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Abstract 

T cells contribute to immune protection and pathogenesis in tuberculosis, but measurements of polyclonal 

responses have failed to resolve correlates of outcome. We report the temporal evaluation of the human in 

vivo clonal repertoire of Mycobacterium tuberculosis (Mtb)-reactive T cell responses, by T cell receptor 

(TCR) sequencing at the site of the tuberculin skin test, as a model for a standardised antigenic challenge. 

Initial non-selective recruitment of T cells is followed by enrichment of Mtb-reactive clones arising from 

oligoclonal T cell proliferation. We introduce a modular computational pipeline, Metaclonotypist, to 

sensitively cluster distinct TCRs with shared epitope specificity, which we apply here to establish a 

catalogue of public Mtb-reactive HLA-restricted T cell metaclones. Although most in vivo Mtb-reactive T 

cells are private, 10 metaclones were sufficient to identify Mtb-T cell reactivity across our study population 

(N128), indicating striking population level immunodominance of specific TCR-peptide interactions that 

may inform patient stratification and vaccine development. 
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Introduction 

Mycobacterium tuberculosis (Mtb) remains the commonest microbial cause of death worldwide, but most 

incident infections do not progress to tuberculosis (TB) disease1,2. Immunodeficiency is associated with 

increased risk of disease, indicating a role for protective immunity. However, disease is mediated by 

immunopathology, associated with a failure to restrict Mtb growth. Better understanding of the immune 

correlates of protection and pathogenesis remain global research priorities to inform novel approaches to 

disease-risk stratification in Mtb infected people, vaccine development and evaluation, and identification of 

targets for host-directed therapies. 

T cells are essential for protective immunity to TB. They are thought to augment bacterial restriction within 

intracellular niches such as macrophages3,4. T cell-mediated protection against TB is evident in increased 

disease risk associated with genetic deficiencies of IL-12 and IFN signalling5, T cell depletion in people 

living with HIV6, and experimental T cell depletion in non-human primates7,8. Yet, frequency of circulating 

Mtb-reactive T cells, and limited analysis of their functional attributes (cytokine production or cytolytic 

degranulation) do not predict natural or vaccine-inducible protective immunity in humans4. We have also 

reported evidence for T cell-mediated pathogenesis in TB, illustrated by enrichment of IL-17 producing T 

cells in people with disease compared to those who have controlled infection9, disease triggered by 

checkpoint inhibitor therapies that increase effector T cell function10 and direct stimulation of Mtb-growth by 

IFN11. 

T cells exist as clonal populations identified by their T cell receptor (TCR), most commonly composed of α 

heterodimers produced by imprecise somatic gene recombination during T cell development and 

responsible for signalling T cell activation following recognition of antigen bound to MHC molecules. Mtb 

proteome-wide studies have identified immunodominant protein antigens12–14. To date, use of whole protein 

or pooled peptide antigens to quantify Mtb-reactive T cells has not resolved correlates of protection and 

pathogenesis, potentially because they measure polyclonal responses in which responses to distinct 

peptide-MHC targets have differential effects on outcome. TCR sequencing enables an antigen-agnostic 

approach to resolve clonal T cell responses. This has provided proof of concept for potential correlates of 

outcome15, but the generalisability of these findings is not known. 

Importantly, studies of human T cell biology in TB have relied heavily on investigation of Mtb reactive T 

cells from blood samples that are limited by sampling depth, because they contain <0.001% of the T cell 

clonal repertoire of an individual16, only a small fraction of which is Mtb reactive. Alternatively, investigation 

of T cells from the site of disease, such as bronchoalveolar lavage specimens or tissue biopsies, can enrich 

for the antigen-specific cells of interest, but is confounded by the chronicity of infection and pathological 

processes. We have addressed these limitations by profiling immune responses at the site of the tuberculin 

skin test (TST)17,9,18,19. Tuberculin is a standardised clinical grade preparation of purified protein derivative 

(PPD) from Mtb. Inflammatory induration at the site of the TST after 2-3 days has been used extensively 

as a classical model of delayed type hypersensitivity dependent on T cell priming, and therefore a measure 
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of T cell memory for Mtb antigens contained in PPD. We have previously used this model to quantify T cell 

recruitment and function, and to reveal exaggerated IL17 activity associated with active TB disease which 

could not be detected in blood9. The clonal repertoire of the T cell response to Mtb challenge in vivo has 

not previously been systematically evaluated. The extent to which these responses converge onto dominant 

T cell clones, and whether these are generalisable or idiosyncratic within a population are not known.  

We addressed these questions by TCR sequencing of biopsies from the site of the TST in a cohort of 223 

individuals. This approach provided us with a sensitive unbiased quantitation of T cell clones recruited and 

expanded in response to a standardised in vivo challenge. To evaluate convergence of the response to 

immunodominant epitopes, we developed Metaclonotypist, a modular bioinformatics pipeline for the 

grouping of TCR sequences based on sequence similarity. Using this pipeline, we discover a dominant 

immune response to TB driven by highly public HLA-associated TCR metaclonotypes, which we expect to 

be a valuable resource for future biomarker discovery and reverse epitope discovery efforts in tuberculosis. 

Results 

Transcriptome-wide evaluation of maturation of the immune response to TST from day 2 to day 7 

Inflammatory induration in the TST is maximal at 2-3 days, but previous flow cytometric evaluation of T cells 

at the site of the TST reported maximal accumulation of antigen-specific T cell responses at 7 days20. 

Therefore, we investigated the evolution of the T cell response by bulk RNAseq and TCRseq in day 2 and 

day 7 TSTs (Supplementary Figure 1). We recruited healthy volunteers with evidence of peripheral blood 

Mtb-reactive T cells identified during occupational health screening, TB index case contact screening or 

recent migrant screening, to undergo a TST in each arm (Table 1). The TST site was sampled on day 2 at 

one site and on day 7 at the contralateral site. Genome-wide TST-response transcriptomes at day 2 and 

day 7 were defined by differential gene expression compared to transcriptomes from the site of control 

saline injections performed in a separate set of volunteers. The TST-response transcriptomes at each time 

point were used to infer activity of immune response pathways at the level of cytokines, receptors, kinases 

and transcription factors. Both day 2 and day 7 TST transcriptomes showed activation of a comparable 

repertoire of canonical immune signalling pathways (Supplementary Figure 2A-B). We next identified gene 

expression modules associated with individual upstream regulators, which were significantly upregulated 

in integrated data from day 2 and day 7 TST-response transcriptomes. We found that most module 

expression decreased between day 2 and day 7 (Supplementary Figure 2C) consistent with homeostatic 

resolution of inflammatory changes. A small number of modules showed higher expression at day 7. These 

were all identified as being regulated by transcription factors known to be involved in cell cycle regulation 

(Supplementary Figure 2D). 

Direct comparison of day 2 and day 7 TST-response transcriptomes also revealed differences in expression 

at the level of individual genes (Supplementary Figure 2E). Pathway enrichment analysis of the differentially 

expressed genes indicated increased cell cycle and mitotic activity in the day 7 TST (Supplementary Figure 

2F), suggestive of increased cell proliferation at this time point. Therefore, we tested the hypothesis that 
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the evolution of transcriptional changes between the day 2 and day 7 TSTs reflected T cell proliferation by 

quantifying the correlation between independently derived gene expression modules for cellular 

proliferation and selected T cell and non-T cell subsets. By comparison to day 2 profiles, the transcriptomes 

from day 7 TSTs showed significantly higher expression of the modules for cell proliferation (Figure 1A), 

pan-T cell, CD4 T cells and NK cells, but not modules for CD8 T cells or myeloid cells (Figure 1B). The cell 

proliferation module showed greatest correlation to the pan-T cell and CD4 T cell modules (Figure 1C). 

Clinical induration at TST sites on day 2 was positively correlated with multiple cell types at day 2, but only 

T cell accumulation at day 7, as measured by cell-type specific gene expression of modules (Supplementary 

Table 1). 

Evolution of reduced T cell clonal diversity in the TST 

To study the nature of the T cell proliferation response revealed by our transcriptional analysis, we tracked 

the temporal evolution of the T cell clonal repertoire in the TST by TCRα and  TCR sequencing of bulk 

RNA from day 2 and day 7 TSTs (Table 2, Supplementary Figure 1). We compared TCR repertoire diversity 

metrics to those of unstimulated peripheral blood samples from the same population of study participants 

(Figure 2A). We display metrics for the TCR β-chain, which is more diverse and informative about TCR 

antigen specificity21, but found concordant results for metrics calculated on TCR α-chain repertoires 

(Supplementary Figure 3A). The median number of total β-chain TCRs obtained was 267,057 (range 113-

566,403) for day 7 TSTs; 53,756 (range 2,596-100,381) for day 2 TSTs; and 66,452 (range 18,266-119,984) 

for peripheral blood samples. Since repertoire diversity metrics are affected by sequencing depth 

(Supplementary Figure 3B-C), we excluded samples with very small repertoires and down-sampled 

repertoires to the same size (n=16,000 total TCRs) prior to this analysis. Compared to blood, the day 2 TST 

repertoire had an increased frequency of TCR sequences with >1 copy and a greater inequality of clone 

sizes as measured by Gini index, indicative of recruitment of expanded memory T cell clones. 

