
Beyond the TESSERACT:
Trustworthy Dataset Curation for Sound Evaluations

of Android Malware Classifiers
Theo Chow†‡, Mario D’Onghia‡, Lorenz Linhardt⋆◦, Zeliang Kan†⋄,

Daniel Arp§, Lorenzo Cavallaro‡, Fabio Pierazzi‡
†King’s College London, ⋆Technische Universität Berlin,

◦BIFOLD – Berlin Institute for the Foundations of Learning and Data, ⋄HiddenLayer,
§Technische Universität Wien, ‡University College London

Abstract—The reliability of machine learning critically de-
pends on dataset quality. While machine learning applied to
computer vision and natural language processing benefits from
high-quality benchmark datasets, cyber security often falls be-
hind, as quality ties to the ability of accessing hard-to-obtain
realistic data that may evolve over time. Android is, however,
positioned uniquely in this ecosystem due to AndroZoo and other
sources, which provide large-scale, continuously updated, and
timestamped repositories of benign and malicious apps.

Since their release, such data sources provided access to
populations of Android apps that researchers can sample from
to evaluate learning-based methods in realistic settings, i.e.,
over temporal frames to account for apps evolution (natural
distribution shift) and test datasets that reflect in-the-wild class
ratios. Surprisingly, we observe that despite this abundance
of data, performance discrepancies of learning-based Android
malware classifiers still persist even after satisfying such realistic
requirements, which challenges our ability to understand what
the state-of-the-art in this field is. In this work, we identify five
novel factors that influence such discrepancies: we show how such
factors have been largely overlooked and the impact they have on
providing sound evaluations. Our findings and recommendations
help define a methodology for creating trustworthy datasets
towards sound evaluations of Android malware classifiers.

I. INTRODUCTION

The foundation of trustworthy Machine Learning (ML)
research lies in the datasets used for evaluation. To ensure
that results generalize beyond controlled lab-only settings,
datasets must faithfully capture the distributions, dynamics,
and challenges of the real world. However, unlike computer
vision and natural language processing, where community
benchmarks such as ImageNet [29] and MMLU [48] (or
datasets in repositories such as UCI [6] and Kaggle [4])
provide stable and widely accepted testbeds, the Android
malware domain lacks reliable and standardized benchmarks.
This absence is primarily due to both restricted access to real-
world attack data [83] and the highly non-stationary nature
of adversarial environments [78], in which attacker strategies
evolve continuously, hindering the curation of static bench-
marks. The introduction of large-scale collections of benign
or malicious Android Application Packages (APKs) such as
AndroZoo [14] and VirusShare [7] has partially addressed
this gap by enabling researchers to curate time-aware Android

malware datasets in accordance to the best practices and
guidelines introduced in TESSERACT [78] and other works
on recommendations to apply ML to security [17], [36], [83].
However, we show that these measures alone are insufficient
to guarantee reliable and unbiased assessments.

Let us consider two state-of-the-art Android malware
datasets that have been adopted in top-tier security venues:
APIGraph [97] and Transcendent [19]. Both were explicitly
constructed to adhere to the spatio-temporal constraints pro-
posed by TESSERACT [78] and reflect recent trustworthy AI
guidelines for dataset design and fair evaluations [17], [36].
Despite this, evaluation across five state-of-the-art malware
detectors reveals striking discrepancies: Figure 1 shows that
detection models consistently achieve higher F1-Score scores
on APIGraph than on Transcendent, even when evaluated on
the same time frame (2014–2018). From an ML perspective,
this indicates that sources of dataset bias persist beyond
temporal or class-ratio considerations, and that hidden shifts or
artifacts may systematically affect evaluation outcomes. These
observations highlight the need for a deeper investigation into
the nuanced factors that must be addressed to curate truly
trustworthy datasets in security domains.

More specifically, we identify five new spatio-temporal
factors that can affect dataset sampling and evaluation of
a learning-based Android malware detector. After introduc-
ing our hypotheses, we empirically evaluate the impact
of each factor using five representative state-of-the-art An-
droid malware classifiers: DREBIN [18], DEEPDREBIN [43],
MALSCAN [94], RAMDA [60], and HCC [25]. For each factor,
we provide practical recommendations to reduce spatial and
temporal biases. Finally, we survey existing Android malware
datasets used in the literature to evidence how the factors we
identify have often been ignored or overlooked in previous
work. In fact, we discover that 95% of the datasets we
surveyed violate 3 or more of our recommendations, which
can lead to biased experimental results.

In summary, we make the following contributions:
• We discover five novel spatio-temporal bias factors (§II)

beyond TESSERACT [78] and existing literature [17],
[36], [83], which can lead to misleading results even

if following all current recommendations for realistic
evaluations, as shown in Figure 1.

• We systematically analyze the impact of these factors
on five state-of-the-art Android classifiers and two An-
droid malware datasets that reflect current best practices.
Where necessary, we augment our analysis by sampling
additional data from AndroZoo to further generalize our
findings beyond the Transcendent and APIGraph datasets.

• We present actionable recommendations to address each
identified factor including an evaluation metric (§V) and
sampling strategy (§VIII) for evaluating and curating
trustworthy Android malware dataset.

• We conduct a prevalence study of the identified bias fac-
tors for popular Android malware datasets, highlighting
that these are often overlooked (§IX).

To ensure reproducibility, and to foster bias-free evaluations
in Android malware classification, we release our code and
data publicly at https://github.com/s2labres/hypercube-ml, in-
cluding STAS and HYPERCUBE.

II. PRELIMINARY OBSERVATIONS

In this section, we investigate the possible causes behind
the striking performance difference observed in Figure 1. We
reinforce that this occurs regardless of the feature represen-
tation or machine learning classifier used and that the two
datasets, APIGraph [97] (DA) and Transcendent [19] (DT),
adhere to all spatial and temporal constraints outlined in
TESSERACT [78] and align with recommendations from Arp
et al. [17]. Moreover, they overlap in 2014–2018; hence, we
restrict DA to this period to match the time frame of DT ,
which allows for a direct comparison between the two datasets.

Family Overlap. Prior work [26] showed that the appearance
of new malware families is a major cause of drift in DT .
Hence, we investigate the distribution differences between
the two datasets by computing the “family overlap,” i.e., the
percentage of malware samples in the test set (from 2015 to
2018) belonging to families that existed in the training set
(2014). A more formal definition of family overlap can be
found in Appendix §C. Figure 2 reports the family overlap,
which shows that new malware families steadily replace older
ones in DT , while malware family overlap does not show
a clear trend in DA. Considering that both datasets were
sampled within the same time frame, we postulate that certain
factors differed during the curation of the datasets, resulting
in different distributions of malware samples.

Novel Spatio-Temporal Bias Factors. To identify possible
sources of bias explaining the performance difference in
Figure 1, we examine the high-level characteristics of DA and
DT in Table I. We notice three major differences (Timestamp
Types, VT Thresholds, and App Markets) and postulate that
these may have contributed to the observed performance
difference.

Specifically, App Markets distribution affects the sampling
source of both benign and malicious APKs (§VI), while a
higher VirusTotal Threshold (VTT) may lead to malware that

Table I: High-level differences between DA and DT .
Characteristic DA [97] DT [19]

Time Frame 2012-2018 2014-2018

Timestamp VT first dates AZ dex dates

VT Threshold 15 4

App Markets
GooglePlay (goodware), GooglePlay (91%),
VirusShare (malware) Anzhi (7%),

AppChina (2%)

Dataset Size 320,001 259,230

Dataset Size (2014-18) 241,611 259,230

Num. Families 484 492

is “easier to detect” (§VII). Similarly, Timestamp Types can
influence both sampling and evaluation by inducing dissimilar
temporal distribution of APKs (§IV).

Although Dataset Size is similar between DA and DT ,
neither work clearly motivates its chosen size; in fact, none of
the datasets surveyed in our prevalence analysis (§IX) provide
an explicit justification. We therefore study how dataset size
may influence the statistical representativeness of a dataset
(§VIII).

Finally, despite sharing the same Time Frame, we argue that
existing metrics such as Area Under Time (AUT) [78] capture
only a temporal snapshot of performance and its possible
that one may get “lucky” with the training and testing split,
resulting in a misleading performance for a given timeframe—
which we refer to as Temporal Luck (§V).

In the remainder of this paper, we analyze each factor by
formulating hypothesis and evaluating their impact on both
distribution and detection performance. From our findings, we
determine whether each factor introduced biases during the
curation and evaluation of DA and DT . We then provide prac-
tical recommendations on how to prevent these bias factors.
We further quantify each factor’s prevalence in the scientific
community by surveying Android malware datasets in previous
work and assessing them with respect to our recommendations
(§IX).

III. EXPERIMENTAL SETTINGS

Before introducing and analyzing the impact of the factors
we identify, we provide a brief overview of the datasets,
classifiers, and metrics used in the remainder of the paper.

Datasets. To investigate the five identified factors, we use
DA [97] and DT [19] (see §II). Where relevant, we generalize
our findings using metadata from AndroZoo [1], reports from
VirusTotal [8], and family labels unified with Euphony [49].
We sample across multiple markets, recreate both DA and
DT with different VTTs at different time points, and curate
datasets with varying strategies for determining sampling size.
Further details are provided in §VI, §VII, §VIII.

Classifiers. All our experiments are carried out on five
representative Android malware classifiers:

• DREBIN [18]: Linear SVM using binary features from
static analysis (e.g., APIs, URLs, Activities).

• DEEPDREBIN [43]: MLP using the DREBIN features.

https://github.com/s2labres/hypercube-ml

0 10 20 30 400

0.2

0.4

0.6

0.8

1

Testing period (month)

F
1-
S
co
re

DA
DT

(a) DREBIN [18]

0 10 20 30 400

0.2

0.4

0.6

0.8

1

Testing period (month)

F
1-
S
co
re

DA
DT

(b) DEEPDREBIN [43]

0 10 20 30 400

0.2

0.4

0.6

0.8

1

Testing period (month)

F
1-
S
co
re

DA
DT

(c) MALSCAN [94]

0 10 20 30 400

0.2

0.4

0.6

0.8

1

Testing period (month)

F
1-
S
co
re

DA
DT

(d) RAMDA [60]

0 10 20 30 400

0.2

0.4

0.6

0.8

1

Testing period (month)

F
1-
S
co
re

DA
DT

(e) HCC [25]

Figure 1: Motivational example. Performance of five SotA classifiers on two datasets from the same time frame, with the
F1-Scores on DA [97] constantly higher than the ones on DT [19]. This paper investigates dataset bias factors and flawed
evaluation strategies that may cause this discrepancy.

0 10 20 30 40
0.0

0.2

0.4

0.6

0.8

1.0

%
F

am
ily

O
ve

rl
ap

w
/

T
ra

in
in

g

DA
DT

Figure 2: Monthly family overlap of DA and DT at test time
(2015–2018) with respect to families in the training set (2014).

• MALSCAN [94]: Graph-based approach using degree
centrality with a Random Forest classifier.

• RAMDA [60]: DNN combining a VAE and an MLP,
focusing on sensitive APIs, Permissions, and Intents.

• HCC [25]: Encoder-guided embedding using malware
family labels for enhanced class separability.

Appendix B provides more details on these classifiers. Notice
that this heterogeneity allows for robust and representation-
agnostic insights. Since HCC shows similar trends yet consis-
tently outperforms the other classifiers, we show performance
plots only for HCC throughout the remainder of the paper but
include all the other performance figures in the Appendix.

Metrics. We assess each factor’s impact on classification
performance using the standard performance metrics F1-Score
and AUT for temporal evaluation [78]. Additionally, we report
the Family Overlap measure introduced in §II to quantify
the distribution shift of malware families independent of the
feature representation or classifier used (see Appendix §C).

IV. FACTOR 1: TIMESTAMP TYPES

A. Hypothesis

Since TESSERACT’s advocacy for time-aware evalua-
tion [13], [75], [78], the integration of temporal information
has become an essential consideration in constructing real-
istic datasets. In particular, we note that timestamps do not
just impact the temporal order of samples but the sampling
process itself. To illustrate this: for example, in DA, sam-
ples with VirusTotal First-Submission Dates (VT first dates)
before 2012 and after 2018 were discarded; and in DT ,
the AndroZoo population was filtered by excluding samples
with dex date greater than 2018 or smaller than 2014. As

such timestamp-based filtering directly shapes the resulting
dataset population, we analyze the impact how commonly used
timestamp types affect the construction of time-based datasets.

For the Android domain, several timestamps are available to
practitioners. Among the commonly-used ones, VT first dates
(DA) indicate when APKs were first submitted to VirusTo-
tal [8], and dex dates correspond to the last modification
date of an APK’s classes.dex file (the executable code of the
Android app). Other relevant timestamps include GooglePlay
upload dates, namely the date in which an APK was uploaded
to GooglePlay, and AndroZoo crawl dates, which indicate the
date on which AndroZoo crawled an APK from a market.

All these timestamps provide different temporal information
and can be loosely sorted into three categories: Creation
Timestamps, Publication Timestamps, and Third-party Times-
tamps. Creation Timestamps aim to capture the date an APK
was created or built. Among the notable timestamps, dex dates
are the only one falling in this category. dex dates are known
to be unreliable [62] as they are easily modifiable by attackers
and removed by default by all Android SDKs released after
2016 [3]. Publication timestamps capture the date in which an
APK was uploaded to a public market such as GooglePlay.
Since they are market-specific, APKs uploaded to multiple
markets will have multiple publication timestamps. Finally,
Third-party Timestamps capture the date an APK was included
in an app repository managed by professionals/academics,
such as AndroZoo and VirusTotal.

Given that timestamps provide different temporal informa-
tion, it is important to understand the distributions they model.
Creation timestamps reflect the evolution of malware families
and attack techniques over time but may misrepresent reality
since republished malware would be assigned to an earlier
point despite reappearing in the present. We obtained confir-
mation from industrial partners that they do see old malware
still circulating years after their original appearance. Publi-
cation timestamps instead capture the population of an app
market at a specific moment, closely matching the deployment
setting of antivirus engines. Third-party Timestamps are less
reliable indicators of real-world distributions, as samples can
be uploaded before or after market release. Nevertheless, they
may be useful proxies when other timestamps are unavailable.

In this section, we first evaluate the ability of Creation
Timestamps to model the evolution of malware, knowing that

Figure 3: Yearly family overlap of 3 datasets identically and
independently sampled from a snapshot of AndroZoo in 2025
and in 2019, using DT sampling parameters.

old malware may appear at a later time.

