
Large-Scale Proteomic Profiling of Incident Heart Failure and Its Subtypes in Older Adults   1 
 2 
Joyce N. Njoroge, MD1; Sandra Sanders van Wijk, MD, PhD2; Thomas R. Austin, PhD3; Jennifer A. 3 
Brody, BA4; Colleen M. Sitlani, PhD5; Emily Hamerton, MS6; Joshua Bis, PhD3; Albert Henry, MD, 4 
MSc7,8; R. Thomas Lumbers, MB, BChir, PhD8,9 The HERMES Consortium10; Talia Seshaiah, MS5; Ali 5 
Shojaie, PhD5; Yimin Yang, PhD10; Victoria Lamberson, PhD11 Bing Yu, PhD12 ; Amil M. Shah, MD, 6 
MPH11; Nisha Bansal, MD, MAS13; Sanjiv Shah, MD14; Russell P. Tracy, PhD15; Robert E. Gerszten, 7 
MD16; Lori L. Jennings, PhD17; Valborg Gudmundsdottir, PhD18,19; Vilmundur Gudnason, MD,PhD18,19; 8 
Valur Emilsson, PhLic, PhD18,19; Bruce M. Psaty, MD, PhD3,4; Jorge R. Kizer, MD, MSc6,20 9 
  10 
 11 
1. Division of Cardiology, Department of Medicine, Stanford University, Palo Alto, CA, USA.  12 
2. Division of Cardiology, Department of Medicine, Zuyderland Medical Center, Heerlen, Netherlands. 13 
3. Cardiovascular Health Research Unit, Epidemiology and Health Systems and Population Health, 14 
University of Washington, Seattle, WA, USA.   15 
4. Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, 16 
WA, USA.   17 
5. Department of Biostatistics, University of Washington, Seattle, WA, USA.  18 
6. Cardiology Section, San Francisco Veterans Affairs Health Care System and Department of Medicine, 19 
University of California, San Francisco, San Francisco, CA, USA. 20 
7. Institute of Cardiovascular Science, University College London, London, UK. 21 
8. Institute of Health Informatics, University College London, London, UK. 22 
9. The National Institute for Health Research University College London Hospitals Biomedical Research 23 
Centre, University College London, London, UK. 24 
10. Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, 25 
USA. 26 
11. Division of Cardiovascular Medicine, Department of Medicine, University of Texas Southwestern 27 
Medical Center, Houston, TX, USA 28 
12. School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, USA. 29 
13. Division of Nephrology, Department of Medicine, and Kidney Research Institute, University of 30 
Washington, Seattle, WA, USA 31 
14. Division of Cardiology, Department of Medicine, Northwestern University School of Medicine, 32 
Chicago, IL, USA.  33 
15. Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of 34 
Vermont, Burlington, VT, USA. 35 
16. Department of Medicine, Division of Cardiology, Beth Israel Deaconess Hospital and Harvard 36 
Medical School, Boston, MA, USA. 37 
17. Novartis Institute for Biomedical Research, Cambridge, MA, USA. 38 
18. University of Iceland, Faculty of Medicine, Reykjavik, Iceland. 39 
19. Icelandic Heart Association, Kopavogur, Iceland. 40 
20. Department of Epidemiology and Biostatistics, University of California San Francisco, CA, USA. 41 
 42 
Short Title: Proteomics of Incident Heart Failure in Elders 43 
 44 
Corresponding Author: 45 
Jorge R. Kizer, MD, MSc 46 
Cardiology Section, San Francisco Veterans Affairs Health Care System 47 
4150 Clement Street, Mail Code 111C 48 
San Francisco, CA, 94121, USA. 49 
E-mail: jorge.kizer@ucsf.edu 50 
Phone: 415-221-4810 51 

mailto:jorge.kizer@ucsf.edu


 1 

ORCID ID: 0000-0001-9936-7803 52 
 53 
Text Word Count: 11,069 (4,700 Manuscript main text) 54 
 55 
Tables and Figures: 8 56 
  57 



 2 

Abstract 58 
Background: Heart failure (HF) and its main subtypes, preserved (HFpEF) and reduced ejection fraction 59 
(HFrEF), impose an enormous health burden on elders. Assessment of the circulating proteome to 60 
illuminate pathogenesis could open new opportunities for treatment.   61 
Methods: We conducted a plasma proteomics screen of incident HF and its subtypes in two older 62 
population-based cohorts, the Cardiovascular Health Study (CHS) and the Aging, Gene/Environment 63 
Susceptibility – Reykjavik Study (AGES-RS). The two studies used SomaLogic platforms, with 4,404 64 
aptamers in common. Multivariable Cox models were fit to evaluate individual-protein associations with 65 
HF, HFpEF and HFrEF separately in each cohort, and study-specific associations combined by fixed-66 
effects meta-analysis. Replication was performed in the Atherosclerosis Risk in Communities (ARIC) 67 
cohort. Two-sample Mendelian randomization (MR) of HF and its subtypes, along with colocalization 68 
analysis, was performed to support causal inference.     69 
Results: Among 8,599 participants, 1,590 experienced incident HF (536 HFpEF, 471 HFrEF). There 70 
were 119 proteins associated with HF, 15 proteins with HFpEF, and 11 proteins with HFrEF, at 71 
Bonferroni-corrected significance. Among these, 9 have never previously been identified for 72 
cardiovascular diseases, and another 61 represent new associations with incident HF or its subtypes. Of 73 
these 70 proteins, 55 of the 66 available replicated externally. MR analysis revealed 7 proteins genetically 74 
associated with HF at nominal significance; 2 were separately associated with HFpEF, and another 2 with 75 
HFrEF. Seven of these 9 proteins (NCDP1, APOF, LMAN2, ADIPOQ, CD14, ARHGAP1, C9) showed 76 
new, possibly causal associations, although we did not detect evidence for colocalization. 77 
Conclusions: In this large-scale proteomic study involving three longitudinal cohorts of older adults, we 78 
identified and replicated 55 novel protein markers of HF or its subtypes, and 7 new, possibly causal 79 
proteins. These proteins may enhance risk prediction, improve understanding of pathobiology, and help 80 
prioritize targets for therapeutic development of these foremost disorders in elders.  81 
 82 
Key Words: Heart Failure, Proteomics, Mendelian randomization analysis  83 
 84 
Non-standard Abbreviations and Acronyms  85 
AGES-RS=Aging Gene/Environment Susceptibility – Reykjakiv Study, AF=Atrial fibrillation, 86 
ARIC=Atherosclerosis Risk in Communities, CHD=Coronary heart disease, CHS=Caardiovascular 87 
Health Study, CVD=Cardiovascular disease, GWAS=Genome-wide association study, HF=Heart failure, 88 
HFpEF-Heart failure with preserved ejection fraction, HFrEF=Heart failure with reduced ejection 89 
fraction, MR=Mendelian randomization, pQTL- Protein quantitative trait loci  90 
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Clinical Perspective 91 
What is New? 92 

