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ABSTRACT
Aim: Land-use change drives biodiversity loss, but some species are more vulnerable than others. Indicators of global biodiver-
sity must attempt to summarise these impacts representatively and meaningfully, to guide biodiversity recovery. Yet species that 
are hard to detect, and thus feature less in relevant databases, might possess traits that make them particularly sensitive to an-
thropogenic impacts. Using global data for plant, bird and spider species, we develop a statistical approach to analyse and correct 
for the impact of excluding hard-to-sample species from global biodiversity indicators.
Location: Worldwide.
Time Period: Abundance studies published in 1998–2020; species occurrence records available from 1600 to 2023.
Major Taxa Studied: Birds, vascular plants and spiders.
Methods: We first quantified the extent to which the recordability of a species mediates the relationship between site-level 
abundance and broad land use type. We used the local abundance data in the Projecting Responses of Ecological Diversity in 
Changing Terrestrial Systems database (PREDICTS), for over 4000 plant, bird and spider species. As a proxy for species' re-
cordability, we used its number of occurrence records in the Global Biodiversity Information Facility database (GBIF). We then 
extrapolated our fitted statistical model to all species with valid GBIF occurrence records (0.27 M species).
Results: Less recordable species tend to decline more as land-use intensity increases, and problematically, they are underrepre-
sented in PREDICTS. A more representative global indicator can be obtained by extrapolating our model to the hard-to-sample, 
and on average, more sensitive species unobserved in PREDICTS. Our extrapolated, aggregate estimates show a lower abun-
dance of ‘the average species’ in anthropogenic land uses. For example, intensive agriculture only has 18% of the biodiversity level 
of primary vegetation, rather than the 47% estimated without extrapolation to the hard-to-sample species.
Main Conclusions: Given the bias encountered in PREDICTS and the considerable difference in abundance change estima-
tions, we recommend that other existing indicators include an extrapolation solution based on ours to incorporate the available 
data as effectively as possible. Using occurrence data to predict species' sensitivity unlocks many possibilities to improve global 
biodiversity indicators by enhancing their overall coverage and accuracy, without demanding additional data on poorly known 
species.
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1   |   Introduction

Land-use change is a major driver of biodiversity change, mainly 
through habitat loss and degradation (Jaureguiberry et al. 2022; 
Purvis et  al.  2019). A worldwide picture of how some aspects 
of biodiversity respond to land-use change seems to be within 
reach (De Palma et al. 2021; Hill et al. 2018; Leclère et al. 2020; 
Pereira et  al.  2024), based on high-level indicators regarding 
suitable habitat extent, species richness, community composi-
tion, or relative abundance. Such indicators play an important 
role in the formulation and evaluation of conservation policies 
(Leclère et al. 2020; Ledger et al. 2023; Nicholson et al. 2019). 
However, species vary widely in their sensitivity to land-use 
change (Newbold et  al.  2018; Sykes et  al.  2020). To represent 
accurately global trends in wild populations, models and indi-
cators (e.g., Living Planet Index; Biodiversity Intactness Index) 
must strive to capture the wide range of responses among spe-
cies and taxonomic groups (Hill et al. 2016; Jones et al. 2011). 
While biases in biodiversity data collection and their impact on 
global indicators are well recognised (Beck et al. 2014; Bowler 
et al. 2025; Di Marco et al. 2017), to the best of our knowledge, 
no one has developed a method to correct high-level indicators 
for the missing responses of species usually absent or underrep-
resented in ecological surveys—herein termed ‘hard-to-sample 
species’. Here, we developed a statistical approach to analyse 
and correct for the impact of excluding hard-to-sample species 
from global estimations of the effect of land use on biodiversity.

Of course, some species are harder to sample than others; there 
are several species- and observer-related factors that reduce the 
likelihood of species turning up in biodiversity datasets (e.g., 
monitoring time and location subject to observer convenience, 
Arazy and Malkinson 2021; observer skills, Bennett et al. 2024; 
favouring charismatic groups, Hudson et al. 2014). Missing spe-
cies would be a minor problem if their responses to anthropo-
genic threats were similar to those of the recorded species, but 
two factors contribute to a strong suspicion that this may not 
be the case. Firstly, evaluating the effect of different land uses 
requires standardised surveys of small plots. These surveys will 
tend to miss species that are cryptic or ‘rare’ in different ways 
(Bennett et al. 2024) because of logistical constraints on survey 
effort, sampling methods and the sampled area. Secondly, look-
ing within groups for which we already have a lot of data (i.e., 
vertebrate species), it seems that the rarer members are more 
likely to suffer from anthropogenic land uses (e.g., Newbold 
et al. 2018; Sykes et al. 2020). It is possible that traits that make 
species difficult to sample also make species more sensitive 
to land-use change (see Exploratory analyses A—Supporting 
Information S1—for further rationale). If so, by under-recording 
data from these highly sensitive species, we will underestimate 
biodiversity loss.

