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We employ multilevel Bayesian quadrature (MLBQ)
to quantify uncertainties in the land cover roughness,
a critical but unknown parameter for simulation of
structural forces from future tsunamis that inform
coastal engineering and urban planning. To account
for this uncertainty, we regard roughness as a
nuisance parameter and integrate out its effects on
the maximum momentum flux. A comprehensive
integration over a range of roughness requires
large numbers of computationally expensive
simulations. We circumvent this hurdle using
multilevels of resolution for the simulations, a
mix of two levels of mesh sizing for underlying
non-uniform unstructured mesh—a low (50m) and
high (25m) resolution. The computational burden
of the overall integration is further reduced by
blending the outputs of the multilevel simulations
using Bayesian quadrature. Using end-to-end
physical and numerical modelling to simulate
the entire tsunami life-cycle—earthquake source
to coastal inundation—we illustrate our approach
by computing probability distributions of local
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effects from future large tsunamis for Sumatra. Our MLBQ framework, accounting for
uncertainties in roughness while reducing computational burden, can improve probabilistic
hazard and risk assessments in combination with other uncertainties.

1. Introduction

As one of the most destructive natural disasters, tsunamis have caused a large number of
casualties and economic losses in history. The long wavelengths of tsunami waves enable them
to travel across large areas of the world’s oceans and cause widespread destruction and death.
The 2004 Indian Ocean tsunami generated by the M9.1 Sumatra~Andaman earthquake was
the deadliest tsunami on record. The massive tsunami claimed the lives of more than 220000
people and destroyed countless buildings and towns in countries surrounding the Indian Ocean,
including Indonesia, Thailand, Sri Lanka and India among other countries, causing billions of
dollars of economic loss [1]. More recently, the 2011 Tohoku tsunami pounded the northeastern
coast of Japan, killing more than 19000 people and left thousands missing. The tsunami also
caused the Fukushima nuclear accident and the radiation leak, which brought extensive and
severe negative effects [2,3].

Coastal engineering plays an important role in disaster mitigation. Constructing coastal
barriers such as dikes, berms and embankments, and strengthening the seismic capacity of
buildings can mitigate the effect and encroachment of tsunami waves and reduce the collapse
and damage to buildings. For example, the results of the 2004 Indian Ocean tsunami field survey
showed that port facilities such as breakwaters and sturdy coastal houses mitigated the damage
due to the tsunami [4].

Studying future tsunami wave force acting on land structures is necessary for coastal
engineering. Many studies mainly focus only on inundation depth [5]. The velocity of waves
is also important in coastal engineering, e.g. when modelling tsunami empirical fragility [6]. The
fluid force can be evaluated with hydrodynamic force, which is proportional to the momentum
fluxes, a function of the inundation depth and the velocity of the flow. This is a more valid
measure of forces on buildings than flow height or velocity. The quantity is essential for engineers
when designing buildings with appropriate structural systems and materials to resist tsunami
waves. For example, the quantity is used in Tohoku tsunami-induced building failure analysis
[7]. By combining the results with the momentum fluxes of future tsunamis, engineers can have a
better understanding of tsunami risks, leading to more effective coastal engineering in mitigating
disasters.

One key ingredient in modelling tsunami flow is friction parametrization. Manning’s n
parameter is a common choice due to its ease of understanding and low computational load. It
is widely used in tsunami models [8] and recently other parametrizations have been proposed to
improve the Manning coefficient with three parameters performing slightly better [9]. Manning’s
roughness coefficient n is not directly measurable. The coefficient varies spatially based on
roughness and other surface characteristics of the seabed. However, calibration of n values for
tsunami modelling remains limited [8,10,11]. Many tsunami modellers rely on standard values
from the literature, despite the fact that n is varied and uncertain. This approach potentially
underestimates the mitigation effects of forests and structures [8]. Active research has been
conducted to constrain the roughness coefficient [12,13]. Sensitivity analyses have shown that
the epistemic uncertainty in Manning’s roughness coefficient significantly affects the simulation
results [11,14,15], including velocity, inundation and momentum flux, which we demonstrate later
in this study.

