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Abstract

T cells contribute to immune protection and pathogenesis in tuberculosis, but measurements of polyclonal
responses have failed to resolve correlates of outcome. We report the temporal evaluation of the human in
vivo clonal repertoire of Mycobacterium tuberculosis (Mtb)-reactive T cell responses, by T cell receptor
(TCR) sequencing at the site of the tuberculin skin test, as a model for a standardised antigenic challenge.
Initial non-selective recruitment of T cells is followed by enrichment of Mtb-reactive clones arising from
oligoclonal T cell proliferation. We introduce a modular computational pipeline, Metaclonotypist, to
sensitively cluster distinct TCRs with shared epitope specificity, which we apply here to establish a
catalogue of public Mtb-reactive HLA-restricted T cell metaclones. Although most in vivo Mtb-reactive T
cells are private, 10 metaclones were sufficient to identify Mtb-T cell reactivity across our study population
(N>128), indicating striking population level immunodominance of specific TCR-peptide interactions that

may inform patient stratification and vaccine development.



Introduction

Mycobacterium tuberculosis (Mtb) remains the commonest microbial cause of death worldwide, but most
incident infections do not progress to tuberculosis (TB) disease®?. Immunodeficiency is associated with
increased risk of disease, indicating a role for protective immunity. However, disease is mediated by
immunopathology, associated with a failure to restrict Mtb growth. Better understanding of the immune
correlates of protection and pathogenesis remain global research priorities to inform novel approaches to
disease-risk stratification in Mtb infected people, vaccine development and evaluation, and identification of

targets for host-directed therapies.

T cells are essential for protective immunity to TB. They are thought to augment bacterial restriction within
intracellular niches such as macrophages®“. T cell-mediated protection against TB is evident in increased
disease risk associated with genetic deficiencies of IL-12 and IFNy signalling®, T cell depletion in people
living with HIV®, and experimental T cell depletion in non-human primates”®. Yet, frequency of circulating
Mtb-reactive T cells, and limited analysis of their functional attributes (cytokine production or cytolytic
degranulation) do not predict natural or vaccine-inducible protective immunity in humans*. We have also
reported evidence for T cell-mediated pathogenesis in TB, illustrated by enrichment of IL-17 producing T
cells in people with disease compared to those who have controlled infection®, disease triggered by
checkpoint inhibitor therapies that increase effector T cell function*® and direct stimulation of Mtb-growth by
IFNyL.

T cells exist as clonal populations identified by their T cell receptor (TCR), most commonly composed of af§
heterodimers produced by imprecise somatic gene recombination during T cell development and
responsible for signalling T cell activation following recognition of antigen bound to MHC molecules. Mtb
proteome-wide studies have identified immunodominant protein antigens?-*4. To date, use of whole protein
or pooled peptide antigens to quantify Mtb-reactive T cells has not resolved correlates of protection and
pathogenesis, potentially because they measure polyclonal responses in which responses to distinct
peptide-MHC targets have differential effects on outcome. TCR sequencing enables an antigen-agnostic
approach to resolve clonal T cell responses. This has provided proof of concept for potential correlates of

outcome?®, but the generalisability of these findings is not known.

Importantly, studies of human T cell biology in TB have relied heavily on investigation of Mtb reactive T
cells from blood samples that are limited by sampling depth, because they contain <0.001% of the T cell
clonal repertoire of an individual'é, only a small fraction of which is Mtb reactive. Alternatively, investigation
of T cells from the site of disease, such as bronchoalveolar lavage specimens or tissue biopsies, can enrich
for the antigen-specific cells of interest, but is confounded by the chronicity of infection and pathological
processes. We have addressed these limitations by profiling immune responses at the site of the tuberculin
skin test (TST)1"21819 Tuberculin is a standardised clinical grade preparation of purified protein derivative
(PPD) from Mtb. Inflammatory induration at the site of the TST after 2-3 days has been used extensively

as a classical model of delayed type hypersensitivity dependent on T cell priming, and therefore a measure



of T cell memory for Mtb antigens contained in PPD. We have previously used this model to quantify T cell
recruitment and function, and to reveal exaggerated IL17 activity associated with active TB disease which
could not be detected in blood®. The clonal repertoire of the T cell response to Mtb challenge in vivo has
not previously been systematically evaluated. The extent to which these responses converge onto dominant

T cell clones, and whether these are generalisable or idiosyncratic within a population are not known.

We addressed these questions by TCR sequencing of biopsies from the site of the TST in a cohort of 223
individuals. This approach provided us with a sensitive unbiased quantitation of T cell clones recruited and
expanded in response to a standardised in vivo challenge. To evaluate convergence of the response to
immunodominant epitopes, we developed Metaclonotypist, a modular bioinformatics pipeline for the
grouping of TCR sequences based on sequence similarity. Using this pipeline, we discover a dominant
immune response to TB driven by highly public HLA-associated TCR metaclonotypes, which we expect to

be a valuable resource for future biomarker discovery and reverse epitope discovery efforts in tuberculosis.

Results
Transcriptome-wide evaluation of maturation of the immune response to TST from day 2 to day 7

Inflammatory induration in the TST is maximal at 2-3 days, but previous flow cytometric evaluation of T cells
at the site of the TST reported maximal accumulation of antigen-specific T cell responses at 7 days?.
Therefore, we investigated the evolution of the T cell response by bulk RNAseq and TCRseq in day 2 and
day 7 TSTs (Supplementary Figure 1). We recruited healthy volunteers with evidence of peripheral blood
Mtb-reactive T cells identified during occupational health screening, TB index case contact screening or
recent migrant screening, to undergo a TST in each arm (Table 1). The TST site was sampled on day 2 at
one site and on day 7 at the contralateral site. Genome-wide TST-response transcriptomes at day 2 and
day 7 were defined by differential gene expression compared to transcriptomes from the site of control
saline injections performed in a separate set of volunteers. The TST-response transcriptomes at each time
point were used to infer activity of immune response pathways at the level of cytokines, receptors, kinases
and transcription factors. Both day 2 and day 7 TST transcriptomes showed activation of a comparable
repertoire of canonical immune signalling pathways (Supplementary Figure 2A-B). We next identified gene
expression modules associated with individual upstream regulators, which were significantly upregulated
in integrated data from day 2 and day 7 TST-response transcriptomes. We found that most module
expression decreased between day 2 and day 7 (Supplementary Figure 2C) consistent with homeostatic
resolution of inflammatory changes. A small number of modules showed higher expression at day 7. These
were all identified as being regulated by transcription factors known to be involved in cell cycle regulation
(Supplementary Figure 2D).

Direct comparison of day 2 and day 7 TST-response transcriptomes also revealed differences in expression
at the level of individual genes (Supplementary Figure 2E). Pathway enrichment analysis of the differentially
expressed genes indicated increased cell cycle and mitotic activity in the day 7 TST (Supplementary Figure

2F), suggestive of increased cell proliferation at this time point. Therefore, we tested the hypothesis that



the evolution of transcriptional changes between the day 2 and day 7 TSTs reflected T cell proliferation by
guantifying the correlation between independently derived gene expression modules for cellular
proliferation and selected T cell and non-T cell subsets. By comparison to day 2 profiles, the transcriptomes
from day 7 TSTs showed significantly higher expression of the modules for cell proliferation (Figure 1A),
pan-T cell, CD4 T cells and NK cells, but not modules for CD8 T cells or myeloid cells (Figure 1B). The cell
proliferation module showed greatest correlation to the pan-T cell and CD4 T cell modules (Figure 1C).
Clinical induration at TST sites on day 2 was positively correlated with multiple cell types at day 2, but only
T cell accumulation at day 7, as measured by cell-type specific gene expression of modules (Supplementary
Table 1).

