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Abstract

Complex biological systems undergo sudden transitions in their state, which are often pre-

ceded by a critical slowing down of dynamics. This results in longer recovery times as sys-

tems approach transitions, quantified as an increase in measures such as the

autocorrelation and variance. In this study, we analysed paediatric patients in intensive care

for whom mechanical ventilation was discontinued through removal of the endotracheal

tube (extubation). Some patients failed extubation, and required a re-intubation within 48

hours. We investigated whether critical slowing down could be observed post failed extuba-

tions, prior to re-intubation. We tested for significant increases (p <.05) between extubation

and re-intubation, in the variance and autocorrelation, over the time series data of heart

rate, respiratory rate and mean blood pressure. The autocorrelation of the heart rate showed

a significantly higher proportion of increases in the group that failed extubation, compared

who those who did not. It also showed a significantly higher magnitude of increase for the

failed extubation group in a t-test. Moreover, incorporating these magnitudes significantly

improved the fit of a logistic regression model when compared to a model that solely used

the mean and standard deviation of the vital signs. While immediate clinical utility is limited,

the work marks an important first step towards using dynamical systems theory to under-

stand the dynamics of signals measured at the bedside during intensive care.

1 Introduction

Dynamical systems undergo a variety of state changes due to external perturbations or internal

changes. Many of these are difficult to predict from the mean response of the system. Prior to

certain types of state changes in closed continuous systems, called critical transitions, a phe-

nomenon called critical slowing down (CSD) is observed [1, 2]. CSD is characterised by an

increased relaxation time in the dynamics of the system, and can be measured as increases in

quantifiers such as the variance and autocorrelation over time [3, 4]. These metrics which

characterize this increased relaxation time due to CSD are called early warning signals (EWS).
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CSD has been retrospectively observed prior to transitions in ecology [5–7], astronomy [8],

finance [9], neuroscience [10] and medicine [11, 12], amongst others. In the context of medi-

cine, slowing down of recovery has been suggested as a sign of proximity to a tipping point

[13]. This has been observed in contexts such as blood pressure regulation, where slow recov-

ery from changes in blood pressure has been linked to increased risk of mortality or of ische-

mic stroke [13–16] and in seizure prediction, where CSD has been reported in computational,

in-vitro [17, 18], as well as in real data [19]. Critical slowing down is also thought to precede

transitions in psychiatric disorders, including bipolar disorder and depression [20–22].

An area where predicting transitions is of paramount importance is in healthcare, where

decisions based on these predictions can have consequences on patient well-being. This is

most evident in the data rich environment of critical care, where patients are monitored using

multiple-modalities continuously, and where significant deterioration events are more fre-

quent. The response of the cardio-pulmonary system and the effects of ventilatory support are

often studied using the framework of nonlinear dynamical systems [23, 24], and hence events

such as sudden deterioration in health or onsets of arrythmia can be studied as tipping points

[12, 25]. These could possibly be anticipated due to CSD, using EWS such as increases in auto-

correlation or variance [1].

About 40% of patients in the Intensive Care Unit (ICU) require mechanical ventilation at

any point in time [26], with a slightly higher number reported (50%) in the UK (https://www.

picanet.org.uk/annual-reporting-and-publications/annual-report-archive/). Determining the

ideal point to discontinue mechanical ventilation is an important question, since both extend-

ing and prematurely withdrawing ventilatory support can lead to adverse outcomes [27]. Pro-

longed mechanical ventilation is associated with a large number of complications, including

risk of ventilator-associated pneumonia, muscle atrophy, as well as other physiological and

psychological complications [28], while premature extubation is associated with failure as

described below [29].

Patient readiness for extubation is often tested at the bedside using spontaneous breathing

trials, during which ventilator support is reduced or removed for a short space of time, and

patient breathing effort is observed without removal of the breathing tube. However, these tri-

als are not fail-safe, and there is a risk that the breathing tube may need to be reintroduced (re-

intubation) following extubation. Reducing the need for an emergency re-intubation is impor-

tant, since the procedure carries risk of adverse events, even in a critical care environment.

When there is uncertainty around the success of extubation in adults, a tracheostomy is com-

monly performed, whereby the breathing tube is placed through the front of the neck, and the

patient is given longer (periods of days to weeks) before this is reversed following rehabilita-

tion. In paediatric populations such as those considered in this study, tracheostomies are per-

formed infrequently because of anatomical constraints and higher risk of complications. As a

result, extubation may be undertaken even in the face of clinical uncertainty. In 5–15% of

cases, extubation can be unsuccessful and the breathing tube may need to be reintroduced,

resulting in what is called an ‘extubation failure’ [30, 31]. This can be relatively immediate, or

may become apparent over a period of hours. Extubation failure is associated with generally

poorer outcomes including higher mortality and increased disease severity [32]. Detection of

this ‘extubation failure’ may be useful to prepare for re-intubation, reducing the risk from an

emergency procedure. Even post extubation, it is important to predict failure quickly, since a

longer time to reintubation is associated with higher mortality [33].

A number of attempts have been made to predict extubation failure and re-intubation

using statistical and machine learning methods. These include logistic regression, support

vector machine, random forest, gradient boosting methods and neural networks. These

methods showed varying degrees of success (AUC between 0.7 and 0.85) depending on the
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specifics of the algorithm and the dataset that was used for prediction [34–38]. Most of

these methods used a feature set consisting of measurements such as the length of ICU stay,

pre-existing comorbidities, Glasgow Coma Scale score and averages of different vital signs

[39].

A smaller number of studies have investigated extubation failure by studying the dynam-

ics of vital signs time series. White et. al. demonstrated the association between lower inter-

breath interval complexity and extubation failure [40]. Seely et. al. showed that the heart and

respiratory rate variability recorded prior to extubation was significantly associated with

extubation outcome [41]. Keim-Malpass et. al. investigated how adding variables based on

the dynamics of vital signs resulted in a significant increase in the predictive capacity of a

standard model based solely on static measures [42]. A number of recent studies have also

attempted to predict extubation outcome using various recurrent neural networks architec-

tures, with varying degrees of success [43–45]. It has also been shown previously that slow

recovery to baseline levels of minute ventilation following successful spontaneous breathing

trials is a risk factor for failure of extubation [46, 47]. Such slow recovery to baseline levels

aligns with what would be observed as a result of CSD prior to critical transitions in nonlin-

ear dynamical systems [13].