Hypothesis 1: Timestamp Type

Due to old malware reappearing, using Creation Times-
tamps to sample a time-aware dataset in the time frame
[T1, T2] (T1 < T2) may lead to different malware distri-
butions, depending on when the sampling is performed.

The intuition behind this hypothesis is that as old malware
reappears the underlying population may change from the one
observed in the past.

We then evaluate the ability of Third-party Timestamps to
emulate Publication Timestamps. We would expect APKs to
enter third-party services such as AndroZoo and VirusTotal
(VT) after their publication on an official app market. In
particular, we investigate whether the temporal distribution of a
third-party service and a market may be similar but misaligned,
which would still allow the Third-party Timestamps to fairly
represent that market’s distribution.

Hypothesis 2: Timestamp Type

Third-Party Timestamps may fail to reflect the temporal
distribution of an app market.

B. Impact

Hypothesis 1. To validate this hypothesis, we first resample
DT in May 2025 three times. We then leverage AndroZoo
crawl dates to reconstruct a snapshot of AndroZoo when DT

was sampled in 2019, by filtering out samples that were not
present on AndroZoo at that time. For both configurations,
we independently sample three datasets, maintaining the same
number of malware per month as DT , using dex dates for
sampling and ordering, and VTT=4. We analyze the resulting
malware distributions for the two configurations by averaging
the family overlap of each. Further details regarding how we
recreated DT can be found in Appendix §A.

Figure 3 reports the family overlap for different samplings.
It can be observed that the datasets sampled from AndroZoo
in May 2025 (D2025

T) show a higher family overlap in 2017
and 2018, with a significantly smaller standard deviation. In
contrast, datasets sampled from a snapshot of AndroZoo when
DT was originally sampled (D2019

T) present a lower average
family overlap in the last two years, with a higher standard
deviation, indicating greater variability.

These findings confirm our first hypothesis: sampling a
dataset from a fixed time frame through Creation Timestamps
will yield different malware distributions depending on when
the sampling is performed (in this case, 2019 vs. 2025). More-
over, this further highlights that old malware may reappear in
a population at a later time than its original creation, making
the task of modeling the evolution of malware variants through
simple Creation Timestamps inaccurate.

Hypothesis 2. To validate our second hypothesis, we compare
the temporal distribution of GooglePlay Publication Times-
tamps (upload dates) with Third-party Timestamps from An-
droZoo (crawl dates) and VirusTotal (VT first dates). We
model this distribution as a binary matrix of shape (NT , |DT |),
where NT is the number of time units within the time frame
T = [T1, T2] (e.g., 12 months from 1-1-2021 to 31-12-2021),
and |DT | is the number of samples published on GooglePlay
in [T1, T2]. Each entry (i, j) equals 1 if sample j was published
on the market or uploaded to a third-party service during
the ith time slot, 0 otherwise. Each column in the matrix
represents an individual APK and can sum to 0 or 1. For a
third-party service, a column can sum to 0 if the corresponding
APK was uploaded outside of T .

We reuse the metadata of 430k APKs that we collected
for the experiments in §G. These APK were published by
GooglePlay between 1-1-2021 and 31-12-2023 and are avail-
able on AndroZoo. Using upload dates, VT first dates, and
crawl dates, we construct yearly temporal distributions for
GooglePlay, VT, and AndroZoo, respectively. To assess the
similarity of the three temporal distributions, we compute
the cosine similarity between the GooglePlay distribution and
those of VT and AndroZoo. Table II reports the monthly
cosine similarities with their standard deviations. The results
show that the monthly mean values of AndroZoo crawl dates
are closer to 1 in 2021 and 2023, while those of VirusTotal
VT first dates are closer to 0 for all three years, indicating
dissimilarity from GooglePlay upload dates.

However, the temporal distributions of VT and AndroZoo
may be misaligned with respect to GooglePlay, as APKs are
expected to enter these services only after publication on
GooglePlay. To verify this, we align each pair of temporal
distributions by solving the Dynamic Time Warping (DTW)
problem [20] and report the final cumulative distance (normal-
ized as in [41]) in Table III. For reference, we also compute
the DTW distance between the GooglePlay distribution and
a random one, constructed by assigning each APK a random
timestamp succeeding its original upload date. Both VT and
AndroZoo distances are close to those of a random distribu-

Table II: Monthly mean cosine similarity between Google-
Play upload dates and two timestamp distributions: Virus-
Total VT first dates and AndroZoo crawl dates. 1 indi-
cates identical and -1 indicates inversely-correlated vectors.
crawl dates are closer to 1 compared to VT first dates, sug-
gesting VT first dates are more dissimilar to upload dates.

Goodware Malware
VT first dates crawl dates VT first dates crawl dates

2021 0.20±0.09 0.76±0.04 0.23±0.10 0.71±0.06
2022 0.13±0.07 0.24±0.05 0.14±0.07 0.67±0.08
2023 0.18±0.06 0.63±0.13 0.21±0.08 0.58±0.13

Table III: DTW distance between GooglePlay up-
load dates and three timestamp distribution: VirusTotal
VT first dates, AndroZoo crawl dates, and random tempo-
ral distributions. Values in brackets are normalized against
the random distribution, with lower values indicating the time-
series aligns better against upload dates.

Goodware Malware
Random VT first dates crawl dates Random VT first dates crawl dates

2021 116 (1.00) 94 (0.81) 71 (0.61) 52 (1.00) 44 (0.85) 34 (0.65)
2022 111 (1.00) 93 (0.84) 68 (0.61) 46 (1.00) 45 (0.98) 35 (0.76)
2023 100 (1.00) 90 (0.90) 78 (0.78) 38 (1.00) 38 (1.00) 34 (0.90)

tion. Notably, the VT distance for malware is identical to that
of a random distribution in 2023 and nearly identical in 2022.
These results indicate that Third-party Timestamps cannot
reliably represent the temporal distribution of GooglePlay.

C. Recommendations

Recommendation: Timestamp Type

Use Publication Timestamps to model the population of
a market (e.g., GooglePlay upload dates).

V. FACTOR 2: TEMPORAL LUCK

A. Hypothesis

Two datasets, D1 and D2, sampled from different time
frames (e.g., 2012–2014 and 2016–2018), can be expected to
represent different distributions (e.g., they may vary in terms
of family composition). Therefore, no meaningful conclusions
can be drawn from comparing the performance of a malware
classifier on D1 with the performance of another malware
detection method evaluated on D2. This issue of comparing
malware detection methods on different datasets presenting
a distribution mismatch may arise when researchers directly
compare their results with those reported in other related
papers (“comparison on paper”).

Given two malware detection approaches A1 and A2, a
straightforward solution would be to evaluate both on the
same dataset, as done in recent work (e.g., [19], [94], [97]).
Nevertheless, this may still not suffice to conclude which
method performs best, as the reported results may still be
influenced by what we name Temporal Luck. This phenomenon
arises when an arbitrary time-aware split into training and
testing data inflates the performance of a given method, due to
the training set being “exceptionally” good or the subsequent

1-
20

15

1-
20

16

1-
20

17

1-
20

18

12
-2

01
8

0.0

0.2

0.4

0.6

0.8

1.0

F
1-

S
co

re

DA [2014]

DA [2015]

DA [2016]

DA [2017]

(a) DA

1-
20

15

1-
20

16

1-
20

17

1-
20

18

12
-2

01
8

0.0

0.2

0.4

0.6

0.8

1.0

F
1-

S
co

re

DT [2014]

DT [2015]

DT [2016]

DT [2017]

(b) DT

Figure 4: Impact of Temporal Luck on the performance of
HCC. Each line indicates the F1-Score of a model trained on
each year between 2014 and 2017. It can be seen that training
on different years within the same dataset can yield different
performance profiles. The issue is evident on DT , but also
present in DA. For other classifiers, refer to Appendix §E.

Table IV: Temporal Luck. 12-month window Area Under
Time (AUT): 2014-2015 indicates that the model is trained on
2014 and its AUT value computed on 2015. The performance
of a model on a given dataset changes depending on how we
temporally split the dataset.

Classifier

20
14

-2
01

5

20
15

-2
01

6

20
16

-2
01

7

20
17

-2
01

8

µAUT σAUT

DREBIN 0.85 0.91 0.90 0.87 0.88 0.02
DEEPDREBIN 0.84 0.93 0.91 0.91 0.90 0.03
MALSCAN 0.67 0.65 0.66 0.87 0.72 0.09
RAMDA 0.75 0.81 0.77 0.59 0.73 0.09
HCC 0.89 0.93 0.91 0.92 0.91 0.01

(a) DA

Classifier

20
14

-2
01

5

20
15

-2
01

6

20
16

-2
01

7

20
17

-2
01

8

µAUT σAUT

DREBIN 0.71 0.75 0.63 0.80 0.72 0.06
DEEPDREBIN 0.69 0.74 0.55 0.82 0.70 0.10
MALSCAN 0.45 0.42 0.53 0.83 0.56 0.16
RAMDA 0.54 0.56 0.44 0.74 0.57 0.11
HCC 0.70 0.75 0.63 0.80 0.72 0.06

(b) DT

testing period not drifting significantly. In practical terms,
given a dataset D2012−2014, A1 may perform better than A2

when training on 2012 and testing on 2013, whereas A2

may exhibit superior performance when training on 2013 and
testing on 2014. Hence, we postulate the following hypothesis.

Hypothesis: Temporal Luck

Given a dataset, the performance of a malware detection
method may vary based on the temporal train/test splits.

B. Impact

Figure 4 provides an overview of the impact of Temporal
Luck on both DA and DT . We employ the following settings:
we train classifiers on data from each year in 2014–2018 and
test them in the following years. In practice, we divide the

datasets into four subsets: the first having 2014 as training
window and testing on 2015–2018, the second having 2015
for training and 2016–2018 for testing, and so on. It is visually
evident in DT that significantly different performance profiles
may be obtained depending on the temporal split. This can
also be observed for DA, albeit to a smaller extent.

To quantify Temporal Luck in DA and DT , we compute
the AUT when training on one year and testing only on the
following one (i.e., (i) training on 2014 and testing on 2015,
(ii) training on 2015 and testing on 2016, etc.). The AUT
summarizes the performance of a classifier over a certain time
frame, and in the presence of Temporal Luck, it can emphasize
when a proposed approach works consistently across different
temporal splits. The results summarized in Table IV show
again significantly different results on DT for all classifiers
and temporal configurations, and smaller differences for DA.

The AUT can reveal substantial performance variation
across training years. For example, all classifiers show a signif-
icantly lower performance in 2016–2017 than in 2017–2018
of DT . However, the AUT may complicate the comparison
between classifiers, as no individual one may perform better
than the others in all scenarios (with the exception of HCC
for DA). For example, MALSCAN performs better than both
DREBIN and HCC in 2017–2018 of DT . However, the reverse
is true for the other three temporal configurations. Similarly,
DEEPDREBIN performs better than DREBIN in 2015–2016,
2016–2017, and 2017–2018, but worse in 2014–2015 of DA.

To facilitate direct comparison between different malware
detection methods, we propose the following extension of the
AUT metric, providing a compact summary of the time-aware
performance of a given classifier (given a metric f , e.g., F1-
Score), while accounting for Temporal Luck:

A-AUTf (C, T, E) =
(
µAUT f

, σAUT f

)
(1)

where µAUT f
and σAUT f

are the mean and standard deviation
of AUTf (Cti , ei), computed by training classifier C on each
ti ∈ T and evaluating on the corresponding ei ∈ E, with:

T := {DinT :(i+1)nT−1}k−1
i=0 (2)

E := {D(i+1)nT :(i+1)nT+nE−1}k−1
i=0 (3)

k = ⌊(|D| − nE)/nT ⌋ (4)

More specifically, a dataset D is divided into k tempo-
rally successive training sets (T) as well as into k evalu-
ation sets (E), having sizes nT and nE , respectively, with
nE ≥ nT . The formula for the case nT > nE is de-
scribed in Appendix §E. For each dataset pair (ti, ei) ∈
{(t0, e0), · · · , (t|D|/nT

, e|D|/nT
)}, with ti ∈ T and ei ∈ E,

we train the classifier C on ti and compute its AUT on ei.
Notice that each ei starts at time unit inT and includes the
following nE time units. A practical example of this rolling
window approach is provided in §E.

In Table IV, we report the A-AUT of the F1-Score computed
for our considered classifiers and datasets, setting both nT

and nE to one year. The proposed metric facilitates the direct
comparison of different malware detection methods, while

accounting for Temporal Luck. For instance, it can help deter-
mine which classifier between DREBIN and DEEPDREBIN on
average performs the best on DT : DREBIN shows a slightly
better performance than DEEPDREBIN (µAUT = 0.72 versus
µAUT = 0.70) while also exhibiting more stable performance
across different temporal splits (σAUT = 0.06 versus σAUT =
0.10). MALSCAN shows weaker performance than both, with
higher variability. HCC achieves the highest µAUT and lowest
σAUT for DA. For DT , HCC and DREBIN share the best
performance with µAUT = 0.72 and σAUT = 0.06.

C. Recommendation

As a single train-test split may unfairly (dis)advantage one
classifier over another, we recommend using the proposed
Average Area Under Time (A-AUT) metric to provide a more
robust mean estimate of the classifier performance, along with
a measure of performance stability over time splits.

Recommendation: Temporal Luck

You must use A-AUT as a metric to compare malware
detection methods. If multiple methods have comparable
A-AUTs, you must provide an AUT breakdown. You
may use A-AUT with N = 12 months, to have a yearly
summary of the results.

VI. FACTOR 3: APP MARKETS

A. Hypothesis

Android apps are distributed across multiple markets. For
example, GooglePlay is the dominant platform in Western
regions, while other markets are more prevalent in Eastern
contexts. When constructing Android malware datasets, recent
studies [19], [25], [78], [97] adopt multi-market sampling to
increase data diversity and scale. However, this approach may
introduce artifacts during training, and classifiers may learn
market-related features instead of security-relevant ones [17].

Table V shows the market composition of AndroZoo, DA,
and DT , based on metadata from AndroZoo [1]. The data
reveal a substantial imbalance: certain markets contribute dis-
proportionately to the AndroZoo population, and DA and DT

differ distinctly in their sampling. In particular, DA exhibits a
pronounced sampling bias, sourcing malware primarily from
VirusShare and goodware from GooglePlay.

We therefore hypothesize that an imbalanced market com-
position in the training data, where malware and goodware
are predominantly sampled from different markets, results in
statistically-significant performance degradation when evalu-
ated on market-balanced or differently-composed test sets.

