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ABSTRACT
Purpose: Simulation studies are used in pharmacoepidemiology for evaluating statistical methods in a controlled setting, 
whereby a known data-generating mechanism allows evaluation of the performance of different approaches and assumptions. 
This study aimed to review simulation studies performed in pharmacoepidemiology.
Methods: We conducted a review of all papers published in the journal of Pharmacoepidemiology and Drug Safety (PDS) over 
the period 2017–2024. We extracted data on study characteristics and key simulation choices such as the type of data-generating 
mechanism used, inferential methods tested and simulation size.
Results: Among 42 simulation studies included, 34 (81%) were informing comparative effectiveness/safety studies. Twenty-two 
studies (52%) used simulation in the context of a clinical condition, and 36 (86%) used Monte-Carlo simulation. Inputs not derived 
from empirical data alone (n = 22, 52%) or in combination with real-world data sources (n = 19, 45%) were most often used for 
data generation. The complexity of simulations was often relatively low: although 31 studies (74%) generated data based on other 
covariates, time-dependent covariates (n = 3) and effects (n = 4) were rarely implemented. Bias was the most often used perfor-
mance measure (n = 26, 62%), although notably 18 studies (43%) did not report uncertainty in the method.
Conclusion: Simulations contributed a relatively small number of articles (3.2% of 1320) to PDS over 2017–2024. Greater focus on 
evaluating methods and inferential approaches, using simulation studies that are appropriately complex given clinical realities, 
may be beneficial to the pharmacoepidemiology field.

1   |   Introduction

Simulation studies are empirical experiments that typically gen-
erate data from pseudo-random sampling, apply a quantitative 
method and evaluate the method [1]. They are particularly useful 
when data complexity makes theoretical evaluation of methods 
impossible [2], such as estimating the power of a test given the 
data structure alone. This is particularly true in observational 

pharmacoepidemiology datasets where complex and dynamic 
processes are involved [3]. Simulations can evaluate methods 
of statistical inference such as estimation or hypothesis testing 
in a controlled setting, where aspects of the underlying data-
generating mechanism are controlled. In pharmacoepidemio-
logical research, this can be applied to the estimands of interest, 
most often relative drug efficacy/safety or the prevalence of clin-
ical outcomes.
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Various approaches can be used in the DGM. Where real-world data 
(RWD) is available, the DGM can involve plasmode simulation [4], 
which samples covariates from a real dataset and simulates out-
comes, enhancing external validity. Monte-Carlo simulations [5, 6] 
instead involve repeating simulations while varying input parame-
ters to provide generalised results across scenarios. The approaches 
for simulation studies commonly used by the pharmacoepidemi-
ology community have not been explored to date. Understanding 
current trends in the field could support our understanding of cur-
rent best practice and highlight potential future areas for improve-
ment. Therefore, this study aimed to review simulation studies and 
approaches used in pharmacoepidemiology in a single journal.

2   |   Methods

The protocol for this review was pre-registered [7] and the de-
tails are summarised below.

2.1   |   Search

Our study builds on a previous review of code-sharing prac-
tices in pharmacoepidemiology and was restricted to articles 

published in the journal Pharmacoepidemiology & Drug Safety 
(PDS) [8]. We included simulation studies identified in this 
previous review (2017–2022) and augmented them with our 
own comparable search of the literature from January 2023 to 
December 2024. Thus, our study covers the period 2017–2024. 
PubMed was searched using the easyPubMed package [9] in R 
[10] (see the Supporting Information for the search string). Our 
finalised search was conducted on 17/01/2025.

2.2   |   Eligibility

Articles included were original research articles or brief reports 
where computer-simulated data was used to evaluate a statisti-
cal inference method using a known DGM or known estimand/
target of inference. Commentaries and review articles were 
excluded. Studies that did not involve computer simulations 
(to avoid including pedagogical healthcare simulations) or did 
not quantitatively measure the absolute or comparative perfor-
mance of an inferential method (e.g., health economic models) 
were also excluded. Reasons for full-text exclusion are given in 
the Supporting Information.

2.3   |   Screening

Covidence was used for screening of titles/abstracts of simula-
tion studies from the previous review, and records from the new 
search, by two independent reviewers (R.M., F.I.A.B.), with 
conflicts resolved by a third reviewer (F.M.). Full texts were re-
viewed by the same two independent reviewers, with conflicts 
and excluded records checked and resolved by the same third 
reviewer.

2.4   |   Data Extraction

Data extraction was performed by one reviewer and a second 
reviewer also extracted 20% of articles to assess consistency. In 
addition to publication metadata from the easyPubMed pack-
age, data was manually extracted using an MS Excel spreadsheet 
with data validation based on the protocol [7]. The type of data 
extracted was classified using the Aims, Data-generating mech-
anism, Estimand, Method, Performance measures (ADEMP) 
framework by Morris et al. [1]. Where data items were not re-
ported in the article, code (if provided) was inspected to identify 
missing items.