In this study, which was conducted on a sample of paediatric patients, we hypothesized that

patients who failed extubations were approaching a tipping point which was preceded by CSD,

which can be measured by increased autocorrelation and variance. This implies that prior to

reintubation, an increased similarity between consecutive measurements and greater variabil-

ity can be observed in the time series of physiological variables. Hence as patients approached

re-intubation, the presence of CSD would result in their vital signs becoming more correlated

and fluctuating more over time. We explored whether the presence of CSD could be estab-

lished using EWS which are observed in patients in intensive care units (ICUs) post extubation

and prior to re-intubation, where the measured patient responses were not masked by ventila-

tor dynamics. Patients who did not undergo an extubation failure were also analysed for com-

parison, since no CSD was expected in these cases.

Prior to the study, the analysis plan was pre-registered based on analysis conducted on a

single patient (ID PC0192.1). This patient failed the extubation and required re-intubation

around 20 hours later. The variance and autocorrelation were calculated for three physiological

variables (heart rate, respiration rate and mean blood pressure). In this case, 5 out of the 6 tests

conducted produced significant results and provided evidence against the null hypothesis that

CSD is not an early warning sign of critical transitions. Complete details of this investigation

can be found in the pre-registration document [48]. All three variables used in the analysis

have been linked to extubation outcome in the past [49–52].

2 Methods

2.1 Ethics statement

All data used were previously collected during the period from 01/01/2016 to 31/12/2018 as

part of standard clinical care, in the Great Ormond Street Hospital, London. No additional

data were collected for the purposes of this work, or any wider research work. All data were

fully de-identified. Therefore, the need for individual patient consent was waived under

GAfREC 2018 and as a result is exempt from NHS REC approval. This was approved by the

institutional joint research office (Great Ormond Street Hospital ref 19HL03) and the NHS

Health Research Authority (IRAS 259636 received on 24/01/2019). The dataset was accessed

for the present study between 16/08/2022 and 27/02/2023.
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2.2 Background

CSD is a phenomenon which occurs in any closed continuous model which is approaching

certain types of bifurcations, such as fold bifurcations [1]. We show this in an arbitrary dynam-

ical system approaching a fold bifurcation. Its linearized dynamics is given by

dx
dt
¼ lxþ s� ; ð1Þ

where x is the perturbation from equilibrium, λ is the eigenvalue, σ is the noise amplitude and

� is a white noise process. This represents an Ornstein-Uhlenbeck process, the variance and

autocorrelation of which are defined as

VarðxÞ ¼
s2

2l
;ACFðtÞ ¼ e� lt : ð2Þ

For a fold bifurcation, λ! 0, which implies that the variance approaches1 and ACF

approaches 1 [4, 53].

2.3 Data

The dataset consisted of ICU visits of all children admitted to the Great Ormond Street Hospi-

tal (GOSH) between 2016 and 2018. In the current work, time series of the heart rate, respira-

tory rate and mean blood pressure sampled every 5 seconds were used for analysis. The data

for each patient also consisted of the sex, age, timestamp of extubation attempts, a timestamp

for time of re-intubation, a timestamp for time of death, flags for failed extubation and death,

and the ward they were admitted to [54]. The times of extubation and re-intubation were gen-

erally determined from gaps in the end tidal CO2 measurements. Missing data in the end tidal

CO2, closest to the recorded times of extubation and re-intubation were chosen as the actual

times of extubation/re-intubation. When large discrepancies were observed between the two, a

clinician examined the patient records for determining a likely time of extubation, failing

which the data was discarded.

The intensive care units at Great Ormond Street Hospital are divided into three distinct

areas: the neonatal ICU (NICU), where premature children and those with congenital condi-

tions are admitted; the cardiac ICU (CICU) where children with heart disease, primarily post-

cardiac surgery are admitted, and the general ICU (PICU), where all other children from ages

0–18 are admitted. A flow chart describing the separation of data from the ICU into cohorts,

prior to the stratification and cleaning described in the following sections, is shown in Fig 1.

The characteristics of this dataset are listed in Table 1. The dataset was prepared and used for a

prior data study group with the Alan Turing Institute, UK conducted in 2021. During the data

study group attempts were made at predicting extubation failure using three machine learning

methods, namely time series forest, random interval spectral ensemble and random forest.

None of the methods used performed better than a naive baseline classifier [54]. All data were

fully de-identified.

2.4 Pre-processing of the data

The given data set was first split into four different cohorts depending on whether the patient

underwent re-intubation and/or died during a particular visit. The criteria for each cohort is

as follows:

Cohort 1: Failed extubation and were re-intubated and did not die

Cohort 2: Successful extubation and were not re-intubated and did not die
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Fig 1. Flowchart depicting the steps involved in the partitioning of patient records into cohorts. High frequency

monitor data is extracted between extubation and re-intubation times for cohorts 1 and 3 and between extubation and

pseudo-reintubation times for cohorts 2 and 4. The numbers mentioned for each of the cohorts is before age based

stratification and before accounting for data losses described in S1 File. SpO2: Oxygen saturation; Et CO2: End-tidal

CO2; CVP: Central Venous Pressure; Temp: Temperature.

https://doi.org/10.1371/journal.pone.0317211.g001

Table 1. The characteristics of the dataset prior to pre-processing.