Table V: Comparison of market sources for the APKs
within AndroZoo, DA and DT . The market information of
each APK is taken from the AndroZoo metadata (note that
each APK can be present in multiple markets).

Market AndroZoo DA DT

Goodware Malware Goodware Malware Goodware Malware

angeeks 0.18% 0.64% 0.21% 0.34% - -
anzhi 1.64% 29.25% 0.37% 1.89% 3.24% 37.57%
apk bang - - - 0.01% - -
appchina 2.57% 22.74% 1.75% 3.75% 2.28% 11.28%
fdroid 0.27% 0.01% - - 0.08% -
freewarelovers 0.02% - 0.03% - - -
genome - 0.06% - 0.57% - -
hiapk 0.01% 0.04% 0.01% 0.01% 0.02% 0.06%
mi.com 0.13% 2.82% 0.06% 0.23% 0.4% 4.12%
PlayDrone 5.75% 6.41% 33.52% 9.75% 13.26% 6.35%
GooglePlay 94.91% 29.50% 99.99% 10.13% 95.33% 49.29%
praguard - 0.47% - 0.01% - -
proandroid 0.02% 0.01% 0.06% 0.02% - -
slideme 0.21% 0.27% 0.3% 0.14% 0.02% -
unknown 0.01% 1.27% 0.08% 23.74% 0.02% 0.49%
VirusShare 0.12% 15.95% 0.07% 81.93% 0.14% 2.05%
1mobile 0.2% 0.48% 1.36% 0.35% - -

0 10 20 30 40

0.1

0.2

Testing period (month)

F
P
R

DeepDrebin
Drebin
Malscan
Ramda
HCC

(a) DA

0 10 20 30 40

0.1

0.2

Testing period (month)

F
P
R

DeepDrebin
Drebin
Malscan
Ramda
HCC

(b) DT

Figure 5: FPR of the five classifiers trained on 2014 and
evaluated across 2015–2018.

Hypothesis: App Markets

Altering the composition of App Markets used in dataset
sampling significantly affects goodware and malware
class-distribution, and leads to reduced detection per-
formance (e.g., F1-Score or AUT) when models are
evaluated on out-of-sample market distributions.

B. Impact

To investigate whether the performance on DA is influenced
by goodware being sampled entirely from GooglePlay and
malware primarily from VirusShare, we first analyze the False
Positive Rate (FPR) of both datasets. As expected, classifiers
trained on DA tend to be steadily confident in predicting
benign APKs. In contrast, classifiers trained on DT exhibit
a much more variable FPR. Figure 5 shows the FPR trend of
all five classifiers when trained and evaluated on both datasets.

For a more systematic analysis, we now empirically eval-
uate the impact of market composition by constructing six
dataset configurations, designed to simulate the influence of
market sources on dataset composition, and evaluating their
effect on malware detection performance. We sample all these
datasets from AndroZoo; in particular, from two groups of
markets. We collect samples only from GooglePlay (GP) as
it is the majority market in AndroZoo, and we group all
remaining 3rd-Party Markets together (3PM), as 3PM are

Table VI: Evaluation results of sampling from diverse app
market sources. Training and testing on the same markets
consistently yield higher F1-Score compared to training and
testing on different markets, showing APKs from multiple
markets are inherently different. Mixing markets can lead to
unclear evaluation results skewed towards the majority market.
Combining malware and goodware from separate markets
inflate performance, corroborating findings in [17]. Standard
deviation for all results is lower than 0.03.

DREBIN DEEPDREBIN MALSCAN RAMDA HCC
No. Train Set Test Set F1-Score F1-Score F1-Score F1-Score F1-Score

1 DGP DGP 0.776 0.788 0.841 0.524 0.813
2 D3PM D3PM 0.658 0.699 0.614 0.514 0.782

3 DGP D3PM 0.265 0.247 0.298 0.227 0.261
4 D3PM DGP 0.415 0.290 0.416 0.262 0.348

5 DGP DEV EN 0.422 0.395 0.511 0.344 0.417
6 D3PM DEV EN 0.622 0.558 0.581 0.454 0.642

7 DEV EN DGP 0.740 0.747 0.789 0.576 0.799
8 DEV EN D3PM 0.659 0.566 0.666 0.467 0.781
9 DEV EN DEV EN 0.659 0.706 0.694 0.504 0.775

10 DPROP DGP 0.774 0.798 0.836 0.595 0.829
11 DPROP D3PM 0.573 0.586 0.625 0.373 0.706
12 DPROP DPROP 0.712 0.763 0.761 0.517 0.796

13 DGP3PM DGP3PM 0.899 0.904 0.814 0.844 0.936
14 DGP3PM D3PMGP 0.082 0.067 0.080 0.061 0.076
15 D3PMGP DGP3PM 0.142 0.116 0.140 0.074 0.107
16 D3PMGP D3PMGP 0.829 0.856 0.851 0.626 0.910

otherwise individually too small (compared to GP). Overall,
we collected 15,000 goodware and 15,000 malware samples
for each GooglePlay and 3PM, summing up to 60,000 sam-
ples. A detailed breakdown of the configurations is given in
Appendix §A. Each dataset configuration consists of 20,000
samples for training and 5,000 samples for testing, randomly
selected from the collected pool of samples. Due to the limited
number of samples per time split, we do not perform a
temporal evaluation and instead sample three 3 datasets per
configuration and report the average F1-Score.

Similarity of APKs. We begin by analyzing the impact on
performance when training and testing on either the same or
different markets. As shown in Table VI, training and testing
on the same market (rows 1–2) consistently yields higher F1-
Score scores compared to cross-market scenarios (rows 3–4).
These results indicate notable differences in the characteristics
of goodware and malware across markets.

This point is further underscored when examining the F1-
Score of classifiers trained on samples from one market, but
tested on an even distribution from mixed markets(DEV EN

rows 5–6). For example, training on DGP and testing on
DEV EN yields F1-Score significantly lower than the scores
observed when testing on DGP alone (row 1). Similar trends
are observed for D3PM and are consistent for all classifiers.

Combining markets for training/testing. Prior work [19],
[78], [97] has adopted multi-market sampling. Here, we ana-
lyze training on mixed markets and testing on mixed or single
markets. We find that, regardless of the proportion (DEV EN

or DPROP) of GooglePlay to 3PM apps, the F1-Score when
testing on multiple markets lies within the range of the F1-
Scores when testing on the individual markets (rows 7–9), with

DPROP skewed towards the majority market (GooglePlay in
rows 10–12).

Goodware and malware from different markets. Including
goodware and malware from distinct markets (DGP3PM) lead
to unrealistically-high F1-Score (row 13,16). This aligns with
findings from [17], where classifiers inadvertently learn spuri-
ous correlations, distinguishing app origins rather than actual
differences between goodware and malware. These results
clearly demonstrate the influence of app markets on classifier
performance and the risk of introducing biases.

C. Recommendations

Arp et al. [17] showed that sampling malware and goodware
from different markets can lead to spurious correlations. We
extend this finding by showing apps from different markets are
inherently different (even if the class ratio stays consistent) and
training on one market does not transfer well to another. To
ensure goodware and malware is not biased by market source,
one should sample both from the same market. To include
multiple markets, one must sample from each separately and
test on single markets to obtain best and worst case estimates.

Recommendation: App Markets

The App Markets distribution must be consistent be-
tween goodware and malware apps, to avoid spatial bias.
When performing multi-market evaluation, you must
report the single-market test performances to obtain the
best- and worst-case outcomes.

VII. FACTOR 4: VIRUSTOTAL THRESHOLD

A. Hypothesis

Although the VirusTotal Threshold is typically used to label
a given dataset, it also acts as a sampling parameter: samples
with a number of detections between one and the chosen VTT
value are excluded from the base population (these samples
are usually called greyware). This is particularly evident in
AndroZoo, where setting a VTT of 4 excludes over 56% of the
non-benign population. For this reason, we posit that selecting
different VTT values will significantly affect the composition
of malware in a dataset, consequently impacting the reported
performance of a classifier. We focus on three representative
VTTs, VTT=15 based on DA, VTT=4 based on DT , and
VTT=2, based on the fact that previous literature demonstrated
it is the lowest stable VTT one can choose [99].

Hypothesis: VirusTotal Threshold

The choice of VTT affects the distribution from which
Android malware is sampled, as it acts as a sampling
parameter that filters the base population. In turn, this
affects the reported performance of a classifier.

0 5 10 15 20 25 30 35 40 45
Test period (month)

0.0

0.2

0.4

0.6

0.8

1.0

1
Sc

or
e

VTT = 15
A
VTT = 2
A
VTT = 4
A

(a) DA

0 5 10 15 20 25 30 35 40 45
Test period (month)

0.0

0.2

0.4

0.6

0.8

1.0

1
Sc

or
e

VTT = 4
T
VTT = 2
T
VTT = 15
T

(b) DT

Figure 6: F1-Score of HCC classifier for DT and DA

sampled with a VTT=2, VTT=4, and VTT=15. All other
classifiers are available in Appendix §F.

B. Impact

In this section, we investigate the impact of VTT on
detection performance for both DA and DT . To this end, we
imitate the sampling performed by DA and DT , varying only
the VTT values. More specifically, we sample new malware
using VTTs 2, 4, 15 based on the amount of malware per
month in DA and DT . We imitate DT by filtering out samples
that were not present on AndroZoo after 2019. For DA, we
discard samples crawled by AndroZoo after 2020 as that was
when [97] was published and only include APKs found in
VirusShare, the VT, and the AMD [91] datasets. We perform
each sampling three times for statistical significance. Further
details regarding the imitation of the sampling of DA and DT

can be found in Appendix §A.
Figure 6 shows the F1-Score of an HCC classifier on the

datasets sampled using different VTT values. We include
the performance plots for the remaining classifiers in Ap-
pendix §F. We observe that resampling DA with a VTT of 4
does not statistically affect the AUT of an HCC classifier
when evaluating on the complete evaluation window (i.e.,
AUT=0.84 for the original DA against an average AUT of
0.83±0.01). In contrast, using a VTT of 2 does impact the
reported performance, with the average AUT dropping to
0.77±0.03. However, we note that drift trends are accentuated
in the last 18 months of our resampled datasets (particularly
VTT=2), with the AUT dropping from 0.84 for the original
DA to 0.79±0.03 for VTT=4 and to 0.68±0.05 for VTT=2.

In the case of DT , employing a VTT of 2 or 15 does not
statistically affect the average yearly AUT (from 0.46 in the
original dataset to 0.45±0.02 and 0.50±0.03). However, we
notice that DT has only 75 samples in December, 2016, which
affects evaluation metrics. When excluding this date, we find
that datasets with VTT=15 have an average AUT of 0.56±0.13
against an AUT of 0.49 for the original DT .

C. Recommendations

The choice of VTT impacts the sampling process and may
affect classification performance. Considering that a higher
VTT will filter out more samples, a lower VTT will result in a
more inclusive and therefore representative dataset. Provided

that a minimum of 2 detections is required to reduce noisy
labels [99], we recommend using VTT=2.

Recommendation: VirusTotal Threshold

You must use VTT=2 to sample from a distribution of
app markets closer to the original population.

VIII. FACTOR 5: DATASET SIZE

A. Hypothesis

Evaluating classifier performance over the entire Android
APK population (or a surrogate such as AndroZoo) is in-
feasible: AndroZoo alone comprises more than 25.8 million
samples spanning 12+ years. Conversely, arbitrarily-small
samplings may not reflect the underlying population.

DA and DT contain 241,611 and 259,230 samples, re-
spectively, between 2014–2018, yet neither work justifies its
chosen sample size. For instance, DA samples 500 malware
and nine times as much goodware per month, while DT uses
varying monthly sizes in its early years before fixing the
count at 500 malware and 5,000 goodware in 2017–2018.
Although their statistical representativeness remains unclear,
both datasets follow TESSERACT domain constraints and best
practices from prior work: C1 (temporal training consistency),
C2 (consistent time windows for goodware and malware), and
C3 (realistic 10% malware-to-goodware testing ratios) [78].

In contrast, Miranda et al. [76] propose a statistical frame-
work that determines minimum sample sizes for representa-
tiveness using the classical margin of error with finite popula-
tion correction and a Bonferroni adjustment over multiple and
security-unrelated characteristics (e.g., binned APK size and
release year) [22], [76]. The key motivation for this design was
that security-related characteristics (e.g., cryptographic API
calls) were considered hard to compute and, if incorporated,
might introduce bias into the dataset.

However, certain domain-specific constraints should still be
taken into account determining the sample size. We posit
that combining the uniform statistical sample of DADA with
domain-specific constraints by TESSERACT leads to more
consistent curating datasets in the same timeframe.

Hypothesis: Dataset Size

Relying solely on non-security related characteristics is
insufficient for constructing datasets appropriate for An-
droid malware classification; security-specific constraints
proposed in TESSERACT [78] are necessary to ensure
representative datasets.

B. Impact

Adapting DADA.
DADA [76] originally estimates the minimal sample size

using uniform sampling, i.e., without distinguishing between
malware and goodware, and only accounting for general

0 5 10 15 20

Test period (month)

0.0

0.2

0.4

0.6

0.8

1.0

F 1
−
S
co
re

DADA

Stratified Sampling

STAS

Figure 7: F1-Score score for HCC on datasets sampled
using DADA, STRATIFIED and STAS. DADA alone is insuf-
ficient for creating Android malware datasets. STRATIFIED in-
flates detection performance since it produces unrealistic class
ratios (almost 50% malware). STAS creates stable and realistic
datasets. All other classifiers are available in Appendix §G.

application characteristics shared across both classes. We
introduce two incremental modifications to DADA. First, we
move from uniform to stratified sampling by applying DADA
independently to malware and goodware (STRATIFIED), en-
suring statistically sufficient representation of both classes.
Second, to align with the C3 constraint suggesting for 10%
malware test ratio [78], we compute the minimum sample
size per class and then increase goodware to nine times
the malware amount, yielding realistic malware-to-goodware
ratios while preserving same malware volume [78]. Moreover,
notice that the malware-to-goodware ratio is a parameter of the
algorithm and can therefore be changed to other values. This
flexibility is required to address potential future changes in the
percentage of malware in the wild. We refer to the resulting
procedure as Statistically representative, TESSERACT-guided
Android Sampling strategy (STAS). This method combines the
benefits of stratified sampling with realistic class ratios.