Correspondingly, the number of unique TCR clones (Richness) was reduced compared to blood. In 

contrast, Shannon diversity did not differ significantly from blood at day 2 and Simpson diversity even 

slightly increased, indicative of limited clonal dominance at this timepoint. Day 7 TSTs showed still higher 

proportions of expanded TCR clones, further reduced richness and Shannon diversity, and were 

characterised by the emergence of clonal dominance in the TCR repertoire, measured as decreased 

Simpson diversity and increased Gini index. Taken together, these findings suggest that the selection of T 

cell clones recruited to the day 2 TST is not particularly stringent, but repertoires evolve towards 

oligoclonality as a result of selective CD4 T cell proliferation and clonal expansion. 

Day 7 TST is highly enriched for expanded Mtb-reactive T cell clones 

Since inflammatory responses in the TST are dependent on Mtb-reactive T cells, we tested the hypothesis 

that the day 2 and day 7 TST TCR repertoires are selectively enriched for Mtb-reactive T cells compared 

to blood samples from the same individuals. We tested this hypothesis first by evaluating enrichment of 

previously described Mtb-reactive CDR3 sequences. We compared the TST CDR3 β-chain sequences to 

published CDR3 sequences derived from T cells with known antigen reactivity, including 32,869 reported 
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Mtb-reactive TCRs identified by virtue of pMHC specificity or upregulation of T cell activation markers on 

ex vivo stimulation with Mtb15,22,23. Compared to blood, we found no enrichment for Mtb-reactive CDR3s 

among all TCRs or all expanded TCRs in the day 2 TST (Figure 2B, Supplementary Figure 4). This indicates 

that the early inflammatory response likely reflects the circulating frequency of Mtb-specific T cells in 

individuals with prior memory, rather than preferential recruitment of specific clones. However, there was 

statistically significant enrichment of published Mtb-reactive CDR3 sequences in day 7 TSTs compared to 

blood and to day 2 TSTs. As a comparison we similarly calculated the enrichment of published CMV or 

EBV-reactive CDR3 sequences. Day 7 TSTs showed a statistically significant reduction in the relative 

frequencies of both CMV and EBV-reactive CDR3 sequences compared to blood and day 2 TSTs, 

consistent with larger clonal expansions of Mtb-reactive sequences. These clonal expansions were not 

explained by donor-unrestricted T cell responses to Mtb, since day 7 TSTs showed a significant reduction 

in the relative frequencies of TCR α sequences that match the gene usage of MAIT or iNKT cells, compared 

to day 2 TSTs and/or blood (Supplementary Figure 5). 

Next, we reasoned that antigen-driven selection of T cell responses in the TST would lead to increased 

functional convergence of TCR clones onto common CDR3 amino acid sequences24. This convergent 

sequence evolution was clearly evident within the repertoires of individual participants, which showed a 

progressive increase from blood to day 2 and then day 7 TST in coincidence probabilities (Figure 2C, 

Supplementary Figure 6A-C). Inter-individual analysis showed a more modest increase in average 

coincidence probability across day 2 TSTs from pairs of donors compared to blood, and no further 

significant increase in average coincidence probability among pairs of day 7 TSTs (Figure 2D, 

Supplementary Figure 6D-F). Interestingly, the variance of between donor coincidences increased 

substantially at Day 7, compatible with differential skewing of the Mtb-reactive T cell repertoires among 

different individuals driven by diversity in MHC-restricted antigen presentation to T cells. To further test this 

hypothesis, we analysed how probabilities of inter-individual coincidence in day 7 TST TCR sequences 

depend on HLA-allele sharing between pairs of individuals (Figure 2E, Supplementary Figure 6G-I). We 

found that pairs of individuals sharing multiple MHC class II or class I alleles had substantially more similar 

TST D7 repertoires. The dependence of repertoire overlap on HLA similarity was four-fold stronger with 

MHC class II, consistent with a predominantly CD4 T cell response in the TST. 

In view of the potential for inter-individual diversity of the Mtb-reactive TCR repertoire, we reasoned that 

evaluation of day 7 TSTs using published Mtb-reactive CDR3 sequences may substantially underestimate 

the enrichment of Mtb-reactive T cell clones because this analysis is inherently restricted to public TCRs. 

Therefore, we experimentally validated Mtb-reactive TCRs at the level of individual participants. We 

sequenced TCRs of peripheral blood mononuclear cells (PBMC) from a sample of the study population, 

following ex vivo stimulation for 6 days with PPD, or tetanus toxoid as antigen control, and selected all the 

CDR3s which expanded 8 fold or more in the PPD stimulated cultures but not the control unstimulated 

cultures25,26. The expanded PPD-reactive CDR3 sequences showed limited publicity among the sub-

sampled study participants (Figure 3A-B, Supplementary Figure 7A-B). We therefore refer to these PPD-

reactive CDR3 sequences as private. We then looked for overlap between the CDR3 sequences of in vitro 



ARTI
CLE

 IN
 P

RES
S

ARTICLE IN PRESS

 

 

expanded T cells and the TST repertoires from the same patient. There was no enrichment of ex vivo PPD-

expanded CDR3s in the day 2 TST repertoires compared to unstimulated blood (Figure 3C-D, 

Supplementary Figure 6C-H). Both in blood and the day 2 TST, ex vivo PPD-expanded CDR3s were 

present in significantly greater proportion amongst TCR sequences with a count >1 (Figure 3C-D, 

Supplementary Figure 7C-H), suggesting that the PPD-reactive CDR3s were predominantly expanded, as 

would be expected for memory T cells26. We found significantly greater enrichment of ex vivo PPD-

expanded CDR3s in day 7 TSTs than in unstimulated blood repertoires or in day 2 TST repertoires. This 

pattern remained the same whether overlap was calculated for total CDR3 sequences or for unique CDR3 

sequences (Figure 3C-D, Supplementary Figure 7C-H). This enrichment of private PPD-reactive CDR3s in 

day 7 TSTs was further increased among the most expanded TCRs. No similar enrichment of ex-vivo TT-

expanded CDR3s was observed. Additionally, the odds ratio (OR) for the overlap between ex vivo PPD-

reactive CDR3s was substantially greater among CDR3s which significantly expanded between day 2 and 

day 7 TSTs, compared to non-expanded CDR3 sequences (Supplementary Figure 8). Taken together, 

these results indicate that antigen non-specific accumulation of T cells in the day 2 TST is largely replaced 

by expanded Mtb-reactive T cell clones by day 7 post-TST. 

Identification of Mtb-reactive metaclones in the day 7 TST 

Identification of T cell metaclones, defined by similar but non-identical CDR3 sequences, which share 

specificity for the same peptide-MHC, can address the limitations of interindividual TCR sequence diversity, 

and enable antigen-agnostic identification of generalisable T cell responses to specific pMHC targets24,27,28. 

The identification of metaclones involves clustering of TCRs by sequence similarity, followed by a test for 

HLA-association across a cohort (Figure 4A). A number of approaches to clustering of TCR sequences 

have been proposed. Among these, the GLIPH2 algorithm has already been used to identify HLA-restricted 

Mtb-reactive T cell metaclones defined by sequence motifs15,28. However, selecting an appropriate 

clustering method for a given dataset remains a challenge, with no broad consensus on best practices29,30. 

A key difficulty lies in evaluating clustering performance, particularly in balancing the trade-off between 

sensitivity (for clusters often measured by retention) and positive predictive value (for clusters typically 

assessed as purity). Effective benchmarking of clustering algorithms, therefore, requires comparing the 

maximum achievable purity at fixed levels of retention. However, many existing tools generate only a single 

clustering solution and lack flexibility to produce clusters at multiple resolutions. 

To address this limitation, we developed Metaclonotypist, a modular pipeline for metaclone discovery that 

allows easy substitution of sequence similarity measures, thresholding choices, and clustering algorithms. 

Using published sets of TCR  sequences of known epitope specificity from the VDJdb database23, we 

used Metaclonotypist  to systematically identify Pareto optimal algorithmic approaches (Figure 4A). Using 

connected component clustering, we found that adjacency graphs constructed by thresholding pairwise 

CDR3 edit distances were inferior to those built using TCRdist, a metric that incorporated both CDR3 and 

V-gene similarity (Figure 4B). At high levels of retention, we observed that Leiden clustering outperforms 
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simple connected components clustering, as it breaks down large components into more modular, coherent 

clusters. 

Based on these findings, we applied Leiden clustering to TCRdist adjacency graphs to analyse the day 7 

TST TCR  repertoires that are highly enriched for Mtb-reactive T cells, but for which the specific epitopes 

being recognised are unknown. To ensure scalability given the large number of TCRs to be clustered in our 

dataset, we leveraged our previously developed symmetric-deletion lookup algorithm to rapidly identify 

candidate TCR neighbours in adjacency graphs31. We selected the TCRdist threshold which identified the 

largest number of TCR clusters in our dataset that were significantly enriched for individuals with a shared 

HLA allele (Figure 4C). The stringency of the false discovery rate control was tested by showing that random 

shuffling of the HLAs associated with each individual returned no HLA-enriched T cell metaclones 

regardless of TCRdist threshold. For the TCR repertoires, the optimal TCRdist threshold was 15, 

identifying 180 HLA-associated metaclones, of which 177 were restricted by HLA class II molecules. This 

is consistent with the known predominance of CD4 T cells in the PPD-reactive TST response, which are 

restricted by HLA class II. Among these, HLA-DRB1 associated metaclones were most frequent (Figure 

4D).  