Evolution of reduced T cell clonal diversity in the TST

To study the nature of the T cell proliferation response revealed by our transcriptional analysis, we tracked
the temporal evolution of the T cell clonal repertoire in the TST by TCRa and TCRp sequencing of bulk
RNA from day 2 and day 7 TSTs (Table 2, Supplementary Figure 1). We compared TCR repertoire diversity
metrics to those of unstimulated peripheral blood samples from the same population of study participants
(Figure 2A). We display metrics for the TCR B-chain, which is more diverse and informative about TCR
antigen specificity?, but found concordant results for metrics calculated on TCR a-chain repertoires
(Supplementary Figure 3A). The median number of total $-chain TCRs obtained was 267,057 (range 113-
566,403) forday 7 TSTs; 53,756 (range 2,596-100,381) for day 2 TSTs; and 66,452 (range 18,266-119,984)
for peripheral blood samples. Since repertoire diversity metrics are affected by sequencing depth
(Supplementary Figure 3B-C), we excluded samples with very small repertoires and down-sampled
repertoires to the same size (n=16,000 total TCRs) prior to this analysis. Compared to blood, the day 2 TST
repertoire had an increased frequency of TCR sequences with >1 copy and a greater inequality of clone
sizes as measured by Gini index, indicative of recruitment of expanded memory T cell clones.
Correspondingly, the number of unique TCR clones (Richness) was reduced compared to blood. In
contrast, Shannon diversity did not differ significantly from blood at day 2 and Simpson diversity even
slightly increased, indicative of limited clonal dominance at this timepoint. Day 7 TSTs showed still higher
proportions of expanded TCR clones, further reduced richness and Shannon diversity, and were
characterised by the emergence of clonal dominance in the TCR repertoire, measured as decreased
Simpson diversity and increased Gini index. Taken together, these findings suggest that the selection of T
cell clones recruited to the day 2 TST is not particularly stringent, but repertoires evolve towards

oligoclonality as a result of selective CD4 T cell proliferation and clonal expansion.
Day 7 TST is highly enriched for expanded Mtb-reactive T cell clones

Since inflammatory responses in the TST are dependent on Mtb-reactive T cells, we tested the hypothesis
that the day 2 and day 7 TST TCR repertoires are selectively enriched for Mtb-reactive T cells compared
to blood samples from the same individuals. We tested this hypothesis first by evaluating enrichment of
previously described Mtb-reactive CDR3 sequences. We compared the TST CDR3 B-chain sequences to

published CDR3 sequences derived from T cells with known antigen reactivity, including 32,869 reported



Mtb-reactive TCRs identified by virtue of pMHC specificity or upregulation of T cell activation markers on
ex vivo stimulation with Mtb*>2223 Compared to blood, we found no enrichment for Mtb-reactive CDR3s
among all TCRs or all expanded TCRs in the day 2 TST (Figure 2B, Supplementary Figure 4). This indicates
that the early inflammatory response likely reflects the circulating frequency of Mtb-specific T cells in
individuals with prior memory, rather than preferential recruitment of specific clones. However, there was
statistically significant enrichment of published Mtb-reactive CDR3 sequences in day 7 TSTs compared to
blood and to day 2 TSTs. As a comparison we similarly calculated the enrichment of published CMV or
EBV-reactive CDR3 sequences. Day 7 TSTs showed a statistically significant reduction in the relative
frequencies of both CMV and EBV-reactive CDR3 sequences compared to blood and day 2 TSTs,
consistent with larger clonal expansions of Mtb-reactive sequences. These clonal expansions were not
explained by donor-unrestricted T cell responses to Mtb, since day 7 TSTs showed a significant reduction
in the relative frequencies of TCR a sequences that match the gene usage of MAIT or iNKT cells, compared

to day 2 TSTs and/or blood (Supplementary Figure 5).

Next, we reasoned that antigen-driven selection of T cell responses in the TST would lead to increased
functional convergence of TCR clones onto common CDR3 amino acid sequences?*. This convergent
sequence evolution was clearly evident within the repertoires of individual participants, which showed a
progressive increase from blood to day 2 and then day 7 TST in coincidence probabilities (Figure 2C,
Supplementary Figure 6A-C). Inter-individual analysis showed a more modest increase in average
coincidence probability across day 2 TSTs from pairs of donors compared to blood, and no further
significant increase in average coincidence probability among pairs of day 7 TSTs (Figure 2D,
Supplementary Figure 6D-F). Interestingly, the variance of between donor coincidences increased
substantially at Day 7, compatible with differential skewing of the Mtb-reactive T cell repertoires among
different individuals driven by diversity in MHC-restricted antigen presentation to T cells. To further test this
hypothesis, we analysed how probabilities of inter-individual coincidence in day 7 TST TCR sequences
depend on HLA-allele sharing between pairs of individuals (Figure 2E, Supplementary Figure 6G-l). We
found that pairs of individuals sharing multiple MHC class Il or class | alleles had substantially more similar
TST D7 repertoires. The dependence of repertoire overlap on HLA similarity was four-fold stronger with

MHC class Il, consistent with a predominantly CD4 T cell response in the TST.

In view of the potential for inter-individual diversity of the Mtb-reactive TCR repertoire, we reasoned that
evaluation of day 7 TSTs using published Mtb-reactive CDR3 sequences may substantially underestimate
the enrichment of Mtb-reactive T cell clones because this analysis is inherently restricted to public TCRs.
Therefore, we experimentally validated Mtb-reactive TCRs at the level of individual participants. We
sequenced TCRs of peripheral blood mononuclear cells (PBMC) from a sample of the study population,
following ex vivo stimulation for 6 days with PPD, or tetanus toxoid as antigen control, and selected all the
CDR3s which expanded 8 fold or more in the PPD stimulated cultures but not the control unstimulated
cultures®?¢, The expanded PPD-reactive CDR3 sequences showed limited publicity among the sub-
sampled study participants (Figure 3A-B, Supplementary Figure 7A-B). We therefore refer to these PPD-

reactive CDR3 sequences as private. We then looked for overlap between the CDR3 sequences of in vitro



expanded T cells and the TST repertoires from the same patient. There was no enrichment of ex vivo PPD-
expanded CDR3s in the day 2 TST repertoires compared to unstimulated blood (Figure 3C-D,
Supplementary Figure 6C-H). Both in blood and the day 2 TST, ex vivo PPD-expanded CDR3s were
present in significantly greater proportion amongst TCR sequences with a count >1 (Figure 3C-D,
Supplementary Figure 7C-H), suggesting that the PPD-reactive CDR3s were predominantly expanded, as
would be expected for memory T cells?s. We found significantly greater enrichment of ex vivo PPD-
expanded CDR3s in day 7 TSTs than in unstimulated blood repertoires or in day 2 TST repertoires. This
pattern remained the same whether overlap was calculated for total CDR3 sequences or for unique CDR3
sequences (Figure 3C-D, Supplementary Figure 7C-H). This enrichment of private PPD-reactive CDR3s in
day 7 TSTs was further increased among the most expanded TCRs. No similar enrichment of ex-vivo TT-
expanded CDR3s was observed. Additionally, the odds ratio (OR) for the overlap between ex vivo PPD-
reactive CDR3s was substantially greater among CDR3s which significantly expanded between day 2 and
day 7 TSTs, compared to non-expanded CDR3 sequences (Supplementary Figure 8). Taken together,
these results indicate that antigen non-specific accumulation of T cells in the day 2 TST is largely replaced

by expanded Mtb-reactive T cell clones by day 7 post-TST.
Identification of Mtb-reactive metaclones in the day 7 TST

Identification of T cell metaclones, defined by similar but non-identical CDR3 sequences, which share
specificity for the same peptide-MHC, can address the limitations of interindividual TCR sequence diversity,
and enable antigen-agnostic identification of generalisable T cell responses to specific pMHC targets?+27:28,
The identification of metaclones involves clustering of TCRs by sequence similarity, followed by a test for
HLA-association across a cohort (Figure 4A). A number of approaches to clustering of TCR sequences
have been proposed. Among these, the GLIPH2 algorithm has already been used to identify HLA-restricted
Mtb-reactive T cell metaclones defined by sequence motifs!>?8, However, selecting an appropriate
clustering method for a given dataset remains a challenge, with no broad consensus on best practices?®.
A key difficulty lies in evaluating clustering performance, particularly in balancing the trade-off between
sensitivity (for clusters often measured by retention) and positive predictive value (for clusters typically
assessed as purity). Effective benchmarking of clustering algorithms, therefore, requires comparing the
maximum achievable purity at fixed levels of retention. However, many existing tools generate only a single
clustering solution and lack flexibility to produce clusters at multiple resolutions.

To address this limitation, we developed Metaclonotypist, a modular pipeline for metaclone discovery that
allows easy substitution of sequence similarity measures, thresholding choices, and clustering algorithms.
Using published sets of TCR B sequences of known epitope specificity from the VDJdb database?, we
used Metaclonotypist to systematically identify Pareto optimal algorithmic approaches (Figure 4A). Using
connected component clustering, we found that adjacency graphs constructed by thresholding pairwise
CDR3 edit distances were inferior to those built using TCRdist, a metric that incorporated both CDR3 and

V-gene similarity (Figure 4B). At high levels of retention, we observed that Leiden clustering outperforms



simple connected components clustering, as it breaks down large components into more modular, coherent

clusters.

Based on these findings, we applied Leiden clustering to TCRdist adjacency graphs to analyse the day 7
TST TCR B repertoires that are highly enriched for Mtb-reactive T cells, but for which the specific epitopes
being recognised are unknown. To ensure scalability given the large number of TCRs to be clustered in our
dataset, we leveraged our previously developed symmetric-deletion lookup algorithm to rapidly identify
candidate TCR neighbours in adjacency graphs®!. We selected the TCRdist threshold which identified the
largest number of TCR clusters in our dataset that were significantly enriched for individuals with a shared
HLA allele (Figure 4C). The stringency of the false discovery rate control was tested by showing that random
shuffling of the HLAs associated with each individual returned no HLA-enriched T cell metaclones
regardless of TCRdist threshold. For the TCRp repertoires, the optimal TCRdist threshold was 15,
identifying 180 HLA-associated metaclones, of which 177 were restricted by HLA class Il molecules. This
is consistent with the known predominance of CD4 T cells in the PPD-reactive TST response, which are
restricted by HLA class Il. Among these, HLA-DRB1 associated metaclones were most frequent (Figure
4D).

