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Abstract

Background: Heart failure (HF) and its main subtypes, preserved (HFpEF) and reduced ejection fraction
(HFrEF), impose an enormous health burden on elders. Assessment of the circulating proteome to
illuminate pathogenesis could open new opportunities for treatment.

Methods: We conducted a plasma proteomics screen of incident HF and its subtypes in two older
population-based cohorts, the Cardiovascular Health Study (CHS) and the Aging, Gene/Environment
Susceptibility — Reykjavik Study (AGES-RS). The two studies used SomaLogic platforms, with 4,404
aptamers in common. Multivariable Cox models were fit to evaluate individual-protein associations with
HF, HFpEF and HFrEF separately in each cohort, and study-specific associations combined by fixed-
effects meta-analysis. Replication was performed in the Atherosclerosis Risk in Communities (ARIC)
cohort. Two-sample Mendelian randomization (MR) of HF and its subtypes, along with colocalization
analysis, was performed to support causal inference.

Results: Among 8,599 participants, 1,590 experienced incident HF (536 HFpEF, 471 HFrEF). There
were 119 proteins associated with HF, 15 proteins with HFpEF, and 11 proteins with HFrEF, at
Bonferroni-corrected significance. Among these, 9 have never previously been identified for
cardiovascular diseases, and another 61 represent new associations with incident HF or its subtypes. Of
these 70 proteins, 55 of the 66 available replicated externally. MR analysis revealed 7 proteins genetically
associated with HF at nominal significance; 2 were separately associated with HFpEF, and another 2 with
HFrEF. Seven of these 9 proteins (NCDP1, APOF, LMAN2, ADIPOQ, CD14, ARHGAPI1, C9) showed
new, possibly causal associations, although we did not detect evidence for colocalization.

Conclusions: In this large-scale proteomic study involving three longitudinal cohorts of older adults, we
identified and replicated 55 novel protein markers of HF or its subtypes, and 7 new, possibly causal
proteins. These proteins may enhance risk prediction, improve understanding of pathobiology, and help
prioritize targets for therapeutic development of these foremost disorders in elders.

Key Words: Heart Failure, Proteomics, Mendelian randomization analysis

Non-standard Abbreviations and Acronyms

AGES-RS=Aging Gene/Environment Susceptibility — Reykjakiv Study, AF=Atrial fibrillation,
ARIC=Atherosclerosis Risk in Communities, CHD=Coronary heart disease, CHS=Caardiovascular
Health Study, CVD=Cardiovascular disease, GWAS=Genome-wide association study, HF=Heart failure,
HFpEF-Heart failure with preserved ejection fraction, HFrEF=Heart failure with reduced ejection
fraction, MR=Mendelian randomization, pQTL- Protein quantitative trait loci
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Clinical Perspective
What is New?

119 proteins associated with incident HF were identified, of which 68 are novel and 8 never
previously linked to HF precursors. For HF subtypes, 15 and 11 proteins were identified for
incident HFpEF and HFrEF, respectively, with 1 novel protein identified for each subtype. Of the
70 novel proteins, 55 replicated in an external cohort.

Mendelian randomization analysis of incident HF and its subtypes using newly available
HERMES2 GWAS data identified genetic associations for 9 proteins with incident HF or its
subtypes. This included 5 novel proteins as possibly causal candidates for HF (AdipoQ, CD14,
NCDP1, APOF, LMAN2), 2 for HFpEF (AdipoQ, CD14), and 2 for HFrEF (ARHGAP1, C9),
although their corresponding pQTLs were not supported as single causal variants by
colocalization analysis.

What are the Clinical Implications?

HF imposes outsized morbidity and mortality, with treatment options lacking or only partly
effective. The heterogeneity of HF, particularly HFpEF, challenges understanding of their
molecular determinants as targets for effective therapeutics.

The 55 newly identified and replicated protein markers and 7 new causal candidates offer to
enhance risk prediction, advance biological understanding, and help streamline development and
testing of novel therapies of HF and its subtypes in older adults, the segment of the population
most affected by these disorders.
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Introduction

Heart failure (HF) represents a global healthcare burden, which predominantly falls upon older
adults.! With aging of the population, the overall prevalence of HF is expected to triple by 2060,
underscoring the crucial need for improved HF prevention efforts.>* The disorder is classified into two
major subtypes, HF with reduced ejection fraction (HFrEF) and HF with preserved ejection fraction
(HFpEF),> which carry similarly pronounced morbidity and mortality.® Although therapeutic advances
have been achieved for HFrEF, proven treatments for HFpEF remain limited.”® This therapeutic gap
likely reflects the distinct pathophysiologies of the two HF subtypes. While HFrEF is characterized by
myocardial injury, cardiomyocyte loss, and neurohormonal activation, HFpEF is thought to result from
microvascular dysfunction in the setting of comorbidities, with attendant cardiomyocyte stiffness and
myocardial interstitial fibrosis.”!° Improved prevention and treatment of the two subtypes requires better
understanding of these disorders’ development and targetable pathophysiological pathways.