At the optimal threshold, >95% of study participants contributed to at least one T cell metaclone (Figure 

4C, middle panel). The identified single chain metaclones can be represented as sequence motifs and 

visualised as adjacency graphs in which labelling of the individual TCR sequence by the donor reveals 

substantial publicity (Figure 4E, Supplementary Figure 9B). We therefore consider metaclones a measure 

of public reactivity to an unknown peptide:MHC complex. However, only approximately 2.7% of unique TCR 

sequences were incorporated into HLA-associated metaclones, consistent with the hypothesis that the 

majority of Mtb reactive TCRs are private (Figure 4C, right panel). We benchmarked our metaclone-

discovery pipeline against clusters identified by the GLIPH2 algorithm. After exploring different GLIPH2 

filters (Supplementary Figure 10A), we retained clusters which passed the same stringent HLA association 

test with multiple testing correction applied in the Metaclonotypist pipeline. These GLIPH2 clusters 

(Supplementary Data 7-8) also primarily associated with class II alleles, which demonstrates the robustness 

of our findings with respect to the algorithmic approach. However, Metaclonotypist clustered almost three 

times as many unique CDR3s compared to GLIPH2, suggesting that Metaclonotypist offers increased 

sensitivity to detect metaclone associations (Figure 4F). Indeed, comparison of CDR3s clustered by 

Metaclonotypist or GLIPH2 with VDJdb MHC class II-restricted β-chain CDR3 entries annotated as Mtb-

reactive found three matches in the GLIPH2 output, but an additional match in the Metaclonotypist output 

(Figure 4F, Supplementary Figure 9A). 

Validation of Mtb-reactivity of day 7 TST derived T cell metaclones and population level 

immunodominance of Mtb-derived epitopes.  

To confirm that our day 7 TST derived, class II associated T cell metaclones represented public Mtb-reactive 

T cell responses, we calculated their enrichment in independent TCR sequencing data derived from people 

with TB compared to other diseases, or at the site of TB disease compared to blood. Enrichment in this 
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analysis suggests specificity for Mtb-reactive TCRs. For internal validation, we first confirmed that the day 

7 TST metaclones identified by Metaclonotypist were significantly enriched in PBMC stimulated with PPD 

compared to PBMC stimulated with tetanus toxoid from the same study population (Figure 5). For external 

validation, we then showed they were significantly enriched in peripheral blood single cell sequencing data 

derived from patients with TB compared to SARS-CoV-2 infection; bulk TCR sequencing of blood and lung 

tissue from patients with TB compared to cancer diagnoses; single cell TCR sequencing of lung tissue from 

patients with TB compared to cancer diagnoses; and in bulk TCR sequencing of CD4 T cells from the site 

of pulmonary TB disease compared to blood of the same patients (Figure 5). We benchmarked this analysis 

for publicity and Mtb-reactivity of metaclones identified using Metaclonotypist against metaclones identified 

by the GLIPH2 algorithm. Metaclonotypist motifs showed comparable enrichment to CDR3β sequences 

from GLIPH2 clusters with statistically significant class II HLA-allele associations (Figure 5; blue vs. red) 

suggesting that Metaclonotypist retains similarly high specificity, despite clustering a larger proportion of 

TCRs into metaclones (Figure 4F). Additional GLIPH2 filters did not improve performance (Supplementary 

Figure 10B). Importantly, amino acid metaclone motifs as defined by GLIPH2 were not substantially 

enriched in TB samples in these datasets (Figure 5; light-brown), indicating the need for more restrictive 

motif definitions.  Interestingly, compared to metaclones, we found substantially lower enrichment of the full 

discovery set of expanded day 7 TST β TCRs (Figure 5; grey vs. blue), suggesting that a substantial 

proportion of day 7 TST TCR clones may not be specific to Mtb, and that identification of metaclones 

significantly improves antigen-agnostic enrichment of the Mtb-reactive T cell response. 

Having confirmed that class II associated day 7 TST Metaclonotypist metaclones represented public Mtb-

reactive TCRs, we investigated their emergence in the TST over time. Despite some evidence for between-

donor convergence of TCR sequences suggesting emergence of public T cell responses in the day 2 TST 

(Figure 2D), enrichment of T cell metaclones at day 2 compared to blood did not reach statistical 

significance (Figure 6A). In contrast, at day 7 metaclones were about 10-fold enriched in the TST samples 

compared to blood and day 2 TST repertoires (Figure 6A, Supplementary Figure 11), and the percentage 

of day 7 TST repertoires captured by metaclones was positively correlated with the TST induration 

measured at day 2 (Supplementary Table 1). However, putative Mtb-reactive metaclones still only 

represented the minority of the total TCR sequence data at day 7. Consistent with this predominantly private 

response, we found no significant enrichment of previously published Mtb-reactive CDR3 sequences in the 

day 7 TST when these data were sub-sampled to the same number of CDR3s included within metaclones 

(Supplementary Figure 12). Therefore, despite oligoclonal restriction of the T cell repertoire over time in the 

TST, the day 7 repertoire may retain a substantial breadth of epitope diversity. For the subset of the study 

population in which we had identified PPD-reactive CDR3s in ex vivo-stimulated PBMC, we compared the 

relative proportions of TST TCRs that either contained private PPD-reactive CDR3 sequences or clustered 

in public T cell metaclones at the level of individual participants. TCRs with private PPD-reactive CDR3 

sequences were more frequent than public metaclone motifs in both day 2 and day 7 TSTs across the 

range of TCR clone sizes (Figure 6B, Supplementary Figure 13A). There was no statistically significant 

difference between expansion of private PPD-reactive and public metaclone TCRs between day 2 and day 
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7 TSTs, within the limitations of the sample size in this analysis (Supplementary Figure 13B-C). Despite the 

dominance of private PPD-reactive TCRs at individual level, evaluation of the cumulative publicity of 

metaclones ranked by their publicity suggests that as few as 10 metaclones are sufficient to identify Mtb-T 

cell reactivity in the entire study population (Figure 6C, Table 3, Supplementary Figure 14). At the level of 

individual metaclones there was substantial heterogeneity in publicity even among individuals with the 

cognate HLA allele, offering the possibility of testing Mtb-reactive T cell metaclone responses as correlates 

of protection and pathogenesis (Figure 6D). 

Finally, we stratified participants into groups that were expected to be enriched for either recent or remote 

exposures, based on epidemiological criteria. We found a modest increase in TST induration in the recent 

exposure group, but found no differences for any of the TST metrics measured on the molecular level 

(Supplementary Figure 15). 

Discussion 

Our study reports the temporal evolution of the tuberculin skin test response at the molecular level. We 

apply this model to establish the in vivo clonal repertoire of Mtb-reactive T cell responses. At the level of 

individual TCRs we found this response to be almost entirely idiotypic, with very little inter-individual sharing 

of TCR chains even between individuals with shared HLA. Therefore, we introduce an analytical pipeline 

we have called Metaclonotypist for identification of public T cell metaclones: clusters of distinct TCRs across 

different individuals predicted to share peptide-MHC specificity. They enable antigen agnostic identification 

of T cell responses to immunodominant targets at population level by overcoming inter-individual TCR 

sequence diversity. We find predominantly non-antigen specific T cell recruitment to the TST initially, co-

incident with peak inflammatory responses. These are then replaced by predominantly Mtb-reactive T cells 

through selected oligoclonal T cell proliferation. T cell metaclones derived from the day 7 TST reveal public 

T cell responses that are highly enriched in multiple sources of TCR sequence data from the blood and 

lung tissue of patients with TB compared to other diseases, and at the site of pulmonary TB compared to 

blood. The enrichment of TST metaclones in the TB lung suggests that T cells recruited into PPD-

challenged skin have clinical relevance and supports the use of the TST as experimental human challenge 

model for immune responses in TB. The vast majority of TCRs enriched in the day 7 TST are not 

incorporated into public metaclones but remain private to individuals. Nonetheless, the cumulative publicity 

of the most public metaclones indicates striking population-level coverage of Mtb reactivity. Although 

metaclones are defined by their β-chain motifs only, we hypothesize that this reflects immunodominance of 

specific Mtb epitopes. This finding extends previous studies that report generalisable antigenic 

immunodominance at the protein level12–14 by providing a scalable antigen-agnostic approach to potentially 

identifying generalisable immunodominance at the level of specific peptides. 

The rapid accumulation of T cells at the site of the day 2 TST, which occurs at the time of maximum clinical 

inflammation but before evidence of cell proliferation, indicates recruitment of cells from the circulating pool. 