Our goal in this paper is to quantify the epistemic uncertainty arising from a lack of knowledge
of the Manning coefficient values, using the methodology of multilevel Bayesian probabilistic
numerical methods built with Gaussian processes (GPs) to enable efficient computations. Our
assumptions are that expert knowledge can provide a distribution of the unknown Manning
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Figure 1. Flowchart illustrating the integration of various components employed in this study.

coefficients (albeit here with two examples), and that the friction is uniform everywhere on land
for the purpose of illustration. The overall implication of our approach is that one needs to think
about the level of uncertainty in the nature of the friction over the landscape as it can yield large
variations, especially when the friction levels are deemed to be smaller—possibly wrongly as
often.

In the following sections of the paper, we employ Volna-OP2! as the tsunami simulator [16,17]
to simulate the complete life cycle of a tsunami, capturing wave velocity and inundation depths
for up to 3 h post-earthquake. This simulator is efficient and robust, having been successfully used
in the past [18-20]. When simulating with Volna-OP2, the roughness coefficient remains constant
in time and space, as in many tsunami models. Given the epistemic uncertainty of the roughness
coefficient and its significant effect on momentum flux, we treat it as a nuisance parameter. To
address this, we employ a novel Bayesian probabilistic numerical method, specifically, multilevel
Bayesian quadrature (MLBQ) [21], to perform the integration. It is possible to account for other
sources of uncertainties in probabilistic hazard and risk assessments, such as in the study by
Fukutani et al. [22] that considered the uncertainty of random tsunami sources and seawall height,
but here we focus on Manning’s roughness coefficient.

Figure 1 presents a flowchart illustrating the integration of various components used
throughout this study. In the subsequent sections of the paper we explain these components
in detail. In §2 we describe tsunami simulation methods. In §3 we demonstrate the effect of
Manning’s roughness coefficient. In §4, we assume a Beta distribution on the roughness parameter
and use MLBQ that combines low- and high-resolution tsunami modelling to efficiently estimate
the integrated maximum momentum flux of Sumatra tsunamis.? It is possible to include more
levels, as in [21,23,24]; however, we use two levels here for simplicity. We use five values at
coarse resolution and three values at fine resolution to cover the space of n optimally in terms
of computational burden. By doing so, we propagate uncertainties from the roughness coefficient
to the maximum momentum flux (the maximum over time).

2. Tsunami simulation

In this section, we describe the numerical simulation models for the generation, propagation
and inundation of tsunami waves. In subsequent sections, we use these simulations to estimate
the integrated maximum momentum flux, a measure of tsunami intensity, at 12 selected gauge
locations. These gauges, illustrated in figure 2, are situated near the port of Meulaboh, a coastal
city in the neighbourhood of the Sumatra subduction zone. The Sumatra subduction zone is an

1y 1.5 available at https://github.com/reguly/volna and https://zenodo.org/records/1413124, with upgraded second-
order finite-volume scheme and boundary conditions.

2The code and data for this implementation are available at https:/ /github.com/CeciliaKaiyu/UQfriction and https://doi.
org/10.5281/zenodo.15015626.
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Figure 2. Geographical locations of 12 gauges and the earthquake epicentre.

area of frequent seismic activity due to its location on the Pacific Ring of Fire [25]. For each gauge,
we analysed two synthetic megathrust scenarios in the Indian Ocean, as shown in figure 3.

(a) Earthquake source

We use a finite-fault segmentation model along with the Okada equations [26] to generate the
seabed deformation (uplift and subsidence) due to the earthquake in the Sumatra subduction
zone. The earthquake epicentre is positioned at (3.4332°N, 96.2018°E), close to the epicentre of
2004 Sumatra—Andaman earthquake (3.3°N, 96.0°E), where the 2004 mainshock rupture began
[27]. Lay et al. [27] display a dense concentration of earthquake occurrences within our region
of interest (figure 2), showing a substantial number of seismic events. Given the occurrence of
the two most significant earthquakes within the past 40 years in this subduction zone, i.e. the
events on 26 December 2004 (Mw 9.1) and 28 March 2005 (Mw 8.6), we select two earthquakes of
magnitudes 8.7 and 9.2, respectively, in our study.