Genome-wide association studies (GWAS) have sought to identify common and rare
susceptibility variants for HF, exposing associations with coronary heart disease (CHD), atrial fibrillation
(AF), and obesity.!""'> However, the identified loci thus far explain a minor proportion of HF risk and only
a limited number of these have been linked to a targetable protein or pathway for therapies.!*!> High-
throughput plasma proteomics offers a powerful tool to evaluate the molecular determinants of HF and its
subtypes, since circulating proteins released from cells integrate genetic and environmental inputs, and
constitute gene products more directly targetable by therapeutic interventions.'* Recent proteomic studies
discovered several proteins to be associated with incident HF,!121619 with associations extended to
HFpEF and HFrEF."? Existing proteomic studies in elders have included only moderate numbers of HF
events, however, and been limited in their capacity to evaluate HF subtypes. Nor have such studies been
in a position to pursue causal inference specifically for HF subtypes through Mendelian randomization
(MR) approaches.

We undertook large-scale plasma proteomics in a U.S. population-based cohort study of older
adults using Somal.ogic’s high-throughput aptamer technology, and meta-analyzed our findings with
those of a European population-based cohort study of elders that applied a similar proteomic platform, in
order to enhance power to identify protein markers associated with overall HF, as well as HFpEF and
HFrEF. Significant aptamer hits were then tested in a separate U.S. cohort of older adults. We
subsequently leveraged a recently completed GWAS of HF and its subtypes to investigate the potential
causal basis of identified protein associations.

Methods

Requests by qualified researchers to access the datasets supporting this study may be sent to CHS at
CHSDATA@uw.edu, to AGES-RS at AGES data request(@hjarta.is, and to ARIC at aricpub@unc.edu.
The research was approved by the institutional review boards of all participating studies and all
participants provided written informed consent. Detailed methods for the present work are provided in the
Supplemental Materials.

Results
Cohort Characteristics

The baseline characteristics for the primary CHS and AGES-RS cohorts are presented in
Table 1. The cohorts were largely comparable in demographic and clinical characteristics.
Notable differences included the 18% Black and 1% Hispanic race/ethnic composition of CHS,
its higher use of antihypertensive medication, lower lipid concentrations and greater diabetes
frequency, as contrasted with AGES-RS. The cumulative incidence of HF was 4-fold higher in
CHS, reflecting its longer follow-up time (median 11.3 years, maximum 22.1 years), than in
AGES-RS (median follow-up time 5.4 years, maximum 7.9 years). Of the 1,150 incident HF
events in CHS, 30% were HFpEF, 26% were HFrEF, and 43% were unclassified. In turn, of the
440 incident HF events in AGES-RS, 43% were HFpEF, 38% were HFrEF, and 19% were
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unclassified. As shown in Supplemental Table 7, participants in CHS and/or AGES-RS who
went on to experience a HF event were older, less often women, had higher adiposity (CHS
only), were less frequently never smokers (AGES-RS), exhibited more hypertension and diabetes
but lower HDL cholesterol, had more prevalent and incident MI, and showed lower eGFRecr.

The ARIC replication cohort was of similar age (75.5 +5.1) and sex distribution (58.5%
female) as CHS and AGES-RS, with comparable proportion of Black participants (17.0%) as
CHS. CVD risk factors were similar to one or both primary cohorts, but ARIC participants had
more diabetes (34.8%) and prevalent MI (14.7%), though incident MI (6.3%) was lower. There
were 621 incident HF events during a median follow-up of 9.5 years (maximum, 11.6 years), of
which 299 (48%) were HFpEF, 227 (37%) were HFrEF, and 95 (15%) unclassified.