The lack of information for most species requires creative ap-
proaches to account for imperfect detection in biodiversity met-
rics and indicators (Bennett et al. 2024). These approaches may 
use the strengths of different data sources to complement one 
another (Twining et al. 2024). The strengths of occurrence re-
cords are their ubiquity and broad spatial coverage, providing 
data from the greatest possible range of species. We propose the 
number of occurrence records in the GBIF (Global Biodiversity 
Information Facility, https://​www.​gbif.​org) as a metric for the 

‘recordability’ of species, which includes factors known to lead 
to higher data volumes for some species than others. Number of 
records is likely to correlate with the chance of a species occur-
ring in a wide range of ecological datasets because of the posi-
tive relationships observed with detectability (Lobo et al. 2021), 
abundance (Callaghan et al. 2023) and range size (Exploratory 
analyses A—Supporting Information  S1) in some taxa. If, as 
mentioned above, some or all of these traits also correlate to a 
species' sensitivity to land-use change, then the ‘recordability’ 
trait could be a powerful tool with which to extrapolate. Whilst 
there is uncertainty about the mechanisms that underpin the 
correlations observed, they are plausible (see Exploratory anal-
yses A—Supporting Information  S1), and important to inves-
tigate, if they lead to a method that reduces our reliance on 
incomplete ecological trait databases.

To test the relationship between recordability and land-use sensi-
tivity, we leveraged two global biodiversity databases, GBIF and 
the PREDICTS (Projecting Responses of Ecological Diversity In 
Changing Terrestrial Systems, Hudson et  al.  2016) databases. 
GBIF is the international collaborative database of species oc-
currence records in time and space. Although this database has 
taxonomic, geographic and temporal biases (Beck et  al.  2014; 
Rocha-Ortega et al. 2021), it is currently the most comprehen-
sive source of presence records globally—covering ~1.75 M spe-
cies (excluding unreviewed scientific names) of which at least 
1.4 M have one occurrence record. The PREDICTS database (as 
updated in November 2022, Contu et al. 2022) collates over four 
million observations from studies that have compared the bio-
diversity of sites in different land-use types and/or intensities. 
Its structure facilitates global analyses, and it is used to derive 
several indicators of the strength of anthropogenic impacts.

We explored the extent to which the relationship between site-level 
abundance and land-use type in PREDICTS is mediated by the 
number of records in GBIF (‘recordability’) for a species. We chose 
to include species from three taxonomic groups that cover a range 
of species richness and intensity of study: birds, plants and spiders. 
We found that species with a lower number of records are con-
sistently more impacted by higher land-use intensities. Therefore, 
we were able to extrapolate this relationship to unstudied species, 
present in GBIF but not in PREDICTS (assuming that the relation-
ships between recordability and the traits that directly relate to 
sensitivity hold for unstudied species). We hope that this highly 
adaptable approach can improve global biodiversity estimates 
without depending on additional data collection.

2   |   Methods

2.1   |   PREDICTS Database

We obtained the species' local abundance data from the 
PREDICTS dataset, combining the data released in 2016 
(Hudson et  al.  2016) and 2022 (Contu et  al.  2022). This joint 
dataset contains 4.3 million observations from 817 studies as-
sessing the effects of land use change and intensification on ap-
proximately 32,000 species around the world. In essence, this 
database allows us to fit a model of how the abundance of ‘the 
average species of a given recordability’ depends on land use 
(Figure 1).
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PREDICTS study sites are classified into nine predominant land 
uses and three levels of use intensity. Full definitions of pre-
dominant land use, the nine land use categories and use inten-
sity can be found in the Supporting Information S1 of Hudson 
et al. (2014). Briefly, land uses are:

•	 Primary vegetation: native vegetation that is not known or 
inferred to have ever been completely destroyed before the 
year in which the biodiversity was sampled.

•	 Secondary vegetation: land where the original primary veg-
etation was completely destroyed at some time in the past. 
This is further divided into young, intermediate, mature or 

indeterminate depending on the structural complexity of 
the vegetation defined in the study.

•	 Plantation forest: land where people have planted crop trees 
or crop shrubs for commercial or subsistence harvesting.

•	 Pasture: land where livestock is known to be grazed regu-
larly or permanently.

•	 Cropland: land where people have planted herbaceous crops 
for human and livestock consumption.

•	 Urban: includes areas with human habitation and/or build-
ings, where vegetation is managed for amenity purposes.

FIGURE 1    |    Flow diagram of datasets derived from the PREDICTS (Projecting Responses of Ecological Diversity in Changing Terrestrial Systems) 
and GBIF (Global Biodiversity Information Facility) databases. (A) Total abundance dataset derived from known local abundance of 4454 species 
of birds, plants and spiders reported in 141 studies in the PREDICTS database and (B) the number of records for these species in GBIF. (C) Number 
of records of 273,420 species of birds, plants and spiders absent in the PREDICTS database. We used dataset (A) to fit a linear mixed-effects model 
(LMM), the ‘Records Model’. We used this model to predict the abundance of species present only in PREDICTS (dataset B) and all species present 
in GBIF (datasets B and C) to estimate the (D) observed and (E) extrapolated abundance per land use type (PV = Primary vegetation, SV = Secondary 
vegetation, LIA = low-intensity agriculture, HIA = high-intensity agriculture). We tested the robustness of the Records model by splitting dataset 
A into testing (F) and training (G) datasets (see Section 2.6 for details). We also used dataset (A) to estimate the Biodiversity Intactness Index (BII, 
dataset H, see Section 2.7).
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Land-use intensity is based on the level of disturbance and ex-
tent of impact for primary and secondary vegetation, divided 
into light, minimal and intense. The exact definition varies de-
pending on the land-use type.