PICU/NICU CICU

n 3079 2447

Male 1757 1296

Unplanned admission 1783 558

PIM%, median (IQR) 1.52 (0.61–4.50) 1.09 (0.78–2.39)

Survival 2905 2379

Diagnostic category n(%)

Cardiovascular 128(4.16%) 1825(74.58%)

Respiratory 934(30.33%) 277(9.28%)

Neurological 552(17.9%) 10(0.41%)

Gastrointestinal 424(13.77%) 41(1.67%)

Musculoskeletal 187(6.07%) 10(0.41%)

Oncology 123(3.99%) 18(0.74%)

Body wall and cavities 125(4.06%) 15(0.61%)

Other/Unknown 606(19.68%) 251(10.26%)

PIM: Paediatric Index of Mortality; IQR: Interquartile range

https://doi.org/10.1371/journal.pone.0317211.t001
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Cohort 3: Extubated and were not re-intubated and died

Cohort 4: Extubated and were re-intubated and died after re-intubation (This group repre-

sented those in whom intensive care support was being withdrawn)

The main analysis was carried out between cohort 1 who were hypothesised to show signs

of CSD and cohort 2 who were acting as a control group since it is assumed they do not reach

a critical tipping point post-extubation. The same process was carried out on cohort 3 and 4

however in these cases the results are considered separately since there may be other signifi-

cant biological factors affecting the dynamics of these patients. As seen in Fig 1, cohorts 1, 2, 3

and 4 have sizes of 184, 2479, 333 and 38 respectively, prior to pre-processing. For patients

who did not die in care, this corresponds to a failure rate of about 6.9%.

In order to be able to make an unbiased comparison between cohort 2, the covariates of

age, sex (M/F/Unknown) and ICU ward type (paediatric-PICU/neonatal-NICU/cardiac-

CICU) were studied first. Fig 2 shows the distribution of both cohorts across these covari-

ates. It is clear that the proportion of male and female instances are almost identical so this

did not require stratification. Age shows more variation and since it is a key factor in deter-

mining the dynamics of the physiological data, it was stratified over. ICU ward type also

shows a significant amount of variation, and therefore the testing was conducted on the

entire cohorts as well the cohorts split by ICU ward type and the differences are discussed

in the results section. Stratification was not carried out for cohort 3 or 4, since these

cohorts were much smaller, and any stratification would have resulted in significant loss of

data.

Moreover, since the calculation of the quantifiers use windows of 60 minutes of data (see

section 2.5), any ICU visit where the duration between the failed extubation and critical point

(either re-intubation or death) is less than 120 minutes was removed. This is so that the win-

dow size is not greater than half of the length of the time series, which would fail to pick up

nuances in the data and provide inaccurate estimations [55].

In order to test the hypothesis, each instance of the control group (cohort 2) was randomly

assigned a pseudo re-intubation time which was decided such that the distributions of the

duration of extubated intervals are the same over cohort 1 and cohort 2. The mean and stan-

dard deviations of the measures used for analysis after pre-processing are presented in S1 File.

Significant differences are seen between Cohorts 1 and 2 for all three measures, in line with

previous literature [49–52].

Missing data was handled through a two step process. When the gap in observations were

longer than 10 time steps, the time series was concatenated. For gaps smaller than this, the

missing part was replaced with the mean of the end points of the gap. Subsequently the long

term trend was identified using a Gaussian filter and subtracted from the original time series

to generate the residual time series.

The number of records available for analysis was reduced significantly, since for many rec-

ords the time difference between extubation and re-intubation was less than 120 minutes.

More records were lost after preprocessing and during the data analysis. Different numbers of

patient records were available for the different physiological variables considered. The number

of records lost and the causes for the same are detailed in S1 File.

Subsequently, the time series were detrended by applying Gaussian smoothing and remov-

ing the smoothed data from the original data. Such detrending is shown to reduce false posi-

tives in detecting early warning signals from data [56]. Outliers outside μ ± 3σ were discarded

and replaced with μ, where μ is the mean and σ is the standard deviation.
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Fig 2. Comparison of age, sex and ICU ward type of cohort 1 and cohort 2.

https://doi.org/10.1371/journal.pone.0317211.g002
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2.5 Hypotheses

This analysis aims to investigate whether CSD can be observed post-extubation and prior to a

patient being re-intubated. For the reasons discussed in Section 2.1, the following quantifiers

will be studied:

1. Variance, σ2—The presence of a period of CSD would cause an increase in variance as time

approached the critical transition point. This would be due to a reduced resilience to exter-

nal perturbations [57]. For a patient who did not require re-intubation, a significant

increase in the variance is not expected (Note that there are instances of patients who expe-

rience a critical transition in their health but in the end did not require re-intubation, see

Section 4 for further details.).

2. Autocorrelation, r1—The presence of a period of CSD would also cause an increase in the

lag-1 autocorrelation of the time series data. For a patient who did not require re-intuba-

tion, a significant increase in the autocorrelation is not expected.

Formally, the null and alternative hypotheses can be expressed as follows:

H0: There is no period of CSD leading up to a critical tipping point

H1: There is a period of CSD leading up to a critical tipping point

2.6 Statistical model

The method consisted of analysing the variance and autocorrelation of the heart rate (beats

per minute/BPM), respiration rate (breaths per minute/BrPM) and mean blood pressure (mil-

limeters of Mercury/mmHg).

For each of the heart rate, respiration rate and blood pressure time series, the variance and

autocorrelation were calculated on sequential windows of data, slid forward by 1 minute. For a

time series X = {x1, x2, . . ., xn}, a window of size m and starting time t, would be given as X{t,m}

= {xt, xt+1, . . ., xt+m}. The variance and autocorrelation of each window would then be given by

s2;t ¼

Ptþm
i¼l ðxi � �xÞ2

ðm � 1Þ
ð3Þ

rt
1
¼

Ptþm� 1

i¼t ðxi � �xÞðxiþ1 � �xÞ
Ptþm

i¼t ðxi � �xÞ2
ð4Þ

The resulting σ2,t and rt
1

form a secondary time series, as the start point of the window, t, is slid

forward, which shows how these measures change over time. There is a trade-off for the choice

of window size in this study, since a window that is too large will result in significant loss in

data and a window that is too small will be dominated by short-term fluctuations in the time

series [58, 59]. As a trade-off, primary analysis was conducted using a window size of 60 min-

utes and variations observed with smaller window sizes of 30 and 15 minutes were considered

in an exploratory analysis and reported in S3 File.

For each of these, the modified Mann-Kendall [60] test was then carried out which calcu-

lates the Kendall-Tau correlation coefficient while also applying a correction to correct for the

dependence between overlapping windows [61, 62]. This resulted in a correlation coefficient

and test statistic for both the variance and autocorrelation of each physiological measure (6

combinations in total). A Holm-Bonferroni hypothesis test was conducted to correct for
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multiple tests at a significance of α = 0.05. Since the application of CSD to detect the need for

reintubation is a novel approach, it is important to minimize the risk of missing clinically rele-

vant changes. Hence the most commonly used α level of.05 was chosen over stricter threshold,

while also correcting for multiple testing using the Holm-Bonferroni approach.