• 119 proteins associated with incident HF were identified, of which 68 are novel and 8 never 93 
previously linked to HF precursors. For HF subtypes, 15 and 11 proteins were identified for 94 
incident HFpEF and HFrEF, respectively, with 1 novel protein identified for each subtype. Of the 95 
70 novel proteins, 55 replicated in an external cohort. 96 

• Mendelian randomization analysis of incident HF and its subtypes using newly available 97 
HERMES2 GWAS data identified genetic associations for 9 proteins with incident HF or its 98 
subtypes. This included 5 novel proteins as possibly causal candidates for HF (AdipoQ, CD14, 99 
NCDP1, APOF, LMAN2), 2 for HFpEF (AdipoQ, CD14), and 2 for HFrEF (ARHGAP1, C9), 100 
although their corresponding pQTLs were not supported as single causal variants by 101 
colocalization analysis. 102 

   103 
What are the Clinical Implications? 104 

• HF imposes outsized morbidity and mortality, with treatment options lacking or only partly 105 
effective. The heterogeneity of HF, particularly HFpEF, challenges understanding of their 106 
molecular determinants as targets for effective therapeutics. 107 

• The 55 newly identified and replicated protein markers and 7 new causal candidates offer to 108 
enhance risk prediction, advance biological understanding, and help streamline development and 109 
testing of novel therapies of HF and its subtypes in older adults, the segment of the population 110 
most affected by these disorders.   111 
 112 
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Introduction 141 
Heart failure (HF) represents a global healthcare burden, which predominantly falls upon older 142 

adults.1 With aging of the population, the overall prevalence of HF is expected to triple by 2060, 143 
underscoring the crucial need for improved HF prevention efforts.2-4 The disorder is classified into two 144 
major subtypes, HF with reduced ejection fraction (HFrEF) and HF with preserved ejection fraction 145 
(HFpEF),5 which carry similarly pronounced morbidity and mortality.6 Although therapeutic advances 146 
have been achieved for HFrEF, proven treatments for HFpEF remain limited.7,8 This therapeutic gap 147 
likely reflects the distinct pathophysiologies of the two HF subtypes. While HFrEF is characterized by 148 
myocardial injury, cardiomyocyte loss, and neurohormonal activation, HFpEF is thought to result from 149 
microvascular dysfunction in the setting of comorbidities, with attendant cardiomyocyte stiffness and 150 
myocardial interstitial fibrosis.9,10 Improved prevention and treatment of the two subtypes requires better 151 
understanding of these disorders’ development and targetable pathophysiological pathways. 152 

Genome-wide association studies (GWAS) have sought to identify common and rare 153 
susceptibility variants for HF, exposing associations with coronary heart disease (CHD), atrial fibrillation 154 
(AF), and obesity.11,12 However, the identified loci thus far explain a minor proportion of HF risk and only 155 
a limited number of these have been linked to a targetable protein or pathway for therapies.13-15 High-156 
throughput plasma proteomics offers a powerful tool to evaluate the molecular determinants of HF and its 157 
subtypes, since circulating proteins released from cells integrate genetic and environmental inputs, and 158 
constitute gene products more directly targetable by therapeutic interventions.14 Recent proteomic studies 159 
discovered several proteins to be associated with incident HF,11,12,16-19 with associations extended to 160 
HFpEF and HFrEF.13 Existing proteomic studies in elders have included only moderate numbers of HF 161 
events, however, and been limited in their capacity to evaluate HF subtypes. Nor have such studies been 162 
in a position to pursue causal inference specifically for HF subtypes through Mendelian randomization 163 
(MR) approaches.   164 