We simplified this land-use categorisation (Table  S1) by fol-
lowing the classification suggested by Outhwaite et  al.  (2022) 
to obtain an easy-to-interpret gradient of increasing anthropo-
genic impact. This high-level classification of land use and use 
intensity (hereafter ‘land use’) includes primary vegetation, sec-
ondary vegetation, low-intensity agriculture and high-intensity 
agriculture. The studies included in our analyses were those that 
assessed two or more of these simplified land use types. We used 
the observations of those studies where the taxa were identified 
at the species level, and the diversity metric type recorded was 
abundance. Filtering by these criteria led to 1.7 million records 
from 413 studies (Table S2).

We then selected the records of three contrasting taxonomic 
groups: birds, a well-studied group with relatively low richness; 
spiders, a relatively unstudied species-rich group; and vascular 
plants, a relatively well-studied and species-rich group. Although 
these groupings are at different taxonomic levels (Class Aves for 
birds, order Araneae for spiders and subphylum Trachaeophyta 
for plants), they represent the level at which ecological surveys 
are most commonly organised. In some cases, included studies 
did sample some individuals outside the focal taxonomic group: 
in these cases, the non-relevant species were excluded from our 
analysis, but the rest of the study was kept.

2.2   |   GBIF Occurrence Counts

We obtained the number of records of all bird, plant and spider 
species in GBIF, referred to as the occurrence count (Table S2). 
The objective is to use occurrence count as an accessible met-
ric of each species' ‘recordability’, akin to a species trait in our 
analyses (see the Section 1 for further commentary on this). We 
filtered the data to include binomials with ‘accepted’ taxonomic 
status (i.e., not synonyms with the unique identifier ‘taxonKey’), 

species not extinct or extinct in the wild, and where occurrence 
count was greater than zero before 2023 (period 1600–2023), 
which yielded 273,420 species (dataset C in Figure 1). The vast 
majority of species correspond to plant species (89%), 8% to 
spiders and 3% to birds. Most of the species in the GBIF sam-
ple (dataset C in Figure 1) have less than 1000 records, and a 
large proportion have less than 100 (min = 1; max = 22,679,448; 
mean = 4197; median = 18; lower quartile = 4, upper quar-
tile = 78; Figure 2a, cyan).

We matched the number of records to the species found in the 
PREDICTS database, based on PREDICTS' Best Guess Binomial 
attribute (the inferred species' scientific name, see Hudson 
et  al.  2014), and found 4454 matches (2188 birds; 1916 plants; 
350 spiders; dataset B in Figure 1, Table S2). In this sub-sample 
of species recorded in both GBIF and PREDICTS (dataset B in 
Figure 1), most of the number of records ranged from the thou-
sands to the hundreds of thousands (min = 1; max = 22,679,448; 
mean = 156,399; median = 2652; lower quartile = 253, upper 
quartile = 27,728; Figure  2a, grey). Before analysis, we log10-
transformed the number of records and rescaled by subtracting 
the mean of dataset A (Table S3).

2.3   |   Total Abundance and Effort for Land Use 
Comparisons

For each PREDICTS study, we calculated the total abundance of 
each species at each land-use type (i.e., summing across any sites 
with the same simplified land use type, dataset A in Figure 1). 
This aggregation reduced the observations from 1.7 million to 
67,000 observations of total abundance (before taxonomic group 
selection, see Table S2 for more details). Total abundance val-
ues in our sample were right-skewed with a high number of 
zeros. Before analysis, we added the study's minimum observed 
abundance to every abundance value and log10-transformed it. 
Correspondingly, we calculated the total survey effort per land-
cover type per study by summing the ‘rescaled sampling effort’ 
across any sites with the same simplified land use type and 
log10-transformed it.

FIGURE 2    |    Distributions of the number of GBIF occurrence records across species for the period 1600–2023. (A) Distributions as a density plot 
comparing all species available in GBIF (cyan, n = 273,420 bird, plant, and spider species, dataset C in Figure 1) to the species also present in our focal 
studies in the PREDICTS database (grey, n = 4454, dataset B in Figure 1). Dashed lines indicate the 0.05 (42 records, left) and 0.95 (1,467,493 records, 
right) quantiles of the PREDICTS subset. (B) Distributions by taxonomic group of interest, with colours for all-GBIF and the PREDICTS subset as in 
(A). The boxes show the quartiles, and the whiskers extend from minimum to maximum.
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Our final dataset for statistical analysis (dataset A in Figure 1) 
comprised 141 studies in PREDICTS, distributed in 56 coun-
tries (Figure S1). Over a third of these species (1568 spp.) were 
the subject of more than one study, and the rest (65%) were 
present in one study. All three taxonomic groups of interest 
have all four land-use types represented (Figure  S2). The 
most common comparison within these studies was Primary 
vegetation versus Secondary vegetation (46%), followed by 
Primary vegetation versus Low-intensity agriculture (37%), 
Secondary vegetation versus Low-intensity agriculture (31%), 
Low-intensity agriculture versus High-intensity agriculture 
(25%) and Primary vegetation versus High-intensity agri-
culture (24%), while the least number of studies (19%) com-
pared Secondary vegetation versus High-intensity agriculture 
(Table S4).