Sampling new datasets. To assess the impact of uniform and
stratified sampling, we construct nine datasets using DADA,
stratified sampling, and STAS. Guided by our findings and
recommendations in §IV, §VI, and §VII, we apply a VTT=2
to capture more of the population, eliminate market-specific
biases by restricting sampling to GooglePlay, and use Google-
Play upload dates as the most reliable timestamps. Following
prior work showing that malware labels stabilize within one
year [75], [99], we sample three years of data spanning 2021–
2023. We apply the generic Android characteristics defined in
DADA (i.e., 4 values of APKs, 10 boolean permissions) and
only change APK release year to 2021–2023 (3 values).1

Figure 7 shows the temporal performance of the three
sampling approaches. A key distinction between DADA, a
uniform sampling approach, versus the two stratified sampling
approaches is that the latter guarantees a statistically sufficient
number of both goodware and malware samples Table VII.

1To aid future works, we release HYPERCUBE, the first version of the
dataset sampled using STAS following the aforementioned parameters. Al-
though HYPERCUBE is in a fixed time frame, the STAS methodology can be
easily used to sample newer datasets in the future.

Table VII: Average A-AUT across three datasets sampled
using DADA, STRATIFIED and STAS for 2021–2023. De-
pending on the sampling strategy employed, the resulting
dataset size changes, affecting the overall performance.

Average A-AUT across three datasets
Classifier DADA STRATIFIED STAS

DREBIN 0.09±0.03 0.59±0.01 0.43±0.00
DEEPDREBIN 0.01±0.01 0.61±0.01 0.44±0.01
MALSCAN 0.11±0.03 0.58±0.01 0.35±0.00
RAMDA 0.01±0.01 0.55±0.02 0.27±0.03
HCC 0.03±0.03 0.60±0.02 0.46±0.00

Malware Size 206 (0.78%) 19,645 (42%) 19,645 (10%)
Goodware Size 26,741 (99.22%) 26,946 (58%) 176,805 (90%)

Dataset size 26, 497 46,591 196,450

DADA yields a small dataset of 26,947 samples compared
to 46,591 samples for stratified sampling without enforcing
TESSERACT’s C3 constraint. However, the implications is
that stratified sampling produces a relatively stable F1-Score,
suggesting suitability for Android malware evaluation.

Both stratified sampling approaches show low variance
when sampled multiple times, STAS shows a lower F1-Score
overall. Although a lower F1-Score does not necessarily indi-
cate better representativeness, it correlates with the findings of
Liu et al. [69] and TESSERACT [78], where an imbalance of
malware-to-goodware can inflate performance results. More-
over, following TESSERACT’s recommendation of enforcing
C3 would result in a significantly larger dataset size of 196,450
samples. While this entails higher computational costs, STAS
nevertheless represents the minimum necessary to construct a
dataset that is both statistically sufficient and realistic.

C. Recommendations

We show that combining temporal and spatial constraints
with statistical sampling algorithms is necessary to estimate an
adequate minimum number of samples required for a dataset
to be representative of the real-world population.

Recommendation: Dataset Size

Dataset size must be statistically representative of the
population and follow domain-specific guidelines. You
may use STAS, to determine an appropriate sampling
size for an Android malware dataset.

IX. FACTOR PREVALENCE ANALYSIS

To confirm whether the identified factors have been over-
looked by the research community, we conduct a thorough
analysis on existing Android malware datasets.

We first compile a representative list of Android mal-
ware datasets used in previous work using a forward-citation
methodology, i.e.,, identifying papers that cite a given dataset.
We begin with two of the earliest and most widely used
datasets: Malgenome [98] and Drebin [18], each with over
3,000 citations and were published in a top security venue
(IEEE S&P 2012 and NDSS 2014, respectively).

To narrow our scope, we initially include works published in
one of the top-four security venues: USENIX Security, ACM
CCS, IEEE S&P, and NDSS. This helps us filter out papers
that do not address security topics and focus on those that
apply machine learning to security-related research problems.
We also include relevant works outside these venues by
querying Google Scholar for “Android Malware Detection”
and selecting the top 100 results (as of July 10th, 2025).

This results in an initial list of 233 papers, which we
review to identify datasets used for experimental evaluation.
To ensure comprehensiveness of our survey, we performed
forward-citations for every dataset we found, and filtered for
the top-four security venues. This not only informed us of the
prevalence of each dataset, but also reduced the chance that
we missed well-known datasets.

In total, we analyze 527 Android malware detection papers
and identify 42 datasets, which are explicitly used in 154 pa-
pers, including 35 from top-four security venues. Appendix §H
details our methodology, dataset characteristics, and factor
assessment criteria.

Figure 8 summarizes the prevalence of the five factors across
the 42 datasets. We observe that crucial curation practices
are often neglected: 33 datasets ignored timestamp types for
sampling (§IV), which was shown to affect the distribution the
sampled dataset represents; only 7 evaluated their dataset on
different temporal splits; and over half mixed APK sources.
Labeling practices were similarly inconsistent, with 7 datasets
using VTT=2, 12 relying on other criteria, and 20 employed
VTT>2 or mixed methods. Although 17 datasets were statis-
tically significant in size, none explicitly justified their chosen
dataset size. Ultimately, only 2 datasets [19], [78] satisfied at
least three of our recommendations, while the remaining 40
violated three or more.

Overall, our findings suggest that best practices defined in
prior work have not clearly outlined and addressed these issues
we have highlighted.

X. DISCUSSION

While we extend the set of best practices for evaluating
Android malware classifiers under spatio-temporal drift ([17],
[36], [78], [80], [83]), several open problems still exist. Here,
we contextualize our findings and discuss related challenges.

Other malware domains. While our study focuses on
Android malware (as it is the only domain for which large-
scale timestamped repositories of both benign and malicious
apps are available), many of the challenges may be shared
with other malware domains, such as Windows and PDFs. For
example, getting a reliable timestamp source can be difficult,
especially when there are no centralized app markets such as
in Android. Jiang et al. [50] recommend using VT first dates
as the best estimate for Windows PE; however, we have
shown how Third-Party Timestamps may be misaligned with
the real publication date of software, at least for GooglePlay.
Temporal Luck and our recommendation remains relevant in
other malware domains as well. Lastly, our algorithm for

Timestamp Type

Sample Source

Labeling Method

1 5 10 15 20 25 30 35 40 42

Timestamp Type

1 Mentioned for sampling and
evaluation

4 Mentioned for evaluation

4 Inferred through dataset

33 Not mentioned

App Markets

9 Single Source (Market)

8 Multiple Sources (Androzoo)

21 Multiple Sources

4 Not mentioned

VirusTotal Threshold

7 VTT=2

12 Other Criteria

20 VTT > 2 or Mixed Criteria

3 Not mentioned

Dataset Size

17 Malware and Goodware
satisfied

7 Malware or Goodware
satisfied

11 Neither satisfied

7 Not mentioned

Temporal Luck

7 Considred different
temporal slots

Sampling Size

Temporal Luck

35 Not considered

20
12

20
14

20
16

20
17

20
18

20
19

20
20

20
21

20
22

20
23

20
24

Year of Publication

Datasets

Figure 8: Summary of the prevalence analysis of bias factors in datasets used in the top-4 security conferences and in the
top-100 Google Scholar results. Of the 42 datasets we surveyed, only two datasets satisfy three of our recommendations [19],
[78], all other datasets violate three or more. This suggests our factors are largely overlooked in previous work.

estimating the dataset size can be applied to other malware
domains if the general population distribution is available.

Evolution of TESSERACT C3 [78]. We observed that mal-
ware is not consistently 10% across all months in AndroZoo.
However, obtaining a “true” malware ratio would require
help from industrial partners. TESSERACT [78] estimated the
percentage of malware samples at 10% in 2019, which may no
longer be valid in the current landscape. For lack of a better
source, assuming 10% as a constraint allows for consistency
in the sampled datasets. Future work should investigate the
temporal evolution of realistic malware ratios.

K-fold evaluation. TESSERACT explained that K-fold cross-
validation is an upper bound estimation for performance in
the absence of drift [78], and proposed AUT for time-aware
evaluations [78]. In §V, we argue that temporal evaluation
should be performed with rolling-window splits to mitigate
non-stationary “lucky splits”, similar to how K-fold avoids
stationary lucky splits. Although this approach is standard for
financial time-series forecasting [27], its implications remain
largely unexplored in the security domain.

Family trends in a dataset. This work highlights the
prevalence of re-emerged malware (§IV) in the wild, which
may impact the reported performance of a classifier. This
is indirectly reflected in our discussion on “lucky temporal
splits,” to which the A-AUT offers a mitigation (§V). Showing
the family overlap in a dataset may help understand better
the impact this may have on the underlying classifier. We
acknowledge this requires a well-defined protocol to encourage
sound comparisons; we highlight this as a current limitation
of our approach, leaving this as future work.

Grayware. Our work provides evidence that lower VTT
values better represent the malware population. While we gen-
erally consider the problem of benign vs. non-benign, account-
ing for grayware, i.e., APKs detected by at least one Anti-
Virus but less than VTT, which are predominant in AndroZoo,
remains an open problem. Previous work [16] has attempted to
categorize different grayware types in GooglePlay. However,
systematizing grayware remains an open problem.

Adversarial settings. Adversarial attacks in the Android mal-
ware domain typically involve modifications to malicious code
that induce misclassifications during classification [43], [59].
While such settings are important for evaluating the robustness
of classifiers, the focus of this work is on curating realistic
datasets that capture natural distribution shift of Android
malware, not adversarial benchmark datasets. Future research
should further investigate how dataset biases may influence
evaluations under adversarial conditions. Similarly, real-world
attackers have been using code obfuscation techniques and
packing to fool malware detectors [31]. Future work should
investigate the impact of code packers on dataset construction.

Alternative sampling strategies. We acknowledge that our
statistical-based down-sampling may unintentionally under-
represent rare malware families, as these are statistically less
prevalent in the population. Consequently, datasets sampled
using our approach may be dominated by widespread families
while excluding those with fewer samples. Addressing this
limitation is non-trivial: obtaining reliable family labels for
entire malware populations is impractical due to VirusTotal
API rate limits and inconsistent labeling across antivirus
vendors. We leave the exploration of family-aware sampling
strategies to future work.

XI. RELATED WORK

In this section, we cover the research most closely related
to our work. We present both seminal research papers tackling
the wider problem of achieving fair evaluations in ML-based
computer security research and more directly comparable
publications on dataset sampling and debiasing.

Guidelines for realistic ML evaluations in computer secu-
rity. Our research aligns with efforts to establish guidelines
for realistic evaluations in security-related applications. Som-
mer and Paxson [83] highlighted key challenges in applying
ML to network intrusion detection systems (NIDS), pointing
out fundamental issues that persist in this domain. Rossow
et al. [80] and Van der Kouwe et al. [88] further analyzed
common shortcomings and best practices in security system

evaluations. However, these works primarily identify chal-
lenges and methodological pitfalls without quantifying their
impact on classifier performance. Arp et al. [17] extended this
line of work by demonstrating the effects of these pitfalls in re-
alistic scenarios, although with focus on general cybersecurity.
In contrast, our work investigates the specific properties and
risk factors during dataset creation for the Android malware
domain that lead to pitfalls identified in prior studies.

Temporal evaluations. Other relevant work includes the
domain of temporal evaluation primarily treated by Allix et
al. [13] and Miller et al. [75]. Recently, Pendlebury et al. [78]
proposed TESSERACT as a framework to measure impact of
performance decay over time. We expand on TESSERACT
by proposing a new evaluation guideline in Temporal Luck.
Additionally, we address the creation timestamps validity by
experimentally showing the impact of inconsistencies and
providing practical recommendations for researchers (§IV).

Realistic datasets for ML-based cybersecurity. Prior work
also focused on the problem of realistic and benchmark
datasets for ML-based cybersecurity. Sommer and Paxon [83]
highlighted the challenges of creating realistic network in-
trusion detection datasets, mostly due to privacy concerns;
attempts to create datasets artificially, such as DARPA98-
99 [67] and KDD99 [5], failed because they introduced
artifacts [32], [71], [74]. In the mobile malware domain, Haque
et al. proposed a new dataset LAMBDA [45], which contains
over one million APKs collected across 12 years, using crawl
dates and VTT =4. However, LAMBDA does not resolve
the biases we identify: STAS is a sampling strategy designed
to help researchers build statistically-sound and bias-aware
datasets for any past or future time window, rather than simply
aggregating a large corpus of samples.

Similarly, Jian et al. [50] created a benchmark dataset for
Windows malware by sampling from VirusShare, following
a similar dataset curation pipeline to the one we presented.
However, we focus on factors related to representativeness,
such as sample size and markets, rather than the quality of
family labels. [23] also presented a preliminary discussion
on dataset size and markets but lacks empirical evaluation
or concrete recommendations, while we provide both. No-
tably, [23] calls for better dataset practice—our work directly
answers its call. Recently, Flood et al. [36] identified six
poor practices in NIDS-specific datasets, including poor data
diversity, highly dependent features, unclear ground truths,
traffic collapse, artificial diversity, and wrong labels. Instead of
focusing on the limitations of network datasets, we focus our
attention on the Android malware domain, where the presence
of AndroZoo [1], [11], [14] has offered opportunities to build
more realistic datasets. Furthermore, all our factors are directly
applicable during the sampling process, helping to prevent the
identified “bad” choices in [36]. [40] analyzed three dataset
factors (i.e., class imbalance, quality, and timelines) by exam-
ining three state-of-the-art datasets. We differ from this work
as we not only show how our sampling factors can affect the
sampled distribution but also give actionable recommendations

that researchers can follow to reduce the biases highlighted
in [40]. Additionally, we do not limit our work to only two
state-of-the-art datasets, but instead include the wider Android
population in our experimental analysis. In conclusion, we
identify five factors that can affect realistic evaluations and
that can be controlled with actionable recommendations (§II).

Research on Android malware sampling. Prior work has
focused on the creation of representative Android benchmark
datasets. Miranda et al. proposed DADA [76], a two-step sam-
pling approach for debiasing Android malware datasets, which
combines statistical methods with general APK characteristics.
However, in §VIII, we have shown that DADA lacks critical
domain-specific knowledge. In particular, it violates C3 of [78]
and P1 of [17]. Sun et al. [86] proposed a dataset restructuring
algorithm that unrealistically requires family information and
applies it to [38]. However, it does not correct MalNet’s severe
spatial bias (only about 6% goodware). A recent work [87]
proposed an approach to detect and mitigate sampling bias
between a labeled training and an unlabeled testing dataset,
based on domain discrimination. In contrast, our work ques-
tions how well datasets represent the real-world population,
rather than fitting a classifier on two divergent datasets.