We undertook large-scale plasma proteomics in a U.S. population-based cohort study of older 165 
adults using SomaLogic’s high-throughput aptamer technology, and meta-analyzed our findings with 166 
those of a European population-based cohort study of elders that applied a similar proteomic platform, in 167 
order to enhance power to identify protein markers associated with overall HF, as well as HFpEF and 168 
HFrEF. Significant aptamer hits were then tested in a separate U.S. cohort of older adults. We 169 
subsequently leveraged a recently completed GWAS of HF and its subtypes to investigate the potential 170 
causal basis of identified protein associations.  171 
  172 
Methods 173 
Requests by qualified researchers to access the datasets supporting this study may be sent to CHS at 174 
CHSDATA@uw.edu, to AGES-RS at AGES_data_request@hjarta.is, and to ARIC at aricpub@unc.edu. 175 
The research was approved by the institutional review boards of all participating studies and all 176 
participants provided written informed consent. Detailed methods for the present work are provided in the 177 
Supplemental Materials.  178 
 179 
Results 180 
Cohort Characteristics 181 

The baseline characteristics for the primary CHS and AGES-RS cohorts are presented in 182 
Table 1. The cohorts were largely comparable in demographic and clinical characteristics. 183 
Notable differences included the 18% Black and 1% Hispanic race/ethnic composition of CHS, 184 
its higher use of antihypertensive medication, lower lipid concentrations and greater diabetes 185 
frequency, as contrasted with AGES-RS. The cumulative incidence of HF was 4-fold higher in 186 
CHS, reflecting its longer follow-up time (median 11.3 years, maximum 22.1 years), than in 187 
AGES-RS (median follow-up time 5.4 years, maximum 7.9 years). Of the 1,150 incident HF 188 
events in CHS, 30% were HFpEF, 26% were HFrEF, and 43% were unclassified. In turn, of the 189 
440 incident HF events in AGES-RS, 43% were HFpEF, 38% were HFrEF, and 19% were 190 
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unclassified. As shown in Supplemental Table 7, participants in CHS and/or AGES-RS who 191 
went on to experience a HF event were older, less often women, had higher adiposity (CHS 192 
only), were less frequently never smokers (AGES-RS), exhibited more hypertension and diabetes 193 
but lower HDL cholesterol, had more prevalent and incident MI, and showed lower eGFRcr. 194 

The ARIC replication cohort was of similar age (75.5 ±5.1) and sex distribution (58.5% 195 
female) as CHS and AGES-RS, with comparable proportion of Black participants (17.0%) as 196 
CHS. CVD risk factors were similar to one or both primary cohorts, but ARIC participants had 197 
more diabetes (34.8%) and prevalent MI (14.7%), though incident MI (6.3%) was lower. There 198 
were 621 incident HF events during a median follow-up of 9.5 years (maximum, 11.6 years), of 199 
which 299 (48%) were HFpEF, 227 (37%) were HFrEF, and 95 (15%) unclassified.  200 
 201 
Individual Proteins and Incident HF and Its Subtypes 202 

The multivariable-adjusted associations of individual SomaScan aptamers and incident 203 
HF in CHS and AGES-RS are presented separately for each cohort in Supplemental Table 8. 204 
Meta-analysis of the associations for these 4,404 aptamers across the two cohorts showed that 205 
128 were significantly associated with incident HF after multiple testing-correction (Figure 1 and 206 
Supplemental Table 9). These 128 aptamers correspond to 119 unique proteins, of which 68 are 207 
newly linked to incident HF, including 8 proteins not previously associated with prevalent HF, 208 
HF predisposing conditions (CHD or AF), or HF-related phenotypes or outcomes in preclinical 209 
or clinical studies (Supplemental Table 10). The most significant association was for NPPB (B-210 
type natriuretic peptide), with significant associations also seen for TNNI3 (troponin I) and 211 
CST3 (cystatin C), consistent with well-established cardiac and kidney biomarkers of HF risk.  212 

Corresponding cohort-specific associations of individual aptamers with HFpEF and 213 
HFrEF following multivariable adjustment are given in Supplemental Tables 11 and 12, 214 
respectively. Meta-analysis of the two cohorts revealed that 15 aptamers (15 unique proteins) 215 
were significantly associated with incident HFpEF and 12 aptamers (11 unique proteins) with 216 
incident HFrEF (Figure 2A and 2B; Supplemental Tables 13 and 14, respectively). All but one 217 
aptamer for each HF subtype showed significant associations with overall HF. The exceptions 218 
were DEFB135 for HFpEF and ARHGAP1 for HFrEF, the former representing a novel 219 
association with HF or related phenotypes or outcomes, the latter a new association with 220 
incidence of any form of HF (Supplemental Table 10). Among aptamers significantly associated 221 
with a HF subtype, 3 (NPPB, SVEP[11178-21], TREM1) were associated in a concordant 222 
direction with both HFpEF and HFrEF (at Bonferroni-corrected significance, Figure 3). In 223 
addition, among aptamers associated with overall HF, 8 showed different strengths of association 224 
with HFpEF and HFrEF at a nominal level of significance, of which 3 proteins did not meet the 225 
Bonferroni-corrected threshold for significance of associations in the subtype-specific analysis 226 
(Figure 4).   227 