It is worth noting that, when reported by the original study, 
PREDICTS records include time since conversion (‘years since 
fragmentation or conversion’). However, we did not consider 
this variable in the model, since it is available for a small fraction 
of records (26% of the full database) and would substantially re-
duce our sample size. Therefore, the total abundance estimation 

may include a potential lag of species occurrence or abundance 
after land–use change.

2.4   |   Mixed-Effects Model for Local Abundance

We produced a linear mixed-effects model, hereafter the ‘Records 
model’, using the subset of the PREDICTS database records de-
scribed above. We used the log10-transformed total abundance 
(total abundance) as the response variable, with land-use type 
(landuse), taxonomic group (taxon) and the transformed num-
ber of species occurrence records (records) as fixed effects 
(Table 1) and assumed a Gaussian error distribution. Three-way 
interaction terms allowed the effect of land use to depend on 
the number of records, and for the effects of records to vary be-
tween taxonomic groups (see model formula in Table 1). Study 
and species within study were random effects, and the log10-
transformed total effort (total effort) per land-cover type per 
study was an offset term, meaning that the abundance of each 
species observed is assumed to be directly proportional to survey 
effort (Newbold et al. 2018, 2014). We compared the goodness-
of-fit of the Records model to alternative models—successively 

TABLE 1    |    Statistical summary of the ‘Records model’a, a linear mixed model explaining the local abundance of bird, plant and spider species 
observed in PREDICTS (i.e., fitted to dataset A in Figure 1). ‘landuse’ is an ordered factor, ordered from lowest to highest use intensity, fitted with 
polynomial contrasts (terms: .L, linear; .Q, quadratic; .C, cubic). ‘taxon’ is an unordered factor and the transformed number of GBIF records ‘records’ 
is a scalar. Number of observations = 18,698; Random intercepts were fitted for studies (141 levels, dataset A in Figure 1), and species within studies 
(7763 levels). Note that because the local abundances for different taxa (and studies) tended to be measured in different units, this model's coefficients 
can't be used to compare absolute abundance levels between taxonomic groups.

Fixed effects Estimate SE T-value dfb p

(Intercept) −0.493 0.119 −4.147 132.007 < 0.001

landuse.L −0.224 0.012 −18.848 11,624.206 < 0.001

landuse.Q −0.036 0.011 −3.143 11,648.378 0.002

landuse.C −0.025 0.011 −2.381 11,514.918 0.017

taxon Plant 0.380 0.190 1.999 135.141 0.048

taxon Spider 0.447 0.282 1.587 141.976 0.115

records: taxon Bird 0.074 0.009 8.013 7525.588 < 0.001

records: taxon Plant 0.095 0.014 7.010 8403.767 < 0.001

records: taxon Spider 0.318 0.033 9.664 8536.208 < 0.001

landuse.L: records: taxon Bird 0.173 0.010 17.445 12,252.253 < 0.001

landuse.Q: records: taxon Bird 0.004 0.010 0.428 12,989.143 0.668

landuse.C: records: taxon Bird 0.025 0.009 2.677 12,037.901 0.007

landuse.L: records: taxon Plant 0.066 0.013 5.039 12,260.474 < 0.001

landuse.Q: records: taxon Plant 0.017 0.012 1.454 11,907.732 0.146

landuse.C: records: taxon Plant 0.012 0.011 1.085 12,070.948 0.278

landuse.L: records: taxon Spider 0.041 0.034 1.221 15,497.076 0.222

landuse.Q: records: taxon Spider −0.027 0.024 −1.136 11,451.153 0.256

landuse.C: records: taxon Spider −0.043 0.024 −1.787 12,218.887 0.074

Note: Random effects variance: residual = 0.245, study = 1.043, species given study = 0.138. Marginal R2 = 0.022; Conditional R2 = 0.832.
alog10(total abundance) ~ landuse × (records:taxon) + taxon + (1|study/species) + offset(log10(total effort)).
bSatterthwaite approximation to degrees of freedom (Kuznetsova et al. 2017).
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reducing the parameters that depended on the number of re-
cords (Table  S5)—and the full interactive Records model was 
the best.

To illustrate the effects of the interactions in the Records model, 
we identified the number of records and plotted the respective 
model-estimated abundance (Figure 3) at five chosen values of 
the number of records (at percentiles in the grey density distri-
bution from Figure 2a). These predictions are based purely on 
the model's fixed effects, and are not species-specific, that is, the 
abundance outcome for a land-use type is the same wherever the 
taxon and number of records are the same.

To calculate 95% confidence intervals on an estimated local 
abundance, we generated 5000 complete sets of plausible model 
parameters. The Records model has 18 fixed effect parameters 
(Table 1), and we used the Cholesky decomposition to produce 
18 random, normally distributed variables with the same covari-
ance structure as the parameters. We then rescaled the variables 
to have the correct means (means of each parameter) and stan-
dard deviations (standard error of each parameter). Each of the 
5000 parameter sets is then used to make a model prediction, 

and the 95% confidence interval spans from the 2.5th to the 
97.5th percentile of this population of predictions. In this way, 
our confidence intervals account for the uncertainty in all the 
model's fixed effects.