The finite fault encompasses the region of interest selected from the Sumatra subduction zone
(figure 3). The Slab2 model is restricted to depths ranging from 7km to 100km and limited
geographically between 6.5644°N and 9.3210°S, and 92.5139°E and 106.8591°E. Within this region,
the finite-fault segmentation approximates a curved rectangle with corners: southwest (9.3210°S,
106.4920°E), southeast (6.6296°S, 106.8591°E), northeast (6.5644°N, 94.7940°E) and northeast
(5.8120°N, 92.5139°E). We discretize the fault into 20 x 203 (along-dip x along-strike) nearly
rectangular segments as it is a common practice in earthquake and tsunami research (e.g. [28]).
Each segment is on average 11 km (along-dip) x 15 km (along-strike) in area.

Okada’s closed-form equations are used to compute the static vertical displacement u, at each
segment. These finite-fault parameters viz., depth, strike, dip angle, are sourced from Slab2 [29]
(figure 3). The rake is assumed to be 90°. Slip profiles are constructed for the two events using
compact positive kernels, as in Gopinathan et al. [19]. The resulting displacement profiles are
used as initial conditions to generate the tsunami in Volna-OP2.

(b) Tsunami propagation

Volna-OP2 [17] is an efficient tsunami simulator which simulates the complete life cycle of
a tsunami from generation, propagation and inundation on shore. It uses a finite-volume
discretization to solve the depth-averaged nonlinear shallow water equations in two horizontal
dimensions

oH

9 L v .(Hv)=
8t+ (Hv)=0

and 7+V~(Hv®v+ EH I)_—gHVh,

2.1)
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Figure 3. Slab2 geometry and fault model. The subduction geometry of Sumatra—Java subduction zone is taken from Slab2 (a)
with the region of interest around Sumatra. A cutoff depth (100 km) is used to constrain the Slab2 data viz., subduction depth
(b), dip angle (c), and strike angle (d) which are used to inform the finite-fault segmentation. The slips for the two sources (e,g)
give rise to the deformations (fh).

where the total water depth H is the sum of the dynamic bathymetry / and the free-surface
elevation 7. The dynamic bathymetry is the sum of static bathymetry and the seabed deformation.
The static bathymetry/topography is composed from GEBCO 2022 [30], Batimetri Nasional
(BATNAS) bathymetry at 6” (approx. 180m), and Digital Elevation Model Nasional (DEMNAS)
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topography at 0.27” (approx. 8 m).> Here g denotes the acceleration due to gravity, v is the fluid
velocity in two horizontal directions and I denotes a 2 x 2 identity matrix. Using an unstructured
triangular mesh with Volna-OP2, we are able to resolve complex bathymetry and topography,
including coastlines up to the mesh resolution.

We use two meshes, a coarse and a fine mesh for the simulation, as shown in figure 4
denoting the low- and high-resolution simulations in our multilevel framework. The OceanMesh
package [31] is used to generate the unstructured triangular mesh, which is finely resolved near
the few main coastline cites including Meulaboh, and more coarse elsewhere (figure 4a). The
simulations using Volna-OP2 are executed on a single NVIDIA P100 GPU (the Wilkes2 machine
at Cambridge’s CSD3). The simulations with a fine mesh require approximately 430s per run,
while those with a coarse mesh take less than 25s.

These simulations can be used to estimate potential damage to buildings from future tsunamis
and thus help mitigate the disaster. In coastal engineering, such estimates are useful for designing
tsunami-resistant structures and determining optimal locations for counter-tsunami barriers to
protect important buildings and human lives. As mentioned earlier, the hydrodynamic forces
of tsunamis on structures in the inundation zone are proportional to the momentum flux [32].
Therefore, momentum flux is used to estimate hydrodynamic force in recent studies and has been
suggested to be of use as an intensity measure for tsunami fragilities [33,34]. To quantify this, we
define the momentum flux M(t) as