At the optimal threshold, >95% of study participants contributed to at least one T cell metaclone (Figure
4C, middle panel). The identified single chain metaclones can be represented as sequence motifs and
visualised as adjacency graphs in which labelling of the individual TCR sequence by the donor reveals
substantial publicity (Figure 4E, Supplementary Figure 9B). We therefore consider metaclones a measure
of public reactivity to an unknown peptide:MHC complex. However, only approximately 2.7% of unique TCR
sequences were incorporated into HLA-associated metaclones, consistent with the hypothesis that the
majority of Mtb reactive TCRs are private (Figure 4C, right panel). We benchmarked our metaclone-
discovery pipeline against clusters identified by the GLIPH2 algorithm. After exploring different GLIPH2
filters (Supplementary Figure 10A), we retained clusters which passed the same stringent HLA association
test with multiple testing correction applied in the Metaclonotypist pipeline. These GLIPH2 clusters
(Supplementary Data 7-8) also primarily associated with class Il alleles, which demonstrates the robustness
of our findings with respect to the algorithmic approach. However, Metaclonotypist clustered almost three
times as many unique CDR3s compared to GLIPH2, suggesting that Metaclonotypist offers increased
sensitivity to detect metaclone associations (Figure 4F). Indeed, comparison of CDR3s clustered by
Metaclonotypist or GLIPH2 with VDJdb MHC class ll-restricted 3-chain CDR3 entries annotated as Mtb-
reactive found three matches in the GLIPH2 output, but an additional match in the Metaclonotypist output

(Figure 4F, Supplementary Figure 9A).

Validation of Mtb-reactivity of day 7 TST derived T cell metaclones and population level

immunodominance of Mtb-derived epitopes.

To confirm that our day 7 TST derived, class Il associated T cell metaclones represented public Mtb-reactive
T cell responses, we calculated their enrichment in independent TCR sequencing data derived from people

with TB compared to other diseases, or at the site of TB disease compared to blood. Enrichment in this



analysis suggests specificity for Mtb-reactive TCRs. For internal validation, we first confirmed that the day
7 TST metaclones identified by Metaclonotypist were significantly enriched in PBMC stimulated with PPD
compared to PBMC stimulated with tetanus toxoid from the same study population (Figure 5). For external
validation, we then showed they were significantly enriched in peripheral blood single cell sequencing data
derived from patients with TB compared to SARS-CoV-2 infection; bulk TCR sequencing of blood and lung
tissue from patients with TB compared to cancer diagnoses; single cell TCR sequencing of lung tissue from
patients with TB compared to cancer diagnoses; and in bulk TCR sequencing of CD4 T cells from the site
of pulmonary TB disease compared to blood of the same patients (Figure 5). We benchmarked this analysis
for publicity and Mtb-reactivity of metaclones identified using Metaclonotypist against metaclones identified
by the GLIPH2 algorithm. Metaclonotypist motifs showed comparable enrichment to CDR3f sequences
from GLIPH2 clusters with statistically significant class Il HLA-allele associations (Figure 5; blue vs. red)
suggesting that Metaclonotypist retains similarly high specificity, despite clustering a larger proportion of
TCRs into metaclones (Figure 4F). Additional GLIPH2 filters did not improve performance (Supplementary
Figure 10B). Importantly, amino acid metaclone motifs as defined by GLIPH2 were not substantially
enriched in TB samples in these datasets (Figure 5; light-brown), indicating the need for more restrictive
motif definitions. Interestingly, compared to metaclones, we found substantially lower enrichment of the full
discovery set of expanded day 7 TST B TCRs (Figure 5; grey vs. blue), suggesting that a substantial
proportion of day 7 TST TCR clones may not be specific to Mtb, and that identification of metaclones

significantly improves antigen-agnostic enrichment of the Mtb-reactive T cell response.

Having confirmed that class Il associated day 7 TST Metaclonotypist metaclones represented public Mtb-
reactive TCRs, we investigated their emergence in the TST over time. Despite some evidence for between-
donor convergence of TCR sequences suggesting emergence of public T cell responses in the day 2 TST
(Figure 2D), enrichment of T cell metaclones at day 2 compared to blood did not reach statistical
significance (Figure 6A). In contrast, at day 7 metaclones were about 10-fold enriched in the TST samples
compared to blood and day 2 TST repertoires (Figure 6A, Supplementary Figure 11), and the percentage
of day 7 TST repertoires captured by metaclones was positively correlated with the TST induration
measured at day 2 (Supplementary Table 1). However, putative Mtb-reactive metaclones still only
represented the minority of the total TCR sequence data at day 7. Consistent with this predominantly private
response, we found no significant enrichment of previously published Mtb-reactive CDR3 sequences in the
day 7 TST when these data were sub-sampled to the same number of CDR3s included within metaclones
(Supplementary Figure 12). Therefore, despite oligoclonal restriction of the T cell repertoire over time in the
TST, the day 7 repertoire may retain a substantial breadth of epitope diversity. For the subset of the study
population in which we had identified PPD-reactive CDR3s in ex vivo-stimulated PBMC, we compared the
relative proportions of TST TCRs that either contained private PPD-reactive CDR3 sequences or clustered
in public T cell metaclones at the level of individual participants. TCRs with private PPD-reactive CDR3
sequences were more frequent than public metaclone motifs in both day 2 and day 7 TSTs across the
range of TCR clone sizes (Figure 6B, Supplementary Figure 13A). There was no statistically significant

difference between expansion of private PPD-reactive and public metaclone TCRs between day 2 and day



7 TSTs, within the limitations of the sample size in this analysis (Supplementary Figure 13B-C). Despite the
dominance of private PPD-reactive TCRs at individual level, evaluation of the cumulative publicity of
metaclones ranked by their publicity suggests that as few as 10 metaclones are sufficient to identify Mtb-T
cell reactivity in the entire study population (Figure 6C, Table 3, Supplementary Figure 14). At the level of
individual metaclones there was substantial heterogeneity in publicity even among individuals with the
cognate HLA allele, offering the possibility of testing Mtb-reactive T cell metaclone responses as correlates

of protection and pathogenesis (Figure 6D).

Finally, we stratified participants into groups that were expected to be enriched for either recent or remote
exposures, based on epidemiological criteria. We found a modest increase in TST induration in the recent
exposure group, but found no differences for any of the TST metrics measured on the molecular level

(Supplementary Figure 15).

Discussion

Our study reports the temporal evolution of the tuberculin skin test response at the molecular level. We
apply this model to establish the in vivo clonal repertoire of Mtb-reactive T cell responses. At the level of
individual TCRs we found this response to be almost entirely idiotypic, with very little inter-individual sharing
of TCR chains even between individuals with shared HLA. Therefore, we introduce an analytical pipeline
we have called Metaclonotypist for identification of public T cell metaclones: clusters of distinct TCRs across
different individuals predicted to share peptide-MHC specificity. They enable antigen agnostic identification
of T cell responses to immunodominant targets at population level by overcoming inter-individual TCR
sequence diversity. We find predominantly non-antigen specific T cell recruitment to the TST initially, co-
incident with peak inflammatory responses. These are then replaced by predominantly Mtb-reactive T cells
through selected oligoclonal T cell proliferation. T cell metaclones derived from the day 7 TST reveal public
T cell responses that are highly enriched in multiple sources of TCR sequence data from the blood and
lung tissue of patients with TB compared to other diseases, and at the site of pulmonary TB compared to
blood. The enrichment of TST metaclones in the TB lung suggests that T cells recruited into PPD-
challenged skin have clinical relevance and supports the use of the TST as experimental human challenge
model for immune responses in TB. The vast majority of TCRs enriched in the day 7 TST are not
incorporated into public metaclones but remain private to individuals. Nonetheless, the cumulative publicity
of the most public metaclones indicates striking population-level coverage of Mtb reactivity. Although
metaclones are defined by their B-chain motifs only, we hypothesize that this reflects immunodominance of
specific Mtb epitopes. This finding extends previous studies that report generalisable antigenic
immunodominance at the protein level*?-14 by providing a scalable antigen-agnostic approach to potentially

identifying generalisable immunodominance at the level of specific peptides.

The rapid accumulation of T cells at the site of the day 2 TST, which occurs at the time of maximum clinical
inflammation but before evidence of cell proliferation, indicates recruitment of cells from the circulating pool.

