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Electroencephalography (EEG) is the gold standard investigation for epilepsy management. However,
the ability of scalp EEG to detect and accurately source localise mesial temporal epileptiform activity
remains controversial (Meckes-Ferber et al., 2004). Magnetoencephalography (MEG) is a non-
invasive functional imaging modality similar to EEG. The localisation of MEG signals is less dependent
on the anatomical model than EEG, and so can potentially be more accurate. Resecting the
epileptogenic focus identified with MEG is a strong predictor of long-term seizure freedom post-
surgery (Rampp et al., 2019). However, MEG has traditionally been limited by the cryogen required
for the sensors, resulting in a large fixed system, meaning that patient movement is highly restricted
and limiting compliance. Alternative sensors called optically pumped magnetometers (OPMs) can
overcome some limitations of traditional MEG, allowing a system with movement tolerance more
comparable to scalp EEG. OPM based MEG (OP-MEG) has been shown to increase the observed SNR
of interictal epileptiform discharges (IEDs) in school-aged children by comparison with traditional
MEG (Feys et al., 2022), and to successfully record interictal epileptiform activity from the mesial
temporal lobe (Feys et al., 2025). While movement leads to interference in OP-MEG, the technique is
considerably more motion tolerant than cryogenic MEG (Boto et al., 2018) and so may be more
appropriate for such ictal recordings. Here we add to existing literature on ictal recordings in OP-
MEG (Feys et al., 2023; Hillebrand et al., 2023) by demonstrating the ability to record seizures with
varying degrees of movement from two epilepsy patients.

Ictal events were observed from two male patients. Ethical approval was given by the Essex
Research Ethics Committee in the UK (REC Reference 18/EE/0220) and informed consent obtained.
Demographics and clinical information can be found in Supplemental Table 1. Both patients had
routine EEGs within normal limits, therefore necessitating prolonged recording. OPM data collection
was performed within a Magnetically Shielded Room at UCL (Magnetic Shields Limited). 42 and 38
(for patients 1 and 2 respectively) zero-field OPMs (Gen-2.0 QZFM, QuSpin Inc.) were placed on the
scalp in a bespoke 3D-printed scanner-cast, designed from the patient’s MRI. Head position and
rotation were recorded with 6 OptiTrack Flex 13 cameras (Natural Point Inc.). Each patient sat on a
beanbag in the centre of the room with their head unconstrained for approximately 1 hour,
monitored by a clinician seated in the room. During the ictal recordings, patient 1 was performing a
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verb generation task, while patient 2 (who has musicogenic epilepsy) was listening to music known
to activate seizures.

Analysis was performed in SPM (https://github.com/spm/spm). Six 5t" order Butterworth filters were
applied bidirectionally to the OPM data: band-stop filters at 50 Hz, 100 Hz, 150 Hz and 120 Hz to
remove line noise and interference from the OptiTrack cameras, a low-pass filter at 130 Hz and high-
pass at 3 Hz. Homogeneous Field Correction (Tierney et al., 2021) was applied to minimise
environmental interference. The ictal activity was localised using an LCMV Beamformer with the
Nolte single shell forward model with the inner skull surface, segmented from the participant’s MRI,
and a 5 mm grid source space. For patient 2, this grid was extended to 5 cm outside of the scalp

surface to include facial muscle locations as possible sources of the observed data, as the seizure
involved facial automatism. For patient 1, the data covariance was estimated from a 10-minute
resting state recording to avoid biasing the sources to language areas, while the entire dataset
recorded while the participant listened to music (10 min 36 s) was used for patient 2.

Patient 1 experienced a focal impaired awareness seizure (Figure 1A,B and Supplemental Figure 1).
During the seizure, there is an observed increase in oscillatory activity within the 13 Hz — 30 Hz
range, which localised to the left temporal lobe, consistent with the previous clinical assessment and
MRI findings. Patient 2 indicated the beginning of the clinical seizure when experiencing an aura
(time = 0 s in Figure 1C). During the seizure, the patient exhibited lip smacking and the urge to turn
their head to the left, suggesting a right anterior quadrant seizure onset. Due to this head
movement, large, low frequency signals are observed in the OPM data. Therefore, we have focussed
on observed increased high frequency (60 Hz — 130 Hz) power, which is less likely to be induced by
movement. This localised bilaterally (right > left). The peak increase in power in the right hemisphere
is adjacent to the inferior frontal gyrus (pars opercularis) (MNI coordinates: (55.5, 20.1, 0.2)). The
maximum in the left hemisphere within the inner skull surface was found adjacent to the inferior
frontal gyrus (pars triangularis) (MNI coordinates (-55.3, 19.9, -5.5)). The peaks in both hemispheres
are adjacent to the respective superior temporal pole and gyrus.

Ictal OP-MEG from patient 1 shows clear activation localising to the expected region. With patient 2,
we have examined observed increases in high frequency activity during this seizure. These localised
close to the superior temporal gyri, often associated with musicogenic seizures (Stern, 2015), and
the inferior frontal gyri, areas which have been associated with perceiving and enjoying music
(zatorre and Salimpoor, 2013). We cannot absolutely rule out that facial muscle artefacts or eye
movements, could be the cause of these high frequency signals. However, despite including facial
muscles as possible sources of activity, the peak of the activity was still observed within the brain. In
future, this is likely to be less of a concern as there have recently been a number of developments in
post-hoc software based interference correction for OP-MEG.
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Figure 1. A) Ictal activity observed from patient 1 at the sensor-level. The seizure onset was at 0 s. The time-frequency
spectrum is shown averaged over all channels, baseline corrected by the average power in a rest recording, alongside the
topography of the average change in power within the window of interest (0—4 s, 13 — 30 Hz) (showing only the OPM
channels radial to the head) and the recorded magnetic field over time for 3 radial channels: the two with the highest and
the one with the median average power change within that window. There is a visible increase in oscillatory activity
between 0 —4 s. There may also be an IED, as is often observed at the end of a seizure, at 8 s. B) LCMV beamformer
localisation of this 13 — 30 Hz power increase, contrasting the 0 — 3 s window with the 4 — 7 s window. Thresholded at 80%
of the maximum power change. The maximum power increase lies in the left temporal lobe and is marked by a black cross.
The MRI abnormality is marked in green. C) Ictal activity observed with patient 2, shown at the sensor-level. Patient
reported commencement of aura at 0 s. Equivalent of (A) but with the addition of participant head position and rotation.
4 —6s; 60— 130 Hz was chosen as the window of interest based on the time-frequency spectrum. D) LCMV beamformer
localisation of the increase in power in 60 Hz to 130 Hz frequency range between 4 — 6 s by comparison with -7 —-5's,
thresholded at 80% of the maximum power increase. The black cross shows the peak power location.
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Supplemental Figure 1. LCMV beamformer for different time windows during the event. As in Figure 1B, the MRI
abnormality is shown in green.
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Supplemental Table 1. Patient demographics and clinical characteristics.
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