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We present measurements of the cooling length ℓE for hot electrons in a GaAs-based high mobility two-dimensional
electron gas (2DEG). The thermal measurements are performed on a long 60 µm-wide channel, which is Joule-heated
at one end, along which there are three similar hot-electron thermocouples, spaced 30 µm apart. The thermocouples
measure an exponentially decaying temperature profile with a characteristic length ℓE, which decreases from 23 to
16 µm as the lattice temperature increases from 1.8 to 5 K. From a simple one-dimensional model of heat diffusion,
we measure an inelastic scattering time which decreases from τi ≈ 0.36 to 0.18 ns. The measured τi has a magnitude
and temperature dependence consistent with acoustic phonon scattering times. We discuss how the sample design can
be varied for further thermal investigations. Knowledge of the temperature profile and its gradient will prove useful in
measurements of the thermal conductivity and the Nernst effect.

The inelastic lifetime τi of an electron is an important
quantity, as it determines how electrons in a device can
dissipate their excess energy. Also, in quantum devices,
the inelastic length scale is believed to provide the upper
limit for the phase-breaking length.1 In a GaAs-based two-
dimensional electron gas (2DEG) of high electron mobility
(> 2× 106 cm2/Vs), the resistivity of a 2DEG increases lin-
early with temperature for T ≳ 2 K; a property that is deter-
mined by the thermal population of acoustic phonons avail-
able for scattering with the electrons. In thermal studies of
2DEGs, heated electrons lose their excess energy to the lat-
tice by two routes: by inelastic electron-phonon scattering
following a T 5 dependence in the Bloch-Gruneisen regime,
or by a T 2 cooling by the Ohmic contacts. A crossover be-
tween the two was observed2 using 1D electron thermome-
ters at 0.3 K, and at lower temperatures using current noise
thermometry.3 In this work, we measure the thermal diffusion
length using non-local heating; this directly gives the inelastic
time τi, which we find to be determined by electron-phonon
scattering.

In this work, the electrons are Joule heated by passing a
current through the 2DEG. As the electron-electron relaxation
length is much less than the sample dimensions, the elec-
trons equilibrate to a local electron temperature Te above the
lattice temperature TL, with a distribution that obeys Fermi-
Dirac statistics. Previous electron thermometers in 2DEGs
have been based on the temperature dependence of quantum
corrections to the conductivity,4 Johnson noise5, and the ther-
moelectric properties of 2D bar gates,6 1D2 and 0D devices.7

Chickering et al.6 showed that an accurate hot-electron ther-
mocouple (HET) can be created from a pair of bar gates which
can measure the temperature Te of the electrons in the channel
when they are heated by as little as 10 mK above the lattice
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temperature TL. At low temperatures, the thermovoltage Vth
developed across a single bar gate of the HET is given by

Vth =−Sd (Te −TL), (1)

where Sd is the diffusion thermopower, which can be related
to the electrical conductance G of a single bar gate using the
Mott-Cutler relation8

Sd =−π2k2
B

3e
T
(

∂ lnG
∂E

)
E=EF

, (2)

where the energy derivative is determined at the Fermi energy
EF of the 2DEG. In the supplementary information (SI) we
show a typical calibration using Eq. 2 of a single bar-gate;
∂ lnG
∂EF

is determined from d lnG
dVg

dVg
dEF

, where G(Vg) is the mea-
sured conductance characteristic of the bar gate as a function
of gate voltage Vg.

The diffusion thermopower Sd of a single bar gate can be
written6 as

Sd =−π2kB

3e
T
TF

(1+α), (3)

where TF is the Fermi temperature (proportional to n).
The quantity α is the elastic scattering parameter given by
α = d(lnτe)/d(lnn), describes the energy-dependent proper-
ties of the 2DEG, where τe is the elastic scattering time and n
is the 2D electron density.

Devices were fabricated from two similar wafers (C2681
and T612) grown by molecular beam epitaxy. In both wafers
the 2DEG is created 250 nm below the sample surface at the
Al0.33Ga0.67As/GaAs interface; on top of the undoped GaAs
there is 240 nm of Al0.33Ga0.67As, capped with a 10 nm GaAs
top layer. There is Si-doping in the upper 200 nm of AlGaAs,
giving a spacer layer distance of 40 nm between the dopants
and the 2DEG. The main results presented in the figures is
Device 1 from C2681 in which the mobility and carrier density
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at 4.2 K are µ = 2.8×106 cm2/Vs and n = 1.5×1011 cm−2,
with a resistance per square of Rsq ≈ 15 Ω and a diffusivity
D = 1.44 m2/s. The elastic mean free path is 18 µm, and from
the variation of n and µ with gate voltage we determine α ≈ 1.
The properties of all samples investigated will be presented in
Table I, later in the paper.