Recruitment appears to be non-selective, demonstrated by the similar proportions of Mtb-, tetanus toxoid-,



CMV- and EBV-reactive CDR3 sequences observed in the day 2 TSTs and blood samples. However, Mtb-
specific sequences are enriched relative to CMV-, EBV- and tetanus toxoid-reactive CDR3 sequences in
day 7 TSTs, suggesting that the proliferation response is not simply due to bystander proliferation of all
local T cells. Our data cannot fully discriminate the extent to which reduction of non-Mtb-reactive T cells at
the TST site by day 7 is due to their clearance or their relative decrease caused by the expansion of Mtb-
reactive TCRs dominating the sampled repertoire. The latter process is supported by our observation that
the full set of day 7 TST TCRs shows substantially lower enrichment in independent TB-associated datasets
compared to day 7 TST metaclones. We hypothesise that local antigen causes Mtb-reactive cells to be
retained at the TST site and then proliferate. Importantly, our approach therefore overcomes a limitation of
peripheral blood, by sampling the TCR repertoire following recruitment from the whole in vivo T cell
repertoire. Inflammatory induration in the TST is known to be dependent on prior expansion of Mtb T cell
memory. Yet, we found no enrichment of previously reported Mtb-reactive sequences, public Mtb-reactive
metaclones or private PPD-reactive CDR3s alongside peak inflammatory responses in day 2 TSTs
compared to blood. Interestingly however, within individual donors there was a significant increase in CDR3
sequence convergence at the amino acid level in day 2 TST samples compared to blood. This finding
suggests some degree of Mtb-specific T cell selection driving the TST response, albeit below the limit of
sensitivity to detect through enrichment compared to blood. We also observed a positive correlation
between TST induration on day 2 and the extent of predicted Mtb reactivity on day 7 (measured as
proportion of metaclones, or proportion of expanded TCRs), consistent with the hypothesis that both arise
from a common determinant of the TST response, likely to be the frequency of circulating Mtb-reactive
memory T cells that initially drive inflammatory induration and then proliferate in response to antigen.
Substantially less CDR3 convergence was evident between donors. This was partly explained by inter-
individual diversity of MHC alleles but was also driven by the enormous potential diversity of the T cell
receptor repertoire. Interestingly, we found a much stronger relationship of inter-individual CDR3
convergence to increased sharing of HLA class Il alleles, than to increased sharing of HLA class | alleles.
These data suggested that CD4 T cells are driving the maturation of T cell repertoire in the TST. This
interpretation is consistent with the finding that the transcriptional signature for CD4 T cells, but not CD8 T
cells, increases between day 2 and day 7 TST and correlates best with the transcriptional signature for
cellular proliferation. Likewise, it is consistent with the observation that day 7 TST metaclones were almost
exclusively restricted to HLA-class Il alleles. Hence, we conclude that the TST is predominantly a model for
CDA4 T cells responses, as previously reported for T cell responses to Mtb stimulation of peripheral blood
cells'®. However, we note that this does not exclude a role for CD8 T cell responses in TB. In addition to
evidence from other models that CD8 T cells may contribute to protective immunity, bulk transcriptional
profiling of the TST response presented here and our recent report of single cell sequencing analysis of the
TST response?® reveal substantial enrichment of activated CD8 T cells in the day 2 TST. The lack of further
enrichment of CD8 T cell responses in the day 7 TST may be a limitation of the TST model. Nonetheless,
the advantage of the skew towards CD4 T cell responses is highlighted by recent evidence that CD4 T cell

responses make a more important contribution than CD8 T cells to vaccine-mediated immunity=2.



Inter-individual variation in total T cell reactivity and/or the clonal repertoire, including intra- and inter-donor
co-incidence metrics in the TST may relate to duration of Mtb infection or time interval since immunological
clearance of bacteria. While neither of these variables can be measured accurately, epidemiological
classification of our study cohort into household contacts, likely to be enriched for recent exposures, and
occupational health screening participants, likely to be enriched for remote exposures, showed no
differences in any of the measured molecular TST metrics.

By developing a modular computational pipeline for metaclone discovery, we were able to systematically
identify algorithmic approaches with superior positive predictive value through controlled comparisons at
fixed sensitivity. In combination with previously developed fast sequence similarity search tools®,
Metaclonotypist scales accurate TCRdist-based clustering to large datasets and allows flexible optimisation
of parameters. The optimised Metaclonotypist-pipeline identified significantly more HLA-associated
metaclones in our dataset than the principal metaclone discovery algorithm (GLIPH2) that has been
previously used to identify Mtbh-reactive metaclones!®>?8, while maintaining comparable enrichment in a
wide-ranging external validation. Despite this increased sensitivity, the majority of day 7 TST TCRs
remained excluded from Metaclonotypist metaclones, which we have labelled as private T cell responses.
We anticipate that further artificial-intelligence driven improvements in measures of TCR sequence
similarity®* or corrections for recombination biases?” will allow clustering of more distant TCRs with shared
peptide-MHC specificity. Therefore, our current approach provides only a minimum estimate of publicity in
the Mtb-reactive T cell repertoire. Even so, as few as 10 metaclones were sufficient to identify generalisable
Mtb reactive T cell responses in our study population of >128 individuals. Interestingly, for most metaclones
not all individuals with the restricting HLA allele had detectable metaclone TCRs. This finding is compatible
with potential inter-individual heterogeneity of Mtb responses to particular pMHCs, which in conjunction
with future improvements in metaclone discovery and deeper TCR sequencing may allow linking T cell

metaclone responses to differential outcomes of Mtb infection.

Consistent with most data on HLA class Il restriction of CD4 T cell responses, we found the lead HLA
associations for day 7 TST metaclones to be predominantly HLA-DR alleles. This skew is attributed to the
higher prevalence of diverse DR alleles, a structure that allows them to bind a wider variety of peptides,
and potentially higher levels of expression than HLA-DP and HLA-DQ alleles on antigen presenting cells35-
37, Several metaclones were significantly associated with more than one HLA allele, likely due to the co-
expression of HLA alleles in linkage disequilibrium?, limiting the ability to resolve which allele is the
restricting MHC for such metaclones. The application of bulk TCR sequencing maximised the depth of data
and therefore the sensitivity of our analysis. Our primary approach focussed on B-chain sequences to
leverage their greater diversity and provide greater discrimination of the TCR repertoire than possible by
analysis of a chains. Reassuringly, analyses of a-chain sequences replicated the findings from B chain
repertoires. In future work, identification of public metaclone motifs in single cell sequencing datasets can
identify associated ap-chain pairs. Although the more limited depth of single cell sequencing limits

sensitivity for metaclone discovery, ap-chain pairs are necessary to pursue reverse epitope discovery to



test the prediction that metaclone clustered TCRs share epitope specificity, develop functional T cell assays
to evaluate the association of immunodominant T cell metaclones with clinical outcomes of infection, and

enable innovation in vaccine design based on specific protective epitopes in place of protein antigens.

Our application of Metaclonotypist, combining fast clustering and HLA associations, to TCR sequence data
from the day 7 TST that is highly enriched for Mtb-reactive T cells recruited from the in vivo repertoire, has
identified a catalogue of metaclones, which together span the majority of the study population. We
hypothesise that these metaclones will provide powerful approaches to improve disease-risk stratification
in Mtb-infected people, and, in combination with single-cell sequencing will enable identification of epitopes

to resolve protective and pathogenic T cell immunity critical to the development of more effective vaccines.

Methods
Study approvals

Research ethics and regulatory approvals for the present study were provided by UK National Research
Ethics Service (NRES) Committee (Fulham) reference nos 11/L0O/1863 and 18/LO/0680, and the NRES
Committee (Camden and lIslington) reference no 14/LO/0505. All study participants provided written

informed consent. Participants were compensated for travel expenses.
Study population and sampling

Study participants comprised healthy HIV seronegative adults, 18-60 years of age, with immune memory
for Mtb-specific antigens identified by positive peripheral blood IFNy release assays using the
QuantiFERON Gold Plus Test, but no clinical or radiological evidence of active tuberculosis. Male and
female participants were included in this study, and sex was determined by self-reporting. The analyses
were not disaggregated by sex because this was not a component of the research question. Peripheral
blood mononuclear samples purified by Ficoll-Paque Plus (GE Healthcare Biosciences) density gradient
centrifugation of whole blood, were collected on participant enrolment, and cryopreserved in foetal calf
serum (FCS, Sigma) supplemented with 10% DMSO (Sigma). Blood samples were collected into Tempus
RNA preservative tubes (Thermo Fisher Scientific, cat no. 4342792) and total RNA extracted with the
Tempus Spin RNA Isolation Kit (Ambion; Life Technologies, cat no. 4380204). Globin mRNA and genomic
DNA were removed using the GlobinClear kit (Thermo Fisher Scientific, cat no. AM1980) and TURBO
DNAfree kit (Ambion, Life Technologies, cat no, AM2238). Participants then received 0.1ml intradermal
injections of either 2U tuberculin (Serum Statens Institute) into the volar aspect of each forearm, or control
saline in one arm®1"1®, The precise injection sites were marked with permanent marker pen and used to
position the site of 3mm punch biopsies at designated time points. Saline controls were biopsied on day 2,
TST sites were biopsied on day 2 at one site and on day 7 at the contralateral site. Skin biopsies were
placed in RNALater (Qiagen) and cryopreserved at -70°C, prior to RNA extraction. Skin biopsies were
thawed at room temperature for 30 min and transferred into CK14 lysing tubes (Bertin Instruments)

containing 350 yl Buffer RLT supplemented with 1% 2-mercaptoethanol (Sigma). Samples were



homogenized on a Precellys Evolution instrument for 6 cycles of 23 s at 6300 rpm, with 2 min cooling on
ice between cycles. Following centrifugation to pellet debris and beads, total RNA was purified from the
supernatant using the RNeasy Micro Kit (Qiagen, cat no. 74004), according to the manufacturer’s
instructions. Contaminating DNA was removed using the TURBO DNAfree kit (Ambion, Life Technologies,
cat no. AM2238). In a sensitivity analysis, participants were stratified by the indication for QuantiFERON
testing, as surrogate for possible interval time from exposure. In this context, household contacts of active
TB index cases were expected to be enriched for individuals with more recent exposures than individuals

being tested via routine occupational health screening.