2.5   |   Data Analysis

We used R (version 4.4.1) to analyse extracted data, focusing on 
descriptive statistics. The code and data are on Zenodo [11].

3   |   Results

Forty-two studies were included (see Supporting Information 
for the PRISMA [12] flow chart). Table 1 summarises the char-
acteristics of included articles.

Plain Language Summary

Simulation studies are tools that enable the performance 
evaluation of one or more statistical methods. Simulations 
often include several choices of parameters in their design 
and our paper aimed to summarise the specific practices 
in use within pharmacoepidemiology. This study reviewed 
all articles published in the journal Pharmacoepidemiology 
and Drug Safety over the period 2017–2024 which included 
simulation to test a statistical method. We found 42 such 
papers and described their key details with a summary of 
results. Studies typically used fully synthetic data genera-
tion and reported bias in the method using the true value 
of the estimate. Fifty-five percent of studies incorporated 
knowledge of a drug or disease in the generation of the 
data to more closely match reality.

Key Points

•	 Simulation studies comprised 3.2% (n = 42 of 1320) of 
articles reported in Pharmacoepidemiology and Drug 
Safety over 2017–2024. The type of simulations was 
mostly Monte-Carlo-based, where probability distri-
butions were used to produce outcomes and/or co-
variates for analysis that have desired conditional or 
marginal properties.

•	 55% of studies were based on a specific clinical context 
that informed choices of the causal structure or inputs 
to the simulation.

•	 Studies rarely simulated time-varying effects (n = 4) or 
covariates (n = 3), which may have implications for the 
transportability of the study's conclusions.

•	 The most common performance metric was bias 
(n = 26), but uncertainty was often not reported (n = 18).
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The results of binary parameters are shown in Figure  1a. 
Twenty-three studies (55%) focused on a specific clinical ques-
tion, with diseases of the circulatory system most commonly 
studied (17%). Most simulations aimed to inform comparative 
effectiveness/safety studies (81%) and specifically their analysis 
(69%). Where medical interventions were named, drugs were 
the most common type (29%).

Simulations consisted of Monte-Carlo type (88%), plasmodes 
(12%) and bootstrap (2%). The DGM was characterised as ran-
dom sampling in 36 studies (86%) and by a stochastic process in 
the remaining studies. Fifteen studies (36%) had time defined 
continuously, and three (7%) used discrete time. DGM param-
eters were most frequently synthetic (52%) with other studies 
using RWD alone or a mix of both.

Thirty-one studies (74%) generated data that had exposure or 
outcomes dependent on other covariates, and 36 studies (86%) 
factored one or more variables in the simulation. The most 
commonly factored parameters were the magnitude of covari-
ates (57%). Three studies (7%) included time-varying covariates 
and four (10%) included time-varying effects in simulations, al-
though time was not a relevant aspect of some studies. We show 
the distribution (over all studies) of the range of the number of 
simulations (nsim) and number of observations (nobs) per simula-
tion in Figure 1b,c, respectively. The number of simulations was 
mostly a single value (88%), while the number of observations 
varied more frequently (24%).

The most common target was risk measures (50%) such as odds 
ratios or relative risks; other measures such as hazard ratios 
were less common (29%). Nonparametric estimation was the 
most common method used (40%). Twenty-six studies used bias 
as the primary measure of performance (62%), and uncertainty 
was mostly reported using dispersion measures over the sim-
ulations such as confidence intervals and standard deviations 
(45%). The most common programming language was solely R 
(48%); however, nine studies (21%) did not indicate the software 
used. Code was shared in less than half of studies (43%). The 
shared code was primarily used for both the data generation 
mechanism and analysis (26%) but some code only performed 
one of these functions. The shared code was in the Supporting 
Information of 13 studies (31%).

4   |   Discussion

Simulation studies represented a very small number of articles 
in PDS over 2017–2024. The ADEMP framework [1] can aid re-
porting of simulation studies. We did not aim to formally quan-
tify adherence to ADEMP, but as the framework guided our data 
extraction, we can infer aspects of reporting quality.

4.1   |   Aims and Methods

Most studies clearly stated their simulation aims and the analyt-
ical methods used. Nineteen studies referenced a medical inter-
vention in the aim or conceptual design. This can align the DGM 
to expected biological mechanisms and will lead to the simula-
tion being relevant to applied researchers (for 45% of studies, an 

intervention was not applicable). Methods using nonparametric 
inference were most common. This may be because, in com-
parative effectiveness studies, the canonical analysis is group 
comparison using the Kaplan–Meier estimator for a failure time 
and various hypothesis tests for non-failure time outcomes. 
Nonparametric bootstrapping is also robust and simple to imple-
ment, making it popular for estimating incidence in effective-
ness studies. Therefore, the methods implemented represent the 
standard statistical approaches in pharmacoepidemiology.