We next examined whether aptamers significantly associated with HF and its subtypes in 228 
the CHS and AGES-RS meta-analysis replicated in ARIC (Supplemental Tables 15-17). Of the 229 
128 significant aptamers (119 proteins) for HF, 115 aptamers (112 proteins) were measured in 230 
ARIC; among these, 109 aptamers (106 proteins) showed associations at nominal significance 231 
with HF, and 88 aptamers (85 proteins) showed associations at Bonferroni-corrected significance 232 
(p=0.05/115=4.310-4). For HFpEF, of 15 aptamers/proteins, 14 were measured in ARIC, and all 233 
but one replicated, each at Bonferroni-corrected significance (p=0.05/14=0.0036). For HFrEF, all 234 
12 aptamers (11 proteins) were measured in ARIC, of which 10 aptamers (9 proteins) replicated, 235 
all at Bonferroni-corrected significance (p=0.05/12=0.0042). As shown in Supplemental Table 236 
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10, among the 68 proteins newly associated with HF in CHS and AGES-RS, 3 did not replicate 237 
and 4 were not measured in ARIC. Of the remaining 61 proteins replicated in ARIC, 54 did so at 238 
Bonferroni-corrected significance. All 8 proteins not previously associated with prevalent HF, 239 
predisposing conditions or HF-related outcomes replicated in ARIC, 7 of them at Bonferroni-240 
corrected significance. Both new proteins associated with HF subtypes replicated, that for 241 
HFpEF at Bonferroni-corrected significance, and that for HFrEF at nominal significance. 242 

In sensitivity analyses, replacement of eGFRcr with eGFRcr-cys in the main model in 243 
CHS led to meaningful attenuation (15% change in the beta coefficient) for 57 of the 128 244 
aptamers shown significantly associated with HF in the CHS and AGES-RS meta-analysis, of 245 
which 33 represented novel aptamers/proteins (Supplemental Table 18 and Supplemental Table 246 
10). For HFpEF and HFrEF, using eGFRcr-cys in lieu of eGFRcr resulted in meaningful 247 
attenuation of beta coefficients for 3 of 15 aptamers and 3 of 12 aptamers, respectively, though 248 
not either of the two novel proteins (Supplemental Tables 19-20). When eGFRcr categories 249 
replaced continuous eGFRcr in the main model for both CHS and AGES-RS, 35 of the 128 HF-250 
associated aptamers exhibited meaningful attenuation of their beta coefficients (Supplemental 251 
Tables 21 and 10). Of these, 20 aptamers/proteins were new and 10 lost Bonferroni-corrected 252 
significance. For HFpEF and HFrEF, eGFR categorization led to meaningful attenuation of 253 
associations for 2 of 15 proteins and 2 of 12 aptamers, respectively, all of which became non-254 
significant at the Bonferroni threshold (Supplemental Tables 22-23 and 10). There was no 255 
meaningful attenuation of the single novel protein for each HF subtype.  256 

 257 
MR Analysis 258 

For MR analysis, after exclusion of NPPB, 84 of the 128 aptamers associated with HF 259 
could be instrumented in ARIC. Of these, 7 aptamers (7 unique proteins) showed genetic 260 
associations with overall HF at a nominal level of significance (p<0.05), though not after 261 
Bonferroni correction: LMAN2, CCDC126, APOF, CD14, NPDC1, FSTL3 and ADIPOQ 262 
(Figure 5). All replicated in ARIC at a nominal (p<0.05) significance level, and 5 at Bonferroni-263 
corrected significance (Supplemental Table 15). Among these 7 proteins, 3 showed directionally 264 
concordant observational and genetic associations (APOF, LMAN2 and NPDC1) (Supplemental 265 
Table 24).  266 

In the case of HF subtypes, MR analysis was performed for the aptamers showing 267 
significant associations with HFpEF (11 aptamers instrumented) and HFrEF (9 aptamers 268 
instrumented). MR analysis was also conducted on additional aptamers associated with overall 269 
HF that differed significantly in their relations with HFpEF vs. HFrEF (2 and 1 aptamers 270 
instrumented, respectively), and for the 7 proteins that showed significant genetic associations 271 
with overall HF. These analyses revealed nominally significant genetic associations for 2 272 
proteins with each subtype (Figure 6). For HFpEF, the 2 proteins were ADIPOQ and CD14, also 273 
genetically associated with overall HF, of which ADIPOQ retained significance after Bonferroni 274 
correction. In the case of HFrEF, the 2 proteins were ARHGAP1 and C9. Both proteins were 275 
significantly associated with this subtype in the observational analysis, and both showed 276 
significant associations, at least at nominal significance, in ARIC. Of the 4 proteins genetically 277 
related to HF subtypes, only C9 showed a concordant direction with the observational 278 
association (Supplemental Table 24). 279 

None of the aptamers that emerged as significantly associated with HF or its subtypes in 280 
MR analysis could be instrumented with more than 2 variants, so sensitivity analyses for 281 
horizontal pleiotropy involving multiple variants could not be conducted. We did perform 282 
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colocalization analyses for significant pQTLs identified in MR analysis, the results of which are 283 
shown in Supplemental Table 25. Such colocalization analyses did not reveal evidence for a 284 
single causal variant for corresponding protein level and either overall HF or its subtypes (all H4 285 
posterior probabilities <75%). There was some evidence, however, that the genetic association 286 
for one protein, C9, and HFrEF might reside in a single causal variant, as suggested by an H4 287 
posterior probability of 66.9%. By contrast, there was evidence that one protein, CD14, had 288 
distinct causal variants for its level and HF (H3 posterior probability of 91.5%).  289 