Individual Proteins and Incident HF and Its Subtypes

The multivariable-adjusted associations of individual SomaScan aptamers and incident
HF in CHS and AGES-RS are presented separately for each cohort in Supplemental Table 8.
Meta-analysis of the associations for these 4,404 aptamers across the two cohorts showed that
128 were significantly associated with incident HF after multiple testing-correction (Figure 1 and
Supplemental Table 9). These 128 aptamers correspond to 119 unique proteins, of which 68 are
newly linked to incident HF, including 8 proteins not previously associated with prevalent HF,
HF predisposing conditions (CHD or AF), or HF-related phenotypes or outcomes in preclinical
or clinical studies (Supplemental Table 10). The most significant association was for NPPB (B-
type natriuretic peptide), with significant associations also seen for TNNI3 (troponin I) and
CST3 (cystatin C), consistent with well-established cardiac and kidney biomarkers of HF risk.

Corresponding cohort-specific associations of individual aptamers with HFpEF and
HFrEF following multivariable adjustment are given in Supplemental Tables 11 and 12,
respectively. Meta-analysis of the two cohorts revealed that 15 aptamers (15 unique proteins)
were significantly associated with incident HFpEF and 12 aptamers (11 unique proteins) with
incident HFTEF (Figure 2A and 2B; Supplemental Tables 13 and 14, respectively). All but one
aptamer for each HF subtype showed significant associations with overall HF. The exceptions
were DEFB135 for HFpEF and ARHGAP1 for HFrEF, the former representing a novel
association with HF or related phenotypes or outcomes, the latter a new association with
incidence of any form of HF (Supplemental Table 10). Among aptamers significantly associated
with a HF subtype, 3 (NPPB, SVEP[11178-21], TREM1) were associated in a concordant
direction with both HFpEF and HFrEF (at Bonferroni-corrected significance, Figure 3). In
addition, among aptamers associated with overall HF, 8 showed different strengths of association
with HFpEF and HFrEF at a nominal level of significance, of which 3 proteins did not meet the
Bonferroni-corrected threshold for significance of associations in the subtype-specific analysis
(Figure 4).

We next examined whether aptamers significantly associated with HF and its subtypes in
the CHS and AGES-RS meta-analysis replicated in ARIC (Supplemental Tables 15-17). Of the
128 significant aptamers (119 proteins) for HF, 115 aptamers (112 proteins) were measured in
ARIC; among these, 109 aptamers (106 proteins) showed associations at nominal significance
with HF, and 88 aptamers (85 proteins) showed associations at Bonferroni-corrected significance
(p=0.05/115=4.3x10). For HFpEF, of 15 aptamers/proteins, 14 were measured in ARIC, and all
but one replicated, each at Bonferroni-corrected significance (p=0.05/14=0.0036). For HFrEF, all
12 aptamers (11 proteins) were measured in ARIC, of which 10 aptamers (9 proteins) replicated,
all at Bonferroni-corrected significance (p=0.05/12=0.0042). As shown in Supplemental Table
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10, among the 68 proteins newly associated with HF in CHS and AGES-RS, 3 did not replicate
and 4 were not measured in ARIC. Of the remaining 61 proteins replicated in ARIC, 54 did so at
Bonferroni-corrected significance. All 8 proteins not previously associated with prevalent HF,
predisposing conditions or HF-related outcomes replicated in ARIC, 7 of them at Bonferroni-
corrected significance. Both new proteins associated with HF subtypes replicated, that for
HFpEF at Bonferroni-corrected significance, and that for HFrEF at nominal significance.

In sensitivity analyses, replacement of eGFRcr with eGFRcr-cys in the main model in
CHS led to meaningful attenuation (=15% change in the beta coefficient) for 57 of the 128
aptamers shown significantly associated with HF in the CHS and AGES-RS meta-analysis, of
which 33 represented novel aptamers/proteins (Supplemental Table 18 and Supplemental Table
10). For HFpEF and HFrEF, using eGFRcr-cys in lieu of eGFRcr resulted in meaningful
attenuation of beta coefficients for 3 of 15 aptamers and 3 of 12 aptamers, respectively, though
not either of the two novel proteins (Supplemental Tables 19-20). When eGFRcr categories
replaced continuous eGFRcr in the main model for both CHS and AGES-RS, 35 of the 128 HF-
associated aptamers exhibited meaningful attenuation of their beta coefficients (Supplemental
Tables 21 and 10). Of these, 20 aptamers/proteins were new and 10 lost Bonferroni-corrected
significance. For HFpEF and HFrEF, eGFR categorization led to meaningful attenuation of
associations for 2 of 15 proteins and 2 of 12 aptamers, respectively, all of which became non-
significant at the Bonferroni threshold (Supplemental Tables 22-23 and 10). There was no
meaningful attenuation of the single novel protein for each HF subtype.

