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Abstract
Value Added Tax (VAT) fraud erodes public revenue and puts legitimate businesses at a disadvantaged 
position thereby exacerbating inequality. This article develops scalable algorithms to detect fraudulent 
transactions by leveraging the rich information embedded in the complex, high-dimensional VAT 
network structure. Supervised methods are not always suitable for VAT fraud detection, as issues in the 
auditing process—such as selection bias and audit quality—can seriously affect the labelling of 
businesses as fraudsters or not. Therefore, both supervised and unsupervised techniques in which VAT 
fraud detection is implemented through a suitably constructed Laplacian matrix informed by business- 
specific covariates. The developed methods are applied to the universe of Bulgarian VAT data and detect 
around 50% of the VAT fraud, outperforming well-known techniques that ignore the information 
provided by the transactional network structure. The proposed methods are automated and can be 
implemented following taxpayers’ submission of their VAT returns, thus allowing the authorities to 
prevent large revenue losses.
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1 Introduction
The collection and analysis of network data play a key role in a wide range of fields. Examples in
clude, but are not limited to, applications in biology, computer science, sociology, and economics 
(Kolaczyk & Csárdi, 2014; Newman, 2012). A particularly important question, which network 
data and techniques can address more efficiently than traditional approaches, is the identification 
of anomalies in large and complex systems such as credit card and business-to-business (B2B) 
transactions, health insurance claims, computer security, and biological or genetic data sets; 
see, for example, Akoglu et al. (2015) for a survey. In fact, anomaly detection methods that utilize 
data network structures are very useful in cases when supervised classification is infeasible or 
inappropriate.
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Network anomaly detection is typically a big data problem, and its complex structure requires 
the use of advanced data analytical methods. The objective of this article is to develop fraud de
tection algorithms for Value Added Tax (VAT), a tax base which constitutes a major source of 
revenue for over 165 countries, but also one that suffers from significant fraud. VAT is a consump
tion tax in the sense that the VAT collected throughout the supply chain is ultimately paid by the 
final consumer when the good is consumed. At the core of VAT lies an ‘invoice-credit’ mechanism, 
whereby the net tax liability of a business is calculated by subtracting from the VAT on sales the 
aggregate VAT paid on invoices for inputs used in production. This mechanism requires sellers 
along the production chain (B2B transactions) to provide invoices to their buyers showing the 
amount of VAT that was paid on each transaction. Any fractional revenue collection on the value 
added that is generated at each stage of the production chain must be remitted to the revenue au
thority. The B2B transactions and the VAT invoice-credit mechanism together create a network 
through which businesses interact within and across production sectors and along the supply 
chain. Throughout, the terms trader, business, taxpayer are used interchangeably. In order to 
claim VAT credits, businesses must be registered for VAT with the revenue authority.

Despite its widespread adoption as a major tax innovation, the VAT system is widely 
acknowledged—by both policymakers and scholars—to suffer from inherent weaknesses and vul
nerabilities (Ebrill et al., 2001; Keen & Lockwood, 2010; Keen & Smith, 2006). A central vulner
ability of the VAT system lies in its invoice-credit mechanism, which, while fundamental to its 
design, creates systematic opportunities for fraud and abuse. This structural weakness has become 
a major policy concern across numerous jurisdictions, including the European Union (EU) which 
in a Communication in 2016 recognized that ‘[t]he current VAT system, which was intended to be 
a transitional system, is fragmented, complex for the growing number of businesses operating 
cross-border and leaves the door open to fraud…’, p. 3, COM(2016). Combating VAT fraud 
was also designated as a strategic priority by the European Union for the 2018–2021 period, as 
part of its broader efforts to combat organized crime.1 Among the measures implemented was 
the establishment of the European Public Prosecutor’s Office (EPPO), which began operations 
in 2021. The EPPO is tasked with ensuring the criminal law protection of the EU’s financial inter
ests, including those threatened by cross-border VAT fraud.

There is a growing recognition that effectively combating VAT fraud requires tax administra
tions to match the sophistication of fraudsters. This entails both the design of more efficient tax 
structures—supported by improved technological capabilities and a deeper understanding of 
VAT evasion and enforcement dynamics (see Ainsworth & Madzharova, 2012; Shah, 2021; 
Waseem, 2023)—and the strategic use of data analytics for the detection (and prevention) of non- 
compliance. While a considerable body of research has focused on the former, work in the latter 
remains limited, particularly in exploiting the rich informational content embedded in the network 
structure of B2B transactions. This article helps to close the gap by developing flexible and scalable 
machine learning algorithms tailored to fraud detection in VAT networks. Detecting fraud in VAT 
networks presents significant challenges due to the high dimensionality and heterogeneity of ob
served B2B transaction data. Supervised learning methods are often ill-suited to this context, as 
labelling businesses as fraudulent is inherently problematic: audit-based classifications performed 
by tax authorities are subject to selection bias, as well as unintentional (or even intentional) mis
identification of under-reported tax liabilities. Furthermore, as discussed in more detail below, 
VAT fraud is often a coordinated effort involving networks of firms—some genuinely legitimate, 
others only appearing so—that engage in complex transactional schemes. Consequently, identify
ing a single fraudulent entity is rarely sufficient for effective detection or meaningful prevention.

To address these challenges, this article develops scalable algorithms that analyse the commu
nity structure of observed B2B transaction networks, drawing on recent advances in network ana
lysis (see, for example, Binkiewicz et al., 2017; Chaudhuri et al., 2012). In addition, the approach 
incorporates established machine learning techniques to enhance the analysis by integrating 

1 VAT fraud, in addition to distorting market competition, leads to significant compliance costs for legitimate traders 
who are required to exercise due diligence in ensuring the legitimacy of their suppliers. There is also the risk of even face 
bankruptcy as a result of fraudulent actions committed by others. Consumers are of course not insulated from VAT fraud 
either, as trading outside the formal supply chain might result in higher VAT gap (defined as the difference between what 
the government could collect and what it actual collects in revenues). VAT fraud exacerbates this difference and meeting 
the revenue target might necessitate a VAT rate increase to compensate for lost tax revenues.
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business-specific characteristics that are typically informative in identifying VAT fraud. The result
ing framework enables both the detection of latent communities within the network and the esti
mation of fraud probabilities for each VAT-registered business. Notably, the proposed methods 
can be implemented in both supervised and unsupervised settings: when reliable labels are avail
able, the algorithms can learn patterns associated with known fraud cases; when such labels are 
absent or unreliable, the same methods can operate in an unsupervised manner to uncover poten
tially fraudulent structures.

The developed fraud methodologies is tested on the universe of the Bulgarian administrative 
data, which include output and input VAT, sales transactions across all businesses and sectors, 
and detailed businesses characteristics for the years 2016 and 2017. Importantly, the methods de
veloped have broader applicability, and can be applied to any fraud detection problem where net
work information is available. To summarize, this article addresses the pressing and persistent 
challenge of VAT fraud by developing scalable and data-driven detection tools. It does so by, 

• developing scalable network anomaly detection methods that can be applied both in a super
vised and unsupervised manner to detect fraud in observed VAT networks. Importantly, the 
use of unsupervised methods is often inevitable in tax fraud detection applications. This is be
cause: (i) the availability of labelled data is limited, as tax authorities (given capacity con
straints) cannot perform more than a few audits per year and (ii) even for audited cases in 
which no fraudulent activity has been detected, there might be uncertainty regarding their la
bel, since fraud may have gone undetected during the auditing procedure.

• The proposed methods integrate transactional network data with business-specific character
istics to classify firms as potentially fraudulent and to identify clusters of firms likely involved 
in VAT fraud schemes.

• The algorithms are automated and can be implemented upon receipt of purchase and sales decla
rations, requiring minimal additional investment. This offers significant benefits to tax authorities, 
including lower administrative costs, greater transparency, and enhanced reproducibility. The em
pirical application confirms substantial gains in fraud detection at a fixed false positive rate.

• Applied to real-world data, the network-based methods demonstrate superior performance in 
identifying anomalies compared to traditional classification models that rely solely on firm- 
level attributes.

The article is structured as follows. Section 2 provides a general overview of the forms and mecha
nisms of VAT fraud, highlighting the inherent complexity and diversity of fraudulent schemes that 
motivate the modelling and methodological contributions that follow. Section 3 reviews the relevant 
literature on VAT fraud detection. Section 4 introduces the proposed fraud detection methodology, 
while Section 5 presents the results of its application to real-world data. Section 6 concludes.

