

1 **Large-Scale Proteomic Profiling of Incident Heart Failure and Its Subtypes in Older Adults**

2
3 Joyce N. Njoroge, MD¹; Sandra Sanders van Wijk, MD, PhD²; Thomas R. Austin, PhD³; Jennifer A.
4 Brody, BA⁴; Colleen M. Sitlani, PhD⁵; Emily Hamerton, MS⁶; Joshua Bis, PhD³; Albert Henry, MD,
5 MSc^{7,8}; R. Thomas Lumbers, MB, BChir, PhD^{8,9} The HERMES Consortium¹⁰; Talia Seshaiyah, MS⁵; Ali
6 Shojaie, PhD⁵; Yimin Yang, PhD¹⁰; Victoria Lamberson, PhD¹¹ Bing Yu, PhD¹²; Amil M. Shah, MD,
7 MPH¹¹; Nisha Bansal, MD, MAS¹³; Sanjiv Shah, MD¹⁴; Russell P. Tracy, PhD¹⁵; Robert E. Gerszten,
8 MD¹⁶; Lori L. Jennings, PhD¹⁷; Valborg Gudmundsdottir, PhD^{18,19}; Vilmundur Gudnason, MD, PhD^{18,19};
9 Valur Emilsson, PhLic, PhD^{18,19}; Bruce M. Psaty, MD, PhD^{3,4}; Jorge R. Kizer, MD, MSc^{6,20}

10
11 1. Division of Cardiology, Department of Medicine, Stanford University, Palo Alto, CA, USA.
12 2. Division of Cardiology, Department of Medicine, Zuyderland Medical Center, Heerlen, Netherlands.
13 3. Cardiovascular Health Research Unit, Epidemiology and Health Systems and Population Health,
14 University of Washington, Seattle, WA, USA.
15 4. Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle,
16 WA, USA.
17 5. Department of Biostatistics, University of Washington, Seattle, WA, USA.
18 6. Cardiology Section, San Francisco Veterans Affairs Health Care System and Department of Medicine,
19 University of California, San Francisco, San Francisco, CA, USA.
20 7. Institute of Cardiovascular Science, University College London, London, UK.
21 8. Institute of Health Informatics, University College London, London, UK.
22 9. The National Institute for Health Research University College London Hospitals Biomedical Research
23 Centre, University College London, London, UK.
24 10. Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA,
25 USA.
26 11. Division of Cardiovascular Medicine, Department of Medicine, University of Texas Southwestern
27 Medical Center, Houston, TX, USA
28 12. School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, USA.
29 13. Division of Nephrology, Department of Medicine, and Kidney Research Institute, University of
30 Washington, Seattle, WA, USA
31 14. Division of Cardiology, Department of Medicine, Northwestern University School of Medicine,
32 Chicago, IL, USA.
33 15. Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of
34 Vermont, Burlington, VT, USA.
35 16. Department of Medicine, Division of Cardiology, Beth Israel Deaconess Hospital and Harvard
36 Medical School, Boston, MA, USA.
37 17. Novartis Institute for Biomedical Research, Cambridge, MA, USA.
38 18. University of Iceland, Faculty of Medicine, Reykjavik, Iceland.
39 19. Icelandic Heart Association, Kopavogur, Iceland.
40 20. Department of Epidemiology and Biostatistics, University of California San Francisco, CA, USA.

41 **Short Title:** Proteomics of Incident Heart Failure in Elders

42 **Corresponding Author:**

43 Jorge R. Kizer, MD, MSc
44 Cardiology Section, San Francisco Veterans Affairs Health Care System
45 4150 Clement Street, Mail Code 111C
46 San Francisco, CA, 94121, USA.

47 E-mail: jorge.kizer@ucsf.edu

48 Phone: 415-221-4810

52 ORCID ID: 0000-0001-9936-7803

53

54 Text Word Count: 11,069 (4,700 Manuscript main text)

55

56 Tables and Figures: 8

57

58 **Abstract**

59 **Background:** Heart failure (HF) and its main subtypes, preserved (HFpEF) and reduced ejection fraction
60 (HFrEF), impose an enormous health burden on elders. Assessment of the circulating proteome to
61 illuminate pathogenesis could open new opportunities for treatment.

62 **Methods:** We conducted a plasma proteomics screen of incident HF and its subtypes in two older
63 population-based cohorts, the Cardiovascular Health Study (CHS) and the Aging, Gene/Environment
64 Susceptibility – Reykjavik Study (AGES-RS). The two studies used SomaLogic platforms, with 4,404
65 aptamers in common. Multivariable Cox models were fit to evaluate individual-protein associations with
66 HF, HFpEF and HFrEF separately in each cohort, and study-specific associations combined by fixed-
67 effects meta-analysis. Replication was performed in the Atherosclerosis Risk in Communities (ARIC)
68 cohort. Two-sample Mendelian randomization (MR) of HF and its subtypes, along with colocalization
69 analysis, was performed to support causal inference.

70 **Results:** Among 8,599 participants, 1,590 experienced incident HF (536 HFpEF, 471 HFrEF). There
71 were 119 proteins associated with HF, 15 proteins with HFpEF, and 11 proteins with HFrEF, at
72 Bonferroni-corrected significance. Among these, 9 have never previously been identified for
73 cardiovascular diseases, and another 61 represent new associations with incident HF or its subtypes. Of
74 these 70 proteins, 55 of the 66 available replicated externally. MR analysis revealed 7 proteins genetically
75 associated with HF at nominal significance; 2 were separately associated with HFpEF, and another 2 with
76 HFrEF. Seven of these 9 proteins (NCDP1, APOF, LMAN2, ADIPOQ, CD14, ARHGAP1, C9) showed
77 new, possibly causal associations, although we did not detect evidence for colocalization.

78 **Conclusions:** In this large-scale proteomic study involving three longitudinal cohorts of older adults, we
79 identified and replicated 55 novel protein markers of HF or its subtypes, and 7 new, possibly causal
80 proteins. These proteins may enhance risk prediction, improve understanding of pathobiology, and help
81 prioritize targets for therapeutic development of these foremost disorders in elders.

82
83 **Key Words:** Heart Failure, Proteomics, Mendelian randomization analysis

84
85 **Non-standard Abbreviations and Acronyms**

86 AGES-RS=Aging Gene/Environment Susceptibility – Reykjavik Study, AF=Atrial fibrillation,
87 ARIC=Atherosclerosis Risk in Communities, CHD=Coronary heart disease, CHS=Cardiovascular
88 Health Study, CVD=Cardiovascular disease, GWAS=Genome-wide association study, HF=Heart failure,
89 HFpEF=Heart failure with preserved ejection fraction, HFrEF=Heart failure with reduced ejection
90 fraction, MR=Mendelian randomization, pQTL- Protein quantitative trait loci

91 **Clinical Perspective**

92 What is New?

93 • 119 proteins associated with incident HF were identified, of which 68 are novel and 8 never
94 previously linked to HF precursors. For HF subtypes, 15 and 11 proteins were identified for
95 incident HFpEF and HFrEF, respectively, with 1 novel protein identified for each subtype. Of the
96 70 novel proteins, 55 replicated in an external cohort.

97 • Mendelian randomization analysis of incident HF and its subtypes using newly available
98 HERMES2 GWAS data identified genetic associations for 9 proteins with incident HF or its
99 subtypes. This included 5 novel proteins as possibly causal candidates for HF (AdipoQ, CD14,
100 NCDP1, APOF, LMAN2), 2 for HFpEF (AdipoQ, CD14), and 2 for HFrEF (ARHGAP1, C9),
101 although their corresponding pQTLs were not supported as single causal variants by
102 colocalization analysis.

103 What are the Clinical Implications?

104 • HF imposes outsized morbidity and mortality, with treatment options lacking or only partly
105 effective. The heterogeneity of HF, particularly HFpEF, challenges understanding of their
106 molecular determinants as targets for effective therapeutics.

107 • The 55 newly identified and replicated protein markers and 7 new causal candidates offer to
108 enhance risk prediction, advance biological understanding, and help streamline development and
109 testing of novel therapies of HF and its subtypes in older adults, the segment of the population
110 most affected by these disorders.

112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140

141 **Introduction**

142 Heart failure (HF) represents a global healthcare burden, which predominantly falls upon older
143 adults.¹ With aging of the population, the overall prevalence of HF is expected to triple by 2060,
144 underscoring the crucial need for improved HF prevention efforts.²⁻⁴ The disorder is classified into two
145 major subtypes, HF with reduced ejection fraction (HFrEF) and HF with preserved ejection fraction
146 (HFpEF),⁵ which carry similarly pronounced morbidity and mortality.⁶ Although therapeutic advances
147 have been achieved for HFrEF, proven treatments for HFpEF remain limited.^{7,8} This therapeutic gap
148 likely reflects the distinct pathophysiologies of the two HF subtypes. While HFrEF is characterized by
149 myocardial injury, cardiomyocyte loss, and neurohormonal activation, HFpEF is thought to result from
150 microvascular dysfunction in the setting of comorbidities, with attendant cardiomyocyte stiffness and
151 myocardial interstitial fibrosis.^{9,10} Improved prevention and treatment of the two subtypes requires better
152 understanding of these disorders' development and targetable pathophysiological pathways.

153 Genome-wide association studies (GWAS) have sought to identify common and rare
154 susceptibility variants for HF, exposing associations with coronary heart disease (CHD), atrial fibrillation
155 (AF), and obesity.^{11,12} However, the identified loci thus far explain a minor proportion of HF risk and only
156 a limited number of these have been linked to a targetable protein or pathway for therapies.¹³⁻¹⁵ High-
157 throughput plasma proteomics offers a powerful tool to evaluate the molecular determinants of HF and its
158 subtypes, since circulating proteins released from cells integrate genetic and environmental inputs, and
159 constitute gene products more directly targetable by therapeutic interventions.¹⁴ Recent proteomic studies
160 discovered several proteins to be associated with incident HF,^{11,12,16-19} with associations extended to
161 HFpEF and HFrEF.¹³ Existing proteomic studies in elders have included only moderate numbers of HF
162 events, however, and been limited in their capacity to evaluate HF subtypes. Nor have such studies been
163 in a position to pursue causal inference specifically for HF subtypes through Mendelian randomization
164 (MR) approaches.

165 We undertook large-scale plasma proteomics in a U.S. population-based cohort study of older
166 adults using SomaLogic's high-throughput aptamer technology, and meta-analyzed our findings with
167 those of a European population-based cohort study of elders that applied a similar proteomic platform, in
168 order to enhance power to identify protein markers associated with overall HF, as well as HFpEF and
169 HFrEF. Significant aptamer hits were then tested in a separate U.S. cohort of older adults. We
170 subsequently leveraged a recently completed GWAS of HF and its subtypes to investigate the potential
171 causal basis of identified protein associations.

172 **Methods**

173 Requests by qualified researchers to access the datasets supporting this study may be sent to CHS at
174 CHSDATA@uw.edu, to AGES-RS at AGES_data_request@hjarta.is, and to ARIC at aricpub@unc.edu.
175 The research was approved by the institutional review boards of all participating studies and all
176 participants provided written informed consent. Detailed methods for the present work are provided in the
177 Supplemental Materials.

178 **Results**

179 *Cohort Characteristics*

180 The baseline characteristics for the primary CHS and AGES-RS cohorts are presented in
181 Table 1. The cohorts were largely comparable in demographic and clinical characteristics.
182 Notable differences included the 18% Black and 1% Hispanic race/ethnic composition of CHS,
183 its higher use of antihypertensive medication, lower lipid concentrations and greater diabetes
184 frequency, as contrasted with AGES-RS. The cumulative incidence of HF was 4-fold higher in
185 CHS, reflecting its longer follow-up time (median 11.3 years, maximum 22.1 years), than in
186 AGES-RS (median follow-up time 5.4 years, maximum 7.9 years). Of the 1,150 incident HF
187 events in CHS, 30% were HFpEF, 26% were HFrEF, and 43% were unclassified. In turn, of the
188 440 incident HF events in AGES-RS, 43% were HFpEF, 38% were HFrEF, and 19% were
189 440 incident HF events in AGES-RS, 43% were HFpEF, 38% were HFrEF, and 19% were

191 unclassified. As shown in Supplemental Table 7, participants in CHS and/or AGES-RS who
192 went on to experience a HF event were older, less often women, had higher adiposity (CHS
193 only), were less frequently never smokers (AGES-RS), exhibited more hypertension and diabetes
194 but lower HDL cholesterol, had more prevalent and incident MI, and showed lower eGFRcr.