M(t) = plIv(t)I15 (),

where v is velocity, d is the inundated depth and p is fluid density. We assume p to be 1kg m~3
throughout. In our experiments, we simulate the propagation of tsunamis for 3 h following an
earthquake and take the maximum momentum flux M™®* over this period as our intensity
measure:

Mmax — M).

max
0<t<10800s

The output (tsunami wave height and speed) from the tsunami simulator is a time series. This
means that the output is generated and recorded over time, capturing the changes in wave height
and speed at various points in time. The maximum momentum flux with a specific roughness
coefficient is obtained from tsunami simulations, along with time series output of inundation
depth and velocity. There is a small time step in the outputs. For the fine mesh, this time step is
approximately 0.217 s, while for the coarse mesh, it is approximately 0.416s.

3. The effect of Manning's roughness coefficient

To assess the sensitivities of numerical simulations to Manning’s roughness coefficient’s 1, we use
the Volna-OP2 code to simulate tsunamis for each earthquake source using different n values. In
our simulations, Manning’s roughness coefficient operates by attenuating tsunami momentum
when the bathymetric depth exceeds the —50 m threshold. Figures 5 and 6 show the inundation
depths and velocities at two chosen gauges, gauge 4 and gauge 10, simulated with three different
Manning’s roughness coefficients 11, 0.01, 0.03 and 0.05. Figure 5 corresponds to the 8.7 magnitude
earthquake, while figure 6 corresponds to the 9.2 magnitude earthquake. These figures show that
Manning’s roughness coefficient 1 has a significant effect on tsunami behaviour, with inundation
depths and velocities varying considerably across different n values. For the magnitude 8.7
earthquake (figure 5), when the n value is low (0.01 or 0.03), both gauges are inundated. At
n=0.05, only gauge 10 experiences inundation. When the earthquake magnitude is 9.2, both
gauges are inundated even at higher n values.

There are also differences between the momentum fluxes simulated at different resolutions.
The effect of grid size is not as important as the dependence on Manning’s coefficient. Figure 7
shows the momentum flux obtained at gauge 4 and gauge 10 under both high- and low-resolution

3both BATNAS and DEMNAS data are available from https://tanahair.indonesia.go.id /portal-web /unduh.
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Figure 4. Coarse (a,,e,) and fine (b,d,f,h) mesh sizes of a small area near Meulaelboh Port used in low- and high-resolution
simulations. The boxes in the meshes are magnified to show the difference in mesh sizes up to coastal resolutions of 50 m (g)
and 25 m (h). Mesh (or triangle) sizes are shown in metres on the colour bar.

levels for magnitude of 8.7 or 9.2. The roughness coefficient is 0.03. Note that, the momentum flux
scales obtained at gauge 4 and gauge 10 differ significantly; however, both plots indicate that the
low-resolution level tends to underestimate the momentum flux and fails to accurately capture
the peak.
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n = 0.01(blue), n = 0.03 (orange) and n = 0.05 (green) when the earthquake magnitude is 8.7.
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magnitudes of 8.7 or 9.2.

4. Integrated maximum momentum flux

CITE KOTANI and also other calibration [12] in the section/Should we change the section title?

Based on our simulation results from the previous section, tsunami simulations are sensitive to
Manning’s roughness coefficient. This emphasizes the need to quantify the epistemic uncertainty
of n in tsunami hazard and risk assessments. Rather than using fixed values, Bayesian methods
model the epistemic uncertainty as probability distributions over parameters. Therefore, we
deal with the uncertainty by assigning n a probability distribution g(n) and integrating over
this nuisance parameter: [ M™?*(n)q(n) dn, where M™®*(n) is our quantity of interest (maximum
momentum flux) computed using the value of 1 in the simulation. This integration averages the
maximum momentum flux for all possible values of 7 and weights according to their probabilities.
This is the integration we use to tackle the uncertainty. This approach reduces reliance on a single
fixed n.