2 Fraud in the VAT network
There are many forms of VAT fraud, ranging from fictitious trading of invoices to circular trans
actions involving fraudulent activities known as ‘carousel’ or, more formally, the ‘missing trader’ 
(MT) fraud. Two key characteristics of VAT fraud are: (i) it requires the interaction of multiple 
B2B traders and thus reflects communal behaviour among group of nodes and (ii) not all B2B 
transactions are real; some are fictitious. Figure 1 illustrates the MT fraud in its simplest form. 
The scheme has four ‘types’ of firms: The ‘Conduit’ (a trader that partakes in a transaction that 
is connected with the fraudulent evasion of VAT), the ‘MT’ (a firm that will go missing without 
remitting to the revenue authority any VAT collected), the ‘Buffer’ (firms that could be part of 
the fraud fulfilling the role of concealing the identity of the MT) and the ‘Broker’ the firm that 
has orchestrated the fraud.

The fraud involves the MT importing goods with an invoiced value of US$100.2 MT then sells 
these goods to Buffer A, charging US$20 in VAT. Since MT has paid no VAT on the acquired 

2 The monetary values used are illustrative. In actual VAT fraud schemes, the transaction values often run into the 
millions of US dollars. While all transactions formally comply with VAT law—that is, they meet the documentary and 
legal requirements—they may be purely fictitious, involving no physical movement of goods or services.
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goods, the full amount of US$20 collected should be remitted to the revenue authority. However, 
MT disappears without making this payment. Buffer A, having paid US$100 plus US$20 in VAT 
to MT, resells the goods to Buffer B for US$105, charging US$21 in VAT. It then offsets the US$20 
it paid as input VAT against the US$21 collected, and remits the difference—US$1—to the revenue 
authority. This process, based on the ‘invoice-credit’ mechanism, continues through Buffers B and 
C, with each subsequent trader reclaiming input VAT and remitting only the net amount. In the 
final stage of the transaction chain, the Broker purchases the goods from Buffer C, paying a 
20% VAT on their value—amounting to US$24. The Broker then re-exports the goods to the 

Figure 1. Illustration of the simplest form of Missing Trader (MT) VAT fraud. The scheme involves a Broker seeking 
a refund for input VAT that was never actually remitted to the tax authority, because the MT—having collected VAT 
from Buffer A—has subsequently disappeared from the market. The fraud exploits the structure of the invoice-credit 
and refund mechanism, as well as the timing mismatch between the entitlement to input VAT refunds and the actual 
remittance of output VAT further upstream in the transaction chain. Transactions follow the black arrows and may be 
repeated in a carousel structure, enabling sustained fraud until discovery.
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Conduit firm. As exports are zero-rated under VAT rules, the Broker is entitled to claim a refund 
for the input VAT paid, even though the corresponding output VAT has never been remitted to the 
revenue authority. This discrepancy arises because the MT, who originally charged VAT to Buffer 
A, has since disappeared without remitting the US$20 collected to the government. One can im
agine this process continuing in a ‘carousel’ fashion and with the goods being re-exported and re- 
imported with refund claims being accumulated until the fraud is discovered. The invoice-refund 
mechanism is a structural element of VAT that has been eloquently described as VAT’s Achilles 
heel (Keen & Smith, 2006).3

While the preceding example is deliberately simplified for illustrative purposes, it captures the 
core mechanics of VAT fraud. In reality, however, such schemes tend to be far more complex, 
often involving dozens or even hundreds of firms operating across multiple sectors and jurisdic
tions and engaging in sophisticated transactional arrangements specifically designed to obscure 
fraudulent behaviour and evade detection. VAT fraud is therefore best understood as a 

Figure 2. Directed weighted network of Bulgarian B2B VAT amounts (output and input VAT). Each node 
corresponds to a VAT-registered business and the width of the edges represents the amounts of VAT associated to 
sales transactions and in the direction of the edge. The network depicts VAT amounts between businesses that 
have been identified as Missing Traders and Buffers/Brokers (lightly shaded nodes) in VAT missing trader fraud with 
legitimate businesses (black nodes). The edges in orange highlight transactions between VAT fraudsters.

3 This fraud is not of course unique to the European Union but it is also of relevance to countries where fiscal checks 
at the physical borders have been relaxed following trade agreements.
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coordinated, network-based phenomenon rather than the isolated action of a single firm. This de
gree of complexity is evident in Figure 2, which presents the structure of an actual transaction net
work in which MT fraud has been identified by the Bulgarian National Revenue Agency (BNRA). 
Nodes represent VAT-registered businesses, while directed edges indicate sales relationships be
tween them. The width of each edge reflects the volume of VAT involved, visually conveying 
the scale in terms of transactions of the fraud.

The information provided by businesses to BNRA is very rich and includes comprehensive 
data from VAT returns and VAT ledgers covering all purchases and sales transactions, including 
intra-community within the EU. The displayed network consists of 1,697 nodes and represents a 
small part of a much larger network comprising transactions among over 300,000 businesses in 
Bulgaria. Within this sub-network there are 32 missing traders and 22 brokers; both MTs and 
Brokers are considered as fraudsters in an MT fraud scheme, transacting with the remaining 
1,642 businesses identified as legitimate. Figure 2 clearly indicates a pattern in the transactions 
made by the VAT fraudsters: a few of them transact with a large number of legitimate businesses 
(indicated by the black nodes) and make no transactions with other fraudsters (indicated by the 
lack of connection across red and blue notes) whereas the majority of the fraudsters have no (or 
limited) transactions with legitimate businesses. This observation motivates the study of busi
ness interactions within a given network to extract important information on potential fraudu
lent behaviour. These interactions are weighted and directed, and are methodologically 
incorporated into the analysis in addition to any other information on node-specific (estimated) 
covariates.

The objective of this article is to develop methodologies that identify communities of taxpayers 
whose transaction patterns resemble those of traders participating in VAT fraud, and to estimate 
the probability that each taxpayer participates in a VAT fraud scheme. The proposed methods in
corporate characteristic (i) discussed above and are robust with respect to characteristic (ii). As 
such, they offer an advantage over existing approaches that ignore VAT network interactions 
and rely only on local characteristics—such as nodes degree, strength, and/or the number of 
triangles—as will be discussed later on and in Section 3. The methodological approach integrates 
the universe of observed B2B transactions into a network framework, where each node represents 
a VAT-registered business, and an edge between nodes i and j exists if the corresponding 
businesses have conducted at least one transaction recorded in their latest VAT returns. This 
network-based representation is incorporated into fraud detection techniques that rely on scalable 
analytics, leveraging both the connectivity structure of network and node-specific information. 
The information obtained from the network of transactions is projected into suitably constructed 
low-dimensional vectors that preserve the key network properties, and these properties are then 
utilized within machine learning methods to identify aberrant edges, nodes and sub-networks. 
Although VAT fraud takes many forms—with the MT scheme discussed earlier being among 
the most prevalent and consequential in terms of revenue loss—these schemes tend to share key 
structural features. Most notably, regardless of the specific type, the transactional patterns in
volved are typically anomalous. It is this anomaly that the proposed detection methods are de
signed to identify. The algorithms developed here are flexible enough to uncover a wide range 
of VAT fraud schemes embedded within observed transaction networks.

As previously noted, the methods can be implemented in both supervised and unsupervised 
modes. In the supervised setting, the algorithm relies on historical information about fraud 
cases—such as prior classifications of businesses as fraudulent—to guide learning and identify 
similar patterns within the network. For instance, if tax authorities provide a binary vector indi
cating which businesses were previously identified as MT fraudsters, the method will estimate 
fraud probabilities for each taxpayer in the dataset and classify them accordingly. Moreover, 
the algorithm produces a clustering of the observed population, enabling the identification of 
groups of taxpayers likely to be involved in MT fraud, including both primary fraudsters and their 
potential collaborators.

Since VAT fraud schemes often share common characteristics, applying the developed methods 
to detect fraudsters in MT fraud does not preclude the identification of other schemes, such as cir
cular virtual transactions within a country (another form of fraud). This flexibility also character
izes the proposed fraud detection techniques when applied in an unsupervised manner. Rather 
than being restricted to a specific type of VAT fraud, these methods analyse taxpayer interactions 
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through transactions and, in combination with their specific attributes, enable the classification 
and clustering of taxpayers with a high likelihood of participating in VAT fraud.