In exploratory analyses, we examined whether proteins genetically associated with HF or 290 
its subtypes also bore genetic associations with predisposing factors for HF. As shown in Table 291 
2, all proteins except for ADIPOQ and C9 showed genetic associations with at least one 292 
predisposing factor at a nominally significant level. APOF showed a genetic association with 293 
CHD; CD14, CCDC126 and NPDC1 with diabetes; FSTL3 and LMAN2 with hypertension and 294 
diabetes; and ARHGAP1 with AF. With the exception of FSTL3 and LMAN2 with 295 
hypertension, and LMAN2 and NPDC1 with diabetes, these associations were also significant 296 
upon Bonferroni correction. All but one of the foregoing genetic associations with predisposing 297 
conditions were in the same direction as for HF or its subtypes. The exception was CD14, which 298 
showed a genetically inverse association with HF, but a genetically positive association instead 299 
with diabetes.  300 
 Last, we performed pathway enrichment analysis separately in the two cohorts using 301 
KEGG canonical pathways. In CHS, only two pathways, the WNT signaling and WNT5A-ROR 302 
signaling pathways, showed significant associations with HF after Bonferroni correction 303 
(Supplemental Table 26). Meanwhile, AGES-RS showed three pathways, SARS-CoV-2-Spike-304 
to-ANGII-AT1R-NOX2, KSHV-VGPCR-to-GNB-G-ERK, and TRK-Fusion Kinase-to-RAS-305 
ERK, to be associated with overall HF at Bonferroni significance. None the pathways identified 306 
in each cohort showed significance in the other cohort. There were no Bonferroni-significant 307 
associations of KEGG canonical pathways represented in the data with either HF subtype 308 
(Supplemental Tables 27-28).    309 
 310 
Discussion 311 
Main Findings 312 

In this large-scale proteomics study of two population-based cohorts of older adults, we 313 
identified 128 individual aptamers (119 unique proteins) associated with incident HF after 314 
adjustment for clinical covariates at a Bonferroni-corrected level of significance. Of these protein 315 
associations, 68 represent new links with incident HF, and 8 are first associations of any kind 316 
with HF phenotypes, HF predisposing conditions or HF-related outcomes. We separately found 317 
15 aptamers (15 unique proteins) and 12 aptamers (11 unique proteins) to be independently 318 
associated with incident HFpEF and HFrEF, respectively, at Bonferroni-corrected significance, 319 
including 1 aptamer/protein for each subtype that was not detected in the overall HF analysis. 320 
Each of these represents a new association with any form of incident HF, with the HFpEF-related 321 
protein DEFB135 never previously linked to prevalent HF or predisposing conditions. Among 322 
the 66 of the 70 novel proteins associated HF or HF subtypes that were measured in ARIC, 55 323 
replicated at Bonferroni-corrected significance, and another 8 at nominal significance. Of the 128 324 
aptamers related to HF, 8 showed different strengths of association with subtypes at a nominal 325 
level of significance, including 3 that were not identified in the subtype-specific screen. We 326 
pursued exploratory pathway enrichment analysis, which detected only a limited number of 327 
canonical pathways associated with HF, though not its subtypes, in each cohort. In MR analyses, 328 
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we found genetic associations for 7 HF-associated proteins at a nominal level of significance, 329 
including 2 proteins (LMAN2 and NPDC1) not previously linked to HF incidence, 1 (CCDC126) 330 
with an earlier genetic association with HF, and several (ADIPOQ, CD14, APOF, FSTL3) with 331 
previously reported HF associations. Two of these proteins (ADIPOQ, CD14) newly showed 332 
nominally significant genetic associations with HFpEF – which for ADIPOQ was also significant 333 
after Bonferroni correction – while two HFrEF-specific proteins (ARHGAP1, C9) newly 334 
exhibited nominally significant genetic associations with this subtype. There was no evidence by 335 
colocalization analysis, however, that any of the causally implicated pQTLs by MR represented 336 
single causal variants for both protein levels and HF or HF subtypes.  337 
 338 
Prior Literature 339 

A number of studies have applied proteomics to identify circulating protein markers of 340 
incident HF or its subtypes with the goal of improving prediction or illuminating 341 
pathobiology.13,16-20 These have proven successful in advancing predictive accuracy and 342 
implicating potentially causal proteins for therapeutic targeting. Most prior studies examined 343 
earlier-generation proteomic platforms, but three recent reports – one from AGES-RS, and two 344 
ARIC – evaluated the larger SomaScan 5K platform.  345 

The AGES-RS report applied age- and sex-adjusted LASSO to identify partly 346 
overlapping protein panels predictive of HF and its subtypes.20 These included 10 proteins each 347 
for HF and HFrEF, the strongest for both being NPPB, MMP12 and TNNI3; and 8 proteins for 348 
HFpEF, the strongest being NPPB, MMP12 and TIMP4. These panels improved discrimination 349 
over clinical factors, especially early after measurement, findings that were replicated in CHS.  350 

The first ARIC report identified 37 plasma proteins associated with incident HF across 351 
participants from two visits (mid-life and late-life) and mid-late life participants from the HUNT 352 
study, of which most showed comparable associations with HF subtypes in the ARIC late-life 353 
sample.11 The second screened for proteins associated with both frailty and HF in ARIC, 354 
identifying 18 plasma proteins (14 new compared with the earlier report) associated with these 355 
disorders. A majority of these proteins were associated with HFpEF and a minority with HFrEF, 356 
and all were replicated in CHS.12 In the first report, MR analysis documented a trans-pQTL for 357 
SVEP1 associated with HF at Bonferroni-corrected significance, while the second report 358 
identified cis-pQTLs for EFEMP1, FSTL3 and TREM1 as associated with HF at nominal 359 
significance. 360 
 The present study extends these previous findings by virtue of its exclusive focus on 361 
adults late in the life course; its assessment of individual aptamer associations after extensive 362 
adjustment for clinical risk factors, unlike the prior AGES-RS report; use of meta-analysis to 363 
amplify the number of incident HF or HF subtype events, which are ~3-fold greater than in the 364 
prior ARIC late-life report; involvement of the older ARIC cohort for replication of significant 365 
protein associations; and leveraging of HERMES2 to conduct specific MR analysis of HF 366 
subtypes and to increase power for MR analysis of overall HF. Specifically, this investigation 367 
newly identifies 70 protein markers of incident HF or its subtypes across two separate cohorts, 368 
including 1 novel protein marker each for HFpEF and HFrEF, of which 55 showed independent 369 
replication at a stringent significance threshold. The current report also newly suggests 5 proteins 370 
as potentially causally associated with HF, of which 2 showed a possible causal link with 371 
HFpEF, as well as another 2 with HFrEF, although lack of supportive evidence from 372 
colocalization analysis makes their causal nature uncertain.   373 
 374 