MR Analysis

For MR analysis, after exclusion of NPPB, 84 of the 128 aptamers associated with HF
could be instrumented in ARIC. Of these, 7 aptamers (7 unique proteins) showed genetic
associations with overall HF at a nominal level of significance (p<0.05), though not after
Bonferroni correction: LMAN2, CCDC126, APOF, CD14, NPDCI1, FSTL3 and ADIPOQ
(Figure 5). All replicated in ARIC at a nominal (p<0.05) significance level, and 5 at Bonferroni-
corrected significance (Supplemental Table 15). Among these 7 proteins, 3 showed directionally
concordant observational and genetic associations (APOF, LMAN2 and NPDC1) (Supplemental
Table 24).

In the case of HF subtypes, MR analysis was performed for the aptamers showing
significant associations with HFpEF (11 aptamers instrumented) and HFrEF (9 aptamers
instrumented). MR analysis was also conducted on additional aptamers associated with overall
HF that differed significantly in their relations with HFpEF vs. HFrEF (2 and 1 aptamers
instrumented, respectively), and for the 7 proteins that showed significant genetic associations
with overall HF. These analyses revealed nominally significant genetic associations for 2
proteins with each subtype (Figure 6). For HFpEF, the 2 proteins were ADIPOQ and CD14, also
genetically associated with overall HF, of which ADIPOQ retained significance after Bonferroni
correction. In the case of HFrEF, the 2 proteins were ARHGAP1 and C9. Both proteins were
significantly associated with this subtype in the observational analysis, and both showed
significant associations, at least at nominal significance, in ARIC. Of the 4 proteins genetically
related to HF subtypes, only C9 showed a concordant direction with the observational
association (Supplemental Table 24).

None of the aptamers that emerged as significantly associated with HF or its subtypes in
MR analysis could be instrumented with more than 2 variants, so sensitivity analyses for
horizontal pleiotropy involving multiple variants could not be conducted. We did perform
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colocalization analyses for significant pQTLs identified in MR analysis, the results of which are
shown in Supplemental Table 25. Such colocalization analyses did not reveal evidence for a
single causal variant for corresponding protein level and either overall HF or its subtypes (all H4
posterior probabilities <75%). There was some evidence, however, that the genetic association
for one protein, C9, and HFrEF might reside in a single causal variant, as suggested by an H4
posterior probability of 66.9%. By contrast, there was evidence that one protein, CD14, had
distinct causal variants for its level and HF (H3 posterior probability of 91.5%).

In exploratory analyses, we examined whether proteins genetically associated with HF or
its subtypes also bore genetic associations with predisposing factors for HF. As shown in Table
2, all proteins except for ADIPOQ and C9 showed genetic associations with at least one
predisposing factor at a nominally significant level. APOF showed a genetic association with
CHD; CD14, CCDC126 and NPDC1 with diabetes; FSTL3 and LMAN?2 with hypertension and
diabetes; and ARHGAP1 with AF. With the exception of FSTL3 and LMAN?2 with
hypertension, and LMAN2 and NPDC1 with diabetes, these associations were also significant
upon Bonferroni correction. All but one of the foregoing genetic associations with predisposing
conditions were in the same direction as for HF or its subtypes. The exception was CD14, which
showed a genetically inverse association with HF, but a genetically positive association instead
with diabetes.

Last, we performed pathway enrichment analysis separately in the two cohorts using
KEGG canonical pathways. In CHS, only two pathways, the WNT signaling and WNT5A-ROR
signaling pathways, showed significant associations with HF after Bonferroni correction
(Supplemental Table 26). Meanwhile, AGES-RS showed three pathways, SARS-CoV-2-Spike-
to-ANGII-ATIR-NOX2, KSHV-VGPCR-to-GNB-G-ERK, and TRK-Fusion Kinase-to-RAS-
ERK, to be associated with overall HF at Bonferroni significance. None the pathways identified
in each cohort showed significance in the other cohort. There were no Bonferroni-significant
associations of KEGG canonical pathways represented in the data with either HF subtype
(Supplemental Tables 27-28).