The remainder of this section formally defines, for expositional completeness, the network of 
transactions associated with VAT-registered businesses, and then reviews existing work on anom
aly and fraud detection, placing our contribution within the broader literature.

2.1 Network modelling
The B2B transactions underlying the VAT system naturally give rise to a network G, which can be 
represented by an adjacency matrix A, constructed from the (weighted) edge set E of interactions 
between nodes (taxpayers) V with weights {wij}. The elements of the adjacency matrix A = (aij) are 
defined as

aij(G) = wij if (i, j) ∈ E(G) i, j ∈ {1, . . . N}
0 otherwise.

􏼚

(1) 

V is the set of the vertices or nodes of the network, and |V| = N ∈ N is the total number of nodes. E 
denotes the edge set of directed, weighted edges such that of the network that is, 
E = {(i, j) ∈ V × V : aij > 0}. The pair G(A) = (V, E) denotes the weighted network that corre
sponds to the adjacency matrix A. If A is symmetric, and so A = A⊤, then G(A) is called undirected 
whereas if A is not symmetric then G(A) is called directed (the Appendix presents networks of real 
VAT transactions based on the data used in the algorithms).

2.2 Our contribution
VAT fraud is characterized by two key features. First, it gives rise to B2B transactions that, in the 
absence of fraud, would likely not occur, creating anomalous patterns in the transaction network. 
Second, it typically involves coordinated behaviour among multiple entities, as executing such 
schemes requires interaction among several VAT-registered traders. While the intensity and struc
ture of coordination may vary across fraud types, these shared behavioural patterns are central to 
the detection strategies proposed in this article. The methodology is designed to capture both 
anomalous transactional activity and community-level behaviour indicative of fraud.

VAT-registered businesses generate substantial volumes of transactional and firm-level infor
mation. This places additional demands on any fraud detection method: it must be not only sen
sitive and robust in identifying fraudulent behaviour, but also computationally efficient and 
scalable to real-world datasets. Addressing this challenge of high-dimensional data is a central fo
cus of this article (an issue that is taken up in Section 4).

To identify communities whose members are likely to be involved of VAT-fraud, the proposed 
approach constructs a corrected version of the Laplacian matrix. This correction incorporates in
formation from both the node-specific structure and the interaction patterns across businesses, re
flecting the fact that the anatomy of VAT fraud combines individual characteristics with 
community-level dynamics. Two alogirthms are developed, both of which can be applied without 
labelled data in an unsupervised manner, and their output is the classification of the businesses in 
the dataset in distinct clusters. Because the clustering procedures incorporate firm-specific features 
indicative of VAT fraudulent behaviour, they are designed to produce a small number of large clus
ters composed primarily of legitimate businesses, along with a smaller number of clusters that are 
more likely to contain fraudulent traders. When labelled data are available, the same methodology 
can be extended to estimate the probability that each business in the network is engaged in VAT 
fraud.

For both algorithms, the key point of departure is to map the observed network on to low- 
dimensional Euclidean vector space so it preserves the original connectivity structure of their no
des. The spectral analysis of networks is a well-documented technique for classifying the nodes of 
large networks in distinct clusters; see for example Chung and Graham (1997) and Ng et al. (2001)
for more details. Notice also that the spectral clustering methods are closely related to the so-called 
eigenmap technique appeared in the graph embedding approach as early as in the contribution of 
Belkin and Niyogi (2003). Here, the spectral clustering approach is extended by considering the 
eigendecomposition of a risk-corrected Laplacian that maps the observed networks, together 
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with node-specific information related to their risk profile, on to a Euclidean vector space. Thus, in 
contrast with network analytics methods for fraud detection (Subelj et al., 2011; Van Vlasselaer 
et al., 2017)—where only the so-called direct network features (for example, node degrees and 
number of triangles) are employed to discover fraudulent activity—the approach follows recent 
advances which rely on graph representation learning (Gao et al., 2021; Pourhabibi et al., 
2020) to study the interactions recorded by the observed VAT networks to develop scalable ma
chine learning algorithms with the aim to classify businesses as fraudulent or not.

3 Related literature
The possibility of automating the detection of VAT fraud is part of a larger current international 
research theme seeking to utilize large scale data sets to improve tax (and social) policy (Athey, 
2017; Baesens et al., 2003; De Bacco et al., 2023; D. Lazer et al., 2009; D. M. Lazer et al., 
2020) as well as to provide a better understanding of interactions (Barons & Shenvi, 2024; 
Fritz et al., 2023; Jackson & Wolinsky, 1996; Margetts & Dorobantu, 2019; Pillinger et al., 
2024). Early contributions to the problem of tax evasion detection, such as VAT fraud, have 
been made by Gupta and Nagadevara (2007) and Basta et al. (2009), where traditional statistical 
methods such as logistic regression and discriminant function analysis have been adopted to detect 
VAT evasion. Other contributions (González & Velásquez, 2013; Wu et al., 2012) have utilized 
data mining methods, such as clustering and decision trees, to achieve the same aim. Within 
this context, classification methods have been combined with dimensionality reduction methods 
and, particularly, principal component analysis and singular value decomposition (Matos et al., 
2015). Finally, machine learning methods have been applied to the tax fraud detection problem 
by Cecchini et al. (2010), Kleanthous and Chatzis (2020), Vanhoeyveld et al. (2020), Gao et al. 
(2021), and Savić et al. (2022).

As noted already, what distinguishes VAT fraud with other tax fraud is that VAT fraud—by the 
very nature of the mechanism underlying the VAT system—is typically not conducted by a single 
business but is a group (or community) activity. This necessitates that any detection model incorp
orate the network structure, an element that is central to the present contribution.

Over the last decade, methods related to anomalous detection in networks have been increasing
ly considered for uncovering fraud. In particular, Chiu et al. (2011) and Subelj et al. (2011) address 
online auction fraud and insurance fraud, respectively, by using social network analysis, while Van 
Vlasselaer et al. (2017) utilize network information to detect fraud in social security systems, 
whereas (Baghdasaryan et al., 2022) develop a network-informed fraud detection technique ap
plied to tax data. Interestingly, Van Vlasselaer et al. (2017) show that incorporating network in
formation allows well-known classification algorithms, such as the random forest, to achieve more 
accurate fraud detection; they report approximately 7% increase in the area under the curve (AUC) 
of the receiving operating characteristic (ROC) curve. Additionally, Baghdasaryan et al. (2022)
show that historical audit and fraud information for taxpayers can be replaced by features of 
the observed network of their transactions without reducing significantly classification metrics 
such the AUC. However, in contrast with the methodologies developed here, these approaches 
use only local, node-specific, characteristics of the observed networks to construct covariates 
(e.g. degree, triangles, and quadrangles) or explore the connectivity of neighbouring nodes in net
works with special structure (for example, bipartite).

Closer to the focus of the contribution of this article are contributions which aim to detect 
anomalies (not specifically fraud) in networks by using the graph embedding approach mapping 
a network on a vector space which preserves the network structure properties; see for example 
Cai et al. (2018) and Xu (2021) for recent reviews on the existing graph embedding methods 
and Ma et al. (2021) for their use on network anomaly detection. Indeed, as demonstrated in 
Section 5 (Table 1), incorporating network information via graph Laplacian embeddings—derived 
from its eigenstructure—leads to an approximate 19% improvement in AUC compared to classi
fication models that do not use such network-based features.

4 The methodological approach
This section presents the anomaly detection methods for VAT fraud detection. As noted earlier, 
there are two main challenges in an anomaly detection problem of the type investigated here. 
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The first refers to the classification of ‘normal’ and ‘anomalous’ behaviour, whereas the second 
relates to the scalability of the problem and the necessity to make the algorithm computationally 
efficient and robust. The analysis deals with these challenges as follows.

In network analysis, communities are typically identified using the Laplacian matrix, which is 
derived from the (weighted) adjacency matrix (Merris, 1994). Since the anatomy of VAT fraud 
involves both individual propensity and community opportunity, the approach adjusts the 
Laplacian to capture these two dimensions of behaviour. This adjustment is achieved through a 
global or local spectral decomposition of a corrected Laplacian. In the global approach, singular 
value decomposition is applied to the regularized Laplacian of the entire network, which consists 
of hundreds of thousands of vertices. The resulting decomposition is the used to update a vertex- 
specific binary vector based on estimated anomaly probabilities. This process encapsulates both 
(a) across nodes information and (b) node-specific details. This leads to the development of a 
new graph-informed classifier designed to separate anomalous nodes, such as VAT missing trad
ers, from all the other taxpayers. In the local approach, the corrected Laplacian matrix is embed
ded into the hierarchical clustering technique recently developed by Li, Lei et al. (2020). In contrast 
to global clustering methods, which generate a single partition of the network into a fixed number 
of clusters, this approach constructs a hierarchical tree of communities by recursively dividing lar
ger groups into smaller ones. The process of cluster identification is therefore conducted in a local 
manner facilitating the challenging task, due to the large number of non-fraudulent nodes, of de
tecting VAT fraudulent clusters.