Recruitment appears to be non-selective, demonstrated by the similar proportions of Mtb-, tetanus toxoid-, 
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CMV- and EBV-reactive CDR3 sequences observed in the day 2 TSTs and blood samples. However, Mtb-

specific sequences are enriched relative to CMV-, EBV- and tetanus toxoid-reactive CDR3 sequences in 

day 7 TSTs, suggesting that the proliferation response is not simply due to bystander proliferation of all 

local T cells. Our data cannot fully discriminate the extent to which reduction of non-Mtb-reactive T cells at 

the TST site by day 7 is due to their clearance or their relative decrease caused by the expansion of Mtb-

reactive TCRs dominating the sampled repertoire. The latter process is supported by our observation that 

the full set of day 7 TST TCRs shows substantially lower enrichment in independent TB-associated datasets 

compared to day 7 TST metaclones. We hypothesise that local antigen causes Mtb-reactive cells to be 

retained at the TST site and then proliferate. Importantly, our approach therefore overcomes a limitation of 

peripheral blood, by sampling the TCR repertoire following recruitment from the whole in vivo T cell 

repertoire. Inflammatory induration in the TST is known to be dependent on prior expansion of Mtb T cell 

memory. Yet, we found no enrichment of previously reported Mtb-reactive sequences, public Mtb-reactive 

metaclones or private PPD-reactive CDR3s alongside peak inflammatory responses in day 2 TSTs 

compared to blood. Interestingly however, within individual donors there was a significant increase in CDR3 

sequence convergence at the amino acid level in day 2 TST samples compared to blood. This finding 

suggests some degree of Mtb-specific T cell selection driving the TST response, albeit below the limit of 

sensitivity to detect through enrichment compared to blood. We also observed a positive correlation 

between TST induration on day 2 and the extent of predicted Mtb reactivity on day 7 (measured as 

proportion of metaclones, or proportion of expanded TCRs), consistent with the hypothesis that both arise 

from a common determinant of the TST response, likely to be the frequency of circulating Mtb-reactive 

memory T cells that initially drive inflammatory induration and then proliferate in response to antigen. 

Substantially less CDR3 convergence was evident between donors. This was partly explained by inter-

individual diversity of MHC alleles but was also driven by the enormous potential diversity of the T cell 

receptor repertoire. Interestingly, we found a much stronger relationship of inter-individual CDR3 

convergence to increased sharing of HLA class II alleles, than to increased sharing of HLA class I alleles. 

These data suggested that CD4 T cells are driving the maturation of T cell repertoire in the TST. This 

interpretation is consistent with the finding that the transcriptional signature for CD4 T cells, but not CD8 T 

cells, increases between day 2 and day 7 TST and correlates best with the transcriptional signature for 

cellular proliferation. Likewise, it is consistent with the observation that day 7 TST metaclones were almost 

exclusively restricted to HLA-class II alleles. Hence, we conclude that the TST is predominantly a model for 

CD4 T cells responses, as previously reported for T cell responses to Mtb stimulation of peripheral blood 

cells15. However, we note that this does not exclude a role for CD8 T cell responses in TB. In addition to 

evidence from other models that CD8 T cells may contribute to protective immunity, bulk transcriptional 

profiling of the TST response presented here and our recent report of single cell sequencing analysis of the 

TST response32 reveal substantial enrichment of activated CD8 T cells in the day 2 TST. The lack of further 

enrichment of CD8 T cell responses in the day 7 TST may be a limitation of the TST model. Nonetheless, 

the advantage of the skew towards CD4 T cell responses is highlighted by recent evidence that CD4 T cell 

responses make a more important contribution than CD8 T cells to vaccine-mediated immunity33. 
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Inter-individual variation in total T cell reactivity and/or the clonal repertoire, including intra- and inter-donor 

co-incidence metrics in the TST may relate to duration of Mtb infection or time interval since immunological 

clearance of bacteria. While neither of these variables can be measured accurately, epidemiological 

classification of our study cohort into household contacts, likely to be enriched for recent exposures, and 

occupational health screening participants, likely to be enriched for remote exposures, showed no 

differences in any of the measured molecular TST metrics. 

By developing a modular computational pipeline for metaclone discovery, we were able to systematically 

identify algorithmic approaches with superior positive predictive value through controlled comparisons at 

fixed sensitivity. In combination with previously developed fast sequence similarity search tools31, 

Metaclonotypist scales accurate TCRdist-based clustering to large datasets and allows flexible optimisation 

of parameters. The optimised Metaclonotypist-pipeline identified significantly more HLA-associated 

metaclones in our dataset than the principal metaclone discovery algorithm (GLIPH2) that has been 

previously used to identify Mtb-reactive metaclones15,28, while maintaining comparable enrichment in a 

wide-ranging external validation. Despite this increased sensitivity, the majority of day 7 TST TCRs 

remained excluded from Metaclonotypist metaclones, which we have labelled as private T cell responses. 

We anticipate that further artificial-intelligence driven improvements in measures of TCR sequence 

similarity34 or corrections for recombination biases27 will allow clustering of more distant TCRs with shared 

peptide-MHC specificity. Therefore, our current approach provides only a minimum estimate of publicity in 

the Mtb-reactive T cell repertoire. Even so, as few as 10 metaclones were sufficient to identify generalisable 

Mtb reactive T cell responses in our study population of 128 individuals. Interestingly, for most metaclones 

not all individuals with the restricting HLA allele had detectable metaclone TCRs. This finding is compatible 

with potential inter-individual heterogeneity of Mtb responses to particular pMHCs, which in conjunction 

with future improvements in metaclone discovery and deeper TCR sequencing may allow linking T cell 

metaclone responses to differential outcomes of Mtb infection. 

Consistent with most data on HLA class II restriction of CD4 T cell responses, we found the lead HLA 

associations for day 7 TST metaclones to be predominantly HLA-DR alleles. This skew is attributed to the 

higher prevalence of diverse DR alleles, a structure that allows them to bind a wider variety of peptides, 

and potentially higher levels of expression than HLA-DP and HLA-DQ alleles on antigen presenting cells35–

37. Several metaclones were significantly associated with more than one HLA allele, likely due to the co-

expression of HLA alleles in linkage disequilibrium38, limiting the ability to resolve which allele is the 

restricting MHC for such metaclones. The application of bulk TCR sequencing maximised the depth of data 

and therefore the sensitivity of our analysis. Our primary approach focussed on -chain sequences to 

leverage their greater diversity and provide greater discrimination of the TCR repertoire than possible by 

analysis of α chains. Reassuringly, analyses of α-chain sequences replicated the findings from  chain 

repertoires. In future work, identification of public metaclone motifs in single cell sequencing datasets can 

identify associated α-chain pairs. Although the more limited depth of single cell sequencing limits 

sensitivity for metaclone discovery, α-chain pairs are necessary to pursue reverse epitope discovery to 
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test the prediction that metaclone clustered TCRs share epitope specificity, develop functional T cell assays 

to evaluate the association of immunodominant T cell metaclones with clinical outcomes of infection, and 

enable innovation in vaccine design based on specific protective epitopes in place of protein antigens. 

Our application of Metaclonotypist, combining fast clustering and HLA associations, to TCR sequence data 

from the day 7 TST that is highly enriched for Mtb-reactive T cells recruited from the in vivo repertoire, has 

identified a catalogue of metaclones, which together span the majority of the study population. We 

hypothesise that these metaclones will provide powerful approaches to improve disease-risk stratification 

in Mtb-infected people, and, in combination with single-cell sequencing will enable identification of epitopes 

to resolve protective and pathogenic T cell immunity critical to the development of more effective vaccines. 

Methods 

Study approvals 

Research ethics and regulatory approvals for the present study were provided by UK National Research 

Ethics Service (NRES) Committee (Fulham) reference nos 11/LO/1863 and 18/LO/0680, and the NRES 

Committee (Camden and Islington) reference no 14/LO/0505. All study participants provided written 

informed consent. Participants were compensated for travel expenses. 

Study population and sampling 

Study participants comprised healthy HIV seronegative adults, 18-60 years of age, with immune memory 

for Mtb-specific antigens identified by positive peripheral blood IFN release assays using the 

QuantiFERON Gold Plus Test, but no clinical or radiological evidence of active tuberculosis. Male and 

female participants were included in this study, and sex was determined by self-reporting. The analyses 

were not disaggregated by sex because this was not a component of the research question. Peripheral 

blood mononuclear samples purified by Ficoll-Paque Plus (GE Healthcare Biosciences) density gradient 

centrifugation of whole blood, were collected on participant enrolment, and cryopreserved in foetal calf 

serum (FCS, Sigma) supplemented with 10% DMSO (Sigma). Blood samples were collected into Tempus 

RNA preservative tubes (Thermo Fisher Scientific, cat no. 4342792) and total RNA extracted with the 

Tempus Spin RNA Isolation Kit (Ambion; Life Technologies, cat no. 4380204). Globin mRNA and genomic 

DNA were removed using the GlobinClear kit (Thermo Fisher Scientific, cat no. AM1980) and TURBO 

DNAfree kit (Ambion, Life Technologies, cat no, AM2238). Participants then received 0.1ml intradermal 

injections of either 2U tuberculin (Serum Statens Institute) into the volar aspect of each forearm, or control 

saline in one arm9,17,19. The precise injection sites were marked with permanent marker pen and used to 

position the site of 3mm punch biopsies at designated time points. Saline controls were biopsied on day 2, 

TST sites were biopsied on day 2 at one site and on day 7 at the contralateral site. Skin biopsies were 

placed in RNALater (Qiagen) and cryopreserved at -70°C, prior to RNA extraction. Skin biopsies were 

thawed at room temperature for 30 min and transferred into CK14 lysing tubes (Bertin Instruments) 

containing 350 µl Buffer RLT supplemented with 1% 2-mercaptoethanol (Sigma). Samples were 



ARTI
CLE

 IN
 P

RES
S

ARTICLE IN PRESS

 

 

homogenized on a Precellys Evolution instrument for 6 cycles of 23 s at 6300 rpm, with 2 min cooling on 

ice between cycles. Following centrifugation to pellet debris and beads, total RNA was purified from the 

supernatant using the RNeasy Micro Kit (Qiagen, cat no. 74004), according to the manufacturer’s 

instructions. Contaminating DNA was removed using the TURBO DNAfree kit (Ambion, Life Technologies, 

cat no. AM2238). In a sensitivity analysis, participants were stratified by the indication for QuantiFERON 

testing, as surrogate for possible interval time from exposure. In this context, household contacts of active 

TB index cases were expected to be enriched for individuals with more recent exposures than individuals 

being tested via routine occupational health screening. 