Discussion
Main Findings

In this large-scale proteomics study of two population-based cohorts of older adults, we
identified 128 individual aptamers (119 unique proteins) associated with incident HF after
adjustment for clinical covariates at a Bonferroni-corrected level of significance. Of these protein
associations, 68 represent new links with incident HF, and 8 are first associations of any kind
with HF phenotypes, HF predisposing conditions or HF-related outcomes. We separately found
15 aptamers (15 unique proteins) and 12 aptamers (11 unique proteins) to be independently
associated with incident HFpEF and HFrEF, respectively, at Bonferroni-corrected significance,
including 1 aptamer/protein for each subtype that was not detected in the overall HF analysis.
Each of these represents a new association with any form of incident HF, with the HFpEF-related
protein DEFB135 never previously linked to prevalent HF or predisposing conditions. Among
the 66 of the 70 novel proteins associated HF or HF subtypes that were measured in ARIC, 55
replicated at Bonferroni-corrected significance, and another 8 at nominal significance. Of the 128
aptamers related to HF, 8 showed different strengths of association with subtypes at a nominal
level of significance, including 3 that were not identified in the subtype-specific screen. We
pursued exploratory pathway enrichment analysis, which detected only a limited number of
canonical pathways associated with HF, though not its subtypes, in each cohort. In MR analyses,
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we found genetic associations for 7 HF-associated proteins at a nominal level of significance,
including 2 proteins (LMAN2 and NPDC1) not previously linked to HF incidence, 1 (CCDC126)
with an earlier genetic association with HF, and several (ADIPOQ, CD14, APOF, FSTL3) with
previously reported HF associations. Two of these proteins (ADIPOQ, CD14) newly showed
nominally significant genetic associations with HFpEF — which for ADIPOQ was also significant
after Bonferroni correction — while two HFrEF-specific proteins (ARHGAP1, C9) newly
exhibited nominally significant genetic associations with this subtype. There was no evidence by
colocalization analysis, however, that any of the causally implicated pQTLs by MR represented
single causal variants for both protein levels and HF or HF subtypes.

Prior Literature

A number of studies have applied proteomics to identify circulating protein markers of
incident HF or its subtypes with the goal of improving prediction or illuminating
pathobiology.'*1%2% These have proven successful in advancing predictive accuracy and
implicating potentially causal proteins for therapeutic targeting. Most prior studies examined
earlier-generation proteomic platforms, but three recent reports — one from AGES-RS, and two
ARIC — evaluated the larger SomaScan 5K platform.

The AGES-RS report applied age- and sex-adjusted LASSO to identify partly
overlapping protein panels predictive of HF and its subtypes.?’ These included 10 proteins each
for HF and HFrEF, the strongest for both being NPPB, MMP12 and TNNI3; and 8 proteins for
HFpEF, the strongest being NPPB, MMP12 and TIMP4. These panels improved discrimination
over clinical factors, especially early after measurement, findings that were replicated in CHS.

The first ARIC report identified 37 plasma proteins associated with incident HF across
participants from two visits (mid-life and late-life) and mid-late life participants from the HUNT
study, of which most showed comparable associations with HF subtypes in the ARIC late-life
sample.!! The second screened for proteins associated with both frailty and HF in ARIC,
identifying 18 plasma proteins (14 new compared with the earlier report) associated with these
disorders. A majority of these proteins were associated with HFpEF and a minority with HFrEF,
and all were replicated in CHS.!? In the first report, MR analysis documented a trans-pQTL for
SVEP1 associated with HF at Bonferroni-corrected significance, while the second report
identified cis-pQTLs for EFEMP1, FSTL3 and TREMI1 as associated with HF at nominal
significance.

The present study extends these previous findings by virtue of its exclusive focus on
adults late in the life course; its assessment of individual aptamer associations after extensive
adjustment for clinical risk factors, unlike the prior AGES-RS report; use of meta-analysis to
amplify the number of incident HF or HF subtype events, which are ~3-fold greater than in the
prior ARIC late-life report; involvement of the older ARIC cohort for replication of significant
protein associations; and leveraging of HERMES?2 to conduct specific MR analysis of HF
subtypes and to increase power for MR analysis of overall HF. Specifically, this investigation
newly identifies 70 protein markers of incident HF or its subtypes across two separate cohorts,
including 1 novel protein marker each for HFpEF and HFrEF, of which 55 showed independent
replication at a stringent significance threshold. The current report also newly suggests 5 proteins
as potentially causally associated with HF, of which 2 showed a possible causal link with
HFpEF, as well as another 2 with HFrEF, although lack of supportive evidence from
colocalization analysis makes their causal nature uncertain.
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Potential Clinical and Biological Implications

Identification of multiple new biomarkers of incident HF or its subtypes has potential
implications for risk prediction, as well as therapeutics. It is notable that multiple biomarkers,
new or established, were inversely associated with HF. None were so associated with HFpEF,
and only two were inversely associated with HFrEF, although the number of incident events for
these subtypes was more limited. Insofar as the identified inverse associations reflect or drive
protective processes, they are of particular interest for identifying potential preventive
interventions. Of various proteins or peptides that have been previously recognized or validated
clinically as HF biomarkers, it is of interest that only a few of their corresponding aptamers
achieved Bonferroni-corrected significance, and number did not achieve even nominal
significance (Supplemental Table 29). Although SomaLogic’s aptamer-based platform has the
advantage of achieving higher precision and analytic breath than Olink’s antibody-based
platform, it has been found to have comparatively lower target specificity and phenotype
associations.?! Our findings point to limitations in using aptamers in place of immunoassays for
certain previously identified HF biomarkers in clinical settings.

