% in
FID, 9.7% in IP, and 2.3% in IR. Qualitative analysis further
confirms that our method generates radiographs with truthful
anatomical shapes and higher semantic quality. In summary,
our contributions are:

• We address the underexplored task of radiography syn-
thesis under data-limited conditions (500-1,000 images).
Conducting over 150 experiments, we benchmark existing
few-shot and data-limited methods.

• We propose a novel framework - AnatoDiff, which en-
hances anatomical consistency and generates high-fidelity
radiographs by incorporating the SPM and AF loss.

• Experiments on three open-source datasets from different
anatomical structures demonstrate the superiority of our
approach. AnatoDiff achieves SOTA performance across
all datasets, with improvements of 14.5%, 15.4% and
14.7% in FID, 13%, 9% and 7% in IP, and 5%, 1%
and 1% in IR, while also achieving excellent shape and
anatomical truthfulness. A classifier (ResNet-50) trained
on images generated by AnatoDiff consistently outper-
forms models trained on SOTA diffusion images, with
2.1% to 5.3% F1 score across 500 to 10,000 samples.

• A survey involving 10 medical professionals revealed
that images generated by AnatoDiff are challenging to
distinguish from real images, with a Matthews correlation
coefficient of 0.277 and Fleiss’ Kappa of 0.126.

II. RELATED WORKS

A. Diffusion models

Diffusion models iteratively add Gaussian noise into data
x, transforming it from an ordered state x0 to a disordered
state xT . These models are trained to reverse this trajectory,
reconstructing the original data from the noisy state. The
transformation and reversal are governed by conditional prob-
abilities modeling transitions between consecutive states. The
forward process is described by a Markov chain with Gaussian
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transition probabilities:

q(x1, . . . , xT |x0) =

T∏
t=1

q(xt|xt−1) (1)

x0 represents the initial, noise-free data point, and xT rep-
resents the data point after T steps of noise addition. The
transition at each time step t is defined as:

q(xt|xt−1) = N (xt;
√
1− βtxt−1, βtI) (2)

N denotes the normal (Gaussian) distribution, βt represents
the variance of the noise added at step t, and I is the identity
matrix. This formulation represents the process of incremen-
tally adding noise at each step, gradually transforming the data
from a structured state to a less structured one. Conversely,
the reverse process is modeled by a neural network with
parameters θ, which defines the conditional distribution of
earlier data points given later ones and learns to reverse the
noise addition process. The reverse process is given as:

pθ(x0:T ) = p(xT )

T∏
t=1

pθ(xt−1|xt) (3)

pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)) (4)

Here, pθ(xt−1|xt) denotes the learned distribution at step
t− 1 given xt, where µθ and Σθ are the mean and covariance
of the Gaussian distribution learned by the model.

The objective of the model during training is to minimize
the difference between the actual noise added during the
forward process and the noise estimated by the model during
the reverse process, represented by a loss function:

Lsimple(θ) = Et,x0,ϵ

[∥∥ϵ− ϵθ
(√

ᾱtx0 +
√
1− ᾱtϵ, t

)∥∥2] (5)

E is the expectation over the variables t, x0, the added noise
ϵ, and the noise estimated by the model ϵθ. The term ᾱt

represents the cumulative product of (1− βt) up to time t.
Previous studies on diffusion models for radiographs have

predominantly relied on large-scale datasets for training.
Müller-Franzes et. al. utilized a filtered subset of the CheX-
pert dataset with 191,027 images, comparing the quality of
radiographs generated using diffusion and GAN models [20].
Chambon et. al. used two training sets from the MIMIC-CXR
dataset, with 38,009 and 175,622 images, to generate synthetic
chest X-rays (CXRs) from text prompts [30]. Weber et. al.
compiled a multi-source dataset totaling 651,471 images for
large-scale CXR generation [19]. Packhauser et. al. used the
ChestX-ray14 dataset with 112,120 images for generating
anonymous CXRs [40]. The smallest dataset in this context,
used by Ali et. al., comprised 3,165 images to train a stable
diffusion model to generate synthetic lung X-rays. In their
study, two radiologists determined if an image is real or syn-
thetic; however, no quantitative comparison of the generated
images’ fidelity was performed [41]. In contrast, motivated by
the need to understand model performance in scenarios where
large-scale datasets might not be feasible or accessible - an
often situation in specialized medical conditions - our study
focuses on the potential and challenges of employing diffusion
models on limited data settings of 500-1,000 X-ray images.

B. Data-Limited Image Generation
Prior works in image generation under data-limited con-

ditions have primarily utilized GAN models. For instance,
CDC enhanced diversity transfer by preserving cross-domain
distance consistency [42]. MoCA improved image generation
quality with memory prototypes [43]. RICK tackled incom-
patible knowledge transfer through knowledge truncation, se-
lectively utilizing relevant generative knowledge [44].

Research on diffusion models in data-limited scenarios
is scarce. Giannone et. al. introduced FSDM for few-shot
image generation by integrating a Vision Transformer as a
set encoder for reference images, providing extra conditioning
to the diffusion model [38]. Zhu et. al. developed DDPM-
PA to preserve information from source domains during few-
shot adaptation [45]. Parameter-efficient fine-tuning from a
pre-trained model sourced from large datasets has been also
considered, as seen in BitFit, where only the biases of the
model are fine-tuned [46], and LoRA, which employs low-
rank adaptations for efficient training [47]. Distinct from these
methods, our work represents the original study on diffusion
models for radiography generation in a data-limited scenario.