2.5   |   Aggregate Indicators and Extrapolation

PREDICTS studies have over-sampled the most recordable 
species (those with the highest numbers of records in GBIF; 
Figure 2)—a feature also present in other leading biodiversity 
databases (Figure  S4) and different time periods (Figure  S5). 
Therefore, despite the uncertainty involved, it seems important 
to try to correct this under-sampling. We explored one way of 
doing this by extrapolating the Records model to other named 
species in GBIF in the same taxonomic groups (dataset E in 
Figure 1).

We calculated an average global measure of change in species 
abundance, either with or without extrapolation to species out-
side PREDICTS (using either dataset E or dataset D in Figure 1). 
We created a predictions table with one row for each species for 

FIGURE 3    |    Model estimates of local abundance, depending on land use and number of GBIF records for (A) bird, (B) plant and (C) spider species. 
Estimates are derived from the fixed effects of the ‘Records model’ (see Table 1) which was fitted to 4454 species, dataset (A) in Figure 1. The chosen 
values of the number of records are percentiles of the overall distribution as shown in the legend, which can be compared to the grey density plot in 
Figure 2a (see Table S3 for percentiles by taxon). Model-fit lines in black are within the range of GBIF numbers of records for the taxon; for lines in 
grey there are no species with this number of records within the taxon in dataset (A).

A B

C
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each land-use type (regardless of whether a species-land use 
type combination appeared in the PREDICTS data). As above, 
we made predictions from the fixed effects of the Records model 
only, which means that although species are enumerated, only 
their taxon and their number of records affect the predictions. 
From the predictions, we took the geometric mean difference 
between primary vegetation and each other land-use type across 
species. We back-transformed this mean to give an approximate 
proportional change. We placed confidence intervals on the pre-
dicted, proportional change by calculating the same index with 
each of the 5000 randomly drawn parameter sets described in 
Section  2.4 and identifying the 2.5 and 9.75 percentiles of the 
resulting distribution. The ‘confidence’ of this interval should 
be understood as the confidence in the average effect, not the 
confidence of what we would find sampling any one location or 
species.

2.6   |   Robustness to Data Exclusion

As a supplementary analysis, we assessed the robustness of 
the ‘Records model’ to extrapolate abundance predictions. We 
set up a scenario within the PREDICTS dataset to exclude spe-
cies with abundances closest to zero (assuming these species 
were most likely to have been missed if the sampling effort 
had been lower) and re-fit a ‘Training model’ to the remaining 
higher-abundance species. To do this, we first calculated each 
species' mean abundance in each study. We then divided each 
study into a testing dataset (dataset F in Figure  1), contain-
ing species with less than 10% of the study's mean abundance 
(n = 2017 species-land use observations) and a training dataset 
(dataset in Figure 1), containing species with more than 10% 
of the mean abundance (n = 16,681 observations). We used 
10% as the threshold because this was approximately (assum-
ing random resampling) the probability of a species being ab-
sent in at least two land uses, that is, the proportion of zero 
abundance cases squared (0.3222 = 0.10).

The parameter estimates of the Training model, that is, model 
fitted with the training dataset (dataset G in Figure 1, Table S6, 
Marginal R2 = 0.020, i.e., variance explained by the fixed ef-
fects alone; Conditional R2 = 0.830, i.e., variance explained 
by the entire model), fall within the 95% confidence interval 
of the estimates of the Records model (fitted with all observa-
tions; Figure S6). The fixed effects of the Training model have 
the same pattern of significance as the Records model, except 
for the Plant taxon, which is not significantly different from the 
Bird taxon. Finally, the Pearson's correlation between the pre-
dicted and observed abundances in the testing dataset (dataset 
F in Figure 1) is similar for both models (predicted values with 
Records model vs. observed values R2 = 0.0017, Figure  S7B; 
predicted values with Training model vs. observed values 
R2 = 0.0019, Figure S7C). These results suggest that extrapolat-
ing to the low end of the recordability range is reasonable since 
the same trends seem to continue.

2.7   |   Biodiversity Intactness Index Comparison

We compared our estimations of change with those obtained 
through a leading global biodiversity indicator: the latest version 

of the Biodiversity Intactness Index (BII, Figure S1H; De Palma 
et al. 2021; De Palma et al. 2024). The BII is a model-based indi-
cator of terrestrial biodiversity that measures the average state 
of local biodiversity by comparing the abundance and compo-
sition of a broad range of species in a given site to the state of 
their reference populations in minimally impacted sites (De 
Palma et al. 2021). We used the BII as a reference point for our 
prototype indicator because it uses the PREDICTS database 
and compares all land uses to primary vegetation as a reference 
level. If our prototype showed large differences from the BII, 
this would indicate a large impact of differing assumptions of 
the two models.

The BII combines a model of total abundance and a model of 
compositional similarity of species in a given area relative to 
primary vegetation (De Palma et al. 2021; Newbold et al. 2016). 
The total abundance is defined as abundance per unit effort. The 
composition similarity uses the balanced Bray–Curtis dissimi-
larity statistic, and this cannot be calculated for all the studies 
included in the total abundance statistic. The BII is obtained by 
multiplying the estimates of the two models for each land-use 
and intensity class, such that any shifts away from the composi-
tion of primary vegetation are negative, but these can be offset 
by increases in total abundance (for more details see De Palma 
et al. 2021; De Palma et al. 2024).