195 The ARIC replication cohort was of similar age (75.5 ± 5.1) and sex distribution (58.5%
196 female) as CHS and AGES-RS, with comparable proportion of Black participants (17.0%) as
197 CHS. CVD risk factors were similar to one or both primary cohorts, but ARIC participants had
198 more diabetes (34.8%) and prevalent MI (14.7%), though incident MI (6.3%) was lower. There
199 were 621 incident HF events during a median follow-up of 9.5 years (maximum, 11.6 years), of
200 which 299 (48%) were HFpEF, 227 (37%) were HFrEF, and 95 (15%) unclassified.

201
202 *Individual Proteins and Incident HF and Its Subtypes*

203 The multivariable-adjusted associations of individual SomaScan aptamers and incident
204 HF in CHS and AGES-RS are presented separately for each cohort in Supplemental Table 8.
205 Meta-analysis of the associations for these 4,404 aptamers across the two cohorts showed that
206 128 were significantly associated with incident HF after multiple testing-correction (Figure 1 and
207 Supplemental Table 9). These 128 aptamers correspond to 119 unique proteins, of which 68 are
208 newly linked to incident HF, including 8 proteins not previously associated with prevalent HF,
209 HF predisposing conditions (CHD or AF), or HF-related phenotypes or outcomes in preclinical
210 or clinical studies (Supplemental Table 10). The most significant association was for NPPB (B-
211 type natriuretic peptide), with significant associations also seen for TNNI3 (troponin I) and
212 CST3 (cystatin C), consistent with well-established cardiac and kidney biomarkers of HF risk.

213 Corresponding cohort-specific associations of individual aptamers with HFpEF and
214 HFrEF following multivariable adjustment are given in Supplemental Tables 11 and 12,
215 respectively. Meta-analysis of the two cohorts revealed that 15 aptamers (15 unique proteins)
216 were significantly associated with incident HFpEF and 12 aptamers (11 unique proteins) with
217 incident HFrEF (Figure 2A and 2B; Supplemental Tables 13 and 14, respectively). All but one
218 aptamer for each HF subtype showed significant associations with overall HF. The exceptions
219 were DEFB135 for HFpEF and ARHGAP1 for HFrEF, the former representing a novel
220 association with HF or related phenotypes or outcomes, the latter a new association with
221 incidence of any form of HF (Supplemental Table 10). Among aptamers significantly associated
222 with a HF subtype, 3 (NPPB, SVEP[11178-21], TREM1) were associated in a concordant
223 direction with both HFpEF and HFrEF (at Bonferroni-corrected significance, Figure 3). In
224 addition, among aptamers associated with overall HF, 8 showed different strengths of association
225 with HFpEF and HFrEF at a nominal level of significance, of which 3 proteins did not meet the
226 Bonferroni-corrected threshold for significance of associations in the subtype-specific analysis
227 (Figure 4).

228 We next examined whether aptamers significantly associated with HF and its subtypes in
229 the CHS and AGES-RS meta-analysis replicated in ARIC (Supplemental Tables 15-17). Of the
230 128 significant aptamers (119 proteins) for HF, 115 aptamers (112 proteins) were measured in
231 ARIC; among these, 109 aptamers (106 proteins) showed associations at nominal significance
232 with HF, and 88 aptamers (85 proteins) showed associations at Bonferroni-corrected significance
233 ($p=0.05/115=4.3 \times 10^{-4}$). For HFpEF, of 15 aptamers/proteins, 14 were measured in ARIC, and all
234 but one replicated, each at Bonferroni-corrected significance ($p=0.05/14=0.0036$). For HFrEF, all
235 12 aptamers (11 proteins) were measured in ARIC, of which 10 aptamers (9 proteins) replicated,
236 all at Bonferroni-corrected significance ($p=0.05/12=0.0042$). As shown in Supplemental Table

237 10, among the 68 proteins newly associated with HF in CHS and AGES-RS, 3 did not replicate
238 and 4 were not measured in ARIC. Of the remaining 61 proteins replicated in ARIC, 54 did so at
239 Bonferroni-corrected significance. All 8 proteins not previously associated with prevalent HF,
240 predisposing conditions or HF-related outcomes replicated in ARIC, 7 of them at Bonferroni-
241 corrected significance. Both new proteins associated with HF subtypes replicated, that for
242 HFpEF at Bonferroni-corrected significance, and that for HFrEF at nominal significance.

243 In sensitivity analyses, replacement of eGFRcr with eGFRcr-cys in the main model in
244 CHS led to meaningful attenuation ($\geq 15\%$ change in the beta coefficient) for 57 of the 128
245 aptamers shown significantly associated with HF in the CHS and AGES-RS meta-analysis, of
246 which 33 represented novel aptamers/proteins (Supplemental Table 18 and Supplemental Table
247 10). For HFpEF and HFrEF, using eGFRcr-cys in lieu of eGFRcr resulted in meaningful
248 attenuation of beta coefficients for 3 of 15 aptamers and 3 of 12 aptamers, respectively, though
249 not either of the two novel proteins (Supplemental Tables 19-20). When eGFRcr categories
250 replaced continuous eGFRcr in the main model for both CHS and AGES-RS, 35 of the 128 HF-
251 associated aptamers exhibited meaningful attenuation of their beta coefficients (Supplemental
252 Tables 21 and 10). Of these, 20 aptamers/proteins were new and 10 lost Bonferroni-corrected
253 significance. For HFpEF and HFrEF, eGFR categorization led to meaningful attenuation of
254 associations for 2 of 15 proteins and 2 of 12 aptamers, respectively, all of which became non-
255 significant at the Bonferroni threshold (Supplemental Tables 22-23 and 10). There was no
256 meaningful attenuation of the single novel protein for each HF subtype.

257

258 *MR Analysis*

259 For MR analysis, after exclusion of NPPB, 84 of the 128 aptamers associated with HF
260 could be instrumented in ARIC. Of these, 7 aptamers (7 unique proteins) showed genetic
261 associations with overall HF at a nominal level of significance ($p < 0.05$), though not after
262 Bonferroni correction: LMAN2, CCDC126, APOF, CD14, NPDC1, FSTL3 and ADIPOQ
263 (Figure 5). All replicated in ARIC at a nominal ($p < 0.05$) significance level, and 5 at Bonferroni-
264 corrected significance (Supplemental Table 15). Among these 7 proteins, 3 showed directionally
265 concordant observational and genetic associations (APOF, LMAN2 and NPDC1) (Supplemental
266 Table 24).

267 In the case of HF subtypes, MR analysis was performed for the aptamers showing
268 significant associations with HFpEF (11 aptamers instrumented) and HFrEF (9 aptamers
269 instrumented). MR analysis was also conducted on additional aptamers associated with overall
270 HF that differed significantly in their relations with HFpEF vs. HFrEF (2 and 1 aptamers
271 instrumented, respectively), and for the 7 proteins that showed significant genetic associations
272 with overall HF. These analyses revealed nominally significant genetic associations for 2
273 proteins with each subtype (Figure 6). For HFpEF, the 2 proteins were ADIPOQ and CD14, also
274 genetically associated with overall HF, of which ADIPOQ retained significance after Bonferroni
275 correction. In the case of HFrEF, the 2 proteins were ARHGAP1 and C9. Both proteins were
276 significantly associated with this subtype in the observational analysis, and both showed
277 significant associations, at least at nominal significance, in ARIC. Of the 4 proteins genetically
278 related to HF subtypes, only C9 showed a concordant direction with the observational
279 association (Supplemental Table 24).

280 None of the aptamers that emerged as significantly associated with HF or its subtypes in
281 MR analysis could be instrumented with more than 2 variants, so sensitivity analyses for
282 horizontal pleiotropy involving multiple variants could not be conducted. We did perform

283 colocalization analyses for significant pQTLs identified in MR analysis, the results of which are
284 shown in Supplemental Table 25. Such colocalization analyses did not reveal evidence for a
285 single causal variant for corresponding protein level and either overall HF or its subtypes (all H4
286 posterior probabilities <75%). There was some evidence, however, that the genetic association
287 for one protein, C9, and HFrEF might reside in a single causal variant, as suggested by an H4
288 posterior probability of 66.9%. By contrast, there was evidence that one protein, CD14, had
289 distinct causal variants for its level and HF (H3 posterior probability of 91.5%).

290 In exploratory analyses, we examined whether proteins genetically associated with HF or
291 its subtypes also bore genetic associations with predisposing factors for HF. As shown in Table
292 2, all proteins except for ADIPOQ and C9 showed genetic associations with at least one
293 predisposing factor at a nominally significant level. APOF showed a genetic association with
294 CHD; CD14, CCDC126 and NPDC1 with diabetes; FSTL3 and LMAN2 with hypertension and
295 diabetes; and ARHGAP1 with AF. With the exception of FSTL3 and LMAN2 with
296 hypertension, and LMAN2 and NPDC1 with diabetes, these associations were also significant
297 upon Bonferroni correction. All but one of the foregoing genetic associations with predisposing
298 conditions were in the same direction as for HF or its subtypes. The exception was CD14, which
299 showed a genetically inverse association with HF, but a genetically positive association instead
300 with diabetes.

301 Last, we performed pathway enrichment analysis separately in the two cohorts using
302 KEGG canonical pathways. In CHS, only two pathways, the WNT signaling and WNT5A-ROR
303 signaling pathways, showed significant associations with HF after Bonferroni correction
304 (Supplemental Table 26). Meanwhile, AGES-RS showed three pathways, SARS-CoV-2-Spike-
305 to-ANGII-AT1R-NOX2, KSHV-VGPCR-to-GNB-G-ERK, and TRK-Fusion Kinase-to-RAS-
306 ERK, to be associated with overall HF at Bonferroni significance. None the pathways identified
307 in each cohort showed significance in the other cohort. There were no Bonferroni-significant
308 associations of KEGG canonical pathways represented in the data with either HF subtype
309 (Supplemental Tables 27-28).

310

311 **Discussion**

312 *Main Findings*

313 In this large-scale proteomics study of two population-based cohorts of older adults, we
314 identified 128 individual aptamers (119 unique proteins) associated with incident HF after
315 adjustment for clinical covariates at a Bonferroni-corrected level of significance. Of these protein
316 associations, 68 represent new links with incident HF, and 8 are first associations of any kind
317 with HF phenotypes, HF predisposing conditions or HF-related outcomes. We separately found
318 15 aptamers (15 unique proteins) and 12 aptamers (11 unique proteins) to be independently
319 associated with incident HFpEF and HFrEF, respectively, at Bonferroni-corrected significance,
320 including 1 aptamer/protein for each subtype that was not detected in the overall HF analysis.
321 Each of these represents a new association with any form of incident HF, with the HFpEF-related
322 protein DEFB135 never previously linked to prevalent HF or predisposing conditions. Among
323 the 66 of the 70 novel proteins associated HF or HF subtypes that were measured in ARIC, 55
324 replicated at Bonferroni-corrected significance, and another 8 at nominal significance. Of the 128
325 aptamers related to HF, 8 showed different strengths of association with subtypes at a nominal
326 level of significance, including 3 that were not identified in the subtype-specific screen. We
327 pursued exploratory pathway enrichment analysis, which detected only a limited number of
328 canonical pathways associated with HF, though not its subtypes, in each cohort. In MR analyses,

329 we found genetic associations for 7 HF-associated proteins at a nominal level of significance,
330 including 2 proteins (LMAN2 and NPDC1) not previously linked to HF incidence, 1 (CCDC126)
331 with an earlier genetic association with HF, and several (ADIPOQ, CD14, APOF, FSTL3) with
332 previously reported HF associations. Two of these proteins (ADIPOQ, CD14) newly showed
333 nominally significant genetic associations with HFpEF – which for ADIPOQ was also significant
334 after Bonferroni correction – while two HFrEF-specific proteins (ARHGAP1, C9) newly
335 exhibited nominally significant genetic associations with this subtype. There was no evidence by
336 colocalization analysis, however, that any of the causally implicated pQTLs by MR represented
337 single causal variants for both protein levels and HF or HF subtypes.
338

339 *Prior Literature*

340 A number of studies have applied proteomics to identify circulating protein markers of
341 incident HF or its subtypes with the goal of improving prediction or illuminating
342 pathobiology.^{13,16-20} These have proven successful in advancing predictive accuracy and
343 implicating potentially causal proteins for therapeutic targeting. Most prior studies examined
344 earlier-generation proteomic platforms, but three recent reports – one from AGES-RS, and two
345 ARIC – evaluated the larger SomaScan 5K platform.