Figure 1 is a schematic of our T-shaped device which con-
sists of two 60 µm wide channels, a heating (H) and a re-
laxation (R) channel. There are three similar HETs along the
R-channel, positioned at x1,x2 and x3, with thermocouple T3
positioned at x3 shown in detail. From Eq. 3 the diffusion ther-
mopower of T3 is ∆Sd ∝ (1/n1 − 1/n2), where n1 and n2 are
the 2D carrier densities under the two bar gates controlled by
applied gate voltages Vg1 and Vg2. Experiments show6 that the
measured thermopower ∆S of a HET follows the Mott-Cutler
prediction (based on Eq. 2) for ∆Sd up to TL ≈ 2 K. At higher
temperatures, ∆S = ∆Sd +∆Sg, is enhanced by a phonon drag
contribution ∆Sg, such that ∆Sg ≈ 0.35 ∆Sd at TL = 4 K. See
Ref. 6 and the SI for further details.

Using the Seebeck effect, we investigate the electron’s ex-
cess temperature ∆T = Te − TL in both local and non-local
measurements. When a heating current is passed along the
R-channel the HETs act as local electron thermometers.6.
The cooling length ℓE is determined from non-local measure-
ments of the excess electron temperature ∆T (x), using the set-
up shown in Fig. 1. Electrons are heated in the H-channel
and ∆T decays down the R-channel, as measured in previ-
ous studies.4,9–12 Away from the heating current, the decay
in ∆T (x) is characterized by a cooling length ℓE. In thermal
diffusion the electrons exhibit an energy relaxation length, or
cooling length, given by ℓE =

√
Dτi where the D is the diffu-

sivity of the 2DEG. We will describe a method to measure ℓE,
and hence τi.

In early work4 on T-shaped devices the temperature decay
in a 2D silicon inversion layer was used to determine its ther-
mal conductivity. Previous studies13 in a high-mobility 2DEG
had only one working HET positioned 150 µm down the R-
channel. A maximum cooling length of 250 µm was deter-
mined at 170 mK from the variations in the measured ther-
movoltage, as the carrier density under one of the 150 µm
long bar gates was varied. In contrast, we will determine ℓE at
higher temperatures using measurements of ∆T (x) from three
HETs that are spaced 30 µm apart. Our bar gates are much
longer (Lg = 550 µm) than the measured ℓE, thus simplifying
the analysis.

In the non-local heating set-up an AC current IH sin(ωt)
of frequency f = ω/(2π) = 64 Hz is passed through the H-
channel. Due to Joule heating, electrons in the middle of the
H-channel at x = 0 will have an oscillating electron tempera-
ture

Te = TL +∆T0 [1− cos(2ωt)] . (4)

For small AC heating currents, when TL ≫ ∆T0, the electrons
will have an excess temperature ∆T = Te −TL, that oscillates
with frequency 2 f with a phase shift of π/2. It is assumed
that the electrons in the large area (250µm×150µm) AuNiGe
Ohmic contacts, with a contact resistance of ∼ 50 Ω, are an-
chored to the lattice temperature TL. Due to heating of the

T1 T2 T3

x1 x2 x3

x

IH

FIG. 1. Schematic of the T-shaped device, which consists of 60 µm
wide heating (H) and relaxation (R) channels, with lengths 720 µm
and 600 µm, respectively. All Ohmic contacts in the device (shown
in orange) are thermally grounded to the lattice temperature TL. In
non-local measurements, an AC heating current of amplitude IH and
frequency f is driven between the Ohmic contacts on the H-channel;
all other contacts in the device are electrically floating. Due to heat-
ing by IH , the electrons at the midpoint of the H-channel at x = 0
are heated above TL by an excess temperature ∆T0. The excess tem-
perature, ∆T (x) = Te(x)− TL, along the R-channel decreases with
increasing x, and is measured using three similar hot-electron ther-
mocouples (HETs) centered at x1 = 22.5 µm, x2 = 52.5 µm and
x3 = 82.5 µm. Thermocouple T3 is shown in detail; it consists of
two 15 µm wide voltage probes, in which the electron carrier den-
sities n1 and n2 can be varied using voltages Vg1 and Vg2 applied to
surface gates of length Lg = 550 µm.

electrons in the R-channel between the voltage probes of T3,
a thermovoltage V3 at frequency 2 f is measured between the
two Ohmic contacts.