Participant demographics were collected in a RedCAP database, and are summarised in Tables 1 and 2, 

and are detailed on a per-sample level in Supplementary Data 1. 

RNA sequencing and analysis 

Total RNA from TSTs were subjected to genome wide mRNA sequencing. cDNA libraries were generated 

using the KAPA Hyperprep kit (Roche, cat no. 07962363001), and sequencing was performed on the 

Illumina Nextseq using the Nextseq 500 High Output 75 cycle kit (Illumina, cat no. 20024906) according to 

manufacturers’ instructions, providing a median of 22 million (range 10-50 million) 41 bp paired-end reads 

per sample. RNAseq data were mapped to the reference transcriptome (Ensembl Human GRCh38 release 

111) using Kallisto (v0.46)39. Transcript-level counts were summed on gene level, and annotated with 

Ensembl gene ID, gene symbol and gene biotype using the R/Bioconductor packages tximport and BioMart. 

Raw counts of 23,820 Ensembl gene IDs, retained after exclusion of pseudogenes, were used for 

differential expression analysis with the SARtools (v1.8.1) implementation of DeSeq2 (v1.42.1)40, with a 

false discovery rate (FDR) <0.05 and log2 fold difference of ≥1. For all other analyses, raw counts were 

converted into transcripts per millions (TPM) values, and log2 transformed after the addition of a 

pseudocount of 0.001. Duplicated gene symbols were filtered by retaining the gene with highest expression 

per sample. 

Upstream regulator analysis of the differentially expressed genes was performed using Ingenuity Pathway 

Analysis (Qiagen). This was visualised as a network diagram using the Force Atlas 2 algorithm in Gephi 

v0.9.4, and used to derive co-regulated gene-expression networks41. This analysis was restricted to 

upstream regulators predicted to be significantly activated (Z-score>2, adjusted p-value<0.05), targeting at 

least 4 downstream genes, and annotated with one of the following functions: cytokine, kinase, 

transmembrane receptor, and transcriptional regulator, representing the canonical components of 

pathways which execute transcriptional reprogramming in immune responses. For each upstream 

regulator, pairwise Spearman correlations of the TPM expression values of the target genes were 

calculated among TST samples. Upstream regulators were selected as significant if the average co-

correlation was significantly (FDR <0.05) greater than the distribution of average correlation coefficients 

obtained from 100 iterations of selecting an equivalent number of random genes. Reactome pathway 

enrichment of differentially expressed genes was analysed with the XGR (v1.1.9) R package42. For 

visualisation, 20 pathway groups were identified by hierarchical clustering of Jaccard indices to quantify 
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similarity between the gene compositions of each pathway. For each group, the pathway with the largest 

total number of genes was then selected to provide a representative annotation. 

Transcriptional modules for T cell proliferation41 and cell types present in the TST32 have been derived and 

published previously. Their gene composition is listed in Supplementary Data 2. The expression of each 

module was quantified as the arithmetic mean log2 TPM value of its constituent genes. 

Ex vivo PBMC stimulation 

Frozen PBMC were thawed at 37°C, washed in RPMI-1640 media (Thermo Fisher Scientific) with 10% 

FCS, at resuspended at 106 cells/ml in RPMI with 5% heat-inactivated male human AB serum (Sigma). 

2x105 were seeded into individual wells of round bottom 96-well plates (Thermo Fisher Scientific) with one 

of 10 µg/mL purified protein derivative of Mtb (PPD; Serum Statens Institute), 100 µg/mL tetanus toxoid 

(NIBSC), or control buffer for 6 days at 37°C and 5% CO2. At the end of this incubation period, plates were 

centrifuged (400g for 5 minutes) and the resulting cell pellets were lysed in RLT buffer (Qiagen). Samples 

from triplicate wells were pooled for RNA extraction using the RNAeasy Micro kit (Qiagen, cat no. 74004). 

Up to 5 separate pooled samples were collected for each individual, for each stimulus.  

T cell receptor (TCR) sequencing and analysis 

RNA extracted from skin samples, ex vivo stimulated PBMC and peripheral blood Tempus tubes were 

subjected to sequencing of TCR  and -genes using an established quantitative TCR sequencing pipeline 

that integrates experimental library preparation and computational analysis with Decombinator V426,43,44 

which defines and quantifies  a TCR clone by its nucleotide sequence and reports its V, J and CDR3 

annotation. To account for different sequencing depth between samples, repertoire metrics were calculated 

after downsampling all samples to 16,000 unique molecular identified (UMI) reads (Supplementary Figure 

1). Since the UMI-based method quantifies the number of mRNA transcripts, we note that clone size does 

not measure the number of T cells directly. Nevertheless, mRNA number is a good proxy for clone size and 

clonal expansion since T cells do not substantially change TCR mRNA levels upon activation26.  

TCR α and  CDR3s from whole blood or skin biopsies were annotated as CMV, EBV or Mtb-reactive, if 

they were listed as sequences known to target these pathogens in the VDJdb TCR repository 

(https://vdjdb.cdr3.net/; accessed 01/10/2024)23,45, the McPAS database 

(http://friedmanlab.weizmann.ac.il/McPAS-TCR/; accessed 16/09/2023)22 or in Table S2 from Musvosvi et 

al15. The collated antigen-reactive CDR3 sequences are summarised in Supplementary Data 3. To identify 

antigen-reactive CDR3s from in vitro cultures, we identified CDR3 sequences with ≥8-fold increased 

abundance in antigen stimulated, but not unstimulated PBMC compared to whole blood from the same 

individual26. CDR3s absent in matching blood were set to the median blood CDR3 abundance of 1 to allow 

expansion calculations for all in vitro CDR3s. To complement this analysis, we also used a more stringent 

definition of expanded T cell clones41,46. In this approach, CDR3s in Day 7 TST samples were defined as 

significantly expanded if their observed abundance was greater than expected using a Poisson distribution 

derived from Day 2 TST counts with FDR<0.1%. 
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MAIT TCR enrichment was assessed based on their TCR α gene usage as sequences containing TRAV1-

2, paired with TRAJ12, TRAJ20 or TRAJ33; iNKT TCRs were identified as TCRs containing TRAV10 paired 

with TRAJ18; and GEM TCRs were identified as TCRs containing TRAV1-2 paired with TRAJ947. 

TCR repertoire diversity was assessed by the number of expanded TCR sequences (count>1), Gini index 

(repertoire inequality), and Hill Diversity indices. These diversity indices are defined as Dq = (∑ pi
qR

i=1 )
1

1−q, 

where R is the number of distinct TCRs, pi the clonal frequency of the i-th clone, and q a parameter that 

determines the relative weight put on clonal abundance. We compared richness (total number of distinct 

TCRs), 𝐷0 = 𝑅, Shannon Diversity (exponential of Shannon entropy), 𝐷1 = exp(− ∑ 𝑝𝑖
𝑅
𝑖=1 𝑙𝑛 𝑝𝑖), and 

Simpson diversity (inverse of Simpson’s index), 𝐷2 =
1

∑ 𝑝𝑖
2𝑅

𝑖=1
. Among these measures Simpson diversity is 

most sensitive to clonal dominance, while Richness completely disregards variability in clonal expansions. 

Within- and cross-donor convergence of TCR sequences was calculated as previously described24. Within-

donor convergence was calculated as the proportion of all pairs of distinct clonotypes (as defined by 

nucleotide sequence identity) which were functionally convergent, i.e. that encode the same protein. We 

define 𝑛𝑖 as the number of distinct clonotypes encoding the 𝑖 − 𝑡ℎ TCR with i =  1, … , S, where 𝑆 is the 

number of unique clonotypes. We also define N = ∑ ni as the total number of clonotypes in the sample. We 

then can estimate the probability of coincidence within a sample as: 𝑝𝐶̂   =   ∑
(𝑛𝑖 (𝑛𝑖 −1))

𝑁(𝑁−1)
𝑆
𝑖=1 . In comparing 

across samples, we define clonotypes by nucleotide sequence and donor identity. Defining nI,1 and nI,2 as 

the sampled counts of the 𝑖 − 𝑡ℎ TCR in donor 1 and donor 2, respectively, we estimate the probability of 

cross-donor convergence using: 𝑝𝐶̂   =   ∑
𝑛𝑖,1𝑛𝑗,2

𝑁1𝑁2

𝑆
𝑖=1 , where 𝑁1 = ∑ 𝑛𝑖,1𝑎𝑛𝑑𝑖 𝑁2 = ∑ 𝑛𝑗,2 is the total number of 

clonotypes in the two samples. 