III. METHODS

A. Background
Fig. 2 illustrates the architecture of our proposed AnatoDiff,

which builds upon the DiT. An input image i is initially en-
coded by a Variational Autoencoder (VAE) into a latent space
representation z ∈ RC×W×H . This is then transformed into
patches of dimension RT×D, where T is the number of patches
and D is the dimension of each patch’s latent representation.
The transformed patches serve as input into the DiT along
with a class conditioning embedding c ∈ RD. Within each
DiT block, the conditioning c is processed by a Feed-Forward
Network (FFN) to compute six scaling and shifting parameters
(Eq. 6), utilized to scale the attention (Eq. 7) and feed-forward
outputs (Eq. 8), where Attn represents Multi-head Attention.

α1, τ1, β1, α2, τ2, β2 = FFN(c) (6)

zattni = α1Attn(τ1zi + β1) + zi (7)

zi+1 = α2FFN(τ2z
attn
i + β2) + zattni (8)

The default DiT has a large number of trainable parameters,
requiring significant computation. Both BitFit and DiffFit have
shown that freezing all parameters except for the bias terms
enables the model to achieve comparable or even superior
performance during fine-tuning, while substantially reducing
the number of trainable parameters [39], [46]. We therefore
follow the approach of Difffit [39], freezing all weights of a
pre-trained DiT except for the bias terms to reduce the risk of
overfitting, and introduce learnable scaling factors, γ1, γ2:

zattni = γ1α1Attn(τ1zi + β1) + zi (9)

zi+1 = γ2α2FFN(τ2z
attn
i + β2) + zattni (10)

Both scaling factors are initialized to 1.0 and modulate the
outputs of the Attention and Feed-Forward blocks by applying
element-wise scaling. Scaling factors allows for direct control
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Fig. 2. Illustration of the proposed AnatoDiff. We introduce the SPM that provides a set of shape prototypes to guide the generation of anatomically
accurate images. Additionally, we incorporate the AF loss to provide strong regularization on the topological structure of the generated images.
This ensures the preservation of key structural elements throughout the training process, enabling the model to produce high-quality images that
accurately represent the underlying shape and anatomy.

over layer outputs, effectively allowing the network to suppress
or amplify specific layers more efficiently, resulting in faster
convergence.

By freezing all parameters except the bias terms and intro-
ducing scaling factors γ, computational and memory require-
ments are significantly reduced. This strategy also mitigates
the risk of overfitting, particularly when training on small
datasets with models that have a large number of parameters.

B. Shape Prototype Module (SPM)
Unlike natural images, radiographs contain complex

anatomical structures. While previous works have shown that
diffusion models can capture and generate images with well-
defined structures given sufficient training data [19]–[22],
our experiments shows that these methods struggle in data-
limited settings, where insufficient supervision leads to a
poor understanding of the object’s anatomy. Considering that
objects in radiography, such as the chest and abdomen have
well-defined consistent shapes and anatomical structures, we
propose an SPM to emphasize this information. This module
serves as a prototype during image generation, contributing in
maintaining anatomical accuracy despite limited training data.

The dominant anatomical structures within images—such
as lung fields, abdominal contours, and joint outlines—are
often less distinct and in a soft, continuous representations.
To emphasize them, we first apply binarization to the training
images, resulting in a sharper and more interpretable cues. Ad-
ditionally, the binarization process suppresses low-activation
noise, resulting in spatially cleaner prototypes.

Specifically, given a set of training images I =
{i1, i2, ..., in}, where n is the total number of images, we first
binarize I by thresholding, followed by applying K-Means
clustering to compute K cluster centers:

Ic = {ic1, ic2, ..., ick} = KMeans(I,K) (11)

where ic is a cluster center for I . To mitigate potential
initialization instability, we adopt k-means++ [48] as our
initialization strategy.

Vectorization is then performed using the same VAE to
convert Ic into latent θc ∈ RKT×D. During training and
inference, θc is used as input to the SPM to guide the image
generation process. Initially, the noised latent z is treated as
query and interacts with θc through cross-attention to compute
a weighted prototype representation zc, where zc represents a
soft combination of multiple prototypes:

zc = softmax
(
(zWQ)(θcW

K)T√
dk

)
(θcW

V ) (12)

Following this, we first pass zc through lightweight linear
layers. To integrate zc with the generation input z, approaches
such as concatenation followed by a feed-forward layer or
applying a cross-attention mechanism could offer greater ex-
pressiveness. However, these approaches introduce additional
trainable parameters, conflicting with our goal of maintain-
ing parameter efficiency. In contrast, we found that simple
element-wise addition was sufficient to achieve performance
gains without introducing more parameters, thereby preserving
the lightweight design of our model.

Furthermore, to retain the parameter-efficient nature of
AnatoDiff, we do not apply zc across all DiT blocks. Instead,
we limit its application to the last N blocks. Specifically, in
each of the final N DiT blocks, zc is passed through a linear
layer and then aggregated with z via element-wise addition:

zattni =

{
γ1α1Attn(τ1zi + β1) + zi i < N,

γ1α1Attn(τ1zi + β1) + FFN(zc) + zi else.
(13)

zi+1 =

{
γ2α2FFN(τ2z

attn
i + β2) + zattni i < N,

γ2α2FFN(τ2z
attn
i + β2) + FFN(zc) + zattni else.