To model the uncertainty in Manning’s roughness coefficient, we assign a Beta distribution to
n within the range [0.01, 0.09]. Some others have proposed up to 0.12 [35] for an upper range but it
would only be applicable to a local coefficient representing a settlement not a constant coefficient
for the whole area in our case. We reparametrize n using the following transformation:

e n —0.01
T 0.09-0.01

This transformation maps 7 € [0.01,0.09] to x € [0, 1]. Then, we can compute the integration over
the interval [0, 1], which aligns with the domain of the Beta distribution. The Beta distribution
is an appropriate choice for this parameter as it is naturally constrained to a bounded interval
and provides more flexibility than a uniform distribution. It allows us to incorporate expert
knowledge by shaping the distribution and assigning higher probabilities to more likely values.
We consider two Beta distributions with n centred around 0.026 and 0.05: Beta(2, 5) and Beta(3, 3),
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to illustrate how a different expert knowledge of the local friction could lead to different results.
We found that in this latter choice, the means and uncertainties are smaller, indicating how
influential is this first expert elicitation.

The probability distribution of the reparametrized parameter x is illustrated in figure 8. Given
this reparametrization, the integration becomes

0.09 1
J M (n)g(n)dn = J M (x)p(x) dx,
0.01 0
where p(x) is the probability distribution of x.

For complex models such as our tsunami simulator Volna-OP2, MLBQ is particularly suitable
to estimate this integration efficiently. We denote by M;"®*(x) the maximum momentum flux
obtained from simulations employing Manning’s roughness coefficient 7 =0.08x 4 0.01, with
mesh resolutions categorized into levels: [ € {0, 1}. Here, level 0 represents the lower-resolution
level, while level 1 corresponds to the higher-resolution level. Given the multiple levels, the
integration we are estimating is at the high-resolution level: f(l] M (x)p(x) dx. MLBQ expresses
the integral as the telescoping sum below:

1 1 1
L M ()p(x) d = JO (M (x) — M (x))p() dx + L ME™(x)p(x) dx, 1)

and estimates each integral in the telescoping sum using Bayesian quadrature [36-38]. Low-
resolution runs are employed to reduce the computational burden as multilevel methods do (see
Li et al. [21] for instance showing many illustrations and theories). Intuitively, (M{"®* — M*®)
tends to have lower variance, and within a multilevel framework, we can estimate the related
integral accurately using a few points. Since M has lower simulation costs and higher variance,
we can use more points to estimate the related integral accurately. Indeed running high-resolution
simulations only could become prohibitive (though not in our case, which is designed to illustrate
the benefits, but in more realistic hazard assessments).

Note that, the MLBQ estimator does not impose restrictions on point selection. Therefore, we
opt for a uniform grid when selecting input points. At high- and low-resolution level, we use
a uniform grid to draw quasi-uniform points X1 = (x(1,1), - .., xa,3)) " and Xo = (x1),-- -, X0,5)
respectively. These point sets are mutually exclusive. We show all points in figure 10. Users can
change the proportion of points across levels, but higher levels are costlier and usually have
smaller variance. Thus, we use fewer points at high-resolution level. The number of points and
the location of these points will affect the result. Some comparisons have been made in the paper
by Liet al. [21]. We compute M7 (x(o i) for x(o ), wherei e {1,...,5}. In addition, for each x(; ;) we
compute My (x(1, ) and M (x(1,5), fori e {1,2,3}.
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executed simultaneously for all gauges.

Figure 9 illustrates how the tsunami simulations using Volna-OP2 are designed to implement
MLBQ. First, the quasi-uniform points Xy and X; are mapped to their corresponding Manning’s
roughness coefficients: {rn(1),700.2),...,705) for Xo and {nq1),1n12),1q3)} for Xi. Then,
Volna-OP2 is run with a coarse mesh for each roughness coefficient {n(1),1(02),-..,M©s5)},
followed by simulations using both coarse and fine meshes for each roughness coefficient in
{n1,1),1a,2), 11,3} In total, eight runs with coarse mesh and three runs with fine mesh are
conducted. The maximum momentum flux is computed for each simulation. These results are
then used to estimate the MLBQ.