HLA genotype imputations 

DNA from participants was extracted from cryopreserved whole blood using the QIAamp spin column 

(Qiagen). Genotyping was conducted using the Illumina Infinium Global Diversity Array. HLA imputation 

was performed on the Michigan Imputation Server48 using genotyped autosomal variants across the study 

population, filtered to include only SNPs with a minor allele frequency (MAF) of ≥5% and a call rate of ≥95%. 

Briefly, typed SNPs within the MHC region (6:27970031-33965553; hg19) were phased with Eagle (v2.4) 

and imputed using Minimac4 with the four-digit multi-ancestry HLA imputation reference panel (v2). Imputed 

SNPs with an imputation score (R²) <0.8 were excluded, resulting in high-confidence HLA alleles for 158 

individuals (Supplementary Data 4). 

Benchmarking TCR clustering approaches using Metaclonotypist 

To compare TCR clustering approaches, we implemented Metaclonotypist, a modular computational 

pipeline for metaclonotype discovery, and benchmarked clustering performance using TCRs with known 

pMHC specificity from the VDJdb database23. 
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Metaclonotypist proceeds in a series of steps (Figure 4A). Metaclonotypist first calculates pairwise 

distances between TCRs according to sequence similarity metrics, from simple Levenshtein edit distances 

applied to the CDR3 sequence to more advanced metrics such as TCRdist. This first step can be optionally 

sped up by pre-filtering of candidate sequence neighbour pairs using the symmetric deletion lookup 

algorithm. It next generates an adjacency graph between sequences, by thresholding the pairwise 

sequence similarity with respect to a tuneable threshold. Each node in this graph represents a TCR found 

in an individual’s repertoire, and edges connect all nodes with a similarity below the threshold. Within the 

graph Metaclonotypist then identifies putative metaclones by clustering. Clustering is performed using 

community detection algorithms as implemented in igraph49. Importantly, each step is modular and support 

multiple choices to allow benchmarking of alternative approaches using different sequence similarity 

metrics, threshold choices for adjacency graph construction, and clustering algorithms. 

To construct a benchmarking task, we selected data from all pMHCs with at least 220 associated TCR β 

sequences from VDJdb following filtering and data standardisation using tidytcells. We then randomly 

down-sampled TCR repertoires from pMHCs with a greater number of sequences to obtain a dataset of 

4840 TCR β sequences equally balanced across 22 pMHCs. 

Clustering involves a multi-objective optimisation, with ideal clustering having both high purity and retention. 

To allow controlled comparisons across similarity metrics and clustering algorithms, we systematically 

varied distance thresholds for each method to be able to identify Pareto optimal solutions. We defined 

cluster purity as the weighted average of the dominant class frequency in each cluster: Purity =

1

𝑁
∑ max

𝑗
|𝐶𝑘 ∩ 𝐿𝑗|𝐾

𝑘=1 , where N is the total number of TCRs, K the total number of clusters, Ck the set of TCRs 

associated with cluster k, and Lj the set of TCRs associated with label j (here representing a specific 

epitope). We defined clustering retention as the fraction of all TCRs assigned to non-singleton clusters: 

Retention =
1

𝑁
∑ 𝐼(|𝐶𝑘| > 1)𝐾

𝑘=1 ⋅ |𝐶𝑘|,  where 𝐼(|𝐶𝑘| > 1) is an indicator function that is one if |𝐶𝑘| >  1  and 0 

otherwise. 

Using this benchmarking approach, we compared connected component clustering of adjacency graphs 

based on CDR3 Levenshtein distance, which simply groups all TCRs connected by at least one edge into 

a cluster, to more advanced algorithms. Our results suggest that the more advanced TCR sequence 

similarity metric TCRdist is superior to simple Levenshtein distance calculated on the CDR3 alone. We 

furthermore found that Leiden clustering, which breaks up large connected components into multiple 

clusters where this increases cluster modularity, maintains higher purity at larger thresholds. 

Discovery of HLA-associated metaclones with Metaclonotypist 

We considered metaclones as a set of -chain TCR clones with an imputed common HLA-peptide 

specificity27. We identify putative metaclones by clustering TCRs based on sequence similarity and testing 

the HLA association of TCR clusters. We combined bulk-sequenced Day 7 TST repertoires for  chains. 

To reduce uneven sampling, we down-sampled large repertoires to 10,000 total counts and excluded 

repertoires with <5,000 total counts. To increase confidence of restricting metaclone discovery to Mtb-
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reactive TCRs, only those with count >1 in these down-sampled repertoires were selected for analysis. 

TCRs with CDR3 amino acid length ≤5 were excluded from analysis. We then identified all pairs of TCRs 

that differ by ≤2 edits in their CDR3 hypervariable region using the symmetric deletion lookup algorithm31. 

We next calculated TCRdist scores between these pre-pruned TCR pairs using TCRdist327. Based on our 

preliminary benchmarking we used Leiden clustering for our identification of metaclonotypes in the day 7 

TST (with parameters: resolution=0.1, objective_function=’CPM’, n_iterations=4). After examining the effect 

of varying thresholds, we represented the TCR repertoire as an undirected graph based on the sparse 

adjacency matrix obtained by thresholding TCRdist scores ≤15.  

Each cluster was tested for HLA association, by comparing the expression of specific HLA alleles by 

Fisher’s exact test between two groups of individuals: those contributing at least one TCR to a cluster and 

the remainder of the population. Associations for HLA class II alleles (DP, DQ, DR) and class I alleles (A, 

B, C) were tested separately. HLA-association of metaclones with the DQ locus was tested with respect to 

all potential DQ heterodimers, by combining DQ alleles for the α and  HLA chain to account for the highly 

polymorphic nature of both the α and  chain of HLA DQ. P values were corrected for multiple testing using 

the Bonferroni-Hochberg procedure at a False Discovery Rate (FDR) of 0.1 where the number of tests was 

set equal to the product of the number of tested clusters and times the number of tested HLA alleles. To 

limit multiple testing, we only assessed association of clusters containing TCRs from ≥4 individuals with 

HLAs found in ≥4 individuals across the population. Where more than one significant HLA association was 

found, the most significant one was considered as lead HLA association. As a control, the link between 

HLA haplotype and individuals was randomly shuffled. 

Metaclone visualisation 

Sequence logos were constructed in python, using the seqlogos_vj plotting submodule of the pyrepseq 

package50. Graphs of TCR sequence similarity within a metaclone were visualised using Python bindings 

to the igraph package. Each node represents a TCR, and distinct colours are used to indicate donor origin. 

Nodes are connected by unweighted edges whenever corresponding TCRs were below the threshold of 

sequence similarity used for metaclone discovery. 

GLIPH2 analysis 

GLIPH2 analysis was undertaken on the same set of Day 7 TST -chain repertoires as described for 

metaclonotype discovery above, using default settings and CD48_v2.0 reference. The Metaclonotypist 

approach was then mirrored, by selecting only GLIPH2 similarity clusters containing TCRs from ≥4 

individuals and testing for associations with HLAs found in ≥4 individuals (done separately for class I and 

class II alleles). We explored the effect of filtering the GLIPH2 output further, as described before15. Filter 

1 selected clusters that consisted of ≥3 unique CDR3s and had a Fisher_score, vb_score and length_score 

≤0.05 each. Filter 2 applied the Fisher’s exact test for HLA association, either with a significance threshold 

of p<0.05 (as used by Musvosvi et al15) or with an FDR<0.1 as applied in the Metaclonotypist pipeline.  
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Quantification of Metaclonotypist and GLIPH2 metaclones 

Supplementary Data 5-6 list the HLA class II and class I restricted  metaclones respectively, as identified 

by Metaclonotypist from day 7 TST samples. The tables include significant HLA allele associations for each 

metaclone, as well as the associated V gene(s) and a regular expression for the clustered CDR3 amino 

acid sequences. To identify and quantify -chain TCR sequences from various datasets that match a pre-

defined class II associated metaclone in the context of the correct TCR chain, the V gene and CDR3 of 

each TCR was compared against the V gene and CDR3 regular expression of each metaclone. 

Supplementary Data 7-8 list the HLA class II and class I restricted  chain GLIPH2 clusters, respectively, 

identified from day 7 TST samples. The tables include significant HLA allele associations, as well as the 

clustered CDR3 sequences and a regular expression for the shared CDR3 pattern. -chain TCR sequences 

from various datasets were identified as matching a pre-defined class II associated GLIPH2 cluster in two 

different ways: a) if their CDR3 amino sequence contained the regular expression of the GLIPH2 motif 

(GLIPH2 pattern G.T was excluded from analysis to increase specificity), b) if their CDR3 amino acid 

sequence was part of the GLIPH2-clustered set of CDR3 sequences. 

Datasets for external validation of TST-derived metaclones 

Processed single cell TCR sequencing data from activated T cells following in vitro stimulation of PBMC 

from n=70 individuals with Mtb lysate were accessed from Supplementary Table S2 in the publication by 

Musvosvi et al15. Only good quality cells (flag = GOOD) were included, resulting in 21,212 cells with -chain 

data. 

Processed single cell TCR sequencing data from activated T cells following in vitro stimulation of PBMC 

from n=16 individuals with SARS-CoV2 were provided by Lindeboom et al51. All longitudinal samples per 

patient were included, resulting in 149,208 cells with -chain data. 