Participant demographics were collected in a RedCAP database, and are summarised in Tables 1 and 2,

and are detailed on a per-sample level in Supplementary Data 1.
RNA sequencing and analysis

Total RNA from TSTs were subjected to genome wide mRNA sequencing. cDNA libraries were generated
using the KAPA Hyperprep kit (Roche, cat no. 07962363001), and sequencing was performed on the
lllumina Nextseq using the Nextseq 500 High Output 75 cycle kit (lllumina, cat no. 20024906) according to
manufacturers’ instructions, providing a median of 22 million (range 10-50 million) 41 bp paired-end reads
per sample. RNAseq data were mapped to the reference transcriptome (Ensembl Human GRCh38 release
111) using Kallisto (v0.46)%. Transcript-level counts were summed on gene level, and annotated with
Ensembl gene ID, gene symbol and gene biotype using the R/Bioconductor packages tximport and BioMart.
Raw counts of 23,820 Ensembl gene IDs, retained after exclusion of pseudogenes, were used for
differential expression analysis with the SARtools (v1.8.1) implementation of DeSeq2 (v1.42.1)*, with a
false discovery rate (FDR) <0.05 and log2 fold difference of 21. For all other analyses, raw counts were
converted into transcripts per millions (TPM) values, and log2 transformed after the addition of a
pseudocount of 0.001. Duplicated gene symbols were filtered by retaining the gene with highest expression

per sample.

Upstream regulator analysis of the differentially expressed genes was performed using Ingenuity Pathway
Analysis (Qiagen). This was visualised as a network diagram using the Force Atlas 2 algorithm in Gephi
v0.9.4, and used to derive co-regulated gene-expression networks*'. This analysis was restricted to
upstream regulators predicted to be significantly activated (Z-score>2, adjusted p-value<0.05), targeting at
least 4 downstream genes, and annotated with one of the following functions: cytokine, kinase,
transmembrane receptor, and transcriptional regulator, representing the canonical components of
pathways which execute transcriptional reprogramming in immune responses. For each upstream
regulator, pairwise Spearman correlations of the TPM expression values of the target genes were
calculated among TST samples. Upstream regulators were selected as significant if the average co-
correlation was significantly (FDR <0.05) greater than the distribution of average correlation coefficients
obtained from 100 iterations of selecting an equivalent number of random genes. Reactome pathway
enrichment of differentially expressed genes was analysed with the XGR (v1.1.9) R package*?. For

visualisation, 20 pathway groups were identified by hierarchical clustering of Jaccard indices to quantify



similarity between the gene compositions of each pathway. For each group, the pathway with the largest

total number of genes was then selected to provide a representative annotation.

Transcriptional modules for T cell proliferation*! and cell types present in the TST®? have been derived and
published previously. Their gene composition is listed in Supplementary Data 2. The expression of each

module was quantified as the arithmetic mean log2 TPM value of its constituent genes.
Ex vivo PBMC stimulation

Frozen PBMC were thawed at 37°C, washed in RPMI-1640 media (Thermo Fisher Scientific) with 10%
FCS, at resuspended at 10° cells/ml in RPMI with 5% heat-inactivated male human AB serum (Sigma).
2x10° were seeded into individual wells of round bottom 96-well plates (Thermo Fisher Scientific) with one
of 10 pg/mL purified protein derivative of Mtb (PPD; Serum Statens Institute), 100 pg/mL tetanus toxoid
(NIBSC), or control buffer for 6 days at 37°C and 5% CO:. At the end of this incubation period, plates were
centrifuged (4009 for 5 minutes) and the resulting cell pellets were lysed in RLT buffer (Qiagen). Samples
from triplicate wells were pooled for RNA extraction using the RNAeasy Micro kit (Qiagen, cat no. 74004).

Up to 5 separate pooled samples were collected for each individual, for each stimulus.
T cell receptor (TCR) sequencing and analysis

RNA extracted from skin samples, ex vivo stimulated PBMC and peripheral blood Tempus tubes were
subjected to sequencing of TCR o and B-genes using an established quantitative TCR sequencing pipeline
that integrates experimental library preparation and computational analysis with Decombinator V4264344
which defines and quantifies a TCR clone by its nucleotide sequence and reports its V, J and CDR3
annotation. To account for different sequencing depth between samples, repertoire metrics were calculated
after downsampling all samples to 16,000 unique molecular identified (UMI) reads (Supplementary Figure
1). Since the UMI-based method quantifies the number of MRNA transcripts, we note that clone size does
not measure the number of T cells directly. Nevertheless, mMRNA number is a good proxy for clone size and

clonal expansion since T cells do not substantially change TCR mRNA levels upon activation?®.

TCR a and g CDR3s from whole blood or skin biopsies were annotated as CMV, EBV or Mtb-reactive, if
they were listed as sequences known to target these pathogens in the VDJdb TCR repository
(https://vdjdb.cdr3.net/; accessed 01/10/2024)2345, the McPAS database
(http://friedmanlab.weizmann.ac.il/McPAS-TCR/; accessed 16/09/2023)%? or in Table S2 from Musvosvi et

al*s. The collated antigen-reactive CDR3 sequences are summarised in Supplementary Data 3. To identify

antigen-reactive CDR3s from in vitro cultures, we identified CDR3 sequences with 28-fold increased
abundance in antigen stimulated, but not unstimulated PBMC compared to whole blood from the same
individual®®. CDR3s absent in matching blood were set to the median blood CDR3 abundance of 1 to allow
expansion calculations for all in vitro CDR3s. To complement this analysis, we also used a more stringent
definition of expanded T cell clones*#¢. In this approach, CDR3s in Day 7 TST samples were defined as
significantly expanded if their observed abundance was greater than expected using a Poisson distribution
derived from Day 2 TST counts with FDR<0.1%.



MAIT TCR enrichment was assessed based on their TCR a gene usage as sequences containing TRAV1-
2, paired with TRAJ12, TRAJ20 or TRAJ33; INKT TCRs were identified as TCRs containing TRAV10 paired
with TRAJ18; and GEM TCRs were identified as TCRs containing TRAV1-2 paired with TRAJ9%".

TCR repertoire diversity was assessed by the number of expanded TCR sequences (count>1), Gini index

1
(repertoire inequality), and Hill Diversity indices. These diversity indices are defined as D, = (ZR,pHre,
where R is the number of distinct TCRs, pi the clonal frequency of the i-th clone, and g a parameter that
determines the relative weight put on clonal abundance. We compared richness (total number of distinct

TCRs), D, = R, Shannon Diversity (exponential of Shannon entropy), D, = exp(— YR p;inp;), and

Simpson diversity (inverse of Simpson’s index), D, = ﬁ. Among these measures Simpson diversity is
i=1Fi

most sensitive to clonal dominance, while Richness completely disregards variability in clonal expansions.

Within- and cross-donor convergence of TCR sequences was calculated as previously described?*. Within-
donor convergence was calculated as the proportion of all pairs of distinct clonotypes (as defined by
nucleotide sequence identity) which were functionally convergent, i.e. that encode the same protein. We
define n; as the number of distinct clonotypes encoding the i —th TCR with i = 1,...,S, where S is the
number of unique clonotypes. We also define N = ) n; as the total number of clonotypes in the sample. We

s (ni(ni-1)

then can estimate the probability of coincidence within a sample as: p; = Y-, NGV—D

. In comparing

across samples, we define clonotypes by nucleotide sequence and donor identity. Defining n;; and n;, as

the sampled counts of the i — th TCR in donor 1 and donor 2, respectively, we estimate the probability of

s M2
=1 Ny,

cross-donor convergence using: p; = , Where N; = };n;;and N, = ¥ n;, is the total number of

clonotypes in the two samples.
HLA genotype imputations

DNA from participants was extracted from cryopreserved whole blood using the QlAamp spin column
(Qiagen). Genotyping was conducted using the lllumina Infinium Global Diversity Array. HLA imputation
was performed on the Michigan Imputation Server*® using genotyped autosomal variants across the study
population, filtered to include only SNPs with a minor allele frequency (MAF) of 25% and a call rate of 295%.
Briefly, typed SNPs within the MHC region (6:27970031-33965553; hg19) were phased with Eagle (v2.4)
and imputed using Minimac4 with the four-digit multi-ancestry HLA imputation reference panel (v2). Imputed
SNPs with an imputation score (R?) <0.8 were excluded, resulting in high-confidence HLA alleles for 158

individuals (Supplementary Data 4).
Benchmarking TCR clustering approaches using Metaclonotypist

To compare TCR clustering approaches, we implemented Metaclonotypist, a modular computational
pipeline for metaclonotype discovery, and benchmarked clustering performance using TCRs with known
PMHC specificity from the VDJdb database?3.