As we mentioned, MLBQ estimates each integral in the telescoping sum (equation (4.1)) using
Bayesian quadrature [36-38]. The MLBQ method initially specifies GP priors, GP(m1,c1) and
GP(mp,co), on the integrands M — My*™ and M, respectively. Subsequently, given the
simulation results, it can obtain the GP posterior on each integrand. Figure 10 shows posterior
GPs at each level of MLBQ. The plot also shows that GP at level 0 performs well on all testing
data. As we observed, GP at level 1 has fewer training data but still performs well on most testing
data. However, it is a common challenge for GP that the fitting is poor near the boundaries of the
input space. In addition, given that the distribution is Beta, the boundary region has less effect
on the results. The plot also shows that the magnitude of the integrand at level 1 is much smaller
than the magnitude of the integrand at level 0. The small scale makes level 1 less effective in
the overall integral calculation and may result in a relatively small percentage bias. In addition,
the maximum momentum flux decreases rapidly at low roughness values and more slowly as
roughness increases. Similar phenomena have been observed in other gauges.

The GP posterior on the integrands M"®* — M{® and Mg®™ then implies a pushforward
posterior on the corresponding integrals f(l)(MIf‘aX(x) — MF*(x))p(x) dx and f(l) MF*()p(x) dx,
which are of interest to us. The pushforward posterior distribution for each integral takes the
form of a Gaussian distribution. The sum of the means of these posterior Gaussian distributions
yields the mean of the posterior distribution for f(l) M (x)p(x) dx (equation (4.2)), which is also
the MLBQ estimate:

(IT[mo] + Mco(-, Xo)lco(Xo, Xo) " MT™(Xo))
+ (I [m] + Aler (-, X1)ler (X1, X1) ™ HMPX(Xp) — M (X1))), (4.2)
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Figure 10. Gauge 10: Underlying GPs at level 0 (Mg™) (left) and at level 1 (M™ — M{'™) (right) of MLBQ for the earthquake
of magnitude 8.7 Mw and 9.2 Mw.

where T[c/(-, X)) = (e (-, xg )l - - -, H[cl(',x(l/Nl))])T is the kernel mean provided in appendix
A, (X, X0)ij = clxqi, xqp) for all ije{l,...,Nj}, with No=5, N1=3, and MP™(X))=
(MP*(x(1)), . . ., M (x ny)) T for all (k, 1) € {(0,0), (1,1), (0, 1)}

We use this quantity in figure 11, where the integrated maximum momentum flux represents
MLBQ estimates, accounting for the uncertainty of Manning’s roughness coefficient. Manning’s
roughness coefficient values such as 0.025 and 0.03 are values commonly used in many
applications [10,11,35]. Therefore, we compare simulation results with one fixed value of
Manning’s roughness coefficient (0.03 chosen as a typical choice in modelling and around the
values we end up with, showing some larger and some smaller values than our approach at some
gauges, demonstrating our point) and simulation results that take into account the uncertainty of
Manning’s roughness coefficient but integrates this uncertainty. The point estimate of momentum
flux at various gauges from MLBQ accounts for the underlying uncertainty. The physical
relationship is nonlinear, which affects the integrated value of the maximum momentum flux.
Depending on location, this MLBQ point estimate may be higher or lower than a single maximum
momentum flux computed by the simulator using a fixed Manning’s roughness coefficient. The
earthquake magnitude is 8.7. The figure illustrates that neglecting the uncertainty of roughness
and relying on a fixed value could lead to potential overestimations or underestimations as
observed in the Beta(2,5) cases. Expert knowledge also has a significant effect on the integrated
maximum momentum flux, with the Beta(3, 3) distribution resulting in much smaller values at all
gauges compared with others.

The MLBQ estimator also provides the variance of the posterior Gaussian distribution on
Jo MM (x)p(x) dx:

(I col] — Meo(-, Xo)leo(Xo, Xo) ™ M [eo(Xo, -)])
+ (I [er]] — Aler (-, X1)ler(Xa, X1) " e (Xa,)]),

where IT[IT[c[]], | € {0, 1}, is the initial error provided in appendix A.
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Figure 11. Comparison between the integrated maximum momentum flux from the MLBQ estimator and the maximum
momentum flux with n = 0.03 at different gauges for an earthquake magnitude of 8.7.