The developed methods provide tax authorities with two tools that can be used either separately 
or in combination in order to enhance their ability to quickly identify VAT MT fraud schemes. In 
the following subsections, the incorporation of covariate information into the observed VAT net
work is described, along the the proposed algorithms for community detection and classification. 
Finally, the implementation of these methods is demonstrated on a population-sized data set cov
ering the entire universe of VAT-registered business in Bulgaria.

4.1 A risk-informed network Laplacian
To model the group structure of activities, it is necessary to detect groups of taxpayers that are 
more likely to be involved in VAT fraudulent behaviour. This can be achieved by fitting a group 
model that identifies the nodes belonging to each group. Such a fit can be implemented either under 
the assumption that there are true blocks in the data (see Newman, 2012) or there is a propensity 
of a range of nodes to behave like a grouping (as in Olhede & Wolfe, 2014). The most common 
approach for extracting community structure from a network is spectral clustering (Chung & 
Graham, 1997), which relies on a spectral partitioning of the network’s Laplacian matrix. 
There are multiple ways to define the Laplacian, both in terms of the Laplacian itself and the ad
jacency matrix; see, for example, Priebe et al. (2019) for a discussion. This analysis adopts spectral 
clustering based on a doubly regularized Laplacian, constructed to account for both the commu
nity structure underlying VAT fraud and the firm-specific risk of fraudulent behaviour.

In the first level of regularization, following Chaudhuri et al. (2012) and Qin and Rohe (2013), 
the strong degree heterogeneity (reflecting significant differences in business sizes) of VAT net
works is addressed by considering the normalized Laplacian

Lτ = D−1/2
τ

􏽥AD−1/2
τ , (2) 

Table 1. Sensitivity analysis for XGBoost with and without network features across thresholds.

Model AUC Threshold Accuracy Sensitivity Specificity

XGBoost with network 0.953 0.300 0.772 0.951 0.771
0.500 0.958 0.723 0.960
0.700 0.991 0.514 0.994

XGBoost 0.802 0.300 0.938 0.415 0.941
0.500 0.981 0.298 0.986
0.700 0.992 0.228 0.997
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where 􏽥A = A + AT is a symmetric matrix, D = diag{d1, . . . , dN} is a diagonal matrix consisted of 
the node degrees di =

􏽐N
j=1 wij and Dτ = D + τI. Notice that in (2) the transformed adjacency ma

trix 􏽥A is used rather than the observed adjacency A. This choice is convenient because 􏽥A is a sym
metric matrix, making its spectral decomposition more interpretable, as it avoids complex 
eigenvalues that can arise with a non-symmetric A. Moreover, it is computationally more efficient 
to calculate the eigenvalues and eigenvectors of square matrices even in large dimensions (Baglama 

& Reichel, 2005). Importantly, 􏽥A preserves the directionality of the edges in the observed graph 

(Malliaros & Vazirgiannis, 2013; Satuluri & Parthasarathy, 2011). Specifically, 􏽥A is the adjacency 
matrix of an undirected network with the same number of edges, where every directed edge is re
placed by an undirected edge whose weight is the sum of the weights of the corresponding edges in 
the original graph. It is important to note, however, that the transformation of A does not account 
for node similarity based on ingoing and outgoing edges. As a result, clustering approaches based 

on 􏽥A may fail to group together nodes that are directly connected even if they exhibit similar in- 
and out-links. Nonetheless, this characteristic is unlikely to substantially affect VAT fraud detec
tion, since the primary goal is to cluster fraudsters who engage in sophisticated, coordinated trans
actions designed to conceal fraudulent activity.

The parameter τ ≥ 0 introduced by Chaudhuri et al. (2012), corrects for the so-called poor concen
tration properties caused by large heterogeneity in nodes degrees. In the presence of nodes with very 
high or very low degrees the spectral analysis of the usual Laplacian Lτ = D−1/2􏽥AD−1/2 is mainly af
fected by the highest degree nodes; see for example Mihail and Papadimitriou (2002) for more details. 
By including τ a suitable normalization is achieved, thereby mitigating degree heterogeneity.

To also account for the individual risk of each node being involved in fraud, we follow the ap
proach of Binkiewicz et al. (2017) and introduce a second level of regularization into Lτ by defining 
the Laplacian

L(α, τ) = Lτ + α􏽢p􏽢pT

= D−1/2
τ

􏽥AD−1/2
τ + α􏽢p􏽢pT ,

(3) 

where 􏽢p is of fraud probabilities estimated using node-specific covariates X, with dimensions 
N × R, and scalable machine learning methods described in Section 4.2. Notice that the 
Laplacian in (3) can also be constructed directly from the covariates in X by replacing 􏽢p􏽢pT with 
the matrix XXT. However, in applications where the number of vertices N is quite large using 􏽢p 
instead of X in (3) can significantly reduce the computational cost of the proposed method. In 
fraud detection problems there is typically a large imbalance between the fraud and non-fraud 
cases and most elements of 􏽢p are very close to zero. More precisely, if we denote by S the number 
of entries in 􏽢p exceeding user-specified threshold, we typically expect S < <N. By setting the N − S 
values below the threshold to zero the complexity of calculating 􏽢p􏽢pT becomes O(S); much smaller 
than the O(NR) cost of computing XXT or the O(N) complexity for calculating 􏽢p􏽢pT. Overall, the 
estimated probabilities 􏽢p summarize the node-specific information contained in each row of X in a 
computationally efficient manner.

It is clear from equation (3) that if the adjacency matrix is zero—that is, there is no network 
structure in the data—then clustering would rely solely on the values of the vector 􏽢p. Moreover, 
if τ was set to zero, then there would be no regularization when inverting the degree matrix. 
What this means in practice, and for the issues at hand, is that the Laplacian matrix defined in 
equation (3) effectively accounts for the presence of many low-degree nodes (that is, businesses 
with few B2B transactions) alongside a few businesses that may have a large number of such trans
actions. In fact, it is a risk-corrected Laplacian designed to improve spectral clustering perform
ance by taking into account the node-specific covariates X or the fraud probabilities 􏽢p.

Equipped with the risk-corrected Laplacian L(α, τ), we proceed by calculating eigenvalues λj ∈ 
R and eigenvectors uj ∈ RN satisfying

L(α, τ)uj = λjuj. (4) 
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To maintain scalability, we employ the implicitly restarted Lanczos bidiagonalization algorithm 
(Baglama & Reichel, 2005) to compute the first K < <N eigenvalues and eigenvectors of the (sig
nificantly large) dimensional matrix L(α, τ) (for example, in equation (4) we have that 
j = 1, . . . , K). This algorithm requires O((|E| + NR)K) operations to compute the top K eigenvec
tors of L(α, τ), as it only needs to calculate products of the form L(α, τ)u—where u is an arbitrary 
vector—at each iteration. Furthermore, the method becomes even more computationally efficient 
by noting that L(α, τ)u = Lτ(Lτu) + α􏽢p(􏽢p⊤u) and thus the sparsity of Lτ and the low rank structure 
of 􏽢p􏽢p⊤ are taken into account. Additionally, by using the vector 􏽢p instead of the covariates matrix 
X, the scalability of the method is further enhanced, reducing the cost for the calculation of com
puting K eigenvectors of L(α, τ) to O((|E| + N)K). Next, we discuss how 􏽢p can be estimated 
efficiently.

4.2 Scalable estimation of fraud probabilities
Assume access to an N-dimensional binary vector Y, where the ith element equals 1 if the business 
that corresponds to the ith vertex has engaged in fraudulent activity in the past. Fraud probabil
ities, independent of the network structure, are then estimated using covariates X via a scalable 
XGBoost binary classification (Chen & Guestrin, 2016), resulting in node-specific risk probabil
ities probabilities 􏽢p(X) ≡􏽢p = ( p̂1, . . . , p̂N).