XII. CONCLUSION

Motivated by the stark performance difference of An-
droid malware classifiers on the APIGraph and Transcendent
datasets, we reflected on dataset curation parameters, and iden-
tified five factors overlooked by previous research which can
lead to unrealistic datasets: Timestamp Type, Temporal Luck,
App Markets, VirusTotal Threshold, and Dataset Size. We have
shown their impact on dataset composition (via family overlap)
and on detection performance on five SotA classifiers. Since
these factors are deeply interconnected (e.g., modifying one
will affect the others), they need a cohesive approach: for
each bias factor, we proposed actionable recommendations
to cancel their impact; we propose A-AUT as an evaluation
metric to address the impact of lucky temporal splits; we
then consolidate our findings in proposing STAS, a statistically
guided TESSERACT-constrained sampling strategy.

To encourage future research to exercise greater caution
when selecting parameters during dataset curation, we release
code for the STAS strategy, and hashes of HYPERCUBE, a
dataset sampled for 2021–2023 following our guidelines.

Although curating a static benchmark dataset may not be
practical for Android malware classification due to natural dis-
tribution shift, following principled dataset curation practices
is essential. Doing so will enable fairer, more reliable, and
ultimately more trustworthy evaluations in this domain.

ACKNOWLEDGMENT

Zeliang Kan contributed to this work during his Ph.D.
studies at King’s College London. This research was partially
supported by: the UK EPSRC Grant EP/X015971/2; Google
ASPIRE and GARA Awards; and the Vienna Science and
Technology Fund (WWTF) through the BREADS project
(10.47379/VRG23011).

REFERENCES

[1] Androzoo. https://androzoo.uni.lu. Last Accessed: 2025-01-18.
[2] Contagio. https://contagiominidump.blogspot.com/.
[3] Google issue tracker - last modified timestamp. https://issuetracker.

google.com/issues/37116029. Accessed: 2025-01-09.
[4] Kaggle datasets. https://www.kaggle.com/datasets?fileType=csv. Ac-

cessed: 2025-01-12.
[5] Kdd cup data. http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html.
[6] Uci machine learning datasets. https://archive.ics.uci.edu/datasets. Ac-

cessed: 2025-01-12.
[7] Virusshare. https://virusshare.com/. Last Accessed: 2025-01-18.
[8] Virustotal. https://www.virustotal.com. Last Accessed: 2025-01-18.
[9] Andi Fitriah Abdul Kadir, Natalia Stakhanova, and Ali Akbar Ghorbani.

Android botnets: What urls are telling us. In Network and System
Security: 9th International Conference, NSS 2015, New York, NY, USA,
November 3-5, 2015, Proceedings 9, pages 78–91. Springer, 2015.

[10] Shahid Alam, Zhengyang Qu, Ryan Riley, Yan Chen, and Vaibhav
Rastogi. Droidnative: Automating and optimizing detection of android
native code malware variants. computers & security, 65:230–246, 2017.

[11] Marco Alecci, Pedro Jesús Ruiz Jiménez, Kevin Allix, Tegawendé F
Bissyandé, and Jacques Klein. Androzoo: A retrospective with a glimpse
into the future. In 2024 IEEE/ACM 21st International Conference on
Mining Software Repositories (MSR), pages 389–393. IEEE, 2024.

[12] Kevin Allix, Tegawendé F Bissyandé, Quentin Jérome, Jacques Klein,
Radu State, and Yves Le Traon. Empirical assessment of machine
learning-based malware detectors for android: Measuring the gap be-
tween in-the-lab and in-the-wild validation scenarios. Empirical Soft-
ware Engineering, 21:183–211, 2016.

[13] Kevin Allix, Tegawendé F Bissyandé, Jacques Klein, and Yves Le Traon.
Are your training datasets yet relevant? an investigation into the im-
portance of timeline in machine learning-based malware detection. In
International Symposium on Engineering Secure Software and Systems,
pages 51–67. Springer, 2015.

[14] Kevin Allix, Tegawendé F Bissyandé, Jacques Klein, and Yves Le Traon.
Androzoo: Collecting millions of android apps for the research commu-
nity. In Proceedings of the 13th international conference on mining
software repositories, pages 468–471, 2016.

[15] Iman Almomani, Tala Almashat, and Walid El-Shafai. Maloid-ds:
Labeled dataset for android malware forensics. IEEE Access, 2024.

[16] Benjamin Andow, Adwait Nadkarni, Blake Bassett, William Enck, and
Tao Xie. A study of grayware on google play. In 2016 IEEE Security
and Privacy Workshops (SPW), pages 224–233. IEEE, 2016.

[17] Daniel Arp, Erwin Quiring, Feargus Pendlebury, Alexander Warnecke,
Fabio Pierazzi, Christian Wressnegger, Lorenzo Cavallaro, and Konrad
Rieck. Dos and don’ts of machine learning in computer security. In 31st
USENIX Security Symposium (USENIX Security 22), pages 3971–3988,
2022.

[18] Daniel Arp, Michael Spreitzenbarth, Malte Hubner, Hugo Gascon,
Konrad Rieck, and CERT Siemens. Drebin: Effective and explainable
detection of android malware in your pocket. In Ndss, volume 14, pages
23–26, 2014.

[19] Federico Barbero, Feargus Pendlebury, Fabio Pierazzi, and Lorenzo
Cavallaro. Transcending transcend: Revisiting malware classification
in the presence of concept drift. In 2022 IEEE Symposium on Security
and Privacy (SP), pages 805–823. IEEE, 2022.

[20] Donald J Berndt and James Clifford. Using dynamic time warping to
find patterns in time series. In Proceedings of the 3rd international
conference on knowledge discovery and data mining, pages 359–370,
1994.

[21] Haipeng Cai, Na Meng, Barbara Ryder, and Daphne Yao. Droidcat:
Effective android malware detection and categorization via app-level
profiling. IEEE Transactions on Information Forensics and Security,
14(6):1455–1470, 2018.

[22] George Casella and Roger Berger. Statistical inference. CRC press,
2024.

[23] Fabrı́cio Ceschin, Marcus Botacin, Albert Bifet, Bernhard Pfahringer,
Luiz S Oliveira, Heitor Murilo Gomes, and André Grégio. Machine
learning (in) security: A stream of problems. Digital Threats: Research
and Practice, 5(1):1–32, 2024.

[24] Sen Chen, Minhui Xue, and Lihua Xu. Towards adversarial detection of
mobile malware: poster. In Proceedings of the 22nd Annual International
Conference on Mobile Computing and Networking, pages 415–416,
2016.

[25] Yizheng Chen, Zhoujie Ding, and David Wagner. Continuous learning
for android malware detection. In USENIX Security Symposium, 2023.

[26] Theo Chow, Zeliang Kan, Lorenz Linhardt, Lorenzo Cavallaro, Daniel
Arp, and Fabio Pierazzi. Drift forensics of malware classifiers. In
Proceedings of the 16th ACM Workshop on Artificial Intelligence and
Security, pages 197–207, 2023.

[27] Marcos Lopez De Prado. Advances in financial machine learning. John
Wiley & Sons, 2018.

[28] Ambra Demontis, Marco Melis, Battista Biggio, Davide Maiorca, Daniel
Arp, Konrad Rieck, Igino Corona, Giorgio Giacinto, and Fabio Roli. Yes,
machine learning can be more secure! a case study on android malware
detection. IEEE transactions on dependable and secure computing,
16(4):711–724, 2017.

[29] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-
Fei. Imagenet: A large-scale hierarchical image database. In 2009 IEEE
conference on computer vision and pattern recognition, pages 248–255.
Ieee, 2009.

[30] Meghna Dhalaria and Ekta Gandotra. A hybrid approach for android
malware detection and family classification. IJIMAI, 6(6):174–188,
2021.

[31] Wael F Elsersy, Ali Feizollah, and Nor Badrul Anuar. The rise of
obfuscated android malware and impacts on detection methods. PeerJ
Computer Science, 8:e907, 2022.

[32] Gints Engelen, Vera Rimmer, and Wouter Joosen. Troubleshooting an
intrusion detection dataset: the cicids2017 case study. In 2021 IEEE
Security and Privacy Workshops (SPW), pages 7–12. IEEE, 2021.

[33] Ming Fan, Jun Liu, Xiapu Luo, Kai Chen, Zhenzhou Tian, Qinghua
Zheng, and Ting Liu. Android malware familial classification and
representative sample selection via frequent subgraph analysis. IEEE
Transactions on Information Forensics and Security, 13(8):1890–1905,
2018.

[34] Pengbin Feng, Jianfeng Ma, Cong Sun, Xinpeng Xu, and Yuwan Ma.
A novel dynamic android malware detection system with ensemble
learning. IEEE Access, 6:30996–31011, 2018.

[35] Hossein Fereidooni, Mauro Conti, Danfeng Yao, and Alessandro Sper-
duti. Anastasia: Android malware detection using static analysis of appli-
cations. In 2016 8th IFIP international conference on new technologies,
mobility and security (NTMS), pages 1–5. IEEE, 2016.

[36] Robert Flood, Gints Engelen, David Aspinall, and Lieven Desmet. Bad
design smells in benchmark nids datasets. In 2024 IEEE 9th European
Symposium on Security and Privacy (EuroS&P), pages 658–675. IEEE,
2024.

[37] Yanick Fratantonio, Antonio Bianchi, William Robertson, Engin Kirda,
Christopher Kruegel, and Giovanni Vigna. Triggerscope: Towards
detecting logic bombs in android applications. In 2016 IEEE symposium
on security and privacy (SP), pages 377–396. IEEE, 2016.

[38] Scott Freitas, Rahul Duggal, and Duen Horng Chau. Malnet: A
large-scale image database of malicious software. In Proceedings of
the 31st ACM International Conference on Information & Knowledge
Management, pages 3948–3952, 2022.

[39] Tatiana Frenklach, Dvir Cohen, Asaf Shabtai, and Rami Puzis. Android
malware detection via an app similarity graph. Computers & Security,
109:102386, 2021.

[40] Xiuting Ge, Yifan Huang, Zhanwei Hui, Xiaojuan Wang, and Xu Cao.
Impact of datasets on machine learning based methods in android
malware detection: an empirical study. In 2021 IEEE 21st International
Conference on Software Quality, Reliability and Security (QRS), pages
81–92. IEEE, 2021.

[41] Toni Giorgino. Computing and visualizing dynamic time warping
alignments in r: the dtw package. Journal of statistical Software, 31:1–
24, 2009.

[42] Hugo Gonzalez, Natalia Stakhanova, and Ali A Ghorbani. Droidkin:
Lightweight detection of android apps similarity. In International
Conference on Security and Privacy in Communication Networks: 10th
International ICST Conference, SecureComm 2014, Beijing, China,
September 24-26, 2014, Revised Selected Papers, Part I 10, pages 436–
453. Springer, 2015.

[43] Kathrin Grosse, Nicolas Papernot, Praveen Manoharan, Michael Backes,
and Patrick McDaniel. Adversarial examples for malware detection. In
ESORICS. Springer, 2017.

[44] Alejandro Guerra-Manzanares, Hayretdin Bahsi, and Sven Nõmm. Kro-
nodroid: Time-based hybrid-featured dataset for effective android mal-
ware detection and characterization. Computers & Security, 110:102399,
2021.

https://androzoo.uni.lu
” https://contagiominidump.blogspot.com/
https://issuetracker.google.com/issues/37116029
https://issuetracker.google.com/issues/37116029
https://www.kaggle.com/datasets?fileType=csv
” http://kdd.ics.uci.edu/databases/kddcup99/ kddcup99.html
https://archive.ics.uci.edu/datasets
https://virusshare.com/
https://www.virustotal.com

[45] Md Ahsanul Haque, Ismail Hossain, Md Mahmuduzzaman Kamol,
Md Jahangir Alam, Suresh Kumar Amalapuram, Sajedul Talukder, and
Mohammad Saidur Rahman. Lamda: A longitudinal android malware
benchmark for concept drift analysis. arXiv preprint arXiv:2505.18551,
2025.

[46] Chihiro Hasegawa and Hitoshi Iyatomi. One-dimensional convolutional
neural networks for android malware detection. In 2018 IEEE 14th
International Colloquium on Signal Processing & Its Applications
(CSPA), pages 99–102. IEEE, 2018.

[47] Yiling He, Jian Lou, Zhan Qin, and Kui Ren. Finer: Enhancing state-of-
the-art classifiers with feature attribution to facilitate security analysis.
In Proceedings of the 2023 ACM SIGSAC Conference on Computer and
Communications Security, pages 416–430, 2023.

[48] Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas
Mazeika, Dawn Song, and Jacob Steinhardt. Measuring massive multi-
task language understanding. arXiv preprint arXiv:2009.03300, 2020.

[49] Médéric Hurier, Guillermo Suarez-Tangil, Santanu Kumar Dash,
Tegawendé F Bissyandé, Yves Le Traon, Jacques Klein, and Lorenzo
Cavallaro. Euphony: Harmonious unification of cacophonous anti-
virus vendor labels for android malware. In 2017 IEEE/ACM 14th
International Conference on Mining Software Repositories (MSR), pages
425–435. IEEE, 2017.

[50] Yongkang Jiang, Gaolei Li, Shenghong Li, and Ying Guo. Benchmfc: A
benchmark dataset for trustworthy malware family classification under
concept drift. Computers & Security, 139:103706, 2024.

[51] Abdullah Talha Kabakus. Droidmalwaredetector: A novel android
malware detection framework based on convolutional neural network.
Expert Systems with Applications, 206:117833, 2022.

[52] ElMouatez Billah Karbab, Mourad Debbabi, Abdelouahid Derhab, and
Djedjiga Mouheb. Maldozer: Automatic framework for android malware
detection using deep learning. Digital investigation, 24:S48–S59, 2018.

[53] David Sean Keyes, Beiqi Li, Gurdip Kaur, Arash Habibi Lashkari, Fran-
cois Gagnon, and Frédéric Massicotte. Entroplyzer: Android malware
classification and characterization using entropy analysis of dynamic
characteristics. In 2021 Reconciling Data Analytics, Automation, Pri-
vacy, and Security: A Big Data Challenge (RDAAPS), pages 1–12. IEEE,
2021.

[54] Saurabh Kumar, Debadatta Mishra, Biswabandan Panda, and
Sandeep Kumar Shukla. Androobfs: time-tagged obfuscated android
malware dataset with family information. In Proceedings of the 19th
International Conference on Mining Software Repositories, pages
454–458, 2022.