The proportions of instances which gave significant results was then calculated for each

cohort, and a z-test was conducted to check whether these proportions were significantly dif-

ferent between the cohorts. The predictive capacity of the model was calculated using the per-

formance metrics, positive predictive value (PPV), negative predictive value (NPV), sensitivity

and specificity.

Welch’s t-tests were also conducted on the corresponding distributions of Kendall-τ corre-

lation coefficients for cohort 1 and 2 in order to explore the likelihood of these samples have

the same mean.

Both the z test and the t-test were conducted to establish if Kendall-τ correlation coefficients

could be used to distinguish the cohorts from each other. These tests were conducted on the

results of the cohorts as a whole, as well as separating them by ICU ward type (PICU/CICU/

NICU). All tests were conducted on Python 3.5, using the packages numpy, scipy and

pymannkendall [60, 63, 64].

3 Results

In the following sections, we present the results of the statistical analyses conducted, including

z-tests for significant increases in EWS, t-tests for comparing the magnitudes of increase, and

a series of exploratory analyses to further investigate the trends in the data. The final number

of files analyzed per ICU ward, cohort, and variable is shown in Table 2. This results in failure

rates ranging from 5.4% to 6.4%, depending on the variable used without subdivision into

wards, and from 3.9% to 14.8% when considering wards separately.

3.1 Proportions of significant results

After conducting the Mann-Kendall hypothesis test as outlined in Section 2.5, the proportion

of significant results (instances which showed an increase in variance or autocorrelation over

time) for each measure were calculated and compared between cohort 1 and the control

group, cohort 2. Fig 3 and Table 3 show these results and how they are split among the three

ICU ward types.

When the entire cohorts are considered as a whole rather than split by ICU ward type,

cohort 1 has a statistically significant higher proportion of instances showing an increase in

autocorrelation of the heart rate. This provides evidence to reject the null hypothesis and sug-

gests that CSD is observed before a critical tipping point (which is taken to be the point of re-

intubation) for this measure. In no other measure was there sufficient evidence to reject the

Table 2. Final number of files used for analysis each variable, cohort and ward type.

Heart Rate (BPM) Respiration Rate (BrPM) Mean Blood Pressure (mmHg)

C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4

PICU 47 354 32 12 37 305 26 12 21 164 22 7

CICU 40 936 28 4 33 771 21 4 34 846 20 4

NICU 14 185 13 2 11 164 9 1 4 23 3 1

Whole 101 1475 73 18 81 1240 56 17 59 1033 45 12

C1, C2, C3 and C4 correspond to cohorts 1, 2, 3 and 4.

https://doi.org/10.1371/journal.pone.0317211.t002

PLOS ONE Investigating critical slowing down post extubation

PLOS ONE | https://doi.org/10.1371/journal.pone.0317211 January 24, 2025 9 / 25

https://doi.org/10.1371/journal.pone.0317211.t002
https://doi.org/10.1371/journal.pone.0317211


null hypothesis at the α level considered. However, in 5 of 6 cases, a higher proportion of

trends were observed in cohort 1 than in cohort 2.

3.2 Distributions of correlation coefficients

The Kendall-τ correlation coefficients of each instance signal the strength of trends in variance

and autocorrelation over time. Hence, a greater positive value of τ suggests a stronger presence

of CSD. Fig 4 shows the distributions of these correlation coefficients for each combination of

measures. We see that these distributions are roughly Gaussian, especially for cohort 2 where

sample sizes are around 1000, and much larger than those of cohorts 1 which vary between 59

and 101.

For each of these sets of τ values, a Welch’s t-test was conducted between cohort 1 and

cohort 2 to determine whether the means of their distributions were significantly different, i.e,

assuming that cohort 1 and 2 follow distributions of Nðm1; s
2
1
Þ and Nðm2; s

2
2
Þ respectively, the

following hypotheses were tested:

H0 : m1 ¼ m2

H1 : m1 > m2

The means, standard errors and p-values corresponding to each of these tests are shown in

Table 4 with the significant results highlighted. This analyses were conducted on the entire

cohorts as well as after splitting by ICU ward type. We see that only 1 out of 6 tests on the

whole cohorts show significant results, and 3 of 18 when split over the various ICU ward types.

Fig 3. Proportion of instances which showed significant increases in variance and autocorrelation respectively

over the extubated period after conducting the Mann-Kendall hypothesis tests using the Holm-Bonferroni

method. Each measure of each cohort is also split by ICU ward type.

https://doi.org/10.1371/journal.pone.0317211.g003

Table 3. The proportions of significant Mann-Kendall hypothesis tests conducted on cohorts 1 and 2.

Variance, σ2 Autocorrelation, r1

HR RR ABP HR RR ABP

C1 C2 C1 C2 C1 C2 C1 C2 C1 C2 C1 C2

PICU 0.213 0.221 0.351 0.236 0.381 0.170 0.191 0.119 0.189 0.180 0.286 0.134

CICU 0.219 0.251 0.303 0.315 0.176 0.187 0.250 0.179 0.091 0.108 0.176 0.183

NICU 0.357 0.330 0.091 0.304 0.500 0.261 0.357 0.232 0.182 0.110 0.000 0.305

Whole 0.238 0.254 0.296 0.294 0.271 0.186 0.238 0.171 0.148 0.126 0.203 0.178

The first 3 rows show these proportions if only one ICU ward is considered at a time. The pairs of proportions which are significantly different between cohort 1 and 2

are highlighted.

https://doi.org/10.1371/journal.pone.0317211.t003
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The only significant test was again associated with the autocorrelation of the heart rate.

This was the only measure that had a significant result in the z-test conducted in Section 3.1.

Therefore, within this dataset, we see that the autocorrelation of the heart rate is the best indi-

cator of CSD.

Overall, these results do not provide evidence to suggest that CSD may be observed in

patients who are approaching a transition in their physiology, except in the autocorrelation of

the heart rate.