Figure 2(a) shows the thermovoltage V3 at TL = 4.0 K, as
a function of a local heating current IR passed through the
R-channel. V3 follows a quadratic dependence on heating cur-
rent, V3 = a3 I2

R, where a3 = 3.69 nV/(µA)2. Similar thermo-
voltage characteristics were obtained for the T1 and T2 ther-
mocouples, which were operated at the same bar gate voltages
as T3. The fitted values for a1,a2 and a3 are within 6% of each
other, and have been used to fine-tune the calibrations of the
HETs when they are used for relative thermometry measure-
ments in the non-local geometry.

In non-local measurements, the electrons in the H-channel
are heated by a current IH , which sets up a temperature gra-
dient along the R-channel, driving diffusive heat flow in the
x-direction. In a simple one-dimensional description,14 the ex-
cess temperature ∆T (x) is governed by the differential equa-
tion:

κ
d2(∆T (x))

dx2 − Ce ∆T (x)
τi

= 0, (5)
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where κ is the thermal conductivity, and Ce is the electron heat
capacity. If the R-channel is much longer than ℓE, the solution
to Eq. 5 is an exponential decay

∆T (x) = ∆T0 exp(−x/ℓE), (6)

with prefactor ∆T0, the excess temperature at x = 0, and char-
acterized by the cooling length ℓE =

√
κ τi/Ce. This length

can be written14,15 as

ℓE =
√

Dτi, (7)

where D = v2
F τe/2 is the 2D diffusivity, vF is the Fermi ve-

locity, and τe is the elastic scattering time.
In non-local measurements the excess temperature ∆T (x)

generates thermovoltages in the HETs along the R-channel.
Figure 2(b) shows non-local measurements of V1,V2 and V3 at
TL = 4.0 K; similar to local measurements there are good fits
to the quadratic form Vi = bi I2

H , with the values of bi given in
the figure. The most important feature is the diminishing ef-
fect of IH on Vi as x increases. If a similar calibration for all the
HETs is assumed from the local measurements in Fig. 2(a),
then the exponential decay in ∆T (x) described by Eq. 6 will
also be measured in the thermovoltages such that

Vi = ∆S∆T (xi) = ∆S∆T0 e−xi/ℓE , (8)

where ∆S is the magnitude of the thermopower of the three
similar HETs. From measurements of the ratio Vj/Vi,
the cooling length ℓE can be obtained from ℓE = (xi −
x j)/ ln(Vj/Vi), which is derived from Eq. 8. Three possible
measurements of ℓE are:

ℓE =
30 µm

ln(V1/V2)
, ℓE =

30 µm
ln(V2/V3)

, and ℓE =
60 µm

ln(V1/V3)
,

(9)
which are plotted in Fig. 2(c) as a function of IH . For
IH < 15 µA the Vj/Vi ratios show fluctuations; at higher IH
these diminish and the three plots settle to give ℓE = 15.8±
0.3 µm.

When the local and non-local measurements were per-
formed at TL = 1.8 K, the electron-phonon cooling is di-
minished and the cooling length ℓE increases. At 1.8 K the
HETs show similar characteristics in local heating and in
Figs. 3(a) and (b) we present non-local measurements of V1,V2
and V3, and the cooling length ℓE determined from their ra-
tios. The behavior of ∆T (x) is not perfectly exponential, as
shown by the ∼ 1 µm difference in ℓE obtained from the
Vj/Vi ratios; the black horizontal line shows the cooling length
ℓE = 22.7±1.0 µm, which is determined from the average of
the three ratios. As the temperature is further reduced (not
shown) deviations from exponential behavior become more
apparent, consistent with relatively stronger cooling by the
Ohmic contacts as the electron-phonon interaction weakens.