Figure 12 shows the posterior distribution of the integrated maximum momentum flux at 12
gauges of tsunami caused by the 9.2 magnitude earthquake. These distributions are Gaussian
distributions since they can be viewed as integrated GPs. Although it may not be a perfectly
realistic modelling as negative values could be taken with some non-negligible probability, one
can improve by using methods such as reparametrization if needed. We merge the two choices
of Beta distributions for the Manning coefficient in figure 12 to demonstrate the effect of different
assumptions. The notable difference between the two Gaussian distributions reflects the influence
of different assumptions on the results. This illustrates that our method effectively propagates
assumptions about the friction parameters into their effect on maximum momentum flux. The
shapes and locations of the distributions in figure 12 reveal further effects of the values of
Manning’s coefficient on to the inundation. These distributions reflect the uncertainty associated
with the estimated integrals. Indeed, a narrower distribution indicates that we have higher
confidence in the MLBQ estimate, suggesting that the estimate is more stable. Conversely, a
wider distribution represents higher uncertainty in the MLBQ estimate. To reduce the variance,
possible strategies include further improving sampling strategy, increasing sample sizes, etc. It
is not necessarily related to the amount of travel of the flow over land although the larger the
mean value, the larger the variance about the mean in these simulated outputs of momentum
flux. Overall, the behaviour of the flow with respect to Manning’s coefficient at a specific location
needs to be computed using our approach to reflect potential destructive nature of the flow.

The integrated maximum momentum fluxes can be further used for probabilistic tsunami
hazard assessment and uncertainty analysis, including and not limited to building fragility curves
construction or estimating probability of building damage. The results can be combined with
building tsunami fragility curves (e.g. [39]) and be used to predict the probability of building with
different materials getting damaged. For example, according to fig. 6 of [39] and figure 12 where
the maximum momentum flux at gauge 7 is over 300 kg s~2, the probability is high for reinforced
concrete moment frame buildings with one to three stories subject to a ‘complete’ damage state
(which means “100% economic loss, long-term building closure or more than partial or full
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Figure 12. Posterior distribution of integrated maximum momentum flux at each gauge for an earthquake magnitude of 9.2.
Dashed lines are the means (also known as the MLBQ estimates).

collapse, including washed away’). Note that the fragility curves for buildings are themselves
probabilistic. To compute the risk for a building (or a set of buildings) being damaged, and at
what level, one can use a catastrophe model, see [40] where tsunami hazard was combined with
a probabilistic vulnerability function to obtain an end-to-end risk assessment, including even
economic losses if values are known.

5. Conclusion

We compute the distribution of the maximum momentum flux at various locations, resulting
from the approximation of the integration of the momentum flux over the distribution of possible
values of Manning’s roughness coefficient describing the land cover friction. We make use of
Bayesian quadrature to achieve this computationally prohibitive integration over the set of
uncertain values of the Manning’s coefficient. This is a novel computation for tsunami modelling
that we have made even more efficient by enabling two grid resolutions to be employed (one
coarse, one refined) to reduce computational costs further. As a result, future tsunami hazard and
risk assessments may employ these distributions to reflect more accurately the actual risk. Indeed,
the land cover is often uncertain and changing in time due, e.g. to urban planning, agricultural
practices or climate change; therefore, there is a need to reflect this uncertainty in risk assessments.

Bathymetry uncertainties are often large and can result in vastly different effects compared to
the case when they are unaccounted for, see e.g. [41] for an illustration of the effect. To represent
and propagate bathymetry uncertainties is a challenge, due to the high-dimensional complexity of
the surface: see [42] for a solution using GP emulation and dimension reduction. The computation
of the combined effect of bathymetry uncertainties with uncertainties in the friction modelling
onshore is desirable in future tsunami hazard assessments.
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In more complex modelling scenarios, the study area is segmented and classified, with each
segment being assigned a corresponding Manning’s roughness coefficient value [14,35]. In future
applications using detailed roughness maps for tsunami inundation modelling, our approach
could incorporate Manning’s coefficient from various areas as a high-dimensional variable, thus
enhancing flexibility. Our approach assumes that an expert can provide a reasonable estimate of
Manning’s roughness coefficient. However, this estimate is typically a spatially averaged value
and may not fully capture local variations, especially in near-shore regions with distinct terrain
characteristics. For hazard assessments, it is crucial to account for a range of realistic values,
ideally informed by spatially varying land-use data. While a fixed uniform value may not be
optimal, a uniform value with associated uncertainties is preferable to an incorrect fixed estimate.