Let yi denote the ith element of Y and xi the ith row of X. The XGboost algorithm is a regular
ized version of the well-known gradient boosting method in which an ensemble of decision trees is 
employed to construct a prediction model for a target variable of interest. Gradient boosting4 is an 
iterative algorithm that adopts a gradient descent approach to minimize a loss function using the 
prediction errors at each data point. At each iteration, the predictions are updated by fitting a new 
decision tree that aims to reduce the loss function further. More precisely, after training the 
XGboost algorithm we obtain node-specific predictions

ẑi = log
p̂i

1 − p̂i

􏼒 􏼓

=
􏽘S

s=1

fs(xi), fs ∈ F , (5) 

where F is the space of decision classification trees. Each fs corresponds to an independent tree 
structure qs : Rp → T with leaf weights vs ∈ RT where T is the number of leaves of the tree. 
Thus, equation (5) implies that the ith observation is classified by using the decision rules specified 
by qs and by summing up the leaf weights vs. To determine the functions f1, . . . , fS, the objective 
function

L =
􏽘N

i=1

ℓ(yi, ẑi) +
􏽘S

s=1

Ω(fs), (6) 

is minimized, where Ω(fs) = γT + ν
􏽐T

j=1 v2
s,j is a regularization term that prevents over-fitting and γ 

and ν are tuning parameters whereas

ℓ(yi, ẑi) = log (1 + eẑi ) − yiẑi, 

is a differentiable convex loss function which is typically chosen for binary classification (see for 
example Murphy, 2012 for more details). By noting that the objective in equation (6) includes 
functions as parameters, and thus its minimization cannot be achieved by using traditional meth
ods, Chen and Guestrin (2016) suggest to perform an additive optimization in the sense that fs(xi) 
is added to the prediction ẑ(s−1)

i obtained in the (s − 1)th iteration of the algorithm. Moreover, since 
the space of tree structures F , is very large, Chen and Guestrin (2016) develop a scalable technique 
to conduct the required calculations.

4 See James et al. (2013) for a detailed description of gradient boosting methods.
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4.3 Classification and clustering
Let U be the N × K matrix whose columns are the eigenvectors uj, which can also be interpreted as 
a network-informed feature matrix. Two anomaly detection methods are developed based on this 
structure. The first relies on the global spectral decomposition of L(α, τ) in equation (3) from which 
U is obtained. Then, using the XGboost algorithm again, 􏽢p is updated to 􏽥p. A threshold is then 
selected to separate the businesses into two clusters: those with p̃i below the threshold, and con
sidered as legitimate, and those with p̃i above the threshold, for which further investigation re
garding potential participation in VAT fraud is needed; see Algorithm 1 below for a detailed 
description of the steps in the proposed method.

The second proposed method constructs a hierarchical tree of communities by utilizing the spec
tral decomposition of L(α, τ) locally within each tree as suggested recently by Li, Lei, et al. (2020). 
This approach is based on recursive bi-partitioning whereby any given sub-network is divided into 
two parts. A stopping rule can be incorporated to determine whether a sub-network can be further 
subdivided into two. In practice, various partitioning methods and stopping rules can be em
ployed; see for example Li, Levina, et al. (2020) for choices on both. In this framework, each sub- 
network is partitioned using the spectral decomposition of the risk-informed Laplacian L(α, τ) and 
the corresponding feature of matrix U. More precisely, following Li, Lei et al. (2020), the proced
ure begins by fixing K = 2 and splitting the initial network in two clusters by applying the k-means 
algorithm with k = 2 applied to the feature matrix U. The same procedure is then recursively ap
plied to each of the two sub-networks obtained in the first step, resulting in 4 clusters after the end 
of the second iteration. The process continues until the desired number of clusrers is identified. 
Algorithm 2 below outlines the steps of the proposed hiercarchical clustering method.

4.3.1 Anomaly detection algorithms
This section provides the algorithmic steps of the two methods developed to detect anomalies in 
the network constructed from the universe of VAT transactions in Bulgaria. Both proposed algo
rithms require as inputs the network structure (given by the adjacency matrix) and a node specific 
set of covariates. Notice also that the first 6 steps of Algorithms 1 and 2 are identical.

Algorithm 1 Network Informed Multiscale Anomaly Detector (NIMAD)

Input: N × N network adjacency matrix A; N-dimensional vertex specific binary vector Y (optional); N × R 
matrix X with vertex specific covariates; tuning constant α > 0; positive integer K.

1: if A symmetric then

2: Set Ã = A

3: else

4: Set Ã to be the symmetric matrix obtained after suitable transformation on A.

5: end if

6: (Optional) Predict anomaly probabilities 􏽢p by first training XGboost on responses Y and covariates X.

7: Calculate L(α, τ̂) defined by equation (3) if the optional step 6 is implemented or by replacing 􏽢p􏽢pT with XXT 

otherwise.

8: Compute the eigendecomposition L(α, τ̂) and form the N × K matrix U with columns the eigenvectors that 
correspond to the K largest eigenvalues.

9: Normalize each row in U to have unit length and form the N × K matrix W with wik = uik
���
λk
√

.

10: if Y is not provided then

11:  Apply the k-means algorithm to the rows of W with k = 2 to obtain vectors with clusters memberships that 
divide two sub-networks.

12:  Create an N-dimensional binary vector Y where its labels correspond to the memberships of the 
sub-networks in 11.

13: end if

14: Estimate anomaly probabilities 􏽥p by using XGboost with responses Y and features W.

Output: N-dimensional vector 􏽥p with vertex specific anomaly probabilities.
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Algorithm 1—Network Informed Multiscale Anomaly Detector (NIMAD)—summarizes the 
steps of the network anomaly detection technique developed to classify the network vertices as 
anomalous or not. In particular, Algorithm 1 classifies taxpayers as high- or low-risk by applying 
a classification method to the vertices of the observed network. As a by-product, it also enables 
clustering of the network’s nodes by leveraging the spectral decomposition of the Laplacian matrix 
defined in equation (3), which captures the structure of the entire network. The output of the al
gorithm consists of a vector with estimated anomaly probabilities for each vertex and a vector in
dicating cluster memberships.

Algorithm 2—Hierarchical Anomalous Cluster Identifier (HACI)—summarises the steps of the 
anomaly detection technique developed to identify anomalous clusters in a network. In contrast to 
1, Algorithm 2 is explicitly cluster-oriented and thus its primary objective is the hierarchical group
ing of taxpayers based on shared transaction patterns. This is achieved by recursively applying the 
spectral decomposition of the Laplacian matrix (from equation (3)) to each branch (or ‘leaf’) of a 
clustering tree, thereby constructing a hierarchical taxonomy of taxpayer clusters. Although the 
inputs of Algorithm 2 are the same as those required by Algorithm 1, the positive integer K which 
specifies the depth of the constructed hierarchical tree of clusters can be estimated automatically by 
the algorithm; see for example Li, Levina, et al. (2020) and Li, Lei, et al. (2020). In this article, since 
the analysis involves a population-scale network consisting of more than 300, 000 vertices, K is 
chosen in advance to maintain scalability. More precisely, a small sensitivity analysis indicates 
that any integer between 5 and 10 does not affect the resulting identification of anomalous clusters 
and vertices in the real data application. The output of Algorithm 2 is a vector consisting of vertex 
specific cluster memberships.

4.4 A toy example
To highlight the advantages of the proposed methodology over traditional network and machine 
learning methods, an example is developed using simulated data that mimic the simple case of MT 
fraud discussed in Section 2 and illustrated in Figure 1. In particular, the directed network of 

Algorithm 2 Hierarchical Anomalous Cluster Identifier (HACI)

Input: N × N network adjacency matrix A; N-dimensional vertex specific binary vector Y (optional); N × p 
matrix X with vertex specific covariates; tuning constant α > 0; positive integer K.

1: if A symmetric then

2: Set Ã = A

3: else

4: Set Ã to be the symmetric matrix obtained after suitable transformation on A.

5: end if

6: (Optional) Predict anomaly probabilities 􏽢p by first training XGboost on responses Y and covariates X.

7: Calculate L(α, τ̂) defined by equation (3) if the optional step 6 is implemented or by replacing 􏽢p􏽢pT with XXT 

otherwise.

8: Calculate the eigenvectors of L(α, τ̂) that correspond to the two largest eigenvalues and form the N × 2 matrix 
U; apply the k-means algorithm to the row of U with k = 2 to obtain an N-dimensional vector C1 that 
separates the N vertices in two clusters.