3.3 Exploratory analyses

In this section, we describe the exploratory analyses that were not pre-registered as part of our

main analyses. We list the broad results of our exploratory analyses here, and the details are

given in supplementary material.

The first of these was to analyse the results of cohort 3 with cohort 2. Cohort 3 consisted of

individuals who were extubated and subsequently died in care. The analysis was conducted for

the whole time series from the point of extubation until death. None of the 6 measures showed

significant differences in the proportion of significant trends between the two cohorts when

they were considered as a whole, as well as when subdivided according to ICU ward.

Fig 4. Histograms showing distributions of the Kendall-Tau correlation coefficients of each time series, grouped by physiological measure (heart

rate, respiration rate, mean blood pressure) and quantifier (variance, autocorrelation). This is a comparison of the correlation coefficients of cohort

1 and 2.

https://doi.org/10.1371/journal.pone.0317211.g004
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A similar analysis was also conducted with Cohort 4, which consisted of a very small num-

ber of individuals who were re-intubated and still died in care. In this case, 1 out of 6 variables

showed significant results, namely the autocorrelations of the mean blood pressures. However,

due to the small size of the cohort, these results should be viewed with caution.

We also repeated the analysis described in Section 2 with smaller window sizes of 15 and 30

minutes. We see an increase in the number of false positives in almost all quantifiers. While no

significant results were seen for the 30 minute windows, the proportion of the autocorrelation

of the heart rate for cohort 1 was significantly higher than for cohort 2, when using 15 minute

windows. This higher proportion was also observed when data from the CICU alone was

considered.

Finally, we also explored the oxygen saturation (SpO2) time series for significant increases

in autocorrelation and variance using hour long windows, for cohorts 1 and 2. While we see

no significant differences between the two cohorts when taken together or split by ICU type,

we do see that a Welch t-test showed significant differences between the distribution of corre-

lation coefficients between the two groups, for both autocorrelation and variance of the SpO2.

This difference also persisted when the PICU cases were considered alone. The autocorrelation

of SpO2 was also significantly different between the two groups when the CICU cases were

considered alone.

3.4 Model performance

The confusion values and various performance metrics of the measured EWS are shown in

Table 5. The metrics used to evaluate the predictive capabilities of the model are Positive Pre-

dictive Value (PPV), Negative Predictive Value (NPV), Sensitivity, Specificity, Balanced

Accurancy (AccB) and Area Under the Receiver Operator Characteristics (ROC) Curve

(AUC). All quantifiers have values that vary between 0 and 1, with 1 indicating ideal classifica-

tion performance. The PPV, NPV, Sensitivity and Specificity are affected by class imbalance,

whereas AccB and AUC are robust to this. Values close to 0.5 for the latter indicate classifica-

tion no better than chance.

Table 4. Means and standard errors of Kendall-Tau correlation coefficients of cohorts 1 and 2, as well as t-statistics and p-values when Welch’s T-Test is conducted.

Variance, σ2

Heart Rate (BPM) Respiration Rate (BrPM) Mean Blood Pressure (mmHg)

μ1 (SE) μ2 (SE) p μ1 (SE) μ2 (SE) p μ1 (SE) μ2 (SE) p

PICU 0.035 (0.045) 0.026 (0.019) 0.853 0.016 (0.076) 0.044 (0.022) 0.727 0.200 (0.071) -0.042 (0.030) 0.004

CICU -0.049 (0.063) 0.050 (0.011) 0.125 0.110 (0.012) 0.126 (0.057) 0.819 0.007 (0.068) 0.012 (0.012) 0.939

NICU 0.130 (0.096) 0.118 (0.028) 0.911 0.139 (0.061) 0.123 (0.030) 0.888 0.207 (0.214) 0.091 (0.069) 0.638

Whole 0.015 (0.035) 0.053 (0.009) 0.298 0.071 (0.045) 0.105 (0.011) 0.462 0.089 (0.050) 0.006 (0.011) 0.104

Autocorrelation, r1

Heart Rate (BPM) Respiration Rate (BrPM) Mean Blood Pressure (mmHg)

μ1 (SE) μ2 (SE) p μ1 (SE) μ2 (SE) p μ1 (SE) μ2 (SE) p

PICU 0.062 (0.051) -0.071 (0.018) 0.016 0.015 (0.060) -0.043 (0.021) 0.370 0.079 (0.064) -0.058 (0.027) 0.057

CICU 0.039 (0.065) -0.022 (0.011) 0.360 -0.184 (0.057) -0.115 (0.012) 0.248 0.017 (0.055) 0.008 (0.011) 0.872

NICU 0.175 (0.062) 0.027 (0.026) 0.041 0.029 (0.128) -0.077 (0.026) 0.310 -0.107 (0.217) 0.013 (0.090) 0.634

Whole 0.069 (0.036) -0.027 (0.009) 0.011 -0.064 (0.041) -0.092 (0.010) 0.506 0.031(0.041) -0.002 (0.010) 0.438

The table also shows values when grouped by ICU ward type. Statistically significant results are in bold.

https://doi.org/10.1371/journal.pone.0317211.t004
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In this study, since we are interested in only predictions due to positive trends, the ROC

curve was generated by varying the threshold of the Kendall τ coefficient, while setting nega-

tive τ to a minimum negative value (effectively excluding them).

The values close to 0.5 of AccB and AUC indicate that the model has limited predictive

power. The low sensitivity values suggests that increasing variance and autocorrelation are not

effective signals for predicting the need for re-intubation for patients in ICUs. The low values

of PPV and high values for NPV in the study partially arise from the differences in sizes

between cohorts 1 and 2. Since a significant proportion of the much larger Cohort 2 is incor-

rectly flagged as a positive, the chances of a positively flagged test actually being a true positive

are incredibly small, as seen in the PPV.

Finally, we also show the results of logistic regression models when using multiple variables

as predictors. In these models, the extubation outcome is the dependent variable, and the val-

ues of the Kendall correlation coefficients are used as the independent variables. A weight fac-

tor of 10:1 was taken to consider the relative prevalence of successful extubations relative to

extubation failures. An additional model incorporating the mean values of the heart rate, respi-

ratory rate, and blood pressure was also used for comparison. The logistic regression models

used in the analysis are defined as follows.