(14)

C. Anatomical Fidelity (AF) Loss

Medical image generation tasks are characterized by com-
plex and highly structured patterns, therefore preserving global
shapes and anatomical patterns is crucial. Diffusion models
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Fig. 3. Illustration of the creation of a Persistence Diagram (PD) from
a simplified chest image using cubical complex. As the threshold t
increases, more pixels are revealed, leading to the appearance and
disappearance of topological structures. At low t values, only the upper
portion of the chest is visible, forming a single connected component
(H0), recorded as a blue bar in the persistence barcode. As t increases,
additional components—representing parts of the ribs—emerge, adding
more H0 features. At higher thresholds, the lung contours become
visible, forming loops (H1), which appear as green bars in the barcode.
Concurrently, the previously separated rib components merge into a
unified structure, resulting in the death of all but one H0 component.
The PD reflects this simplified chest structure in the following order of
persistence: the overall chest (excluding lower ribs) as the top-left point
in the PD, the two lungs (green points), the lower ribs (top-right points),
and the remaining ribs, which gradually merge into the chest structure
(points near the diagonal). Thie PD captures multiscale topological
features, with higher persistence (i.e., greater significance) on the global
chest shape and the lungs—both key anatomical components. The
bottom row shows an example form a real CheXpert X-ray (left) and
its corresponding PD (right).

traditionally utilize the MSE loss, which primarily focuses
on pixel-level accuracy and local features. However, this
approach does not adequately capture the broader, more ab-
stract structural relationships within the data. As a result,
synthesized images, while visually similar to target images at
a local level, may lack correct anatomical structure or exhibit
altered global features. Edge-based losses can potentially aid
in preserving anatomical structure by emphasizing boundaries
and contours. However, applying such losses directly in the
latent space is challenging due to the abstract nature of latent
representations, while implementing them in image space for
diffusion models entails computationally expensive decoding
at each training step. In contrast, we propose an AF loss,
inspired by TDA, to enhance the model’s understanding of
anatomical structures. By comparing the topological structures
between the model’s output and target directly at latent level,
the AF loss guarantees high anatomical and shape fidelity,
without requiring a decoding step.

To extract the topological features from an image, a filtration

process is performed. An example of the filtration process with
a cubical complex is illustrated in Fig. 3. Consider an image
represented as a function f : Z2 → R, where Z2 indexes the
pixel grid and R represents the intensity values at each pixel.
A filtration is constructed based on these intensity values using
sublevel sets:

St = x ∈ Z2 : f(x) ≤ t (15)

where t is a threshold parameter. As t increases from the
minimum (dark) to the maximum intensity (bright) value, more
pixels are included in the sublevel sets, gradually revealing
the structure of the image. Initially, only the pixels with low
intensities are included. As t increases, these components grow
and begin to merge, forming larger connected regions and
eventually enclosing loops. This process can be tracked and
visualized using a Persistence Barcode (Fig. 3 right panel).
Each bar in the barcode represents a topological feature
(connected component or loop) with its birth b and death d
times along the threshold parameter t, depicted as:

Birth-death pair = (b, d) (16)

Finally, the persistence barcode is converted into a persis-
tence diagram (Fig. 3 second bottom panel), shown as a scatter
plot where the x-axis is the birth time b and y-axis is the death
time d. Each point in the persistence diagram corresponds to
a bar in the barcode plot and is given by:

PD(Z) = {(bi, di) ∈ R2|bi < di} (17)

Points near the diagonal y = x (gray dotted line) represent
features with short lifetimes, considered as noise. In contrast,
points far from the diagonal represent features that persist
across a large range of the threshold value t and are indicative
of important topological features in the data.

During training, a one-step de-noised latent ẑ0 is obtained
by subtracting the model-predicted noise σ from the noised
latent z. Filtration is then applied to both the one-step de-
noised latent ẑ0, and the un-noised latent (target) z0, to obtain
two persistence diagrams PD1(ẑ0) and PD2(z0).

To compute the distance between two persistence diagrams,
we apply the p-Wasserstein distance:

Wp(PD1, PD2) =

 inf
γ∈Γ(PD1,PD2)

∑
(x,y)∈γ

∥x− y∥pp

 1
p

(18)
where Γ(PD1, PD2) denotes all possible bijections γ that
map points from PD1 to points in PD2. Features with higher
persistence have a greater influence on the p-Wasserstein
distance when misaligned, inherently guiding the loss function
to prioritize the alignment of anatomically significant struc-
tures. Minimizing the p-Wasserstein distance thus effectively
promotes the alignment of topological features between the
ground truth and reconstructed latent representations. Anatom-
ical patterns that exhibit high persistence—reflecting their
structural stability and global spatial extent—are consequently
emphasized throughout training.

Finally, the Wasserstein distance is summed with the MSE
loss, weighted by a trade-off factor λ:

L = LMSE + λWp(PD1, PD2) (19)
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In data-limited conditions, pixel-wise losses such as MSE
treat all image regions equally, which can lead the model to
overfit to dominant visual patterns (e.g., textures) while under-
representing semantically critical structures (e.g., organ bound-
aries, lung contours). The AF loss addresses this limitation
by prioritizing the alignment of high-persistence topological
features that typically correspond to anatomically important re-
gions. These features exert greater influence on the Wasserstein
term, guiding the model to reconstruct spatial structures most
relevant for clinical realism. In this way, the AF loss implicitly
injects anatomical priors into the training process—without re-
quiring explicit annotations—and improves generation fidelity
when supervision is sparse. This property directly supports the
goal of synthesizing anatomically faithful radiographs from
limited training data.

To speed up the training process, the PD computation is
performed directly at the latent level, by considering the latent
representation with dimension 32×32 as an image, eliminating
decoding overheads. Our experiments show that both H0 and
H1 homology groups are necessary to achieve optimal results.
To accelerate the PD and Wasserstein distance computations,
we verify that performing PD computation by randomly select-
ing a channel within each latent, rather than using all channels,
achieves similar performance. This approach results in 1.8×
speed increase compared to using the full latent space, without
compromising performance.

IV. DATASETS, SETTINGS AND METRICS

A. Datasets

GOSH NEC [37] is a pediatric abdominal X-Ray (AXR)
dataset of NEC cases collected from the Great Ormond Street
Hospital for Children (GOSH)1. NEC is a rare but severe
intestinal disease in premature neonates with high mortality
[52]. The dataset comprises 1,398 AXRs from 380 patients,
categorized into four classes: 497 Surgical NEC images from
86 patients, 346 Medical NEC images from 97 patients,
307 No Pathology images from 133 patients and 248 Other
Pathology images from 64 patients. Due to the complexity of
the neonatal abdominal structure and to minimize collapsing
in GANs, we allocate patient-by-patient basis 80% (∼1,000
images) for training and 20% (∼280 images) for testing,
repeated five times with different splits.