9: for i = 2, . . . ,K do

10: Calculate L(α, τ̂) defined by equation (3) for each of the sub-networks specified by Ci−1.

11: For each sub-network and its corresponding matrix L(α, τ̂) calculate its eigenvectors and form the N × 2 
matrix U; apply the k-means algorithm to the row of U with k = 2 to obtain vectors with clusters memberships 
that divide each sub-network in two smaller sub-networks.

12: Form the N-dimensional vector Ci that separates the N vertices into the sub-networks identified in the 
previous step.

13: end for

14: Set C = CK Output: N-dimensional vector C with vertex specific cluster memberships.
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business invoices data (input/output VAT) presented in Figure 3(a) is simulated. It is assumed that 
6 out of the N = 10 VAT traders in this network are involved in an MT fraud whereas the remain
ing 4 vertices correspond to VAT-registered traders who may or may not have transactions with 
traders. To simplify matters (and save space), it is also assumed that the initial fraud probability 
for each trader is known, so there is no need to implement the first step of the proposed method
ology (Line 6 of Algorithm 1), where the initial fraud probabilities are estimated using the 
XGboost algorithm. With the simulated network and the known vertex specific fraud probabilities 
at hand, the traditional normalized (Line 7 of the Algorithm) Laplacian matrix Lτ, defined in equa
tion (2), as well as the proposed risk-informed Laplacian L(α, τ), defined in equation (3), are cal
culated with their numerical values being presented in Figure 3(b) and (c), respectively. Since both 
of the proposed fraud detection algorithms rely on the eigenvalues and the eigenvectors of the net
work Laplacian matrix, the eigendecomposition of L(α, τ) is calculated (Step 8 of the Algorithm) to 
compare their efficiency when using either version. Next, the k-means algorithm is applied on the 
first K = 4 (Line 11 of the Algorithm), normalized to have unit length, from each matrix to 

(a)

(b)

(c)

Figure 3. (a) Simulated directed network of VAT transactions and fraud probabilities for each vertex where the width 
of the edges is proportional to the VAT amount exchanged between the businesses represented by each vertex 
(right) and the adjacency matrix of the simulated network (left). (b) the normalized network Laplacian defined in 
equation (2) (left), its eigenvectors (middle) and the clusters identified using these eigenvectors (polygons in the 
right). (c) the risk-corrected network Laplacian defined in equation (3) (left), its eigenvectors (middle) and the clusters 
identified using these eigenvectors (polygons in the right). The simulated vertices correspond to an importer (I), a 
missing trader (MT), brokers (BR), buffers (BF), and legitimate (L) taxpayers.
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partition the observed network in two sub-networks (clusters). Figure 3(b) and (c) displays the 
identified clusters using Lτ and L(α, τ), respectively.

In this application, the XGBoost algorithm is implemented using the r-package xgboost (Chen 
et al., 2019). The described steps correspond to the application of Algorithm 2 for K = 2 in the 
simulated data set by calculating either Lτ or L(α, τ) in the 8th step with τ = 0.01 and α = 1.

Close inspection of the identified clusters reveals that by relying on the eigendecomposition of 
the proposed risk-informed Laplacian L(α, τ) enables detection of all businesses involved in the si
mulated MT fraud, whereas clustering based on Lτ is less effective in identifying the fraudulent 
clusters. This example, therefore, provides clear evidence that the outputs from both 
Algorithms 1 and 2—namely, the estimated fraud probabilities 􏽥p and cluster membership C, re
spectively, which rely on the eigendecomposition of L(α, τ)—are more accurate than the outputs 
of the same algorithms when using Lτ instead. Furthermore, attempting to identify the members 
of the MT scheme solely relying on the initial fraud probabilities would also result in less accurate 
fraud detection than that illustrated in Figure 3(c). The implication of all this is clear: fraud detec
tion approaches that combine the structure of the VAT network with risk information about in
dividual businesses (vertices) should be preferred over methods that utilize only a single source of 
information. Section 5 provides similar supporting evidence based on real data from the Bulgarian 
tax authorities.

4.5 Sensitivity analysis
Noting that both of the proposed fraud detection algorithms depend on tuning parameters, name
ly τ and α, the following sensitivity analysis is conducted. A grid of values for τ and α is considered 
and, for each parameter combination, 30 networks of VAT transactions are simulated as follows. 
The base adjacency matrix is taken from Figure 3(a) perturbed with Gaussian noise to introduce 
variability, while each node is labelled as fraud or not by simulating binary random variables with 
success probabilities given in Figure 3. Then, for each simulated network, Algorithm 2 is applied 
again with K = 2 and the adjusted rand index (ARI) is calculated. The ARI is a statistical measure 
that is commonly employed to compare different clustering assignments. In particular, ARI is a 
measure of similarity between clustering from two different methods corrected for random clus
tering, ranging from −1 to 1. A value greater than zero indicates perfect agreement between the 
clustering from the methods under comparison, a value close to zero implies that the predicted 
clusters are no better than randomly assigning nodes to groups while negative ARI implies that 
even random clustering would be more accurate; for more details see the Appendix as well as 
Zhang et al. (2012) for a comprehensive discussion.

In the application, the true clustering of the nodes in the simulated VAT networks—defined by 
the binary labels assigned to the nodes—is compared with the clusters identified through the ap
plication of Algorithm 2. Figure 4 shows, for each combination of τ and α, the mean ARI across the 
30 simulated VAT networks. It is clear that the mean ARI values remain relatively stable within a 
broad region of the parameter space, particularly for α values between 0 and 2.5 and τ between 0 
and 0.1, where the mean ARI ranges from 0.22 to 0.28. This indicates that the clustering results are 
robust to moderate changes in both parameters. Only for some extreme values in the parameter 
grid the performance of the clustering technique begins to degrade, suggesting that the algorithm 
does not require precise tuning to achieve good results. Overall, the developed clustering method 
demonstrates strong robustness across a reasonable range of hyperparameters.

The code to replicate the described examples can be found online at https://gitlab.com/ 
aggelisalexopoulos/vat-fraud.

5 Real data analysis
The proposed algorithms, NIMAD and HACI, are applied to the universe of VAT returns pro
vided by the Bulgarian National Revenue Authority (BNRA) for the years 2016–2017, along 
with ledger data for all N = 312,762 VAT-registered taxpayers in Bulgaria in 2017. An 
out-of-sample exercise is also conducted, in which the models are trained using networks con
structed from monthly VAT returns submitted by taxpayers between January 2016 and 
November 2017. The objective of this exercise is to probabilistically predict the illegitimate tax
payers for December 2017. The results are compared with those from classification methods 
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that rely solely on covariates describing taxpayer profiles without taking into account the network 
structure of the data. This out-of-sample exercise demonstrates that network information plays a 
key role in the efficient detection of anomalous vertices. Finally, the results from the two anomaly 
detection methods are analysed, classifying groups of fraudsters and legitimate taxpayers, and 
identifying clusters of taxpayers with characteristics similar to known fraudsters.

Both of the proposed algorithms rely on the prediction of probabilities of risky VAT taxpayers. 
This is achieved by first training the XGboost algorithm with inputs a binary response vector Y 
and the N × R matrix X̆ consisted of the available covariates which include the number of employ
ees, the labour cost, and other records that taxpayers declare with their VAT returns. In particular, 
the types of covariates used are a subset of the risk-based criteria which the BNRA employs in or
der to prioritize the taxpayers with respect to their riskiness of being involved in a VAT missing 
trader fraud. Covariates are also constructed using the characteristics of the 23 observed net
works, corresponding to the VAT returns submitted monthly between January 2016 and 
November 2017. For each vertex, the mean degree, strength, and centrality across the observed 
networks are calculated. The resulting matrix has R = 49 columns. The N × R matrix X consisting 
of these covariates for December 2017 (the month for which risk probabilities are to be predicted) 
is then used to obtain the vector 􏽢p appearing in equation (3).