Single cell TCR sequencing FASTQ data from human lung of n=5 TB patients52 were downloaded from the 

NCBI gene expression omnibus resource (GSE253828) and processed with 10x Genomics CellRanger 

(v7.1.0) using the vdj pipeline and VDJ-T reference version 7.1. Single cell TCR data from 

filtered_contig_annotations.csv output files were integrated across all patients, resulting in 20,025 cells with 

-chain data. 

Single cell TCR sequencing FASTQ data from human lung of n=3 lung cancer patients53 were downloaded 

from the NCBI gene expression omnibus resource (GSE154826) and processed with 10x Genomics 

CellRanger (v7.1.0) using the vdj pipeline and VDJ-T reference version 7.1. Single cell TCR data from 

filtered_contig_annotations.csv output files were integrated across all samples (including tumour and 

normal lung tissue) from all patients, resulting in 17,019 cells with -chain data.  

Processed bulk TCR sequencing data for lung tissue and whole blood from TB patients and cancer controls, 

as well as for sorted CD4 T cells from TB lung and TB blood were provided on Adaptive Biotechnologies’ 

ImmunoSEQ website (https://clients.adaptivebiotech.com/). The cohort has been previously described54, 
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and an overview of utilised files and their metadata is provided in Supplementary Data 9. Only functional 

TCR sequences were included (sequenceStatus = In), and the vMaxResolved column was used as V gene 

annotation, but with the allele information excluded (e.g. TCRBV06-01*01 became TCRBV06-01). Since 

the ImmunoSeq naming of TCR V genes differs from the IMGT nomenclature used for metaclone 

definitions, V gene names were made compatible prior to searching for metaclone matches. This included, 

within the ImmunoSeq annotations, replacement of TCRBV with TRBV, and the removal of leading zeroes 

from V gene alleles (e.g. replacing TRBV06-06 with TRBV6-6). -chain data were available for the lung 

dataset (n=13 TB patients and n=3 cancer controls), the blood dataset (n=11 TB patients and n=4 cancer 

controls), and the CD4 T cell dataset (n=5 TB patients). All samples per patient were included, and data 

integrated across disease and tissue groups, resulting in n=1,615,131 TB-associated and n=218,372 

cancer-associated  TCRs for the lung dataset; n=1,081,593 TB-associated and n=735,834 cancer-

associated  TCRs for the blood dataset; and n=336,787 lung-derived and n=219,541 blood-derived  

TCRs for the CD4 T cell dataset.  

Statistics and data visualisation  

Analyses were performed in R (version 4.3.3) or Python (version 3.10.4). Data were visualised and figures 

assembled using R’s tidyverse (v2.0.0) and ggpubr (v0.6.0) packages, and Inkscape (v0.92). Statistical 

differences were assessed using the tests and significance thresholds stated in the text and figure legends. 

Wilcoxon tests with FDR correction for multiple testing were performed with the wilcox_test or 

pairwise_wilcox_test functions from the rstatix (v0.7.2) package in R. Base R functions cor() and lm() were 

used for Spearman correlation and linear regression analyses, respectively, with confint() to calculate 

confidence intervals for regression coefficients. R packages pheatmap (v1.0.12) and ComplexHeatmap 

(v.2.18.0) were used to create heatmaps. Odds ratios and their confidence intervals were calculated with 

the fisher.test() function from the stats (v4.3.3) R package. Metaclones were identified using 

Metaclonotypist (v1.0; written in Python) and visualised as described above. To visualise overlap between 

CDR3 sequences, an area-proportional Venn diagram was drawn with DeepVenn 

(https://arxiv.org/abs/2210.04597). 

Data availability  

All source data for the analyses presented in this study are provided in the Source Data file. The processed 

RNAseq data generated in this study are available at Array Express with accession number E-MTAB-14687 

[https://www.ebi.ac.uk/biostudies/ArrayExpress/studies/E-MTAB-14687?query=E-MTAB-14687%20]. The 

raw RNA sequencing data in FASTQ format are available under controlled access to comply with data 

privacy restrictions. Access can be obtained via the European Genome-Phenome Archive with accession 

number EGAD50000001208 [https://ega-archive.org/datasets/EGAD50000001208]. Data will be shared 

with investigators whose proposed use is within the scope of participant consent subject to a data access 

agreement. The processed TCR sequencing data generated in this study are available from UCL’s 

Research Data Repository [https://doi.org/10.5522/04/28049606]. The raw TCR sequencing data in FASTQ 

format are available at NCBI Short Read Archive with accession number PRJNA1208718 
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[https://www.ncbi.nlm.nih.gov/bioproject/PRJNA1208718]. Previously published single-cell TCR 

sequencing data from human lung are available from Gene Expression Omnibus with accession numbers 

GSE253828 [https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE253828] (TB patients) and 

GSE154826 [https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE154826] (lung cancer patients). All 

other data are available in the article and its Supplementary files or from the corresponding author upon 

request. Source data are provided with this paper. 

Code availability 

Analysis code is available on GitHub at https://github.com/carolinturner/tst_tcr 

(https://doi.org/10.5281/zenodo.18209647). Metaclonotypist library code is available at 

https://github.com/qimmuno/metaclonotypist (https://doi.org/10.5281/zenodo.17977729).
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Tables 

Table 1 Participant overview for RNA sequencing 

Table 2 Participant overview for TCR sequencing 

Characteristic Blood N = 201 PBMC N = 121 TST_D2 N = 171 TST_D7 N = 1651 

Sex     

    Female 9 (45%) 3 (25%) 6 (35%) 88 (53%) 

    Male 11 (55%) 9 (75%) 11 (65%) 77 (47%) 

Age 33 (30, 36) 34 (30, 37) 33 (30, 36) 35 (29, 44) 

    Unknown 0 0 0 1 

Ethnicity     

    African 2 (11%) 2 (18%) 2 (13%) 50 (31%) 

    American 1 (5.3%) 1 (9.1%) 1 (6.3%) 3 (1.9%) 

    East Asian 0 (0%) 0 (0%) 0 (0%) 27 (17%) 

    European 15 (79%) 7 (64%) 12 (75%) 48 (30%) 

    Mixed 0 (0%) 0 (0%) 0 (0%) 1 (0.6%) 

    South Asian 1 (5.3%) 1 (9.1%) 1 (6.3%) 33 (20%) 

    Unknown 1 1 1 3 
1n (%); Median (Q1, Q3) 

 

Table 3 Top 10 public metaclones in down-sampled D7 TST dataset 

Index Publicity Consensus CDR3aa V gene usage Lead HLA association 
(odds ratio, p-value) 

8 82/128 CSARVGGNTGELFF TRBV20-1 DRB1*15 
(10.2, 1.84E-09) 

76 78/128 CSAGGLAGNEQFF TRBV20-1 DQA1*01_DQB1*05 
(8.6, 9.30E-06) 

13 69/128 CASSLGSVSYEQYF TRBV7-9 DRB1*15 
(11.3, 3.55E-09) 

21 64/128 CSARDLGLAEETQYF TRBV20-1 DRB1*04 
(11.3, 4.41E-08) 

Characteristic 
saline N = 331 TST_D2 N = 2161 TST_D7 N = 1581 

Sex    

    Female 19 (58%) 115 (53%) 85 (54%) 

    Male 14 (42%) 101 (47%) 73 (46%) 

Age 28 (21, 39) 34 (29, 43) 35 (29, 45) 

    Unknown 1 1 1 

Ethnicity    

    African 5 (16%) 64 (30%) 48 (31%) 

    American 7 (22%) 3 (1.4%) 2 (1.3%) 

    East Asian 2 (6.3%) 40 (19%) 27 (17%) 

    European 13 (41%) 64 (30%) 44 (28%) 

    Mixed 1 (3.1%) 1 (0.5%) 1 (0.6%) 

    South Asian 4 (13%) 40 (19%) 34 (22%) 

    Unknown 1 4 2 
1n (%); Median (Q1, Q3) 
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39 60/128 CSVGETQYF TRBV29-1 DQA1*05_DQB1*03 
(9.1, 4.63E-07) 

33 56/128 CSARAGYGYTF TRBV20-1 DRB1*10 
(44.0, 2.61E-07) 

91 50/128 CASSLEGETQYF TRBV7-9 DRB1*11 
(6.2, 2.17E-05) 

6 49/128 CASSRGAQTYEQYF TRBV18 DPB1*04 
(27.5, 8.91E-10) 

100 47/128 CSARGQGNEQFF TRBV20-1 DRB1*13 
(7.9, 2.73E-05) 

97 43/128 CASSPGRETQYF TRBV6-6|TRBV6-5|TRBV6-9 DRB1*10 
(26.8, 2.39E-05) 
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Figure legends 

Figure 1. Proliferation response in Day 7 TST is correlated with CD4 T cell gene signature. 

Expression of cellular proliferation (A) and cell type-specific (B) modules in bulk RNA sequencing data from 

saline-injected control skin, Day 2 and Day 7 TSTs, shown as Z-score scaled TPM expression using saline 

samples as control group (n=33 saline, n=216 Day 2 TST, n=158 Day 7 TST). Unpaired, two-sided Wilcoxon 

test with multiple testing correction: * FDR<0.05, ** FDR<0.01, **** FDR<0.0001. (C) Heatmap of Spearman 

correlation matrix between gene signatures in Day 7 TSTs. Dendrogram depicts average linkage clustering 

of correlation coefficients. 