Findings from our sensitivity analyses adjusting for different measures of CKD, which
revealed meaningful attenuation for substantial proportions of aptamer hits, also have
implications for understanding relevant pathophysiologic mechanisms. That CST3, a top hit for
HF (and HFpEF), remained significantly associated with this outcome after eGFRcr-cys
adjustment likely reflects the influence on cystatin C levels of non-GFR sources also associated
with HF. These include obesity, diabetes, inflammation and thyroid dysfunction but remain
incompletely characterized.?” There could also be an impact of differential measurement of
cystatin C by the aptamer-based and ELISA-based method, although the high correlation (1=0.9)
between the two suggests that such impact would be modest.?® The attenuation of aptamer
associations with adjustment by eGFRcr categories suggests the presence of non-linear effects
involving CKD, aptamer levels, and HF incidence that need to be considered in such proteomic
analyses. However, the observed attenuation, whether by eGFRcr-cys or eGFRcr categories,
does not necessarily reflect confounding and could signify the impact of aptamers on HF risk
through CKD-related pathways.** Further study of the relationship between affected proteins,
CKD and HF is necessary to disentangle the pathways involved.

The suggestion of possible causal associations for several proteins may also have
implications for understanding disease mechanisms and developing therapeutics. New
associations of genetically determined protein levels were documented for LMAN2, APOF,
CD14, NPDCI1 and ADIPOQ with overall HF, ADIPOQ and CD14 with HFpEF, and
ARHGAP1 and C9 with HFrEF. Genetic associations previously reported for FSTL3 and
CCDC126 were confirmed,'** with new measurement of circulating CCDC126 level showing
that the observational association is directionally discordant (inverse) from the genetic
association (positive). Nonetheless, our colocalization analyses failed to detect evidence that
corresponding pQTLs for these proteins represent single causal variants for HF or its subtype,
such that suggestions of causal associations uncovered here will require additional functional
work to determine the true pathophysiologic contributions of these genetically linked proteins
and HF outcomes.

Among the newly suggested causal proteins, NPDC1, APOF, and LMAN2 showed
concordant positive associations in observational and genetic analyses. NPDC1 (neuronal
proliferation, differentiation and control 1 protein) is primarily expressed in neural tissue, where
it regulates neuronal proliferation and differentiation, but cardiac and vascular expression also
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occur (GTEx).2% In contrast to the positive association with HF documented here, NPDC1 was
previously inversely associated with incident CVD (MI, stroke, and HF),?¢ and our exploratory
MR analysis linked it inversely to diabetes.?” The basis for these contrary associations is unclear,
as is NPDC1’s biological role in HF or glucose dysregulation. Nevertheless, empagliflozin
treatment was documented to reduce circulating NPDC1 in HFrEF, illustrating that NPDC1
levels are modifiable in a manner directionally consistent with our findings.?® Additional
investigation is necessary to determine whether and how this protein could be manipulated for
effective HF treatment.

APOF (apolipoprotein F), a liver-derived protein predominantly found in HDL particles,
plays a role in reverse cholesterol transport and HDL metabolism.?’ Conflicting associations
have been reported with lipoprotein particle levels, which may relate to their dependence on lipid
composition.!* APOF’s functions are complex and remain incompletely characterized. The
present findings confirm the observational association with HF previously documented for
APOF in ARIC, adding evidence of possible causality. As in ARIC, our MR analysis supports a
causal association of APOF with CHD, suggesting that the association is driven by
atherosclerosis.!! Although no drugs capable of modulating APOF were reported in the
ChEMBL database, our findings suggest that focused studies on APOF could yield fruitful
therapies for CHD and HF.

Produced by the liver, LMAN?2 (lectin, mannose binding 2) is involved in regulation of
exosome protein trafficking,*® and closely influences macrophage phagocytotic activity.>' The
protein is shed from the endothelial glycocalyx in sepsis,*? which may explain its reduced
endothelial cell expression in acute ML.** Low urinary levels of LMAN2 in acute HF have also
been reported,* as has an inverse relation of plasma LMAN2 with NT-proBNP in HFpEF.**
Such associations may reflect endothelial damage or dysfunction, but our findings point to
potentially adverse actions of higher LMAN?2 expression. This protein, which lacks drug ligands
on ChEMBL, will require further study.