The input adjacency matrix A, required by both of the developed anomaly detection methods, 
corresponds to the adjacency matrix of a directed weighted network, constructed by the VAT re
turns submitted in December 2017. In this case, A is an asymmetric matrix reflecting the fact that 
relationships between taxpayers are not necessarily reciprocal. To address this, a symmetric ma
trix is constructed as 􏽥A = A + AT. The undirected network represented by 􏽥A retains the same edges 
as the original network, but directed edges are replaced with undirected edges whose weights equal 
the sum of the original directed weights; that is, each pair of nodes i, j is connected by an undir
ected edge with weight Ãij = Aij + Aji associated with the edge in question. Community detection 
methods that are based on 􏽥A tend to group nodes that share similar incoming and outgoing edges 
(Satuluri & Parthasarathy, 2011). Arguably, this symmetrization is reasonable since malicious be
haviour often manifests through anomalous connectivity patterns that are not strictly dependent 

Figure 4. The mean adjusted rand index (ARI) of the clustering detected by using Algorithm 2 across a grid of values 
for the parameters τ and α.
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on directionality, and thus the structure of the undirected network still captures essential signals of 
suspicious activity. However, the effectiveness of this approach may be limited when the direction 
of transactions or interactions carries key asymmetrical information—such as deliberate imbalan
ces in money flow or one-sided interactions—which are purposefully introduced to conceal 
fraudulent behaviour. Finally, since both of the anomaly detection algorithms rely on the eigenval
ues and eigenvectors (and so on the spectral decomposition of the matrix L(α, τ̂) in equation (3)) it 
is necessary to choose the tuning parameters α and τ carefully. Following the approach in Qin and 
Rohe (2013), τ is set to the average degree that is, τ̂ = N−1􏽐n

i=1 dii = d̅. The parameter α can be 
determined from the eigenvectors of D−1/2

τ
􏽥AD−1/2

τ and 􏽢p (see Binkiewicz et al., 2017 where they 
show how to set α such that the information contained in D−1/2

τ
􏽥AD−1/2

τ as well as in 􏽢p is captured 
in the leading eigenspace of L(α, τ̂)).

5.1 Out-of-sample detection
To evaluate the performance of the anomaly detection algorithms, an out-of-sample detection ex
ercise is designed by constructing a time series of networks based on 24 months of data, corre
sponding to the monthly observations from 2016 and 2017.

The first step, for both methods, involves classifying the 24th month of observations (December 
2017) using information from the preceding 23 months. This setup requires a binary vector indi
cating the anomalous vertices of ‘high-risk’ taxpayers, a matrix of covariates, and an adjacency 
matrix. The binary vector Y represents a classification of ‘high-risk’ and ‘low-risk’ taxpayers, as 
determined by the BNRA up to November 2017. This constitutes an unbalanced classification 
problem, as the proportion of fraudulent nodes is unlikely to approach one half (Hand & 
Vinciotti, 2003), implying that different types of misclassification are associated with different 
losses. To address the class imbalance problem random oversampling is applied by re-sampling 
the set of ‘high-risk’ taxpayers to construct a balanced data set. This oversampling technique is 
chosen among other possible approaches to keep the method simple while preserving all informa
tion contained in the original; see for example Menon et al. (2013) for a comparison of various 
methods that have been developed to deal with data imbalance problems. For the out-of-sample 
analysis, the weighted directed network constructed from the VAT returns submitted in 
December 2017 is used. The tuning parameter α is selected to balance the contribution of the net
work structure, as captured by 􏽥A, and the individual probabilities 􏽢p. Sensitivity analysis indicates 
that a value of 0.01 for α is appropriate.

Finally, both of the developed anomaly detection methods rely on the calculation of the spectral 
decomposition of the matrix L(0.01, τ̂) in equation (3), which is computed using the Lanczos bi
diagonalization method (Baglama & Reichel, 2005). In the case of NIMAD, which uses the eigen
vectors computed globally from the matrix L(0.01, τ̂) corresponding to the entire observed 
network, the algorithm is stopped after calculating the first K = 200 eigenvalues and eigenvectors, 
as the eigenvalues beyond this point were largely similar. Their values are reported in Figure A1 in 
the Appendix. The implementation of HACI requires only the K = 2 largest eigenvalues and cor
responding eigenvectors of the matrix L(0.01, τ̂), which pertains to a each local ‘leaf’ in the hier
archical tree of communities under construction. Notably, applying Algorithm 1 to the dataset 
took approximately 3 h on a laptop with a 1.6 GHz dual-core Intel Core i5 CPU running R 
4.0.0 (R Core Team, 2021), whereas Algorithm 2 completed in under an hour.

5.2 Determining the accuracy of the proposed methods
Algorithm 1 is evaluated by assessing its ability to predict the provided list of risky taxpayers as of 
December 2017. From this list, it is observed that 64% of the ‘high-risk’ registrations of taxpayers 
in December 2017 had in fact been identified as ‘high-risk’ already in November 2017. The re
maining 36% were registered for the first time as ‘high-risk’ in December 2017. Accordingly, 
two prediction tasks are considered: (a) identifying all high-risk VAT registrations in 2017 and 
(b) identifying only the newly classified high-risk VAT registrations in 2017.

To assess the performance of the proposed methodology, ROC curves (as in Hsieh et al., 1996) 
are compared between the proposed approach and an XGBoost classifier that excludes network 
information. Figure 5 illustrates that the proposed algorithm outperforms the standard 
XGboost classifier for both existing and newly identified high-risk taxpayers in December 
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2017. This provides strong evidence of the value of combining both individual and group-level 
patterns to detect fraud. Table 1 presents a sensitivity analysis of XGBoost models, comparing ver
sions with and without network features across a range of classification thresholds. The inclusion 
of network information significantly improves performance—most notably in the most challen
ging case: predicting newly registered risky VAT taxpayers in 2017. In this setting, the model’s 
area under the ROC curve (AUC) increases markedly from 0.802 to 0.953, as shown in the bottom 
panel of Figure 5.

To assess the output of Algorithm 2, the analysis focuses on the identification of taxpayers in
cluded for a first time in December 2017 in the list of ‘high-risk’ registrations. Figure 6 displays the 
sizes of the 17 clusters, each containing more than 10% known (up to November 2017) ‘high-risk’ 
taxpayers, as well as the proportion of ‘high-’ and ‘low-risk’ taxpayers within each cluster. Visual 
inspection of Figure 6 reveals that the hierarchical construction of clusters enables the identifica
tion of groups that rarely exceed 30 members, with the proportion of target ‘high-risk’ taxpayers 
in most clusters ranging between 23% and 83%.

Recognizing that both proposed fraud detection methods rely on XGBoost for classification, its 
performance is compared against two widely used alternatives: logistic regression and random for
ests. Logistic regression serves as a benchmark due to its interpretability and long-standing use in 
classification problems. Random forests, on the other hand, provide a strong nonparametric alter
native capable of capturing complex interactions, while requiring less intensive hyperparameter 
tuning than XGBoost.

Figure 5. ROC curves comparing the out-of-sample classification performance of Algorithm 1 (solid line) with the 
performance of a classifier that does not utilize network information (dotted line). Top panel: results for detecting all 
‘high-risk’ taxpayers of December 2017. Bottom panel: results for detecting taxpayers newly added to the risk 
registration list of the Bulgarian National Revenue Agency in December 2017.
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To examine whether added model complexity improves predictive performance, a computa
tionally intensive version of the random-forest classifier is also evaluated. This comparative ana
lysis provides insights into whether the results presented in Figure 5 are model-dependent or robust 
across different classification methods. Figure 7 shows that XGBoost clearly outperforms the al
ternatives. Specifically, it achieves the highest sensitivity and F1 score across a broad range of de
cision thresholds, indicating strong performance in identifying fraudulent cases while balancing 
precision and recall. The specificity and overall accuracy of XGBoost are also competitive, suggest
ing that this improvement in sensitivity does not come at the expense of overall correctness. 
Notably, logistic regression lags behind in most metrics, particularly in F1 and sensitivity, likely 
due to its linear nature. Although both versions of the random forest surpass logistic regression, 
they still fall short of XGBoost, underscoring the XGBoost’s superior ability to model nonlinear 
interactions and deliver consistent predictive gains.

To compare the two proposed anomaly detection methods, it is first important to note that they 
are primarily distinguished by the output they provide. Algorithm 1 classifies the taxpayers as 
‘high-’ and ‘low-risk’ by conducting the corresponding classification in the vertices of the observed 
network. As a by-product, it also enables clustering of the network nodes using the spectral de
composition of the Laplacian matrix in (3), computed across the entire network. Algorithm 2, 
in contrast to 1, can be considered as a cluster-oriented algorithm since its main aim is the hierarch
ical identification of groups of taxpayers with common patterns of transactions. It achieves this by 
recursively applying the spectral decomposition of the Laplacian matrix in (3) to each leaf of a 
hierarchical clustering tree. Consequently, Algorithm 1 is expected to deliver a more accurate clas
sification of ‘high-’ and ‘low-risk’ taxpayers, while Algorithm 2 is expected to be more effective in 
identifying sizeable fraudulent clusters that merit further investigation by tax authorities, particu
larly when targeting groups of taxpayers involved in coordinated illegal activities.