We used the land cover classification proposed by Outhwaite 
et  al.  (2022) and the species ‘Best guess binomial’ attribute to 
calculate compositional similarity. We obtained the BII index for 
the PREDICTS studies on birds, plants or spiders, as were used 
to fit our model (i.e., those with at least some Primary vegetation 
data and more than one species). We used 141 studies (dataset 
H in Figure  1) to estimate total abundance and 87 studies for 
compositional similarity (Tables S7 and S8).

3   |   Results

The ‘Records model’ shows that the local abundance of a species 
in PREDICTS is significantly affected by land use, the number 
of records in GBIF and their interaction (Table 1, Figure 3). The 
Records model's fixed effects explain a small but consistent pro-
portion of variance (Marginal R2 = 0.022), whereas the random 
effects (i.e., study and species by study) explain most variation 
(conditional R2 = 0.83, Nakagawa and Schielzeth 2013). In this 
scenario, where our data sample includes thousands of point ob-
servations from very heterogeneous sources, we do not expect a 
single, highly simplified variable such as land-use type to have 
a high explanatory power, since countless variables impact the 
abundance of a species in a given site on a given day. Challenging 
the conventional views of low R2 values in ecological models is 
beyond the scope of this study (for a more in-depth discussion, 
see Low-Décarie et al. 2014), but such values are not unusual for 
a meta-analysis (Møller and Jennions 2002). We used the model 
predictions to understand the global average effect size of land 
use, and we do not suggest using it to predict the local abun-
dance of any particular species at a particular site.

The baseline effect of land use shows declining abundance in the 
order primary vegetation, secondary vegetation, low-intensity 
agriculture, and high-intensity agriculture (shown by the main 
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effect terms in Table 1, rows 2–4; p-values < 0.05, and applicable 
to species with the average number of records). The step down 
from low-intensity agriculture to high-intensity agriculture has 
the greatest magnitude (Δ Predicted log10[abundance] = −0.16; 
Figure S3).

The interaction between land use and the number of records 
given taxonomic group is overall highly significant (ΔAIC = 399 
compared to a model without land use and records interac-
tion, Table S5), and the effect of these interactions is shown in 
Figure 3. Overall, plant and bird species with fewer occurrence 
records are consistently more negatively affected by anthropo-
genic land uses. For birds (Figure 3A) and plants (Figure 3B), as 
the number of records for a species increases, the relationship 
with land use becomes shallower (more positive) and more lin-
ear (quadratic and cubic terms closer to zero). Although for spi-
ders the interaction terms are individually not significant, like 
in bird and plant species, spider species (Figure 3C) at the low-
est percentile number of records show the greatest total decline 
between primary vegetation and intensive agriculture. Only in 
birds among the highest observed numbers of records do we see 
species that benefit from anthropogenic factors (line that in-
creases from left to right in Figure 3A). For plants and spiders, 
the highest prediction lines are for nominal values higher than 
the maximum numbers of records observed in GBIF for these 
taxa (grey lines in Figure 3B,C), and we do not predict a positive 
response to anthropogenic land use anywhere in our parame-
ter space.

We converted our results to an aggregate index: an overall sum-
mary of relative abundance of organisms in modified land uses 
compared to primary vegetation (Figure 4A, note the un-logged 
y-axis in comparison to Figure  3). Specifically, this took the 
geometric mean across species of their model-estimated abun-
dances in each land use type (see Section 2.5).

The two versions of our aggregate index are considerably dif-
ferent (Figure 4A). When extrapolating to all birds, plants and 
spiders in GBIF (dataset E in Figure 1), the proportional declines 
for all modified land uses are considerably greater than those 
estimated using only the species included in the PREDICTS da-
tabase (dataset D in Figure 1). The percentage-point difference 
made by extrapolation was 11% for secondary vegetation, 15% 
for low-intensity agriculture and 19% for high-intensity agri-
culture (Figure 4A), which, for example, makes high-intensity 
agriculture's predicted proportional decline ~72% (95% CI, 66 to 
76), that is, intensive agriculture only has 18% of the biodiversity 
level of primary vegetation, rather than the 47% estimated with-
out extrapolation to the hard-to-sample species.

We then compared our aggregate index to the pre-existing BII, 
which is also expressed as a difference from primary vegetation. 
Although ecologists will readily perceive differences between 
these metrics for comparing land uses, when presented to a poli-
cymaker, they could be used to answer the same question: ‘How 
bad is it?’. We can compare our metric to the BII for its opti-
mism/pessimism using the non-extrapolated version (Figure 4A 
‘Records model, PREDICTS’, dark green bars) and the BII de-
rived from the same studies (Figure 4B). This comparison shows 
the BII is more optimistic about the change to both agricultural 
land uses but slightly more pessimistic about the change from 
primary to secondary vegetation (Figure 4).