All remaining proteins suggested as potentially causal by MR analysis showed discordant
observational and genetic associations, indicating that circulating levels are importantly affected
by factors beyond their instrumented cis-pQTLs. Two proteins, ADIPOQ and CD14, showed
inverse genetic associations with HF and HFpEF. Produced by adipose tissue but also by
myocardium and skeletal muscle, ADIPOQ (adiponectin) has well-established insulin-
sensitizing, anti-inflammatory, and cardioprotective properties.*® Yet, in contrast to the inverse
associations of circulating ADIPOQ with CVD documented in younger, healthy adults, plasma
levels of the adipokine have been positively associated with CHD, HF and mortality in older
persons or those with comorbidities — in CHS or elsewhere.?” There is moreover evidence that
the latter associations can be U-shaped.*®*° This has complicated MR analysis, which has failed
to find evidence of a causal association with CVD outcomes.*® The finding that a single pQTL
was associated with overall HF and HFpEF, the latter at Bonferroni-corrected significance, is
novel. It is also intriguing, because there was no corroborating evidence of this single variant’s
causal role for these outcomes. Given that an oral adiponectin receptor agonist exists,*® the
present association should motivate study of a potential therapeutic role for such compounds for
HF and, particularly, HFpEF.

In turn, CD14 (cluster of differentiation 14) is a membrane glycoprotein expressed on
monocytes/macrophages, adipocytes and hepatocytes, as well as cardiomyocytes, among other
cell types.*® Binding of lipopolysaccharide to surface CD14 activates pro-inflammatory
pathways, while also stimulating shedding of the membrane glycoprotein as a soluble form
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(sCD14).%° This makes sCD14 a marker of metabolic endotoxemia. Prior work in CHS did not
reveal an association of sCD14 with insulin resistance or incident diabetes after adjustment for
other inflammatory markers, but did show that sCD14 was associated with incident HF and,
especially, HFpEF.*!' The inverse genetic association identified here with HF and HFpEF was
directionally opposite not only to the observational association, but also to the positive genetic
association detected with diabetes. The explanation for these divergent associations is unclear. It
is known, however, that sCD14 can quench circulating lipopopolysaccharide by transferring it to
lipoprotein particles, and that sCD14-lipopolysaccharide complexes can deposit on endothelial
cells to produce inflammatory activation.*>*! Our colocalization analysis also showed evidence
for distinct causal variants for CD14 level and HF, suggesting that molecular features of the
protein separate from its level could be driving its relationships with outcomes. How such
molecular features or other factors determine the distinct associations documented here merits
additional study.

Of the two proteins that emerged as potentially causally associated with HFrEF,
ARHGAP1 (Rho GTPase-Activating Protein 1) is an intracellular protein that is ubiquitously
expressed. Circulating levels of the protein have been documented to increase after clinical M
Experimental data show that cardiomyocyte ischemia induces production of ARHGAP1, which
stimulates apoptosis.*® Consistent with this, cardiomyocyte expression of ARHGAP1 is
increased in ischemic cardiomyopathy.* These findings would explain the positive observational
association documented here with HFrEF, but not the inverse genetic association with this HF
subtype or AF. ARHGAP1 appears to play a role in regulation of iron transport across
membranes, however, such that higher genetically determined levels could protect against iron
dysregulation in dilated cardiomyopathy.***¢ Although this protein lacks known potential
therapeutic ligands, the present findings supporting a possible causal role in HFrEF render it an
important target for future study.

The second protein, C9 (complement 9), is a component of the membrane attack complex
involved in disruption or lysis of microbial and diseased cells.*’ Such terminal complement
activation has been implicated in the pathogenesis of dilated cardiomyopathy as part of the
immune response to myocardial injury.**° C9 was previously associated with incident HF and
both subtypes in the ARIC and HUNT study,!! but here we show support for a causal association
for HFrEF. This finding strengthens the case that existing*’ or new complement-modulating
therapies might have a place in HFrEF prevention or treatment.