Metaclonotypist proceeds in a series of steps (Figure 4A). Metaclonotypist first calculates pairwise
distances between TCRs according to sequence similarity metrics, from simple Levenshtein edit distances
applied to the CDR3 sequence to more advanced metrics such as TCRdist. This first step can be optionally
sped up by pre-filtering of candidate sequence neighbour pairs using the symmetric deletion lookup
algorithm. It next generates an adjacency graph between sequences, by thresholding the pairwise
sequence similarity with respect to a tuneable threshold. Each node in this graph represents a TCR found
in an individual’s repertoire, and edges connect all nodes with a similarity below the threshold. Within the
graph Metaclonotypist then identifies putative metaclones by clustering. Clustering is performed using
community detection algorithms as implemented in igraph#°. Importantly, each step is modular and support
multiple choices to allow benchmarking of alternative approaches using different sequence similarity

metrics, threshold choices for adjacency graph construction, and clustering algorithms.

To construct a benchmarking task, we selected data from all pMHCs with at least 220 associated TCR
sequences from VDJdb following filtering and data standardisation using tidytcells. We then randomly
down-sampled TCR repertoires from pMHCs with a greater number of sequences to obtain a dataset of

4840 TCR B sequences equally balanced across 22 pMHCs.

Clustering involves a multi-objective optimisation, with ideal clustering having both high purity and retention.
To allow controlled comparisons across similarity metrics and clustering algorithms, we systematically
varied distance thresholds for each method to be able to identify Pareto optimal solutions. We defined

cluster purity as the weighted average of the dominant class frequency in each cluster: Purity =

%25:1 max|C, N L;|, where N is the total number of TCRs, K the total number of clusters, Cxthe set of TCRs
J

associated with cluster k, and L; the set of TCRs associated with label j (here representing a specific

epitope). We defined clustering retention as the fraction of all TCRs assigned to non-singleton clusters:
Retention = %Zfﬂl(lel >1) - |Cy|, where I(|C| > 1) is an indicator function that is one if |C,| > 1 and 0

otherwise.

Using this benchmarking approach, we compared connected component clustering of adjacency graphs
based on CDR3 Levenshtein distance, which simply groups all TCRs connected by at least one edge into
a cluster, to more advanced algorithms. Our results suggest that the more advanced TCR sequence
similarity metric TCRdist is superior to simple Levenshtein distance calculated on the CDR3 alone. We
furthermore found that Leiden clustering, which breaks up large connected components into multiple

clusters where this increases cluster modularity, maintains higher purity at larger thresholds.
Discovery of HLA-associated metaclones with Metaclonotypist

We considered metaclones as a set of B-chain TCR clones with an imputed common HLA-peptide
specificity?”. We identify putative metaclones by clustering TCRs based on sequence similarity and testing
the HLA association of TCR clusters. We combined bulk-sequenced Day 7 TST repertoires for  chains.
To reduce uneven sampling, we down-sampled large repertoires to 10,000 total counts and excluded

repertoires with <5,000 total counts. To increase confidence of restricting metaclone discovery to Mtb-



reactive TCRs, only those with count >1 in these down-sampled repertoires were selected for analysis.
TCRs with CDR3 amino acid length <5 were excluded from analysis. We then identified all pairs of TCRs
that differ by <2 edits in their CDR3 hypervariable region using the symmetric deletion lookup algorithm32,
We next calculated TCRdist scores between these pre-pruned TCR pairs using TCRdist3%’. Based on our
preliminary benchmarking we used Leiden clustering for our identification of metaclonotypes in the day 7
TST (with parameters: resolution=0.1, objective_function="CPM’, n_iterations=4). After examining the effect
of varying thresholds, we represented the TCR repertoire as an undirected graph based on the sparse

adjacency matrix obtained by thresholding TCRdist scores <15.

Each cluster was tested for HLA association, by comparing the expression of specific HLA alleles by
Fisher's exact test between two groups of individuals: those contributing at least one TCR to a cluster and
the remainder of the population. Associations for HLA class 1l alleles (DP, DQ, DR) and class | alleles (A,
B, C) were tested separately. HLA-association of metaclones with the DQ locus was tested with respect to
all potential DQ heterodimers, by combining DQ alleles for the a and 8 HLA chain to account for the highly
polymorphic nature of both the a and 3 chain of HLA DQ. P values were corrected for multiple testing using
the Bonferroni-Hochberg procedure at a False Discovery Rate (FDR) of 0.1 where the number of tests was
set equal to the product of the number of tested clusters and times the number of tested HLA alleles. To
limit multiple testing, we only assessed association of clusters containing TCRs from 24 individuals with
HLAs found in 24 individuals across the population. Where more than one significant HLA association was
found, the most significant one was considered as lead HLA association. As a control, the link between

HLA haplotype and individuals was randomly shuffled.
Metaclone visualisation

Sequence logos were constructed in python, using the seglogos_vj plotting submodule of the pyrepseq
package®. Graphs of TCR sequence similarity within a metaclone were visualised using Python bindings
to the igraph package. Each node represents a TCR, and distinct colours are used to indicate donor origin.
Nodes are connected by unweighted edges whenever corresponding TCRs were below the threshold of

sequence similarity used for metaclone discovery.
GLIPH2 analysis

GLIPH2 analysis was undertaken on the same set of Day 7 TST B-chain repertoires as described for
metaclonotype discovery above, using default settings and CD48 v2.0 reference. The Metaclonotypist
approach was then mirrored, by selecting only GLIPH2 similarity clusters containing TCRs from =4
individuals and testing for associations with HLAs found in 24 individuals (done separately for class | and
class Il alleles). We explored the effect of filtering the GLIPH2 output further, as described before!®. Filter
1 selected clusters that consisted of 23 unique CDR3s and had a Fisher_score, vb_score and length_score
<0.05 each. Filter 2 applied the Fisher’s exact test for HLA association, either with a significance threshold

of p<0.05 (as used by Musvosvi et al*®) or with an FDR<O0.1 as applied in the Metaclonotypist pipeline.



Quantification of Metaclonotypist and GLIPH2 metaclones

Supplementary Data 5-6 list the HLA class Il and class | restricted p metaclones respectively, as identified
by Metaclonotypist from day 7 TST samples. The tables include significant HLA allele associations for each
metaclone, as well as the associated V gene(s) and a regular expression for the clustered CDR3 amino
acid sequences. To identify and quantify B-chain TCR sequences from various datasets that match a pre-
defined class Il associated metaclone in the context of the correct TCR chain, the V gene and CDR3 of

each TCR was compared against the V gene and CDR3 regular expression of each metaclone.

Supplementary Data 7-8 list the HLA class Il and class | restricted  chain GLIPH2 clusters, respectively,
identified from day 7 TST samples. The tables include significant HLA allele associations, as well as the
clustered CDR3 sequences and a regular expression for the shared CDR3 pattern. B-chain TCR sequences
from various datasets were identified as matching a pre-defined class Il associated GLIPH2 cluster in two
different ways: a) if their CDR3 amino sequence contained the regular expression of the GLIPH2 motif
(GLIPH2 pattern G.T was excluded from analysis to increase specificity), b) if their CDR3 amino acid

sequence was part of the GLIPH2-clustered set of CDR3 sequences.
Datasets for external validation of TST-derived metaclones

Processed single cell TCR sequencing data from activated T cells following in vitro stimulation of PBMC
from n=70 individuals with Mtb lysate were accessed from Supplementary Table S2 in the publication by
Musvosvi et al*®. Only good quality cells (flag = GOOD) were included, resulting in 21,212 cells with B-chain

data.

Processed single cell TCR sequencing data from activated T cells following in vitro stimulation of PBMC
from n=16 individuals with SARS-CoV2 were provided by Lindeboom et al®. All longitudinal samples per

patient were included, resulting in 149,208 cells with B-chain data.

Single cell TCR sequencing FASTQ data from human lung of n=5 TB patients®? were downloaded from the
NCBI gene expression omnibus resource (GSE253828) and processed with 10x Genomics CellRanger
(v7.1.0) using the vdj pipeline and VDJ-T reference version 7.1. Single cell TCR data from
filtered_contig_annotations.csv output files were integrated across all patients, resulting in 20,025 cells with

B-chain data.