346 The AGES-RS report applied age- and sex-adjusted LASSO to identify partly
347 overlapping protein panels predictive of HF and its subtypes.²⁰ These included 10 proteins each
348 for HF and HFrEF, the strongest for both being NPPB, MMP12 and TNNI3; and 8 proteins for
349 HFpEF, the strongest being NPPB, MMP12 and TIMP4. These panels improved discrimination
350 over clinical factors, especially early after measurement, findings that were replicated in CHS.

351 The first ARIC report identified 37 plasma proteins associated with incident HF across
352 participants from two visits (mid-life and late-life) and mid-late life participants from the HUNT
353 study, of which most showed comparable associations with HF subtypes in the ARIC late-life
354 sample.¹¹ The second screened for proteins associated with both frailty and HF in ARIC,
355 identifying 18 plasma proteins (14 new compared with the earlier report) associated with these
356 disorders. A majority of these proteins were associated with HFpEF and a minority with HFrEF,
357 and all were replicated in CHS.¹² In the first report, MR analysis documented a *trans*-pQTL for
358 SVEP1 associated with HF at Bonferroni-corrected significance, while the second report
359 identified *cis*-pQTLs for EFEMP1, FSTL3 and TREM1 as associated with HF at nominal
360 significance.

361 The present study extends these previous findings by virtue of its exclusive focus on
362 adults late in the life course; its assessment of individual aptamer associations after extensive
363 adjustment for clinical risk factors, unlike the prior AGES-RS report; use of meta-analysis to
364 amplify the number of incident HF or HF subtype events, which are ~3-fold greater than in the
365 prior ARIC late-life report; involvement of the older ARIC cohort for replication of significant
366 protein associations; and leveraging of HERMES2 to conduct specific MR analysis of HF
367 subtypes and to increase power for MR analysis of overall HF. Specifically, this investigation
368 newly identifies 70 protein markers of incident HF or its subtypes across two separate cohorts,
369 including 1 novel protein marker each for HFpEF and HFrEF, of which 55 showed independent
370 replication at a stringent significance threshold. The current report also newly suggests 5 proteins
371 as potentially causally associated with HF, of which 2 showed a possible causal link with
372 HFpEF, as well as another 2 with HFrEF, although lack of supportive evidence from
373 colocalization analysis makes their causal nature uncertain.
374

375 *Potential Clinical and Biological Implications*

376 Identification of multiple new biomarkers of incident HF or its subtypes has potential
377 implications for risk prediction, as well as therapeutics. It is notable that multiple biomarkers,
378 new or established, were inversely associated with HF. None were so associated with HFpEF,
379 and only two were inversely associated with HFrEF, although the number of incident events for
380 these subtypes was more limited. Insofar as the identified inverse associations reflect or drive
381 protective processes, they are of particular interest for identifying potential preventive
382 interventions. Of various proteins or peptides that have been previously recognized or validated
383 clinically as HF biomarkers, it is of interest that only a few of their corresponding aptamers
384 achieved Bonferroni-corrected significance, and number did not achieve even nominal
385 significance (Supplemental Table 29). Although SomaLogic's aptamer-based platform has the
386 advantage of achieving higher precision and analytic breath than Olink's antibody-based
387 platform, it has been found to have comparatively lower target specificity and phenotype
388 associations.²¹ Our findings point to limitations in using aptamers in place of immunoassays for
389 certain previously identified HF biomarkers in clinical settings.

390 Findings from our sensitivity analyses adjusting for different measures of CKD, which
391 revealed meaningful attenuation for substantial proportions of aptamer hits, also have
392 implications for understanding relevant pathophysiologic mechanisms. That CST3, a top hit for
393 HF (and HFpEF), remained significantly associated with this outcome after eGFRcr-cys
394 adjustment likely reflects the influence on cystatin C levels of non-GFR sources also associated
395 with HF. These include obesity, diabetes, inflammation and thyroid dysfunction but remain
396 incompletely characterized.²² There could also be an impact of differential measurement of
397 cystatin C by the aptamer-based and ELISA-based method, although the high correlation ($r=0.9$)
398 between the two suggests that such impact would be modest.²³ The attenuation of aptamer
399 associations with adjustment by eGFRcr categories suggests the presence of non-linear effects
400 involving CKD, aptamer levels, and HF incidence that need to be considered in such proteomic
401 analyses. However, the observed attenuation, whether by eGFRcr-cys or eGFRcr categories,
402 does not necessarily reflect confounding and could signify the impact of aptamers on HF risk
403 through CKD-related pathways.²⁴ Further study of the relationship between affected proteins,
404 CKD and HF is necessary to disentangle the pathways involved.

405 The suggestion of possible causal associations for several proteins may also have
406 implications for understanding disease mechanisms and developing therapeutics. New
407 associations of genetically determined protein levels were documented for LMAN2, APOF,
408 CD14, NPDC1 and ADIPOQ with overall HF, ADIPOQ and CD14 with HFpEF, and
409 ARHGAP1 and C9 with HFrEF. Genetic associations previously reported for FSTL3 and
410 CCDC126 were confirmed,^{12,25} with new measurement of circulating CCDC126 level showing
411 that the observational association is directionally discordant (inverse) from the genetic
412 association (positive). Nonetheless, our colocalization analyses failed to detect evidence that
413 corresponding pQTLs for these proteins represent single causal variants for HF or its subtype,
414 such that suggestions of causal associations uncovered here will require additional functional
415 work to determine the true pathophysiologic contributions of these genetically linked proteins
416 and HF outcomes.

417 Among the newly suggested causal proteins, NPDC1, APOF, and LMAN2 showed
418 concordant positive associations in observational and genetic analyses. NPDC1 (neuronal
419 proliferation, differentiation and control 1 protein) is primarily expressed in neural tissue, where
420 it regulates neuronal proliferation and differentiation, but cardiac and vascular expression also

421 occur (GTEX).²⁶ In contrast to the positive association with HF documented here, NPDC1 was
422 previously inversely associated with incident CVD (MI, stroke, and HF),²⁶ and our exploratory
423 MR analysis linked it inversely to diabetes.²⁷ The basis for these contrary associations is unclear,
424 as is NPDC1's biological role in HF or glucose dysregulation. Nevertheless, empagliflozin
425 treatment was documented to reduce circulating NPDC1 in HFrEF, illustrating that NPDC1
426 levels are modifiable in a manner directionally consistent with our findings.²⁸ Additional
427 investigation is necessary to determine whether and how this protein could be manipulated for
428 effective HF treatment.

429 APOF (apolipoprotein F), a liver-derived protein predominantly found in HDL particles,
430 plays a role in reverse cholesterol transport and HDL metabolism.²⁹ Conflicting associations
431 have been reported with lipoprotein particle levels, which may relate to their dependence on lipid
432 composition.^{11,29} APOF's functions are complex and remain incompletely characterized. The
433 present findings confirm the observational association with HF previously documented for
434 APOF in ARIC, adding evidence of possible causality. As in ARIC, our MR analysis supports a
435 causal association of APOF with CHD, suggesting that the association is driven by
436 atherosclerosis.¹¹ Although no drugs capable of modulating APOF were reported in the
437 ChEMBL database, our findings suggest that focused studies on APOF could yield fruitful
438 therapies for CHD and HF.

439 Produced by the liver, LMAN2 (lectin, mannose binding 2) is involved in regulation of
440 exosome protein trafficking,³⁰ and closely influences macrophage phagocytotic activity.³¹ The
441 protein is shed from the endothelial glycocalyx in sepsis,³² which may explain its reduced
442 endothelial cell expression in acute MI.³³ Low urinary levels of LMAN2 in acute HF have also
443 been reported,³⁴ as has an inverse relation of plasma LMAN2 with NT-proBNP in HFpEF.³⁵
444 Such associations may reflect endothelial damage or dysfunction, but our findings point to
445 potentially adverse actions of higher LMAN2 expression. This protein, which lacks drug ligands
446 on ChEMBL, will require further study.

447 All remaining proteins suggested as potentially causal by MR analysis showed discordant
448 observational and genetic associations, indicating that circulating levels are importantly affected
449 by factors beyond their instrumented *cis*-pQTLs. Two proteins, ADIPOQ and CD14, showed
450 inverse genetic associations with HF and HFpEF. Produced by adipose tissue but also by
451 myocardium and skeletal muscle, ADIPOQ (adiponectin) has well-established insulin-
452 sensitizing, anti-inflammatory, and cardioprotective properties.³⁶ Yet, in contrast to the inverse
453 associations of circulating ADIPOQ with CVD documented in younger, healthy adults, plasma
454 levels of the adipokine have been positively associated with CHD, HF and mortality in older
455 persons or those with comorbidities – in CHS or elsewhere.³⁷ There is moreover evidence that
456 the latter associations can be U-shaped.^{38,39} This has complicated MR analysis, which has failed
457 to find evidence of a causal association with CVD outcomes.³⁶ The finding that a single pQTL
458 was associated with overall HF and HFpEF, the latter at Bonferroni-corrected significance, is
459 novel. It is also intriguing, because there was no corroborating evidence of this single variant's
460 causal role for these outcomes. Given that an oral adiponectin receptor agonist exists,³⁶ the
461 present association should motivate study of a potential therapeutic role for such compounds for
462 HF and, particularly, HFpEF.

463 In turn, CD14 (cluster of differentiation 14) is a membrane glycoprotein expressed on
464 monocytes/macrophages, adipocytes and hepatocytes, as well as cardiomyocytes, among other
465 cell types.⁴⁰ Binding of lipopolysaccharide to surface CD14 activates pro-inflammatory
466 pathways, while also stimulating shedding of the membrane glycoprotein as a soluble form

467 (sCD14).⁴⁰ This makes sCD14 a marker of metabolic endotoxemia. Prior work in CHS did not
468 reveal an association of sCD14 with insulin resistance or incident diabetes after adjustment for
469 other inflammatory markers, but did show that sCD14 was associated with incident HF and,
470 especially, HFpEF.⁴¹ The inverse genetic association identified here with HF and HFpEF was
471 directionally opposite not only to the observational association, but also to the positive genetic
472 association detected with diabetes. The explanation for these divergent associations is unclear. It
473 is known, however, that sCD14 can quench circulating lipopolysaccharide by transferring it to
474 lipoprotein particles, and that sCD14-lipopolysaccharide complexes can deposit on endothelial
475 cells to produce inflammatory activation.^{40,41} Our colocalization analysis also showed evidence
476 for distinct causal variants for CD14 level and HF, suggesting that molecular features of the
477 protein separate from its level could be driving its relationships with outcomes. How such
478 molecular features or other factors determine the distinct associations documented here merits
479 additional study.

480 Of the two proteins that emerged as potentially causally associated with HFrEF,
481 ARHGAP1 (Rho GTPase-Activating Protein 1) is an intracellular protein that is ubiquitously
482 expressed. Circulating levels of the protein have been documented to increase after clinical MI.⁴²
483 Experimental data show that cardiomyocyte ischemia induces production of ARHGAP1, which
484 stimulates apoptosis.⁴³ Consistent with this, cardiomyocyte expression of ARHGAP1 is
485 increased in ischemic cardiomyopathy.⁴⁴ These findings would explain the positive observational
486 association documented here with HFrEF, but not the inverse genetic association with this HF
487 subtype or AF. ARHGAP1 appears to play a role in regulation of iron transport across
488 membranes, however, such that higher genetically determined levels could protect against iron
489 dysregulation in dilated cardiomyopathy.^{45,46} Although this protein lacks known potential
490 therapeutic ligands, the present findings supporting a possible causal role in HFrEF render it an
491 important target for future study.