CheXpert [28] is a comprehensive CXR dataset comprising
224,316 images from 65,240 patients, including both frontal
and lateral view radiographs. We randomly sample 1,500
images and split into 500 for training and 1,000 for testing,
repeated five times with different samplings seeds.

MURA [36] is a bone X-ray dataset containing 40,561 im-
ages from 12,173 patients. We use the Humerus subcategory,
sampling 500 images for training and the original test set of
288 images, repeated five times with different sampling seeds.

B. Metrics

Following [20], FID, IP and IR are used for evaluation.

1Available at: https://doi.org/10.5522/04/26042824.v1

FID compares the distribution of generated to real images
using typically an Inception network, defined as:

FID = ∥µr − µg∥22 +Tr
(
Σr +Σg − 2 (Σr Σg)

1
2

)
,

where µr,Σr are mean and covariance of real-image features,
and µg,Σg are mean and covariance of generated-image
features. A lower FID score indicates better similarity between
generated and real images, suggesting higher performance.

IP measures generated image quality as the proportion
classified as real by a trained classifier, defined as:

IP(Φr,Φg) =
1

|Φg|
∑

ϕg ∈Φg

f(ϕg,Φr),

where ϕg is the generated images feature vectors, Φr and Φg

are a sets of real and generated images feature vectors, and
f(ϕg,Φr) is denotes the k-th nearest neighbor of ϕr in Φr.
IP quantifies if each generated image is within the estimated
manifold of real images. Higher precision indicates that more
generated images are of high quality and resemble real data.

IR assesses diversity of generated images, indicating how
well the model captures the variability in the real dataset,
defined as:

IR(Φr,Φg) =
1

|Φr|
∑

ϕr ∈Φr

f(ϕr,Φg).

where ϕr is the real images feature vectors. IR quantifies
if each real image is within the estimated manifold of the
generated images. Higher recall means the model generates a
wider variety of images, reflecting the diversity of real data.

C. Settings
We repeat experiments five times and compute the average

performance along with the standard deviation. Settings and
hyperparameters on components derived from DiT and DiffFit
are kept unaltered. For all datasets, we empirically set the
binary threshold value in SPM to 150, the number of clusters
to 25 and the last N blocks to 7. The trade-off factor λ is
2× 10−6. We use both H0 and H1 homology groups and the
1-Wasserstein distance. AnatoDiff is trained with a batch size
of 16 on a single NVIDIA RTX 4090 GPU. All images are
generated at a resolution of 256×256. During inference, we
generate 1,000 images and compute metrics against the testing
set. All models are implemented using Pytorch. For ablations
and stability analysis, all experiments are carried out on the
CheXpert dataset and results are averaged across five times.

V. RESULTS AND DISCUSSIONS

A. Quantitative results
We compare AnatoDiff with SOTA data-limited and few-

shot generation models, including the GAN-based models
MoCA [43], CDC [42], and RICK [44], as well as the
diffusion-based model FSDM [44]. Additionally, we bench-
mark the popular GAN-based medical image generation model
DC-GAN [53], as a reference point to illustrate the limitations
of commonly used GAN-based methods [54]–[56]. To com-
pare with more recent medical-specific generative models, we
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TABLE I
QUANTITATIVE RESULTS FROM ALL 3 DATASETS. IMPROVEMENTS ARE WITH RESPECT TO DIFFFIT.

GOSH NEC CheXpert MURA
FID↓ IP↑ IR↑ FID↓ IP↑ IR↑ FID↓ IP↑ IR↑

DC-GAN [27] 449.0±100.9 0.00±0.00 0.00±0.00 359.9±123.4 0.01±0.00 0.00±0.00 349.2±48.0 0.06±0.10 0.00±0.00
MedGAN [49] 312.6±18.7 0.00±0.00 0.06±0.03 259.3±21.3 0.02±0.02 0.00±0.00 347.6±15.3 0.06±0.10 0.00±0.00

MoCA [43] 245.0±16.0 0.20±0.15 0.00±0.00 217.6±48.4 0.01±0.02 0.00±0.00 199.4±17.9 0.27±0.13 0.00±0.00
CDC [42] 169.4±17.0 0.01±0.02 0.06±0.03 107.2±18.2 0.08±0.05 0.04±0.03 242.5±6.9 0.01±0.01 0.01±0.01
RICK [44] 165.8±6.2 0.08±0.03 0.08±0.02 68.5±0.5 0.27±0.02 0.28±0.02 160.7±9.7 0.05±0.01 0.12±0.02

LDM (BitFit) [46] 148.3±3.2 0.13±0.03 0.10±0.06 115.0±3.0 0.02±0.01 0.53±0.03 127.8±3.3 0.23±0.03 0.35±0.02
MT-DDPM [50] 130.7±8.3 0.26±0.1 0.07±0.03 144.6±6.9 0.21±0.04 0.08±0.02 149.1±7.4 0.22±0.06 0.10±0.05

FSDM [38] 127.6±10.1 0.37±0.07 0.27±0.06 66.9±5.2 0.35±0.03 0.30±0.03 111.6±6.6 0.47±0.04 0.22±0.03
LDM (LoRA) [47] 100.9±6.3 0.28±0.02 0.31±0.03 89.4±4.5 0.23±0.03 0.40±0.05 105.2±2.9 0.40±0.03 0.22±0.04
LDM (Full FT) [4] 100.8±2.2 0.21±0.04 0.30±0.03 87.5±8.8 0.22±0.06 0.35±0.03 101.3±1.3 0.43±0.05 0.25±0.06