[55] Arash Habibi Lashkari, Andi Fitriah A Kadir, Hugo Gonzalez, Ken-
neth Fon Mbah, and Ali A Ghorbani. Towards a network-based
framework for android malware detection and characterization. In 2017
15th Annual conference on privacy, security and trust (PST), pages 233–
23309. IEEE, 2017.

[56] Arash Habibi Lashkari, Andi Fitriah A Kadir, Laya Taheri, and Ali A
Ghorbani. Toward developing a systematic approach to generate bench-
mark android malware datasets and classification. In 2018 International
Carnahan conference on security technology (ICCST), pages 1–7. ieee,
2018.

[57] Michael Ley et al. Dblp computer science bibliography. https://dblp.org,
2024. Accessed: 2025-06-26.

[58] Heng Li, Zhang Cheng, Bang Wu, Liheng Yuan, Cuiying Gao, Wei Yuan,
and Xiapu Luo. Black-box adversarial example attack towards {FCG}
based android malware detection under incomplete feature information.
In 32nd USENIX Security Symposium (USENIX Security 23), pages
1181–1198, 2023.

[59] Heng Li, ShiYao Zhou, Wei Yuan, Jiahuan Li, and Henry Leung.
Adversarial-example attacks toward android malware detection system.
IEEE Systems Journal, 14(1):653–656, 2019.

[60] Heng Li, Shiyao Zhou, Wei Yuan, Xiapu Luo, Cuiying Gao, and Shuiyan
Chen. Robust android malware detection against adversarial example
attacks. In Proceedings of the Web Conference 2021, pages 3603–3612,
2021.

[61] Jin Li, Lichao Sun, Qiben Yan, Zhiqiang Li, Witawas Srisa-An, and
Heng Ye. Significant permission identification for machine-learning-
based android malware detection. IEEE Transactions on Industrial
Informatics, 14(7):3216–3225, 2018.

[62] Li Li, Tegawendé Bissyandé, and Jacques Klein. Moonlightbox: Mining
android api histories for uncovering release-time inconsistencies. In 2018
IEEE 29th international symposium on software reliability engineering
(ISSRE), pages 212–223. IEEE, 2018.

[63] Li Li, Daoyuan Li, Tegawendé F Bissyandé, Jacques Klein, Yves
Le Traon, David Lo, and Lorenzo Cavallaro. Understanding android
app piggybacking: A systematic study of malicious code grafting. IEEE
Transactions on Information Forensics and Security, 12(6):1269–1284,
2017.

[64] Wen Li, Xiaoqin Fu, and Haipeng Cai. Androct: ten years of app call
traces in android. In 2021 IEEE/ACM 18th International Conference on
Mining Software Repositories (MSR), pages 570–574. IEEE, 2021.

[65] Martina Lindorfer, Matthias Neugschwandtner, and Christian Platzer.
Marvin: Efficient and comprehensive mobile app classification through
static and dynamic analysis. In 2015 IEEE 39th annual computer
software and applications conference, volume 2, pages 422–433. IEEE,
2015.

[66] Martina Lindorfer, Matthias Neugschwandtner, Lukas Weichselbaum,
Yanick Fratantonio, Victor Van Der Veen, and Christian Platzer.
Andrubis–1,000,000 apps later: A view on current android malware
behaviors. In 2014 third international workshop on building analysis
datasets and gathering experience returns for security (BADGERS),
pages 3–17. IEEE, 2014.

[67] Richard Lippmann, Joshua W Haines, David J Fried, Jonathan Korba,
and Kumar Das. The 1999 darpa off-line intrusion detection evaluation.
Computer networks, 34(4):579–595, 2000.

[68] Xing Liu and Jiqiang Liu. A two-layered permission-based android
malware detection scheme. In 2014 2nd IEEE international conference
on mobile cloud computing, services, and engineering, pages 142–148.
IEEE, 2014.

[69] Yue Liu, Chakkrit Tantithamthavorn, Li Li, and Yepang Liu. Explainable
ai for android malware detection: Towards understanding why the
models perform so well? In 2022 IEEE 33rd International Symposium on
Software Reliability Engineering (ISSRE), pages 169–180. IEEE, 2022.

[70] Samaneh Mahdavifar, Andi Fitriah Abdul Kadir, Rasool Fatemi, Dima
Alhadidi, and Ali A Ghorbani. Dynamic android malware category
classification using semi-supervised deep learning. In 2020 IEEE Intl
Conf on Dependable, Autonomic and Secure Computing, Intl Conf on
Pervasive Intelligence and Computing, Intl Conf on Cloud and Big
Data Computing, Intl Conf on Cyber Science and Technology Congress
(DASC/PiCom/CBDCom/CyberSciTech), pages 515–522. IEEE, 2020.

[71] Matthew V Mahoney and Philip K Chan. An analysis of the 1999
darpa/lincoln laboratory evaluation data for network anomaly detection.
In International Workshop on Recent Advances in Intrusion Detection,
pages 220–237. Springer, 2003.

[72] Enrico Mariconti, Lucky Onwuzurike, Panagiotis Andriotis, Emiliano
De Cristofaro, Gordon Ross, and Gianluca Stringhini. MaMaDroid:
Detecting android malware by building markov chains of behavioral
models. NDSS, 2017.

[73] Alejandro Martı́n, Raúl Lara-Cabrera, and David Camacho. Android
malware detection through hybrid features fusion and ensemble classi-
fiers: The andropytool framework and the omnidroid dataset. Informa-
tion Fusion, 52:128–142, 2019.

[74] John McHugh. Testing intrusion detection systems: a critique of the 1998
and 1999 darpa intrusion detection system evaluations as performed
by lincoln laboratory. ACM Transactions on Information and System
Security (TISSEC), 3(4):262–294, 2000.

[75] Brad Miller, Alex Kantchelian, Michael Carl Tschantz, Sadia Afroz,
Rekha Bachwani, Riyaz Faizullabhoy, Ling Huang, Vaishaal Shankar,
Tony Wu, George Yiu, et al. Reviewer integration and performance
measurement for malware detection. In DIMVA. Springer, 2016.

[76] Tomás Concepción Miranda, Pierre-Francois Gimenez, Jean-François
Lalande, Valérie Viet Triem Tong, and Pierre Wilke. Debiasing android
malware datasets: How can i trust your results if your dataset is biased?
IEEE Transactions on Information Forensics and Security, 17:2182–
2197, 2022.

[77] Xiang Pan, Yinzhi Cao, Xuechao Du, Boyuan He, Gan Fang, Rui Shao,
and Yan Chen. {FlowCog}: Context-aware semantics extraction and
analysis of information flow leaks in android apps. In 27th USENIX
Security Symposium (USENIX Security 18), pages 1669–1685, 2018.

[78] Feargus Pendlebury, Fabio Pierazzi, Roberto Jordaney, Johannes Kinder,
and Lorenzo Cavallaro. {TESSERACT}: Eliminating experimental bias
in malware classification across space and time. In 28th USENIX security
symposium (USENIX Security 19), pages 729–746, 2019.

[79] Fabio Pierazzi, Feargus Pendlebury, Jacopo Cortellazzi, and Lorenzo
Cavallaro. Intriguing properties of adversarial ml attacks in the problem
space. In 2020 IEEE symposium on security and privacy (SP), pages
1332–1349. IEEE, 2020.

https://dblp.org

[80] Christian Rossow, Christian J Dietrich, Chris Grier, Christian Kreibich,
Vern Paxson, Norbert Pohlmann, Herbert Bos, and Maarten Van Steen.
Prudent practices for designing malware experiments: Status quo and
outlook. In 2012 IEEE symposium on security and privacy, pages 65–
79. IEEE, 2012.

[81] SerpApi, LLC. Serpapi: Real-time google search api. https://serpapi.
com, 2025. Accessed: 2025-06-26.

[82] Feng Shen, Justin Del Vecchio, Aziz Mohaisen, Steven Y Ko, and
Lukasz Ziarek. Android malware detection using complex-flows. IEEE
Transactions on Mobile Computing, 18(6):1231–1245, 2018.

[83] Robin Sommer and Vern Paxson. Outside the closed world: On
using machine learning for network intrusion detection. In 2010 IEEE
symposium on security and privacy, pages 305–316. IEEE, 2010.

[84] N Stakhanova, A Ghorbani, et al. An empirical analysis of android
banking malware. 2016.

[85] Bo Sun, Takeshi Takahashi, Tao Ban, and Daisuke Inoue. Detecting
android malware and classifying its families in large-scale datasets. ACM
Transactions on Management Information Systems (TMIS), 13(2):1–21,
2021.

[86] Tiezhu Sun, Nadia Daoudi, Weiguo Pian, Kisub Kim, Kevin Allix,
Tegawendé F Bissyandé, and Jacques Klein. Temporal-incremental
learning for android malware detection. ACM Transactions on Software
Engineering and Methodology, 2024.

[87] Saravanan Thirumuruganathan, Fatih Deniz, Issa Khalil, Ting Yu, Mo-
hamed Nabeel, and Mourad Ouzzani. Detecting and mitigating sampling
bias in cybersecurity with unlabeled data. In 33rd USENIX Security
Symposium (USENIX Security 24), pages 1741–1758, 2024.

[88] Erik van der Kouwe, Gernot Heiser, Dennis Andriesse, Herbert Bos, and
Cristiano Giuffrida. Sok: Benchmarking flaws in systems security. In
2019 IEEE European Symposium on Security and Privacy (EuroS&P),
pages 310–325. IEEE, 2019.

[89] Liu Wang, Haoyu Wang, Ren He, Ran Tao, Guozhu Meng, Xiapu Luo,
and Xuanzhe Liu. Malradar: Demystifying android malware in the new
era. Proc. ACM on Measurement and Analysis of Computing Systems,
2022.

[90] Liu Wang, Haoyu Wang, Xiapu Luo, and Yulei Sui. Malwhiteout:
Reducing label errors in android malware detection. In Proceedings of
the 37th IEEE/ACM International Conference on Automated Software
Engineering, pages 1–13, 2022.

[91] Fengguo Wei, Yuping Li, Sankardas Roy, Xinming Ou, and Wu Zhou.
Deep ground truth analysis of current android malware. In Michalis
Polychronakis and Michael Meier, editors, Detection of Intrusions and
Malware, and Vulnerability Assessment, pages 252–276, Cham, 2017.
Springer International Publishing.

[92] Fengguo Wei, Yuping Li, Sankardas Roy, Xinming Ou, and Wu Zhou.
Deep ground truth analysis of current android malware. In Detection
of Intrusions and Malware, and Vulnerability Assessment: 14th Inter-
national Conference, DIMVA 2017, Bonn, Germany, July 6-7, 2017,
Proceedings 14, pages 252–276. Springer, 2017.

[93] Wen-Chieh Wu and Shih-Hao Hung. Droiddolphin: a dynamic android
malware detection framework using big data and machine learning.
In Proceedings of the 2014 conference on research in adaptive and
convergent systems, pages 247–252, 2014.

[94] Yueming Wu, Xiaodi Li, Deqing Zou, Wei Yang, Xin Zhang, and Hai Jin.
Malscan: Fast market-wide mobile malware scanning by social-network
centrality analysis. In 2019 34th IEEE/ACM International Conference
on Automated Software Engineering (ASE), pages 139–150. IEEE, 2019.

[95] Ke Xu, Yingjiu Li, and Robert H Deng. Iccdetector: Icc-based malware
detection on android. IEEE Transactions on Information Forensics and
Security, 11(6):1252–1264, 2016.

[96] Limin Yang, Zhi Chen, Jacopo Cortellazzi, Feargus Pendlebury, Kevin
Tu, Fabio Pierazzi, Lorenzo Cavallaro, and Gang Wang. Jigsaw puzzle:
Selective backdoor attack to subvert malware classifiers. In 2023 IEEE
Symposium on Security and Privacy (SP), pages 719–736. IEEE, 2023.

[97] Xiaohan Zhang, Yuan Zhang, Ming Zhong, Daizong Ding, Yinzhi Cao,
Yukun Zhang, Mi Zhang, and Min Yang. Enhancing state-of-the-art
classifiers with api semantics to detect evolved android malware. In
Proceedings of the 2020 ACM SIGSAC conference on computer and
communications security, pages 757–770, 2020.

[98] Yajin Zhou and Xuxian Jiang. Dissecting android malware: Characteri-
zation and evolution. In 2012 IEEE symposium on security and privacy,
pages 95–109. IEEE, 2012.

[99] Shuofei Zhu, Jianjun Shi, Limin Yang, Boqin Qin, Ziyi Zhang, Linhai
Song, and Gang Wang. Measuring and modeling the label dynamics of

online {Anti-Malware} engines. In 29th USENIX Security Symposium
(USENIX Security 20), pages 2361–2378, 2020.

APPENDIX

A. Datasets used in Evaluations

APIGraph and Transcendent Dataset. Our work begins
with a motivational example of two state-of-the-art datasets,
APIGraph [97] and Transcendent [19]. While they are not
the only Android Malware datasets available, we picked them
according to their popularity and quality. Of the 527 papers we
reviewed in §IX, we found 2 top conference papers that use the
APIGraph and Transcendent datasets. We also noticed many
of the papers sampled their own dataset, suggesting there is a
lack of consistency in the datasets used in our community. To
enable us to compare datasets within the same time frame,
we picked APIGraph, a well established dataset that was
used in the state-of-the-art android malware classifier [25] and
overlaps with DT . Both these datasets help us highlight issues
with how datasets are being curated for Android Malware
detection.

App Markets dataset. In §VI we collected 15,000 goodware
and 15,000 malware samples for each GooglePlay and Third
party app markets through AndroZoo, resulting in a total of
60,000 samples. We then combined them to create 6 different
dataset configurations detailed in Table VIII.

HYPERCUBE. The HYPERCUBE dataset was sampled using
STAS, a statistically guided TESSERACT constrained sampling
strategy described in §VIII. We used STAS to determine the
amount of malware and goodware per month required for
a representative dataset. We chose a recent time frame of
2021–2023 as it was shown in prior work that labels tend
to stabilize after one year [75], [99]. The dataset follows
a VTT=2 (c.f. §VII), samples only from GooglePlay (c.f.
§VI) and uses GooglePlay upload dates for both sampling
and evaluation (c.f. §IV). In §VIII, we sampled using STAS
three times. HYPERCUBE refers to the first version, which we
release alongside the code for STAS.