Due to the current IH flowing in the H-channel, one end of
the R-channel is heated, and Figs. 2 and 3 show an exponential
decay of the excess temperature ∆T (x)∝ e−x/ℓE , characterized
by the length scale ℓE. The functional dependence of the three
thermovoltages on IH are similar, being all determined by ∆T0,

FIG. 2. Measurements of thermovoltages at TL = 4.0 K, when the
gate voltages on all three HETs were set to Vg1 = −0.2 V and
Vg2 = 0 V. The Joule heating was either in the local or non-local
geometries shown in the insets; in both cases good fits were ob-
tained to parabolic forms. (a) In local measurements only the ther-
movoltage V3 is plotted, with a parabolic fit V3 = a3I2

R up to 40 µA,
where a3 = 3.69 nV/(µA)2. T1 and T2 have similar characteristics,
with a1 = 3.62 nV/(µA)2 and a2 = 3.47 nV/(µA)2. (b) In non-local
measurements, the thermovoltages of the HETs show a decreasing
response to IH as x increases. (c) The cooling length ℓE is deter-
mined from the data points in (b) using the three expressions in
Eq. 9. For IH > 20 µA, the cooling length is ℓE = 15.8± 0.3 µm
at 4.0 K. The estimated temperatures ∆Ti given on the right hand
side of (a) and (b) are calculated using an electron-phonon cooling
time of τep = 1 ns/T (in K); see SI for details.

which is the excess temperature at the centre of the H-channel
at the x = 0. At TL = 4.0 K, when electron-phonon cooling
is strong, the electron temperature at the centre of a simple
bar, well away from the Ohmic contacts, is constant, and ∆T0
is proportional to the Joule heating I2

HRsq. At TL = 1.8 K the
thermovoltages Vi follow I2

H behavior for IH < 12 µA, but for
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FIG. 3. (a) Non-local measurements of the thermovoltages V1, V2,
and V3 at TL = 1.8 K as a function of the heating current IH . Fits
to Eq. 10 give the values of Ai and c shown in the figure. The ex-
cess temperatures ∆T1, ∆T2 and ∆T3 on the right hand vertical axis,
are calculated from calibrations based on the Mott-Cutler relation.
(b) The ratios of Vi/V j as a function of IH are used to determine a
cooling length ℓE = 22.7±1.0 µm at 1.8 K.

IH < 20 µA there is a better least-squares fit to

Vi = Ai ∆T0 = Ai

(√
T 2

L + cI2
H −TL

)
, (10)

a functional form used in hot-electron studies of diffusive
metal wires.16,17 Figure 3(a) shows the best fits, where Ai and
c are fitting parameters. Using c = 0.0665 (K/µA)2 the fits of
V1, V2 and V3 to Eq. 10 are surprisingly good at TL = 1.8 K.

Figure 4 shows the length ℓE measured for different lattice
temperatures TL, when the gate voltages on all three HETs
were set at Vg1 =−0.3 V and Vg2 = 0 V. At temperatures above
2 K, the electron-phonon mechanism is the expected source
of inelastic scattering. It is well known that in GaAs-based
2DEGs the scattering from acoustic phonons gives rise to the
linear temperature dependence of the resistivity ρ(T ) in high
mobility 2DEGs for T ≳ 2 K. To fit ℓE for TL > 1.8 K, we have
assumed that the inelastic time is equal to the electron-phonon
scattering time:

τi = τep =
B×1 ns
T (in K)

, (11)

where the 1 ns/T(in K) term comes from Ref. 18, assuming
a 2DEG width of d = 10 nm. A best fit B = 0.69± 0.02 is
obtained for temperatures TL ≥ 1.8 K, giving electron-phonon
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FIG. 4. The cooling length ℓE measured at different lattice temper-
atures TL. Assuming that τi is equal to τep with the form given in
Eq. 11, the best fit with B = 0.69±0.02 is obtained for TL ≥ 1.8 K.

scattering times similar to those obtained from ρ(T ) measure-
ments.