LDM (SeLoRA) [51] 89.5±4.3 0.34±0.03 0.51±0.04 69.6±4.0 0.22±0.02 0.58±0.04 98.5±5.9 0.41±0.07 0.52±0.02
DiT (Full FT) [35] 85.3±4.1 0.48±0.03 0.46±0.02 48.2±3.9 0.42±0.05 0.46±0.04 81.1±4.5 0.53±0.04 0.55±0.05

DiffFit [39] 85.5±5.4 0.41±0.05 0.49±0.05 48.0±3.2 0.34±0.04 0.60±0.04 82.9±3.6 0.47±0.02 0.58±0.02
AnatoDiff (Ours) 73.1±3.0 0.54±0.01 0.54±0.03 40.6±3.8 0.43±0.02 0.61±0.03 70.7±3.1 0.54±0.05 0.59±0.05

∆ -14.5% +13% +5% -15.4% +9% +1% -14.7% +7% +1%

Fig. 4. Qualitative comparisons of the effects of AF loss and SPM on image generation. GOSH NEC (columns 1-3), CheXpert (columns 4-6),
MURA (columns 7-9). (Top) Images using DiffFit. (Middle) Images with AF loss. (Bottom) Images with both AF loss and SPM. Using DiffFit alone
results in suboptimal outcomes, with images often exhibiting distorted or unrecognizable shapes and mixing of anatomical structures. By integrating
AF loss and SPM, images from the same noise achieve more realistic anatomical shapes and improved fidelity.

include MedGAN [49], MT-DDPM [50], and LDM [4] using
both full fine-tuning (FT) and parameter-efficient approaches
(BitFit [46], LoRA [47] and SeLoRA [51].

Table I presents the performance comparisons of the eval-
uated models across all three datasets. Diffusion-based model
consistently outperformed GAN-based models. In particular,
GAN-based models exhibited significantly lower IR, which
can be attributed to model collapse under limited training
samples. DiffFit demonstrated superior performance on all
three datasets. Compared to its fully fine-tuned counterpart
DiT, DiffFit demonstrates that updating only a small subset of
parameters can achieve performance on par with or even better
than full fine-tuning, aligning with findings in [57], [58].

Our proposed AnatoDiff outperforms fully fine-tuning DiT,
along with medical image generation models including MT-
DDPM and SeLoRA. Moreover, AnatoDiff showed noticeable
improvements over DiffFit across all datasets, with average
enhancements of 14.9% in FID, 9.7% in IP, and 2.3% in IR,
indicating robust capability in data-limited scenarios.

B. Ablation study

Fig. 4 shows a modular comparison of generated images
from the same noise under different ablation settings. In row
1, images generated by DiffFit exhibit defects in general object
shape (column 1), a mixture of organs (columns 3, 4, 6),
and incorrect structures (columns 2, 8). By including AF
loss, images in row 2 show improvements in both shape and
anatomy. Specifically, AF loss corrects shape defects in col-
umn 1, resolves the mixture of organs in columns 3, 4, and 6,
and produces correct structures in columns 2 and 8. However,
artifacts such as excessive medical lines/tubes in columns 2
and 5, and minor shape defects in columns 1, 4, and 6 still
persist. SPM further supports accurate generation of object
shapes by using clustered training images as prototypes. The
bottom row shows that images generated with both AF loss and
SPM exhibit the most anatomically accurate and structurally
correct representations, with noticeably fewer artifacts.

Quantitative results is listed in Table II. The effectiveness of
the AF loss is demonstrated by a 6.3% improvement in FID,
6.0% in IP, and 2.0% in IR. Incorporating the SPM leads to
an additional 9.8% improvement in FID and 3.0% in IP.
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TABLE II
ABLATION ON PROPOSED MODULES

FID↓ IP↑ IR↑

DiffFit 48.0±3.2 0.34±0.04 0.60±0.04
+ Anatomical Fidelity Loss 45.0±3.7 0.40±0.03 0.62±0.03
+ Shape Prototype Module 40.6±3.8 0.43±0.02 0.61±0.03

TABLE III
ABLATION RESULTS ON SPM PARAMETERS. (TOP) LAST N BLOCKS.

(BOTTOM) NUMBER OF PROTOTYPES K .

Last N Blocks FID↓ IP↑ IR↑

2 42.8±2.0 0.39±0.05 0.64±0.02
5 42.7±2.0 0.39±0.04 0.63±0.05
7 40.6±3.8 0.43±0.02 0.61±0.03
9 43.0±3.9 0.40±0.01 0.62±0.03

Number of Prototypes K

15 44.9±2.7 0.33±0.02 0.68±0.04
20 42.8±2.3 0.43±0.02 0.60±0.03
25 40.6±3.8 0.43±0.02 0.61±0.03
30 41.6±1.3 0.39±0.03 0.66±0.02
35 42.9±1.5 0.37±0.02 0.62±0.04
40 42.0±4.0 0.40±0.05 0.60±0.06

Table III details the hyperparameter ablation study on the
last N blocks and number of prototypes K in the SPM.
Increasing K initially improves generation quality. However,
beyond K = 25, further increases yield diminishing returns,
suggesting excessive variability does not necessarily enhance
performance. To achieve high fidelity, we select 7 for N and
25 for K based on their FID and IP performance.

Table IV examines the effects of the number of latent chan-
nels used in the AF loss. Using fewer channels offers faster
training times but degrades FID and IP. Although using all four
channels yields the best results, it incurs high computational
overhead. Instead, we randomly select a single channel for
each latent to compute the AF loss. Interestingly, this approach
not only accelerates training time but also improves FID.