1. ExtOutcome� HRtr1 þHRt
s2

2. ExtOutcome� RRtr1 þ RRt
s2

3. ExtOutcome� ABPtr1 þ ABPt
s2

4. ExtOutcome� HRtr1 þHRt
s2 þ RRtr1 þ RRt

s2 þ ABPtr1 þ ABPt
s2

5. ExtOutcome *HRmean + RRmean + ABPmean

6. ExtOutcome * All Variables

Here Variabletr1 and Variablet
s2 represents the magnitude of the Kendall correlation coeffi-

cient for the autocorrelation and variance for each variable (HR, RR and ABP). The full results

of the logistic regression models, including the logs of the odds (estimate), standard errors, z-

values, p-values, degrees of freedom (N), Akaike information criterion (AIC) and R2 values are

summarized in Table 6. The model incorporating all variables showed a higher R2 and lower

AIC as compared to each of the individual models. An ANOVA showed that model 6 signifi-

cantly differed from model 4 and 5 (model 4 and 6: Deviance: 162.64 p-value:<0.001; model 5

and 6: Deviance: 29.894; p-value<0.001). Since model 4 that combines the HR, RR and ABP

Table 5. Confusion values, PPV, NPV, sensitivity and specificity of the model for cohorts 1 and 2.

COHORT 1 Measure TP FP FN TN PPV NPV Sensitivity Specificity AccB AUC

Variance, σ2 HR 24 374 77 1101 0.060 0.935 0.238 0.746 0.492 0.486

RR 24 365 57 875 0.062 0.939 0.296 0.706 0.501 0.499

ABP 16 192 43 841 0.080 0.951 0.271 0.814 0.543 0.578

Autocorrelation, r1 HR 24 253 77 1222 0.087 0.941 0.238 0.828 0.533 0.587

RR 12 156 69 1084 0.071 0.940 0.148 0.874 0.511 0.517

ABP 12 184 47 849 0.061 0.947 0.204 0.822 0.513 0.498

HR: heart rate (beats per minute/BPM), RR: respiration rate (breaths per minute/BrPM), ABP: average blood flow (millimeters of Mercury/mmHg), TP: true positive,

FP: false positive, FN: false negative, TN: true negative, PPV: positive predictive value, NPV: negative predictive value, AccB: balanced accuracy, AUC: Area under the

ROC curve

https://doi.org/10.1371/journal.pone.0317211.t005
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variables performed better than models 1,2 and 3 individually, a one-sided t-test was con-

ducted to check if Cohort 1 had a higher strength of positive transitions across variables

(defined as the sum of positive τ for all variables) as compared to Cohort 2, yielding significant

results (t-statistic = 2.056, p-value = 0.022). Moreover, the AUC of the combined strength of

Table 6. Logistic regression models using the Kendall -τ coefficients as predictors.

Predictor Estimate SE z-value p-value N AIC R2

1. ExtOutcome � HRtr1 þHRt
s2

intercept -0.346 0.041 -8.407 <0.001

HRtr1 0.906 0.125 7.221 <0.001

HRt
s2 -0.511 0.121 -4.217 <0.001 1579 3357.2 .042

2. ExtOutcome� RRtr1 þ RRt
s2

intercept -0.373 0.047 -8.009 <0.001

RRtr1 0.174 0.133 1.303 0.192

RRt
s2 -0.160 0.121 -1.320 0.187 1323 2789.1 0.004

3. ExtOutcome� ABPtr1 þ ABPt
s2

intercept -0.577 0.052 -10.998 <0.001

ABPtr1 -0.090 0.179 -0.500 0.617

ABPt
s2 0.701 0.162 4.315 <0.001 1093 2131.6 0.023

4. ExtOutcome � HRtr1 þHRt
s2 þ RRtr1 þ RRt

s2 þ ABPtr1 þ ABPt
s2

intercept 0.140 0.074 1.874 0.061

HRtr1 0.695 0.219 3.169 0.001

HRt
s2 -0.303 0.226 -1.341 0.180

RRtr1 0.003 0.217 0.014 0.989

RRt
s2 -0.317 0.185 -1.714 0.086

ABPtr1 0.058 0.256 0.227 0.820

ABPt
s2 0.730 0.229 3.189 0.001 454 1196.3 .066

5. ExtOutcome *HRmean + RRmean + ABPmean

intercept -7.968 0.722 -11.042 <0.001

HRmean 0.021 0.004 5.466 <0.001

RRmean 0.039 0.009 4.549 <0.001

ABPmean 0.056 0.006 9.125 <0.001 454 1057.6 0.322

6. ExtOutcome * All Variables

intercept -8.287 0.755 -10.969 <0.001

HRtr1 0.627 0.246 2.553 0.011

HRt
s2 -0.118 0.250 -0.470 0.638

RRtr1 -0.102 0.243 -0.421 0.674

RRt
s2 -0.491 0.209 -2.339 0.019

ABPtr1 -0.319 0.283 -1.128 0.259

ABPt
s2 1.085 0.263 4.129 <0.001

HRmean 0.026 0.004 6.018 <0.001

RRmean 0.039 0.009 4.305 <0.001

ABPmean 0.053 0.006 8.269 <0.001 454 1039.7 0.370

When a predictor was significant in the model (p<.05), the corresponding row is shown in bold. The Nagelkerke R2 was used to estimate the goodness of fit.

N: No. of samples; AIC: Akaike information criterion; ExtOutcome: Extubation Outcome.

https://doi.org/10.1371/journal.pone.0317211.t006
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positive transitions was 0.597, higher than the AUC for the individual variables. The logistic

regression was conducted using the glm function in R version 4.3.1.