Figure 6. Size of VAT fraudulent clusters identified using Algorithm 2 which constructs an hierarchical tree of 
clusters by using recursive bi-partitioning of the observed VAT network. Each bar displays the proportion of ‘high-’ 
and ‘low-risk’ taxpayers included in the corresponding cluster.
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5.3 Policy evaluation of the algorithmic outputs
The benefit derived from the automated detection algorithms proposed in this article is evident. 
Currently, BNRA applies risk-based rules to all submitted tax returns and each month prioritizes 
15,000 returns as ‘high-risk’. Through additional selection criteria this number is reduced to 500 
and, ultimately, audits identify 100 taxpayers as having participated in VAT fraud. The methods 
proposed in this contribution offer fully automated mechanisms for identifying VAT fraudsters 
streamlining and potentially improving this multi-stage process.

Automation has a number of clearly established advantages: it reduces costs, increases transpar
ency and reproducibility, and explicitly balances information obtained from a single taxpayer with 
that provided by the population-scale data. The out-of-sample exercise demonstrates a clear im
provement in identification for a fixed false positive rate. In particular, the proposed method iden
tified 200 taxpayers with the highest estimated fraud probabilities (using Algorithm 1) of whom 
100 had been flagged as high-risk for VAT fraud for the first time in December 2017. By automat
ing the process, the set of potentially fraudulent taxpayer is reduced from the set of 500 identified 
through BNRA’s human-driven selection procedure. Moreover, the hierarchical clustering pro
vided by Algorithm 2 facilitates quick identification of relatively small groups of taxpayers exhib
iting similar fraudulent behaviour. Interestingly, BNRA, as a response to the results presented in 

Figure 7. Performance metrics (sensitivity, specificity, accuracy, and F1 score) against classification thresholds for 
logistic regression, random forest (standard and computationally intensive) and XGBoost.
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this article, has already begun automating and strengthening further their auditing function to 
fully leverage the benefits from detecting multiple members of VAT fraud schemes. This work 
has also appeared as a case study in OECD (2022).

Finally, Figure 8 displays the number of new entries in the risky taxpayers list that can be iden
tified for a given number of taxpayers using either Algorithm 1 or 2. The figure shows that redu
cing the number of reported taxpayers from 200 to 50 minimizes the false positive rate, since 40 of 
them indeed entered the BNRA’s list of risky VAT-registered taxpayers in December 2017. 
Allowing for more false positives—by increasing the number of reported taxpayers from 200 to 
500 (the number currently audited by the BNRA)—enables the prediction of more than 120 ‘high- 
risk’ taxpayers. This number further increases to 140 if 2,000 VAT-registered taxpayers are re
ported for auditing. Overall, Figure 8 confirms the superior performance of Algorithm 1 in clas
sifying ‘high-’ and ‘low-risk’ taxpayers compared to Algorithm 2.

6 Concluding remarks
This article contributes to the emerging literature focused on developing novel and efficient tools 
for fraud detection. With VAT fraud in mind—a form of fraud with significant revenue 
consequences—it develops fraud detection tools that leverage advanced quantitative, statistical, 
and machine learning methods. Importantly, the analysis explicitly accounts for inherent issues 
in the fraud detection process, such as the non-random nature of the audits and the quality of 
the audit execution. Accordingly, the methods are designed to operate either in a supervised man
ner—using historical audit information from the Revenue Agency—or in an unsupervised manner, 
enabling fraud detection without relying on prior audit labels. Importantly, unlike traditional data 
mining and machine learning approaches, the proposed methods draw on tools from network 
science to integrate business-specific characteristics with insights derived from businesses’ 
interactions transactional—specifically, through analysis of the VAT transaction network. This 
enables Revenue Authorities to more effectively and efficiently identify VAT fraudsters, who often 

Figure 8. The x-axis shows the number of taxpayers that need to be reported for auditing to identify the number of 
taxpayers that have entered the risk-list of the Bulgarian National Revenue Agency for a first time in December 2017 
(y-axis). The dotted line corresponds to Algorithm 1 and the squared line corresponds to Algorithm 2.
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rely on complex transaction structures to obscure fraudulent behaviour and hinder detection ef
forts. Application of the developed methods to real-world data demonstrates their effectiveness. 
In particular, incorporating network structure to model VAT transactions significantly enhances 
the performance of standard approaches that rely exclusively on business-specific information.

Though the algorithms are general enough to capture fraud within a broad range of VAT sys
tems (e.g. simplified tax regime), and as long as the incentives for some form of evasion or misre
porting remains—such as underreporting sales, inflating input claims, or exploiting network 
structures to obscure liability—a more formal treatment of institutional variations of VAT offers 
a promising direction for future research and a natural extension of the current work. Arguably, 
detecting anomalies in the VAT network is not solely a cross-sectional problem but it has an inter- 
temporal dimension. Fraudulent taxpayers learn from interacting with the Revenue Authority, 
just as the Revenue Authority learns from uncovering fraud. For this, the adjustment of the com
pliance strategy requires to be appropriately adjusted (Black & Baldwin, 2012). The VAT net
works analysed are static, in the sense that the changes in their structure through time are 
assumed to convey no additional information. For the time horizon of the data set this is not a sig
nificant omission, since B2B interactions are not expected to vary significantly within a period of 
23 months. For longer time horizons, however, this might matter. For this, it will be interesting to 
extend the developed fraud detection methodology to multi-layer networks which can also incorp
orate the time dimension of the observed networks. Multi-layer networks can capture different 
types of relationships between businesses—such as transactional links and shared board member
ship—which may evolve over time. These structures allow for the detection of communities exhib
iting abnormal connectivity patterns across multiple layers. A detailed exploration of this 
approach is left for future research.

Nevertheless, it is hoped that the results presented in this article will prove instructive and 
underscore the value of developing algorithms designed to support the effective functioning of eco
nomic systems.
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Data availability
Code for the replication of all plots based on simulated data is available at https://gitlab.com/ 
aggelisalexopoulos/vat-fraud. The real data used in the empirical analysis can be made available 
upon request.

Appendix
Economic sectors
Table A1 displays the codes of the economic sectors in Bulgaria classified according to the 
Nomenclature of Economic Activities (NACE) system.

Results from the spectral decomposition
Figure A1 displays the first 200 eigenvalues of the matrix L(0.01, τ̂) computed by using the 
Lanczos bidiagonalization algorithm. Figure A2 shows the mean of each loading vector, separately 
for ‘low-risk’ taxpayers, the ‘high-risk’ taxpayers used to train NIMAD and the ‘high-risk’ tax
payers targeted for detection. Close inspection of the figure reveals that for the ‘high-risk’ tax
payers there exists one eigenvector whose mean loading is substantially higher than those 
corresponding to the remaining eigenvectors. In contrast, for ‘low-risk’ taxpayers, the mean load
ings are relatively uniform across all eigenvectors. This suggests that using the columns of matrix 
W as features in the XGBoost algorithm at Step 9 of the Algorithm 1 enables an accurate classifi
cation between ‘high-’ and ‘low-risk’ taxpayers.

Table A1. Sector codes according to the Nomenclature of Economic Activities (NACE) classification system.

Code Sector

A Agriculture, forestry, and fishing

B Mining and quarrying

C Manufacturing

D Electricity, gas, steam, and air conditioning supply

E Water supply; sewerage; waste management and remediation activities

F Construction

G Wholesale and retail trade; repair of motor vehicles and motorcycles

H Transporting and storage

I Accommodation and food service activities

J Information and communication

K Financial and insurance activities

L Real estate activities

M Professional, scientific, and technical activities

N Administrative and support service activities

O Public administration and defence; compulsory social security

P Education

Q Human health and social work activities

R Arts, entertainment, and recreation

S Other services activities

NA Not available information of the economic activity
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Figure A1. The first K = 200 eigenvalues of the matrix L(0.01, τ̂) computed by using the Lanczos bidiagonalization 
algorithm, Baglama and Reichel (2005).

Figure A2. Mean of the loadings that correspond to the first K = 200 eigenvalues of the matrix L(0.01, τ̂). The x-axis 
indicates the loading that corresponds to the kth eigenvalue.
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