Table V assesses the sensitivity of λ. We evaluate a range
of values centered around the default setting (2 × 10−6),
including variations one order of magnitude smaller and larger.
Generation performance remains stable for small perturbations
around the default value (1 × 10−6 and 3 × 10−6), reflected
by consistent IP and IR scores, with only slight variations
in FID. However, performance noticeably degrades for more
extreme deviations. Specifically, smaller values by one order
of magnitude (2 × 10−7) lead to higher FID and lower IP,
while larger values by an order of magnitude (2×10−5) cause
significant deterioration across all metrics, including IR. These
results indicate that the model is robust to minor adjustments
in λ, with a clear optimal operational range. However, more
aggressive deviations can adversely affect generation quality.

C. Qualitative results

We present generated images from various methods along-
side examples from the training set in Fig. 5. Notably, DC-
GAN fails to generate meaningful images from the GOSH
NEC dataset, indicating the complexity of neonatal abdomen

TABLE IV
ABLATION ON NUMBER OF CHANNELS CONTRIBUTING TO AF LOSS

No. of channel FID↓ IP↑ IR↑ Train Steps/Sec↑

1 44.4±2.1 0.40±0.01 0.61±0.04 ∼0.93
2 45.9±3.0 0.39±0.02 0.59±0.04 ∼0.66
3 45.9±3.0 0.39±0.02 0.61±0.04 ∼0.56
4 42.1±3.3 0.43±0.02 0.60±0.03 ∼0.51

Average All 43.9±1.9 0.39±0.02 0.59±0.02 ∼0.92
Random
H0 only 49.8±3.3 0.33±0.02 0.60±0.03 ∼1.00
H1 only 46.9±3.4 0.37±0.02 0.61±0.05 ∼0.98
H0 & H1 40.6±3.8 0.43±0.02 0.61±0.03 ∼0.92

TABLE V
SENSITIVITY ANALYSIS ON λ IN AF LOSS

λ FID IP IR

2× 10−5 53.0±4.1 0.31±0.03 0.46±0.02
1× 10−6 42.0±2.9 0.42±0.04 0.63±0.05
2× 10−6 40.6±3.8 0.43±0.02 0.61±0.03
3× 10−6 41.2±2.8 0.42±0.03 0.63±0.03
2× 10−7 48.6±5.3 0.36±0.03 0.63±0.03

structure under limited-data. Few-shot and limited-data GAN
approaches such as MoCA, CDC, and RICK improve the
quality relative to DC-GAN but still produce significantly
flawed images. The generated abdomen and chest shapes are
distorted, and bone shapes are unrecognizable, as seen in
rows 2-4. Furthermore, the scarcity of training images and the
complexity of radiographs cause GAN methods to produce a
limited variety of outputs and frequently collapses. Diffusion
models like LDM, FSDM and DiffFit generate higher quality
images compared to GANs, but key challenges remain in
achieving truthful shapes and correct anatomy. This issue is
particularly noticeable in the MURA dataset (columns 8-10).
Although DiffFit produces the highest quality images among
diffusion models, they still contain anatomical inconsistencies
— the intestinal and chest areas in columns 2 and 3 are
inaccurately represented, and the humerus shape is incorrect
in the last 2 columns. Our proposed AnatoDiff (2nd last
row), consistently generates accurate images with anatomically
correct structures and shapes across all three datasets.

D. Image Memorization Study
Memorization is a well-known issue in diffusion models

trained on limited data, where the model tends to replicate its
training data. To investigate this, we follow the methodology
described in [59] to identify the closest training images.

The top two rows of Fig. 6 illustrate examples from directly
fine-tuning DiT, where the generated images are nearly identi-
cal to the training image, differing only by being unmodified or
horizontally flipped. With the addition of DiffFit, the generated
images introduce novel elements and avoid the direct copying
effect observed in fully fine-tuned DiT.

Building on this, we incorporated our novel AF loss and
SPM to further improve image generation quality. These mod-
ules impose additional constraints during training (topological
constraints from the AF loss and general shape constraints
from the SPM), therefore, it is important to verify that they do
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Fig. 5. Qualitative comparisons of images generated from different methods alongside samples from the training set. GOSH NEC (columns 1-
4), CheXpert (columns 5-7), MURA (columns 8-10). GAN-based models (MoCA, CDC, RICK) generate images with unsatisfactory quality, often
producing very similar images due to mode collapse. Diffusion-based methods (LDM, FSDM, DiffFit) achieve higher quality but still suffer from
untruthful shapes and inaccurate anatomy. Our proposed AnatoDiff addresses these issues with AF loss and SPM, enabling the generation of
high-quality images while maintaining truthful shapes and anatomical accuracy.
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Fig. 6. Comparison of images generated by DiT and DiffFit with different
combinations of the proposed modules (first column) and the three most
similar training images from the CheXpert dataset (next columns).

not reintroduce memorization effects. As shown in the bottom
rows of Fig. 6, generations with either or both modules pre-
serve novelty while enhancing structural fidelity. This analysis
confirms that the proposed AF loss and SPM improve image
quality without increasing memorization. Further examples
from other datasets are shown in Fig. 7.