4   |   Discussion

Hard-to-sample species are substantially under-represented in 
the PREDICTS database and other leading biodiversity data-
bases. These databases play an important role in documenting 
biodiversity loss and attributing its causes (Brooks et al. 2015; 
Stephenson and Stengel 2020). Global indicators based on such 

FIGURE 4    |    Proportional difference of three modified land cover types compared to primary vegetation. (A) Our proposed aggregate biodiversity 
metric, which uses the geometric mean predicted abundance of the Records model (with a 95% CI based on uncertainty in all the fixed effects, see 
Section 2.7). Either predictions are made across the 4454 bird, plant and spider species observed in the PREDICTS database (dataset D in Figure 1; 
dark green), or they are made for 273,420 species for which the number of records was available in GBIF (dataset E in Figure 1; ‘extrapolated version’, 
light green). (B) The Biodiversity Intactness Index (methods in De Palma et al. 2024) based on PREDICTS database studies of birds, plants and spiders 
(dataset H in Figure 1).
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datasets thus suffer from the under-representation of the wider 
span of responses to land-use change of missing species. We 
found that—consistently across taxonomic groups—hard-to-
sample species are more negatively affected by anthropogenic 
land uses. No global metrics are immune to these biases (e.g., 
those reviewed in Rosa et al. 2020). Therefore, in the future de-
velopment of all these metrics, the feasibility of extrapolating to 
under-sampled and potentially more sensitive species should be 
seriously considered.

The generalisable message of our study transcends the spe-
cific decline metric that we chose and its comparison to the 
BII. However, it is reassuring that the trends of our metric are 
broadly similar to the BII when calculated on similar data: that 
is, it provides a ‘sense check’ of our metric. If we could find a way 
to extrapolate the BII to account for under-recorded species, we 
would expect the values to decrease, because of the stark bias 
shown in Figure  2. We have not attempted any extrapolation 
method for the BII here, since it would require some complex 
additional assumptions. In brief, the statistical models underly-
ing the BII do not contain any taxon-specific values that can be 
straightforwardly extrapolated to an additional set of species (for 
details on the BII's methods, see De Palma et al. 2024).

We argue that an extrapolation method is the most powerful 
way to address the undersampling of species, because it com-
bines insight from different databases. We have shown that 
statistical extrapolation is viable, using information from GBIF 
and PREDICTS (although other approaches to extrapolation 
would be possible, as discussed in the following paragraphs). 
Despite their limitations, both PREDICTS and GBIF contain 
vital information for understanding biodiversity loss and prior-
itising action towards nature's recovery. We are not here simply 
adding to the list of limitations of such data collection, which 
have been extensively discussed elsewhere (Hughes et al. 2021; 
Troia and McManamay 2016). We are showing how, when used 
together, the strengths of each database can complement the 
other. The main strength of PREDICTS is its structured design, 
where equivalent surveys were applied in different land uses 
and/or intensities (Newbold et  al.  2019). However, the studies 
within PREDICTS mostly use community sampling methods 
with a level of effort that could not be expected to sample all 
the rarest species in the habitat concerned. Though PREDICTS 
should continue to grow, it will still consist of patchy snapshots 
of communities (Hudson et  al.  2014). Standardised field sur-
veys are labour-intensive and technically demanding (Gotelli 
et al. 2023), so the amount of survey effort required to extend 
PREDICTS studies to capture rarer species is unfeasible. By con-
trast, extrapolating from these studies is highly feasible, as we 
have shown.

The main strength of GBIF is its sheer size and taxonomic cover-
age. However, it is a collection of heterogeneous occurrence data 
sets, collected for different reasons, and species that are rare in 
different ways can sometimes be under- and sometimes over-
represented (Garcia-Rosello et al. 2023; Hughes et al. 2021; Troia 
and McManamay 2016). We used GBIF to enumerate the species 
in each taxonomic group, and to assign each its ‘recordability’ 
as its number of records. Both aspects have associated uncer-
tainties. If we wish to extrapolate to the greatest possible num-
ber of hard-to-sample species, we have little choice but to use 

GBIF data. Because of GBIF's integration with the Catalogue of 
Life (the global species checklists aimed to include all known 
species of organisms on Earth), there is no better source for a 
complete list of accepted species for most taxonomic groups. 
However, of the taxa included in our analyses, the spider taxon 
is estimated to contain four times as many unnamed species 
(Agnarsson et al. 2013), whereas the taxonomy of higher plants 
and birds is relatively comprehensive (Clements et  al.  2023; 
Hobohm et  al.  2019). We could speculate that if we had been 
able to include species entirely missing from GBIF, our extrap-
olated estimates of abundance change would probably be more 
pessimistic. However, the estimates of the numbers of missing 
species are themselves extrapolations, and the compounded un-
certainty would be very high.

We propose that the number of records for species in GBIF is a 
useful metric of their ‘recordability’. If recordability just means 
a species' frequency of recording in other biodiversity databases, 
our investigations strongly support this. Recordability is the crit-
ical variable in our analyses because it is correlated to a species' 
chance of being absent from PREDICTS and is also correlated 
to its response to land use. Nevertheless, we do not claim that 
recordability is the only variable that could provide this extrapo-
lation and imputation function. We may believe that functional, 
ecological traits underlie species' responses to land use, and 
these traits happen to be correlated to recordability (Exploratory 
analyses A—Supporting Information S1, Figure S8), but trait da-
tabases are only developed for well-studied taxa (Table S9, Etard 
et al. 2020; Sandel et al. 2015). For example, Sykes et al. (2020) 
found land-use responses could be related to three aspects of 
rarity among vertebrate species—that is, geographic range size, 
population density, and breadth of habitat requirements—, but 
in fact, around three-quarters of the species included were birds, 
and the third aspect of rarity could only be determined for about 
a quarter of the species. Thus, while such studies are valuable for 
exploring ecological mechanisms, they are currently less useful 
for developing representative global indicators. The urgent need 
for conservation decisions cannot wait for the ideal data to be 
available (Garcia-Rosello et al. 2023), so we need to maximise 
the utility of the data we currently have.