4 Discussion

4.1 Summary and significance

In this paper, we explored whether paediatric patients who fail extubation in the ICU are

approaching a critical transition in their physiology. We studied this by checking for signs of

CSD in the dynamics of their heart rate, respiratory rate, and blood pressure. We tested these

variables for increases in variance and autocorrelation over time. The proportion of significant

increases was calculated and compared to the corresponding proportion in a stratified sample

of individuals who did not fail extubation. We found that 1 out of the 6 tests, namely the auto-

correlation of the heart rate showed a significantly larger proportion of positive tests in the

individuals who failed extubation. The autocorrelation of the heart rate also showed a signifi-

cantly higher magnitude of increase over all patients in Cohort 1 over time, as compared to

Cohort 2. When calculating the model performance using metrics such as sensitivity and spec-

ificity, we observe low sensitivities and positive predictive values, suggesting limited clinical

utility in using these metrics by themselves for predicting an approaching transition. Similar

analyses in Cohort 3 yielded worse results with none of the proportion of trends in Cohort 3

being significantly larger than Cohort 2. While Cohort 4 showed 1 out of 6 results to have sig-

nificantly larger proportions than Cohort 2, the small sample sizes make these results more

suspect. In our exploratory analysis, we observe that when a smaller window size of 15 minutes

was used, the autocorrelation of the heart rate showed significantly larger proportion of posi-

tive tests in the individuals who failed extubation. This effect, however, was not observed when

30 minute windows were used instead. We also observed that the SpO2 time series showed a

significantly higher value for the magnitude of increase in auto-correlation and variance in

individuals who failed extubation, as compared to those who did not. Finally, we also observe

in a logistic regression model that using the values of correlation coefficients leads to a signifi-

cantly better model than one that uses only the mean values of the measures.

One of the interesting features of the study is the distributions of the Kendall τ coefficients

in Fig 4. Apart from strong false positives and negatives, we also see a number of negative

trends in both cohorts 1 and 2. There is some evidence that such negative trends could occur

in autocorrelation in systems exhibiting flickering prior to transitions or in both autocorrela-

tion and variance as a consequence of processes that exhibit critical speeding up [65–67]. The

variance is also known to decrease when there is insufficient data and the fluctuations in the

system are dominated by low frequencies or when the data is highly noisy [68]. In complex

biological data, such as this both issues related to data, as well as competing processes with

opposite effects could lead to such negative trends.

While our analysis detected some statistically significant differences, notably in the autocor-

relation of heart rate, low values for performance metrics indicate limited utility for prediction.

Taken together, our findings indicate that CSD based metrics alone are not sufficient to predict

extubation outcome and may require either substantial methodological refinement or combin-

ing with other complimentary metrics to yield acceptable predictability.

Our exploration is an important step in various directions. To the best of our knowledge, it

is the first study that explores CSD in the dynamics of critically ill patients. It also adds to the

growing literature on using CSD and EWS to study transitions in medicine [12, 19, 69]. More-

over, it is among the first studies that use dynamical systems theory to study problems in criti-

cal care. It also identifies variables and quantifiers that could aid in enhancing the prediction

of extubation outcome in the future. It uses a data agnostic approach, with the understanding
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that the presence of CSD can offer information to add to the expert knowledge of a clinician

making a decision. The significance of these findings extends to addressing challenges posed

by public health crises such as the COVID-19 pandemic, where the demand for ventilators

exceeded supply.

4.2 Relation to existing literature

While our work uses a novel technique different from any previous explorations on critical

care data, our observations conform with the results in the literature. For instance, in neonates,

Goel et. al. observed that the heart rate characteristics index, a score that incorporates the vari-

ability, asymmetry, and entropy of ECG data, was correlated to extubation outcome and

enhanced predictability in regression models [51] Miu et. al. observed that for the first 60 min-

utes after reintubation, the SpO2 significantly differed between patients requiring reintubation

and those who did not. They also observed significantly different mean heart rate, SpO2, and

breathing frequency between the extubation failure and success group leading up to extubation

[35].

4.3 Reasons for low model performance

While the results do not conclusively detect CSD in critically ill patients, they do show an effect

in the expected direction in almost all cases. However, sensitivity is generally low, with even

the best performing indicators detecting less than a third of extubation failures, implying that

a significant number of extubation failures could go undetected. In the context of critical care,

missed detections are more crucial than false detections, since the former can prevent timely

interventions. Hence it may be more important for future studies to improve sensitivity, even

at the cost of specificity.

A major reason for the observed low model performance could be that the timing of re-

intubation is subjective. Hence, clinicians may be conservative in estimating when a person

should be re-intubated and could lead to re-intubation before signs of CSD are strong enough

to detect. Consequently, even if patients were approaching a critical transition point, the

strength of EWS they would display and the time at which they would appear, would vary con-

siderably. Moreover, this study assumes that the time scale at which the dynamics evolves for

all three signals considered are the same, an assumption which is not true.

Studies that examine CSD in medical data are limited by the definition of what constitutes a

positive. In many cases, as mentioned above, the decision to re-intubate may have been taken

before signs of CSD become prominent. These would be treated as false negatives in our study,

but may not be so in reality. In other cases, CSD may have happened in reality, since the

patient was approaching a transition point, but the system could have steadied itself due to

internal regulatory mechanisms of the body. Moreover, a number of potential confounding

factors could influence the dynamics of the vital signs considered in this work. These include

influences from drug based interventions which could alter heart rate and blood pressure, as

well as the patient’s fluid balance which relates to respiratory and cardiovascular stability [70,

71]. These cases would not be false positives in the correct sense, but would be considered as

such in our study [4, 72]. An example of this can be observed in the case of patient FR3426

who showed significant increases in 5 out of 6 of the measures considered. As Fig 5 shows, the

patient showed a major change in physiology at around 06:00 on the 29th, even though this did

not lead to subsequent re-intubation or death. This is made clear by the steep increase in vari-

ance which begins at this time. This would be an example of a false positive in our study,

which may not be so in reality.
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Fig 5. Raw data (in purple) of the heart rate, respiration rate and mean blood pressure, as well as the variance (in

green) calculated over a moving window, for the first visit of patient FR3426 between the time of extubation and

pseudo re-intubation.

https://doi.org/10.1371/journal.pone.0317211.g005
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Although increasing variance and autocorrelation have analytically been proven to be sig-

nals of CSD, these have often been difficult to observe in complex biological systems [69, 73,

74]. Several factors may contribute to this. For instance, the system itself may not be undergo-

ing a bifurcation that is expected to be theoretically preceded by CSD [75]or the variables

under consideration may not be in the direction of slowest recovery, where EWS are most

prominent [76–78]. Moreover, competing processes could lead to critical speeding up of the

dynamics or flickering of the transition which could mask detection of EWS in the system [65,

67, 69].