 9 

Potential Clinical and Biological Implications  375 
 Identification of multiple new biomarkers of incident HF or its subtypes has potential 376 
implications for risk prediction, as well as therapeutics. It is notable that multiple biomarkers, 377 
new or established, were inversely associated with HF. None were so associated with HFpEF, 378 
and only two were inversely associated with HFrEF, although the number of incident events for 379 
these subtypes was more limited. Insofar as the identified inverse associations reflect or drive 380 
protective processes, they are of particular interest for identifying potential preventive 381 
interventions. Of various proteins or peptides that have been previously recognized or validated 382 
clinically as HF biomarkers, it is of interest that only a few of their corresponding aptamers 383 
achieved Bonferroni-corrected significance, and number did not achieve even nominal 384 
significance (Supplemental Table 29). Although SomaLogic’s aptamer-based platform has the 385 
advantage of achieving higher precision and analytic breath than Olink’s antibody-based 386 
platform, it has been found to have comparatively lower target specificity and phenotype 387 
associations.21 Our findings point to limitations in using aptamers in place of immunoassays for 388 
certain previously identified HF biomarkers in clinical settings.  389 
 Findings from our sensitivity analyses adjusting for different measures of CKD, which 390 
revealed meaningful attenuation for substantial proportions of aptamer hits, also have 391 
implications for understanding relevant pathophysiologic mechanisms. That CST3, a top hit for 392 
HF (and HFpEF), remained significantly associated with this outcome after eGFRcr-cys 393 
adjustment likely reflects the influence on cystatin C levels of non-GFR sources also associated 394 
with HF. These include obesity, diabetes, inflammation and thyroid dysfunction but remain 395 
incompletely characterized.22 There could also be an impact of differential measurement of 396 
cystatin C by the aptamer-based and ELISA-based method, although the high correlation (r=0.9) 397 
between the two suggests that such impact would be modest.23 The attenuation of aptamer 398 
associations with adjustment by eGFRcr categories suggests the presence of non-linear effects 399 
involving CKD, aptamer levels, and HF incidence that need to be considered in such proteomic 400 
analyses. However, the observed attenuation, whether by eGFRcr-cys or eGFRcr categories, 401 
does not necessarily reflect confounding and could signify the impact of aptamers on HF risk 402 
through CKD-related pathways.24 Further study of the relationship between affected proteins, 403 
CKD and HF is necessary to disentangle the pathways involved.  404 

The suggestion of possible causal associations for several proteins may also have 405 
implications for understanding disease mechanisms and developing therapeutics. New 406 
associations of genetically determined protein levels were documented for LMAN2, APOF, 407 
CD14, NPDC1 and ADIPOQ with overall HF, ADIPOQ and CD14 with HFpEF, and 408 
ARHGAP1 and C9 with HFrEF. Genetic associations previously reported for FSTL3 and 409 
CCDC126 were confirmed,12,25  with new measurement of circulating CCDC126 level showing 410 
that the observational association is directionally discordant (inverse) from the genetic 411 
association (positive). Nonetheless, our colocalization analyses failed to detect evidence that 412 
corresponding pQTLs for these proteins represent single causal variants for HF or its subtype, 413 
such that suggestions of causal associations uncovered here will require additional functional 414 
work to determine the true pathophysiologic contributions of these genetically linked proteins 415 
and HF outcomes.  416 
 Among the newly suggested causal proteins, NPDC1, APOF, and LMAN2 showed 417 
concordant positive associations in observational and genetic analyses. NPDC1 (neuronal 418 
proliferation, differentiation and control 1 protein) is primarily expressed in neural tissue, where 419 
it regulates neuronal proliferation and differentiation, but cardiac and vascular expression also 420 
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occur (GTEx).26 In contrast to the positive association with HF documented here, NPDC1 was 421 
previously inversely associated with incident CVD (MI, stroke, and HF),26 and our exploratory 422 
MR analysis linked it inversely to diabetes.27 The basis for these contrary associations is unclear, 423 
as is NPDC1’s biological role in HF or glucose dysregulation. Nevertheless, empagliflozin 424 
treatment was documented to reduce circulating NPDC1 in HFrEF, illustrating that NPDC1 425 
levels are modifiable in a manner directionally consistent with our findings.28 Additional 426 
investigation is necessary to determine whether and how this protein could be manipulated for 427 
effective HF treatment. 428 
 APOF (apolipoprotein F), a liver-derived protein predominantly found in HDL particles, 429 
plays a role in reverse cholesterol transport and HDL metabolism.29 Conflicting associations 430 
have been reported with lipoprotein particle levels, which may relate to their dependence on lipid 431 
composition.11,29  APOF’s functions are complex and remain incompletely characterized. The 432 
present findings confirm the observational association with HF previously documented for 433 
APOF in ARIC, adding evidence of possible causality. As in ARIC, our MR analysis supports a 434 
causal association of APOF with CHD, suggesting that the association is driven by 435 
atherosclerosis.11 Although no drugs capable of modulating APOF were reported in the 436 
ChEMBL database, our findings suggest that focused studies on APOF could yield fruitful 437 
therapies for CHD and HF.   438 
 Produced by the liver, LMAN2 (lectin, mannose binding 2) is involved in regulation of 439 
exosome protein trafficking,30 and closely influences macrophage phagocytotic activity.31 The 440 
protein is shed from the endothelial glycocalyx in sepsis,32 which may explain its reduced 441 
endothelial cell expression in acute MI.33 Low urinary levels of LMAN2 in acute HF have also 442 
been reported,34 as has an inverse relation of plasma LMAN2 with NT-proBNP in HFpEF.35 443 
Such associations may reflect endothelial damage or dysfunction, but our findings point to 444 
potentially adverse actions of higher LMAN2 expression. This protein, which lacks drug ligands 445 
on ChEMBL, will require further study.  446 
 All remaining proteins suggested as potentially causal by MR analysis showed discordant 447 
observational and genetic associations, indicating that circulating levels are importantly affected 448 
by factors beyond their instrumented cis-pQTLs. Two proteins, ADIPOQ and CD14, showed 449 
inverse genetic associations with HF and HFpEF. Produced by adipose tissue but also by 450 
myocardium and skeletal muscle, ADIPOQ (adiponectin) has well-established insulin-451 
sensitizing, anti-inflammatory, and cardioprotective properties.36 Yet, in contrast to the inverse 452 
associations of circulating ADIPOQ with CVD documented in younger, healthy adults, plasma 453 
levels of the adipokine have been positively associated with CHD, HF and mortality in older 454 
persons or those with comorbidities – in CHS or elsewhere.37 There is moreover evidence that 455 
the latter associations can be U-shaped.38,39 This has complicated MR analysis, which has failed 456 
to find evidence of a causal association with CVD outcomes.36 The finding that a single pQTL 457 
was associated with overall HF and HFpEF, the latter at Bonferroni-corrected significance, is 458 
novel. It is also intriguing, because there was no corroborating evidence of this single variant’s 459 
causal role for these outcomes. Given that an oral adiponectin receptor agonist exists,36 the 460 
present association should motivate study of a potential therapeutic role for such compounds for 461 
HF and, particularly, HFpEF.  462 