Over half of studies focused on a clinical condition, allowing po-
tential DGM inputs to be narrowed to those expected in reality. 
In such cases, relative risks or other causal or associational mea-
sures may be based on real data or expert judgement. When the 
simulation is not based on a clinical scenario, the choice of input 
distributions may be less clear and may result in selections that 
are unrealistic in practice. Comparing the simulated dataset to 
RWD using summary statistics is a potential solution.

4.2   |   Estimands

Estimands were mostly those used for comparative effective-
ness. While 50% of studies targeted risk measures such as odds 
ratios or relative risks, the theoretical specification of these 
quantities and their link to the data-generating mechanism was 
rarely made explicit.

4.3   |   DGM

The description of DGMs was detailed but often lacked justifica-
tion of assumptions. Studies mostly used pseudo-random sam-
pling for outcome generation within a Monte-Carlo simulation 
framework incorporating synthetic covariates. Some studies 
lacked reporting of key simulation details such as the software 
used and choice of time definition in the DGM. Despite mini-
mal legal/regulatory impediments, code was often not shared. 
This means that code cannot be independently verified. It also 
prevents reuse, such as extending a DGM to other use-cases or 
comparative testing of novel methods using the same DGM. 
Even where the DGM is fully described in a paper, this creates 
additional barriers and workload to conduct replications. Code 
sharing may be rare due to the potential for added scrutiny of 
external researchers and low perceived gain to those sharing.

The lack of a clear aim and/or reasons for choices made in the 
DGM can lead to biased conclusions. The performance measures 
are empirical data that are highly dependent on the DGM, which 
means simulation conclusions should account for the inevita-
bly different DGM operating in reality. Furthermore, the choice 
of methods and their precise implementation, particularly in 
comparison studies, can be difficult to justify due to design bias, 
i.e., knowledge of the DGM may affect the choice of methods. 
Prespecifying all methods, using a blinded analyst with knowl-
edge of output data only, could resolve such issues.

Plasmodes were uncommon, potentially due to the lack of access 
to RWD which requires ethical approval and also lack of guid-
ance for implementation. Simulating from parametric distribu-
tions is much easier from a practical standpoint. Alternatively, 



4 of 8 Pharmacoepidemiology and Drug Safety, 2026

TABLE 1    |    Summary of characteristics of included simulation studies (n = 42).

Variable Categorya n %

Study type Comparative effectiveness/safety 34 81%

Signal detection 4 10%

Exposure measurement 2 5%

Covariate balance 1 2%

Outcome rate estimation 1 2%

Aspect of study simulation informed Analysis 29 69%

Design 9 21%

Design and analysis 4 10%

Type of intervention examined Not applicable 19 45%

Drug 12 29%

Vaccine 4 10%

No specific intervention 4 10%

Multiple 2 5%

Surgery 1 2%

Drug class or vaccine Not applicable 26 62%

Other 6 14%

Statin 3 7%

Vaccine 3 7%

Anti-cancer 2 5%

Anticoagulant 2 5%

Clinical condition examinedb No/Not applicable 20 48%

Diseases of the circulatory system 7 17%

Neoplasms 5 12%

Endocrine, nutritional and metabolic diseases 3 7%

Diseases of the respiratory system 1 2%

Codes for special purposes 1 2%

Diseases of the nervous system 1 2%

Pregnancy, childbirth and the puerperium 1 2%

Diseases of the digestive system 1 2%

Diseases of the musculoskeletal 
system and connective tissue

1 2%

Factors influencing health status and 
contact with health services

1 2%

Year 2017 4 10%

2018 3 7%

2019 10 24%

2020 6 14%

2021 3 7%

(Continues)
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Variable Categorya n %

2022 6 14%

2023 5 12%

2024 5 12%

Simulation type Monte Carlo 36 86%

Plasmode 5 12%

Bootstrapc 1 2%

Data generation mechanismd Random sampling 36 86%

Stochastic process 6 14%

Time parameterisation None 23 55%

Continuous 15 36%

Discrete 3 7%

Not reported 1 2%

Source for data generation Synthetic data 22 52%

Both 19 45%

Real world data 1 2%

Factor variablese Covariate magnitude 24 57%

Effect magnitude 18 43%

Data Generating Mechanism structure 12 29%

Not applicable 6 14%

Quantity of interest Cumulative risk 21 50%

Instantaneous risk 12 29%

Other 9 21%

Primary inferential method categorisedf Nonparametric 17 40%

Maximum likelihood 9 21%

Partial likelihood 11 26%

Other 4 10%

NA 1 2%

Performance measure for assessing inferential method Bias 26 62%

Other 10 24%

Power 3 7%

None 3 7%

Uncertainty analysis Summary dispersion 19 45%

None 18 43%

Coverageg 4 10%

Other 1 2%

Programming language R 20 48%

Unknown 9 21%

Stata 5 12%

(Continues)

TABLE 1    |    (Continued)
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published RWD effect estimates can be used in a Monte-Carlo 
simulation with synthetic covariates, although typically only 
the summary statistics of covariate distributions are published. 
The number of observations is restricted to the available data in 
a plasmode. In Monte-Carlo studies, the number of observations 
is determined by the researchers and thus varied substantially, 
with a median of 10 000 for included studies. This parameter is 
effectively an aspect of the DGM and should match the sample 
size for the intended population to which the methods will apply.