492 The second protein, C9 (complement 9), is a component of the membrane attack complex
493 involved in disruption or lysis of microbial and diseased cells.⁴⁷ Such terminal complement
494 activation has been implicated in the pathogenesis of dilated cardiomyopathy as part of the
495 immune response to myocardial injury.^{48,49} C9 was previously associated with incident HF and
496 both subtypes in the ARIC and HUNT study,¹¹ but here we show support for a causal association
497 for HFrEF. This finding strengthens the case that existing⁴⁷ or new complement-modulating
498 therapies might have a place in HFrEF prevention or treatment.

499

500 *Limitations*

501 Several limitations to our study deserve attention. We used fixed-effects meta-analysis to
502 maximize discovery across two separate cohorts of older adults. This approach yields average
503 associations, and is unconcerned with population differences. Future studies will need to
504 investigate how associated proteins vary in distinct populations. Our investigation identified
505 proteins associated with HF, HFpEF and HFrEF in observational and MR analyses, but these
506 findings must be interpreted in the context of substantial differences in the number of cases
507 available for overall HF versus its subtypes, which had more limited power. Hence, while
508 associations documented for a given HF subtype suggest a preferential role in pathophysiology,
509 they do not exclude a consequential role for the other subtype. For MR analysis, all but one of
510 the genetic associations occurred at nominal, but not Bonferroni-corrected, significance. Of
511 these, that of CD14 with HF showed evidence of distinct causal variants in colocalization
512 analysis, which violates MR assumptions for the lead variant and precludes its use for causal

513 inference. Among the others, only that of C9 with HFrEF had suggestive evidence of
514 colocalization. As such, the associations for these proteins lack corroboration for a potential
515 causal role, and a judgment to that effect will require separate supportive evidence. In our
516 observational analyses, substantial proportions of HF cases could not be subclassified,
517 particularly in CHS. Nor did we have complete characterization of valvular heart disease in CHS
518 or AGES-RS to evaluate its impact on HF here. Nonetheless, our data suggest that the
519 contributions of such primary valvular disease as severe aortic stenosis to our incident HF cases
520 was modest.⁵⁰ The current findings come predominantly from older populations of European
521 ancestry, and do not necessarily apply to other groups. Our pathway enrichment analysis method
522 could not be combined across CHS and AGES-RS, and was therefore limited by each cohort's
523 sample size, likely accounting for the method's modest yield in canonical pathways and the
524 pathway differences observed.

525

526 *Conclusions*

527 In this large-scale proteomic investigation of older adults, we identified 70 novel protein
528 markers of incident HF or its subtypes, 55 of which were externally replicated. We also
529 implicated 5 new possibly causal proteins for HF, 2 of which were specifically linked to HFpEF,
530 as well as another 2 new possibly causal proteins for HFrEF. These findings open the way for
531 additional investigation of these protein markers for risk stratification and biological insight, and
532 support prioritization of a number of suggested causal proteins for investigation as potential
533 candidates for therapeutic testing and development.

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559 **Acknowledgements**

560 The authors acknowledge the contributions of the participants and investigators of the CHS,
561 AGES-RS, and ARIC studies.

562 **Appendix Authors**

563 The HERMES (Heart Failure Molecular Epidemiology for Therapeutic Targets) Consortium:

564 Bitten Aagaard¹, Erik Abner², Lance Adams³, Peter Almgren⁴, Charlotte Andersson^{5,6}, Krishna
565 G. Aragam^{7,8,9}, Johan Ärnlöv^{10,11}, Folkert W. Asselbergs^{12,13,14}, Geraldine Asselin¹⁵, Anna
566 Axelsson Raja¹⁶, Joshua D. Backman¹⁷, John Baksi¹⁸, Paul J. R. Barton^{19,20,18}, Traci M. Bartz²¹,
567 Kiran J. Biddinger^{7,9}, Mary L. Biggs^{21,22}, Heather L. Bloom²³, Eric Boersma²⁴, Isabelle Bond²⁵,
568 Jeffrey Brandimarto²⁶, Michael R. Brown²⁷, Søren Brunak²⁸, Hans-Peter Brunner-La Rocca²⁹,
569 Mie Topholm Bruun³⁰, Rachel Buchan^{19,20,18}, Leonard Buckbinder³¹, Henning Bundgaard¹⁶,
570 Douglas Cannie^{25,32}, Thomas P. Cappola²⁶, David J. Carey³³, Mark D. Chaffin⁹, Philippe
571 Charron^{34,35}, Daniel I. Chasman^{36,37}, Olympe Chazara³⁸, Xing Chen³¹, Xu Chen³⁹, Jonathan H.
572 Chung¹⁷, William Chutkow⁴⁰, John G.F. Cleland^{41,42}, James P. Cook^{43,44}, Stuart A. Cook^{19,20},
573 Tomasz Czuba⁴⁵, Trégouët David-Alexandre^{46,47}, Simon de Denus^{15,48}, Antonio de Marvao^{19,20},
574 Abbas Dehghan⁴⁹, Graciela E. Delgado⁵⁰, Spiros Denaxas^{51,12,52,13}, Alexander S. Doney⁵³,
575 Marcus Dörr^{54,55}, Joseph Dowsett⁵⁶, J. Gustav Smith^{57,45,58}, Marie-Pierre Dubé^{15,59}, Samuel C.
576 Dudley⁶⁰, Michael E. Dunn⁶¹, Patrick T. Ellinor^{62,9}, Perry Elliott²⁵, Gunnar Engström⁴, Villard
577 Eric^{34,35}, Christian Erikstrup^{63,64}, Tõnu Esko^{2,9}, Eric H. Farber-Eger⁶⁵, Ghazaleh Fatemifar^{66,12},
578 Stephan B. Felix^{54,55}, Chris Finan²⁵, Sarah Finer⁶⁷, Ian Ford⁶⁸, Francoise Fougerousse⁶⁹, René
579 Fouodjio¹⁵, Catherine Francis^{19,18}, Sophie Garnier^{34,35}, Mohsen Ghanbari⁷⁰, Sahar Ghasemi^{71,55,72},
580 Jonas Ghouse⁷³, Vilmantas Giedraitis⁷⁴, Franco Giulianini³⁶, John S. Gottdiener⁷⁵, Stefan
581 Gross^{54,55}, Daniel F. Guðbjartsson^{76,77}, Hongsheng Gui⁷⁸, Karl Guo⁷⁹, Rebecca Gutmann⁸⁰, Sara
582 Hägg⁸¹, Christopher M. Haggerty³³, Brian Halliday^{19,18}, Åsa K. Hedman⁸², Anna Helgadottir⁷⁶,
583 Harry Hemingway^{12,51}, Albert Henry^{25,12}, Hans Hillege⁸³, Aroon D. Hingorani^{84,25}, Hilma
584 Holm⁷⁶, Michael V. Holmes^{85,86,87}, Craig L. Hyde³¹, Erik Ingelsson^{88,89,90,91}, Hanane Issa¹²,
585 Jaison Jacob⁹², Deleuze Jean-François^{93,47,94}, J. Wouter Jukema^{95,96}, Frederick Kamanu^{97,98},
586 Isabella Kardys²⁴, Maryam Kavousi⁷⁰, Kay-Tee Khaw⁹⁹, Jorge R. Kizer¹⁰⁰, Marcus E. Kleber⁵⁰,
587 Lars Køber¹⁰¹, Andrea Koekemoer¹⁰², Bill Kraus¹⁰³, Karoline Kuchenbaecker^{104,105}, Yi-Pin Lai³¹,
588 David Lanfear^{78,106}, Chim C. Lang⁵³, Claudia Langenberg^{107,108,109}, Michael Lee¹⁹, Honghuang
589 Lin^{6,110}, Lars Lind¹¹¹, Cecilia M. Lindgren^{112,9,113}, Barry London¹¹⁴, Luca A. Lotta¹¹⁵, Ruth C.
590 Lovering²⁵, Brandon D. Lowery⁶⁵, Jian'an Luan¹⁰⁹, Steven A. Lubitz^{62,9}, R. Thomas
591 Lumbers^{13,51,12}, Patrik Magnusson⁸¹, Anubha Mahajan¹¹³, Anders Malarstig^{82,31}, Charlotte
592 Manisty^{25,116}, Douglass Mann¹¹⁷, Kenneth B. Margulies²⁶, Nicholas A. Marston¹¹⁸, Hilary
593 Martin¹¹⁹, Winfried März^{120,121,50}, Kathryn McGurk^{19,20}, John J.V. McMurray¹²², Olle
594 Melander¹²³, Giorgio Melloni^{97,98}, David Miller¹²⁴, James C Moon^{125,25}, Ify R. Mordi⁵³, Thomas
595 Morgan^{40,126}, Michael P. Morley²⁶, Andrew D. Morris¹²⁷, Andrew P. Morris^{44,113}, Alanna C.
596 Morrison²⁷, Lori Morton⁶¹, Michael W. Nagle³¹, Christopher P. Nelson¹⁰², Christopher Newton-
597 Cheh^{7,128,9}, Alexander Niessner¹²⁹, Teemu Niiranen^{130,131}, Raymond Noordam¹³², Michela
598 Noseda¹⁹, Mahdad Noursadeghi¹³³, Christoph Nowak¹⁰, Michelle L. O'Donoghue¹¹⁸, Declan P
599 O'Regan^{19,20}, Sisse Rye Ostrowski^{56,134}, Anjali T. Owens²⁶, Colin N. A. Palmer¹³⁵, Antonis
600 Pantazis¹⁸, Guillaume Paré^{136,137,138}, Helen M. Parry⁵³, Lavinia Paternoster^{139,140}, Ole Birger
601 Pedersen^{141,134}, Markus Perola¹³¹, Louis-Philippe Lemieux Perreault¹⁵, Marie Pigeyre^{142,138},
602 Eliana Portilla-Fernandez^{70,143}, Sanjay K. Prasad^{19,18}, Bruce M. Psaty^{144,145}, Kenneth M. Rice²¹,
603 Paul M. Ridker^{36,37}, Simon P. R. Romaine¹⁰², Carolina Roselli^{83,9}, Jerome I. Rotter^{146,147,148},

604 Christian T. Ruff¹¹⁸, Mark S. Sabatine¹¹⁸, Neneh Sallah¹², Perttu Salo¹³¹, Veikko Salomaa¹³¹,
605 Nilesh J. Samani¹⁰², Naveed Sattar¹⁴⁹, Jessica van Setten¹⁵⁰, Sonia Shah^{151,25}, Svatı Shah^{152,153,103},
606 Alaa A. Shalaby¹⁵⁴, Akshay Shekhar⁶¹, Diane T. Smelser³³, Nicholas L. Smith^{155,145,156}, Erik
607 Sørensen¹⁵⁷, Doug Speed¹⁵⁸, Sundararajan Srinivasan¹³⁵, Kari Stefansson^{76,159}, Steen Stender¹⁶⁰,
608 David J. Stott¹⁶¹, Nicholas P. Sunderland¹⁶², Garðar Sveinbjörnsson⁷⁶, Per Svensson^{163,164}, Daniel
609 I. Swerdlow^{165,25}, Petros Syrris²⁵, Mari-Liis Tammesoo², Jean-Claude Tardif^{15,59}, Upasana
610 Tayal^{19,18}, Kent D. Taylor¹⁶⁶, Maris Teder-Laving², Alexander Teumer^{55,167,72}, Pantazis I
611 Theotokis²⁰, Guðmundur Thorgeirsson^{76,168,159}, Unnur Thorsteinsdottir^{76,159}, Christian Torp-
612 Pedersen¹⁶⁹, Vinicius Tragante⁷⁶, Thomas A Treibel^{125,25}, Stella Trompet^{95,132}, Danny
613 Tuckwell⁹², Benoit Tyl¹⁷⁰, Andre G. Uitterlinden^{70,143}, Henrik Ullum¹⁷¹, Ana M Valdes¹⁷², Pim
614 van der Harst^{83,150}, David van Heel¹⁷³, Ramachandran S. Vasan^{6,174}, Felix Vaura^{175,176}, Abirami
615 Veluchamy^{53,135}, Monique Verschuur^{177,178}, Niek Verweij⁸³, Peter M. Visscher^{179,180},
616 Christoffer Rasmus Vissing¹⁶, Uwe Völker^{55,181}, Adriaan A. Voors⁸³, Marion van Vugt¹⁵⁰, Lars
617 Wallentin¹⁸², Xiaosong Wang⁴⁰, Yunzhang Wang⁸¹, James S. Ware^{19,183,18,184,9}, Nicholas J.
618 Wareham¹¹⁵, Dawn Waterworth⁷⁹, Peter E. Weeke⁷³, Raul Weiss¹⁸⁵, Quinn Wells¹⁸⁶, Harvey
619 White¹⁸⁷, Kerri L. Wiggins²², Jemma B. Wilk³¹, L. Keoki Williams⁷⁸, Heming Xing⁴⁰, Xiao
620 Xu^{19,20}, Jian Yang^{179,180}, Yifan Yang²⁶, Laura M. Yerges-Armstrong⁷⁹, Bing Yu²⁷, Faiez
621 Zannad¹⁸⁸, Faye Zhao⁹², Jing Hua Zhao¹¹⁵, Chaoqun Zheng¹⁶, Sean L. Zheng^{19,20,18}