The next steps include combining future probabilistic earthquake hazard with this integrated
uncertainty in the Manning’s coefficient to deliver fully representative hazard assessments.
Merging these novel hazard footprints with uncertain vulnerability curves in a catastrophe
model will produce probabilistic risk assessments as [15] illustrated the joint sensitivity for a
small number of earthquake sources only and [22] demonstrated for a sea-wall not over land
friction. Other future work includes representing not only the maximum momentum flux but the
whole time series of momentum flux over the entire tsunami event to reflect scouring and other
repetitive effects on buildings and structures. Ultimately, policy making and emergency planning
will benefit from more such improvements in the precision of tsunami risk assessments, especially
when combined with economic effects [40].
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Appendix A. Kernel mean and initial error

(a) Beta distribution Beta(2, 5)
The probability density function (PDF) of the Beta distribution Beta(2, 5) is given by

x2-1. 1- x)571

p(x;2,5) = 50,5 ,
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where B(2,5) is the Beta function defined as B(2,5) =I"(2) - I'(5)/I"(2 + 5). When c is a squared
exponential kernel with length-scale y, the kernel mean can be computed analytically as

1 (x _ x/)z x’(l _ x/)4 ,
Hlc(, x)] = JO exp (— v ) B2 5) dx’ = (15y /4)

_ 2
x {—2 exp (—(1;”‘)) y(@dyd £ 2(—1 + 2)%x + 24 — 13x + 922))

2
+2exp (-)’;) y @yt +2(—1 + 20* + y2(12 + x(—20 + 9x)))

+ VA= + x)*x 4 3y4(—4 4 5x) + 4y2(—1 + x)*(—2 + 5%))
(et(57) +er (5))}

and the initial error can be computed analytically as

0Jo y B(2,5) B(2,5)

2 (- L),2

1
x (28 +3exp <7> ¥2(385 + 4y (77 — 44y* + 509 %))
1%

101 N2 4 4
nn[c(.,.)]:J J exp<_(X—236) )x(l—x) X (1—x) d’ dx

—292(117 + 2%(190 + 3%(—19 + 6% + 501%))))

- %y(—ZS + 11220 + 81y2))/merf (1> .
%

(b) Beta distribution Beta(3, 3)
The PDF of the Beta distribution Beta(3, 3) is given by

x371 . (1 _ x)Bfl
;3/ 3 = T /A AN 7
p(x;3,3) 5G.3)
where B(3,3) is the Beta function defined as B(3,3)=1I"(3) - I'(3)/I"(3 + 3). When c is a squared
exponential kernel with length-scale y, the kernel mean can be computed analytically as

Y R A R
H[C(”x)lzjoe)(p <_ V2 ) B33 O

_15 |, 142
_4y y exp )2

2 1
x (exp (%) @x? — 2% + y? — 5xp?) + exp <7> (=4 + 2% — 42 + x2 + 5;/2)))
Y 14

+/(—8x° + 4x* — 12xy2 + 4x%(1 + 3y%) + ¥2(2 4 3y2)) (erf (1_—)() + erf <E>> } ,
14 14
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and the initial error can be computed analytically as

B el (x—x)2\ ¥2(1 —x)2x21-x)
HH[c(.,.)]_JO ,[0 exp (— 2 ) B3.3) B(3.3) dx’ dx

0 e (-
=17 V exp )2
2 1 4 1 6
X\ =247y +12| B3+7exp| — | |y + |24 —72exp(— ) ) ¥
Y 14
1 8
+48(-1+exp| — ) |¥
14

+/T(4 — 122 + 63y Hyerf <%> } )
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