I.42

Limitations

Several limitations to our study deserve attention. We used fixed-effects meta-analysis to
maximize discovery across two separate cohorts of older adults. This approach yields average
associations, and is unconcerned with population differences. Future studies will need to
investigate how associated proteins vary in distinct populations. Our investigation identified
proteins associated with HF, HFpEF and HFrEF in observational and MR analyses, but these
findings must be interpreted in the context of substantial differences in the number of cases
available for overall HF versus its subtypes, which had more limited power. Hence, while
associations documented for a given HF subtype suggest a preferential role in pathophysiology,
they do not exclude a consequential role for the other subtype. For MR analysis, all but one of
the genetic associations occurred at nominal, but not Bonferroni-corrected, significance. Of
these, that of CD14 with HF showed evidence of distinct causal variants in colocalization
analysis, which violates MR assumptions for the lead variant and precludes its use for causal
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inference. Among the others, only that of C9 with HFrEF had suggestive evidence of
colocalization. As such, the associations for these proteins lack corroboration for a potential
causal role, and a judgment to that effect will require separate supportive evidence. In our
observational analyses, substantial proportions of HF cases could not be subclassified,
particularly in CHS. Nor did we have complete characterization of valvular heart disease in CHS
or AGES-RS to evaluate its impact on HF here. Nonetheless, our data suggest that the
contributions of such primary valvular disease as severe aortic stenosis to our incident HF cases
was modest.’® The current findings come predominantly from older populations of European
ancestry, and do not necessarily apply to other groups. Our pathway enrichment analysis method
could not be combined across CHS and AGES-RS, and was therefore limited by each cohort’s
sample size, likely accounting for the method’s modest yield in canonical pathways and the
pathway differences observed.

Conclusions

In this large-scale proteomic investigation of older adults, we identified 70 novel protein
markers of incident HF or its subtypes, 55 of which were externally replicated. We also
implicated 5 new possibly causal proteins for HF, 2 of which were specifically linked to HFpEF,
as well as another 2 new possibly causal proteins for HFrEF. These findings open the way for
additional investigation of these protein markers for risk stratification and biological insight, and
support prioritization of a number of suggested causal proteins for investigation as potential
candidates for therapeutic testing and development.
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Figure Legends:

Figure 1. Associations of Individual Aptamers with Incidence of Overall Heart Failure.

Volcano plot of individual aptamer associations with incidence of overall heart failure after

multivariable adjustment in CHS and AGES-RS. Red dots denote significance at the Bonferroni-

corrected level.

AGES-RS = Aging Gene/Environment Susceptibility — Reykjavik Study; CHS = Cardiovascular Health Study;
HF = Heart failure.

Figure 2. Associations of Individual Aptamers and Incidence of HFpEF and HFrEF.
Volcano plots of individual aptamer associations with incidence of HFpEF (Panel A) and HFrEF
(Panel B) after multivariable adjustment in CHS and AGES-RS.

AGES-RS = Aging Gene/Environment Susceptibility — Reykjavik Study, CHS = Cardiovascular
Health Study; HFpEF = Heart failure with preserved ejection fraction; HFrEF = Heart failure
with reduced ejection fraction.

Figure 3. Relations of Aptamer Hits for Each HF Subtype with the Alternate Subtype and
Overall HF. Forest plot of aptamers associated with HFpEF and/or HFrEF at Bonferroni-
corrected significance after multivariable adjustment, showing corresponding associations with
the alternate subtype and overall heart failure.

*Significant at the Bonferroni-corrected threshold.

HF = Heart failure; HFpEF = Heart failure with preserved ejection fraction; HFrEF = Heart
failure with reduced ejection fraction.

Figure 4. Differential Strengths of Associations with HFpEF and HFrEF for Aptamer Hits
for Overall HF. Aptamers associated with overall HF showing differential strengths of
association between HFpEF and HFrEF at a nominal level of significance.

HF = Heart failure; HFpEF = Heart failure with preserved ejection fraction; HFrEF = Heart
failure with reduced ejection fraction.

Figure 5. Mendelian Randomization Analysis of Aptamer Hits for Overall HF. Genetic
associations with incident heart failure for aptamers instrumented in ARIC and HERMES?2 that
met a nominal level of significance.

ARIC = Atherosclerotic Risk in Communities; HERMES2 = Heart Failure Molecular
Epidemiology for Therapeutic Targets Consortium 2; HF = Heart failure; MR = Mendelian
randomization.

Figure 6. Mendelian Randomization Analysis of Aptamer Hits for HF Subtypes. Genetic
associations with HFpEF (Panel A) or HFrEF (Panel B) for aptamers observationally associated
with either subtype at Bonferroni significance, differentially observationally associated with the
subtypes at nominal significance, or showing nominally significant genetic associations with
overall heart failure.

HF = Heart failure; HFpEF = Heart failure with preserved ejection fraction; HFrEF = Heart
failure with reduced ejection fraction; MR = Mendelian randomization.
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