622 Affiliations

- 623 1. Department of Clinical Immunology, Aalborg Univeristy Hospital, Aalborg
- 624 2. Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, 51010,
625 Estonia
- 626 3. Geisinger Health System, Danville, PA, USA
- 627 4. Department of Clinical Sciences, Lund University, Malmö, Sweden
- 628 5. Department of Cardiology, Herlev Gentofte Hospital, Herlev Ringvej 57, Herlev, 2650,
629 Denmark
- 630 6. National Heart, Lung, and Blood Institute's and Boston University's Framingham Heart
631 Study, Framingham, Massachusetts, USA
- 632 7. Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- 633 8. Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- 634 9. Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard,
635 Cambridge, MA, USA
- 636 10. Department of Neurobiology, Care Sciences and Society/ Section of Family Medicine
637 and Primary Care, Karolinska Institutet, Stockholm, Sweden
- 638 11. School of Health and Social Sciences, Dalarna University, Falun, Sweden
- 639 12. Institute of Health Informatics, University College London, London, England, UK
- 640 13. The National Institute for Health Research University College London Hospitals
641 Biomedical Research Centre, University College London, London, England, UK
- 642 14. Department of Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam University
643 Medical Centers, Amsterdam, The Netherlands
- 644 15. Montreal Heart Institute, Montreal, Canada
- 645 16. Department of Cardiology, The Heart Centre, Copenhagen University Hospital,
646 Rigshospitalet, Ingen Lehmanns vej 7, Copenhagen, 2100, Denmark
- 647 17. Regeneron Genetics Center, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA

648 18. Royal Brompton & Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust,
649 London, England, UK

650 19. National Heart & Lung Institute, Imperial College London, London, England, UK

651 20. MRC London Institute of Medical Sciences, London, England, UK

652 21. Department of Biostatistics, University of Washington, Seattle, WA, USA

653 22. Department of Medicine, University of Washington, Seattle, WA, USA

654 23. Department of Medicine, Division of Cardiology, Emory University Medical Center,
655 Atlanta, GA, USA

656 24. Department of Cardiology, Erasmus University Medical Center, Rotterdam, The
657 Netherlands

658 25. Institute of Cardiovascular Science, University College London, London, England, UK

659 26. Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania,
660 Philadelphia, PA, USA

661 27. Department of Epidemiology, Human Genetics, and Environmental Sciences, The
662 University of Texas School of Public Health, Houston, TX, 77030, USA

663 28. Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical
664 Sciences, University of Copenhagen, Copenhagen, Denmark

665 29. Maastricht University Medical Center, the Netherlands

666 30. Department of Clinical Immunology, Odense University Hospital, Odense, Denmark

667 31. Pfizer Worldwide Research & Development, 1 Portland St, Cambridge, MA, USA

668 32. London, England, UK

669 33. Department of Molecular and Functional Genomics, Geisinger, Danville, PA, USA

670 34. UMR-S1166, Research Unit on Cardiovascular Disorders, Metabolism and Nutrition,
671 Team Genomics & Pathophysiology of Cardiovascular Diseases, Sorbonne Université,
672 INSERM, UMR-S1166, Paris, 75013, France

673 35. ICAN Institute for Cardiometabolism and Nutrition, Paris, 75013, France

674 36. Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA, USA

675 37. Harvard Medical School, Boston, MA, USA

676 38. Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D,
677 AstraZeneca, Cambridge, UK

678 39. Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm,
679 Sweden.

680 40. Novartis Institutes for Biomedical Research

681 41. National Heart and Lung Institute, Imperial College, London, England, UK.

682 42. Robertson Centre for Biostatistics & Glasgow Clinical Trials Unit, Institute of Health and
683 Wellbeing, University of Glasgow, Glasgow Royal Infirmary, Glasgow, UK

684 43. Department of Health Data Science, University of Liverpool, Liverpool, England, UK

685 44. Department of Biostatistics, University of Liverpool, Liverpool, England, UK

686 45. Department of Molecular and Clinical Medicine, Institute of Medicine, Gothenburg
687 University and Sahlgrenska University Hospital, Gothenburg, Sweden

688 46. U1219, Univ. Bordeaux, INSERM, BPH, Bordeaux, 33000, France

689 47. Laboratory of Excellence GENMED (Medical Genomics), France

690 48. Faculty of Pharmacy, Université de Montréal, Montreal, Canada

691 49. MRC-PHE Centre for Environment and Health, Department of Epidemiology and
692 Biostatistics, Imperial College London, London, England, UK

693 50. Vth Department of Medicine (Nephrology, Hypertensiology, Endocrinology,
694 Diabetology, Rheumatology), Medical Faculty of Mannheim, University of Heidelberg,
695 Heidelberg, Germany

696 51. Health Data Research UK, London, England, UK

697 52. British Heart Foundation Data Science Centre, London, England, UK

698 53. Division of Molecular & Clinical Medicine, University of Dundee, Ninewells Hospital
699 and Medical School, Dundee, DD1 9SY, Scotland, UK

700 54. Department of Internal Medicine B, University Medicine Greifswald, Greifswald,
701 Germany

702 55. DZHK (German Center for Cardiovascular Research), partner site Greifswald,
703 Greifswald, Germany

704 56. Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet,
705 Copenhagen, Denmark

706 57. Department of Cardiology, Clinical Sciences, Lund University and Skåne University
707 Hospital, Lund, Sweden

708 58. Wallenberg Center for Molecular Medicine and Lund University Diabetes Center, Lund
709 University, Lund, Sweden

710 59. Faculty of Medicine, Université de Montréal, Montreal, Canada

711 60. Department of Medicine, Cardiovascular Division, University of Minnesota,
712 Minneapolis, MN, USA

713 61. Cardiovascular Research, Regeneron Pharmaceuticals, Tarrytown, NY, USA

714 62. Cardiac Arrhythmia Service and Cardiovascular Research Center, Massachusetts General
715 Hospital, Boston, MA, USA

716 63. Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark

717 64. Deparment of Clinical Medicine, Health, Aarhus University, Aarhus, Denmark

718 65. Vanderbilt Institute for Clinical and Translational Research, Vanderbilt University
719 Medical Center, Nashville, TN, USA

720 66. Health Data Research UK London, University College London, England, UK

721 67. Centre for Primary Care and Public Health, Wolfson Institute of Population Health,
722 Queen Mary University of London, London, E1 4NS, England, UK

723 68. Robertson Center for Biostatistics, Institute of Health and Wellbeing, University of
724 Glasgow, Glasgow, Scotland, UK

725 69. Translational and Clinical Research, Servier Cardiovascular Center for Therapeutic
726 Innovation, Suresnes, France

727 70. Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The
728 Netherlands

729 71. Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center, University
730 of Freiburg, Freiburg, Germany

731 72. Department of Psychiatry and Psychotherapy, University Medicine Greifswald,
732 Greifswald, Germany

733 73. Department of Cardiology, Rigshospitalet, Copenhagen University Hospital, Denmark

734 74. Department of Public Health and Caring Sciences, Geriatrics, Uppsala, Sweden
735 75. Department of Medicine, Division of Cardiology, University of Maryland School of
736 Medicine, Baltimore, MD, USA
737 76. deCODE genetics/Amgen Inc., Sturlugata 8, Reykjavik, 101, Iceland
738 77. School of Engineering and Natural Sciences, University of Iceland, Sæmundargata 2,
739 Reykjavik, 101, Iceland
740 78. Center for Individualized and Genomic Medicine Research, Department of Internal
741 Medicine, Henry Ford Hospital, Detroit, MI, USA
742 79. Human Genetics, GlaxoSmithKline, Collegeville, PA, USA
743 80. Division of Cardiovascular Medicine, University of Iowa Carver College of Medicine,
744 Iowa City, IA, USA
745 81. Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm,
746 Sweden
747 82. Cardiovascular Medicine unit, Department of Medicine Solna, Karolinska Institute,
748 Stockholm, Sweden
749 83. Department of Cardiology, University Medical Center Groningen, University of
750 Groningen, Groningen, The Netherlands
751 84. BHF Research Accelerator, University College London, England, UK
752 85. Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of
753 Population Health, Big Data Institute, University of Oxford, Oxford, UK
754 86. Medical Research Council Population Health Research Unit at the University of Oxford,
755 Oxford, UK
756 87. National Institute for Health Research Oxford Biomedical Research Centre, Oxford
757 University Hospital, Oxford, UK
758 88. Department of Medical Sciences, Molecular Epidemiology and Science for Life
759 Laboratory, Uppsala University, Uppsala, Sweden.
760 89. Department of Medicine, Division of Cardiovascular Medicine, Stanford University
761 School of Medicine, Stanford, CA 94305
762 90. Stanford Cardiovascular Institute, Stanford University, Stanford, CA 94305
763 91. Stanford Diabetes Research Center, Stanford University, Stanford, CA 94305
764 92. Novartis Institutes for Biomedical Research, Cambridge, MA, USA
765 93. Centre National de Recherche en Génomique Humaine (CNRGH), Institut de Biologie
766 François Jacob, CEA, Université Paris-Saclay, Evry, 91057, France
767 94. Centre d'Etude du Polymorphisme Humain, Fondation Jean Dausset, Paris, France
768 95. Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
769 96. Einthoven Laboratory for Experimental Vascular Medicine, LUMC, Leiden, The
770 Netherlands
771 97. Cardiovascular Disease Initiative, The Broad Institute of MIT and Harvard, Cambridge,
772 MA, USA
773 98. TIMI Study Group, Division of Cardiovascular Medicine, Brigham and Women's
774 Hospital, Harvard Medical School, Boston, MA, USA
775 99. Department of Public Health and Primary Care, University of Cambridge, Cambridge,
776 CB2 0QQ, UK

777 100. Cardiology Section, San Francisco Veterans Affairs Health System, and Departments of
778 Medicine, Epidemiology and Biostatistics, University of California San Francisco, CA,
779 USA

780 101. Department of Cardiology, Nordsjaellands Hospital, Hilleroed, Copenhagen, Denmark

781 102. Department of Cardiovascular Sciences, University of Leicester and NIHR Leicester
782 Biomedical Research Centre, Glenfield Hospital, Leicester, England, UK

783 103. Duke Molecular Physiology Institute, Durham, NC, USA

784 104. Division of Psychiatry, University College London, London, W1T 7NF, England, UK

785 105. UCL Genetics Institute, University College London, London, WC1E 6BT, England, UK

786 106. Heart and Vascular Institute, Henry Ford Hospital, Detroit, MI, USA

787 107. Precision Healthcare University Research Institute, Queen Mary University of London,
788 London, England, UK

789 108. Computational Medicine, Berlin Institute of Health (BIH) at Charité -
790 Universitätsmedizin Berlin, Berlin, Germany

791 109. MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge,
792 Cambridge, CB2 0QQ, England, UK

793 110. Department of Medicine, University of Massachusetts Chan Medical School, Worcester,
794 Massachusetts, USA

795 111. Department of Medical Sciences, Uppsala University, Uppsala, Sweden

796 112. Big Data Institute at the Li Ka Shing Centre for Health Information and Discovery,
797 University of Oxford, Oxford, England, UK

798 113. Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, England, UK

799 114. Division of Cardiovascular Medicine and Abboud Cardiovascular Research Center,
800 University of Iowa, Iowa City, IA, USA