Single cell TCR sequencing FASTQ data from human lung of n=3 lung cancer patients®® were downloaded
from the NCBI gene expression omnibus resource (GSE154826) and processed with 10x Genomics
CellRanger (v7.1.0) using the vdj pipeline and VDJ-T reference version 7.1. Single cell TCR data from
filtered_contig_annotations.csv output files were integrated across all samples (including tumour and

normal lung tissue) from all patients, resulting in 17,019 cells with 3-chain data.

Processed bulk TCR sequencing data for lung tissue and whole blood from TB patients and cancer controls,
as well as for sorted CD4 T cells from TB lung and TB blood were provided on Adaptive Biotechnologies’

ImmunoSEQ website (https://clients.adaptivebiotech.com/). The cohort has been previously described*,




and an overview of utilised files and their metadata is provided in Supplementary Data 9. Only functional
TCR sequences were included (sequenceStatus = In), and the vMaxResolved column was used as V gene
annotation, but with the allele information excluded (e.g. TCRBV06-01*01 became TCRBV06-01). Since
the ImmunoSeq naming of TCR V genes differs from the IMGT nomenclature used for metaclone
definitions, V gene names were made compatible prior to searching for metaclone matches. This included,
within the ImmunoSeq annotations, replacement of TCRBV with TRBV, and the removal of leading zeroes
from V gene alleles (e.g. replacing TRBV06-06 with TRBV6-6). B-chain data were available for the lung
dataset (n=13 TB patients and n=3 cancer controls), the blood dataset (n=11 TB patients and n=4 cancer
controls), and the CD4 T cell dataset (n=5 TB patients). All samples per patient were included, and data
integrated across disease and tissue groups, resulting in n=1,615,131 TB-associated and n=218,372
cancer-associated B TCRs for the lung dataset; n=1,081,593 TB-associated and n=735,834 cancer-
associated  TCRs for the blood dataset; and n=336,787 lung-derived and n=219,541 blood-derived
TCRs for the CD4 T cell dataset.

Statistics and data visualisation

Analyses were performed in R (version 4.3.3) or Python (version 3.10.4). Data were visualised and figures
assembled using R’s tidyverse (v2.0.0) and ggpubr (v0.6.0) packages, and Inkscape (v0.92). Statistical
differences were assessed using the tests and significance thresholds stated in the text and figure legends.
Wilcoxon tests with FDR correction for multiple testing were performed with the wilcox_test or
pairwise_wilcox_test functions from the rstatix (v0.7.2) package in R. Base R functions cor() and Im() were
used for Spearman correlation and linear regression analyses, respectively, with confint() to calculate
confidence intervals for regression coefficients. R packages pheatmap (v1.0.12) and ComplexHeatmap
(v.2.18.0) were used to create heatmaps. Odds ratios and their confidence intervals were calculated with
the fisher.test() function from the stats (v4.3.3) R package. Metaclones were identified using
Metaclonotypist (v1.0; written in Python) and visualised as described above. To visualise overlap between
CDR3 sequences, an area-proportional Venn diagram was drawn with DeepVenn
(https://arxiv.org/abs/2210.04597).

Data availability

All source data for the analyses presented in this study are provided in the Source Data file. The processed
RNAseq data generated in this study are available at Array Express with accession number E-MTAB-14687
[https://www.ebi.ac.uk/biostudies/ArrayExpress/studies/E-MTAB-14687?query=E-MTAB-14687%20]. The
raw RNA sequencing data in FASTQ format are available under controlled access to comply with data
privacy restrictions. Access can be obtained via the European Genome-Phenome Archive with accession
number EGAD50000001208 [https://ega-archive.org/datasets/EGAD50000001208]. Data will be shared
with investigators whose proposed use is within the scope of participant consent subject to a data access
agreement. The processed TCR sequencing data generated in this study are available from UCL’s
Research Data Repository [https://doi.org/10.5522/04/28049606]. The raw TCR sequencing data in FASTQ
format are available at NCBI Short Read Archive with accession number PRJNA1208718




[https://www.ncbi.nim.nih.gov/bioproject/PRINA1208718].  Previously  published single-cell TCR
sequencing data from human lung are available from Gene Expression Omnibus with accession numbers
GSE253828 [https://www.ncbi.nlm.nih.gov/geo/query/acc.cqi?acc=GSE253828] (TB patients) and
GSE154826 [https://www.nchi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE154826] (lung cancer patients). All

other data are available in the article and its Supplementary files or from the corresponding author upon

request. Source data are provided with this paper.
Code availability

Analysis code is available on GitHub at https://github.com/carolinturner/tst _tcr
(https://doi.org/10.5281/zen0d0.18209647).  Metaclonotypist  library code is available at
https://github.com/gimmuno/metaclonotypist (https://doi.org/10.5281/zen0do.17977729).
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Tables

Table 1 Participant overview for RNA sequencing

L saline N = 33! TST_D2 N = 2161 TST_D7 N = 1581
Characteristic
Sex
Female 19 (58%) 115 (53%) 85 (54%)
Male 14 (42%) 101 (47%) 73 (46%)
Age 28 (21, 39) 34 (29, 43) 35 (29, 45)
Unknown 1 1 1
Ethnicity
African 5 (16%) 64 (30%) 48 (31%)
American 7 (22%) 3 (1.4%) 2 (1.3%)
East Asian 2 (6.3%) 40 (19%) 27 (17%)
European 13 (41%) 64 (30%) 44 (28%)
Mixed 1(3.1%) 1 (0.5%) 1 (0.6%)
South Asian 4 (13%) 40 (19%) 34 (22%)
Unknown 1 4 2

n (%); Median (Q1, Q3)

Table 2 Participant overview for TCR sequencing

Characteristic  |Blood N=20' |PBMCN=12! |[TST D2N=17> |[TST D7 N = 165"
Sex
Female 9 (45%) 3 (25%) 6 (35%) 88 (53%)
Male 11 (55%) 9 (75%) 11 (65%) 77 (47%)
Age 33 (30, 36) 34 (30, 37) 33 (30, 36) 35 (29, 44)
Unknown 0 0 0 1
Ethnicity
African 2 (11%) 2 (18%) 2 (13%) 50 (31%)
American 1 (5.3%) 1 (9.1%) 1 (6.3%) 3 (1.9%)
East Asian 0 (0%) 0 (0%) 0 (0%) 27 (17%)
European 15 (79%) 7 (64%) 12 (75%) 48 (30%)
Mixed 0 (0%) 0 (0%) 0 (0%) 1 (0.6%)
South Asian 1 (5.3%) 1 (9.1%) 1 (6.3%) 33 (20%)
Unknown 1 1 1 3

n (%); Median (Q1, Q3)

Table 3 Top 10 public metaclones in down-sampled D7 TST dataset

Index | Publicity | Consensus CDR3aa | V gene usage Lead HLA association
(odds ratio, p-value)
8 82/128 CSARVGGNTGELFF | TRBV20-1 DRB1*15
(10.2, 1.84E-09)
76 78/128 CSAGGLAGNEQFF TRBV20-1 DQA1*01_DQB1*05
(8.6, 9.30E-06)
13 69/128 CASSLGSVSYEQYF | TRBV7-9 DRB1*15
(11.3, 3.55E-09)
21 64/128 CSARDLGLAEETQYF | TRBV20-1 DRB1*04

(11.3, 4.41E-08)




39 60/128 | CSVGETQYF TRBV29-1 DQA1*05_DQB1*03

(9.1, 4.63E-07)
33 56/128 | CSARAGYGYTF TRBV20-1 DRB1*10

(44.0, 2.61E-07)
91 50/128 | CASSLEGETQYF TRBV7-9 DRB1*11

(6.2, 2.17E-05)
6 49/128 | CASSRGAQTYEQYF | TRBV18 DPB1*04

(27.5, 8.91E-10)
100 | 47/128 | CSARGQGNEQFF TRBV20-1 DRB1*13

(7.9, 2.73E-05)
97 43/128 | CASSPGRETQYF TRBV6-6|TRBV6-5]TRBV6-9 | DRB1*10

(26.8, 2.39E-05)




Figure legends
Figure 1. Proliferation response in Day 7 TST is correlated with CD4 T cell gene signature.

Expression of cellular proliferation (A) and cell type-specific (B) modules in bulk RNA sequencing data from
saline-injected control skin, Day 2 and Day 7 TSTs, shown as Z-score scaled TPM expression using saline
samples as control group (n=33 saline, n=216 Day 2 TST, n=158 Day 7 TST). Unpaired, two-sided Wilcoxon
test with multiple testing correction: * FDR<0.05, ** FDR<0.01, **** FDR<0.0001. (C) Heatmap of Spearman
correlation matrix between gene signatures in Day 7 TSTs. Dendrogram depicts average linkage clustering

of correlation coefficients.