Imitating APIGraph. In §IV and §VII, we attempt to imitate
the sampling in DA by sampling APKs from AndroZoo that
was collected from VirusShare, VirusTotal and AMD dataset.
We filtered out samples with a crawl date of 2020 (same
publication year as DA) as they would not have been in the
AndroZoo when DA was sampled. We kept the amount of
malware and goodware per month exactly the same, hence the
dataset size and class ratio would be exactly the same as the
original DA. We used dex dates for sampling since we were
unable to obtain VT first dates for all samples on AndroZoo.
We used VTT=15 (except in the §VII where we changed VTT
values to 2 and 4).

Imitating Transcendent. In §IV-B and §VII, we attempt to
imitate the sampling in DT by sampling APKs from Andro-
Zoo. After contacting the authors regarding the exact details
for sampling, we discovered the DT dataset was constructed in
two parts by sampling in mid 2017 for the period 2014–2016

https://serpapi.com
https://serpapi.com

Table VIII: Experimental configurations for the analysis of market sources. The configurations include sampling solely
from (GP), and Third Party Markets (3PM), sampled from both evenly, sampled from both but with more from GooglePlay,
goodware from GooglePlay and malware from 3PM, and vice versa.

Configuration Train set Test set
Goodware Malware Goodware Malware

GooglePlay 3PM GooglePlay 3PM GooglePlay 3PM GooglePlay 3PM

DGP 10,000 0 10,000 0 4,500 0 500 0
D3PM 0 10,000 0 10,000 0 4,500 0 500
DEV EN 5,000 5,000 5,000 5,000 2,250 2,250 250 250
DPROP 8,000 2,000 8,000 2,000 3,600 900 4,000 100
DGP3PM 10,000 0 0 10,000 4,500 0 0 500
D3PMGP 0 10,000 10,000 0 0 4,500 500 0

and early 2019 for period 2017–2018. We imitated this by
filtering out samples using crawl dates after mid 2017 for the
first part and early 2019 for the second part. We sampled from
all markets in AndroZoo for both malware and goodware, used
dex dates for sampling and used a VTT=4 (except in the §VII
where we changed VTT values to 2 and 15).

B. Classifier Details

In addition to releasing the code of our approach, we also
detail here which parameters we used in all the classifiers
mentioned in §III and the time required by each for training
and inference. All training and evaluations are performed on
an Intel(R) Core(TM) Ultra 9 185H CPU with 16 cores and
a GeForce RTX 4070 GPU, using DT 2014 for training and
DT 2015-2018 for inference. Notice that we performed feature
extraction for all three feature spaces before carrying out any
experiment and, therefore, the reported times do not include
it.

For DREBIN, we use a LinearSVM with the hyper-parameter
C = 1, which has been found to be representative for a variety
of scenarios [18], [19], [25], [28], [78]. A LinearSVM is a clas-
sical supervised ML algorithm that aims to find n hyperplane
that separates data points belonging to the different classes
(i.e., goodware and malware). Both training and inference are
relatively fast, with data preprocessing, feature reduction, and
model fitting took ≈122 seconds for one year of data, while
inference took ≈346 seconds.

DEEPDREBIN is implemented as a Multi Layer Percep-
tron (MLP) with two hidden and densely connected layers
composed of 200 neurons each and an output layer with two
neurons; hidden layers use the Rectified Linear Unit activation
function, whereas the output neurons employ the softmax func-
tion. Training (including data preprocessing, feature reduction,
and model fitting) took ≈267 seconds for 20 epochs, while
inference took ≈263 seconds.

MALSCAN [94] uses social-network-based centrality anal-
ysis to extract relevant features from function call graphs in
APKs. In this paper, we have used the configuration with
degree centrality and a Random Forest Classifier, with the
hyper-parameter nestimators = 100. Training took ≈232
seconds but required up to 70GB of memory, whilst inference
took ≈434 seconds.

RAMDA [60] employs a subset of the Drebin feature space
(which includes permissions, intent actions, and sensitive

API calls) to represent APKs and combines a variational
autoencoder (VAE) with an MLP; in particular, the compressed
representation learned by the VAE is fed into the MLP. A
sample is classified as malware if either the reconstruction
error of the VAE is over a certain threshold or the MLP
outputs the correspondent label. In this paper, we used the
same configuration as in the original work, setting λ1 = 10,
λ2 = 1 and λ3 = 10. Training took ≈1,034 seconds for 50
epochs of VAE training and 50 epochs of MLP training, while
inference took ≈404 seconds.

HCC [25] employs the Drebin feature space with a low-
variance (0.1%) feature reduction. It combines an encoder,
trained through contrastive hierarchical learning) and an MLP.
In this work, we train the model for up to 40 epochs as we
did not observe any performance benefits if it was increased.
Training (including data preprocessing, feature reduction, and
model fitting) took ≈1,459 seconds, while inference took
≈433.

C. Family Overlap Metric

Family Overlap Metric. In our analysis, we are interested
in describing the temporal distribution shift of the malware
population within one dataset without having to rely on any
classifier’s performance. Therefore, we introduce family over-
lap (Φ), a metric that models the shift in malware distribution
within a dataset. Shown previously in Figure 2, it allows
us to obtain more general insights into the dataset, without
relying on the representation or the classifier employed. From
this, we can observe how certain sampling parameters or
algorithms influence the resulting dataset composition. While
methods quantifying the difference of distributions exist (e.g.,
the Kullback-Leibler divergence), they typically require a rep-
resentation space to operate in. In contrast, we designed family
overlap to be representation-independent and interpretable, and
specifically designed based on domain knowledge from the
malware domain.

The family overlap (Φ) measures the the percentage of
samples in a dataset D belonging to a family that was already
known in different dataset Dref.

Φ(D,Dref) =
|{(x, y) ∈ D | ∃ (x′, y′) ∈ Dref s.t. y = y′}|

|D|
(5)

Here, (x, y) are tuples of APKs and their malware family label.
Unless specified otherwise, we use the training split of any
given dataset as the reference dataset Dref and some testing
split for which to calculate the family overlap as D.
Φ is helpful for measuring and visualizing malware trends
over time, as it describes the percentage of malware belonging
to families that already existed in the past. As it provides a
compact representation of the distribution shift, it is particu-
larly helpful for comparing the effects of different sampling
strategies and is therefore largely employed in the remainder
of this section.

D. Dynamic Time Warping
Dynamic Time Warping (DTW) is an algorithm that mea-

sures the similarity between two time series. DTW tries to
“warp” one time series to align it with the other; hence,
it assumes that two time sequences are similar but “out of
phase.” For this reason, we apply it in IV-B to compare the
time distributions of samples when using different timestamp
types, as these may just be misaligned; for example, the
VT first submission date time distribution may be in principle
identical in shape to that of GooglePlay upload dates, just
shifted forward.

More specifically, DTW is a dynamic programming tech-
nique that attempts to minimize the total accumulated distance
between points belonging to the two sequences. It achieves this
by re-aligning the two sequences. Once the optimal solution
is found, the total accumulated cost describes the dissimilarity
between the two sequences.

E. Temporal Luck

A-AUT for smaller evaluation windows. When nE < nT ,
the evaluation window is smaller than the training window. To
avoid gaps in temporal coverage, we advance by nE at each
step, resulting in contiguous evaluation sets while training sets
overlap:

T := {DinE :inE+nT−1}k−1
i=0 (6)

E := {DnT+inE :nT+(i+1)nE−1}k−1
i=0 (7)

k = ⌊(|D| − nT)/nE⌋ (8)

Temporal Luck Example. We here provide an example of a
dataset split according to Temporal Luck, as a useful overview
to the A-AUT introduced in §V.

A dataset D containing data from January 2014 to December
2019 would be divided into the following dataset splits when
using nT = nE = 12 (months):

T := {D2014, D2015, D2016, D2017, D2018}
E := {D2015, D2016, D2017, D2018, D2019}. (9)

When nT ̸= nE , for example nT = 12 and nE = 24
(months), D would be split into:

T := {D2014, D2015, D2016, D2017}
E := {D2015:2016, D2016:2017, D2017:2018, D2018:2019}. (10)

Additional Temporal Luck results. In §V we showed the
effect of having different training and testing slots. We provide
additional results for DREBIN, DEEPDREBIN, MALSCAN and
RAMDA in Figure 9.

F. VirusTotal Threshold

In §VII, we discussed hypothesized the impact VTT has on
classification performance. To show this, we sampled both DA

and DT for VTT 2, 4 and 15 and comapared it agains tthe
original. DA uses a VTT=15 and DT uses a VTT=4. §A con-
tains details regarding how we imitated the sampling for both
datasets by discarding samples that did not exist in AndroZoo
when the original dataset was sampled. Figure 10 shows the
performance across all 5 different classifiers.

G. Dataset Size

In §VIII, we discussed using different sampling strategies
for determining the minimum sample size. Figure 11 shows
the performance of each strategy for all 5 classifiers.

H. Prevalence Study

We begin our analysis by conducting a prevalence study
of benchmark datasets used for Android malware detection.
Given the vastness of the domain, with over 81,000 results re-
turned when searching “Android Malware” on Google Scholar,
we narrow our focus. We begin with two of the earliest
Android malware datasets, Malgenome [98] and Drebin [18].
Both these datasets has over 3,000 citations and was published
in a top security venue (IEEE S&P 2014, 2016 respectively).
In total, we collected 4,995 unique papers that cited either
Drebin and Malgenome.

To ensure we only survey relevant high quality papers,
we select works that was published in one of the top four
security venues: USENIX Security Symposium, ACM CCS,
IEEE S&P, and NDSS. This helps us filter out papers that
do not address security topics or apply machine learning to
security related research problems. After applying the top-4
venue filtering, we ended up with 133 papers.

However, not all notable works was published in the top
security venues. To include relevant works that may have been
missed from the above criteria, we include the top 100 results
of Google Scholars using the search query ”Android Malware
Detection” on July 10th 2025.

This forms an initial list of 233 papers which we review to
identify datasets that were used for experimental evaluation.
For each paper, we read through the relevant sections related
to dataset curation and evaluation. If a paper did not use a
publicly available dataset but collected its own samples, we
documented the method of collection. We excluded papers not
directly relevant to Android malware detection, including those
focused on Windows PE malware, PDF malware, Android
UI/UX elements, or privacy policies.

From this initial list, we found 35 Android malware datasets
used in prior works. To capture the prevalence of these
datasets, we performed forward citations (i.e. works that cited
the dataset) and applied the top four security venue filter to

1-
20

15

1-
20

16

1-
20

17

1-
20

18

12
-2

01
8

0.0

0.2

0.4

0.6

0.8

1.0
F

1-
S

co
re

DA [2014]

DA [2015]

DA [2016]

DA [2017]

1-
20

15

1-
20

16

1-
20

17

1-
20

18

12
-2

01
8

0.0

0.2

0.4

0.6

0.8

1.0

F
1-

S
co

re

DT [2014]

DT [2015]

DT [2016]

DT [2017]

(a) DREBIN

1-
20

15

1-
20

16

1-
20

17

1-
20

18

12
-2

01
8

0.0

0.2

0.4

0.6

0.8

1.0

F
1-

S
co

re

DA [2014]

DA [2015]

DA [2016]

DA [2017]

1-
20

15

1-
20

16

1-
20

17

1-
20

18

12
-2

01
8

0.0

0.2

0.4

0.6

0.8

1.0

F
1-

S
co

re

DT [2014]

DT [2015]

DT [2016]

DT [2017]

(b) DEEPDREBIN

1-
20

15

1-
20

16

1-
20

17

1-
20

18

12
-2

01
8

0.0

0.2

0.4

0.6

0.8

1.0

F
1-

S
co

re

DA [2014]

DA [2015]

DA [2016]

DA [2017]

1-
20

15

1-
20

16

1-
20

17

1-
20

18

12
-2

01
8

0.0

0.2

0.4

0.6

0.8

1.0

F
1-

S
co

re

DT [2014]

DT [2015]

DT [2016]

DT [2017]

(c) MALSCAN

1-
20

15

1-
20

16

1-
20

17

1-
20

18

12
-2

01
8

0.0

0.2

0.4

0.6

0.8

1.0

F
1-

S
co

re

DA [2014]

DA [2015]

DA [2016]

DA [2017]

1-
20

15

1-
20

16

1-
20

17

1-
20

18

12
-2

01
8

0.0

0.2

0.4

0.6

0.8

1.0

F
1-

S
co

re

DT [2014]

DT [2015]

DT [2016]

DT [2017]

(d) RAMDA

1-
20

15

1-
20

16

1-
20

17

1-
20

18

12
-2

01
8

0.0

0.2

0.4

0.6

0.8

1.0

F
1-

S
co

re

DA [2014]

DA [2015]

DA [2016]

DA [2017]

1-
20

15

1-
20

16

1-
20

17

1-
20

18

12
-2

01
8

0.0

0.2

0.4

0.6

0.8

1.0

F
1-

S
co

re

DT [2014]

DT [2015]

DT [2016]

DT [2017]

(e) HCC

Figure 9: Impact of Temporal Luck on performance. Each
plot refers to a specific model and dataset. Each line indicates
the F1-Score of a model trained on a different year (between
2014 and 2017). It can be seen that training on different
years within the same dataset can yield different performance
profiles. The issue is evident on DT , but also present in DA.

obtain a new list of papers. We review each paper in a similar
fashion as above, adding details about newly curated datasets

0 5 10 15 20 25 30 35 40 45
Test period (month)

0.0

0.2

0.4

0.6

0.8

1.0

1
Sc

or
e

VTT = 15
A
VTT = 2
A
VTT = 4
A

0 5 10 15 20 25 30 35 40 45
Test period (month)

0.0

0.2

0.4

0.6

0.8

1.0

1
Sc

or
e

VTT = 4
T
VTT = 2
T
VTT = 15
T

(a) DREBIN

0 5 10 15 20 25 30 35 40 45
Test period (month)

0.0

0.2

0.4

0.6

0.8

1.0

1
Sc

or
e

VTT = 15
A
VTT = 2
A
VTT = 4
A

0 5 10 15 20 25 30 35 40 45
Test period (month)

0.0

0.2

0.4

0.6

0.8

1.0

1
Sc

or
e

VTT = 4
T
VTT = 2
T
VTT = 15
T

(b) DEEPDREBIN

0 5 10 15 20 25 30 35 40 45
Test period (month)

0.0

0.2

0.4

0.6

0.8

1.0

1
Sc

or
e

VTT = 15
A
VTT = 2
A
VTT = 4
A

0 5 10 15 20 25 30 35 40 45
Test period (month)