801 115. MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge
802 School of Clinical Medicine, Cambridge, CB2 0QQ, UK

803 116. St Bartholomew's Hospital, Barts Heart Centre, UK

804 117. Center for Cardiovascular Research, Division of Cardiology, Department of Medicine,
805 Washington University School of Medicine, St. Louis, MO, USA

806 118. TIMI Study Group, Division of Cardiovascular Medicine, Brigham and Women's
807 Hospital, Harvard Medical School, Cambridge, MA, USA

808 119. Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1RQ, England,
809 UK

810 120. Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University
811 of Graz, Graz, Austria

812 121. Synlab Academy, Synlab Holding Deutschland GmbH, Mannheim, Germany

813 122. BHF Cardiovascular Research Centre, University of Glasgow, Scotland, United Kingdom

814 123. Department of Internal Medicine, Clinical Sciences, Lund University and Skåne
815 University Hospital, Malmö, Sweden

816 124. Division of Biosciences, University College London, London, England, UK

817 125. St Bartholomew's Hospital, Barts Heart Centre

818 126. Vanderbilt University School of Medicine

819 127. Usher Institute of Population Health Sciences and Informatics, University of Edinburgh,
820 Edinburgh, Scotland, UK

821 128. Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA, USA

822 129. Department of Internal Medicine II, Division of Cardiology, Medical University of
823 Vienna, Vienna, Austria

824 130. Department of Medicine, Turku University Hospital and University of Turku, Turku,
825 Finland

826 131. National Institute for Health and Welfare, Helsinki, Finland

827 132. Section of Gerontology and Geriatrics, Department of Internal Medicine, Leiden
828 University Medical Center, Leiden, The Netherlands

829 133. National Heart and Lung Institute, Imperial College, London, England, UK

830 134. Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of
831 Copenhagen, Copenhagen, Denmark

832 135. Division of Population Health and Genomics, University of Dundee, Ninewells Hospital
833 and Medical School, Dundee, DD1 9SY, Scotland, UK

834 136. Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON,
835 Canada

836 137. Thrombosis and Atherosclerosis Research Institute, Hamilton, ON, Canada

837 138. Population Health Research Institute, Hamilton, ON, Canada

838 139. Medical Research Council Integrative Epidemiology Unit, Bristol Medical School,
839 University of Bristol, Bristol, England, UK

840 140. Population Health Sciences, Bristol Medical School, University of Bristol, Bristol,
841 England, UK

842 141. Department of Clinical Immunology, Zealand University Hospital, Køge, Denmark

843 142. Department of Medicine, McMaster University, Hamilton, ON, Canada

844 143. Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The
845 Netherlands

846 144. Cardiovascular Health Research Unit, University of Washington, Seattle, WA, USA

847 145. Kaiser Permanente Washington Health Research Institute, Kaiser Permanente
848 Washington, Seattle, WA, USA

849 146. The Institute for Translational Genomics and Population Sciences, Harbor-UCLA
850 Medical Center, Torrance, CA, USA

851 147. Departments of Pediatrics and Medicine, Harbor-UCLA Medical Center, Torrance, CA,
852 USA

853 148. Los Angeles Biomedical Research Institute, Harbor-UCLA Medical Center, Torrance,
854 CA, USA

855 149. BHF Cardiovascular Research Centre, University of Glasgow, Glasgow, Scotland, UK

856 150. Department of Cardiology, Division of Heart and Lungs, University Medical Center
857 Utrecht, Utrecht, 3584 CX, The Netherlands

858 151. Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia

859 152. Division of Cardiology, Department of Medicine, Duke University Medical Center,
860 Durham, NC, USA

861 153. Duke Clinical Research Institute, Durham, NC, USA

862 154. Department of Medicine, Division of Cardiology, University of Pittsburgh Medical
863 Center and VA Pittsburgh HCS, Pittsburgh, PA, USA

864 155. Department of Epidemiology, University of Washington, Seattle, WA, USA

865 156. Seattle Epidemiologic Research and Information Center, Department of Veterans Affairs
866 Office of Research & Development, Seattle, WA, USA

867 157. Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet,
868 Blegdamsvej 9, Copenhagen, Denmark

869 158. Quantitative Genetics and Genomics, Aarhus University, Aarhus, Denmark

870 159. Department of Medicine, University of Iceland, Sæmundargata 2, Reykjavik, 101,
871 Iceland

872 160. Department of Clinical Biochemistry, Copenhagen University Hospital, Herlev and
873 Gentofte, Denmark

874 161. Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and
875 Life Sciences, University of Glasgow, United Kingdom

876 162. Bristol Heart Institute / University Hospitals Bristol & Weston, University of Bristol,
877 Bristol, England, UK

878 163. Department of Cardiology, Söderjukhuset, Stockholm, Sweden

879 164. Department of Clinical Science and Education-Södersjukhuset, Karolinska Institutet,
880 Stockholm, Sweden

881 165. BenevolentAI, London, England, UK

882 166. Institute for Translational Genomics and Population Sciences, LABiomed and
883 Departments of Pediatrics at Harbor-UCLA Medical Center, Torrance, Calif., USA
884 90502

885 167. Institute for Community Medicine, University Medicine Greifswald, Greifswald,
886 Germany

887 168. Department of Internal Medicine, Division of Cardiology, National University Hospital
888 of Iceland, Eiríksgata 5, Reykjavik, 101, Iceland

889 169. Department of Epidemiology and Biostatistics, Aalborg University Hospital, Aalborg,
890 Denmark

891 170. Translational and Clinical Research, Servier Cardiovascular Center for Therapeutic
892 Innovation, 50 rue Carnot 92284 Suresnes, France

893 171. Statens Serum Institut, Artillerivej 5, Copenhagen, 2300, Denmark

894 172. Injury, Recovery and Inflammation Sciences, School of Medicine, Nottingham, UK

895 173. Centre for Genomics and Child Health, Blizard Institute, Queen Mary University of
896 London, London, E1 4AT, England, UK

897 174. Sections of Cardiology, Preventive Medicine and Epidemiology, Department of
898 Medicine, Boston University Schools of Medicine and Public Health, Boston,
899 Massachusetts, USA

900 175. Department of Clinical Medicine, University of Turku, Turku, Finland

901 176. Finnish Institute for Health and Welfare, Helsinki, Finland

902 177. Department Life Course and Health, Centre for Nutrition, Prevention and Health
903 Services, National Institute for Public Health and the Environment, Bilthoven, The
904 Netherlands

905 178. Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht,
906 Utrecht, The Netherlands
907 179. Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland
908 4072, Australia
909 180. Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072,
910 Australia
911 181. Interfaculty Institute for Genetics and Functional Genomics, University Medicine
912 Greifswald, Greifswald, Germany
913 182. Uppsala Clinical Research Center, Uppsala University, Uppsala, Sweden
914 183. MRC London Institute of Medical Sciences, Imperial College London, London, England,
915 UK
916 184. Hammersmith Hospital, Imperial College Hospitals NHS Trust, London, England, UK
917 185. Department of Internal Medicine, Division of Cardiovascular Medicine, The Ohio State
918 University Medical Center, Columbus, OH, USA
919 186. Division of Cardiovascular Medicine, Vanderbilt University, Nashville, TN, USA
920 187. Green Lane Cardiovascular Service, Auckland City Hospital, USA
921 188. Université de Lorraine, CHU de Nancy, Inserm and INI-CRCT (F-CRIN), Institut
922 Lorrain du Coeur et des Vaisseaux, Vandoeuvre Lès Nancy, 54500, France
923

924 **Disclosures**
925 JRK reports stock ownership in Abbott, AbbVie, Bristol-Myers Squibb, Johnson & Johnson,
926 Lilly, Medtronic, Merck, and Pfizer. BMP serves on the Steering Committee of the Yale Open
927 Data Access Project funded by Johnson & Johnson. LLJ is an employee and stockholder of
928 Novartis.

929 **Sources of Funding**
930 This research was supported by R01HL144483 from the National Heart, Lung, and Blood
931 Institute (NHLBI) to BMP, REG, and RPT, and by R01HL105756 to BMP. JRK was supported
932 by K24HL135413 from the NHLBI. CHS was supported by contracts HHSN268201200036C,
933 HHSN268200800007C, HHSN268201800001C, N01HC55222, N01HC85079, N01HC85080,
934 N01HC85081, N01HC85082, N01HC85083, N01HC85086, 75N92021D00006, and grants
935 U01HL080295, U01HL130114 and R01HL172803 from the NHLBI, with additional
936 contribution from the National Institute of Neurological Disorders and Stroke (NINDS).
937 Additional support was provided by R01AG023629 from the National Institute on Aging (NIA).
938 A full list of principal CHS investigators and institutions can be found at CHS-NHLBI.org. The
939 National Institute of Aging contracts N01-AG-12100 and HHSN271201200022C for Vi.G.
940 financed the AGES-RS study. The Icelandic Heart Association received a grant from Althingi
941 (the Icelandic Parliament). RTL was supported by British Heart Foundation Special Project
942 Grant SP/F/24/150066, National Institute for Health Research University College London
943 Hospitals Biomedical Research Centre (NIHR203328), National Institutes of Health
944 5R01HL167509-02, and Medical Research Council Rare Disease Research UK Cardiovascular
945 Initiative MR/Y008235/1. AMS was supported by R01HL135008, R01HL143224,
946 R01HL148218, R01HL172495, and K24HL152008 from NHLBI.

947

948 **Supplemental Materials**
949 Supplemental Methods
950 Supplemental Tables 1-29
951 Supplemental Figures 1-2
952 References 51-66

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967 **References**

- 968 1. Virani SS, Alonso A, Aparicio HJ, Benjamin EJ, Bittencourt MS, Callaway CW, Carson
969 AP, Chamberlain AM, Cheng S, Delling FN, et al. Heart Disease and Stroke Statistics-
970 2021 Update: A Report From the American Heart Association. *Circulation*.
971 2021;143:e254-e743. doi: 10.1161/CIR.0000000000000950
- 972 2. Danielsen R, Thorgeirsson G, Einarsson H, Ólafsson Ö, Aspelund T, Harris TB, Launer
973 L, Gudnason V. Prevalence of heart failure in the elderly and future projections: the
974 AGES-Reykjavík study. *Scandinavian Cardiovascular Journal*. 2017;51:183-189. doi:
975 10.1080/14017431.2017.1311023
- 976 3. Jain V, Minhas AMK, Morris AA, Greene SJ, Pandey A, Khan SS, Fonarow GC, Mentz
977 RJ, Butler J, Khan MS. Demographic and Regional Trends of Heart Failure-Related
978 Mortality in Young Adults in the US, 1999-2019. *JAMA Cardiol*. 2022;7:900. doi:
979 10.1001/jamacardio.2022.2213
- 980 4. Sayed A, Abramov D, Fonarow GC, Mamas MA, Kobo O, Butler J, Fudim M. Reversals
981 in the Decline of Heart Failure Mortality in the US, 1999 to 2021. *JAMA Cardiol*. 2024.
982 doi: 10.1001/jamacardio.2024.0615
- 983 5. Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JGF, Coats AJS, Falk V,
984 González-Juanatey JR, Harjola V-P, Jankowska EA, et al. 2016 ESC Guidelines for the
985 diagnosis and treatment of acute and chronic heart failure: The Task Force for the
986 diagnosis and treatment of acute and chronic heart failure of the European Society of
987 Cardiology (ESC)Developed with the special contribution of the Heart Failure
988 Association (HFA) of the ESC. *European Heart Journal*. 2016;37:2129-2200. doi:
989 10.1093/eurheartj/ehw128
- 990 6. Shah KS, Xu H, Matsouaka RA, Bhatt DL, Heidenreich PA, Hernandez AF, Devore AD,
991 Yancy CW, Fonarow GC. Heart Failure With Preserved, Borderline, and Reduced
992 Ejection Fraction. *Journal of the American College of Cardiology*. 2017;70:2476-2486.
993 doi: 10.1016/j.jacc.2017.08.074
- 994 7. Lekavich CL, Barksdale DJ, Neelon V, Wu J-R. Heart failure preserved ejection fraction
995 (HFpEF): an integrated and strategic review. *Heart Failure Reviews*. 2015;20:643-653.
996 doi: 10.1007/s10741-015-9506-7
- 997 8. Xiang B, Zhang R, Wu X, Zhou X. Optimal Pharmacologic Treatment of Heart Failure
998 With Preserved and Mildly Reduced Ejection Fraction: A Meta-analysis. *JAMA Netw
999 Open*. 2022;5:e2231963. doi: 10.1001/jamanetworkopen.2022.31963
- 1000 9. Braunwald E. Heart Failure. *JACC: Heart Failure*. 2013;1:1-20. doi:
1001 10.1016/j.jchf.2012.10.002
- 1002 10. Paulus WJ, Tschope C. A Novel Paradigm for Heart Failure With Preserved Ejection
1003 Fraction. *Journal of the American College of Cardiology*. 2013;62:263-271. doi:
1004 10.1016/j.jacc.2013.02.092
- 1005 11. Shah AM, Myhre PL, Arthur V, Dorbala P, Rasheed H, Buckley LF, Claggett B, Liu G,
1006 Ma J, Nguyen NQ, et al. Large scale plasma proteomics identifies novel proteins and
1007 protein networks associated with heart failure development. *Nature Communications*.
1008 2024;15:528. doi: 10.1038/s41467-023-44680-3
- 1009 12. Ramonfaur D, Buckley LF, Arthur V, Yang Y, Claggett BL, Ndumele CE, Walker KA,
1010 Austin T, Odden MC, Floyd JS, et al. High Throughput Plasma Proteomics and Risk of
1011 Heart Failure and Frailty in Late Life. *JAMA Cardiol*. 2024. doi:
1012 10.1001/jamacardio.2024.1178