Four different devices were investigated, with electrical and
thermal results at TL = 4.2 K summarized in Table I. Devices 1
and 2 were fabricated from wafer C2681 using the same mask
set, where the heating channel and the relaxation channel are
both 60 µm wide. The measured τi at 4.2 K are very close
for the two devices, and the value B = 0.687 is consistent with
measurements in Fig. 4. Devices 3 and 4 were fabricated from
wafer T612, which has similar growth parameters to C2681,
using a mask set with a 60 µm-wide heating channel, but with
different widths for the voltage probes (w) and the relaxation
channel (W ). Despite the variation in n and µ , the measured
inelastic times are in close agreement; further evidence that τi
depends only the lattice temperature (see Eq. 11). We argue in
the next paragraph that the slightly higher values of τi in De-
vices 3 and 4 are caused by the narrower widths of the voltage
probes.

To use HETs in different studies, for example to map out
the temperature profile Te(x) along the relaxation channel at
lower temperatures, a number of design issues should be con-
sidered:
(i) the width W of the relaxation channel In non-local mea-
surements, a small fraction of IH extends into the R-channel.
This is characterized by the non-local resistance Rnl =Vt/IH ,
where Vt is the voltage measured across the R-channel at posi-
tion x, which theory predicts19 will decay exponentially down
the R-channel as:

Rnl = FRsq exp(−xπ/W ), (12)

where F is a geometric factor of order unity. For W = 60 µm
the voltage relaxation length is W/π ≈ 19 µm; this has been
confirmed experimentally by Vt measurements at x1, x2 and
x3 where F ≈ 0.5, in agreement with a simple finite ele-
ment model of the electrostatics. Therefore, the parasitic
electron heating in the R-channel will extend over a length
W/(2π) ≈ 10 µm, which is smaller than any measured cool-
ing length. The results from Device 3 show that ℓE is not
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Device n (×1011 cm−2) µ (×106 cm2/Vs) W (µm) w (µm) D (m2/s) ℓE (µm) τi (ns)
1 1.50 2.82 60 15 1.51 15.7±0.3 0.163±0.006
2 1.50 2.91 60 15 1.58 16.1±0.2 0.164±0.004
3 2.51 2.18 30 10 1.95 18.5±0.2 0.176±0.004
4 2.66 2.27 60 5 2.16 20.0±0.5 0.185±0.009

TABLE I. Properties of the four devices measured at TL = 4.2 K. w is the width of the voltage probes and W is the width of the relaxation
channel. Measurements from Device 1 are shown in Figs. 2-4.

changed when the width W is reduced to 30 µm, so we be-
lieve that parasitic heating is not affecting our results.
(ii) the width w of the HET probes The HET voltage probes
are paths for heat to leak out of the relaxation channel. Finite
element model simulations show that the measured ℓE and τi
will be lowered as the width w increases, numbers typically
being 5% for ℓE and 10% for τi. This explains the trend that
the measured τi is higher for Devices 3 and 4 compared to
Devices 1 and 2. To make more accurate inelastic scattering
time measurements, the smallest possible w should be used,
and the HETs should be run at more negative gate voltages.
(iii) the spacing of the HET probes If the temperature is
lowered to dilution fridge temperatures the exponential tem-
perature profile, ∆T (x)∼ exp(−x/ℓE), will be replaced by one
that is determined by cooling by the Ohmic contacts on the
HET voltage probes, as well as the Ohmic contact at the far
end of the R-channel. To accurately measure the temperature
profile in this limit requires HETs spaced evenly along the R-
channel.

In conclusion, we show how bar gate thermometers can be
used to measure the cooling length ℓE, wth a method that
is applicable to other 2D materials which are gatable. Spa-
tially separating the heating and cooling in non-local measure-
ments is key to measuring the inelastic scattering time τi. For
TL =2-5 K the measured τi has no dependence on carrier den-
sity n, but follows the temperature dependence for inelastic
scattering by acoustic phonons. As the lattice temperature TL
is reduced below 2 K cooling by the lattice diminishes, and
cooling by the Ohmic contacts become more dominant. This
crossover in cooling mechanism leads to a non-exponential
temperature profile in the relaxation channel. Consistent with
this crossover, for TL < 2 K there is no phonon drag contribu-
tion (∆Sg) to the measured thermopower of the bar gates, and
the 2DEG resistivity ρ(T ) saturates to a constant value that is
determined by the electron-impurity scattering.

Measurements of ∆T (x) also provide information about the

temperature gradient, ∇T (x), a quantity that determines the
magnitude of the magneto-thermopower in a transverse mag-
netic field, which will be presented elsewhere.20

Supplementary Material See supplementary information
(SI) file for further information.
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