Figure 2. Functional restriction of the TCR repertoire in Day 7 TST yet limited inter-individual TCR 

sharing.  

Individual -chain bulk TCR repertoires (n=20 Blood, n=16 Day 2 TST, n=128 Day 7 TST) were down-

sampled to 16,000 TCRs. Boxplots in A-D depict median and inter-quartile range (IQR), with outlier data 

points (more than 1.5*IQR beyond the box hinges) shown as dots. Statistical significance was assessed 

with unpaired, two-sided Wilcoxon tests and corrected for multiple testing (ns FDR>0.05, * FDR<0.05, ** 

FDR<0.01, **** FDR<0.0001). (A) TCR repertoire diversity metrics, shown as Z-score values scaled 

across all samples. No. expanded TCRs = number of TCR sequences present more than once. (B) 

Abundance of published antigen-reactive CDR3 sequences (specific for Mtb, CMV or EBV; collated from 

VDJdb and McPAS databases as well as Musvosvi et al.15), shown as percentage of all TCRs or of all 

expanded TCRs (present more than once). The number of distinct published antigen-reactive CDR3s 

available to assess enrichment of antigen reactivity in blood and TST samples is indicated. (C) Within-donor 

convergence of distinct clones as identified by nucleotide sequence identity onto identical amino acid 

sequences. (D) Cross-donor TCR convergence, calculated between any two individuals, resulting in n=190 

(Blood), n=120 (Day 2 TST) and n=8128 (Day 7 TST) pairwise comparisons. (E) Cross-donor TCR 

convergence in Day 7 TSTs, stratified by the number of class I or class II HLA alleles shared between any 

two individuals. Each dot represents a pairwise comparison (n= 8128). The linear regression line is shown 

in blue, with regression coefficient (slope β) and its 95% confidence interval indicated. 

Figure 3. Expansion of diverse PPD-reactive TCRs in Day 7 TST. 

(A) Histogram of number of unique PPD-reactive -chain CDR3s shared by different numbers of 

participants, in ex vivo PPD-stimulated PBMC from a subset of the study population (N=12). (B) Heatmap 

of unique ex vivo PPD-reactive -chain CDR3s (clustered by Ward D2 linkage). Each column across the x-

axis represents one participant. Abundance of total (C) or unique (D) ex vivo PPD- or TT-reactive -chain 

CDR3 sequences in blood (n=12), Day 2 TST (n=11) and Day 7 TST (n=10). Individual -chain repertoires 

from blood and TSTs were down-sampled to 16,000 total TCRs and stratified by clone size (= TCR count). 

The boxplots display median and inter-quartile range (IQR), with outlier data points (more than 1.5*IQR 

beyond the box hinges) shown as dots. 
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Figure 4. Discovery of public HLA-restricted TCR metaclones from Day 7 TSTs. 

(A) Schematic overview of the Metaclonotypist analysis pipeline and evaluation in data with known 

(purity/retention), or unknown specificities (by identifying significant enrichment of HLA associations, 

detailed in Supplementary Data 4). (B) Trade-off between cluster purity and retention for different clustering 

algorithms and threshold choices benchmarked on 4840 TCRs specific to 22 distinct pMHCs from VDJdb. 

Metaclonotypist using TCRdist scores and Leiden clustering provides Pareto optimal clustering. (C) Number 

of HLA-enriched metaclones (left hand plot), percentage of contributing participants (middle plot) and 

percentage of contributing unique TCRs (right hand plot) identified at varying TCRdist thresholds by 

Metaclonotypist analysis of day 7 TST TCR -chain repertoires (N=151, sub-sampled to between 5,000-

10,000 TCRs per repertoire) using true or shuffled HLA allele associations. (D) Frequency distribution of 

the most significant HLA associations for each -chain Metaclonotypist metaclones, stratified by HLA class 

II (n=177) and class I (n=3) allele enrichment. (E) Exemplar adjacency graphs and TCR sequence motifs 

of most public (found in 82 out of 128 participants) and most abundant (matching 5,197 out of 288,000 

TCRs) day 7 TST Metaclonotypist metaclones from down-sampled repertoires (N=128 with 16,000 TCRs 

from each repertoire). Each node represents a single TCR stratified by distinct donors (colours). (F) Venn 

diagram showing the overlap of unique β chain CDR3 amino acid sequences included in class II-associated 

metaclone clusters by Metaclonotypist or GLIPH2 and annotated as class II-restricted Mtb-reactive TCRs 

in VDJdb. 

Figure 5. Validation of Mtb reactivity and publicity of metaclones 

Relative enrichment of -chain TCR sets derived from expanded (TCR count >1) day 7 TST repertoires 

(122,253 TCR clones, 151 individuals) in multiple external data sets showing odds ratio (OR) point 

estimates with 95% confidence intervals for the pairwise comparisons indicated. PBMC (bulk-TCRseq): in 

vitro stimulation of PBMC from n=12 individuals with either purified protein derivative (PPD) from Mtb or 

tetanus toxoid (TT), followed by bulk TCR sequencing (see Figure 3), comprising n=7,743,878 PPD-

stimulated and n=1,453,823 TT-stimulated TCRs. T-cells (sc-TCRseq): in vitro stimulation of PBMC with 

either Mtb lysate (n=70)15 or SARS-CoV2 (n=16)51, followed by flow cytometric sorting and single cell TCR 

sequencing of activated T cells, resulting in n=21,212 Mtb-reactive and n=149,208 SARS-CoV2-reactive T 

cells. Lung (sc-TCRseq): lung tissue resections from TB patients (n=5)52 or lung cancer patients (n=3)53, 

followed by single cell TCR sequencing, resulting in n=20,025 TB-associated and n=17,019 cancer-

associated T cells. Lung (bulk-TCRseq): lung tissue resections from TB patients (n=13) or lung cancer 

patients (n=3), followed by bulk TCR sequencing, resulting in n=1,615,131 TB-associated and n=218,372 

cancer-associated  TCRs. Blood (bulk-TCRseq): bulk TCR sequencing of whole blood samples from TB 

patients (n=11) or lung cancer patients (n=4), resulting in n=1,081,593 TB-associated and n=735,834 

cancer-associated  TCRs. CD4-T (bulk-TCRseq): bulk TCR sequencing of CD4 T cells, flow-sorted from 

lung tissue or blood samples from TB patients (n=5), resulting in n=336,787 lung-derived and n=219,541 

blood-derived  TCRs (detailed in Supplementary Data 9)54. 
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Figure 6. Mtb-reactive metaclones constitute a small proportion of the Day 7 TST repertoire but 

capture the most public response. 

(A) Abundance of HLA class II-restricted Metaclonotypist -chain metaclones in TCR 

repertoires (each down-sampled to 16,000 TCRs; n=20 Blood, n=16 Day 2 TST, n=128 

Day 7 TST), shown as percentage of all TCRs or of all expanded (>1) TCRs. Boxplots 

display median and inter-quartile range (IQR), with outlier data points (more than 1.5*IQR 

beyond the box hinges). Statistical significance was assessed with unpaired, two-sided 

Wilcoxon tests and corrected for multiple testing (ns FDR>0.05, * FDR<0.05, ** FDR<0.01, 

**** FDR<0.0001). (B) Abundance of public and private Mtb-reactive CDR3s in the same 

individual quantified as percentage of all Day 2 or all Day 7 TST TCRs, stratified by clone 

size (= TCR count). −chain TCRs were classified as public if they matched a 

Metaclonotypist metaclone, or else as private if they matched a private PPD-reactive 

CDR3 sequence identified from ex vivo stimulated PBMC from the same individual (see 

Figure 3). This analysis was restricted to individuals with paired in vitro stimulation 

experiments (n=11 Day 2 TST, n=10 Day 7 TST), and performed on repertoires down-

sampled to 16,000 TCRs each. (C) HLA-class II restricted Metaclonotypist -chain 

metaclones (blue), CDR3s with published Mtb reactivity (yellow), and CDR3s present in 

Day 7 TSTs (red) were each ranked by their publicity across 128 Day 7 TST  repertoires 

(each down-sampled to 16,000 TCRs) and plotted against the cumulative proportion of 

participants expressing the TCR. Presence of TCRs was assessed using either all TCR 

sequences in each sample or only expanded TCRs (present more than once). (D) 

Proportion of participants with a cognate HLA contributing to a metaclone in the discovery 

dataset (n=151 Day 7 TST) and frequency of the cognate HLA for each HLA class II-

restricted Metaclonotypist metaclones represented by individual points. 

 

 

 

 

 

Editor’s Summary 

T cells contribute to protection and pathogenesis in tuberculosis. Here the authors sequence T cell receptor 

repertoires in human skin biopsies from the site of the tuberculin skin test and show enrichment of 

clonotypes reactive to Mycobacterium tuberculosis using a computational pipeline metaclonotypist to 
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identify distinct TCRs predicted to share peptide-MHC reactivity across participants, as an approach to 

explore T cell correlates of tuberculosis disease-risk stratification and vaccine efficacy. 

 

 

Peer Review Information: Nature Communications thanks the anonymous reviewer(s) for their 

contribution to the peer review of this work. A peer review file is available. 
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