1013 13. Shah S, Henry A, Roselli C, Lin H, Sveinbjörnsson G, Fatemifar G, Hedman ÅK, Wilk
1014 JB, Morley MP, Chaffin MD, et al. Genome-wide association and Mendelian
1015 randomisation analysis provide insights into the pathogenesis of heart failure. *Nature
1016 Communications*. 2020;11:163. doi: 10.1038/s41467-019-13690-5

1017 14. Santos R, Ursu O, Gaulton A, Bento AP, Donadi RS, Bologa CG, Karlsson A, Al-
1018 Lazikani B, Hersey A, Oprea TI, et al. A comprehensive map of molecular drug targets.
1019 *Nat Rev Drug Discov*. 2017;16:19-34. doi: 10.1038/nrd.2016.230

1020 15. Henry A, Mo X, Finan C, Chaffin MD, Speed D, Issa H, Denaxas S, Ware JS, Zheng SL,
1021 Malarstig A, et al. Genome-wide association study meta-analysis provides insights into
1022 the etiology of heart failure and its subtypes. *Nat Genet*. 2025;57:815-828. doi:
1023 10.1038/s41588-024-02064-3

1024 16. Ferreira JP, Verdonschot J, Collier T, Wang P, Pizard A, Bär C, Björkman J, Boccanfelli
1025 A, Butler J, Clark A, et al. Proteomic Bioprofiles and Mechanistic Pathways of
1026 Progression to Heart Failure: The HOMAGE Study. *Circulation: Heart Failure*.
1027 2019;12:e005897. doi: 10.1161/CIRCHEARTFAILURE.118.005897

1028 17. Stenemo M, Nowak C, Byberg L, Sundström J, Giedraitis V, Lind L, Ingelsson E, Fall T,
1029 Ärnlöv J. Circulating proteins as predictors of incident heart failure in the elderly:
1030 Circulating proteins as predictors of incident heart failure. *European Journal of Heart
1031 Failure*. 2018;20:55-62. doi: 10.1002/ejhf.980

1032 18. Naylor M, Short MI, Rasheed H, Lin H, Jonasson C, Yang Q, Hveem K, Felix JF,
1033 Morrison AC, Wild PS, et al. Aptamer-Based Proteomic Platform Identifies Novel
1034 Protein Predictors of Incident Heart Failure and Echocardiographic Traits. *Circulation:
1035 Heart Failure*. 2020;13:e006749. doi: 10.1161/CIRCHEARTFAILURE.119.006749

1036 19. Egerstedt A, Berntsson J, Smith ML, Gidlöf O, Nilsson R, Benson M, Wells QS, Celik S,
1037 Lejonberg C, Farrell L, et al. Profiling of the plasma proteome across different stages of
1038 human heart failure. *Nature Communications*. 2019;10:5830. doi: 10.1038/s41467-019-
1039 13306-y

1040 20. Emilsson V, Jonsson BG, Austin TR, Gudmundsdottir V, Axelsson GT, Frick EA,
1041 Jonmundsson T, Steindorsdottir AE, Loureiro J, Brody JA, et al. Proteomic prediction of
1042 incident heart failure and its main subtypes. *European Journal of Heart Failure*.
2024;26:87-102. doi: 10.1002/ejhf.3086

1044 21. Katz DH, Robbins JM, Deng S, Tahir UA, Bick AG, Pampana A, Yu Z, Ngo D, Benson
1045 MD, Chen ZZ, et al. Proteomic profiling platforms head to head: Leveraging genetics and
1046 clinical traits to compare aptamer- and antibody-based methods. *Sci Adv*.
1047 2022;8:eabm5164. doi: 10.1126/sciadv.abm5164

1048 22. Levey AS, Coresh J, Tighiouart H, Greene T, Inker LA. Measured and estimated
1049 glomerular filtration rate: current status and future directions. *Nat Rev Nephrol*.
2020;16:51-64. doi: 10.1038/s41581-019-0191-y

1051 23. Austin TR, McHugh CP, Brody JA, Bis JC, Slatani CM, Bartz TM, Biggs ML, Bansal N,
1052 Buzkova P, Carr SA, et al. Proteomics and Population Biology in the Cardiovascular
1053 Health Study (CHS): design of a study with mentored access and active data sharing. *Eur
1054 J Epidemiol*. 2022;37:755-765. doi: 10.1007/s10654-022-00888-z

1055 24. Schefold JC, Filippatos G, Hasenfuss G, Anker SD, von Haehling S. Heart failure and
1056 kidney dysfunction: epidemiology, mechanisms and management. *Nat Rev Nephrol*.
2016;12:610-623. doi: 10.1038/nrneph.2016.113

1058 25. Moncla L-HM, Mathieu S, Sylla MS, Bossé Y, Thériault S, Arsenault BJ, Mathieu P.
1059 Mendelian randomization of circulating proteome identifies actionable targets in heart
1060 failure. *BMC Genomics*. 2022;23:588. doi: 10.1186/s12864-022-08811-2

1061 26. Spencer ML, Theodosiou M, Noonan DJ. NPDC-1, a novel regulator of neuronal
1062 proliferation, is degraded by the ubiquitin/proteasome system through a PEST
1063 degradation motif. *J Biol Chem*. 2004;279:37069-37078. doi: 10.1074/jbc.M402507200

1064 27. Lind L, Titova O, Zeng R, Zanetti D, Ingelsson M, Gustafsson S, Sundström J, Ärnlöv J,
1065 Elmståhl S, Assimes T, et al. Plasma Protein Profiling of Incident Cardiovascular
1066 Diseases: A Multisample Evaluation. *Circ: Genomic and Precision Medicine*. 2023;16.
1067 doi: 10.1161/CIRCGEN.123.004233

1068 28. Anker SD, Butler J, Filippatos G, Ferreira JP, Bocchi E, Böhm M, Brunner-La Rocca H-
1069 P, Choi D-J, Chopra V, Chuquiere-Valenzuela E, et al. Empagliflozin in Heart Failure
1070 with a Preserved Ejection Fraction. *N Engl J Med*. 2021;385:1451-1461. doi:
1071 10.1056/NEJMoa2107038

1072 29. Morton RE, Mihna D. Apolipoprotein F concentration, activity, and the properties of
1073 LDL controlling ApoF activation in hyperlipidemic plasma. *Journal of Lipid Research*.
1074 2022;63:100166. doi: 10.1016/j.jlr.2021.100166

1075 30. Kwon S-H, Oh S, Nacke M, Mostov KE, Lipschutz JH. Adaptor Protein CD2AP and L-
1076 type Lectin LMAN2 Regulate Exosome Cargo Protein Trafficking through the Golgi
1077 Complex. *Journal of Biological Chemistry*. 2016;291:25462-25475. doi:
1078 10.1074/jbc.M116.729202

1079 31. Shirakabe K, Hattori S, Seiki M, Koyasu S, Okada Y. VIP36 Protein Is a Target of
1080 Ectodomain Shedding and Regulates Phagocytosis in Macrophage Raw 264.7 Cells.
1081 *Journal of Biological Chemistry*. 2011;286:43154-43163. doi: 10.1074/jbc.M111.275586

1082 32. Bao J, Zha Y, Chen S, Yuan J, Qiao J, Cao L, Yang Q, Liu M, Shao M. The importance
1083 of serum LMAN2 level in septic shock and prognosis prediction in sepsis patients.
1084 *Heliyon*. 2022;8:e11409. doi: 10.1016/j.heliyon.2022.e11409

1085 33. Nukala SB, Regazzoni L, Aldini G, Zodda E, Tura-Ceide O, Mills NL, Cascante M,
1086 Carini M, D'Amato A. Differentially Expressed Proteins in Primary Endothelial Cells
1087 Derived From Patients With Acute Myocardial Infarction. *Hypertension*. 2019;74:947-
1088 956. doi: 10.1161/HYPERTENSIONAHA.119.13472

1089 34. He T, Mischak M, Clark AL, Campbell RT, Delles C, Díez J, Filippatos G, Mebazaa A,
1090 McMurray JJV, González A, et al. Urinary peptides in heart failure: a link to molecular
1091 pathophysiology. *European Journal of Heart Failure*. 2021;23:1875-1887. doi:
1092 10.1002/ejhf.2195

1093 35. Azzo JD, Dib M-J, Zagkos L, Zhao L, Wang Z, Chang C-P, Ebert C, Salman O, Gan S,
1094 Zamani P, et al. Proteomic Associations of NT-proBNP (N-Terminal Pro-B-Type
1095 Natriuretic Peptide) in Heart Failure With Preserved Ejection Fraction. *Circulation: Heart
1096 Failure*. 2024;17. doi: 10.1161/CIRCHEARTFAILURE.123.011146

1097 36. Kizer JR. The elusive quest for causality in adiponectin's bimodal relationship with
1098 cardiovascular disease: Mendelian randomization meets Janus. *Cardiovascular Research*.
1099 2024;120:3-5. doi: 10.1093/cvr/cvae001

1100 37. Karas MG, Benkeser D, Arnold AM, Bartz TM, Djousse L, Mukamal KJ, Ix JH, Zieman
1101 SJ, Siscovick DS, Tracy RP, et al. Relations of Plasma Total and High-Molecular-Weight
1102 Adiponectin to New-Onset Heart Failure in Adults \geq 65 Years of Age (from the

1103 38. Cardiovascular Health Study). *The American Journal of Cardiology*. 2014;113:328-334.
1104 doi: 10.1016/j.amjcard.2013.09.027

1105 39. Kizer JR, Benkeser D, Arnold AM, Mukamal KJ, Ix JH, Zieman SJ, Siscovick DS, Tracy
1106 RP, Mantzoros CS, deFilippi CR, et al. Associations of Total and High-Molecular-
1107 Weight Adiponectin With All-Cause and Cardiovascular Mortality in Older Persons: The
1108 Cardiovascular Health Study. *Circulation*. 2012;126:2951-2961. doi:
1109 10.1161/CIRCULATIONAHA.112.135202

1110 40. Nielsen MB, Çolak Y, Benn M, Mason A, Burgess S, Nordestgaard BG. Plasma
1111 adiponectin levels and risk of heart failure, atrial fibrillation, aortic valve stenosis, and
1112 myocardial infarction: large-scale observational and Mendelian randomization evidence.
1113 *Cardiovascular Research*. 2024;120:95-107. doi: 10.1093/cvr/cvad162

1114 41. Zanoni I, Granucci F. Role of CD14 in host protection against infections and in
1115 metabolism regulation. *Front Cell Infect Microbiol*. 2013;3. doi:
1116 10.3389/fcimb.2013.00032