E. Prototype Visualization and Stability Analysis

Fig. 8 displays examples of prototypes from all three
datasets, each representing a clustered common shape char-
acteristic of the dataset (abdomen, chest, and arm). The

Fig. 7. Comparison of images generated by AnatoDiff (column 1) with
the top three most similar images from the training set (columns 2-
4). GOSH NEC (rows 1-4), CheXpert (rows 5-7), MURA (rows 8-10).
AnatoDiff is able to synthesize realistic images from limited data without
replicating training samples.

prototypes serve as soft templates, encouraging the model to
maintain anatomical structure without sacrificing generative
diversity. Specifically, they guide the model to learn appropri-
ate spatial relationships and morphological patterns without
over-constraining fine-grained details. By ensuring prototypes
only capture the coarse silhouette or structural cues of the
anatomy without encoding fine details, the model maintains
the balance between abstraction and informativeness, ensuring
that generation remains flexible and not overly constrained.
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Fig. 8. Visualization of prototypes in SPM for GOSH NEC (rows 1-2),
CheXpert (rows 3-4), MURA (rows 5-6). These prototypes capture the
general outline shape of each anatomical structure, providing structural
and anatomical guidance to model during image generation. Structures
visibly defined include shape of thorax and abdomen, cardiac and liver
silhouettes, outline of ribs, and lungs, and outline of humerus

For example, in GOSH NEC, the prototype captures
rounded abdominal contours and approximate organ regions,
which reduces pathological blending of thoracic and abdomi-
nal features. In CheXpert, the prototype encodes asymmetrical
thoracic features (e.g., cardiac silhouette offset), which helps
the model avoid symmetric artifacts like duplicated hearts.
In MURA, the arm prototype promotes continuity and ori-
entation, reducing the frequency of disjointed or mirrored
limb artifacts. These prototypes provide a general anatomical
structure, serving as foundational guides to ensure that the
generated images adhere to realistic anatomical configurations
while allowing for variability within those constraints.

To confirm the stability of the prototype clustering stage,
we conduct three experiments: (1) re-running K-means with
different random seeds while keeping model training and
generation seeds fixed; (2) varying binarization thresholds,
including a no-binarization setting; and (3) replacing K-means
with an alternative method—Density Peak Clustering.

Results in Table VI show minor performance variations
across different seeds (FID ranging from 40.2 to 41.0), con-
sistently outperforming the DiffFit baseline (FID = 48.0).
Similarly stable results are observed for IP and IR, confirming

TABLE VI
STABILITY ANALYSIS WITH DIFFERENT RANDOM SEEDS DURING

K-MEANS CLUSTERING

Seed FID↓ IP↑ IR↑

0 (default) 40.6±3.8 0.43±0.02 0.61±0.03
1 40.5±4.3 0.45±0.02 0.63±0.03
2 40.2±3.7 0.44±0.03 0.62±0.03
3 41.0±2.6 0.45±0.02 0.62±0.04

TABLE VII
STABILITY ANALYSIS ON BINARIZATION THRESHOLD VALUES

Threshold Value FID↓ IP↑ IR↑

No binarization 44.1±2.5 0.42±0.04 0.62±0.04
180 46.0±2.5 0.39±0.06 0.61±0.06
160 42.8±3.4 0.42±0.05 0.62±0.04
150 40.6±3.8 0.43±0.02 0.61±0.03
140 41.6±2.6 0.42±0.04 0.63±0.06
120 42.6±2.6 0.42±0.04 0.63±0.06
100 43.1±4.9 0.40±0.04 0.64±0.05

TABLE VIII
COMPARISON WITH ALTERNATIVE CLUSTERING METHOD

Method FID↓ IP↑ IR↑

K-means 40.6±3.8 0.43±0.02 0.61±0.03
Density Peak Clustering 40.7±3.7 0.44±0.04 0.63±0.03

clustering process’s robustness to initialization randomness.
Table VII shows a stability analysis of thresholding value

during binarization. Performance remains stable within the
threshold range of 120–160, with optimal performance at 150.
Threshold values above 180 lead to degraded prototype quality
and instability in the clustering outcome, excessively removing
crucial anatomical outlines, as shown in Fig. 9.

The primary purpose of prototypes is to provide general
structural outlines to be used by the model as a starting
point, rather than detailed informative examples. As shown
in Fig. 9, prototypes without binarization can lack clear
structural delineation, resulting in lower overall generation
performance. Moreover, we noticed the binarization does not
greatly alter the overall structure of the clustered result, which
can be seen in the comparison between column 1 and 2.
The clustered outcome with the addition of binarization only
results in a sparser image with more visible outlines, while
the overall structure and shape in unchanged. Quantitatively,
we found that performing binarization at thresholds below
180 consistently outperforms no binarization in terms of FID,
binarization thus effectively removes low-activation noise,
enforcing a sparse prior, as can be seen in Table VII and Fig. 9.

Performance comparison between K-means and Density
Peak Clustering shows minimal differences, as shown in
Table VIII, indicating our framework’s robustness to clustering
methodology. This validates that the generation approach is not
critically dependent on the choice of clustering algorithm.

F. Synthetic images for classification
To assess the performance of generated images in a down-

stream task, we perform a comparison using a classification
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Fig. 9. Examples of prototypes generated with different binariza-
tion thresholds. Thresholding enhances structural outline clarity while
preserving overall shape. However, excessively high thresholds can
introduce clustering instability and lead to loss of anatomical delineation.

task with a ResNet-50 model. We generate 20,000 and 10,000
class-conditioned synthetic images using both AnatoDiff and
DiffFit on the GOSH NEC dataset. From these, we sample
subsets of 5,000, 1,000, and 500 images, and train the model
five times per subset using different random initializations.
For the 1,000 and 500 subsets, we ensure each sampling is
performed with a different seed to avoid bias in the results. The
trained models are evaluated on an isolated test set not used
during the training of either the generation or classification
models. Consequently, AnatoDiff is not trained to generate
images from the test patients used in the classification stage.

We compare the classification performance trained on syn-
thetic images, real images, and a combination of both. In
all settings, the number of real training samples is fixed at
1,000, while only the number of generated samples varies.
Importantly, both the diffusion model and the classifier are
trained on the same set of real images, ensuring no data
leakage and preventing any advantage that could arise if
the diffusion model had access to additional unseen real
samples. Thus, any improvement reflects AnatoDiff’s ability
to generate meaningful variations of a limited dataset. During
classification training, the generated images are added to the
real samples, thereby expanding the training set.