Conversely, the number of simulations is not bounded by any 
external data. While a higher value of nsim will reduce the sam-
pling error of Monte-Carlo estimates, there is typically no justi-
fication given for the actual choice of nsim, and in practice, this 
often relates to available computing resources. Therefore, it is 
recommended to include nobs as a factor, while nsim only needs 
to be sufficiently large to ensure acceptable precision in the per-
formance measures. The drastic range of nsim across studies (106 
to 1) may be indicative of the various types of estimands of inter-
est. In general, simulation studies should estimate the optimal 
number of repetitions depending on the required precision of the 
performance measures, as suggested by Burton et al. [6].

Time-varying effects and covariates were simulated in four 
and three studies respectively. The choice of time-constant 

parameters means that the simulated data represented a static 
risk/relative risk of outcomes over time, which may not represent 
reality in some scenarios [13]. Not all statistical inference requires 
a consideration of time-dependent variables, but given that 29% 
of studies targeted an instantaneous risk, their findings may be 
limited to the time-constant case. Insufficient DGM complexity 
will lead to performance measures that do not apply to real data. 
A conservative approach is to implement rigorous data com-
plexity (such as non-homogenous processes, non-proportional 
hazards, heteroskedasticity) by default unless there is evidence 
suggesting otherwise.

4.4   |   Performance Measures

Performance measures were frequently reported without quanti-
fying uncertainty (n = 18, 43%), meaning the sampling variation 
due to the finite number of simulations cannot be ascertained. 
Since simulation conclusions are reliant on the performance 
measures, the possibility of sign-reversal in estimates or false 
negatives/positives should always be considered using the Monte-
Carlo standard error.

While some studies did evaluate multiple statistical methods 
and reported different performance measures, it was previously 

Variable Categorya n %

R, & SAS 4 10%

SAS 3 7%

MATLAB 1 2%

Published code No 24 57%

Yes 18 43%

Component of code shared Not applicable 24 57%

Data generating mechanism and analysis 11 26%

Analysis only 5 12%

Data Generating Mechanism only 2 5%

Location of shared code NA 22 52%

Supporting Information 13 31%

GitHub 2 5%

Code package 2 5%

Package 1 2%

GitHub, Supporting Information 1 2%

GitLab 1 2%
aFurther definitions of the categories are in the Supporting Information.
bThe condition was classified according to the ICD-10 chapter.
cThis study utilised full bootstrapping to obtain the data, whereas plasmodes contain covariate sampling with simulated outcomes.
dWe classified a DGM as using random sampling when using time-independent outcome generation and as a stochastic process where they generated a random 
variable indexed by a separate time variable.
eFactors are variables that are systematically varied through repeated simulations. This does not sum to the number of studies since more than one variable may be 
factored.
fMethods were grouped as nonparametric estimation (where the method of moments or non-likelihood estimation was used e.g., Kaplan–Meier estimators), maximum 
likelihood estimation (under a specified distributional model), partial likelihood estimation (e.g., proportional-hazards models) or other (e.g., classification/clustering).
gCoverage is a performance measure relating to correct interval estimation and as such is classed here within uncertainty analysis.

TABLE 1    |    (Continued)



7 of 8Pharmacoepidemiology and Drug Safety, 2026

observed that the relative performance of different statistical 
methods depends on the DGM structure and the type of distribu-
tions used [14] and at a minimum, simulations should incorporate 
both time-constant and time-varying effects, and dependence on 
past events. Thus, DGMs were often not adequately varied or suit-
ably complex for the conclusions of many studies to be applicable 
to observational datasets.

While this review was limited to a single journal, it suggests low 
numbers of simulation studies published within the pharmaco-
epidemiology community. Our journal restriction means that the 
simulations reviewed may not represent the entirety of the field 
and are specific to the authors of PDS. Future research including 
simulation studies in journals with a purely statistical or method-
ological focus would likely have more generalisable results at the 
expense of specificity to pharmacoepidemiology. Greater focus on 
evaluating methods and inferential approaches, using simulation 
studies that are appropriately complex given clinical realities, may 
be beneficial to the field.
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