If we accept the need for GBIF data rather than trait databases, 
could we nevertheless process these data in a smarter way? This 
question deserves further investigation. On one hand, record-
ability might be a consistent feature of a species, and it might 
be advantageous that a mixture of underlying factors contrib-
utes to it (as long as it is highly predictive, the mixture does not 
matter). On the other hand, there may be nuisance factors af-
fecting the number of records in GBIF that we should filter out 
if we can. For example, note that we have fitted relationships 
independently for each taxon, because taxonomic group impacts 
almost everything about how occurrence records are collected, 
and by whom. Additionally, we tried our modelling approach 
with different GBIF time periods and found almost identical re-
sults, suggesting that the time period is not a problematic factor. 
If we could find a metric of recordability that better accounted for 
group-wise and temporal differences in recording practices (see 
Exploratory analyses B—Supporting Information S1, Figures S5 
and S9), we might find this more reliably related to the response 
to land use, and therefore more robust to extrapolate with. There 
are lines of research that try to predict ‘real’ traits from GBIF 
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data, notably the trait of range size (Smith et al. 2020), and there 
are existing approaches to reducing the effects of biased sam-
pling in presence-only datasets (Botts et al. 2012). However, it 
is almost inevitable that all of these approaches yield more un-
certain estimates for the species with fewer records, and at the 
moment, we do not see a strong reason to believe they would 
give better predictions than using one simple, concrete piece of 
data: the number of records itself.

There are two alternative ways forward for improving global in-
dicators to better account for hard-to-sample species. One would 
be to further develop our indicator shown in Figure 4a, and the 
other would be to develop extrapolation methods for the other 
established indicators (e.g., Biodiversity Intactness Index, Living 
Planet Index, other indicators reviewed in Rosa et al. 2020). To 
the extent that other indicators have already built up political 
support, it may be more fruitful to adapt them. There is already 
a history of adapting indicators where better data and fitting 
methods become feasible (Ledger et  al.  2023); and although 
there are good reasons for measuring some differing aspects of 
biodiversity, policymakers can get frustrated if indicators seem 
inconsistent (Hill et al. 2016). Extrapolation may even make a 
difference to the indicators that already restrict themselves to 
vertebrates and plants (e.g., several of the indicators used for in-
tercomparison in Pereira et al. 2024) if they do not already model 
all species in the group. However, we would argue strongly for 
the inclusion of a greater range of taxa in any indicators where 
possible; for example, the BII is particularly well designed for 
including many diverse taxa (De Palma et al. 2021).

Our prototype indicator could be extended in several ways 
where there are enough data to support this, for example, in-
cluding more taxonomic groups, more land-use categories, or 
having variants for different continents or biomes. We could also 
relax our assumption about weighting every species equally in 
the geometric mean. Before making any refinements, however, 
it is important to consider how the indicator would be used and 
interpreted by policymakers (Stevenson et al. 2021). Some indi-
cators are effective for raising awareness and convincing non-
scientists of the need for action (Ledger et al. 2023). However, 
the best indicators for deciding between specific policy op-
tions are not necessarily the same (Hill et al.  2016; Nicholson 
et al. 2012). Although there are calls for causal models that could 
work equally well for communication, policy testing, monitoring 
and evaluation (Gonzalez et al. 2023; Hill et al. 2016; Nicholson 
et al. 2012), there are still many hurdles to overcome for this to 
happen globally. Our approach to extrapolation is quite general, 
so it could be applied as part of a causal model to help correct for 
patchy data availability. It could be applied to develop a global 
model with as many species as possible, but simple land cover 
categories, because these are the only ones that are mapped 
globally (Hill et  al.  2018). Or it could be used for national/re-
gional decision-making with only the species that occur locally 
and made more relevant to the land-use transitions that can 
occur locally (Martin et al. 2022).

The fact that a large fraction of the world's species is under-
recorded is often mentioned, but rarely do studies suggest practi-
cal workarounds for correcting the biased assessments that may 
arise from biased data—they may more often suggest collecting 
more data (Gonzalez et  al.  2023). While methods have been 

developed to correct for missing biodiversity data (e.g., weight-
ing, subsampling and imputation, Bowler et  al.  2025), many 
leading biodiversity indicators that use global biodiversity data-
bases do not currently adopt any correction methods. Here, we 
present a correction approach based on statistical extrapolation 
and show the magnitude of difference this could make across se-
lected taxonomic groups. Since the difference seems big enough 
to matter to policymakers (over 10 points on a 0–100 scale), we 
suggest that all developers of high-level biodiversity indicators 
attempt to implement an extrapolation solution that is relevant 
to their outcome of interest.
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