In turn, CD14 (cluster of differentiation 14) is a membrane glycoprotein expressed on 463 
monocytes/macrophages, adipocytes and hepatocytes, as well as cardiomyocytes, among other 464 
cell types.40 Binding of  lipopolysaccharide to surface CD14 activates pro-inflammatory 465 
pathways, while also stimulating shedding of the membrane glycoprotein as a soluble form 466 
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(sCD14).40 This makes sCD14 a marker of metabolic endotoxemia. Prior work in CHS did not 467 
reveal an association of sCD14 with insulin resistance or incident diabetes after adjustment for 468 
other inflammatory markers, but did show that sCD14 was associated with incident HF and, 469 
especially, HFpEF.41 The inverse genetic association identified here with HF and HFpEF was 470 
directionally opposite not only to the observational association, but also to the positive genetic 471 
association detected with diabetes. The explanation for these divergent associations is unclear. It 472 
is known, however, that sCD14 can quench circulating lipopopolysaccharide by transferring it to 473 
lipoprotein particles, and that sCD14-lipopolysaccharide complexes can deposit on endothelial 474 
cells to produce inflammatory activation.40,41 Our colocalization analysis also showed evidence 475 
for distinct causal variants for CD14 level and HF, suggesting that molecular features of the 476 
protein separate from its level could be driving its relationships with outcomes. How such 477 
molecular features or other factors determine the distinct associations documented here merits 478 
additional study.  479 

Of the two proteins that emerged as potentially causally associated with HFrEF, 480 
ARHGAP1 (Rho GTPase-Activating Protein 1) is an intracellular protein that is ubiquitously 481 
expressed. Circulating levels of the protein have been documented to increase after clinical MI.42 482 
Experimental data show that cardiomyocyte ischemia induces production of ARHGAP1, which 483 
stimulates apoptosis.43 Consistent with this, cardiomyocyte expression of ARHGAP1 is 484 
increased in ischemic cardiomyopathy.44 These findings would explain the positive observational 485 
association documented here with HFrEF, but not the inverse genetic association with this HF 486 
subtype or AF. ARHGAP1 appears to play a role in regulation of iron transport across 487 
membranes, however, such that higher genetically determined levels could protect against iron 488 
dysregulation in dilated cardiomyopathy.45,46  Although this protein lacks known potential 489 
therapeutic ligands, the present findings supporting a possible causal role in HFrEF render it an 490 
important target for future study.    491 