Beyond these theoretical considerations, practical issues such as under-sampling, insuffi-

cient data and time scale of occurrence could lead to false negatives in real time series [79–81].

False positives on the other hand can occur due to serial correlations and time dependent

trends [56, 61]. While detrending can remove long term trends, too small a bandwidth

removes important trends, and increases false negatives whereas too long a bandwidth may

not remove all irrelevant trends and consequently increase false positives [82]. It has been sug-

gested that in systems where naturally strong fluctuations exist in the system response, other

early warning signals that quantify flickering could be more useful in detecting transitions [13,

66]. Metrics derived from detrended fluctuation analysis and significance testing using boot-

strapping methods have both shown potential as robust approaches for detecting CSD in real-

world scenarios [4, 12, 58].

In our study we attempted to overcome these difficulties by systematically examining and

overcoming them in a single test case [48]. However the largely negative results of our study

on the entire dataset seems to suggest that either the issues identified on the single dataset did

not generalize to the whole system. To avoid this, future studies in such complex biological

datasets may benefit from using a small, representative subset (perhaps 5%) of the dataset to

optimize parameters for identifying CSD.

4.4 Limitations

While the present exploration is unique in many ways, it represents a preliminary approach

towards using dynamical systems to study extubation failure. Although the high sampling fre-

quency of the vital signs time series used in this work is rare in studies on extubation failure,

the sample size of the data is comparatively small. This is particularly true in comparison to

the MIMIC datasets which have been used extensively to study extubation failure [83, 84]. Fur-

thermore, we use only data from a single paediatric hospital in London, and our results may

not directly translate to an adult population.

As mentioned above, a major limitation in studies on extubation is in identifying true phys-

iological transition points. In clinical practice, the decision to re-intubate is made preemptively

in anticipation of potential instability, rather than waiting for definitive evidence of a transi-

tion. As a result transition points in this study may not indicate a change in the dynamics of

the system, unlike in other fields where EWS have been detected. This study uses the timing of

re-intubation as an approximate transition point, which may often be far from the true transi-

tion point.

4.5 Future directions

We have a few suggestions for future exploration based on the results of our study. We have

largely null results for most of our exploration, except for the autocorrelation of the heart rate.

While reasons for this have been discussed in the paragraphs above, one other possible avenue

to explore could be analysis of waveform data from the ICU. The time series used presently are
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quantities derived from waveform data like ECG or breathing waveform, and as such the non-

linear dynamics could be obscured in these derived quantifiers.

To overcome the limitation of the subjectivity associated with transition points, future stud-

ies could focus on instances where emergency reintubation was required. In such cases, the

actual point of reintubation may be much closer to the transition point than in a general sam-

ple. Another possibility could be to quantify markers of instability, such as deviations in physi-

ological baselines using methods such as change point analysis. Only reintubations that also

include significant quantitative change would then be checked for early warning signals, as

done in studies on CSD in other clinical contexts [85].

A significant outcome of the present study is the improvement seen by using CSD variables

in a simple logistic regression model. At the group level, the combination of CSD variables

showed lower AIC and higher R2 than models using individual CSD variables. This difference

persisted even when the degrees of freedom were kept the same. This indicated that a combi-

nation of variables could perform better than individual CSD variables to detect extubations.

Moreover Cohort 1 showed a higher strength of positive transitions across variables as com-

pared to Cohort 2, and a higher predictive capacity (measured using AUC) as compared to the

individual variables. This indicates that using a combination of EWS at an individual level

could reduce misdetection and increase sensitivity in the sample. Setting an optimal threshold

for this combined strength of positive transitions could increase sensitivity even at the cost of

specificity, which may be desirable in clinical contexts. We also see that adding CSD metrics to

the mean levels of the variables in the logistic regression model also showed a significant

improvement over a model without them. At an individual level this could indicate that the

mean and CSD metrics calculated over a sliding window could predict extubation outcome

better than using either of them alone. Going even further, while CSD metrics on their own

may not be a reliable predictor of extubation outcome, they could constitute novel features in

machine learning based prediction models and enhance their predictive power [42]. In a real

time setting, binary outcomes could be replaced with a continuous measure that gives the

probability of failure, which could aid in clinical decision support [86]. In the context of the

CSD, this could be the Kendall τ values, or the deviations from baseline for a sliding window

mean, or prediction probabilities for a machine learning algorithm.

Another suggested path for future exploration is to study differences in patients who exhibit

CSD in their dynamics from those who do not. Such differences could include medical comor-

bidities such as asthma, heart arrhythmia or pregnancy stressors in neonatal admissions.

Beyond extubation, testing CSD prior to more objective markers where the intervention point

is not arbitrary, such as cardiac arrests, is likely to be a fruitful direction for further research.

While detecting CSD in extubated patients is an important first step, it is important to conduct

an extensive analysis to find how far in time before reintubation CSD can be detected, since a

longer time to reintubation is associated with higher mortality [33]. In fact, it would be even

more clinically relevant to test whether slowing down exists leading up to extubation in

patients who are likely to fail extubation in future.

4.6 Conclusions

Predicting extubation outcome is an important question that has been studied extensively in

the past, with mixed results. The results of the present study found limited evidence to support

the use of CSD based metrics to predict extubation outcome, with only the autocorrelation of

the heart rate showing significant differences between the groups. These largely null results

highlight the challenges of detecting critical slowing down in complex biological systems in

general, and more so in critical care, where confounding factors often obscure potential early
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warning signals. Future studies should be wary of these challenges and should carefully con-

sider whether investigating CSD in clinical contexts is likely to yield meaningful benefits. Our

findings point towards the need for a marked change in the way CSD based metrics are cur-

rently used for prediction in the context of medicine. For instance, combining CSD based met-

rics along with other indicators of extubation failure, or using them as one of many features in

a machine learning algorithm could lead to improved prediction. This could perhaps be the

way for future researchers looking to use CSD metrics or other measures from dynamical sys-

tems theory for prediction in the ICU.
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