Figure 2. Functional restriction of the TCR repertoire in Day 7 TST yet limited inter-individual TCR

sharing.

Individual B-chain bulk TCR repertoires (n=20 Blood, n=16 Day 2 TST, n=128 Day 7 TST) were down-
sampled to 16,000 TCRs. Boxplots in A-D depict median and inter-quartile range (IQR), with outlier data
points (more than 1.5*IQR beyond the box hinges) shown as dots. Statistical significance was assessed
with unpaired, two-sided Wilcoxon tests and corrected for multiple testing (ns FDR>0.05, * FDR<0.05, **
FDR<0.01, *** FDR<0.0001). (A) TCRp repertoire diversity metrics, shown as Z-score values scaled
across all samples. No. expanded TCRs = number of TCR sequences present more than once. (B)
Abundance of published antigen-reactive CDR3 sequences (specific for Mtb, CMV or EBV; collated from
VDJdb and McPAS databases as well as Musvosvi et al.’®), shown as percentage of all TCRs or of all
expanded TCRs (present more than once). The number of distinct published antigen-reactive CDR3s
available to assess enrichment of antigen reactivity in blood and TST samples is indicated. (C) Within-donor
convergence of distinct clones as identified by nucleotide sequence identity onto identical amino acid
sequences. (D) Cross-donor TCR convergence, calculated between any two individuals, resulting in n=190
(Blood), n=120 (Day 2 TST) and n=8128 (Day 7 TST) pairwise comparisons. (E) Cross-donor TCR
convergence in Day 7 TSTs, stratified by the number of class | or class Il HLA alleles shared between any
two individuals. Each dot represents a pairwise comparison (n= 8128). The linear regression line is shown

in blue, with regression coefficient (slope ) and its 95% confidence interval indicated.
Figure 3. Expansion of diverse PPD-reactive TCRs in Day 7 TST.

(A) Histogram of number of unique PPD-reactive B-chain CDR3s shared by different numbers of
participants, in ex vivo PPD-stimulated PBMC from a subset of the study population (N=12). (B) Heatmap
of unique ex vivo PPD-reactive B-chain CDR3s (clustered by Ward D2 linkage). Each column across the x-
axis represents one participant. Abundance of total (C) or unique (D) ex vivo PPD- or TT-reactive -chain
CDR3 sequences in blood (n=12), Day 2 TST (n=11) and Day 7 TST (n=10). Individual B-chain repertoires
from blood and TSTs were down-sampled to 16,000 total TCRs and stratified by clone size (= TCR count).
The boxplots display median and inter-quartile range (IQR), with outlier data points (more than 1.5*IQR

beyond the box hinges) shown as dots.



Figure 4. Discovery of public HLA-restricted TCR metaclones from Day 7 TSTs.

(A) Schematic overview of the Metaclonotypist analysis pipeline and evaluation in data with known
(purity/retention), or unknown specificities (by identifying significant enrichment of HLA associations,
detailed in Supplementary Data 4). (B) Trade-off between cluster purity and retention for different clustering
algorithms and threshold choices benchmarked on 4840 TCRs specific to 22 distinct pMHCs from VDJdb.
Metaclonotypist using TCRdist scores and Leiden clustering provides Pareto optimal clustering. (C) Number
of HLA-enriched metaclones (left hand plot), percentage of contributing participants (middle plot) and
percentage of contributing unique TCRs (right hand plot) identified at varying TCRdist thresholds by
Metaclonotypist analysis of day 7 TST TCR B-chain repertoires (N=151, sub-sampled to between 5,000-
10,000 TCRs per repertoire) using true or shuffled HLA allele associations. (D) Frequency distribution of
the most significant HLA associations for each pB-chain Metaclonotypist metaclones, stratified by HLA class
I (n=177) and class | (n=3) allele enrichment. (E) Exemplar adjacency graphs and TCR sequence motifs
of most public (found in 82 out of 128 participants) and most abundant (matching 5,197 out of 288,000
TCRs) day 7 TST Metaclonotypist metaclones from down-sampled repertoires (N=128 with 16,000 TCRs
from each repertoire). Each node represents a single TCR stratified by distinct donors (colours). (F) Venn
diagram showing the overlap of unique 3 chain CDR3 amino acid sequences included in class ll-associated
metaclone clusters by Metaclonotypist or GLIPH2 and annotated as class ll-restricted Mtb-reactive TCRs
in VDJdb.

Figure 5. Validation of Mtb reactivity and publicity of metaclones

Relative enrichment of B-chain TCR sets derived from expanded (TCR count >1) day 7 TST repertoires
(122,253 TCR clones, 151 individuals) in multiple external data sets showing odds ratio (OR) point
estimates with 95% confidence intervals for the pairwise comparisons indicated. PBMC (bulk-TCRseq): in
vitro stimulation of PBMC from n=12 individuals with either purified protein derivative (PPD) from Mtb or
tetanus toxoid (TT), followed by bulk TCR sequencing (see Figure 3), comprising n=7,743,878 PPD-
stimulated and n=1,453,823 TT-stimulated TCRs. T-cells (sc-TCRseq): in vitro stimulation of PBMC with
either Mtb lysate (n=70)*® or SARS-CoV2 (n=16)%!, followed by flow cytometric sorting and single cell TCR
sequencing of activated T cells, resulting in n=21,212 Mtb-reactive and n=149,208 SARS-CoV2-reactive T
cells. Lung (sc-TCRseq): lung tissue resections from TB patients (n=5)%2 or lung cancer patients (n=3)%,
followed by single cell TCR sequencing, resulting in n=20,025 TB-associated and n=17,019 cancer-
associated T cells. Lung (bulk-TCRseq): lung tissue resections from TB patients (n=13) or lung cancer
patients (n=3), followed by bulk TCR sequencing, resulting in n=1,615,131 TB-associated and n=218,372
cancer-associated B TCRs. Blood (bulk-TCRseq): bulk TCR sequencing of whole blood samples from TB
patients (n=11) or lung cancer patients (n=4), resulting in n=1,081,593 TB-associated and n=735,834
cancer-associated p TCRs. CD4-T (bulk-TCRseq): bulk TCR sequencing of CD4 T cells, flow-sorted from
lung tissue or blood samples from TB patients (n=5), resulting in n=336,787 lung-derived and n=219,541
blood-derived B TCRs (detailed in Supplementary Data 9)°4.



Figure 6. Mtb-reactive metaclones constitute a small proportion of the Day 7 TST repertoire but

capture the most public response.

(A) Abundance of HLA class ll-restricted Metaclonotypist p-chain metaclones in TCR
repertoires (each down-sampled to 16,000 TCRs; n=20 Blood, n=16 Day 2 TST, n=128
Day 7 TST), shown as percentage of all TCRs or of all expanded (>1) TCRs. Boxplots
display median and inter-quartile range (IQR), with outlier data points (more than 1.5*IQR
beyond the box hinges). Statistical significance was assessed with unpaired, two-sided
Wilcoxon tests and corrected for multiple testing (ns FDR>0.05, * FDR<0.05, ** FDR<0.01,
**+* EDR<0.0001). (B) Abundance of public and private Mtb-reactive CDR3s in the same
individual quantified as percentage of all Day 2 or all Day 7 TST TCRs, stratified by clone
size (= TCR count). B—chain TCRs were classified as public if they matched a
Metaclonotypist metaclone, or else as private if they matched a private PPD-reactive
CDR3 sequence identified from ex vivo stimulated PBMC from the same individual (see
Figure 3). This analysis was restricted to individuals with paired in vitro stimulation
experiments (n=11 Day 2 TST, n=10 Day 7 TST), and performed on repertoires down-
sampled to 16,000 TCRs each. (C) HLA-class Il restricted Metaclonotypist -chain
metaclones (blue), CDR3s with published Mtb reactivity (yellow), and CDR3s present in
Day 7 TSTs (red) were each ranked by their publicity across 128 Day 7 TST B repertoires
(each down-sampled to 16,000 TCRs) and plotted against the cumulative proportion of
participants expressing the TCR. Presence of TCRs was assessed using either all TCR
sequences in each sample or only expanded TCRs (present more than once). (D)
Proportion of participants with a cognate HLA contributing to a metaclone in the discovery
dataset (n=151 Day 7 TST) and frequency of the cognate HLA for each HLA class II-

restricted Metaclonotypist metaclones represented by individual points.

Editor’'s Summary

T cells contribute to protection and pathogenesis in tuberculosis. Here the authors sequence T cell receptor
repertoires in human skin biopsies from the site of the tuberculin skin test and show enrichment of

clonotypes reactive to Mycobacterium tuberculosis using a computational pipeline metaclonotypist to



identify distinct TCRs predicted to share peptide-MHC reactivity across participants, as an approach to

explore T cell correlates of tuberculosis disease-risk stratification and vaccine efficacy.

Peer Review Information: Nature Communications thanks the anonymous reviewer(s) for their

contribution to the peer review of this work. A peer review file is available.
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