1117 42. Al-Kindi SG, Buzkova P, Shitole SG, Reiner AP, Garg PK, Gottdiener JS, Psaty BM,
1118 Kizer JR. Soluble CD14 and Risk of Heart Failure and Its Subtypes in Older Adults.
1119 *Journal of Cardiac Failure*. 2020;26:410-419. doi: 10.1016/j.cardfail.2020.03.003

1120 43. Jacob J, Ngo D, Finkel N, Pitts R, Gleim S, Benson MD, Keyes MJ, Farrell LA, Morgan
1121 T, Jennings LL, et al. Application of Large-Scale Aptamer-Based Proteomic Profiling to
1122 Planned Myocardial Infarctions. *Circulation*. 2018;137:1270-1277. doi:
1123 10.1161/CIRCULATIONAHA.117.029443

1124 44. Zhang X, Guan J, Guo M, Dai H, Cai S, Zhou C, Wang Y, Qin Q. Rho
1125 GTPase-activating protein 1 promotes apoptosis of myocardial cells in an ischemic
1126 cardiomyopathy model. *Kardiol Pol*. 2019;77:1163-1169. doi: 10.33963/KP.15040

1127 45. Simonson B, Chaffin M, Hill MC, Atwa O, Guedira Y, Bhasin H, Hall AW, Hayat S,
1128 Baumgart S, Bedi KC, et al. Single-nucleus RNA sequencing in ischemic
1129 cardiomyopathy reveals common transcriptional profile underlying end-stage heart
1130 failure. *Cell Reports*. 2023;42:112086. doi: 10.1016/j.celrep.2023.112086

1131 46. Massaiu I, Campodonico J, Mapelli M, Salvioni E, Valerio V, Moschetta D, Myasoedova
1132 VA, Cappellini MD, Pompilio G, Poggio P, et al. Dysregulation of Iron Metabolism-
1133 Linked Genes at Myocardial Tissue and Cell Levels in Dilated Cardiomyopathy. *IJMS*.
1134 2023;24:2887. doi: 10.3390/ijms24032887

1135 47. Hu S, Lin S, Xu H, He X, Chen L, Feng Q, Sun N. Molecular Mechanisms of Iron
1136 Transport and Homeostasis Regulated by Antarctic Krill-Derived Heptapeptide-Iron
1137 Complex. *J Agric Food Chem*. 2024;72:7517-7532. doi: 10.1021/acs.jafc.3c05812

1138 48. Xie CB, Jane-Wit D, Pober JS. Complement Membrane Attack Complex. *The American
1139 Journal of Pathology*. 2020;190:1138-1150. doi: 10.1016/j.ajpath.2020.02.006

1140 49. Aukrust P, Gullestad L, Lappégård KT, Ueland T, Aass H, Wikeby L, Simonsen S,
1141 Frøland SS, Mollnes TE. Complement Activation in Patients With Congestive Heart
1142 Failure: Effect of High-Dose Intravenous Immunoglobulin Treatment. *Circulation*.
1143 2001;104:1494-1500. doi: 10.1161/hc3801.096353

1144 50. Zwaka TP, Manolov D, Özdemir C, Marx N, Kaya Z, Kochs M, Höher M, Hombach V,
1145 Torzewski J. Complement and Dilated Cardiomyopathy. *The American Journal of
1146 Pathology*. 2002;161:449-457. doi: 10.1016/S0002-9440(10)64201-0

1147 Owens DS, Bartz TM, Buzkova P, Massera D, Biggs ML, Carlson SD, Psaty BM,
1148 Sotoodehnia N, Gottdiener JS, Kizer JR. Cumulative burden of clinically significant

1149 aortic stenosis in community-dwelling older adults. *Heart*. 2021;107:1493-1502. doi:
1150 10.1136/heartjnl-2021-319025

1151 51. Fried LP, Borhani NO, Enright P, Furberg CD, Gardin JM, Kronmal RA, Kuller LH,
1152 Manolio TA, Mittelmark MB, Newman A, et al. The cardiovascular health study: Design
1153 and rationale. *Annals of Epidemiology*. 1991;1:263-276. doi: 10.1016/1047-
1154 2797(91)90005-W

1155 52. Harris TB, Launer LJ, Eiriksdottir G, Kjartansson O, Jonsson PV, Sigurdsson G,
1156 Thorgeirsson G, Aspelund T, Garcia ME, Cotch MF, et al. Age, Gene/Environment
1157 Susceptibility-Reykjavik Study: Multidisciplinary Applied Phenomics. *American Journal*
1158 *of Epidemiology*. 2007;165:1076-1087. doi: 10.1093/aje/kwk115

1159 53. Sigurdsson E, Thorgeirsson G, Sigvaldason H, Sigfusson N. Unrecognized myocardial
1160 infarction: epidemiology, clinical characteristics, and the prognostic role of angina
1161 pectoris. The Reykjavik Study. *Ann Intern Med*. 1995;122:96-102. doi: 10.7326/0003-
1162 4819-122-2-199501150-00003

1163 54. The Atherosclerosis Risk in Communit (ARIC) Study: Design and Objectives. *American*
1164 *Journal of Epidemiology*. 1989;129:687-702. doi: 10.1093/oxfordjournals.aje.a115184

1165 55. Psaty BM, Kuller LH, Bild D, Burke GL, Kittner SJ, Mittelmark M, Price TR, Rautaharju
1166 PM, Robbins J. Methods of assessing prevalent cardiovascular disease in the
1167 Cardiovascular Health Study. *Annals of Epidemiology*. 1995;5:270-277. doi:
1168 10.1016/1047-2797(94)00092-8

1169 56. Ives DG, Fitzpatrick AL, Bild DE, Psaty BM, Kuller LH, Crowley PM, Cruise RG,
1170 Theroux S. Surveillance and ascertainment of cardiovascular events. *Annals of*
1171 *Epidemiology*. 1995;5:278-285. doi: 10.1016/1047-2797(94)00093-9

1172 57. Emilsson V, Ilkov M, Lamb JR, Finkel N, Gudmundsson EF, Pitts R, Hoover H,
1173 Gudmundsdottir V, Horman SR, Aspelund T, et al. Co-regulatory networks of human
1174 serum proteins link genetics to disease. *Science*. 2018;361:769-773. doi:
1175 10.1126/science.aaq1327

1176 58. Lunn M, D M. Applying Cox regression to competing risks. *Biometrics*. 1995;51:524-
1177 532.

1178 59. Burgess S, Foley CN, Zuber V. Inferring Causal Relationships Between Risk Factors and
1179 Outcomes from Genome-Wide Association Study Data. *Annu Rev Genom Hum Genet*.
1180 2018;19:303-327. doi: 10.1146/annurev-genom-083117-021731

1181 60. Zhang J, Dutta D, Kottgen A, Tin A, Schlosser P, Grams ME, Harvey B, Consortium CK,
1182 Yu B, Boerwinkle E, et al. Plasma proteome analyses in individuals of European and
1183 African ancestry identify cis-pQTLs and models for proteome-wide association studies.
1184 *Nat Genet*. 2022;54:593-602. doi: 10.1038/s41588-022-01051-w

1185 61. Elsworth B, Lyon M, Alexander T, Liu Y, Matthews P, Hallett J, Bates P, Palmer T,
1186 Haberland V, Smith GD, et al. The MRC IEU OpenGWAS data infrastructure. In: 2020.

1187 62. Suzuki K, Hatzikotoulas K, Southam L, Taylor HJ, Yin X, Lorenz KM, Mandla R,
1188 Huerta-Chagoya A, Melloni GEM, Kanoni S, et al. Genetic drivers of heterogeneity in
1189 type 2 diabetes pathophysiology. *Nature*. 2024;627:347-357. doi: 10.1038/s41586-024-
1190 07019-6

1191 63. Aragam KG, Jiang T, Goel A, Kanoni S, Wolford BN, Atri DS, Weeks EM, Wang M,
1192 Hindy G, Zhou W, et al. Discovery and systematic characterization of risk variants and
1193 genes for coronary artery disease in over a million participants. *Nat Genet*. 2022;54:1803-
1194 1815. doi: 10.1038/s41588-022-01233-6

1195 64. Nielsen JB, Thorolfsdottir RB, Fritsche LG, Zhou W, Skov MW, Graham SE, Herron TJ,
1196 McCarthy S, Schmidt EM, Sveinbjornsson G, et al. Biobank-driven genomic discovery
1197 yields new insight into atrial fibrillation biology. *Nat Genet*. 2018;50:1234-1239. doi:
1198 10.1038/s41588-018-0171-3

1199 65. Pattaro C, Teumer A, Gorski M, Chu AY, Li M, Mijatovic V, Garnaas M, Tin A, Sorice
1200 R, Li Y, et al. Genetic associations at 53 loci highlight cell types and biological pathways
1201 relevant for kidney function. *Nature Communications*. 2016;7:10023. doi:
1202 10.1038/ncomms10023

1203 66. Giambartolomei C, Vukcevic D, Schadt EE, Franke L, Hingorani AD, Wallace C,
1204 Plagnol V. Bayesian test for colocalisation between pairs of genetic association studies
1205 using summary statistics. *PLoS Genet*. 2014;10:e1004383. doi:
1206 10.1371/journal.pgen.1004383

1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240

1241
1242
1243
1244
1245
1246

1247 **Figure Legends:**

1248 **Figure 1. Associations of Individual Aptamers with Incidence of Overall Heart Failure.**

1249 Volcano plot of individual aptamer associations with incidence of overall heart failure after
1250 multivariable adjustment in CHS and AGES-RS. Red dots denote significance at the Bonferroni-
1251 corrected level.

1252 AGES-RS = Aging Gene/Environment Susceptibility – Reykjavik Study; CHS = Cardiovascular Health Study;
1253 HF = Heart failure.

1254 **Figure 2. Associations of Individual Aptamers and Incidence of HFpEF and HFrEF.**

1255 Volcano plots of individual aptamer associations with incidence of HFpEF (Panel A) and HFrEF
1256 (Panel B) after multivariable adjustment in CHS and AGES-RS.

1257 AGES-RS = Aging Gene/Environment Susceptibility – Reykjavik Study, CHS = Cardiovascular
1258 Health Study; HFpEF = Heart failure with preserved ejection fraction; HFrEF = Heart failure
1259 with reduced ejection fraction.

1260 **Figure 3. Relations of Aptamer Hits for Each HF Subtype with the Alternate Subtype and**
1261 **Overall HF.** Forest plot of aptamers associated with HFpEF and/or HFrEF at Bonferroni-
1262 corrected significance after multivariable adjustment, showing corresponding associations with
1263 the alternate subtype and overall heart failure.

1264 *Significant at the Bonferroni-corrected threshold.

1265 HF = Heart failure; HFpEF = Heart failure with preserved ejection fraction; HFrEF = Heart
1266 failure with reduced ejection fraction.

1267 **Figure 4. Differential Strengths of Associations with HFpEF and HFrEF for Aptamer Hits**
1268 **for Overall HF.** Aptamers associated with overall HF showing differential strengths of
1269 association between HFpEF and HFrEF at a nominal level of significance.

1270 HF = Heart failure; HFpEF = Heart failure with preserved ejection fraction; HFrEF = Heart
1271 failure with reduced ejection fraction.

1272 **Figure 5. Mendelian Randomization Analysis of Aptamer Hits for Overall HF.** Genetic
1273 associations with incident heart failure for aptamers instrumented in ARIC and HERMES2 that
1274 met a nominal level of significance.

1275 ARIC = Atherosclerotic Risk in Communities; HERMES2 = Heart Failure Molecular
1276 Epidemiology for Therapeutic Targets Consortium 2; HF = Heart failure; MR = Mendelian
1277 randomization.

1278 **Figure 6. Mendelian Randomization Analysis of Aptamer Hits for HF Subtypes.** Genetic
1279 associations with HFpEF (Panel A) or HFrEF (Panel B) for aptamers observationally associated
1280 with either subtype at Bonferroni significance, differentially observationally associated with the
1281 subtypes at nominal significance, or showing nominally significant genetic associations with
1282 overall heart failure.

1283 HF = Heart failure; HFpEF = Heart failure with preserved ejection fraction; HFrEF = Heart
1284 failure with reduced ejection fraction; MR = Mendelian randomization.

1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303