Fig. 10 illustrates this comparison. Model trained with
AnatoDiff-generated images demonstrate superior perfor-
mance over DiffFit across all subsets, with improvement
of 5.3% F1 at 10,000 images and achieving performance
comparable to models trained on real images, with a 1.2% F1
difference. When AnatoDiff-generated images are added to the
real dataset, classification performance consistently surpasses
that achieved with the DiffFit counterpart. Notably, adding
more than 5,000 DiffFit-generated images leads to a decline in
accuracy, which we hypothesize is due to low-quality synthetic

Fig. 10. Comparison of GOSH NEC classification performance us-
ing images generated by AnatoDiff and DiffFit. Compared to DiffFit,
AnatoDiff generated images consistently improves F1 scores across all
dataset sizes. Augmenting real data with AnatoDiff-generated images
further enhances performance compared to using only real data and
augmenting with DiffFit-generated images.

samples overpowering the real, higher-quality data as their
proportion increases. In contrast, AnatoDiff-generated images
consistently improve performance, suggesting they are more
informative and maintain greater anatomical coherence.

G. Expert Evaluation Study

As a preliminary investigation to assess the technical feasi-
bility and visual plausibility of the generated images, a survey
is performed on GOSH NEC images created using AnatoDiff.
We generated 10 synthetic and randomly selected 10 real
images from the GOSH NEC dataset. Images are shuffled and
medical professionals are asked to decide if the shown image
is real or generated. Eight consultant Paediatric Surgeons, one
junior Paediatric Surgeon and one consultant Neonatologist
participated in the survey. Results shows a Matthews correla-
tion coefficient (MCC) of 0.277 and Fleiss’ Kappa of 0.126
among participants, indicating responses are only slightly
better than random guessing with a low level of consensus
among raters. The low MCC score and Fleiss’ Kappa implies
AnatoDiff-generated images are difficult to differentiate from
real images in the eyes of medical professionals. As part of
future work, we plan to expand this into a larger-scale expert
study involving a greater number of images and a broader
panel of evaluators, enabling a more robust assessment of
clinical relevance and informing further refinements—such as
artifact-aware training objectives or post-generation filtering.

H. Limitations and Error Analysis

While AnatoDiff promotes anatomically plausible outputs
and substantially reduces structural inconsistencies, in some
instances, generated images may still appear slightly more
regular or idealized than real X-rays. Fig. 11 presents such
examples, where certain images appear smoother, with fewer
of the subtle variations typically observed in clinical data. For
example, the rib arcs in the chest X-ray are more uniform,
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Fig. 11. Example of a failure case where the generated image looks
overly smooth.

Fig. 12. A specific case of failure in the GOSH NEC dataset, where a
generated image can occasionally be misled by the presence of exces-
sive artifacts contained within some training images. (Top) Generated
images. (Bottom) Training examples.

whereas in reality there are natural differences in the size,
shape, and structure of some ribs. Similarly, the clavicles
exhibit a slightly atypical structure and positioning, and in
the humerus X-ray, the fine trabecular bone texture is less
pronounced. The abdomen X-ray shows more homogeneous
opacification compared to the expected radiolucencies from air
in the gastrointestinal tract. These observations likely reflect
the tendency of diffusion models trained on limited data to pri-
oritise consistent global structure, while capturing fewer high-
frequency details. Incorporating an edge-based loss, could
further enrich local detail and visual realism. In future work,
we aim to investigate edge-based objectives operating in the
latent space that are compatible with our AF loss.

Another representative failure case, shown in Fig. 12, arises
specifically from the GOSH NEC dataset. This dataset contains
X-rays taken using portable scanners in the ICU setting,
performed on neonates. As a result, the images frequently
contain external objects such as tubes or monitoring devices
affixed to the patient, which appear as linear artifacts. While
these artifacts do not compromise the diagnostic validity of
the X-rays, they may be inadvertently treated as meaningful
anatomical features during training. Consequently, the model
occasionally reproduces such artifacts in generated images,
having learned them as part of the training distribution.
For downstream clinical applications, such as generating de-
identified training materials for medical education, manual
screening can be employed to ensure that only high-quality
samples are retained.

VI. CONCLUSION

We presented AnatoDiff, a diffusion method for generating
high-quality X-ray images that accurately represent anatomical

shapes and structures, even when trained on limited (500-
1,000) images. AnatoDiff incorporates an SPM to guide the
generation of anatomically accurate images, and an AF loss
to regularize topological structures. AnatoDiff significantly
outperforms the SOTA methods on three open-source X-ray
datasets, achieving an average improvement of 14.9% in FID,
9.7% in IP, and 2.3% in IR, while consistently producing
anatomically truthful images with accurate shape.

In downstream classification, a ResNet-50 trained on Ana-
toDiff images shows improved performance compared to train-
ing on SOTA DiffFit images, with F1-score increases of 2.1%
to 5.3% across 500 to 10,000 samples. Furthermore, a sur-
vey involving medical professionals revealed that AnatoDiff-
generated images are challenging to distinguish from real
images, with an MCC of 0.277 and Fleiss’ Kappa of 0.126.
This underscores AnatoDiff’s effectiveness in generating high-
quality, anatomically accurate images representative of X-rays,
highlighting its significant potential for practical applications.

As future work, we aim to investigate the potential synergy
between the AF loss and edge-based losses, with the latter
offering a means to recover fine local details that may not be
fully captured by the former. Moreover, although this study
focuses on 2D radiographs, the proposed framework could
naturally extend to 3D modalities such as CT and MRI.
This extension could be realized either by applying the AF
loss across individual slices with aggregated results, or by
generalizing both the AF loss and SPM prototypes to operate
directly in 3D. These directions will be pursued in future work.
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