The second protein, C9 (complement 9), is a component of the membrane attack complex  492 
involved in disruption or lysis of microbial and diseased cells.47 Such terminal complement 493 
activation has been implicated in the pathogenesis of dilated cardiomyopathy as part of the 494 
immune response to myocardial injury.48,49 C9 was previously associated with incident HF and 495 
both subtypes in the ARIC and HUNT study,11 but here we show support for a causal association 496 
for HFrEF. This finding strengthens the case that existing47 or new complement-modulating 497 
therapies might have a place in HFrEF prevention or treatment. 498 
 499 
Limitations 500 
 Several limitations to our study deserve attention. We used fixed-effects meta-analysis to 501 
maximize discovery across two separate cohorts of older adults. This approach yields average 502 
associations, and is unconcerned with population differences. Future studies will need to 503 
investigate how associated proteins vary in distinct populations. Our investigation identified 504 
proteins associated with HF, HFpEF and HFrEF in observational and MR analyses, but these 505 
findings must be interpreted in the context of substantial differences in the number of cases 506 
available for overall HF versus its subtypes, which had more limited power. Hence, while 507 
associations documented for a given HF subtype suggest a preferential role in pathophysiology, 508 
they do not exclude a consequential role for the other subtype. For MR analysis, all but one of 509 
the genetic associations occurred at nominal, but not Bonferroni-corrected, significance. Of 510 
these, that of CD14 with HF showed evidence of distinct causal variants in colocalization 511 
analysis, which violates MR assumptions for the lead variant and precludes its use for causal 512 
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inference. Among the others, only that of C9 with HFrEF had suggestive evidence of 513 
colocalization. As such, the associations for these proteins lack corroboration for a potential 514 
causal role, and a judgment to that effect will require separate supportive evidence. In our 515 
observational analyses, substantial proportions of HF cases could not be subclassified, 516 
particularly in CHS. Nor did we have complete characterization of valvular heart disease in CHS 517 
or AGES-RS to evaluate its impact on HF here. Nonetheless, our data suggest that the 518 
contributions of such primary valvular disease as severe aortic stenosis to our incident HF cases 519 
was modest.50 The current findings come predominantly from older populations of European 520 
ancestry, and do not necessarily apply to other groups. Our pathway enrichment analysis method 521 
could not be combined across CHS and AGES-RS, and was therefore limited by each cohort’s 522 
sample size, likely accounting for the method’s modest yield in canonical pathways and the 523 
pathway differences observed.   524 
 525 
Conclusions 526 
 In this large-scale proteomic investigation of older adults, we identified 70 novel protein 527 
markers of incident HF or its subtypes, 55 of which were externally replicated. We also 528 
implicated 5 new possibly causal proteins for HF, 2 of which were specifically linked to HFpEF, 529 
as well as another 2 new possibly causal proteins for HFrEF. These findings open the way for 530 
additional investigation of these protein markers for risk stratification and biological insight, and 531 
support prioritization of a number of suggested causal proteins for investigation as potential 532 
candidates for therapeutic testing and development.   533 
 534 
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Figure Legends:  1247 
 1248 
Figure 1. Associations of Individual Aptamers with Incidence of Overall Heart Failure. 1249 
Volcano plot of individual aptamer associations with incidence of overall heart failure after 1250 
multivariable adjustment in CHS and AGES-RS. Red dots denote significance at the Bonferroni-1251 
corrected level.   1252 
AGES-RS = Aging Gene/Environment Susceptibility – Reykjavik Study; CHS = Cardiovascular Health Study; 1253 
HF = Heart failure. 1254 
 1255 
Figure 2. Associations of Individual Aptamers and Incidence of HFpEF and HFrEF. 1256 
Volcano plots of individual aptamer associations with incidence of HFpEF (Panel A) and HFrEF 1257 
(Panel B) after multivariable adjustment in CHS and AGES-RS.   1258 
AGES-RS = Aging Gene/Environment Susceptibility – Reykjavik Study, CHS = Cardiovascular 1259 
Health Study; HFpEF = Heart failure with preserved ejection fraction; HFrEF = Heart failure 1260 
with reduced ejection fraction. 1261 
 1262 
Figure 3. Relations of Aptamer Hits for Each HF Subtype with the Alternate Subtype and 1263 
Overall HF. Forest plot of aptamers associated with HFpEF and/or HFrEF at Bonferroni-1264 
corrected significance after multivariable adjustment, showing corresponding associations with 1265 
the alternate subtype and overall heart failure.  1266 
*Significant at the Bonferroni-corrected threshold.   1267 
HF = Heart failure; HFpEF = Heart failure with preserved ejection fraction; HFrEF = Heart 1268 
failure with reduced ejection fraction. 1269 
 1270 
Figure 4. Differential Strengths of Associations with HFpEF and HFrEF for Aptamer Hits 1271 
for Overall HF. Aptamers associated with overall HF showing differential strengths of 1272 
association between HFpEF and HFrEF at a nominal level of significance.   1273 
HF = Heart failure; HFpEF = Heart failure with preserved ejection fraction; HFrEF = Heart 1274 
failure with reduced ejection fraction. 1275 
 1276 
Figure 5. Mendelian Randomization Analysis of Aptamer Hits for Overall HF. Genetic 1277 
associations with incident heart failure for aptamers instrumented in ARIC and HERMES2 that 1278 
met a nominal level of significance.   1279 
ARIC = Atherosclerotic Risk in Communities; HERMES2 = Heart Failure Molecular 1280 
Epidemiology for Therapeutic Targets Consortium 2; HF = Heart failure; MR = Mendelian 1281 
randomization. 1282 
 1283 
Figure 6. Mendelian Randomization Analysis of Aptamer Hits for HF Subtypes. Genetic 1284 
associations with HFpEF (Panel A) or HFrEF (Panel B) for aptamers observationally associated 1285 
with either subtype at Bonferroni significance, differentially observationally associated with the 1286 
subtypes at nominal significance, or showing nominally significant genetic associations with 1287 
overall heart failure.   1288 
HF = Heart failure; HFpEF = Heart failure with preserved ejection fraction; HFrEF = Heart 1289 
failure with reduced ejection fraction; MR = Mendelian randomization. 1290 
 1291 
 1292 
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