0.0

0.2

0.4

0.6

0.8

1.0

1
Sc

or
e

VTT = 4
T
VTT = 2
T
VTT = 15
T

(c) MALSCAN

0 5 10 15 20 25 30 35 40 45
Test period (month)

0.0

0.2

0.4

0.6

0.8

1.0

1
Sc

or
e

VTT = 15
A
VTT = 2
A
VTT = 4
A

0 5 10 15 20 25 30 35 40 45
Test period (month)

0.0

0.2

0.4

0.6

0.8

1.0

1
Sc

or
e

VTT = 4
T
VTT = 2
T
VTT = 15
T

(d) RAMDA

0 5 10 15 20 25 30 35 40 45
Test period (month)

0.0

0.2

0.4

0.6

0.8

1.0

1
Sc

or
e

VTT = 15
A
VTT = 2
A
VTT = 4
A

0 5 10 15 20 25 30 35 40 45
Test period (month)

0.0

0.2

0.4

0.6

0.8

1.0

1
Sc

or
e

VTT = 4
T
VTT = 2
T
VTT = 15
T

(e) HCC

Figure 10: F1-Score of classifier for DT and DA sampled
with a VTT=2, VTT=4 and VTT=15

or incrementing prevalence count of existing ones. We repeat
this process until there are no new datasets added. To retrieve
forward citations, we used SerpApi [81], a Google Scholar
API, and verified the publication venues using DBLP [57], an
online bibliographic database for computer science research.
Overall, we found 42 unique Android malware datasets. An

0 5 10 15 20
Test period (month)

0.0

0.2

0.4

0.6

0.8

1.0
1

Sc
or

e
DADA
Stratified Sampling
STAS

(a) DREBIN [18]

0 5 10 15 20
Test period (month)

0.0

0.2

0.4

0.6

0.8

1.0

1
Sc

or
e

DADA
Stratified Sampling
STAS

(b) DEEPDREBIN [43]

0 5 10 15 20
Test period (month)

0.0

0.2

0.4

0.6

0.8

1.0

1
Sc

or
e

DADA
Stratified Sampling
STAS

(c) MALSCAN [94]

0 5 10 15 20
Test period (month)

0.0

0.2

0.4

0.6

0.8

1.0

1
Sc

or
e

DADA
Stratified Sampling
STAS

(d) RAMDA [60]

0 5 10 15 20

Test period (month)

0.0

0.2

0.4

0.6

0.8

1.0

F 1
−
S
co
re

DADA

Stratified Sampling

STAS

(e) HCC [25]

Figure 11: Comparison of F1-Score between datasets sam-
pled using DADA versus STAS sampling. The F1-Score
of DADA is very poor and highly inconsistent, therefore not
appropriate for temporal evaluations.

overview of the survey methodology is presented in Figure 12.
For all 42 datasets, we assessed them based on how well

they considered each of our factors even if they do not fully
satisfy our recommendations. We provide details regarding
each factor criteria below.

Timestamp Type. In §IV we show the importance of times-
tamps when curating a dataset. Therefore, if a dataset explicitly
mentions the timestamp used for sampling and evaluation, we
consider that they recognized timestamps when sampling . If it
only mentioned timestamp for temporal order, we consider it
partly satisfied. We noticed some datasets use a combination of
other datasets that contains this information, hence mark them
as orange. Finally, if a dataset never mentions timestamps and
can not be easily inferred by the dataset they chose, then it is
marked as red.

App Markets. Ideally datasets should sample from a single
market/source §VI. Given that AndroZoo crawls from multiple
markets, we make the distinction that if datasets was explicitly
crawled from a single source or single market from AndroZoo,
it satisfies our market recommendation and is marked green.
If a dataset only samples from AndroZoo but does not filter

3,133
Drebin Forward

Citations
Malgenome

Forward Citations

133

Top-4 Security
Venue Filter

100
Top-100 Google

Scholar results for
"Android Malware

Detection"
233

Initial List
(233)

DatasetReview
(527)

Forward
Citation of
Dataset

Android Malware
Datasets

(42)

3,132

294

Top-4 Security
Venue Filter

New Dataset

Figure 12: Survey pipeline with queries performed in July
2025. Starting from Drebin and Malgenome, we reviewed
papers that are published from one of the top-4 security
venues. We also reviewed top-100 Google Scholar results for
”Android malware detection”. We performed forward citation
of each new dataset to ensure we did not ‘miss’ any datasets.
After reviewing 527 papers, we found 42 Android malware
datasets.

out specific markets, we mark it as blue. For all other datasets
that sample from multiple sources (including combination of
datasets), we mark it as red. Finally, gray indicates market/-
source information was not provided in the paper.

Temporal Luck. We check if the paper that each dataset was
proposed considers temporal splits during evaluation. If they
do, we mark the dataset as green, otherwise it is red. Note we
do not consider temporal evaluation or K-fold Cross-validation
alone as sufficient.

Dataset Size. For each dataset, we compute the statistical
significant dataset size for each time frame and VTT chosen.
Here, we only check for statistical significance and do not
consider class ratio where goodware should be nine times
malware amount. If both classess are statistically significant,
we mark the dataset as green. If only one class is, we mark it as
blue. If neither satisfies the minimum statistical significance,
we mark it as red. If a dataset does not mention the dataset
size or the minimum is undeterminable, we mark it as gray.

VirusTotal Threshold. In §VII, we recommend for a VTT=2.
If a dataset uses VTT=2, we mark this as green. If a dataset
does not use VirusTotal Threshold and instead opts for pseudo-
labels or manual labeling, we mark it as blue as it does not
satisfy nor violate our recommendation. If a dataset uses a
VTT above 2 or mixes multiple different labeling methods
(by combining different datasets), we mark this as red. Lastly,
if labeling method was not mentioned, we mark it as gray.

D
at

as
et

#
M

al
w

ar
e

#
G

oo
dw

ar
e

Ti
m

e
Fr

am
e

H
as

he
s

C
3

[7
8]

So
ur

ce
To

p-
4

Pr
ev

al
en

ce
Pr

ev
al

en
ce

Ve
nu

e
M

al
ge

no
m

e
[9

8]
1,

26
0

0
20

10
-2

01
1

3
20

S&
P

20
12

L
iu

et
al

.[
68

]
1,

53
6

28
,5

48
20

12
✚

,[
98

]
0

1
M

ob
ile

C
lo

ud
20

14
A

nd
ru

bi
s

[6
6]

41
.1

4%
27

.9
0%

20
10

-2
01

4
G
P

,✚
,[

18
],

[9
8]

0
3

E
SO

R
IC

S
20

14
D

ro
id

D
ol

ph
in

[9
3]

32
,0

00
32

,0
00

-
G
P

0
1

R
A

C
S

20
14

D
re

bi
n

[1
8]

5,
56

0
12

3,
45

3
20

10
-2

01
2

[9
8]

,A
Z

,G
P

9
46

N
D

SS
20

14
Tr

ig
ge

rs
co

pe
[3

7]
-

9,
58

2
-

G
P

1
1

S&
P

20
16

IC
C

D
et

ec
to

r
[9

5]
5,

26
4

12
,0

26
20

12
G
P

,[
18

]
0

1
T

IF
S

20
16

A
na

st
as

ia
[3

5]
18

,6
77

11
,1

87
20

09
-2

01
5

[1
8]

,[
98

],
V
T

0
1

N
T

M
S

20
16

D
ro

id
na

tiv
e

[1
0]

5,
49

0
3,

73
2

-
[1

8]
,[

98
]

0
1

C
om

pu
te

rs
&

Se
cu

ri
ty

20
17

Pi
gg

yb
ac

ki
ng

[6
3]

1,
49

7
0

20
09

-2
01

4
G
P

,✚
,[

98
]

0
1

T
IF

S
20

17
Sh

en
et

al
.[

82
]

4,
69

9
3,

89
9

20
14

-2
01

6
G
P

,[
98

]
0

1
IC

D
C

S
20

17
A

M
D

[9
2]

24
,5

53
0

20
10

-2
01

6
G
P

,V
S

,✚
7

29
D

IM
VA

20
17

M
am

aD
ro

id
[7

2]
35

,5
00

8,
50

0
20

10
-2

01
6

[1
8]

,V
S

,G
P

0
2

N
D

SS
20

17
Fa

ld
ro

id
[3

3]
8,

40
7

6,
59

3
-

V
S

1
1

T
IF

S
20

18
E

nD
ro

id
[3

4]
55

,2
13

58
,8

06
20

15
-2

01
8

G
P

,A
Z

,[
18

]
0

1
IE

E
E

A
cc

es
s

20
18

Fl
ow

co
g

[7
7]

1,
50

0
4,

50
0

-
G
P

,[
18

]
1

1
U

SE
N

IX
20

18
M

al
do

ze
r

[5
2]

20
,0

89
37

,6
27

-
V
S

,[
2]

,[
18

],
[9

8]
0

1
D

ig
ita

l
In

ve
st

ig
at

io
n

20
18

C
IC

A
nd

M
al

20
17

[5
6]

42
9

5,
06

5
20

15
-2

01
7

V
T

,[
2]

,[
9]

,[
42

],
[5

5]
0

4
IC

C
ST

20
18

H
as

eg
aw

a
et

al
.[

46
]

5,
00

0
2,

00
0

-
✚

,[
18

],
[9

8]
0

1
C

SP
A

20
18

L
i

et
al

.[
61

]
54

,6
94

31
0,

92
6

20
12

-2
01

4
G
P

,✚
0

1
IE

E
E

In
du

st
ri

al
In

f.
20

18
M

ar
vi

n
[6

5]
≈

15
,0

00
≈

12
0,

00
0

20
12

-2
01

4
G
P

,✚
1

2
A

SE
20

19
M

al
sc

an
[9

4]
15

,4
30

15
,2

85
20

11
-2

01
8

A
Z

1
1

A
SE

20
19

Te
ss

er
ac

t
[7

8]
12

,7
53

11
6,

99
3

20
14

-2
01

6
A
Z

3
3

U
SE

N
IX

20
19

D
ro

id
C

at
[2

1]
13

5
13

6
20

15
G
P

,[
98

]
0

1
T

IF
S

20
19

O
m

ni
dr

oi
d

[7
3]

11
,0

00
11

,0
00

-
A
Z

0
1

In
fo

rm
at

io
n

Fu
si

on
20

19
Pi

er
az

zi
et

al
.[

79
]

17
,6

35
15

2,
63

2
20

17
-2

01
8

A
Z

2
2

S&
P

20
20

C
IC

M
al

D
ro

id
20

20
[7

0]
17

,3
41

0
20

18
V
T

,[
2]

,[
9]

,[
52

],
[8

4]
,[

92
]

0
3

D
A

SC
20

20
A

PI
G

ra
ph

[9
7]

32
,0

89
29

0,
50

5
20

12
-2

01
8

V
S

,V
T

,[
92

],
A
Z

2
2

C
C

S
20

20
D

ha
la

ri
a

et
al

.[
30

]
1,

74
7

1,
80

0
-

V
T

,✚
0

1
IM

A
I

20
20

K
ro

no
dr

oi
d

[4
4]

28
,7

45
35

,2
56

20
08

-2
02

0
[4

3]
,[

92
]
V
T

,V
S

0
2

E
ls

ev
ie

r
C

oS
e

20
21

A
nd

ro
C

T
[6

4]
17

,6
79

18
,2

77
20

19
-2

01
9

A
Z

,V
S

,G
P

0
1

M
SR

20
21

V
TA

z
[3

9]
5,

01
6

4,
98

7
20

17
-2

02
0

V
T

,A
Z

0
1

C
om

pu
te

r
Se

cu
ri

ty
20

21
Su

n
et

al
.[

85
]

12
,6

85
49

,0
45

20
14

G
P

,[
92

]
0

1
T

M
IS

20
22

D
ro

id
M

al
w

ar
e

D
et

ec
to

r
[5

1]
7,

75
2

6,
63

4
-

A
Z

,V
S

,[
18

],
[2

4]
0

1
E

xp
er

t
Sy

st
em

s
w

ith
A

pp
lic

at
io

ns
20

22

M
al

ra
da

r
[8

9]
4,

53
4

0
20

14
-2

02
1

0
1

A
C

M
M

A
C

S
20

22
M

ad
ro

id
[9

0]
35

,1
21

39
,5

71
20

10
-2

02
3

A
Z

,[
12

],
[9

4]
,[

98
]

0
2

A
SE

20
22

A
nd

ro
O

B
FS

[5
4]

16
,2

79
0

20
18

-2
02

0
A
Z

,V
S

0
1

M
SR

20
22

Tr
an

sc
en

de
nt

[1
9]

26
,3

87
23

2,
84

3
20

14
-2

01
8

A
Z

2
2

S&
P

20
22

Fi
ne

r
[4

7]
4,

74
2

12
,8

07
20

17
-2

01
9

-
1

1
C

C
S

20
23

A
nd

ro
zo

o
[2

5]
10

,2
00

89
,8

53
20

19
-2

02
1

A
Z

1
1

U
SE

N
IX

20
23

H
en

g
et

al
.[

58
]

22
,9

75
21

,3
99

-
A
Z

,[
18

],
[3

3]
1

1
U

SE
N

IX
20

23
Ji

gs
aw

[9
6]

14
,7

75
13

4,
75

9
20

15
-2

01
6

A
Z

0
1

S&
P

20
23

M
al

dr
oi

d-
D

S
[1

5]
47

,9
71

0
20

10
-2

02
4

[1
8]

,[
53

],
[5

6]
,[

92
],
V
S

0
1

IE
E

E
A

cc
es

s
20

24

Table IX: Breakdown of existing Android malware datasets discovered in our survey arranged by publication date. AZ samples
crawled from Androzoo repository [14], GP samples crawled directly from Google Play, V S samples from VirusShare,
✚ samples crawled from other sources.

	Introduction
	Preliminary Observations
	Experimental Settings
	Factor 1: Timestamp Types
	Hypothesis
	Impact
	Recommendations

	Factor 2: Temporal Luck
	Hypothesis
	Impact
	Recommendation

	Factor 3: App Markets
	Hypothesis
	Impact
	Recommendations

	Factor 4: VirusTotal Threshold
	Hypothesis
	Impact
	Recommendations

	Factor 5: Dataset Size
	Hypothesis
	Impact
	Recommendations

	Factor Prevalence Analysis
	Discussion
	Related Work
	Conclusion
	References
	Appendix
	Datasets used in Evaluations
	Classifier Details
	Family Overlap Metric
	Dynamic Time Warping
	Temporal Luck
	VirusTotal Threshold
	Dataset Size
	Prevalence Study

